id
stringlengths
9
10
text
stringlengths
1
3.07M
source
stringclasses
1 value
added
stringlengths
26
26
created
stringlengths
8
19
metadata
dict
PMC3051993
Related literature {#sec1} ================== For niacin, see: Krishnamachari (1974[@bb12]). For the nicotinic acid derivative *N*,*N*-diethyl­nicotinamide, see: Bigoli *et al.* (1972[@bb2]). For related structures, see: Hökelek *et al.* (1996[@bb9], 2009*a* [@bb7],*b* [@bb8]); Hökelek & Necefoğlu (1998[@bb10], 2007[@bb11]). For standard bond lengths, see: Allen *et al.* (1987[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Zn(C~9~H~9~O~2~)~2~(C~6~H~6~N~2~O)~2~\]*M* *~r~* = 607.97Monoclinic,*a* = 8.0601 (2) Å*b* = 15.9736 (3) Å*c* = 21.2568 (3) Åβ = 94.384 (3)°*V* = 2728.78 (9) Å^3^*Z* = 4Mo *K*α radiationμ = 0.95 mm^−1^*T* = 100 K0.31 × 0.30 × 0.27 mm ### Data collection {#sec2.1.2} Bruker Kappa APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2001[@bb3]) *T* ~min~ = 0.752, *T* ~max~ = 0.76326561 measured reflections6812 independent reflections5761 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.045 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.032*wR*(*F* ^2^) = 0.078*S* = 1.036812 reflections388 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.33 e Å^−3^Δρ~min~ = −0.44 e Å^−3^ {#d5e630} Data collection: *APEX2* (Bruker, 2007[@bb4]); cell refinement: *SAINT* (Bruker, 2007[@bb4]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb13]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb13]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb5]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb6]) and *PLATON* (Spek, 2009[@bb14]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811006830/su2256sup1.cif](http://dx.doi.org/10.1107/S1600536811006830/su2256sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006830/su2256Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006830/su2256Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?su2256&file=su2256sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?su2256sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?su2256&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SU2256](http://scripts.iucr.org/cgi-bin/sendsup?su2256)). The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 108 T657). Comment ======= As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative *N*,*N*-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli *et al.*, 1972), the title compound was synthesized and its crystal structure is on reported herein. The title complex, (Fig. 1), is a mononuclear Zn^II^complex, consisting of two nicotinamide (NA) and two 4-ethylbenzoate (PEB) ligands, all ligandscoordinating in a monodentate manner. The crystal structures of similar complexes of Cu^II^, Co^II^, Ni^II^, Mn^II^ and Zn^II^ ions, \[Cu(C~7~H~5~O~2~)~2~(C~10~H~14~N~2~O)~2~\] (Hökelek *et al.*, 1996), \[Co(C~6~H~6~N~2~O)~2~(C~7~H~4~NO~4~)~2~(H~2~O)~2~\] (Hökelek & Necefoğlu, 1998), \[Ni(C~7~H~4~ClO~2~)~2~(C~6~H~6~N~2~O)~2~(H~2~O)~2~\] (Hökelek *et al.*, 2009*a*), \[Mn(C~9~H~10~NO~2~)~2~(H~2~O)~4~\]2H~2~O\] (Hökelek & Necefoğlu, 2007) and \[Zn(C~7~H~4~BrO~2~)~2~(C~6~H~6~N~2~O)~2~(H~2~O)~2~\] (Hökelek *et al.*, 2009*b*) have also been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the Cu^II^ atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner. In the title complex the near equality of the C1---O1 \[1.282 (2) Å\], C1---O2 \[1.238 (2) Å\] and C10---O3 \[1.283 (2) Å\], C1---O2 \[1.243 (2) Å\] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The Zn---O bond lengths are 1.9321 (12) and 1.9470 (11) Å, and the Zn---N bond lengths are 2.0525 (13) and 2.0767 (14) Å, close to standard values (Allen *et al.*, 1987). The Zn atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C10/O4) by -0.1444 (2) and -0.1364 (2) Å, respectively. The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2---C7) and B (C11---C16) are 10.33 (13) and 2.38 (11) °, respectively. The benzene A (C2---C7) and B (C11---C16) rings and the pyridine C (N1/C19---C23) and D (N2/C25---C29) rings are oriented at dihedral angles of A/B = 81.09 (6), A/C = 80.79 (5), A/D = 31.68 (5), B/C = 12.68 (5), B/D = 70.61 (6) and C/D = 68.46 (5) °. In the crystal intermolecular N---H···O link the molecules to form a three-dimensional network (Table 1 and Fig. 2). There also C-H···O interactions, and two weak C---H···π interactions involving the benzene ring A (C2-C7) (Table 1). Footnote for Table 1: Cg1 is the centroid of ring A (C2-C7.) Experimental {#experimental} ============ The title compound was prepared by the reaction of ZnSO~4~.H~2~O (0.89 g, 5 mmol) in H~2~O (100 ml) and NA (1.22 g, 10 mmol) in H~2~O (50 ml) with sodium 4-ethylbenzoate (1.72 g, 10 mmol) in H~2~O (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving colourless single crystals. Refinement {#refinement} ========== Atoms H31, H32, H41 and H42 (for the NH~2~ groups) were located in a difference Fourier map and were freely refined. The C-bound H-atoms were positioned geometrically with C---H = 0.95, 0.99 and 0.98 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with *U*~iso~(H) = k × *U*~eq~(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C-H···O hydrogen bond is shown as a dashed line. ::: ![](e-67-0m382-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view along the a-axis of the crystal packing of the title compound. The N-H···O hydrogen bonds are shown as dashed cyan lines \[H-atoms not involved in hydrogen bonding have been omitted for clarity\]. ::: ![](e-67-0m382-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e326 .table-wrap} ------------------------------------------- --------------------------------------- \[Zn(C~9~H~9~O~2~)~2~(C~6~H~6~N~2~O)~2~\] *F*(000) = 1264 *M~r~* = 607.97 *D*~x~ = 1.480 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 9453 reflections *a* = 8.0601 (2) Å θ = 2.3--28.3° *b* = 15.9736 (3) Å µ = 0.95 mm^−1^ *c* = 21.2568 (3) Å *T* = 100 K β = 94.384 (3)° Block, colourless *V* = 2728.78 (9) Å^3^ 0.31 × 0.30 × 0.27 mm *Z* = 4 ------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e470 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker Kappa APEXII CCD area-detector diffractometer 6812 independent reflections Radiation source: fine-focus sealed tube 5761 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.045 φ and ω scans θ~max~ = 28.3°, θ~min~ = 1.9° Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *h* = −10→10 *T*~min~ = 0.752, *T*~max~ = 0.763 *k* = −18→21 26561 measured reflections *l* = −25→28 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e587 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.032 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.078 H atoms treated by a mixture of independent and constrained refinement *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0293*P*)^2^ + 1.6476*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 6812 reflections (Δ/σ)~max~ = 0.002 388 parameters Δρ~max~ = 0.33 e Å^−3^ 0 restraints Δρ~min~ = −0.44 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e744 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e843 .table-wrap} ------ -------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Zn1 0.71491 (2) 0.888748 (11) 0.825485 (9) 0.01161 (6) O1 0.91423 (14) 0.87417 (7) 0.78163 (6) 0.0171 (2) O2 0.73308 (14) 0.85419 (8) 0.69894 (6) 0.0209 (3) O6 1.35846 (16) 0.92561 (8) 1.03534 (6) 0.0241 (3) O3 0.50224 (14) 0.83456 (7) 0.83563 (6) 0.0172 (2) O4 0.66060 (14) 0.72104 (8) 0.84067 (6) 0.0187 (3) O5 0.13462 (14) 1.06652 (8) 0.83268 (6) 0.0199 (3) N1 0.63168 (16) 1.00911 (8) 0.81069 (6) 0.0120 (3) N2 0.84101 (17) 0.88825 (8) 0.91441 (7) 0.0133 (3) N3 0.14554 (18) 1.16536 (9) 0.75686 (7) 0.0168 (3) H31 0.047 (3) 1.1708 (14) 0.7533 (11) 0.030 (6)\* H32 0.203 (3) 1.1909 (14) 0.7303 (11) 0.028 (6)\* N4 1.32842 (19) 0.98657 (10) 0.93949 (7) 0.0185 (3) H41 1.260 (3) 1.0050 (14) 0.9080 (11) 0.028 (6)\* H42 1.421 (3) 1.0104 (14) 0.9461 (11) 0.030 (6)\* C1 0.87746 (19) 0.86154 (10) 0.72266 (8) 0.0136 (3) C2 1.02295 (19) 0.85648 (10) 0.68257 (8) 0.0130 (3) C3 1.0005 (2) 0.83375 (10) 0.61948 (8) 0.0164 (3) H3 0.8932 0.8177 0.6020 0.020\* C4 1.1337 (2) 0.83427 (11) 0.58184 (8) 0.0192 (3) H4 1.1173 0.8170 0.5391 0.023\* C5 1.2923 (2) 0.86004 (10) 0.60619 (9) 0.0189 (3) C6 1.3143 (2) 0.88062 (10) 0.66957 (8) 0.0178 (3) H6 1.4216 0.8963 0.6873 0.021\* C7 1.1815 (2) 0.87866 (10) 0.70766 (8) 0.0148 (3) H7 1.1992 0.8925 0.7511 0.018\* C8 1.4347 (2) 0.86644 (12) 0.56405 (10) 0.0290 (4) H8A 1.4025 0.9057 0.5292 0.035\* H8B 1.5321 0.8907 0.5888 0.035\* C9 1.4854 (3) 0.78609 (14) 0.53652 (14) 0.0498 (7) H9A 1.5744 0.7963 0.5085 0.075\* H9B 1.3897 0.7609 0.5124 0.075\* H9C 1.5257 0.7480 0.5705 0.075\* C10 0.52318 (19) 0.75551 (10) 0.84359 (7) 0.0137 (3) C11 0.37299 (19) 0.70554 (10) 0.85754 (8) 0.0134 (3) C12 0.22077 (19) 0.74497 (10) 0.86294 (8) 0.0141 (3) H12 0.2122 0.8039 0.8578 0.017\* C13 0.0817 (2) 0.69897 (10) 0.87579 (8) 0.0158 (3) H13 −0.0207 0.7270 0.8802 0.019\* C14 0.0898 (2) 0.61218 (10) 0.88240 (8) 0.0156 (3) C15 0.2425 (2) 0.57307 (10) 0.87673 (9) 0.0193 (3) H15 0.2506 0.5140 0.8810 0.023\* C16 0.3833 (2) 0.61926 (10) 0.86493 (9) 0.0184 (3) H16 0.4868 0.5917 0.8619 0.022\* C17 −0.0651 (2) 0.56207 (11) 0.89316 (9) 0.0196 (4) H17A −0.0353 0.5019 0.8950 0.024\* H17B −0.1468 0.5701 0.8565 0.024\* C18 −0.1475 (2) 0.58478 (12) 0.95274 (9) 0.0268 (4) H18A −0.2483 0.5511 0.9553 0.040\* H18B −0.1770 0.6443 0.9517 0.040\* H18C −0.0703 0.5736 0.9897 0.040\* C19 0.73450 (19) 1.07550 (10) 0.80977 (8) 0.0141 (3) H19 0.8512 1.0661 0.8127 0.017\* C20 0.6764 (2) 1.15687 (10) 0.80474 (8) 0.0152 (3) H20 0.7525 1.2023 0.8050 0.018\* C21 0.50608 (19) 1.17165 (10) 0.79933 (7) 0.0132 (3) H21 0.4633 1.2270 0.7952 0.016\* C22 0.39986 (18) 1.10297 (10) 0.80012 (7) 0.0118 (3) C23 0.46747 (18) 1.02318 (10) 0.80640 (7) 0.0122 (3) H23 0.3943 0.9767 0.8077 0.015\* C24 0.21397 (19) 1.11059 (10) 0.79769 (8) 0.0138 (3) C25 0.7753 (2) 0.85405 (10) 0.96462 (8) 0.0169 (3) H25 0.6625 0.8362 0.9606 0.020\* C26 0.8661 (2) 0.84391 (11) 1.02190 (8) 0.0210 (4) H26 0.8169 0.8187 1.0564 0.025\* C27 1.0297 (2) 0.87093 (10) 1.02831 (8) 0.0192 (3) H27 1.0946 0.8639 1.0672 0.023\* C28 1.0980 (2) 0.90846 (10) 0.97729 (8) 0.0142 (3) C29 0.9994 (2) 0.91520 (10) 0.92118 (8) 0.0137 (3) H29 1.0458 0.9400 0.8859 0.016\* C30 1.2733 (2) 0.94122 (10) 0.98604 (8) 0.0155 (3) ------ -------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1753 .table-wrap} ----- ------------- -------------- -------------- ------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Zn1 0.00833 (9) 0.01253 (10) 0.01407 (10) 0.00004 (6) 0.00148 (6) 0.00079 (7) O1 0.0135 (5) 0.0229 (6) 0.0154 (6) 0.0017 (4) 0.0041 (4) 0.0004 (5) O2 0.0100 (5) 0.0268 (7) 0.0258 (7) −0.0015 (5) 0.0014 (5) −0.0005 (5) O6 0.0236 (7) 0.0271 (7) 0.0201 (7) −0.0052 (5) −0.0084 (5) 0.0055 (5) O3 0.0125 (5) 0.0151 (6) 0.0243 (7) −0.0024 (4) 0.0033 (5) 0.0017 (5) O4 0.0113 (5) 0.0216 (6) 0.0237 (7) 0.0008 (5) 0.0034 (5) −0.0034 (5) O5 0.0098 (5) 0.0289 (7) 0.0211 (6) −0.0008 (5) 0.0016 (5) 0.0101 (5) N1 0.0091 (6) 0.0147 (6) 0.0121 (6) −0.0001 (5) 0.0010 (5) 0.0004 (5) N2 0.0139 (6) 0.0112 (6) 0.0151 (7) 0.0005 (5) 0.0024 (5) −0.0002 (5) N3 0.0089 (7) 0.0203 (7) 0.0214 (8) 0.0024 (5) 0.0017 (6) 0.0070 (6) N4 0.0127 (7) 0.0249 (8) 0.0173 (8) −0.0021 (6) −0.0033 (6) 0.0027 (6) C1 0.0135 (7) 0.0091 (7) 0.0185 (8) 0.0007 (6) 0.0036 (6) 0.0012 (6) C2 0.0117 (7) 0.0115 (7) 0.0161 (8) 0.0008 (6) 0.0028 (6) 0.0012 (6) C3 0.0137 (7) 0.0166 (8) 0.0189 (8) 0.0002 (6) 0.0005 (6) −0.0017 (6) C4 0.0238 (9) 0.0188 (8) 0.0154 (8) 0.0030 (7) 0.0047 (7) −0.0017 (7) C5 0.0189 (8) 0.0148 (8) 0.0244 (9) 0.0032 (6) 0.0102 (7) 0.0003 (7) C6 0.0115 (7) 0.0169 (8) 0.0252 (9) 0.0003 (6) 0.0035 (6) −0.0001 (7) C7 0.0136 (7) 0.0149 (8) 0.0160 (8) 0.0001 (6) 0.0010 (6) −0.0002 (6) C8 0.0267 (10) 0.0268 (10) 0.0360 (12) −0.0003 (8) 0.0190 (8) −0.0021 (8) C9 0.0552 (15) 0.0309 (12) 0.0703 (18) 0.0036 (11) 0.0491 (14) −0.0030 (11) C10 0.0114 (7) 0.0171 (8) 0.0125 (8) −0.0016 (6) 0.0016 (6) −0.0020 (6) C11 0.0111 (7) 0.0151 (8) 0.0142 (8) −0.0016 (6) 0.0016 (6) −0.0016 (6) C12 0.0132 (7) 0.0116 (7) 0.0178 (8) 0.0000 (6) 0.0021 (6) −0.0010 (6) C13 0.0112 (7) 0.0159 (8) 0.0205 (9) −0.0001 (6) 0.0027 (6) −0.0018 (6) C14 0.0153 (8) 0.0156 (8) 0.0161 (8) −0.0035 (6) 0.0019 (6) −0.0010 (6) C15 0.0204 (8) 0.0122 (8) 0.0255 (9) 0.0002 (6) 0.0033 (7) 0.0012 (7) C16 0.0126 (7) 0.0174 (8) 0.0253 (9) 0.0032 (6) 0.0028 (6) −0.0004 (7) C17 0.0186 (8) 0.0163 (8) 0.0244 (9) −0.0080 (6) 0.0042 (7) −0.0004 (7) C18 0.0251 (9) 0.0271 (10) 0.0292 (10) −0.0082 (8) 0.0091 (8) 0.0000 (8) C19 0.0078 (7) 0.0183 (8) 0.0160 (8) −0.0011 (6) 0.0001 (6) 0.0015 (6) C20 0.0121 (7) 0.0155 (8) 0.0180 (8) −0.0040 (6) 0.0011 (6) 0.0003 (6) C21 0.0126 (7) 0.0131 (7) 0.0139 (8) 0.0001 (6) 0.0003 (6) 0.0005 (6) C22 0.0085 (7) 0.0157 (8) 0.0113 (7) −0.0008 (6) 0.0006 (5) 0.0004 (6) C23 0.0091 (7) 0.0147 (7) 0.0128 (8) −0.0023 (6) 0.0006 (6) 0.0002 (6) C24 0.0102 (7) 0.0157 (8) 0.0155 (8) −0.0003 (6) 0.0005 (6) −0.0018 (6) C25 0.0184 (8) 0.0156 (8) 0.0171 (8) −0.0011 (6) 0.0045 (6) 0.0002 (6) C26 0.0274 (9) 0.0199 (9) 0.0163 (9) −0.0031 (7) 0.0046 (7) 0.0033 (7) C27 0.0246 (9) 0.0179 (8) 0.0145 (8) 0.0000 (7) −0.0022 (7) 0.0011 (6) C28 0.0165 (8) 0.0110 (7) 0.0150 (8) 0.0019 (6) 0.0009 (6) −0.0012 (6) C29 0.0151 (7) 0.0121 (7) 0.0140 (8) 0.0017 (6) 0.0030 (6) 0.0002 (6) C30 0.0165 (8) 0.0144 (8) 0.0152 (8) 0.0020 (6) −0.0012 (6) −0.0029 (6) ----- ------------- -------------- -------------- ------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2502 .table-wrap} ---------------------- -------------- ----------------------- -------------- Zn1---O1 1.9321 (12) C9---H9C 0.9800 Zn1---O3 1.9470 (11) C10---C11 1.498 (2) Zn1---N1 2.0525 (13) C11---C12 1.392 (2) Zn1---N2 2.0767 (14) C11---C16 1.389 (2) O1---C1 1.282 (2) C12---H12 0.9500 O2---C1 1.2380 (19) C13---C12 1.385 (2) O6---C30 1.233 (2) C13---H13 0.9500 O3---C10 1.283 (2) C14---C13 1.394 (2) O4---C10 1.2427 (19) C14---C17 1.515 (2) O5---C24 1.237 (2) C15---C14 1.394 (2) N1---C19 1.347 (2) C15---H15 0.9500 N1---C23 1.3387 (19) C16---C15 1.392 (2) N2---C25 1.343 (2) C16---H16 0.9500 N2---C29 1.344 (2) C17---C18 1.518 (3) N3---C24 1.323 (2) C17---H17A 0.9900 N3---H31 0.80 (2) C17---H17B 0.9900 N3---H32 0.86 (2) C18---H18A 0.9800 N4---C30 1.330 (2) C18---H18B 0.9800 N4---H41 0.88 (2) C18---H18C 0.9800 N4---H42 0.84 (2) C19---C20 1.383 (2) C1---C2 1.504 (2) C19---H19 0.9500 C2---C3 1.388 (2) C20---C21 1.389 (2) C2---C7 1.393 (2) C20---H20 0.9500 C3---C4 1.387 (2) C21---C22 1.392 (2) C3---H3 0.9500 C21---H21 0.9500 C4---C5 1.404 (2) C22---C23 1.389 (2) C4---H4 0.9500 C22---C24 1.500 (2) C5---C6 1.385 (3) C23---H23 0.9500 C5---C8 1.512 (2) C25---C26 1.381 (2) C6---C7 1.391 (2) C25---H25 0.9500 C6---H6 0.9500 C26---C27 1.385 (3) C7---H7 0.9500 C26---H26 0.9500 C8---C9 1.481 (3) C27---C28 1.389 (2) C8---H8A 0.9900 C27---H27 0.9500 C8---H8B 0.9900 C28---C29 1.386 (2) C9---H9A 0.9800 C28---C30 1.505 (2) C9---H9B 0.9800 C29---H29 0.9500 O1---Zn1---O3 140.48 (5) C13---C12---H12 119.7 O1---Zn1---N1 108.24 (5) C12---C13---C14 121.02 (15) O1---Zn1---N2 94.11 (5) C12---C13---H13 119.5 O3---Zn1---N1 98.81 (5) C14---C13---H13 119.5 O3---Zn1---N2 105.74 (5) C13---C14---C17 120.53 (15) N1---Zn1---N2 105.93 (5) C15---C14---C13 118.14 (15) C1---O1---Zn1 110.62 (10) C15---C14---C17 121.30 (15) C10---O3---Zn1 110.12 (10) C14---C15---H15 119.5 C19---N1---Zn1 123.05 (10) C16---C15---C14 121.02 (15) C23---N1---Zn1 118.53 (10) C16---C15---H15 119.5 C23---N1---C19 118.23 (14) C11---C16---C15 120.25 (15) C25---N2---Zn1 121.96 (11) C11---C16---H16 119.9 C25---N2---C29 118.31 (14) C15---C16---H16 119.9 C29---N2---Zn1 119.39 (11) C14---C17---C18 114.69 (15) C24---N3---H31 119.8 (17) C14---C17---H17A 108.6 C24---N3---H32 121.6 (15) C14---C17---H17B 108.6 H32---N3---H31 118 (2) C18---C17---H17A 108.6 C30---N4---H41 121.4 (15) C18---C17---H17B 108.6 C30---N4---H42 117.8 (16) H17A---C17---H17B 107.6 H41---N4---H42 118 (2) C17---C18---H18A 109.5 O1---C1---C2 115.52 (14) C17---C18---H18B 109.5 O2---C1---O1 123.58 (15) C17---C18---H18C 109.5 O2---C1---C2 120.90 (15) H18A---C18---H18B 109.5 C3---C2---C1 120.81 (14) H18A---C18---H18C 109.5 C3---C2---C7 118.99 (15) H18B---C18---H18C 109.5 C7---C2---C1 120.13 (15) N1---C19---C20 122.43 (14) C2---C3---H3 119.8 N1---C19---H19 118.8 C4---C3---C2 120.44 (15) C20---C19---H19 118.8 C4---C3---H3 119.8 C19---C20---C21 119.51 (15) C3---C4---C5 120.81 (16) C19---C20---H20 120.2 C3---C4---H4 119.6 C21---C20---H20 120.2 C5---C4---H4 119.6 C20---C21---C22 118.03 (15) C4---C5---C8 120.82 (17) C20---C21---H21 121.0 C6---C5---C4 118.24 (15) C22---C21---H21 121.0 C6---C5---C8 120.93 (16) C21---C22---C24 123.30 (14) C5---C6---C7 120.96 (16) C23---C22---C21 119.15 (14) C5---C6---H6 119.5 C23---C22---C24 117.48 (14) C7---C6---H6 119.5 N1---C23---C22 122.64 (14) C2---C7---H7 119.8 N1---C23---H23 118.7 C6---C7---C2 120.48 (16) C22---C23---H23 118.7 C6---C7---H7 119.8 O5---C24---N3 124.20 (15) C5---C8---H8A 108.6 O5---C24---C22 119.60 (14) C5---C8---H8B 108.6 N3---C24---C22 116.20 (14) C9---C8---C5 114.85 (17) N2---C25---C26 122.23 (16) C9---C8---H8A 108.6 N2---C25---H25 118.9 C9---C8---H8B 108.6 C26---C25---H25 118.9 H8A---C8---H8B 107.5 C25---C26---C27 119.13 (16) C8---C9---H9A 109.5 C25---C26---H26 120.4 C8---C9---H9B 109.5 C27---C26---H26 120.4 C8---C9---H9C 109.5 C26---C27---C28 119.27 (16) H9A---C9---H9B 109.5 C26---C27---H27 120.4 H9A---C9---H9C 109.5 C28---C27---H27 120.4 H9B---C9---H9C 109.5 C27---C28---C30 118.54 (15) O3---C10---C11 116.75 (14) C29---C28---C27 118.02 (15) O4---C10---O3 122.55 (15) C29---C28---C30 123.43 (15) O4---C10---C11 120.70 (15) N2---C29---C28 123.00 (15) C12---C11---C10 120.39 (14) N2---C29---H29 118.5 C16---C11---C10 120.58 (14) C28---C29---H29 118.5 C16---C11---C12 119.03 (15) O6---C30---N4 123.13 (16) C11---C12---H12 119.7 O6---C30---C28 119.41 (15) C13---C12---C11 120.53 (15) N4---C30---C28 117.46 (15) O3---Zn1---O1---C1 51.21 (14) C4---C5---C6---C7 −2.2 (2) N1---Zn1---O1---C1 −79.56 (11) C8---C5---C6---C7 176.85 (16) N2---Zn1---O1---C1 172.17 (11) C4---C5---C8---C9 −63.8 (3) O1---Zn1---O3---C10 44.51 (14) C6---C5---C8---C9 117.2 (2) N1---Zn1---O3---C10 177.80 (11) C5---C6---C7---C2 −0.5 (2) N2---Zn1---O3---C10 −72.79 (11) O4---C10---C11---C16 −2.6 (2) O1---Zn1---N1---C19 −39.06 (14) O3---C10---C11---C16 178.05 (15) O1---Zn1---N1---C23 146.03 (11) O4---C10---C11---C12 177.73 (15) O3---Zn1---N1---C19 170.13 (12) O3---C10---C11---C12 −1.6 (2) O3---Zn1---N1---C23 −4.78 (13) C10---C11---C12---C13 179.96 (15) N2---Zn1---N1---C19 60.87 (13) C16---C11---C12---C13 0.3 (2) N2---Zn1---N1---C23 −114.03 (12) C10---C11---C16---C15 −178.82 (16) O1---Zn1---N2---C25 −144.56 (13) C12---C11---C16---C15 0.8 (3) O1---Zn1---N2---C29 28.65 (12) C14---C13---C12---C11 −1.3 (3) O3---Zn1---N2---C25 0.90 (13) C15---C14---C13---C12 1.0 (3) O3---Zn1---N2---C29 174.12 (11) C17---C14---C13---C12 −176.88 (16) N1---Zn1---N2---C25 105.14 (13) C13---C14---C17---C18 −60.5 (2) N1---Zn1---N2---C29 −81.64 (12) C15---C14---C17---C18 121.68 (19) Zn1---O1---C1---O2 −4.6 (2) C16---C15---C14---C13 0.1 (3) Zn1---O1---C1---C2 175.06 (10) C16---C15---C14---C17 178.02 (16) Zn1---O3---C10---O4 −4.28 (19) C11---C16---C15---C14 −1.1 (3) Zn1---O3---C10---C11 175.04 (11) N1---C19---C20---C21 −1.1 (2) Zn1---N1---C19---C20 −174.76 (12) C19---C20---C21---C22 0.9 (2) C23---N1---C19---C20 0.2 (2) C20---C21---C22---C23 0.2 (2) Zn1---N1---C23---C22 176.15 (12) C20---C21---C22---C24 177.08 (15) C19---N1---C23---C22 1.0 (2) C21---C22---C23---N1 −1.2 (2) Zn1---N2---C25---C26 171.57 (13) C24---C22---C23---N1 −178.25 (14) C29---N2---C25---C26 −1.7 (2) C21---C22---C24---O5 −136.93 (17) Zn1---N2---C29---C28 −172.75 (12) C21---C22---C24---N3 43.3 (2) C25---N2---C29---C28 0.7 (2) C23---C22---C24---O5 40.0 (2) O1---C1---C2---C3 172.72 (14) C23---C22---C24---N3 −139.73 (16) O1---C1---C2---C7 −10.4 (2) N2---C25---C26---C27 1.0 (3) O2---C1---C2---C3 −7.6 (2) C25---C26---C27---C28 0.8 (3) O2---C1---C2---C7 169.20 (15) C26---C27---C28---C29 −1.7 (2) C1---C2---C3---C4 175.97 (15) C26---C27---C28---C30 177.07 (15) C7---C2---C3---C4 −0.9 (2) C27---C28---C29---N2 1.0 (2) C1---C2---C7---C6 −174.81 (15) C30---C28---C29---N2 −177.71 (15) C3---C2---C7---C6 2.1 (2) C27---C28---C30---O6 8.4 (2) C2---C3---C4---C5 −1.9 (3) C27---C28---C30---N4 −171.28 (15) C3---C4---C5---C6 3.4 (3) C29---C28---C30---O6 −172.96 (16) C3---C4---C5---C8 −175.67 (16) C29---C28---C30---N4 7.4 (2) ---------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3865 .table-wrap} ---------------------- ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N3---H32···O4^i^ 0.86 (2) 1.99 (2) 2.833 (2) 165 (2) N4---H41···O5^ii^ 0.89 (2) 2.07 (2) 2.947 (2) 169 (2) N4---H42···O6^iii^ 0.84 (2) 2.06 (2) 2.901 (2) 177 (2) C6---H6···O2^ii^ 0.95 2.59 3.412 (2) 145 C19---H19···O5^ii^ 0.95 2.29 3.2277 (19) 168 C21---H21···O2^i^ 0.95 2.58 3.497 (2) 161 C23---H23···O3 0.95 2.49 3.085 (2) 121 C29---H29···O5^ii^ 0.95 2.45 3.299 (2) 149 C17---H17A···Cg1^iv^ 0.99 2.63 3.436 (2) 139 C20---H20···Cg1^v^ 0.95 2.77 3.603 (2) 147 ---------------------- ---------- ---------- ------------- --------------- ::: Symmetry codes: (i) −*x*+1, *y*+1/2, −*z*+3/2; (ii) *x*+1, *y*, *z*; (iii) −*x*+3, −*y*+2, −*z*+2; (iv) −*x*+1, *y*+1/2, −*z*+1/2; (v) −*x*, *y*−1/2, −*z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------ ---------- ---------- ------------- ------------- N3---H32⋯O4^i^ 0.86 (2) 1.99 (2) 2.833 (2) 165 (2) N4---H41⋯O5^ii^ 0.89 (2) 2.07 (2) 2.947 (2) 169 (2) N4---H42⋯O6^iii^ 0.84 (2) 2.06 (2) 2.901 (2) 177 (2) C6---H6⋯O2^ii^ 0.95 2.59 3.412 (2) 145 C19---H19⋯O5^ii^ 0.95 2.29 3.2277 (19) 168 C21---H21⋯O2^i^ 0.95 2.58 3.497 (2) 161 C23---H23⋯O3 0.95 2.49 3.085 (2) 121 C29---H29⋯O5^ii^ 0.95 2.45 3.299 (2) 149 C17---H17*A*⋯*Cg*1^iv^ 0.99 2.63 3.436 (2) 139 C20---H20⋯*Cg*1^v^ 0.95 2.77 3.603 (2) 147 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . :::
PubMed Central
2024-06-05T04:04:17.760665
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051993/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):m382-m383", "authors": [ { "first": "Hacali", "last": "Necefoğlu" }, { "first": "Füreya Elif", "last": "Özbek" }, { "first": "Vedat", "last": "Aktaş" }, { "first": "Barış", "last": "Tercan" }, { "first": "Tuncer", "last": "Hökelek" } ] }
PMC3051994
Related literature {#sec1} ================== For the rational design of metal coordination complexes, see: Sava *et al.* (2009[@bb4]); Lu *et al.* (2010[@bb3]); Xue *et al.* (2009[@bb8]). For H~3~IDC complexes with supra­molecular architectures, see: Zou *et al.* (2006[@bb10]); Li *et al.* (2006[@bb2]); Sun *et al.* (2005[@bb6]). For related coord­in­ation polymers based on H~3~EIDC, see: Wang *et al.* (2008[@bb7]); Zhang *et al.* (2010[@bb9]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Na(C~7~H~7~N~2~O~4~)(H~2~O)~2~\]·H~2~O*M* *~r~* = 260.18Monoclinic,*a* = 8.5231 (8) Å*b* = 7.0598 (7) Å*c* = 19.0329 (17) Åβ = 98.880 (1)°*V* = 1131.51 (18) Å^3^*Z* = 4Mo *K*α radiationμ = 0.17 mm^−1^*T* = 298 K0.49 × 0.48 × 0.34 mm ### Data collection {#sec2.1.2} Bruker SMART 1000 CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2007[@bb1]) *T* ~min~ = 0.923, *T* ~max~ = 0.9465410 measured reflections1991 independent reflections1549 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.043 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.039*wR*(*F* ^2^) = 0.109*S* = 1.041991 reflections162 parameters9 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.33 e Å^−3^Δρ~min~ = −0.27 e Å^−3^ {#d5e738} Data collection: *SMART* (Bruker, 2007[@bb1]); cell refinement: *SAINT* (Bruker, 2007[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb5]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811002741/zl2345sup1.cif](http://dx.doi.org/10.1107/S1600536811002741/zl2345sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002741/zl2345Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002741/zl2345Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?zl2345&file=zl2345sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?zl2345sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?zl2345&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [ZL2345](http://scripts.iucr.org/cgi-bin/sendsup?zl2345)). The work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Ocean Fisheries Technology Promotion Project \[grant No. A2009003--018(*c*)\], the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121), the Guangdong Province Key Project in the Field of Social Development \[grant No. A2009011--007(*c*)\], the Science and Technology Department of Guangdong Province Project (grant No. 00087 061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002). Comment ======= The rational design and synthesis of novel metal-coordination complexes *via* deliberate selection of metal ions and organic ligands has attracted much attention due to the fascinating structures that can be obtained and their potential applications in catalysis, magnetism, photoluminescence and gas storage (Sava *et al.*,2009; Lu *et al.*, 2010; Xue *et al.*, 2009). The 4,5-imidazoledicarboxylic acid (H~3~IDC) ligand exhibits flexible multi-functional coordination sites involving two N atoms of the imidazole ring and four carboxyl O atoms, and has been widely used to construct novel supramolecular architectures (Zou *et al.*, 2006; Li *et al.*, 2006; Sun *et al.*, 2005). To augment the data for the well studied H~3~IDC ligand, we recently chose to study a closely related ligand, 2-ethyl-1*H*-imidazole-4,5-dicarboxylic acid (H~3~EIDC) with an ethyl substitutent in the 2-position of the imidazole group, which could be a good candidate for generating intriguing supramolecular networks. To the best of our knowledge, only a few coordination polymers based on the H~3~EIDC ligand have been reported so far (Wang *et al.*, 2008; Zhang *et al.*, 2010). We report herein the hydrothermal synthesis and crystal structure of a new Na^I^ complex, the title compound. As illustrated in Fig. 1, the title complex, \[Na(C~7~H~7~N~2~O~4~)~2~(H~2~O)~2~\].H~2~O, comprises one H~2~EIDC ligand, one Na^I^ ion, two coordinated water molecules and one solvent water molecule. Each Na^I^ cation exhibits a distorted octahedral geometry and is six-coordinated by three oxygen (O4, O1^i^ and O4^ii^) atoms and one nitrogen (N^i^) atom of three distinct H~2~EIDC ligands and two oxygen atoms (O1W and O2W) from two coordinated water molecules (symmetry codes: i = 1-*x*, 1-*y*, 1-*z*; ii = 2-*x*, 1-*y*, 1-*z*). The equatorial plane is built by the O4, O1^i^, O1W and N1^i^ atoms and the apical positions are occupied by O2W and O4^ii^. Two adjacent Na centers are bridged by two carboxyl oxygen atoms to form a Na~2~O~2~ subunit with a Na---Na distance of 3.684 (2) Å, and the Na~2~O~2~ subunits are linked by H~2~EIDC ligands to generate a one-dimensional double chain propagating along the *a* axis (Fig. 2a). The adjacent one-dimensional chains are connected into a three-dimensional supramolecular structure (Fig. 2 b) *via* N---H···O and O---H···O hydrogen bonds involving the uncoordinated imidazole N atoms, the uncoordinated and coordinated carboxylate O atoms from the H~2~EIDC ligands and the uncoordinated and coordinated water molecules (Table 1). Experimental {#experimental} ============ A mixture of NaOH (0.1 mmol, 0.004 g) and 2-ethyl-1*H*-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.9 g) in 10 ml of H~2~O was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated to 433 K for 4 days. Colorless crystals were obtained by slow evaporation of the solvent at room temperature with a yield of 42% based on NaOH. Refinement {#refinement} ========== H atoms of the water molecule were located in a difference Fourier map and refined as riding with an O---H distance restraint of 0.84 (1) Å, with *U*~iso~(H) = 1.5 *U*~eq~. The H···H distances within the water molecules were restraint to 1.39 (1) Å. Carboxyl H atoms were located in a difference map but were refined as riding on the parent O atoms with O---H = 0.82 Å and *U*~iso~(H) = 1.5 *U*~eq~(O). Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C---H = 0.96 (methyl), 0.97 (methylene) and N---H = 0.86 Å, *U*~iso~(H) = 1.2 or 1.5 *U*~eq~(C, N). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. (symmetry codes: i = 1-x, 1-y, 1-z; ii = 2-x, 1-y, 1-z). ::: ![](e-67-0m295-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### \(a) One-dimensional double chain constructed of Na2O2 subunits and H2EIDC ligands propagating along the a axis (H atoms are omitted for clarity); (b) A view of the three-dimensional network constructed by O---H···O and N---H···O hydrogen bonding interactions (H atoms not involved in the hydrogen bonds are omitted for clarity). ::: ![](e-67-0m295-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e320 .table-wrap} ------------------------------------------ --------------------------------------- \[Na(C~7~H~7~N~2~O~4~)(H~2~O)~2~\]·H~2~O *F*(000) = 544 *M~r~* = 260.18 *D*~x~ = 1.527 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 1702 reflections *a* = 8.5231 (8) Å θ = 2.5--25.9° *b* = 7.0598 (7) Å µ = 0.17 mm^−1^ *c* = 19.0329 (17) Å *T* = 298 K β = 98.880 (1)° Block, colorless *V* = 1131.51 (18) Å^3^ 0.49 × 0.48 × 0.34 mm *Z* = 4 ------------------------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e461 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART 1000 CCD area-detector diffractometer 1991 independent reflections Radiation source: fine-focus sealed tube 1549 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.043 φ and ω scans θ~max~ = 25.0°, θ~min~ = 2.5° Absorption correction: multi-scan (*SADABS*; Bruker, 2007) *h* = −6→10 *T*~min~ = 0.923, *T*~max~ = 0.946 *k* = −8→8 5410 measured reflections *l* = −22→21 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e578 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.039 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.109 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0431*P*)^2^ + 0.658*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.04 (Δ/σ)~max~ \< 0.001 1991 reflections Δρ~max~ = 0.33 e Å^−3^ 162 parameters Δρ~min~ = −0.27 e Å^−3^ 9 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.116 (7) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e759 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e858 .table-wrap} ----- -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Na1 0.93820 (11) 0.32398 (16) 0.56175 (5) 0.0388 (4) N1 0.3469 (2) 0.7014 (3) 0.42293 (10) 0.0288 (5) N2 0.5987 (2) 0.6488 (3) 0.41437 (10) 0.0283 (5) H2 0.6816 0.6165 0.3966 0.034\* O1 0.2192 (2) 0.8220 (3) 0.54163 (10) 0.0413 (5) O2 0.4583 (2) 0.8601 (3) 0.60539 (9) 0.0361 (5) O3 0.7371 (2) 0.8029 (3) 0.59418 (9) 0.0361 (5) H3 0.6453 0.8360 0.5953 0.054\* O4 0.8713 (2) 0.6644 (3) 0.51722 (9) 0.0374 (5) O1W 1.1322 (2) 0.5012 (3) 0.63961 (10) 0.0413 (5) H1W 1.132 (4) 0.608 (2) 0.6204 (13) 0.062\* H2W 1.152 (4) 0.509 (4) 0.6843 (6) 0.062\* O2W 1.0214 (2) 0.0314 (3) 0.61812 (10) 0.0444 (6) H3W 1.0861 −0.0263 0.5958 0.067\* H4W 0.9347 −0.0303 0.6128 0.067\* O3W 0.3117 (3) 0.0343 (4) 0.71733 (11) 0.0803 (9) H5W 0.3704 −0.0161 0.6902 0.120\* H6W 0.2135 0.0274 0.7005 0.120\* C1 0.3656 (3) 0.8138 (4) 0.54743 (13) 0.0292 (6) C2 0.4401 (3) 0.7466 (3) 0.48677 (12) 0.0256 (6) C3 0.5973 (3) 0.7131 (3) 0.48215 (12) 0.0255 (6) C4 0.7464 (3) 0.7262 (4) 0.53360 (13) 0.0277 (6) C5 0.4475 (3) 0.6448 (4) 0.38032 (13) 0.0280 (6) C6 0.4053 (3) 0.5841 (5) 0.30430 (13) 0.0391 (7) H6A 0.4522 0.4610 0.2986 0.047\* H6B 0.4512 0.6731 0.2744 0.047\* C7 0.2284 (3) 0.5722 (5) 0.27913 (15) 0.0472 (8) H7A 0.1832 0.4770 0.3059 0.071\* H7B 0.2094 0.5397 0.2296 0.071\* H7C 0.1804 0.6925 0.2859 0.071\* ----- -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1262 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Na1 0.0261 (6) 0.0525 (8) 0.0381 (6) 0.0021 (5) 0.0057 (4) −0.0010 (5) N1 0.0239 (11) 0.0336 (12) 0.0288 (11) 0.0004 (9) 0.0038 (9) 0.0000 (9) N2 0.0228 (11) 0.0363 (13) 0.0270 (11) 0.0012 (9) 0.0083 (8) −0.0012 (9) O1 0.0241 (10) 0.0583 (13) 0.0433 (11) 0.0016 (9) 0.0107 (8) −0.0118 (10) O2 0.0295 (10) 0.0503 (12) 0.0289 (10) 0.0009 (8) 0.0057 (7) −0.0098 (8) O3 0.0243 (9) 0.0520 (13) 0.0319 (10) 0.0009 (8) 0.0033 (7) −0.0077 (9) O4 0.0229 (10) 0.0517 (13) 0.0379 (10) 0.0049 (8) 0.0061 (8) −0.0022 (9) O1W 0.0422 (11) 0.0494 (13) 0.0332 (10) 0.0032 (10) 0.0086 (9) −0.0007 (9) O2W 0.0342 (10) 0.0526 (13) 0.0464 (12) 0.0014 (9) 0.0062 (8) −0.0099 (10) O3W 0.0568 (15) 0.148 (3) 0.0359 (12) 0.0132 (16) 0.0053 (10) −0.0115 (15) C1 0.0279 (14) 0.0297 (14) 0.0312 (14) −0.0002 (11) 0.0082 (11) 0.0000 (11) C2 0.0246 (12) 0.0257 (13) 0.0272 (12) −0.0007 (10) 0.0056 (10) 0.0015 (10) C3 0.0257 (13) 0.0260 (13) 0.0255 (12) −0.0001 (10) 0.0060 (10) 0.0000 (10) C4 0.0255 (13) 0.0291 (14) 0.0293 (13) −0.0002 (11) 0.0062 (10) 0.0011 (11) C5 0.0266 (13) 0.0307 (14) 0.0272 (13) 0.0003 (10) 0.0054 (10) 0.0006 (11) C6 0.0391 (16) 0.0506 (19) 0.0275 (14) −0.0012 (13) 0.0048 (11) −0.0024 (13) C7 0.0446 (17) 0.058 (2) 0.0351 (15) −0.0049 (15) −0.0052 (12) 0.0008 (14) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1597 .table-wrap} ---------------------------- -------------- ------------------------ -------------- Na1---O4^i^ 2.378 (2) O4---Na1^i^ 2.378 (2) Na1---O2W 2.384 (2) O1W---H1W 0.840 (11) Na1---O1W 2.396 (2) O1W---H2W 0.843 (11) Na1---O1^ii^ 2.433 (2) O2W---H3W 0.8500 Na1---N1^ii^ 2.498 (2) O2W---H4W 0.8500 Na1---O4 2.583 (2) O3W---H5W 0.8500 N1---C5 1.329 (3) O3W---H6W 0.8499 N1---C2 1.383 (3) C1---C2 1.480 (3) N1---Na1^ii^ 2.498 (2) C2---C3 1.377 (3) N2---C5 1.351 (3) C3---C4 1.482 (3) N2---C3 1.369 (3) C5---C6 1.499 (3) N2---H2 0.8600 C6---C7 1.512 (4) O1---C1 1.237 (3) C6---H6A 0.9700 O1---Na1^ii^ 2.432 (2) C6---H6B 0.9700 O2---C1 1.296 (3) C7---H7A 0.9600 O3---C4 1.287 (3) C7---H7B 0.9600 O3---H3 0.8200 C7---H7C 0.9600 O4---C4 1.234 (3) O4^i^---Na1---O2W 97.45 (7) Na1---O1W---H2W 132 (2) O4^i^---Na1---O1W 84.24 (7) H1W---O1W---H2W 111.4 (15) O2W---Na1---O1W 92.58 (7) Na1---O2W---H3W 111.2 O4^i^---Na1---O1^ii^ 81.27 (7) Na1---O2W---H4W 101.4 O2W---Na1---O1^ii^ 94.91 (8) H3W---O2W---H4W 108.2 O1W---Na1---O1^ii^ 164.44 (8) H5W---O3W---H6W 112.6 O4^i^---Na1---N1^ii^ 147.95 (8) O1---C1---O2 122.6 (2) O2W---Na1---N1^ii^ 96.45 (8) O1---C1---C2 119.6 (2) O1W---Na1---N1^ii^ 123.79 (8) O2---C1---C2 117.8 (2) O1^ii^---Na1---N1^ii^ 68.86 (7) C3---C2---N1 109.7 (2) O4^i^---Na1---O4 84.16 (7) C3---C2---C1 130.1 (2) O2W---Na1---O4 171.50 (8) N1---C2---C1 120.1 (2) O1W---Na1---O4 79.24 (7) N2---C3---C2 105.48 (19) O1^ii^---Na1---O4 93.59 (7) N2---C3---C4 120.8 (2) N1^ii^---Na1---O4 86.31 (7) C2---C3---C4 133.7 (2) O4^i^---Na1---Na1^i^ 44.22 (5) O4---C4---O3 123.3 (2) O2W---Na1---Na1^i^ 140.98 (7) O4---C4---C3 119.7 (2) O1W---Na1---Na1^i^ 78.72 (6) O3---C4---C3 116.9 (2) O1^ii^---Na1---Na1^i^ 86.90 (6) N1---C5---N2 111.0 (2) N1^ii^---Na1---Na1^i^ 120.13 (7) N1---C5---C6 126.4 (2) O4---Na1---Na1^i^ 39.94 (4) N2---C5---C6 122.6 (2) C5---N1---C2 105.55 (19) C5---C6---C7 113.6 (2) C5---N1---Na1^ii^ 141.28 (17) C5---C6---H6A 108.8 C2---N1---Na1^ii^ 110.58 (15) C7---C6---H6A 108.8 C5---N2---C3 108.2 (2) C5---C6---H6B 108.8 C5---N2---H2 125.9 C7---C6---H6B 108.8 C3---N2---H2 125.9 H6A---C6---H6B 107.7 C1---O1---Na1^ii^ 118.37 (16) C6---C7---H7A 109.5 C4---O3---H3 109.5 C6---C7---H7B 109.5 C4---O4---Na1^i^ 147.92 (17) H7A---C7---H7B 109.5 C4---O4---Na1 113.65 (16) C6---C7---H7C 109.5 Na1^i^---O4---Na1 95.84 (7) H7A---C7---H7C 109.5 Na1---O1W---H1W 104 (2) H7B---C7---H7C 109.5 O4^i^---Na1---O4---C4 167.0 (2) N1---C2---C3---N2 0.6 (3) O1W---Na1---O4---C4 −107.73 (17) C1---C2---C3---N2 178.7 (2) O1^ii^---Na1---O4---C4 86.20 (17) N1---C2---C3---C4 −176.6 (3) N1^ii^---Na1---O4---C4 17.68 (17) C1---C2---C3---C4 1.5 (5) Na1^i^---Na1---O4---C4 167.0 (2) Na1^i^---O4---C4---O3 −121.0 (3) O4^i^---Na1---O4---Na1^i^ 0.0 Na1---O4---C4---O3 83.8 (3) O1W---Na1---O4---Na1^i^ 85.23 (7) Na1^i^---O4---C4---C3 59.2 (4) O1^ii^---Na1---O4---Na1^i^ −80.84 (7) Na1---O4---C4---C3 −96.0 (2) N1^ii^---Na1---O4---Na1^i^ −149.36 (8) N2---C3---C4---O4 −5.9 (4) Na1^ii^---O1---C1---O2 −168.77 (19) C2---C3---C4---O4 171.0 (3) Na1^ii^---O1---C1---C2 10.4 (3) N2---C3---C4---O3 174.3 (2) C5---N1---C2---C3 −1.1 (3) C2---C3---C4---O3 −8.9 (4) Na1^ii^---N1---C2---C3 164.78 (16) C2---N1---C5---N2 1.1 (3) C5---N1---C2---C1 −179.3 (2) Na1^ii^---N1---C5---N2 −157.43 (19) Na1^ii^---N1---C2---C1 −13.5 (3) C2---N1---C5---C6 −178.6 (3) O1---C1---C2---C3 −175.0 (3) Na1^ii^---N1---C5---C6 22.8 (5) O2---C1---C2---C3 4.3 (4) C3---N2---C5---N1 −0.7 (3) O1---C1---C2---N1 2.9 (4) C3---N2---C5---C6 179.0 (2) O2---C1---C2---N1 −177.8 (2) N1---C5---C6---C7 −5.9 (4) C5---N2---C3---C2 0.0 (3) N2---C5---C6---C7 174.4 (2) C5---N2---C3---C4 177.7 (2) ---------------------------- -------------- ------------------------ -------------- ::: Symmetry codes: (i) −*x*+2, −*y*+1, −*z*+1; (ii) −*x*+1, −*y*+1, −*z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2467 .table-wrap} ---------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O3W---H6W···O2W^iii^ 0.85 2.09 2.872 (3) 154 O3W---H5W···O2^iv^ 0.85 2.07 2.904 (3) 165 O2W---H4W···O3^iv^ 0.85 2.04 2.888 (3) 174 O2W---H3W···O1^v^ 0.85 1.96 2.812 (3) 174 O1W---H2W···O3W^vi^ 0.84 (1) 1.86 (1) 2.701 (3) 178 (3) O1W---H1W···O1^vii^ 0.84 (1) 2.33 (2) 3.096 (3) 152 (3) O3---H3···O2 0.82 1.64 2.453 (2) 168 N2---H2···O1W^i^ 0.86 2.01 2.857 (3) 171 ---------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (iii) *x*−1, *y*, *z*; (iv) *x*, *y*−1, *z*; (v) *x*+1, *y*−1, *z*; (vi) −*x*+3/2, *y*+1/2, −*z*+3/2; (vii) *x*+1, *y*, *z*; (i) −*x*+2, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------- ---------- ---------- ----------- ------------- O3*W*---H6*W*⋯O2*W*^i^ 0.85 2.09 2.872 (3) 154 O3*W*---H5*W*⋯O2^ii^ 0.85 2.07 2.904 (3) 165 O2*W*---H4*W*⋯O3^ii^ 0.85 2.04 2.888 (3) 174 O2*W*---H3*W*⋯O1^iii^ 0.85 1.96 2.812 (3) 174 O1*W*---H2*W*⋯O3*W*^iv^ 0.84 (1) 1.86 (1) 2.701 (3) 178 (3) O1*W*---H1*W*⋯O1^v^ 0.84 (1) 2.33 (2) 3.096 (3) 152 (3) O3---H3⋯O2 0.82 1.64 2.453 (2) 168 N2---H2⋯O1*W*^vi^ 0.86 2.01 2.857 (3) 171 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) ; (vi) . :::
PubMed Central
2024-06-05T04:04:17.770582
2011-2-02
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051994/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 2; 67(Pt 3):m295-m296", "authors": [ { "first": "Shi-Jie", "last": "Li" }, { "first": "Xiao-Tian", "last": "Ma" }, { "first": "Wen-Dong", "last": "Song" }, { "first": "Xiao-Fei", "last": "Li" }, { "first": "Juan-Hua", "last": "Liu" } ] }
PMC3051995
Related literature {#sec1} ================== For general background to quinolin-4(1*H*)-ones, see: Bilokin' *et al.* (2009)[@bb2]; Mitscher (2005[@bb6]); Yushchenko *et al.* (2007[@bb15]); Sengupta & Kasha (1979[@bb11]). For related structures, see: Czaun *et al.* (2002[@bb3]); Mphahlele *et al.* (2002[@bb8]); Mphahlele & El-Nahas (2004[@bb7]). For inter­molecular inter­actions, see: Aakeröy *et al.* (1992[@bb1]); Novoa *et al.* (2006[@bb9]). For the synthesis, see: Hradil *et al.* (1999)[@bb5]; Yushchenko *et al.* (2006[@bb14]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~21~H~22~N~2~O~2~*M* *~r~* = 334.41Monoclinic,*a* = 9.621 (4) Å*b* = 18.622 (6) Å*c* = 18.955 (7) Åβ = 104.17 (3)°*V* = 3293 (2) Å^3^*Z* = 8Mo *K*α radiationμ = 0.09 mm^−1^*T* = 180 K0.40 × 0.35 × 0.30 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur PX diffractometer with a CCD area detector41668 measured reflections13682 independent reflections6901 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.040 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.059*wR*(*F* ^2^) = 0.133*S* = 1.0113682 reflections455 parametersH-atom parameters constrainedΔρ~max~ = 0.50 e Å^−3^Δρ~min~ = −0.25 e Å^−3^ {#d5e560} Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003[@bb10]); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2003[@bb10]); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb12]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb12]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb4]); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009[@bb13]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005046/om2406sup1.cif](http://dx.doi.org/10.1107/S1600536811005046/om2406sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005046/om2406Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005046/om2406Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?om2406&file=om2406sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?om2406sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?om2406&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [OM2406](http://scripts.iucr.org/cgi-bin/sendsup?om2406)). This study was financed by the State Funds for Scientific Research (grant DS/8220--4--0087--11). Comment ======= Apart from their interesting biological activities (Mitscher, 2005), quinolin-4(1*H*)-ones display dual fluorescence, the result of Excited State Intramolecular Proton Transfer (ESIPT), if they are substituted with --OH and phenyl in the pyridine-4(1*H*)-one ring in the vicinity of the carbonyl group and the N atom, respectively (Yushchenko *et al.*, 2007). Influenced by the properties of the medium, ESIPT makes 3-hydroxy-2-phenylquinolin-4(1*H*)-ones interesting fluorescent probes sensitive to features of a medium (Bilokin\' *et al.*, 2009). Since ESIPT is believed to depend on the mutual orientation of the 1,4-dihydroquinoline and benzene fragments (Yushchenko *et al.*, 2007), we undertook investigations into the structure of potential fluorescent sensors belonging to the latter group of compounds. Here the structure of 3-hydroxy-1-methyl-(-2-\[4-(piperidin-1-yl)phenyl\]quinolin-4(1*H*)-one is presented. In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 2-phenylquinolin-4(1*H*)-one moiety are typical of this group of compounds (Czaun *et al.*, 2002; Mphahlele *et al.*, 2002; Mphahlele & El-Nahas, 2004). With respective average deviations from planarity of 0.0163 (1)° (A) or 0.0180 (1)° (B) and 0.0078 (1)° (A) or 0.0059 (1)° (B), the 1,4-dihydroquinoline and benzene ring systems are oriented at a dihedral angle of 69.9 (1)° (A) or 83.4 (1)° (B) (in crystalline 3-hydroxy-2-phenylquinolin-4(1*H*)-one: dimethyl sulfoxide, 1:1, this angle is equal to 45.2 (1)° (Czaun *et al.*, 2002)). As mentioned above, the latter angle appears to be important for explaining the mechanism of ESIPT in this group of compounds (Yushchenko *et al.*, 2007). In the crystal lattice, two structurally similar but crystallographically independent molecules (A and B), linked *via* two O--H···O hydrogen bonds (Aakeröy *et al.*, 1992), are present in the asymmetric unit (Table 1, Fig. 1). Molecules A are in contact with neighboring B ones through C--H···O (Novoa *et al.*, 2006) interactions (Table 1, Fig. 2). Adjacent 1,4-dihydroquinoline units of molecules A are parallel -- they lie at an angle of 0.0 (1)° -- while molecules A and B are oriented at an angle of 32.8 (1)°. The O12--H12···O13 intramolecular hydrogen bonds (Table 1, Figs. 1 and 2) are the ones that may be involved in ESIPT; the phenomenon originally disclosed in 3-hydroxy-2-phenyl-4*H*-chromen-4-ones (Sengupta & Kasha, 1979), which are analogues of 3-hydroxy-2-phenylquinolin-4(1*H*)-ones. Experimental {#experimental} ============ The title compound was synthesized in two steps. First a mixture of 2-(methylamino)benzoic acid, 2-bromo-1-(4-fluorophenyl)ethanone and potassium carbonate in dimethylformamide was heated at 325 K for 1 h to obtain 2-(4-fluorophenyl)-2-oxoethyl 2-(methylamino)benzoate. On further heating with polyphosphoric acid (395 K, 2 h), this yielded 2-(4-fluorophenyl)-3-hydroxy-1-methyl-quinolin-4(1*H*)-one (Hradil *et al.*, 1999; Yushchenko *et al.*, 2006). The latter compound was then separated, dissolved in piperidine and the solution stored in a sealed tube at 445 K for 50 h. The reactant mixture was subsequently poured into 1% aq HCl and the precipitate separated by filtration. Crystals suitable for X-ray investigations were grown from dimethylformamide (m.p. = 566--568 K). The X-ray measurements were carried out at 180 K. Below this temperature, a phase transition occurs, which doubles parameter *c* of the unit cell. Refinement {#refinement} ========== H atoms of C--H bonds were positioned geometrically, with C--H = 0.95 Å, 0.98 Å and 0.99 Å for the aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms with *U*~iso~(H) = *xU*~eq~(C), where *x* = 1.2 for the aromatic and 1.5 for alkyl H atoms. H atoms of O--H bonds were positioned geometrically with O--H = 0.84 Å, and constrained to ride on their parent atoms with *U*~iso~(H) = 1.5*U*~eq~(O). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of molecules A and B of the title compound together with the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O--H···O hydrogen bonds are represented by dashed lines. ::: ![](e-67-0o654-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The arrangement of molecules A and B in the crystal. The O--H···O interactions are represented by dashed lines, the C--H···O contacts by dotted lines. H atoms not involved in interactions have been omitted. \[Symmetry code: (i) --x + 1, --y + 1, --z + 1.\] ::: ![](e-67-0o654-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e202 .table-wrap} ------------------------- ---------------------------------------- C~21~H~22~N~2~O~2~ *F*(000) = 1424 *M~r~* = 334.41 *D*~x~ = 1.349 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 19567 reflections *a* = 9.621 (4) Å θ = 3--35° *b* = 18.622 (6) Å µ = 0.09 mm^−1^ *c* = 18.955 (7) Å *T* = 180 K β = 104.17 (3)° Block, colorless *V* = 3293 (2) Å^3^ 0.40 × 0.35 × 0.30 mm *Z* = 8 ------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e332 .table-wrap} -------------------------------------------------------------------------- -------------------------------------- Oxford Diffraction Xcalibur PX diffractometer with a CCD area detector\' 6901 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.040 graphite θ~max~ = 35.1°, θ~min~ = 3.1° ω and φ scans *h* = −15→13 41668 measured reflections *k* = −30→24 13682 independent reflections *l* = −30→30 -------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e430 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.059 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.133 H-atom parameters constrained *S* = 1.01 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.053*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 13682 reflections (Δ/σ)~max~ = 0.001 455 parameters Δρ~max~ = 0.50 e Å^−3^ 0 restraints Δρ~min~ = −0.25 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e584 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e683 .table-wrap} ------ --------------- ------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N1A 0.62758 (10) 0.35031 (6) 0.98211 (5) 0.0217 (2) N1B −0.01996 (10) 0.36909 (6) 0.49772 (5) 0.0227 (2) C2A 0.48185 (12) 0.35224 (6) 0.95022 (6) 0.0202 (2) C2B 0.12649 (12) 0.36293 (6) 0.52659 (6) 0.0204 (2) C3A 0.42999 (12) 0.33671 (6) 0.87742 (6) 0.0202 (2) C3B 0.17973 (12) 0.34211 (6) 0.59775 (6) 0.0203 (2) C4A 0.52258 (12) 0.31590 (6) 0.83202 (6) 0.0193 (2) C4B 0.08833 (13) 0.32634 (7) 0.64502 (6) 0.0219 (2) C5A 0.77324 (13) 0.29184 (7) 0.82809 (7) 0.0251 (3) H5A 0.7395 0.2782 0.7785 0.030\* C5B −0.16279 (13) 0.31646 (8) 0.65442 (7) 0.0286 (3) H5B −0.1281 0.3033 0.7040 0.034\* C6A 0.91803 (14) 0.29110 (7) 0.85969 (7) 0.0301 (3) H6A 0.9841 0.2778 0.8321 0.036\* C6B −0.30772 (14) 0.32021 (8) 0.62521 (7) 0.0318 (3) H6B −0.3729 0.3102 0.6544 0.038\* C7A 0.96681 (14) 0.31024 (8) 0.93299 (7) 0.0299 (3) H7A 1.0669 0.3104 0.9546 0.036\* C7B −0.35874 (13) 0.33903 (7) 0.55167 (7) 0.0283 (3) H7B −0.4592 0.3410 0.5311 0.034\* C8A 0.87355 (13) 0.32885 (7) 0.97444 (7) 0.0264 (3) H8A 0.9089 0.3405 1.0244 0.032\* C8B −0.26632 (13) 0.35457 (7) 0.50900 (7) 0.0259 (3) H8B −0.3030 0.3670 0.4593 0.031\* C9A 0.72446 (13) 0.33055 (6) 0.94225 (6) 0.0203 (2) C9B −0.11638 (12) 0.35211 (6) 0.53882 (6) 0.0204 (2) C10A 0.67400 (12) 0.31256 (6) 0.86814 (6) 0.0197 (2) C10B −0.06406 (12) 0.33181 (7) 0.61233 (6) 0.0214 (2) O11A 0.28603 (9) 0.33866 (5) 0.84855 (5) 0.0281 (2) H11A 0.2683 0.3277 0.8042 0.042\* O11B 0.32439 (9) 0.33503 (5) 0.62420 (5) 0.0257 (2) H11B 0.3421 0.3211 0.6676 0.039\* O12A 0.47359 (9) 0.30034 (5) 0.76573 (4) 0.0259 (2) O12B 0.13899 (9) 0.30750 (6) 0.71000 (5) 0.0320 (2) C13A 0.68432 (14) 0.37058 (8) 1.05886 (6) 0.0283 (3) H13A 0.6080 0.3929 1.0774 0.042\* H13B 0.7633 0.4048 1.0627 0.042\* H13C 0.7194 0.3276 1.0876 0.042\* C13B −0.07655 (14) 0.39398 (8) 0.42239 (7) 0.0325 (3) H13D −0.1427 0.4341 0.4220 0.049\* H13E −0.1276 0.3545 0.3928 0.049\* H13F 0.0030 0.4099 0.4023 0.049\* C14A 0.38208 (13) 0.37134 (7) 0.99616 (6) 0.0211 (2) C14B 0.22385 (12) 0.37982 (7) 0.47866 (6) 0.0212 (2) C15A 0.35906 (13) 0.32537 (7) 1.04993 (6) 0.0232 (3) H15A 0.4066 0.2803 1.0570 0.028\* C15B 0.25605 (13) 0.32892 (7) 0.43131 (7) 0.0239 (3) H15B 0.2171 0.2820 0.4304 0.029\* C16A 0.26762 (13) 0.34414 (7) 1.09372 (6) 0.0232 (3) H16A 0.2544 0.3117 1.1302 0.028\* C16B 0.34430 (13) 0.34540 (7) 0.38519 (7) 0.0235 (3) H16B 0.3639 0.3096 0.3533 0.028\* C17A 0.19498 (13) 0.40993 (7) 1.08483 (6) 0.0232 (3) C17B 0.40451 (12) 0.41371 (6) 0.38511 (6) 0.0206 (2) C18A 0.21631 (15) 0.45534 (7) 1.02923 (7) 0.0312 (3) H18A 0.1676 0.5001 1.0211 0.037\* C18B 0.36954 (15) 0.46512 (7) 0.43209 (7) 0.0318 (3) H18B 0.4059 0.5126 0.4324 0.038\* C19A 0.30755 (15) 0.43583 (7) 0.98596 (7) 0.0306 (3) H19A 0.3192 0.4674 0.9485 0.037\* C19B 0.28269 (15) 0.44759 (7) 0.47807 (7) 0.0315 (3) H19B 0.2629 0.4832 0.5102 0.038\* N20A 0.10083 (11) 0.42989 (6) 1.12809 (5) 0.0251 (2) N20B 0.49979 (11) 0.43049 (5) 0.34169 (5) 0.0228 (2) C21A 0.09634 (16) 0.38008 (9) 1.18785 (8) 0.0382 (4) H21A 0.1923 0.3784 1.2220 0.046\* H21B 0.0739 0.3313 1.1676 0.046\* C21B 0.51323 (15) 0.37533 (7) 0.28849 (7) 0.0312 (3) H21C 0.4189 0.3690 0.2536 0.037\* H21D 0.5389 0.3292 0.3143 0.037\* C22A −0.01350 (16) 0.40103 (9) 1.22943 (8) 0.0387 (4) H22A −0.1109 0.3954 1.1974 0.046\* H22B −0.0051 0.3683 1.2714 0.046\* C22B 0.62434 (14) 0.39258 (8) 0.24620 (7) 0.0304 (3) H22C 0.7214 0.3891 0.2791 0.036\* H22D 0.6177 0.3568 0.2069 0.036\* C23A 0.00603 (16) 0.47724 (9) 1.25640 (8) 0.0413 (4) H23A 0.0999 0.4825 1.2919 0.050\* H23B −0.0703 0.4900 1.2810 0.050\* C23B 0.60333 (15) 0.46696 (8) 0.21334 (7) 0.0329 (3) H23C 0.5094 0.4701 0.1776 0.039\* H23D 0.6795 0.4776 0.1880 0.039\* C24A −0.00105 (18) 0.52637 (8) 1.19200 (9) 0.0441 (4) H24A 0.0162 0.5765 1.2094 0.053\* H24B −0.0983 0.5240 1.1591 0.053\* C24B 0.60962 (16) 0.52036 (7) 0.27452 (8) 0.0352 (3) H24C 0.7057 0.5183 0.3086 0.042\* H24D 0.5956 0.5695 0.2540 0.042\* C25A 0.10870 (17) 0.50598 (8) 1.14988 (9) 0.0414 (4) H25A 0.0936 0.5363 1.1057 0.050\* H25B 0.2059 0.5162 1.1803 0.050\* C25B 0.49643 (16) 0.50524 (7) 0.31595 (8) 0.0336 (3) H25C 0.5113 0.5380 0.3583 0.040\* H25D 0.4006 0.5155 0.2840 0.040\* ------ --------------- ------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1895 .table-wrap} ------ ------------- ------------- ------------ ------------- ------------ ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N1A 0.0208 (5) 0.0283 (6) 0.0166 (5) 0.0005 (4) 0.0060 (4) −0.0027 (4) N1B 0.0199 (5) 0.0330 (6) 0.0158 (5) 0.0022 (4) 0.0056 (4) 0.0024 (4) C2A 0.0211 (6) 0.0213 (6) 0.0205 (6) 0.0020 (5) 0.0094 (5) 0.0009 (5) C2B 0.0202 (6) 0.0238 (6) 0.0199 (5) 0.0001 (5) 0.0098 (5) −0.0005 (5) C3A 0.0177 (6) 0.0248 (6) 0.0191 (5) 0.0024 (5) 0.0067 (5) 0.0012 (5) C3B 0.0171 (6) 0.0256 (6) 0.0189 (5) −0.0007 (5) 0.0059 (5) −0.0009 (5) C4A 0.0209 (6) 0.0198 (6) 0.0186 (5) 0.0007 (5) 0.0073 (5) 0.0014 (5) C4B 0.0195 (6) 0.0293 (7) 0.0175 (5) −0.0022 (5) 0.0060 (5) 0.0001 (5) C5A 0.0233 (6) 0.0334 (7) 0.0208 (6) 0.0018 (5) 0.0093 (5) −0.0015 (5) C5B 0.0218 (6) 0.0441 (8) 0.0216 (6) −0.0016 (6) 0.0085 (5) 0.0046 (6) C6A 0.0220 (6) 0.0402 (8) 0.0309 (7) 0.0038 (6) 0.0119 (6) −0.0022 (6) C6B 0.0219 (6) 0.0437 (8) 0.0328 (7) −0.0025 (6) 0.0126 (6) 0.0034 (6) C7A 0.0190 (6) 0.0365 (8) 0.0334 (7) 0.0031 (5) 0.0048 (6) −0.0035 (6) C7B 0.0166 (6) 0.0346 (8) 0.0330 (7) 0.0000 (5) 0.0047 (5) 0.0026 (6) C8A 0.0220 (6) 0.0326 (7) 0.0234 (6) 0.0014 (5) 0.0033 (5) −0.0029 (5) C8B 0.0214 (6) 0.0319 (7) 0.0227 (6) 0.0019 (5) 0.0025 (5) 0.0016 (5) C9A 0.0214 (6) 0.0224 (6) 0.0184 (5) 0.0002 (5) 0.0071 (5) −0.0003 (5) C9B 0.0193 (6) 0.0242 (6) 0.0187 (5) 0.0000 (5) 0.0067 (5) −0.0011 (5) C10A 0.0193 (6) 0.0225 (6) 0.0187 (5) 0.0008 (5) 0.0072 (5) 0.0012 (5) C10B 0.0189 (6) 0.0281 (7) 0.0181 (5) −0.0021 (5) 0.0063 (5) 0.0000 (5) O11A 0.0186 (4) 0.0456 (6) 0.0204 (4) 0.0042 (4) 0.0055 (4) −0.0026 (4) O11B 0.0173 (4) 0.0390 (6) 0.0214 (4) −0.0008 (4) 0.0059 (3) 0.0030 (4) O12A 0.0242 (5) 0.0354 (5) 0.0178 (4) 0.0042 (4) 0.0044 (4) −0.0007 (4) O12B 0.0226 (5) 0.0537 (6) 0.0193 (4) −0.0044 (4) 0.0040 (4) 0.0058 (4) C13A 0.0290 (7) 0.0360 (8) 0.0201 (6) −0.0034 (6) 0.0066 (5) −0.0054 (5) C13B 0.0295 (7) 0.0499 (9) 0.0189 (6) 0.0089 (6) 0.0074 (5) 0.0091 (6) C14A 0.0214 (6) 0.0252 (6) 0.0182 (5) 0.0007 (5) 0.0077 (5) −0.0017 (5) C14B 0.0191 (6) 0.0276 (7) 0.0181 (5) 0.0001 (5) 0.0070 (5) 0.0012 (5) C15A 0.0226 (6) 0.0260 (6) 0.0227 (6) 0.0030 (5) 0.0089 (5) 0.0010 (5) C15B 0.0242 (6) 0.0247 (6) 0.0257 (6) −0.0031 (5) 0.0114 (5) 0.0006 (5) C16A 0.0237 (6) 0.0276 (7) 0.0205 (6) 0.0013 (5) 0.0099 (5) 0.0023 (5) C16B 0.0250 (6) 0.0244 (6) 0.0246 (6) −0.0014 (5) 0.0127 (5) −0.0023 (5) C17A 0.0209 (6) 0.0299 (7) 0.0201 (6) 0.0012 (5) 0.0074 (5) −0.0014 (5) C17B 0.0199 (6) 0.0237 (6) 0.0200 (6) 0.0003 (5) 0.0082 (5) 0.0008 (5) C18A 0.0374 (7) 0.0308 (7) 0.0307 (7) 0.0120 (6) 0.0186 (6) 0.0078 (6) C18B 0.0441 (8) 0.0243 (7) 0.0340 (7) −0.0074 (6) 0.0231 (6) −0.0047 (6) C19A 0.0388 (8) 0.0307 (7) 0.0280 (7) 0.0076 (6) 0.0192 (6) 0.0076 (6) C19B 0.0432 (8) 0.0256 (7) 0.0333 (7) −0.0040 (6) 0.0241 (6) −0.0071 (6) N20A 0.0258 (5) 0.0292 (6) 0.0238 (5) 0.0037 (5) 0.0131 (5) 0.0012 (4) N20B 0.0259 (5) 0.0215 (5) 0.0247 (5) −0.0015 (4) 0.0133 (4) 0.0003 (4) C21A 0.0403 (8) 0.0473 (9) 0.0349 (8) 0.0146 (7) 0.0245 (7) 0.0140 (7) C21B 0.0340 (7) 0.0312 (7) 0.0346 (7) −0.0067 (6) 0.0203 (6) −0.0081 (6) C22A 0.0386 (8) 0.0528 (10) 0.0326 (7) 0.0115 (7) 0.0236 (7) 0.0100 (7) C22B 0.0313 (7) 0.0359 (8) 0.0288 (7) −0.0021 (6) 0.0169 (6) −0.0038 (6) C23A 0.0339 (8) 0.0656 (11) 0.0280 (7) 0.0033 (7) 0.0146 (6) −0.0062 (7) C23B 0.0339 (7) 0.0434 (8) 0.0243 (6) 0.0013 (6) 0.0128 (6) 0.0064 (6) C24A 0.0555 (10) 0.0388 (9) 0.0498 (9) 0.0015 (7) 0.0353 (8) −0.0071 (7) C24B 0.0471 (8) 0.0283 (7) 0.0385 (8) −0.0014 (6) 0.0260 (7) 0.0063 (6) C25A 0.0518 (9) 0.0355 (8) 0.0478 (9) −0.0040 (7) 0.0332 (8) −0.0098 (7) C25B 0.0428 (8) 0.0268 (7) 0.0382 (8) 0.0044 (6) 0.0236 (7) 0.0069 (6) ------ ------------- ------------- ------------ ------------- ------------ ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2772 .table-wrap} ------------------------- -------------- --------------------------- -------------- N1A---C2A 1.3848 (16) C15A---C16A 1.3938 (16) N1A---C9A 1.3856 (15) C15A---H15A 0.9500 N1A---C13A 1.4723 (16) C15B---C16B 1.3938 (16) N1B---C2B 1.3858 (16) C15B---H15B 0.9500 N1B---C9B 1.3861 (15) C16A---C17A 1.3999 (18) N1B---C13B 1.4728 (16) C16A---H16A 0.9500 C2A---C3A 1.3783 (17) C16B---C17B 1.3979 (17) C2A---C14A 1.4884 (16) C16B---H16B 0.9500 C2B---C3B 1.3761 (17) C17A---C18A 1.4048 (17) C2B---C14B 1.4895 (16) C17A---N20A 1.4124 (15) C3A---O11A 1.3594 (15) C17B---C18B 1.4035 (17) C3A---C4A 1.4352 (16) C17B---N20B 1.4088 (15) C3B---O11B 1.3653 (15) C18A---C19A 1.3885 (17) C3B---C4B 1.4311 (16) C18A---H18A 0.9500 C4A---O12A 1.2628 (14) C18B---C19B 1.3861 (17) C4A---C10A 1.4514 (18) C18B---H18B 0.9500 C4B---O12B 1.2586 (15) C19A---H19A 0.9500 C4B---C10B 1.4489 (18) C19B---H19B 0.9500 C5A---C6A 1.3751 (19) N20A---C25A 1.4727 (18) C5A---C10A 1.4113 (16) N20A---C21A 1.4729 (17) C5A---H5A 0.9500 N20B---C21B 1.4670 (16) C5B---C6B 1.3703 (19) N20B---C25B 1.4727 (17) C5B---C10B 1.4112 (16) C21A---C22A 1.5159 (17) C5B---H5B 0.9500 C21A---H21A 0.9900 C6A---C7A 1.3995 (19) C21A---H21B 0.9900 C6A---H6A 0.9500 C21B---C22B 1.5192 (17) C6B---C7B 1.4043 (19) C21B---H21C 0.9900 C6B---H6B 0.9500 C21B---H21D 0.9900 C7A---C8A 1.3738 (18) C22A---C23A 1.504 (2) C7A---H7A 0.9500 C22A---H22A 0.9900 C7B---C8B 1.3713 (17) C22A---H22B 0.9900 C7B---H7B 0.9500 C22B---C23B 1.512 (2) C8A---C9A 1.4150 (18) C22B---H22C 0.9900 C8A---H8A 0.9500 C22B---H22D 0.9900 C8B---C9B 1.4154 (18) C23A---C24A 1.514 (2) C8B---H8B 0.9500 C23A---H23A 0.9900 C9A---C10A 1.4097 (17) C23A---H23B 0.9900 C9B---C10B 1.4123 (17) C23B---C24B 1.517 (2) O11A---H11A 0.8400 C23B---H23C 0.9900 O11B---H11B 0.8400 C23B---H23D 0.9900 C13A---H13A 0.9800 C24A---C25A 1.5196 (19) C13A---H13B 0.9800 C24A---H24A 0.9900 C13A---H13C 0.9800 C24A---H24B 0.9900 C13B---H13D 0.9800 C24B---C25B 1.5167 (18) C13B---H13E 0.9800 C24B---H24C 0.9900 C13B---H13F 0.9800 C24B---H24D 0.9900 C14A---C19A 1.3877 (18) C25A---H25A 0.9900 C14A---C15A 1.3897 (17) C25A---H25B 0.9900 C14B---C19B 1.3844 (18) C25B---H25C 0.9900 C14B---C15B 1.3913 (17) C25B---H25D 0.9900 C2A---N1A---C9A 120.87 (10) C17A---C16A---H16A 119.4 C2A---N1A---C13A 121.04 (10) C15B---C16B---C17B 121.14 (11) C9A---N1A---C13A 118.08 (10) C15B---C16B---H16B 119.4 C2B---N1B---C9B 120.98 (10) C17B---C16B---H16B 119.4 C2B---N1B---C13B 120.51 (10) C16A---C17A---C18A 117.18 (11) C9B---N1B---C13B 118.50 (10) C16A---C17A---N20A 122.18 (11) C3A---C2A---N1A 120.75 (10) C18A---C17A---N20A 120.62 (11) C3A---C2A---C14A 120.57 (11) C16B---C17B---C18B 117.15 (11) N1A---C2A---C14A 118.67 (10) C16B---C17B---N20B 122.12 (10) C3B---C2B---N1B 120.59 (10) C18B---C17B---N20B 120.71 (11) C3B---C2B---C14B 121.24 (11) C19A---C18A---C17A 121.01 (12) N1B---C2B---C14B 118.17 (10) C19A---C18A---H18A 119.5 O11A---C3A---C2A 118.74 (10) C17A---C18A---H18A 119.5 O11A---C3A---C4A 119.12 (10) C19B---C18B---C17B 120.89 (12) C2A---C3A---C4A 122.10 (11) C19B---C18B---H18B 119.6 O11B---C3B---C2B 119.24 (10) C17B---C18B---H18B 119.6 O11B---C3B---C4B 118.53 (10) C14A---C19A---C18A 121.60 (12) C2B---C3B---C4B 122.22 (11) C14A---C19A---H19A 119.2 O12A---C4A---C3A 121.55 (11) C18A---C19A---H19A 119.2 O12A---C4A---C10A 123.13 (10) C14B---C19B---C18B 122.04 (11) C3A---C4A---C10A 115.30 (11) C14B---C19B---H19B 119.0 O12B---C4B---C3B 121.33 (11) C18B---C19B---H19B 119.0 O12B---C4B---C10B 123.16 (10) C17A---N20A---C25A 114.83 (10) C3B---C4B---C10B 115.49 (10) C17A---N20A---C21A 115.13 (10) C6A---C5A---C10A 121.00 (12) C25A---N20A---C21A 113.53 (11) C6A---C5A---H5A 119.5 C17B---N20B---C21B 115.19 (10) C10A---C5A---H5A 119.5 C17B---N20B---C25B 116.01 (9) C6B---C5B---C10B 121.36 (12) C21B---N20B---C25B 115.63 (10) C6B---C5B---H5B 119.3 N20A---C21A---C22A 113.16 (12) C10B---C5B---H5B 119.3 N20A---C21A---H21A 108.9 C5A---C6A---C7A 119.19 (11) C22A---C21A---H21A 108.9 C5A---C6A---H6A 120.4 N20A---C21A---H21B 108.9 C7A---C6A---H6A 120.4 C22A---C21A---H21B 108.9 C5B---C6B---C7B 119.19 (12) H21A---C21A---H21B 107.8 C5B---C6B---H6B 120.4 N20B---C21B---C22B 113.98 (11) C7B---C6B---H6B 120.4 N20B---C21B---H21C 108.8 C8A---C7A---C6A 121.65 (12) C22B---C21B---H21C 108.8 C8A---C7A---H7A 119.2 N20B---C21B---H21D 108.8 C6A---C7A---H7A 119.2 C22B---C21B---H21D 108.8 C8B---C7B---C6B 121.23 (12) H21C---C21B---H21D 107.7 C8B---C7B---H7B 119.4 C23A---C22A---C21A 111.99 (13) C6B---C7B---H7B 119.4 C23A---C22A---H22A 109.2 C7A---C8A---C9A 119.61 (12) C21A---C22A---H22A 109.2 C7A---C8A---H8A 120.2 C23A---C22A---H22B 109.2 C9A---C8A---H8A 120.2 C21A---C22A---H22B 109.2 C7B---C8B---C9B 120.16 (12) H22A---C22A---H22B 107.9 C7B---C8B---H8B 119.9 C23B---C22B---C21B 111.76 (11) C9B---C8B---H8B 119.9 C23B---C22B---H22C 109.3 N1A---C9A---C10A 119.54 (11) C21B---C22B---H22C 109.3 N1A---C9A---C8A 121.13 (11) C23B---C22B---H22D 109.3 C10A---C9A---C8A 119.33 (10) C21B---C22B---H22D 109.3 N1B---C9B---C10B 119.32 (11) H22C---C22B---H22D 107.9 N1B---C9B---C8B 121.68 (11) C22A---C23A---C24A 108.59 (12) C10B---C9B---C8B 119.00 (10) C22A---C23A---H23A 110.0 C9A---C10A---C5A 119.19 (11) C24A---C23A---H23A 110.0 C9A---C10A---C4A 121.40 (10) C22A---C23A---H23B 110.0 C5A---C10A---C4A 119.41 (11) C24A---C23A---H23B 110.0 C5B---C10B---C9B 119.03 (11) H23A---C23A---H23B 108.4 C5B---C10B---C4B 119.65 (11) C22B---C23B---C24B 108.01 (11) C9B---C10B---C4B 121.31 (10) C22B---C23B---H23C 110.1 C3A---O11A---H11A 109.5 C24B---C23B---H23C 110.1 C3B---O11B---H11B 109.5 C22B---C23B---H23D 110.1 N1A---C13A---H13A 109.5 C24B---C23B---H23D 110.1 N1A---C13A---H13B 109.5 H23C---C23B---H23D 108.4 H13A---C13A---H13B 109.5 C23A---C24A---C25A 111.89 (13) N1A---C13A---H13C 109.5 C23A---C24A---H24A 109.2 H13A---C13A---H13C 109.5 C25A---C24A---H24A 109.2 H13B---C13A---H13C 109.5 C23A---C24A---H24B 109.2 N1B---C13B---H13D 109.5 C25A---C24A---H24B 109.2 N1B---C13B---H13E 109.5 H24A---C24A---H24B 107.9 H13D---C13B---H13E 109.5 C25B---C24B---C23B 112.00 (12) N1B---C13B---H13F 109.5 C25B---C24B---H24C 109.2 H13D---C13B---H13F 109.5 C23B---C24B---H24C 109.2 H13E---C13B---H13F 109.5 C25B---C24B---H24D 109.2 C19A---C14A---C15A 117.75 (11) C23B---C24B---H24D 109.2 C19A---C14A---C2A 120.70 (10) H24C---C24B---H24D 107.9 C15A---C14A---C2A 121.55 (11) N20A---C25A---C24A 113.15 (12) C19B---C14B---C15B 117.37 (11) N20A---C25A---H25A 108.9 C19B---C14B---C2B 121.12 (11) C24A---C25A---H25A 108.9 C15B---C14B---C2B 121.49 (11) N20A---C25A---H25B 108.9 C14A---C15A---C16A 121.29 (12) C24A---C25A---H25B 108.9 C14A---C15A---H15A 119.4 H25A---C25A---H25B 107.8 C16A---C15A---H15A 119.4 N20B---C25B---C24B 112.74 (11) C14B---C15B---C16B 121.38 (12) N20B---C25B---H25C 109.0 C14B---C15B---H15B 119.3 C24B---C25B---H25C 109.0 C16B---C15B---H15B 119.3 N20B---C25B---H25D 109.0 C15A---C16A---C17A 121.14 (11) C24B---C25B---H25D 109.0 C15A---C16A---H16A 119.4 H25C---C25B---H25D 107.8 C9A---N1A---C2A---C3A −2.05 (18) C8B---C9B---C10B---C4B 178.16 (12) C13A---N1A---C2A---C3A 176.69 (11) O12B---C4B---C10B---C5B 0.8 (2) C9A---N1A---C2A---C14A 177.88 (11) C3B---C4B---C10B---C5B 179.28 (12) C13A---N1A---C2A---C14A −3.38 (17) O12B---C4B---C10B---C9B −179.02 (12) C9B---N1B---C2B---C3B −2.25 (18) C3B---C4B---C10B---C9B −0.57 (17) C13B---N1B---C2B---C3B 177.70 (12) C3A---C2A---C14A---C19A −68.97 (17) C9B---N1B---C2B---C14B 178.07 (11) N1A---C2A---C14A---C19A 111.11 (14) C13B---N1B---C2B---C14B −1.98 (17) C3A---C2A---C14A---C15A 110.36 (14) N1A---C2A---C3A---O11A 179.44 (11) N1A---C2A---C14A---C15A −69.56 (16) C14A---C2A---C3A---O11A −0.49 (17) C3B---C2B---C14B---C19B −85.44 (16) N1A---C2A---C3A---C4A 1.92 (18) N1B---C2B---C14B---C19B 94.23 (15) C14A---C2A---C3A---C4A −178.00 (11) C3B---C2B---C14B---C15B 96.39 (15) N1B---C2B---C3B---O11B 178.60 (11) N1B---C2B---C14B---C15B −83.93 (15) C14B---C2B---C3B---O11B −1.73 (18) C19A---C14A---C15A---C16A −1.90 (19) N1B---C2B---C3B---C4B −0.32 (19) C2A---C14A---C15A---C16A 178.75 (11) C14B---C2B---C3B---C4B 179.35 (11) C19B---C14B---C15B---C16B 0.13 (19) O11A---C3A---C4A---O12A 0.99 (18) C2B---C14B---C15B---C16B 178.36 (12) C2A---C3A---C4A---O12A 178.50 (11) C14A---C15A---C16A---C17A 0.34 (19) O11A---C3A---C4A---C10A −177.63 (10) C14B---C15B---C16B---C17B 0.38 (19) C2A---C3A---C4A---C10A −0.12 (17) C15A---C16A---C17A---C18A 1.11 (19) O11B---C3B---C4B---O12B 1.21 (18) C15A---C16A---C17A---N20A 179.44 (12) C2B---C3B---C4B---O12B −179.86 (12) C15B---C16B---C17B---C18B −1.44 (19) O11B---C3B---C4B---C10B −177.27 (10) C15B---C16B---C17B---N20B 176.69 (11) C2B---C3B---C4B---C10B 1.66 (18) C16A---C17A---C18A---C19A −1.0 (2) C10A---C5A---C6A---C7A 0.9 (2) N20A---C17A---C18A---C19A −179.35 (12) C10B---C5B---C6B---C7B 0.6 (2) C16B---C17B---C18B---C19B 2.1 (2) C5A---C6A---C7A---C8A 0.9 (2) N20B---C17B---C18B---C19B −176.11 (12) C5B---C6B---C7B---C8B −0.8 (2) C15A---C14A---C19A---C18A 2.0 (2) C6A---C7A---C8A---C9A −1.6 (2) C2A---C14A---C19A---C18A −178.62 (13) C6B---C7B---C8B---C9B −0.2 (2) C17A---C18A---C19A---C14A −0.6 (2) C2A---N1A---C9A---C10A 0.34 (17) C15B---C14B---C19B---C18B 0.5 (2) C13A---N1A---C9A---C10A −178.43 (11) C2B---C14B---C19B---C18B −177.74 (13) C2A---N1A---C9A---C8A 179.67 (11) C17B---C18B---C19B---C14B −1.6 (2) C13A---N1A---C9A---C8A 0.89 (17) C16A---C17A---N20A---C25A 140.73 (13) C7A---C8A---C9A---N1A −178.84 (12) C18A---C17A---N20A---C25A −41.00 (17) C7A---C8A---C9A---C10A 0.48 (19) C16A---C17A---N20A---C21A 6.07 (18) C2B---N1B---C9B---C10B 3.28 (17) C18A---C17A---N20A---C21A −175.65 (13) C13B---N1B---C9B---C10B −176.67 (12) C16B---C17B---N20B---C21B 9.31 (17) C2B---N1B---C9B---C8B −176.71 (11) C18B---C17B---N20B---C21B −172.62 (12) C13B---N1B---C9B---C8B 3.34 (18) C16B---C17B---N20B---C25B 148.90 (13) C7B---C8B---C9B---N1B −178.50 (12) C18B---C17B---N20B---C25B −33.03 (17) C7B---C8B---C9B---C10B 1.51 (19) C17A---N20A---C21A---C22A −176.03 (12) N1A---C9A---C10A---C5A −179.41 (11) C25A---N20A---C21A---C22A 48.73 (17) C8A---C9A---C10A---C5A 1.25 (18) C17B---N20B---C21B---C22B −175.92 (11) N1A---C9A---C10A---C4A 1.49 (18) C25B---N20B---C21B---C22B 44.34 (17) C8A---C9A---C10A---C4A −177.84 (11) N20A---C21A---C22A---C23A −53.71 (18) C6A---C5A---C10A---C9A −1.97 (19) N20B---C21B---C22B---C23B −50.97 (17) C6A---C5A---C10A---C4A 177.14 (12) C21A---C22A---C23A---C24A 56.61 (17) O12A---C4A---C10A---C9A 179.83 (11) C21B---C22B---C23B---C24B 57.25 (15) C3A---C4A---C10A---C9A −1.57 (17) C22A---C23A---C24A---C25A −56.29 (18) O12A---C4A---C10A---C5A 0.74 (18) C22B---C23B---C24B---C25B −58.65 (16) C3A---C4A---C10A---C5A 179.34 (11) C17A---N20A---C25A---C24A 176.14 (12) C6B---C5B---C10B---C9B 0.6 (2) C21A---N20A---C25A---C24A −48.48 (18) C6B---C5B---C10B---C4B −179.21 (13) C23A---C24A---C25A---N20A 53.05 (19) N1B---C9B---C10B---C5B 178.31 (12) C17B---N20B---C25B---C24B 175.63 (12) C8B---C9B---C10B---C5B −1.70 (18) C21B---N20B---C25B---C24B −44.96 (17) N1B---C9B---C10B---C4B −1.84 (18) C23B---C24B---C25B---N20B 52.75 (17) ------------------------- -------------- --------------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4678 .table-wrap} ----------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O11A---H11A···O12A 0.84 2.32 2.760 (2) 113 O11A---H11A···O12B 0.84 1.95 2.723 (2) 153 O11B---H11B···O12A 0.84 2.01 2.791 (2) 154 O11B---H11B···O12B 0.84 2.30 2.741 (2) 113 C24B---H24D···O12A^i^ 0.99 2.52 3.475 (2) 162 ----------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------------- --------- ------- ----------- ------------- O11*A*---H11*A*⋯O12*A* 0.84 2.32 2.760 (2) 113 O11*A*---H11*A*⋯O12*B* 0.84 1.95 2.723 (2) 153 O11*B*---H11*B*⋯O12*A* 0.84 2.01 2.791 (2) 154 O11*B*---H11*B*⋯O12*B* 0.84 2.30 2.741 (2) 113 C24*B*---H24*D*⋯O12*A*^i^ 0.99 2.52 3.475 (2) 162 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.776345
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051995/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o654", "authors": [ { "first": "Michał", "last": "Wera" }, { "first": "Vasyl G.", "last": "Pivovarenko" }, { "first": "Artur", "last": "Sikorski" }, { "first": "Tadeusz", "last": "Lis" }, { "first": "Jerzy", "last": "Błażejowski" } ] }
PMC3051996
Related literature {#sec1} ================== For the preparation of 1,2-dihydro­quinoline, see: Edwards *et al.* (1998[@bb3]); Yan *et al.* (2004[@bb14]); Petasis & Butkevich (2009[@bb10]); Johnson *et al.* (1989[@bb8]); Gültekin *et al.* (2010[@bb7]); Waldmann *et al.* (2008[@bb13]). For the biological activity of dihydro­quinolines, see: Elmore *et al.* (2001[@bb4]); Dillard *et al.* (1973[@bb2]); Muren & Weissmann (1971[@bb9]). For ring puckering parameters, see: Cremer & Pople (1975[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~17~H~21~NO~7~*M* *~r~* = 351.35Orthorhombic,*a* = 10.476 (2) Å*b* = 16.552 (4) Å*c* = 20.238 (4) Å*V* = 3509.2 (13) Å^3^*Z* = 8Mo *K*α radiationμ = 0.10 mm^−1^*T* = 294 K0.6 × 0.4 × 0.15 mm ### Data collection {#sec2.1.2} Nicolet P3 diffractometer3447 measured reflections3447 independent reflections1839 reflections with *I* \> 2σ(*I*)3 standard reflections every 50 reflections intensity decay: 1% ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.070*wR*(*F* ^2^) = 0.156*S* = 1.073447 reflections237 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.18 e Å^−3^Δρ~min~ = −0.17 e Å^−3^ {#d5e402} Data collection: *XSCANS* (Siemens, 1996[@bb12]); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 2008[@bb11]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb11]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb5]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004028/xu5153sup1.cif](http://dx.doi.org/10.1107/S1600536811004028/xu5153sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004028/xu5153Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004028/xu5153Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5153&file=xu5153sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5153sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5153&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5153](http://scripts.iucr.org/cgi-bin/sendsup?xu5153)). This research was carried out at RWTH Aachen University. The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions. Comment ======= Dihydroquinolines have been widely studied and found an important structural unit in synthetic organic and medicinal chemistry (Elmore *et al.*, 2001; Dillard *et al.*, 1973; Muren & Weissmann, 1971). Many dihydroquinoline derivatives have been reported in the literature (Edwards *et al.*, 1998; Yan *et al.*, 2004; Petasis & Butkevich, 2009; Gültekin *et al.*, 2010) and some of them have biological effects. For example, 2,2,4-substituted 1,2-dihydroquinolines have been shown antibacterial activities (Johnson *et al.*, 1989). In the title compound, (I), (Fig. 1), the ring A (C1-C4/C9/N1) is not planar; the puckering parameters (Cremer & Pople, 1975) Q~T~ = 0.379 (3) Å, φ = 21.5 (6)° and θ = 66.4 (5)° suggesting a screw-boat conformation. In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules to form infinite chains along the b-axis (Fig. 2). Experimental {#experimental} ============ The title compound was synthesized by the literature method (Waldmann *et al.*, 2008). 3,4,5-dimethoxyaniline (100 mg, 1 eq) was dissolved in chloroform (1.5 ml) in a screw-capped test tube and Bi(OTf)~3~ (5 mol%, 0.05 eq) was added to the mixture. The mixture was stirred at room temperature for 4 h until the starting material was completely consumed as monitored by TLC. The resultant residue was directly purified by flash chromatography on silica (EtOAc:Cylohexane 2:98) gave in 83% yield as a yellow solid. Recrystallized over pentane and ethyl acetate (70:30) gave yellow crystalline solid R~f~ 0.16 (2:1 Cyclohexane/EtOAc) mp 394-395 K. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o576-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A partial packing diagram viewed down the c-axis. Hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o576-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e122 .table-wrap} ------------------------- ------------------------------------- C~17~H~21~NO~7~ *F*(000) = 1488 *M~r~* = 351.35 *D*~x~ = 1.330 Mg m^−3^ Orthorhombic, *Pbca* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ac 2ab Cell parameters from 40 reflections *a* = 10.476 (2) Å θ = 10--12° *b* = 16.552 (4) Å µ = 0.10 mm^−1^ *c* = 20.238 (4) Å *T* = 294 K *V* = 3509.2 (13) Å^3^ Plates, colourless *Z* = 8 0.6 × 0.4 × 0.15 mm ------------------------- ------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e243 .table-wrap} ------------------------------------------ --------------------------------------------- Nicolet P3 diffractometer *R*~int~ = 0.000 Radiation source: fine-focus sealed tube θ~max~ = 26.0°, θ~min~ = 2.0° graphite *h* = 0→12 Wyckoff scan *k* = 0→20 3447 measured reflections *l* = 0→24 3447 independent reflections 3 standard reflections every 50 reflections 1839 reflections with *I* \> 2σ(*I*) intensity decay: 1% ------------------------------------------ --------------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e332 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.070 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.156 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0359*P*)^2^ + 3.112*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.07 (Δ/σ)~max~ \< 0.001 3447 reflections Δρ~max~ = 0.18 e Å^−3^ 237 parameters Δρ~min~ = −0.17 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0031 (3) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e513 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e558 .table-wrap} ------ ------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.5908 (3) 1.03546 (16) 0.62717 (15) 0.0881 (10) O2 0.6233 (3) 0.93649 (16) 0.55547 (13) 0.0713 (8) O3 0.2547 (3) 0.7747 (2) 0.51994 (16) 0.1002 (11) O4 0.1503 (3) 0.75844 (14) 0.61564 (14) 0.0745 (8) O5 0.0584 (2) 0.91803 (14) 0.58046 (11) 0.0540 (6) O6 −0.0366 (2) 1.05816 (15) 0.63970 (12) 0.0637 (7) O7 0.1046 (3) 1.13852 (16) 0.72647 (13) 0.0736 (8) N1 0.4420 (3) 0.9400 (2) 0.70665 (15) 0.0590 (9) H21 0.485 (4) 0.973 (2) 0.733 (2) 0.091 (16)\* C1 0.5191 (3) 0.9018 (2) 0.65584 (19) 0.0525 (9) C2 0.4333 (3) 0.8467 (2) 0.61660 (18) 0.0536 (9) H2 0.4696 0.8031 0.5946 0.064\* C3 0.3086 (3) 0.85768 (19) 0.61218 (16) 0.0479 (8) C4 0.2492 (3) 0.92839 (19) 0.64312 (15) 0.0445 (8) C5 0.1281 (3) 0.9578 (2) 0.62794 (16) 0.0457 (8) C6 0.0824 (3) 1.0285 (2) 0.65599 (17) 0.0489 (9) C7 0.1567 (3) 1.0694 (2) 0.70186 (17) 0.0541 (9) C8 0.2776 (3) 1.0412 (2) 0.71861 (17) 0.0566 (10) H8 0.3272 1.0688 0.7493 0.068\* C9 0.3233 (3) 0.9712 (2) 0.68871 (16) 0.0489 (9) C10 0.6265 (4) 0.8538 (2) 0.6884 (2) 0.0730 (12) H10A 0.6801 0.8899 0.7132 0.109\* H10B 0.6763 0.8274 0.6550 0.109\* H10C 0.5907 0.8141 0.7176 0.109\* C11 0.5798 (3) 0.9663 (2) 0.61161 (19) 0.0528 (9) C12 0.6849 (5) 0.9931 (3) 0.5108 (2) 0.1013 (16) H12A 0.6974 0.9678 0.4686 0.152\* H12B 0.7660 1.0088 0.5287 0.152\* H12C 0.6319 1.0400 0.5055 0.152\* C13 0.2345 (4) 0.7940 (2) 0.5758 (2) 0.0613 (10) C14 0.0782 (5) 0.6925 (3) 0.5864 (3) 0.118 (2) H14A 0.0260 0.6676 0.6197 0.177\* H14B 0.1362 0.6532 0.5686 0.177\* H14C 0.0249 0.7130 0.5517 0.177\* C15 −0.0622 (3) 0.8868 (2) 0.6031 (2) 0.0755 (12) H15A −0.1022 0.8569 0.5682 0.113\* H15B −0.1164 0.9308 0.6160 0.113\* H15C −0.0483 0.8519 0.6403 0.113\* C16 −0.0349 (5) 1.1165 (3) 0.5882 (2) 0.0906 (15) H16A −0.1179 1.1406 0.5842 0.136\* H16B −0.0124 1.0907 0.5474 0.136\* H16C 0.0268 1.1576 0.5984 0.136\* C17 0.1819 (4) 1.1883 (2) 0.7671 (2) 0.0896 (15) H17A 0.1360 1.2367 0.7781 0.134\* H17B 0.2587 1.2022 0.7438 0.134\* H17C 0.2033 1.1597 0.8069 0.134\* ------ ------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1166 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.111 (3) 0.0508 (17) 0.103 (2) −0.0080 (17) 0.014 (2) 0.0001 (16) O2 0.0779 (19) 0.0685 (17) 0.0676 (18) −0.0126 (15) 0.0092 (15) −0.0002 (15) O3 0.101 (2) 0.115 (3) 0.085 (2) −0.028 (2) 0.012 (2) −0.047 (2) O4 0.0813 (18) 0.0507 (15) 0.092 (2) −0.0248 (15) −0.0035 (17) −0.0025 (15) O5 0.0507 (14) 0.0598 (15) 0.0516 (14) −0.0123 (12) −0.0065 (12) −0.0034 (12) O6 0.0493 (15) 0.0704 (17) 0.0712 (18) 0.0042 (13) 0.0024 (13) −0.0002 (14) O7 0.0750 (19) 0.0670 (17) 0.0789 (19) 0.0009 (15) 0.0051 (15) −0.0253 (15) N1 0.0520 (19) 0.073 (2) 0.0524 (19) −0.0034 (18) −0.0093 (16) −0.0077 (17) C1 0.050 (2) 0.048 (2) 0.060 (2) 0.0010 (18) −0.0078 (18) 0.0047 (18) C2 0.056 (2) 0.0443 (19) 0.060 (2) 0.0016 (18) −0.0018 (19) 0.0009 (17) C3 0.055 (2) 0.0426 (19) 0.046 (2) −0.0088 (17) −0.0019 (17) 0.0038 (16) C4 0.0478 (18) 0.0465 (18) 0.0391 (17) −0.0091 (17) 0.0019 (16) −0.0005 (16) C5 0.0453 (19) 0.052 (2) 0.0395 (18) −0.0142 (17) −0.0014 (16) −0.0009 (16) C6 0.0425 (19) 0.053 (2) 0.051 (2) −0.0064 (17) 0.0045 (17) −0.0020 (17) C7 0.055 (2) 0.052 (2) 0.055 (2) −0.0057 (19) 0.0102 (19) −0.0077 (18) C8 0.058 (2) 0.063 (2) 0.049 (2) −0.013 (2) 0.0029 (18) −0.0144 (19) C9 0.047 (2) 0.056 (2) 0.043 (2) −0.0094 (18) −0.0022 (17) 0.0025 (17) C10 0.064 (2) 0.069 (3) 0.086 (3) 0.003 (2) −0.017 (2) 0.020 (2) C11 0.045 (2) 0.050 (2) 0.063 (2) 0.0026 (18) −0.0061 (19) 0.0045 (19) C12 0.104 (4) 0.115 (4) 0.085 (3) −0.029 (3) 0.017 (3) 0.027 (3) C13 0.060 (2) 0.054 (2) 0.070 (3) −0.008 (2) −0.001 (2) −0.009 (2) C14 0.106 (4) 0.072 (3) 0.176 (6) −0.041 (3) −0.005 (4) −0.029 (3) C15 0.050 (2) 0.075 (3) 0.102 (3) −0.016 (2) −0.006 (2) −0.009 (2) C16 0.094 (3) 0.072 (3) 0.106 (4) 0.006 (3) −0.017 (3) 0.021 (3) C17 0.104 (4) 0.073 (3) 0.092 (4) −0.006 (3) 0.000 (3) −0.038 (3) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1684 .table-wrap} --------------------- ------------ -------------------- ------------ O1---C11 1.193 (4) C5---C6 1.386 (5) O2---C11 1.320 (4) C6---C7 1.387 (5) O2---C12 1.453 (5) C7---C8 1.391 (5) O3---C13 1.194 (4) C8---C9 1.393 (5) O4---C13 1.332 (4) C8---H8 0.9300 O4---C14 1.453 (5) C10---H10A 0.9600 O5---C5 1.374 (4) C10---H10B 0.9600 O5---C15 1.440 (4) C10---H10C 0.9600 O6---C6 1.380 (4) C12---H12A 0.9600 O6---C16 1.421 (5) C12---H12B 0.9600 O7---C7 1.362 (4) C12---H12C 0.9600 O7---C17 1.418 (4) C14---H14A 0.9600 N1---C1 1.453 (4) C14---H14B 0.9600 N1---C9 1.394 (4) C14---H14C 0.9600 N1---H21 0.89 (4) C15---H15A 0.9600 C1---C2 1.507 (5) C15---H15B 0.9600 C1---C10 1.527 (5) C15---H15C 0.9600 C1---C11 1.532 (5) C16---H16A 0.9600 C2---C3 1.322 (4) C16---H16B 0.9600 C2---H2 0.9300 C16---H16C 0.9600 C3---C4 1.466 (5) C17---H17A 0.9600 C3---C13 1.502 (5) C17---H17B 0.9600 C4---C5 1.393 (5) C17---H17C 0.9600 C4---C9 1.399 (4) C11---O2---C12 116.6 (3) C1---C10---H10C 109.5 C13---O4---C14 115.5 (4) H10A---C10---H10B 109.5 C5---O5---C15 114.5 (3) H10A---C10---H10C 109.5 C6---O6---C16 113.9 (3) H10B---C10---H10C 109.5 C7---O7---C17 118.1 (3) O1---C11---O2 123.6 (4) C1---N1---H21 114 (3) O1---C11---C1 123.7 (4) C9---N1---C1 118.2 (3) O2---C11---C1 112.7 (3) C9---N1---H21 112 (3) O2---C12---H12A 109.5 N1---C1---C2 107.7 (3) O2---C12---H12B 109.5 N1---C1---C10 109.3 (3) O2---C12---H12C 109.5 N1---C1---C11 109.9 (3) H12A---C12---H12B 109.5 C2---C1---C10 110.7 (3) H12A---C12---H12C 109.5 C2---C1---C11 111.2 (3) H12B---C12---H12C 109.5 C10---C1---C11 108.0 (3) O3---C13---O4 124.9 (4) C1---C2---H2 118.6 O3---C13---C3 124.1 (4) C3---C2---C1 122.8 (3) O4---C13---C3 110.9 (3) C3---C2---H2 118.6 O4---C14---H14A 109.5 C2---C3---C4 120.1 (3) O4---C14---H14B 109.5 C2---C3---C13 116.6 (3) O4---C14---H14C 109.5 C4---C3---C13 123.4 (3) H14A---C14---H14B 109.5 C5---C4---C3 124.9 (3) H14A---C14---H14C 109.5 C5---C4---C9 118.3 (3) H14B---C14---H14C 109.5 C9---C4---C3 116.7 (3) O5---C15---H15A 109.5 O5---C5---C4 118.1 (3) O5---C15---H15B 109.5 O5---C5---C6 120.5 (3) O5---C15---H15C 109.5 C6---C5---C4 121.3 (3) H15A---C15---H15B 109.5 O6---C6---C5 120.9 (3) H15A---C15---H15C 109.5 O6---C6---C7 119.6 (3) H15B---C15---H15C 109.5 C5---C6---C7 119.5 (3) O6---C16---H16A 109.5 O7---C7---C6 115.4 (3) O6---C16---H16B 109.5 O7---C7---C8 123.9 (3) O6---C16---H16C 109.5 C6---C7---C8 120.7 (3) H16A---C16---H16B 109.5 C7---C8---C9 119.1 (3) H16A---C16---H16C 109.5 C7---C8---H8 120.5 H16B---C16---H16C 109.5 C9---C8---H8 120.5 O7---C17---H17A 109.5 N1---C9---C4 118.7 (3) O7---C17---H17B 109.5 C8---C9---N1 120.1 (3) O7---C17---H17C 109.5 C8---C9---C4 121.1 (3) H17A---C17---H17B 109.5 C1---C10---H10A 109.5 H17A---C17---H17C 109.5 C1---C10---H10B 109.5 H17B---C17---H17C 109.5 C12---O2---C11---O1 −1.3 (6) C2---C3---C4---C9 −14.3 (5) C12---O2---C11---C1 −178.8 (3) C13---C3---C4---C5 −19.0 (5) C14---O4---C13---O3 −1.0 (6) C13---C3---C4---C9 164.4 (3) C14---O4---C13---C3 −176.6 (3) C2---C3---C13---O3 −57.5 (6) C15---O5---C5---C4 120.6 (3) C2---C3---C13---O4 118.1 (4) C15---O5---C5---C6 −64.2 (4) C4---C3---C13---O3 123.8 (5) C16---O6---C6---C5 −94.5 (4) C4---C3---C13---O4 −60.6 (4) C16---O6---C6---C7 86.5 (4) C3---C4---C5---O5 −0.1 (5) C17---O7---C7---C6 −172.3 (3) C3---C4---C5---C6 −175.2 (3) C17---O7---C7---C8 5.6 (5) C9---C4---C5---O5 176.5 (3) C9---N1---C1---C2 −45.4 (4) C9---C4---C5---C6 1.3 (5) C9---N1---C1---C10 −165.7 (3) C3---C4---C9---N1 −6.3 (4) C9---N1---C1---C11 76.0 (4) C3---C4---C9---C8 177.2 (3) C1---N1---C9---C8 −145.0 (3) C5---C4---C9---N1 176.8 (3) C1---N1---C9---C4 38.5 (5) C5---C4---C9---C8 0.3 (5) N1---C1---C2---C3 24.7 (5) O5---C5---C6---O6 3.6 (5) C10---C1---C2---C3 144.2 (4) O5---C5---C6---C7 −177.4 (3) C11---C1---C2---C3 −95.8 (4) C4---C5---C6---O6 178.7 (3) N1---C1---C11---O1 18.8 (5) C4---C5---C6---C7 −2.3 (5) N1---C1---C11---O2 −163.7 (3) C5---C6---C7---O7 179.6 (3) C2---C1---C11---O1 138.0 (4) C5---C6---C7---C8 1.7 (5) C2---C1---C11---O2 −44.5 (4) O6---C6---C7---O7 −1.4 (5) C10---C1---C11---O1 −100.4 (4) O6---C6---C7---C8 −179.3 (3) C10---C1---C11---O2 77.1 (4) O7---C7---C8---C9 −177.8 (3) C1---C2---C3---C4 3.5 (5) C6---C7---C8---C9 0.0 (5) C1---C2---C3---C13 −175.2 (3) C7---C8---C9---N1 −177.4 (3) C2---C3---C4---C5 162.3 (3) C7---C8---C9---C4 −1.0 (5) --------------------- ------------ -------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2593 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C14---H14A···O1^i^ 0.96 2.51 3.251 (6) 134 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1/2, *y*−1/2, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- C14---H14*A*⋯O1^i^ 0.96 2.51 3.251 (6) 134 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.785820
2011-2-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051996/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 5; 67(Pt 3):o576", "authors": [ { "first": "Zeynep", "last": "Gültekin" }, { "first": "Wolfgang", "last": "Frey" }, { "first": "Tuncer", "last": "Hökelek" } ] }
PMC3051997
Related literature {#sec1} ================== For stacking of Ni--salen units, see: Abe *et al.* (2006[@bb1]); Assey *et al.* (2010[@bb3]); Feng *et al.* (2007[@bb4]); Miyamura *et al.* (1995[@bb5]); Vasil'eva *et al.* (2003[@bb8]). For a description of the Cambridge Structural Database, see: Allen (2002[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Ni(C~18~H~18~N~2~O~4~)\]·C~3~H~7~NO*M* *~r~* = 458.15Monoclinic,*a* = 6.8601 (1) Å*b* = 15.3432 (3) Å*c* = 18.9065 (4) Åβ = 91.676 (2)°*V* = 1989.17 (6) Å^3^*Z* = 4Cu *K*α radiationμ = 1.75 mm^−1^*T* = 110 K0.53 × 0.35 × 0.28 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur diffractometer with a Ruby detectorAbsorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009[@bb6]) *T* ~min~ = 0.750, *T* ~max~ = 1.0007909 measured reflections3911 independent reflections3513 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.020 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.041*wR*(*F* ^2^) = 0.114*S* = 1.103911 reflections275 parametersH-atom parameters constrainedΔρ~max~ = 0.34 e Å^−3^Δρ~min~ = −0.31 e Å^−3^ {#d5e562} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009[@bb6]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb7]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004818/tk2717sup1.cif](http://dx.doi.org/10.1107/S1600536811004818/tk2717sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004818/tk2717Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004818/tk2717Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?tk2717&file=tk2717sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?tk2717sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?tk2717&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [TK2717](http://scripts.iucr.org/cgi-bin/sendsup?tk2717)). RJB wishes to acknowledge the NSF--MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer. KA wishes to thank the National Science Foundation's AGEP Fellowship for support. Comment ======= The title compound is a composed of one mononuclear nickel salen-type complex and one molecule of dimethylformamide as solvate. The central Ni is in a square planar O~2~N~2~ coordination environment (Fig. 1). The Ni---N and Ni---O bond distances, Table 1, are in the normal range for Ni-salen type complexes (Allen, 2002). The planar Ni salen moieties form parallel stacks in the *a* direction with alternating Ni---Ni separations of 3.5339 (7) and 3.6165 (7) Å as is common for this type of complex (Abe *et al.*, 2006; Assey *et al.*, 2010; Feng *et al.*, 2007; Miyamura *et al.*, 1995; Vasil\'eva *et al.*, 2003). There are weak intermolecular C---H···O interactions involving the DMF O and phenolic O atoms (Table 2 and Fig. 2). Experimental {#experimental} ============ The ligand, *N*,*N*\'-bis(3-methoxysalicylaldehyde)ethylenediimine (H~2~*L*~1~), was synthesized in a conventional way by mixing *o*-vanillin with ethylenediamine. To 10 g (0.066 mole) of *o*-vanillin weighed into a 100 ml round-bottom flask, 30 ml of methanol and 3 mL (0.035 mole) of ethylenediamine were added drop-wise while stirring. The resulting mixture was refluxed at a regulated temperature of 313 K overnight. The yellow precipitate was filtered under vacuum, dissolved in methanol and filtered a second time. To a stirred bright yellow solution of 20 ml methanol containing 0.9 g (2.74 mmol) of H~2~*L*~1~, a 20 ml green methanol solution of 0.65 g NiCl~2~.6H~2~O (2.73 mmol) was added drop-wise with continuous stirring. About 2 to 3 drops of triethylamine was added to activate deprotonation of the 2-hydroxyl group on the aldehyde moiety and promote oxygen binding to the metal. The resulting dark brown complex solution was stirred and refluxed overnight at 313 K, rotary-evaporated and washed with ethanol to obtain a brown solid in over 90% yield. The complex (7 mg) was dissolved in 5 ml of *N*,*N*\'-dimethyl formamide and filtered into a crystallization tube. Sufficient amount of diethyl ether was slowly layered over the dissolved complex yielding red brown crystals after several days. Refinement {#refinement} ========== H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C---H distances of 0.95 to 0.99 Å and *U*~iso~(H) = 1.2*U*~eq~(C) \[*U*~iso~(H) = 1.5*U*~eq~(C) for CH~3~\]. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structures of the complex, C18H18N3NiO5, and solvent, C3H7NO, showing the atom numbering scheme and 50% probability displacement ellipsoids. ::: ![](e-67-0m328-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The molecular packing for C18H18N3NiO5.C3H7NO, viewed down the a axis showing overlapping Nisalen units. ::: ![](e-67-0m328-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e227 .table-wrap} --------------------------------------- --------------------------------------- \[Ni(C~18~H~18~N~2~O~4~)\]·C~3~H~7~NO *F*(000) = 960 *M~r~* = 458.15 *D*~x~ = 1.530 Mg m^−3^ Monoclinic, *P*2~1~/*c* Cu *K*α radiation, λ = 1.54178 Å Hall symbol: -P 2ybc Cell parameters from 5823 reflections *a* = 6.8601 (1) Å θ = 5.5--73.9° *b* = 15.3432 (3) Å µ = 1.75 mm^−1^ *c* = 18.9065 (4) Å *T* = 110 K β = 91.676 (2)° Prism, red brown *V* = 1989.17 (6) Å^3^ 0.53 × 0.35 × 0.28 mm *Z* = 4 --------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e365 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Mo) detector 3911 independent reflections Radiation source: Enhance (Cu) X-ray Source 3513 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.020 Detector resolution: 10.5081 pixels mm^-1^ θ~max~ = 74.1°, θ~min~ = 5.5° ω scans *h* = −8→6 Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) *k* = −18→18 *T*~min~ = 0.750, *T*~max~ = 1.000 *l* = −22→23 7909 measured reflections ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e485 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.041 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.114 H-atom parameters constrained *S* = 1.10 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0443*P*)^2^ + 2.5615*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3911 reflections (Δ/σ)~max~ = 0.001 275 parameters Δρ~max~ = 0.34 e Å^−3^ 0 restraints Δρ~min~ = −0.31 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e642 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e741 .table-wrap} ------ ------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Ni 0.74901 (5) 0.498467 (19) 0.526650 (16) 0.01230 (13) O1 0.7304 (2) 0.41708 (9) 0.59911 (7) 0.0156 (3) O2 0.7642 (2) 0.58041 (9) 0.59906 (7) 0.0153 (3) O3 0.7206 (2) 0.32568 (9) 0.71759 (7) 0.0202 (3) O4 0.7569 (2) 0.67226 (9) 0.71712 (7) 0.0219 (3) O1S 0.5907 (2) −0.00040 (9) 0.71449 (9) 0.0270 (4) N1 0.7406 (2) 0.41614 (11) 0.45511 (9) 0.0159 (3) N2 0.7631 (2) 0.57987 (11) 0.45478 (9) 0.0160 (3) N1S 0.2629 (3) −0.00026 (10) 0.69058 (10) 0.0191 (4) C1 0.7385 (3) 0.33191 (13) 0.59320 (10) 0.0143 (4) C2 0.7330 (3) 0.27939 (13) 0.65578 (10) 0.0159 (4) C3 0.7344 (3) 0.27729 (14) 0.78197 (11) 0.0214 (4) H3A 0.7272 0.3173 0.8222 0.032\* H3B 0.8588 0.2459 0.7845 0.032\* H3C 0.6266 0.2355 0.7834 0.032\* C4 0.7376 (3) 0.18962 (13) 0.65251 (11) 0.0198 (4) H4A 0.7304 0.1564 0.6948 0.024\* C5 0.7531 (3) 0.14675 (13) 0.58720 (12) 0.0257 (5) H5A 0.7577 0.0849 0.5853 0.031\* C6 0.7613 (3) 0.19459 (15) 0.52644 (12) 0.0251 (5) H6A 0.7735 0.1657 0.4823 0.030\* C7 0.7518 (3) 0.28656 (14) 0.52840 (11) 0.0191 (4) C8 0.7480 (3) 0.33263 (14) 0.46263 (11) 0.0194 (4) H8A 0.7513 0.2987 0.4207 0.023\* C9 0.7123 (3) 0.45208 (15) 0.38295 (10) 0.0219 (4) H9A 0.5720 0.4523 0.3692 0.026\* H9B 0.7824 0.4159 0.3486 0.026\* C10 0.7908 (3) 0.54324 (14) 0.38323 (10) 0.0215 (4) H10A 0.9310 0.5429 0.3722 0.026\* H10B 0.7202 0.5789 0.3472 0.026\* C11 0.7590 (3) 0.66365 (14) 0.46181 (11) 0.0195 (4) H11A 0.7622 0.6974 0.4197 0.023\* C12 0.7500 (3) 0.71005 (14) 0.52714 (11) 0.0192 (4) C13 0.7388 (3) 0.80217 (15) 0.52450 (12) 0.0252 (5) H13A 0.7355 0.8308 0.4799 0.030\* C14 0.7328 (3) 0.85024 (14) 0.58504 (13) 0.0268 (5) H14A 0.7254 0.9120 0.5827 0.032\* C15 0.7376 (3) 0.80773 (13) 0.65102 (12) 0.0203 (4) H15A 0.7318 0.8411 0.6933 0.024\* C16 0.7506 (3) 0.71821 (13) 0.65496 (10) 0.0164 (4) C17 0.7597 (3) 0.72153 (15) 0.78123 (11) 0.0220 (4) H17A 0.7687 0.6818 0.8218 0.033\* H17B 0.6397 0.7559 0.7836 0.033\* H17C 0.8726 0.7607 0.7823 0.033\* C18 0.7554 (3) 0.66541 (13) 0.59253 (10) 0.0146 (4) C1S 0.4214 (3) −0.00156 (11) 0.73382 (12) 0.0181 (4) H1SA 0.4011 −0.0035 0.7833 0.022\* C2S 0.0692 (3) −0.00288 (14) 0.71929 (14) 0.0270 (5) H2SA 0.0795 −0.0017 0.7711 0.040\* H2SB 0.0029 −0.0564 0.7038 0.040\* H2SC −0.0057 0.0478 0.7024 0.040\* C3S 0.2806 (5) 0.00255 (16) 0.61430 (13) 0.0347 (6) H3SA 0.4173 0.0120 0.6028 0.052\* H3SB 0.2009 0.0503 0.5948 0.052\* H3SC 0.2355 −0.0528 0.5938 0.052\* ------ ------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1460 .table-wrap} ----- ------------- ------------- -------------- --------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ni 0.0174 (2) 0.0113 (2) 0.00815 (19) −0.00089 (12) 0.00040 (13) 0.00026 (11) O1 0.0232 (7) 0.0109 (6) 0.0127 (6) −0.0014 (5) 0.0010 (5) 0.0000 (5) O2 0.0216 (7) 0.0113 (6) 0.0131 (6) −0.0013 (5) 0.0005 (5) −0.0001 (5) O3 0.0333 (8) 0.0145 (7) 0.0130 (7) 0.0003 (6) 0.0024 (6) 0.0026 (5) O4 0.0373 (9) 0.0150 (7) 0.0135 (7) −0.0009 (6) 0.0018 (6) −0.0027 (5) O1S 0.0217 (8) 0.0249 (9) 0.0347 (9) 0.0000 (6) 0.0039 (7) 0.0014 (6) N1 0.0175 (8) 0.0195 (9) 0.0105 (8) −0.0004 (7) −0.0001 (6) −0.0017 (6) N2 0.0169 (8) 0.0201 (9) 0.0110 (8) −0.0018 (6) −0.0002 (6) 0.0023 (6) N1S 0.0239 (9) 0.0172 (9) 0.0162 (9) −0.0004 (7) −0.0001 (7) 0.0003 (6) C1 0.0135 (9) 0.0121 (9) 0.0173 (9) −0.0003 (7) 0.0005 (7) −0.0002 (7) C2 0.0140 (9) 0.0163 (10) 0.0176 (9) −0.0002 (7) 0.0012 (7) 0.0000 (7) C3 0.0244 (11) 0.0227 (10) 0.0171 (10) −0.0001 (8) 0.0008 (8) 0.0067 (8) C4 0.0203 (10) 0.0152 (10) 0.0238 (11) −0.0002 (8) −0.0001 (8) 0.0035 (8) C5 0.0328 (12) 0.0108 (9) 0.0334 (13) −0.0007 (8) −0.0017 (10) −0.0022 (8) C6 0.0339 (12) 0.0177 (11) 0.0237 (11) −0.0002 (9) 0.0001 (9) −0.0073 (8) C7 0.0207 (10) 0.0175 (10) 0.0190 (10) 0.0012 (8) −0.0008 (8) −0.0036 (8) C8 0.0233 (10) 0.0202 (10) 0.0146 (9) −0.0008 (8) 0.0001 (8) −0.0074 (8) C9 0.0272 (11) 0.0281 (11) 0.0104 (9) −0.0022 (9) −0.0006 (8) −0.0006 (8) C10 0.0259 (11) 0.0274 (11) 0.0114 (9) −0.0025 (9) 0.0018 (8) 0.0014 (8) C11 0.0235 (10) 0.0194 (10) 0.0155 (9) −0.0012 (8) −0.0005 (8) 0.0079 (8) C12 0.0205 (10) 0.0175 (10) 0.0195 (10) 0.0008 (8) 0.0020 (8) 0.0034 (8) C13 0.0320 (12) 0.0164 (10) 0.0272 (12) −0.0003 (9) −0.0001 (9) 0.0087 (8) C14 0.0347 (13) 0.0111 (10) 0.0344 (13) −0.0007 (9) 0.0005 (10) 0.0022 (9) C15 0.0192 (10) 0.0146 (10) 0.0270 (11) −0.0005 (8) 0.0018 (8) −0.0043 (8) C16 0.0137 (9) 0.0161 (9) 0.0192 (10) −0.0008 (7) −0.0002 (7) 0.0000 (8) C17 0.0250 (11) 0.0232 (11) 0.0178 (10) 0.0007 (8) 0.0010 (8) −0.0079 (8) C18 0.0135 (9) 0.0124 (9) 0.0179 (10) −0.0008 (7) −0.0002 (7) 0.0002 (7) C1S 0.0229 (10) 0.0114 (9) 0.0200 (10) −0.0017 (7) 0.0006 (8) −0.0005 (7) C2S 0.0208 (11) 0.0254 (12) 0.0347 (13) −0.0012 (8) 0.0004 (9) 0.0028 (9) C3S 0.0537 (17) 0.0342 (14) 0.0161 (11) 0.0016 (11) −0.0033 (11) −0.0005 (9) ----- ------------- ------------- -------------- --------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2055 .table-wrap} -------------------- -------------- ----------------------- -------------- Ni---N1 1.8503 (17) C6---H6A 0.9500 Ni---N2 1.8502 (17) C7---C8 1.430 (3) Ni---O1 1.8609 (13) C8---H8A 0.9500 Ni---O2 1.8594 (13) C9---C10 1.499 (3) O1---C1 1.313 (2) C9---H9A 0.9900 O2---C18 1.311 (2) C9---H9B 0.9900 O3---C2 1.372 (2) C10---H10A 0.9900 O3---C3 1.427 (2) C10---H10B 0.9900 O4---C16 1.370 (2) C11---C12 1.429 (3) O4---C17 1.428 (2) C11---H11A 0.9500 O1S---C1S 1.228 (3) C12---C18 1.413 (3) N1---C8 1.290 (3) C12---C13 1.416 (3) N1---C9 1.479 (2) C13---C14 1.363 (3) N2---C11 1.293 (3) C13---H13A 0.9500 N2---C10 1.482 (2) C14---C15 1.407 (3) N1S---C1S 1.341 (3) C14---H14A 0.9500 N1S---C2S 1.451 (3) C15---C16 1.378 (3) N1S---C3S 1.451 (3) C15---H15A 0.9500 C1---C7 1.414 (3) C16---C18 1.433 (3) C1---C2 1.433 (3) C17---H17A 0.9800 C2---C4 1.379 (3) C17---H17B 0.9800 C3---H3A 0.9800 C17---H17C 0.9800 C3---H3B 0.9800 C1S---H1SA 0.9500 C3---H3C 0.9800 C2S---H2SA 0.9800 C4---C5 1.406 (3) C2S---H2SB 0.9800 C4---H4A 0.9500 C2S---H2SC 0.9800 C5---C6 1.366 (3) C3S---H3SA 0.9800 C5---H5A 0.9500 C3S---H3SB 0.9800 C6---C7 1.413 (3) C3S---H3SC 0.9800 N2---Ni---N1 85.71 (8) C10---C9---H9B 110.1 N2---Ni---O2 94.66 (7) H9A---C9---H9B 108.4 N1---Ni---O2 178.51 (7) N2---C10---C9 107.53 (16) N2---Ni---O1 179.01 (7) N2---C10---H10A 110.2 N1---Ni---O1 94.51 (7) C9---C10---H10A 110.2 O2---Ni---O1 85.14 (6) N2---C10---H10B 110.2 C1---O1---Ni 126.96 (12) C9---C10---H10B 110.2 C18---O2---Ni 127.00 (12) H10A---C10---H10B 108.5 C2---O3---C3 116.94 (16) N2---C11---C12 125.87 (19) C16---O4---C17 117.06 (16) N2---C11---H11A 117.1 C8---N1---C9 118.40 (17) C12---C11---H11A 117.1 C8---N1---Ni 126.67 (15) C18---C12---C13 120.97 (19) C9---N1---Ni 114.85 (13) C18---C12---C11 120.96 (19) C11---N2---C10 118.33 (17) C13---C12---C11 118.07 (19) C11---N2---Ni 126.45 (14) C14---C13---C12 120.9 (2) C10---N2---Ni 115.16 (13) C14---C13---H13A 119.6 C1S---N1S---C2S 120.44 (19) C12---C13---H13A 119.6 C1S---N1S---C3S 121.1 (2) C13---C14---C15 119.53 (19) C2S---N1S---C3S 118.5 (2) C13---C14---H14A 120.2 O1---C1---C7 124.57 (18) C15---C14---H14A 120.2 O1---C1---C2 119.16 (17) C16---C15---C14 120.6 (2) C7---C1---C2 116.27 (18) C16---C15---H15A 119.7 O3---C2---C4 123.86 (18) C14---C15---H15A 119.7 O3---C2---C1 114.57 (17) O4---C16---C15 124.02 (19) C4---C2---C1 121.56 (18) O4---C16---C18 114.50 (17) O3---C3---H3A 109.5 C15---C16---C18 121.47 (19) O3---C3---H3B 109.5 O4---C17---H17A 109.5 H3A---C3---H3B 109.5 O4---C17---H17B 109.5 O3---C3---H3C 109.5 H17A---C17---H17B 109.5 H3A---C3---H3C 109.5 O4---C17---H17C 109.5 H3B---C3---H3C 109.5 H17A---C17---H17C 109.5 C2---C4---C5 120.60 (19) H17B---C17---H17C 109.5 C2---C4---H4A 119.7 O2---C18---C12 124.36 (18) C5---C4---H4A 119.7 O2---C18---C16 119.15 (17) C6---C5---C4 119.57 (19) C12---C18---C16 116.49 (18) C6---C5---H5A 120.2 O1S---C1S---N1S 125.1 (2) C4---C5---H5A 120.2 O1S---C1S---H1SA 117.4 C5---C6---C7 120.8 (2) N1S---C1S---H1SA 117.4 C5---C6---H6A 119.6 N1S---C2S---H2SA 109.5 C7---C6---H6A 119.6 N1S---C2S---H2SB 109.5 C6---C7---C1 121.21 (19) H2SA---C2S---H2SB 109.5 C6---C7---C8 118.07 (19) N1S---C2S---H2SC 109.5 C1---C7---C8 120.68 (19) H2SA---C2S---H2SC 109.5 N1---C8---C7 125.91 (19) H2SB---C2S---H2SC 109.5 N1---C8---H8A 117.0 N1S---C3S---H3SA 109.5 C7---C8---H8A 117.0 N1S---C3S---H3SB 109.5 N1---C9---C10 107.90 (16) H3SA---C3S---H3SB 109.5 N1---C9---H9A 110.1 N1S---C3S---H3SC 109.5 C10---C9---H9A 110.1 H3SA---C3S---H3SC 109.5 N1---C9---H9B 110.1 H3SB---C3S---H3SC 109.5 N2---Ni---O1---C1 111 (4) C2---C1---C7---C8 176.74 (18) N1---Ni---O1---C1 8.14 (16) C9---N1---C8---C7 −172.29 (19) O2---Ni---O1---C1 −170.41 (16) Ni---N1---C8---C7 4.3 (3) N2---Ni---O2---C18 8.98 (16) C6---C7---C8---N1 −179.6 (2) N1---Ni---O2---C18 113 (3) C1---C7---C8---N1 2.8 (3) O1---Ni---O2---C18 −170.05 (16) C8---N1---C9---C10 −156.46 (19) N2---Ni---N1---C8 172.71 (18) Ni---N1---C9---C10 26.6 (2) O2---Ni---N1---C8 68 (3) C11---N2---C10---C9 −157.70 (19) O1---Ni---N1---C8 −8.25 (18) Ni---N2---C10---C9 25.0 (2) N2---Ni---N1---C9 −10.60 (14) N1---C9---C10---N2 −31.2 (2) O2---Ni---N1---C9 −115 (3) C10---N2---C11---C12 −174.43 (19) O1---Ni---N1---C9 168.43 (14) Ni---N2---C11---C12 2.5 (3) N1---Ni---N2---C11 174.22 (18) N2---C11---C12---C18 3.5 (3) O2---Ni---N2---C11 −7.22 (18) N2---C11---C12---C13 −177.6 (2) O1---Ni---N2---C11 71 (4) C18---C12---C13---C14 −0.1 (3) N1---Ni---N2---C10 −8.76 (14) C11---C12---C13---C14 −179.0 (2) O2---Ni---N2---C10 169.79 (14) C12---C13---C14---C15 0.0 (3) O1---Ni---N2---C10 −112 (4) C13---C14---C15---C16 0.8 (3) Ni---O1---C1---C7 −4.0 (3) C17---O4---C16---C15 −3.2 (3) Ni---O1---C1---C2 176.32 (13) C17---O4---C16---C18 177.79 (16) C3---O3---C2---C4 6.9 (3) C14---C15---C16---O4 179.68 (19) C3---O3---C2---C1 −173.86 (17) C14---C15---C16---C18 −1.4 (3) O1---C1---C2---O3 −0.4 (3) Ni---O2---C18---C12 −6.0 (3) C7---C1---C2---O3 179.85 (17) Ni---O2---C18---C16 173.96 (13) O1---C1---C2---C4 178.85 (18) C13---C12---C18---O2 179.44 (19) C7---C1---C2---C4 −0.9 (3) C11---C12---C18---O2 −1.6 (3) O3---C2---C4---C5 −179.16 (18) C13---C12---C18---C16 −0.5 (3) C1---C2---C4---C5 1.6 (3) C11---C12---C18---C16 178.44 (18) C2---C4---C5---C6 −0.7 (3) O4---C16---C18---O2 0.3 (3) C4---C5---C6---C7 −0.9 (3) C15---C16---C18---O2 −178.73 (18) C5---C6---C7---C1 1.6 (3) O4---C16---C18---C12 −179.74 (17) C5---C6---C7---C8 −175.9 (2) C15---C16---C18---C12 1.2 (3) O1---C1---C7---C6 179.6 (2) C2S---N1S---C1S---O1S 179.27 (18) C2---C1---C7---C6 −0.7 (3) C3S---N1S---C1S---O1S 0.1 (3) O1---C1---C7---C8 −3.0 (3) -------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3183 .table-wrap} --------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C4---H4A···O1S 0.95 2.62 3.310 (3) 130 C9---H9A···O2^i^ 0.99 2.45 3.334 (3) 148 C10---H10A···O1^ii^ 0.99 2.45 3.348 (3) 151 --------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1; (ii) −*x*+2, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: --------- ------------- Ni---N1 1.8503 (17) Ni---N2 1.8502 (17) Ni---O1 1.8609 (13) Ni---O2 1.8594 (13) --------- ------------- ::: ::: {#table2 .table-wrap} Table 2 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- --------- ------- ----------- ------------- C4---H4*A*⋯O1*S* 0.95 2.62 3.310 (3) 130 C9---H9*A*⋯O2^i^ 0.99 2.45 3.334 (3) 148 C10---H10*A*⋯O1^ii^ 0.99 2.45 3.348 (3) 151 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:17.792908
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051997/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):m328", "authors": [ { "first": "Kouassi", "last": "Ayikoé" }, { "first": "Ray J.", "last": "Butcher" }, { "first": "Yilma", "last": "Gultneh" } ] }
PMC3051998
Related literature {#sec1} ================== For similar Cu--*Ln* complexes (*Ln* = lanthanide), see: Bao *et al.* (2010[@bb1]); Elmali & Elerman (2003[@bb4], 2004[@bb5]); Wang *et al.* (2008[@bb9]); Xing *et al.* (2008[@bb10]). For bond-valence calculations, see: Pauling (1947[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[CuDy(C~19~H~20~N~2~O~4~)(NO~3~)~3~\]·CH~4~O*M* *~r~* = 784.49Triclinic,*a* = 8.3572 (17) Å*b* = 12.130 (2) Å*c* = 13.891 (3) Åα = 91.64 (3)°β = 106.85 (3)°γ = 99.52 (3)°*V* = 1324.8 (4) Å^3^*Z* = 2Mo *K*α radiationμ = 3.68 mm^−1^*T* = 293 K0.15 × 0.12 × 0.11 mm ### Data collection {#sec2.1.2} Bruker SMART1000 CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 2003[@bb7]) *T* ~min~ = 0.595, *T* ~max~ = 0.66713040 measured reflections6008 independent reflections5600 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.032 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.039*wR*(*F* ^2^) = 0.108*S* = 1.056008 reflections373 parametersH-atom parameters constrainedΔρ~max~ = 2.37 e Å^−3^Δρ~min~ = −0.88 e Å^−3^ {#d5e472} Data collection: *SMART* (Bruker, 2001[@bb2]); cell refinement: *SAINT-Plus* (Bruker, 2003[@bb3]); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb8]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005253/vm2074sup1.cif](http://dx.doi.org/10.1107/S1600536811005253/vm2074sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005253/vm2074Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005253/vm2074Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?vm2074&file=vm2074sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?vm2074sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?vm2074&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [VM2074](http://scripts.iucr.org/cgi-bin/sendsup?vm2074)). This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402, GZ08A401and 2010td03) and Heilongjiang University. Comment ======= In continuation of the studies of salen-type lanthanide complexes (Elmali *et al.*, 2003, Elmali *et al.*, 2004), we present here the synthesis and the crystal structure of the title compound (Fig. 1). The Dy^III^ ion is ligated to six oxygen atoms from three bidentate nitrate groups and four oxygen atoms from the ligand, similar to what is found in previously published structures (Wang *et al.*, 2008, Xing *et al.*, 2008, Bao *et al.*, 2010). The Dy---O bond distances are in the range of 2.368 (3) to 2.601 (3) Å, in accordance with the reported values. The planar coordinated Cu(II) ion is tetra-coordinated by two imino nitrogen atoms (Cu---N bond distance range, 1.961 (4)--1.968 (4) Å) and two phenolate oxygen atoms from the ligand (Cu---O bond distance range, 1.931 (3)--1.938 (3) Å). The positive charge of the Dy^III^ and Cu(II) ions are balanced by the ligand *L*^2-^ and three nitrate groups (*L* = *N*,*N*\'- bis(2-oxy-3-methoxybenzylidene)-1,3-diaminopropane). However, bond valence calculations (Pauling, 1947) indicate a bond valency of +2 for the Dy ion. This difference is attributed to the longer bond distances of Dy---O. One MeOH molecule is dissociative in the complex, forming H-bonding with the adjacent nitrate group (O···O distance 2.852 (7) Å, Table 1). A methanol molecule is absent in the case of a reported Cu---Eu complex, where a similar coordination environment for Cu(II) and Eu(III) ions could be found (Xing *et al.*, 2008). Furthermore, an acetone molecule is observed instead of the methanol molecule in the case of the reported structures with Sm(III) and Cu(II) ions in a similar coordination environment (Wang *et al.*, 2008). Weak π-π interactions between adjacent aromatic rings of the 2-oxy-3-methoxybenzylidene groups could also be observed (Fig. 2, Cg(5)···Cg(5)^i^distance = 4.368 (3) Å, Cg(5) is the centroid of ring C5-C16, symmetry code (i): 1 - *x*, 1 - *y*, 1 - *z*). Experimental {#experimental} ============ To a 1:1 MeOH/CH~2~Cl~2~ solution (20 ml) of H~2~L (0.0684 g) and Cu(OAc)~2~.2H~2~O (0.0440 g) was added a MeOH solution (10 ml) of Dy(NO~3~)~3~\].6H~2~O (0.0753 g) at the ambient temperature. The color of the solution immediately changed to green. After stirring for 5 hrs, the solution was filtered to remove the suspended particles. Green single crystals suitable for X-ray determination were obtained by slow diffusion of diethylether into the filtrate in one week. \[CuDy(C~19~H~20~N~2~O~4~)(NO~3~)~3~\].CH~3~OH Elemental Anal. Calc. for C~20~H~24~N~5~O~14~CuDy: C, 30.62; H, 3.08; N, 8.93 wt%, Found: C, 30.61; H, 3.10; N, 8.93 wt%. Refinement {#refinement} ========== H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C---H = 0.93 Å (aromatic C), C---H = 0.97 Å (methylene C), and with *U*~iso~(H) = 1.2Ueq(C) or C---H = 0.96 Å (methyl C) with *U*~iso~(H) = 1.5Ueq(C). The H atom bound to the O atom is found from the Fourier difference map, and refined with *U*~iso~(H) = 1.5Ueq(O). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing 50% probability displacement ellipsoids. ::: ![](e-67-0m367-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The packing diagram of the title compound along the b direction. The black dotted line shows the H-bonding between the methanol molecules and the complexes. The purple dotted line shows the π-π interaction of the adjacent aromatic rings of the 2-oxy-3-methoxybenzylidene groups \[Symmetry code: (i) 1 - x, 1 - y, 1 - z\]. ::: ![](e-67-0m367-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e247 .table-wrap} ----------------------------------------------- ---------------------------------------- \[CuDy(C~19~H~20~N~2~O~4~)(NO~3~)~3~\]·CH~4~O *Z* = 2 *M~r~* = 784.49 *F*(000) = 772 Triclinic, *P*1 *D*~x~ = 1.967 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.3572 (17) Å Cell parameters from 11901 reflections *b* = 12.130 (2) Å θ = 6.2--54.9° *c* = 13.891 (3) Å µ = 3.68 mm^−1^ α = 91.64 (3)° *T* = 293 K β = 106.85 (3)° Block, green γ = 99.52 (3)° 0.15 × 0.12 × 0.11 mm *V* = 1324.8 (4) Å^3^ ----------------------------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e394 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART1000 CCD diffractometer 6008 independent reflections Radiation source: fine-focus sealed tube 5600 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.032 Detector resolution: 0 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 3.1° ω scans *h* = −10→10 Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) *k* = −15→15 *T*~min~ = 0.595, *T*~max~ = 0.667 *l* = −18→18 13040 measured reflections --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e514 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.039 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.108 H-atom parameters constrained *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0635*P*)^2^ + 1.7058*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 6008 reflections (Δ/σ)~max~ = 0.002 373 parameters Δρ~max~ = 2.37 e Å^−3^ 0 restraints Δρ~min~ = −0.88 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e671 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e770 .table-wrap} ------ ------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Dy1 0.37849 (2) 0.787569 (14) 0.221621 (13) 0.03841 (9) Cu1 0.31877 (7) 0.49734 (4) 0.17449 (4) 0.03874 (13) O1 −0.0835 (6) 0.8890 (5) 0.1545 (6) 0.110 (2) O2 0.6579 (5) 0.7776 (3) 0.3469 (3) 0.0593 (9) O3 0.0638 (5) 0.7570 (3) 0.1705 (3) 0.0595 (9) O4 0.5635 (5) 0.9497 (3) 0.1845 (3) 0.0552 (8) O5 0.1903 (5) 0.9285 (3) 0.2077 (3) 0.0569 (8) O6 0.8516 (6) 0.6889 (5) 0.3236 (4) 0.0776 (13) O7 0.6210 (5) 0.6967 (3) 0.2017 (3) 0.0556 (8) O8 0.5279 (5) 0.9712 (3) 0.3301 (3) 0.0610 (9) O9 0.2663 (5) 0.8246 (3) 0.0324 (2) 0.0473 (7) O10 0.6882 (6) 1.1015 (3) 0.2812 (4) 0.0751 (12) O11 0.3043 (4) 0.7795 (2) 0.3860 (2) 0.0434 (7) O12 0.3359 (4) 0.6077 (2) 0.2818 (2) 0.0394 (6) O13 0.2861 (4) 0.6277 (2) 0.0987 (2) 0.0436 (7) N1 0.7158 (6) 0.7207 (4) 0.2913 (3) 0.0514 (9) N2 0.5956 (5) 1.0105 (3) 0.2662 (3) 0.0471 (9) N3 0.3609 (5) 0.3818 (3) 0.2707 (3) 0.0459 (8) N4 0.2908 (6) 0.4019 (3) 0.0522 (3) 0.0547 (10) N5 0.0505 (6) 0.8594 (4) 0.1763 (4) 0.0601 (11) C1 0.0878 (7) 0.6441 (5) −0.2067 (3) 0.0605 (14) H1A 0.0384 0.6485 −0.2754 0.073\* C2 0.4169 (9) 0.2780 (5) 0.2452 (5) 0.0690 (16) H2A 0.5396 0.2931 0.2605 0.083\* H2B 0.3880 0.2210 0.2880 0.083\* C3 0.3479 (13) 0.2916 (5) 0.0603 (5) 0.094 (3) H3A 0.2784 0.2431 0.0013 0.113\* H3B 0.4638 0.3036 0.0569 0.113\* C4 0.2237 (5) 0.6294 (3) −0.0002 (3) 0.0351 (8) C5 0.2281 (7) 0.5542 (5) 0.5486 (3) 0.0544 (12) H5A 0.1989 0.5424 0.6076 0.065\* C6 0.3444 (16) 0.2349 (7) 0.1431 (6) 0.125 (4) H6A 0.3942 0.1694 0.1365 0.150\* H6B 0.2252 0.2072 0.1351 0.150\* C7 0.1365 (6) 0.7421 (4) −0.1414 (3) 0.0492 (10) H7A 0.1231 0.8114 −0.1664 0.059\* C8 0.2574 (6) 0.4665 (4) 0.4969 (3) 0.0498 (11) H8A 0.2518 0.3962 0.5220 0.060\* C9 0.2411 (6) 0.6609 (4) 0.5148 (3) 0.0491 (10) H9A 0.2222 0.7204 0.5512 0.059\* C10 0.3379 (6) 0.3874 (4) 0.3574 (4) 0.0466 (10) H10A 0.3491 0.3243 0.3936 0.056\* C11 0.2961 (5) 0.4819 (4) 0.4057 (3) 0.0395 (8) C12 0.2829 (5) 0.6775 (4) 0.4259 (3) 0.0380 (8) C13 0.2253 (7) 0.4274 (4) −0.0364 (4) 0.0516 (11) H13A 0.2029 0.3709 −0.0877 0.062\* C14 0.2046 (5) 0.7339 (4) −0.0394 (3) 0.0389 (8) C15 0.1806 (5) 0.5350 (4) −0.0678 (3) 0.0415 (9) C16 0.3044 (5) 0.5882 (3) 0.3686 (3) 0.0356 (8) C17 0.1112 (7) 0.5446 (5) −0.1721 (3) 0.0543 (12) H17A 0.0815 0.4811 −0.2171 0.065\* C18 0.2464 (9) 0.9328 (4) −0.0057 (4) 0.0643 (15) H18A 0.1317 0.9291 −0.0477 0.097\* H18B 0.3234 0.9528 −0.0446 0.097\* H18C 0.2709 0.9882 0.0498 0.097\* C19 0.2824 (9) 0.8746 (4) 0.4419 (5) 0.0668 (16) H19A 0.1704 0.8615 0.4495 0.100\* H19B 0.2966 0.9404 0.4062 0.100\* H19C 0.3655 0.8854 0.5073 0.100\* O1M 0.2556 (10) 0.1421 (5) 0.4462 (5) 0.115 (2) H4M 0.3167 0.1636 0.5099 0.172\* C1M 0.0847 (11) 0.1206 (7) 0.4006 (7) 0.105 (3) H1M 0.0625 0.1120 0.3287 0.157\* H2M 0.0358 0.1818 0.4177 0.157\* H3M 0.0353 0.0528 0.4231 0.157\* ------ ------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1621 .table-wrap} ----- -------------- -------------- -------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Dy1 0.05015 (14) 0.03209 (12) 0.03392 (12) 0.00629 (8) 0.01485 (9) 0.00087 (8) Cu1 0.0546 (3) 0.0298 (2) 0.0348 (3) 0.0108 (2) 0.0165 (2) 0.00046 (19) O1 0.061 (3) 0.109 (4) 0.164 (6) 0.040 (3) 0.024 (3) 0.040 (4) O2 0.061 (2) 0.070 (2) 0.0459 (18) 0.0213 (18) 0.0094 (16) −0.0059 (17) O3 0.0519 (19) 0.054 (2) 0.070 (2) 0.0050 (15) 0.0172 (17) 0.0044 (18) O4 0.063 (2) 0.0533 (19) 0.0505 (19) 0.0018 (16) 0.0226 (16) 0.0083 (16) O5 0.064 (2) 0.0459 (18) 0.065 (2) 0.0180 (16) 0.0220 (18) 0.0011 (16) O6 0.059 (2) 0.110 (4) 0.076 (3) 0.038 (2) 0.026 (2) 0.024 (3) O7 0.062 (2) 0.061 (2) 0.0497 (19) 0.0150 (17) 0.0242 (16) −0.0034 (16) O8 0.069 (2) 0.0489 (19) 0.063 (2) −0.0089 (16) 0.0290 (19) −0.0124 (17) O9 0.072 (2) 0.0358 (15) 0.0326 (14) 0.0105 (14) 0.0122 (14) 0.0045 (12) O10 0.078 (3) 0.0404 (19) 0.099 (3) −0.0094 (17) 0.025 (2) 0.005 (2) O11 0.0644 (19) 0.0357 (14) 0.0360 (14) 0.0111 (13) 0.0237 (14) −0.0009 (12) O12 0.0618 (18) 0.0290 (13) 0.0321 (13) 0.0101 (12) 0.0203 (13) 0.0036 (11) O13 0.0654 (19) 0.0356 (14) 0.0286 (13) 0.0105 (13) 0.0114 (13) 0.0007 (11) N1 0.055 (2) 0.053 (2) 0.052 (2) 0.0130 (18) 0.0211 (19) 0.0150 (19) N2 0.048 (2) 0.0328 (17) 0.060 (2) 0.0078 (15) 0.0148 (18) 0.0045 (17) N3 0.058 (2) 0.0315 (17) 0.049 (2) 0.0156 (15) 0.0133 (17) 0.0027 (15) N4 0.089 (3) 0.0335 (18) 0.047 (2) 0.0142 (19) 0.029 (2) −0.0020 (16) N5 0.058 (3) 0.066 (3) 0.062 (3) 0.022 (2) 0.020 (2) 0.016 (2) C1 0.059 (3) 0.087 (4) 0.028 (2) 0.015 (3) 0.0008 (19) −0.002 (2) C2 0.098 (4) 0.048 (3) 0.071 (3) 0.041 (3) 0.024 (3) 0.010 (3) C3 0.181 (9) 0.050 (3) 0.073 (4) 0.048 (4) 0.057 (5) −0.001 (3) C4 0.0370 (18) 0.040 (2) 0.0286 (17) 0.0037 (15) 0.0121 (14) −0.0011 (15) C5 0.064 (3) 0.068 (3) 0.037 (2) 0.012 (2) 0.024 (2) 0.015 (2) C6 0.211 (11) 0.080 (5) 0.075 (5) 0.091 (6) −0.004 (6) −0.018 (4) C7 0.051 (2) 0.059 (3) 0.037 (2) 0.017 (2) 0.0081 (18) 0.010 (2) C8 0.056 (3) 0.055 (3) 0.040 (2) 0.010 (2) 0.015 (2) 0.017 (2) C9 0.054 (3) 0.065 (3) 0.034 (2) 0.017 (2) 0.0191 (19) 0.004 (2) C10 0.053 (2) 0.037 (2) 0.048 (2) 0.0119 (18) 0.010 (2) 0.0129 (19) C11 0.042 (2) 0.039 (2) 0.0346 (19) 0.0056 (16) 0.0091 (16) 0.0069 (16) C12 0.042 (2) 0.044 (2) 0.0307 (18) 0.0092 (16) 0.0134 (16) 0.0054 (16) C13 0.069 (3) 0.043 (2) 0.044 (2) 0.001 (2) 0.025 (2) −0.012 (2) C14 0.040 (2) 0.044 (2) 0.0331 (19) 0.0070 (16) 0.0121 (16) 0.0012 (16) C15 0.042 (2) 0.044 (2) 0.036 (2) 0.0021 (17) 0.0110 (16) −0.0042 (17) C16 0.0358 (18) 0.041 (2) 0.0292 (17) 0.0069 (15) 0.0087 (14) 0.0051 (15) C17 0.057 (3) 0.066 (3) 0.032 (2) 0.002 (2) 0.0067 (19) −0.011 (2) C18 0.101 (4) 0.036 (2) 0.053 (3) 0.015 (2) 0.016 (3) 0.016 (2) C19 0.110 (5) 0.044 (3) 0.063 (3) 0.017 (3) 0.052 (3) −0.005 (2) O1M 0.160 (6) 0.098 (4) 0.085 (4) 0.036 (4) 0.025 (4) 0.015 (3) C1M 0.084 (5) 0.085 (5) 0.123 (7) 0.021 (4) −0.007 (5) 0.013 (5) ----- -------------- -------------- -------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2318 .table-wrap} ----------------- ------------- ------------------- ------------ Dy1---O12 2.368 (3) C2---C6 1.417 (9) Dy1---O13 2.414 (3) C2---H2A 0.9700 Dy1---O4 2.458 (3) C2---H2B 0.9700 Dy1---O3 2.477 (4) C3---C6 1.361 (11) Dy1---O5 2.483 (3) C3---H3A 0.9700 Dy1---O2 2.499 (4) C3---H3B 0.9700 Dy1---O11 2.534 (3) C4---C15 1.389 (6) Dy1---O7 2.539 (4) C4---C14 1.410 (6) Dy1---O8 2.567 (4) C5---C8 1.360 (7) Dy1---O9 2.601 (3) C5---C9 1.387 (7) Dy1---N5 2.914 (5) C5---H5A 0.9300 Dy1---Cu1 3.4884 (9) C6---H6A 0.9700 Cu1---O12 1.931 (3) C6---H6B 0.9700 Cu1---O13 1.938 (3) C7---C14 1.378 (6) Cu1---N4 1.961 (4) C7---H7A 0.9300 Cu1---N3 1.968 (4) C8---C11 1.405 (6) O1---N5 1.190 (7) C8---H8A 0.9300 O2---N1 1.266 (6) C9---C12 1.389 (6) O3---N5 1.268 (6) C9---H9A 0.9300 O4---N2 1.270 (5) C10---C11 1.452 (6) O5---N5 1.272 (6) C10---H10A 0.9300 O6---N1 1.224 (6) C11---C16 1.401 (6) O7---N1 1.261 (6) C12---C16 1.392 (6) O8---N2 1.250 (5) C13---C15 1.460 (7) O9---C14 1.387 (5) C13---H13A 0.9300 O9---C18 1.446 (5) C15---C17 1.413 (6) O10---N2 1.213 (5) C17---H17A 0.9300 O11---C12 1.376 (5) C18---H18A 0.9600 O11---C19 1.438 (5) C18---H18B 0.9600 O12---C16 1.327 (5) C18---H18C 0.9600 O13---C4 1.322 (5) C19---H19A 0.9600 N3---C10 1.275 (6) C19---H19B 0.9600 N3---C2 1.481 (6) C19---H19C 0.9600 N4---C13 1.264 (7) O1M---C1M 1.361 (10) N4---C3 1.490 (7) O1M---H4M 0.8898 C1---C17 1.335 (8) C1M---H1M 0.9600 C1---C7 1.402 (8) C1M---H2M 0.9600 C1---H1A 0.9300 C1M---H3M 0.9600 O12---Dy1---O13 62.51 (10) O7---N1---O2 115.1 (4) O12---Dy1---O4 151.34 (13) O10---N2---O8 122.1 (4) O13---Dy1---O4 116.69 (12) O10---N2---O4 121.5 (4) O12---Dy1---O3 83.06 (12) O8---N2---O4 116.5 (4) O13---Dy1---O3 74.94 (13) C10---N3---C2 114.6 (4) O4---Dy1---O3 125.32 (13) C10---N3---Cu1 123.8 (3) O12---Dy1---O5 126.44 (12) C2---N3---Cu1 121.6 (3) O13---Dy1---O5 117.91 (12) C13---N4---C3 115.8 (4) O4---Dy1---O5 80.64 (13) C13---N4---Cu1 124.1 (3) O3---Dy1---O5 51.28 (13) C3---N4---Cu1 120.1 (4) O12---Dy1---O2 75.83 (13) O1---N5---O3 122.4 (6) O13---Dy1---O2 111.10 (12) O1---N5---O5 122.2 (6) O4---Dy1---O2 78.57 (13) O3---N5---O5 115.4 (4) O3---Dy1---O2 151.06 (14) O1---N5---Dy1 177.9 (5) O5---Dy1---O2 130.98 (13) O3---N5---Dy1 57.6 (2) O12---Dy1---O11 63.88 (10) O5---N5---Dy1 57.8 (2) O13---Dy1---O11 120.64 (10) C17---C1---C7 121.2 (4) O4---Dy1---O11 122.51 (11) C17---C1---H1A 119.4 O3---Dy1---O11 75.22 (13) C7---C1---H1A 119.4 O5---Dy1---O11 77.04 (12) C6---C2---N3 114.3 (5) O2---Dy1---O11 77.78 (12) C6---C2---H2A 108.7 O12---Dy1---O7 74.46 (12) N3---C2---H2A 108.7 O13---Dy1---O7 66.68 (12) C6---C2---H2B 108.7 O4---Dy1---O7 79.32 (13) N3---C2---H2B 108.7 O3---Dy1---O7 141.16 (13) H2A---C2---H2B 107.6 O5---Dy1---O7 158.96 (13) C6---C3---N4 118.6 (6) O2---Dy1---O7 50.09 (12) C6---C3---H3A 107.7 O11---Dy1---O7 119.63 (11) N4---C3---H3A 107.7 O12---Dy1---O8 125.97 (12) C6---C3---H3B 107.7 O13---Dy1---O8 166.55 (12) N4---C3---H3B 107.7 O4---Dy1---O8 50.43 (12) H3A---C3---H3B 107.1 O3---Dy1---O8 114.80 (13) O13---C4---C15 124.0 (4) O5---Dy1---O8 67.16 (13) O13---C4---C14 117.9 (4) O2---Dy1---O8 65.33 (14) C15---C4---C14 118.1 (4) O11---Dy1---O8 72.08 (11) C8---C5---C9 121.2 (4) O7---Dy1---O8 104.04 (13) C8---C5---H5A 119.4 O12---Dy1---O9 123.21 (10) C9---C5---H5A 119.4 O13---Dy1---O9 62.27 (10) C3---C6---C2 126.5 (9) O4---Dy1---O9 70.15 (12) C3---C6---H6A 105.7 O3---Dy1---O9 71.10 (13) C2---C6---H6A 105.7 O5---Dy1---O9 71.82 (12) C3---C6---H6B 105.7 O2---Dy1---O9 137.45 (12) C2---C6---H6B 105.7 O11---Dy1---O9 143.81 (11) H6A---C6---H6B 106.1 O7---Dy1---O9 95.24 (12) C14---C7---C1 118.8 (5) O8---Dy1---O9 110.78 (12) C14---C7---H7A 120.6 O12---Dy1---N5 105.58 (13) C1---C7---H7A 120.6 O13---Dy1---N5 96.16 (14) C5---C8---C11 120.2 (4) O4---Dy1---N5 102.99 (14) C5---C8---H8A 119.9 O3---Dy1---N5 25.60 (13) C11---C8---H8A 119.9 O5---Dy1---N5 25.70 (13) C5---C9---C12 119.0 (4) O2---Dy1---N5 148.84 (13) C5---C9---H9A 120.5 O11---Dy1---N5 75.38 (13) C12---C9---H9A 120.5 O7---Dy1---N5 161.04 (14) N3---C10---C11 126.9 (4) O8---Dy1---N5 91.33 (15) N3---C10---H10A 116.5 O9---Dy1---N5 68.55 (13) C11---C10---H10A 116.5 O12---Dy1---Cu1 31.77 (7) C16---C11---C8 119.4 (4) O13---Dy1---Cu1 32.27 (7) C16---C11---C10 122.6 (4) O4---Dy1---Cu1 135.29 (9) C8---C11---C10 117.8 (4) O3---Dy1---Cu1 84.41 (9) O11---C12---C9 124.6 (4) O5---Dy1---Cu1 135.66 (9) O11---C12---C16 114.4 (3) O2---Dy1---Cu1 87.77 (10) C9---C12---C16 121.0 (4) O11---Dy1---Cu1 95.00 (7) N4---C13---C15 127.7 (4) O7---Dy1---Cu1 59.94 (9) N4---C13---H13A 116.2 O8---Dy1---Cu1 151.81 (10) C15---C13---H13A 116.2 O9---Dy1---Cu1 94.54 (8) C7---C14---O9 124.6 (4) N5---Dy1---Cu1 109.96 (11) C7---C14---C4 121.3 (4) O12---Cu1---O13 79.77 (12) O9---C14---C4 114.1 (3) O12---Cu1---N4 171.66 (15) C4---C15---C17 119.9 (4) O13---Cu1---N4 91.99 (15) C4---C15---C13 121.8 (4) O12---Cu1---N3 91.17 (14) C17---C15---C13 117.7 (4) O13---Cu1---N3 170.84 (14) O12---C16---C12 118.6 (4) N4---Cu1---N3 97.10 (17) O12---C16---C11 122.4 (4) O12---Cu1---Dy1 40.19 (8) C12---C16---C11 119.0 (4) O13---Cu1---Dy1 41.67 (9) C1---C17---C15 120.6 (5) N4---Cu1---Dy1 132.12 (12) C1---C17---H17A 119.7 N3---Cu1---Dy1 129.23 (11) C15---C17---H17A 119.7 N1---O2---Dy1 98.3 (3) O9---C18---H18A 109.5 N5---O3---Dy1 96.8 (3) O9---C18---H18B 109.5 N2---O4---Dy1 98.9 (3) H18A---C18---H18B 109.5 N5---O5---Dy1 96.5 (3) O9---C18---H18C 109.5 N1---O7---Dy1 96.5 (3) H18A---C18---H18C 109.5 N2---O8---Dy1 94.2 (3) H18B---C18---H18C 109.5 C14---O9---C18 115.2 (4) O11---C19---H19A 109.5 C14---O9---Dy1 118.9 (2) O11---C19---H19B 109.5 C18---O9---Dy1 125.6 (3) H19A---C19---H19B 109.5 C12---O11---C19 116.7 (3) O11---C19---H19C 109.5 C12---O11---Dy1 118.6 (2) H19A---C19---H19C 109.5 C19---O11---Dy1 124.8 (3) H19B---C19---H19C 109.5 C16---O12---Cu1 126.8 (3) C1M---O1M---H4M 131.5 C16---O12---Dy1 124.4 (2) O1M---C1M---H1M 109.5 Cu1---O12---Dy1 108.04 (12) O1M---C1M---H2M 109.5 C4---O13---Cu1 127.3 (3) H1M---C1M---H2M 109.5 C4---O13---Dy1 126.6 (3) O1M---C1M---H3M 109.5 Cu1---O13---Dy1 106.06 (12) H1M---C1M---H3M 109.5 O6---N1---O7 122.9 (5) H2M---C1M---H3M 109.5 O6---N1---O2 121.9 (5) ----------------- ------------- ------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3555 .table-wrap} ------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1M---H4M···O2^i^ 0.89 2.03 2.852 (8) 152 ------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- --------- ------- ----------- ------------- O1*M*---H4*M*⋯O2^i^ 0.89 2.03 2.852 (8) 152 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.800551
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051998/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):m367", "authors": [ { "first": "Lili", "last": "Xu" }, { "first": "Hong-Feng", "last": "Li" }, { "first": "Peng", "last": "Chen" }, { "first": "Peng-Fei", "last": "Yan" } ] }
PMC3051999
Related literature {#sec1} ================== For related syntheses, see: Sambrook *et al.* (2006[@bb4]); Zang *et al.* (2010[@bb7]). For a related structure, see: Zang *et al.* (2010[@bb7]). For reference bond lengths, see: Allen *et al.* (1987[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~18~H~16~N~6~·2CH~4~O*M* *~r~* = 380.45Monoclinic,*a* = 4.5653 (4) Å*b* = 14.7886 (12) Å*c* = 14.5378 (11) Åβ = 93.805 (2)°*V* = 979.35 (14) Å^3^*Z* = 2Mo *K*α radiationμ = 0.09 mm^−1^*T* = 173 K0.35 × 0.30 × 0.10 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb5]) *T* ~min~ = 0.970, *T* ~max~ = 0.9915948 measured reflections2136 independent reflections1619 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.053 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.041*wR*(*F* ^2^) = 0.144*S* = 1.092136 reflections128 parametersH-atom parameters constrainedΔρ~max~ = 0.21 e Å^−3^Δρ~min~ = −0.24 e Å^−3^ {#d5e529} Data collection: *APEX2* (Bruker, 2006[@bb3]); cell refinement: *SAINT* (Bruker, 2006[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1998[@bb2]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003643/sj5094sup1.cif](http://dx.doi.org/10.1107/S1600536811003643/sj5094sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003643/sj5094Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003643/sj5094Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?sj5094&file=sj5094sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?sj5094sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?sj5094&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SJ5094](http://scripts.iucr.org/cgi-bin/sendsup?sj5094)). This research was supported by the National Nuclear R&D Program through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (2010--0018586) Comment ======= The title compound was prepared to use as a multi-dentate ligand in the formation of metallosupramolecules in line with similar previously reported compounds (Sambrook *et al.*, 2006; Zang *et al.*, 2010). In the title compound (Scheme 1, Fig. 1), two pyridine rings are coplanar because the title compound lies on a crystallographic inversion center. The dihedral angle between the pyridine and imidazole rings is 72.32 (5)°. All the bond lengths are within normal values (Allen *et al.*, 1987). In the crystal structure, as shown in Fig. 2, weak intermolecular O--H···N, C--H···N and C--H···O hydrogen bonds are observed (Table 1). These intermolecular interactions may be contribute to the stabilization of the packing. Experimental {#experimental} ============ A mixture of imidazole (0.120 g, 1.76 mmol) and potassium hydroxide (0.440 g, 7.84 mmol) in DMSO (10 ml) was stirred for 1 h. A DMSO solution (20 ml) of 5,5\'-bis(bromomethyl)-2,2\'-bipyridine (0.30 g, 0.88 mmol) was slowly added and the solution stirred for 6 h at room temperature. After water (100 ml) was added, the reaction mixture was extracted with chloroform (3×100 ml), washed with water and then dried over anhydrous MgSO~4~. The solvent was removed to give the title compound in 63% yield. X-ray quality single crystals were obtained by slow evaporation of a solution in MeOH. Refinement {#refinement} ========== All H-atoms were positioned geometrically and refined using a riding model with d(C---H) = 0.95 Å, *U*~iso~ = 1.2*U*~eq~(C) for aromatic, d(C---H) = 0.84 Å, *U*~iso~ = 1.5*U*~eq~(C) for hydroxyl, d(C---H) = 0.98 Å, *U*~iso~ = 1.5*U*~eq~(C) for methyl protons. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. (Symmetry code: i) -x + 2, -y + 1, -z + 1) ::: ![](e-67-0o554-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Crystal packing of the title compound with intermolecular O--H···N, C--H···N and C--H···O hydrogen bonds shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity (Symmetry codes: i) -x + 1, -y + 1, -z; ii) x, -y + 1/2, z - 1/2; iii) -x + 1, y - 1/2, -z + 1/2; iv) x, -y + 1/2, z + 1/2; v) -x + 2, -y + 1, -z + 1). ::: ![](e-67-0o554-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e198 .table-wrap} ------------------------- --------------------------------------- C~18~H~16~N~6~·2CH~4~O *F*(000) = 404 *M~r~* = 380.45 *D*~x~ = 1.290 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 2441 reflections *a* = 4.5653 (4) Å θ = 2.8--28.2° *b* = 14.7886 (12) Å µ = 0.09 mm^−1^ *c* = 14.5378 (11) Å *T* = 173 K β = 93.805 (2)° Plate, colorless *V* = 979.35 (14) Å^3^ 0.35 × 0.30 × 0.10 mm *Z* = 2 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e329 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII CCD diffractometer 2136 independent reflections Radiation source: fine-focus sealed tube 1619 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.053 φ and ω scans θ~max~ = 27.0°, θ~min~ = 2.0° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −4→5 *T*~min~ = 0.970, *T*~max~ = 0.991 *k* = −18→18 5948 measured reflections *l* = −16→18 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e446 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.041 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.144 H-atom parameters constrained *S* = 1.09 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0772*P*)^2^ + 0.1442*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2136 reflections (Δ/σ)~max~ \< 0.001 128 parameters Δρ~max~ = 0.21 e Å^−3^ 0 restraints Δρ~min~ = −0.24 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e603 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e702 .table-wrap} ------ ------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N1 0.8022 (3) 0.40136 (8) 0.45831 (9) 0.0287 (3) N2 0.4002 (3) 0.36956 (9) 0.17390 (9) 0.0281 (3) N3 0.5877 (4) 0.36182 (11) 0.03818 (10) 0.0441 (4) C1 0.5974 (4) 0.37871 (10) 0.39254 (11) 0.0301 (4) H1 0.5329 0.3176 0.3901 0.036\* C2 0.4722 (3) 0.43832 (10) 0.32748 (10) 0.0254 (4) C3 0.5628 (4) 0.52770 (11) 0.33297 (11) 0.0302 (4) H3 0.4831 0.5710 0.2900 0.036\* C4 0.7704 (4) 0.55308 (10) 0.40161 (11) 0.0290 (4) H4 0.8328 0.6143 0.4070 0.035\* C5 0.8868 (3) 0.48825 (9) 0.46263 (10) 0.0230 (3) C6 0.2535 (4) 0.40622 (11) 0.25242 (11) 0.0309 (4) H6B 0.1273 0.3589 0.2774 0.037\* H6A 0.1260 0.4573 0.2313 0.037\* C7 0.4342 (4) 0.41095 (12) 0.09281 (12) 0.0370 (4) H7 0.3563 0.4689 0.0770 0.044\* C8 0.6558 (4) 0.28448 (12) 0.08778 (13) 0.0408 (5) H8 0.7665 0.2353 0.0663 0.049\* C9 0.5437 (4) 0.28818 (11) 0.17102 (12) 0.0357 (4) H9 0.5604 0.2436 0.2181 0.043\* O1 0.2950 (3) 0.64181 (9) 0.14603 (8) 0.0371 (3) H1A 0.3447 0.6360 0.0917 0.056\* C10 −0.0113 (4) 0.65194 (15) 0.14519 (15) 0.0484 (5) H10B −0.0687 0.6604 0.2084 0.073\* H10A −0.1069 0.5977 0.1186 0.073\* H10C −0.0717 0.7048 0.1080 0.073\* ------ ------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1060 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N1 0.0345 (8) 0.0239 (7) 0.0274 (7) −0.0042 (5) 0.0002 (6) 0.0016 (5) N2 0.0318 (8) 0.0278 (7) 0.0244 (7) 0.0002 (5) 0.0000 (6) −0.0046 (5) N3 0.0533 (10) 0.0507 (9) 0.0289 (8) 0.0131 (8) 0.0063 (7) −0.0033 (7) C1 0.0367 (9) 0.0246 (8) 0.0290 (8) −0.0063 (6) 0.0016 (7) −0.0023 (6) C2 0.0250 (8) 0.0304 (8) 0.0215 (7) 0.0000 (6) 0.0065 (6) −0.0043 (6) C3 0.0337 (9) 0.0288 (8) 0.0279 (8) 0.0038 (7) −0.0008 (7) 0.0034 (6) C4 0.0351 (9) 0.0219 (8) 0.0296 (8) −0.0011 (6) −0.0009 (7) 0.0008 (6) C5 0.0256 (8) 0.0240 (7) 0.0201 (7) 0.0001 (6) 0.0065 (6) −0.0015 (5) C6 0.0267 (9) 0.0379 (9) 0.0283 (9) −0.0004 (6) 0.0034 (7) −0.0065 (7) C7 0.0471 (11) 0.0361 (9) 0.0280 (9) 0.0088 (8) 0.0030 (8) 0.0007 (7) C8 0.0483 (11) 0.0390 (10) 0.0345 (10) 0.0132 (8) −0.0015 (8) −0.0112 (8) C9 0.0456 (11) 0.0273 (8) 0.0337 (9) 0.0037 (7) −0.0014 (8) −0.0043 (7) O1 0.0342 (7) 0.0493 (7) 0.0277 (6) 0.0074 (5) 0.0024 (5) 0.0017 (5) C10 0.0350 (10) 0.0590 (13) 0.0515 (12) 0.0067 (9) 0.0053 (9) −0.0012 (9) ----- ------------- ------------- ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1350 .table-wrap} ---------------------- -------------- ------------------- -------------- N1---C1 1.335 (2) C4---H4 0.9500 N1---C5 1.3420 (19) C5---C5^i^ 1.490 (3) N2---C7 1.346 (2) C6---H6B 0.9900 N2---C9 1.372 (2) C6---H6A 0.9900 N2---C6 1.4653 (19) C7---H7 0.9500 N3---C7 1.313 (2) C8---C9 1.346 (3) N3---C8 1.377 (2) C8---H8 0.9500 C1---C2 1.388 (2) C9---H9 0.9500 C1---H1 0.9500 O1---C10 1.406 (2) C2---C3 1.386 (2) O1---H1A 0.8400 C2---C6 1.506 (2) C10---H10B 0.9800 C3---C4 1.382 (2) C10---H10A 0.9800 C3---H3 0.9500 C10---H10C 0.9800 C4---C5 1.388 (2) C1---N1---C5 117.36 (14) N2---C6---H6B 109.3 C7---N2---C9 106.80 (14) C2---C6---H6B 109.3 C7---N2---C6 126.80 (14) N2---C6---H6A 109.3 C9---N2---C6 126.30 (14) C2---C6---H6A 109.3 C7---N3---C8 104.71 (15) H6B---C6---H6A 108.0 N1---C1---C2 124.46 (14) N3---C7---N2 112.04 (16) N1---C1---H1 117.8 N3---C7---H7 124.0 C2---C1---H1 117.8 N2---C7---H7 124.0 C3---C2---C1 117.31 (15) C9---C8---N3 110.55 (15) C3---C2---C6 121.56 (15) C9---C8---H8 124.7 C1---C2---C6 121.11 (14) N3---C8---H8 124.7 C4---C3---C2 119.24 (15) C8---C9---N2 105.89 (15) C4---C3---H3 120.4 C8---C9---H9 127.1 C2---C3---H3 120.4 N2---C9---H9 127.1 C3---C4---C5 119.28 (14) C10---O1---H1A 109.5 C3---C4---H4 120.4 O1---C10---H10B 109.5 C5---C4---H4 120.4 O1---C10---H10A 109.5 N1---C5---C4 122.32 (14) H10B---C10---H10A 109.5 N1---C5---C5^i^ 116.18 (16) O1---C10---H10C 109.5 C4---C5---C5^i^ 121.50 (16) H10B---C10---H10C 109.5 N2---C6---C2 111.44 (13) H10A---C10---H10C 109.5 C5---N1---C1---C2 1.6 (2) C9---N2---C6---C2 73.5 (2) N1---C1---C2---C3 −1.5 (2) C3---C2---C6---N2 94.07 (17) N1---C1---C2---C6 176.79 (15) C1---C2---C6---N2 −84.11 (18) C1---C2---C3---C4 0.1 (2) C8---N3---C7---N2 −0.1 (2) C6---C2---C3---C4 −178.13 (14) C9---N2---C7---N3 0.3 (2) C2---C3---C4---C5 1.0 (2) C6---N2---C7---N3 177.02 (15) C1---N1---C5---C4 −0.3 (2) C7---N3---C8---C9 −0.1 (2) C1---N1---C5---C5^i^ 179.33 (15) N3---C8---C9---N2 0.3 (2) C3---C4---C5---N1 −0.9 (2) C7---N2---C9---C8 −0.3 (2) C3---C4---C5---C5^i^ 179.44 (16) C6---N2---C9---C8 −177.10 (16) C7---N2---C6---C2 −102.61 (19) ---------------------- -------------- ------------------- -------------- ::: Symmetry codes: (i) −*x*+2, −*y*+1, −*z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1833 .table-wrap} ------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1A···N3^ii^ 0.84 1.93 2.7662 (19) 171 C3---H3···O1 0.95 2.44 3.360 (2) 162 C8---H8···N1^iii^ 0.95 2.57 3.422 (2) 149 C9---H9···O1^iv^ 0.95 2.54 3.470 (2) 168 ------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (ii) −*x*+1, −*y*+1, −*z*; (iii) *x*, −*y*+1/2, *z*−1/2; (iv) −*x*+1, *y*−1/2, −*z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ------------- ------------- O1---H1*A*⋯N3^i^ 0.84 1.93 2.7662 (19) 171 C3---H3⋯O1 0.95 2.44 3.360 (2) 162 C8---H8⋯N1^ii^ 0.95 2.57 3.422 (2) 149 C9---H9⋯O1^iii^ 0.95 2.54 3.470 (2) 168 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:17.808693
2011-2-02
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051999/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 2; 67(Pt 3):o554", "authors": [ { "first": "Suk-Hee", "last": "Moon" }, { "first": "Tae Ho", "last": "Kim" }, { "first": "Ki-Min", "last": "Park" } ] }
PMC3052000
Related literature {#sec1} ================== For rigid polycarboxyl­ate ligands, see: Liu *et al.* (2010[@bb6]); Rao *et al.* (2004[@bb7]). For flexible carboxyl­ate complexes, see: Dai *et al.* (2009[@bb4]) Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Cd(C~10~H~8~O~6~)(H~2~O)~2~\]·H~2~O*M* *~r~* = 390.61Monoclinic,*a* = 7.624 (1) Å*b* = 7.156 (1) Å*c* = 23.190 (2) Åβ = 93.083 (1)°*V* = 1263.4 (3) Å^3^*Z* = 4Mo *K*α radiationμ = 1.77 mm^−1^*T* = 296 K0.25 × 0.20 × 0.14 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2001[@bb2]) *T* ~min~ = 0.671, *T* ~max~ = 0.7877467 measured reflections2893 independent reflections2676 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.017 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.020*wR*(*F* ^2^) = 0.049*S* = 1.052893 reflections181 parametersH-atom parameters constrainedΔρ~max~ = 0.52 e Å^−3^Δρ~min~ = −0.43 e Å^−3^ {#d5e556} Data collection: *APEX2* (Bruker, 2007[@bb3]); cell refinement: *SAINT* (Bruker, 2007[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb1]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb8]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb5]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004867/zs2094sup1.cif](http://dx.doi.org/10.1107/S1600536811004867/zs2094sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004867/zs2094Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004867/zs2094Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?zs2094&file=zs2094sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?zs2094sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?zs2094&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [ZS2094](http://scripts.iucr.org/cgi-bin/sendsup?zs2094)). This work was supported financially by the National Natural Science Foundation of China (grant No. 20971018), the Natural Science Foundation of Shandong Province (grant No. ZR2010BL010) and the Key Technologies R&D Program of Shandong Province (grant No. 2010GWZ20251). Comment ======= Rigid polycarboxylate ligands have been employed extensively for the construction of metal-organic polymers, e.g. 1,3-benzenedicarboxylate, 1,3,5-benzenetricarboxylate and 4,4\'-biphenyldicarboxylate (Liu *et al.*, 2010; Rao *et al.*, 2004). Compared to rigid ligands with a single conformation, flexible ligands may adopt variable conformations when coordinated to metal ions, making it more difficult to predict and control the final coordination networks. Therefore using flexible ligands in the formation of coordination polymers may generate novel complexes with interesting topologies and attractive properties (Dai *et al.*, 2009). The title compound {\[(C~10~H~8~O~6~)(H~2~O)~2~Cd\] . H~2~O}~n~ (I), was prepared from the reaction of the flexible carboxylate ligand, the 1,2-phenylenedioxydiacetate dianion (PDA) with Cd^II^ and the structure is reported here. In (I) (Fig. 1) the Cd^II^ cation is seven-coordinated, involving two carboxyl and two phenoxy O donors (O2, O3, O4, O5) from a PDA ligand \[Cd---O range 2.2424 (19) Å--2.5285 (16) Å\], and a bridging carboxylate O donor (O6) \[Cd---O^i^, 2.3596 (15) Å\] \[for symmetry code (i), see Table 1\], which lie in the pentagonal plane of a distorted pentagonal bipyramid. Two water molecules (O1W, O2W) occupy the axial sites (Cd---O, 2.296 (2), 2.316 (2) Å\]. The bond angles about Cd^II^ are in the range of 61.11 (5) to 165.45 (5) °. The mononuclear units of (I) are connected *via* the bridging O6^i^ atoms to give helical chains extending along the *b* axis of the unit cell (Fig. 2). The chains are further inter-connected by extensive hydrogen-bonding interactions (Table 1) involving also the water molecule of solvation (O3W), giving rise to the three-dimensional molecular architecture (Fig. 3). Experimental {#experimental} ============ A mixture of 1,2-phenylenedioxydiacetic acid (H~2~PDA) (0.023 g, 0.1 mmol) and Cd(NO~3~)~2~ . 4H~2~O (0.038 g, 0.1 mmol) in H~2~O (7.0 ml) was placed in a 16 ml Teflon-lined stainless steel vessel and heated to 160 °C for 72 h, giving colorless block crystals of (I), which were collected by filtration. The crystals obtained were washed with water and dried in air. Yield: 0.029 g (74% based on Cd). Refinement {#refinement} ========== All H atoms bonded to C atoms were added according to theoretical models, assigned isotropic displacement parameters and allowed to ride on their respective parent atoms \[C---H = 0.93--0.97%A and *U*~iso~(H) = 1.2*U*~eq~(C)\]. The H atoms of the water molecules were located from the Fourier map with the O---H distances being fixed at 0.85%A and allowed to ride on their parent oxygen atoms in the final cycles of refinement, with *U*~iso~(H) = 1.2*U*~eq~(O). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A view of the CdIIcoordination environment of (I) with the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. For symmetry code (i), see Table 1. ::: ![](e-67-0m342-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The one-dimensional helical chain structure of (I) viewed along the a axis. ::: ![](e-67-0m342-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### The packing diagram of (I) viewed along the b axis. ::: ![](e-67-0m342-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e202 .table-wrap} --------------------------------------- --------------------------------------- \[Cd(C~10~H~8~O~6~)(H~2~O)~2~\]·H~2~O *F*(000) = 776 *M~r~* = 390.61 *D*~x~ = 2.054 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 4670 reflections *a* = 7.624 (1) Å θ = 2.8--27.5° *b* = 7.156 (1) Å µ = 1.77 mm^−1^ *c* = 23.190 (2) Å *T* = 296 K β = 93.083 (1)° Block, colorless *V* = 1263.4 (3) Å^3^ 0.25 × 0.20 × 0.14 mm *Z* = 4 --------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e340 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEXII CCD area-detector diffractometer 2893 independent reflections Radiation source: fine-focus sealed tube 2676 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.017 φ and ω scans θ~max~ = 27.6°, θ~min~ = 1.8° Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *h* = −9→9 *T*~min~ = 0.671, *T*~max~ = 0.787 *k* = −9→5 7467 measured reflections *l* = −29→30 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e457 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.020 H-atom parameters constrained *wR*(*F*^2^) = 0.049 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0217*P*)^2^ + 0.8227*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.05 (Δ/σ)~max~ = 0.002 2893 reflections Δρ~max~ = 0.52 e Å^−3^ 181 parameters Δρ~min~ = −0.43 e Å^−3^ 0 restraints ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e613 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e712 .table-wrap} ------ --------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.9769 (3) 1.4246 (3) 0.10705 (9) 0.0281 (4) C2 0.9052 (3) 1.3164 (3) 0.05451 (8) 0.0262 (4) H2A 0.8158 1.3898 0.0336 0.031\* H2B 0.9990 1.2920 0.0289 0.031\* C3 0.7673 (2) 1.0222 (3) 0.03073 (8) 0.0220 (4) C4 0.7833 (3) 1.0442 (3) −0.02803 (8) 0.0258 (4) H4 0.8419 1.1472 −0.0421 0.031\* C5 0.7109 (3) 0.9109 (3) −0.06585 (9) 0.0297 (4) H5 0.7212 0.9252 −0.1054 0.036\* C6 0.6246 (3) 0.7584 (3) −0.04544 (9) 0.0302 (4) H6 0.5769 0.6701 −0.0712 0.036\* C7 0.6081 (3) 0.7354 (3) 0.01373 (9) 0.0281 (4) H7 0.5491 0.6324 0.0276 0.034\* C8 0.6802 (3) 0.8668 (3) 0.05152 (8) 0.0224 (4) C9 0.5795 (3) 0.7102 (3) 0.13513 (8) 0.0267 (4) H9A 0.6249 0.5924 0.1215 0.032\* H9B 0.4555 0.7172 0.1236 0.032\* C10 0.6045 (2) 0.7211 (3) 0.20018 (8) 0.0218 (4) Cd1 0.834230 (19) 1.08605 (2) 0.178353 (6) 0.02552 (6) O1 1.0404 (3) 1.5791 (2) 0.09652 (8) 0.0474 (5) O2 0.9688 (2) 1.3536 (2) 0.15657 (6) 0.0364 (4) O3 0.8318 (2) 1.1441 (2) 0.07256 (6) 0.0286 (3) O4 0.6707 (2) 0.8613 (2) 0.11069 (6) 0.0296 (3) O5 0.6948 (2) 0.8467 (2) 0.22331 (6) 0.0315 (3) O6 0.53106 (19) 0.59313 (18) 0.22765 (6) 0.0274 (3) O1W 1.0606 (2) 0.8817 (2) 0.16508 (7) 0.0370 (4) H11W 1.1442 0.8811 0.1902 0.044\* H12W 1.0565 0.7756 0.1495 0.044\* O2W 0.5593 (2) 1.2223 (2) 0.18164 (7) 0.0349 (3) H21W 0.5675 1.3249 0.1990 0.042\* H22W 0.5013 1.1503 0.2021 0.042\* O3W 0.1714 (2) 0.5083 (3) 0.25089 (8) 0.0464 (4) H31W 0.2619 0.5523 0.2366 0.056\* H32W 0.1072 0.4657 0.2230 0.056\* ------ --------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1171 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0339 (11) 0.0221 (10) 0.0289 (10) −0.0027 (8) 0.0077 (8) −0.0028 (8) C2 0.0357 (11) 0.0191 (9) 0.0239 (9) −0.0037 (8) 0.0043 (8) 0.0035 (7) C3 0.0235 (9) 0.0226 (9) 0.0198 (9) −0.0007 (7) 0.0004 (7) −0.0008 (7) C4 0.0292 (10) 0.0281 (10) 0.0205 (9) −0.0020 (8) 0.0037 (7) 0.0030 (8) C5 0.0344 (11) 0.0387 (12) 0.0164 (9) 0.0008 (9) 0.0029 (8) −0.0009 (8) C6 0.0362 (11) 0.0331 (11) 0.0211 (9) −0.0040 (9) −0.0010 (8) −0.0056 (8) C7 0.0321 (10) 0.0279 (10) 0.0243 (9) −0.0067 (8) 0.0005 (8) 0.0002 (8) C8 0.0264 (10) 0.0249 (9) 0.0160 (8) −0.0004 (8) 0.0007 (7) 0.0019 (7) C9 0.0346 (11) 0.0245 (10) 0.0211 (9) −0.0092 (8) 0.0014 (8) 0.0043 (7) C10 0.0226 (9) 0.0209 (9) 0.0220 (9) 0.0029 (7) 0.0023 (7) 0.0044 (7) Cd1 0.03076 (9) 0.02554 (9) 0.02014 (8) −0.00652 (6) 0.00025 (6) 0.00165 (5) O1 0.0815 (14) 0.0236 (8) 0.0382 (10) −0.0203 (8) 0.0143 (9) −0.0043 (7) O2 0.0522 (10) 0.0328 (8) 0.0241 (7) −0.0176 (7) 0.0026 (7) −0.0013 (6) O3 0.0426 (8) 0.0255 (7) 0.0178 (7) −0.0125 (6) 0.0021 (6) 0.0009 (5) O4 0.0446 (9) 0.0285 (7) 0.0157 (6) −0.0153 (6) 0.0021 (6) 0.0024 (5) O5 0.0389 (8) 0.0353 (8) 0.0204 (7) −0.0119 (7) 0.0006 (6) 0.0027 (6) O6 0.0338 (8) 0.0252 (7) 0.0232 (7) −0.0036 (6) 0.0030 (6) 0.0072 (5) O1W 0.0427 (9) 0.0333 (8) 0.0345 (8) 0.0032 (7) −0.0016 (7) −0.0098 (7) O2W 0.0424 (9) 0.0286 (8) 0.0336 (8) −0.0016 (7) 0.0005 (7) −0.0062 (6) O3W 0.0347 (9) 0.0617 (12) 0.0428 (10) −0.0130 (8) 0.0006 (7) −0.0060 (9) ----- ------------- ------------- ------------- -------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1573 .table-wrap} ----------------------- -------------- ------------------------- -------------- C1---O1 1.237 (3) C9---C10 1.512 (3) C1---O2 1.260 (3) C9---H9A 0.9700 C1---C2 1.520 (3) C9---H9B 0.9700 C2---O3 1.427 (2) C10---O5 1.237 (2) C2---H2A 0.9700 C10---O6 1.263 (2) C2---H2B 0.9700 Cd1---O2 2.2424 (19) C3---C4 1.383 (3) Cd1---O1W 2.2957 (19) C3---O3 1.375 (2) Cd1---O5 2.2956 (17) C3---C8 1.394 (3) Cd1---O2W 2.316 (2) C4---C5 1.390 (3) Cd1---O6^i^ 2.3596 (15) C4---H4 0.9300 Cd1---O3 2.4874 (14) C5---C6 1.372 (3) Cd1---O4 2.5285 (16) C5---H5 0.9300 O6---Cd1^ii^ 2.3596 (15) C6---C7 1.394 (3) O1W---H11W 0.8397 C6---H6 0.9300 O1W---H12W 0.8402 C7---C8 1.380 (3) O2W---H21W 0.8383 C7---H7 0.9300 O2W---H22W 0.8414 C8---O4 1.379 (2) O3W---H31W 0.8417 C9---O4 1.420 (2) O3W---H32W 0.8470 O1---C1---O2 125.4 (2) O2---Cd1---O5 165.45 (5) O1---C1---C2 115.13 (19) O1W---Cd1---O5 87.45 (7) O2---C1---C2 119.45 (17) O2---Cd1---O2W 94.24 (7) O3---C2---C1 109.57 (16) O1W---Cd1---O2W 163.87 (6) O3---C2---H2A 109.8 O5---Cd1---O2W 81.78 (7) C1---C2---H2A 109.8 O2---Cd1---O6^i^ 90.47 (5) O3---C2---H2B 109.8 O1W---Cd1---O6^i^ 81.05 (6) C1---C2---H2B 109.8 O5---Cd1---O6^i^ 77.63 (5) H2A---C2---H2B 108.2 O2W---Cd1---O6^i^ 108.07 (5) C4---C3---O3 125.13 (18) O2---Cd1---O3 67.33 (5) C4---C3---C8 120.01 (17) O1W---Cd1---O3 86.56 (6) O3---C3---C8 114.86 (16) O5---Cd1---O3 126.40 (5) C3---C4---C5 119.38 (19) O2W---Cd1---O3 90.19 (5) C3---C4---H4 120.3 O6^i^---Cd1---O3 152.55 (5) C5---C4---H4 120.3 O2---Cd1---O4 128.28 (5) C6---C5---C4 120.65 (19) O1W---Cd1---O4 82.00 (7) C6---C5---H5 119.7 O5---Cd1---O4 65.31 (5) C4---C5---H5 119.7 O2W---Cd1---O4 82.60 (6) C5---C6---C7 120.26 (19) O6^i^---Cd1---O4 139.69 (5) C5---C6---H6 119.9 O3---Cd1---O4 61.11 (5) C7---C6---H6 119.9 C1---O2---Cd1 126.53 (13) C8---C7---C6 119.37 (19) C3---O3---C2 118.18 (15) C8---C7---H7 120.3 C3---O3---Cd1 124.97 (11) C6---C7---H7 120.3 C2---O3---Cd1 116.84 (11) O4---C8---C7 124.89 (17) C8---O4---C9 118.20 (15) O4---C8---C3 114.77 (16) C8---O4---Cd1 123.27 (11) C7---C8---C3 120.33 (17) C9---O4---Cd1 118.19 (11) O4---C9---C10 108.73 (15) C10---O5---Cd1 127.30 (13) O4---C9---H9A 109.9 C10---O6---Cd1^ii^ 107.39 (12) C10---C9---H9A 109.9 Cd1---O1W---H11W 117.3 O4---C9---H9B 109.9 Cd1---O1W---H12W 128.5 C10---C9---H9B 109.9 H11W---O1W---H12W 107.6 H9A---C9---H9B 108.3 Cd1---O2W---H21W 109.9 O5---C10---O6 124.02 (18) Cd1---O2W---H22W 105.4 O5---C10---C9 120.46 (16) H21W---O2W---H22W 107.1 O6---C10---C9 115.50 (17) H31W---O3W---H32W 106.7 O2---Cd1---O1W 99.05 (8) O1---C1---C2---O3 −178.37 (19) O2---Cd1---O3---C2 −3.57 (13) O2---C1---C2---O3 1.9 (3) O1W---Cd1---O3---C2 −104.87 (14) O3---C3---C4---C5 −179.58 (19) O5---Cd1---O3---C2 170.85 (12) C8---C3---C4---C5 0.4 (3) O2W---Cd1---O3---C2 90.94 (14) C3---C4---C5---C6 −0.1 (3) O6^i^---Cd1---O3---C2 −41.85 (19) C4---C5---C6---C7 0.1 (3) O4---Cd1---O3---C2 172.37 (15) C5---C6---C7---C8 −0.3 (3) C7---C8---O4---C9 −0.3 (3) C6---C7---C8---O4 179.02 (19) C3---C8---O4---C9 178.21 (17) C6---C7---C8---C3 0.6 (3) C7---C8---O4---Cd1 172.86 (15) C4---C3---C8---O4 −179.20 (18) C3---C8---O4---Cd1 −8.6 (2) O3---C3---C8---O4 0.8 (2) C10---C9---O4---C8 173.41 (16) C4---C3---C8---C7 −0.6 (3) C10---C9---O4---Cd1 −0.1 (2) O3---C3---C8---C7 179.33 (18) O2---Cd1---O4---C8 13.52 (17) O4---C9---C10---O5 −0.9 (3) O1W---Cd1---O4---C8 −81.73 (15) O4---C9---C10---O6 −179.40 (16) O5---Cd1---O4---C8 −172.60 (16) O1---C1---O2---Cd1 174.23 (18) O2W---Cd1---O4---C8 103.08 (15) C2---C1---O2---Cd1 −6.0 (3) O6^i^---Cd1---O4---C8 −147.63 (13) O1W---Cd1---O2---C1 87.61 (19) O3---Cd1---O4---C8 8.75 (14) O5---Cd1---O2---C1 −156.6 (2) O2---Cd1---O4---C9 −173.33 (13) O2W---Cd1---O2---C1 −83.22 (19) O1W---Cd1---O4---C9 91.42 (15) O6^i^---Cd1---O2---C1 168.62 (19) O5---Cd1---O4---C9 0.55 (13) O3---Cd1---O2---C1 5.22 (17) O2W---Cd1---O4---C9 −83.77 (14) O4---Cd1---O2---C1 0.7 (2) O6^i^---Cd1---O4---C9 25.53 (18) C4---C3---O3---C2 6.8 (3) O3---Cd1---O4---C9 −178.10 (16) C8---C3---O3---C2 −173.16 (17) O6---C10---O5---Cd1 −179.96 (13) C4---C3---O3---Cd1 −172.35 (15) C9---C10---O5---Cd1 1.6 (3) C8---C3---O3---Cd1 7.7 (2) O2---Cd1---O5---C10 159.4 (2) C1---C2---O3---C3 −176.97 (17) O1W---Cd1---O5---C10 −83.56 (17) C1---C2---O3---Cd1 2.2 (2) O2W---Cd1---O5---C10 84.40 (17) O2---Cd1---O3---C3 175.58 (16) O6^i^---Cd1---O5---C10 −164.95 (18) O1W---Cd1---O3---C3 74.28 (16) O3---Cd1---O5---C10 0.3 (2) O5---Cd1---O3---C3 −10.00 (17) O4---Cd1---O5---C10 −1.19 (16) O2W---Cd1---O3---C3 −89.91 (15) O5---C10---O6---Cd1^ii^ −17.0 (2) O6^i^---Cd1---O3---C3 137.30 (14) C9---C10---O6---Cd1^ii^ 161.49 (13) O4---Cd1---O3---C3 −8.48 (14) ----------------------- -------------- ------------------------- -------------- ::: Symmetry codes: (i) −*x*+3/2, *y*+1/2, −*z*+1/2; (ii) −*x*+3/2, *y*−1/2, −*z*+1/2. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2555 .table-wrap} ---------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1W---H11W···O3W^i^ 0.84 2.11 2.892 (3) 154 O1W---H12W···O1^iii^ 0.84 1.87 2.686 (2) 164 O2W---H21W···O6^iv^ 0.84 2.06 2.873 (3) 165 O2W---H22W···O3W^v^ 0.84 2.03 2.860 (3) 170 O3W---H31W···O6 0.84 2.09 2.887 (3) 157 O3W---H32W···O2^vi^ 0.85 1.99 2.835 (2) 176 ---------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+3/2, *y*+1/2, −*z*+1/2; (iii) *x*, *y*−1, *z*; (iv) *x*, *y*+1, *z*; (v) −*x*+1/2, *y*+1/2, −*z*+1/2; (vi) *x*−1, *y*−1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------------- --------- ------- ----------- ------------- O1*W*---H11*W*⋯O3*W*^i^ 0.84 2.11 2.892 (3) 154 O1*W*---H12*W*⋯O1^ii^ 0.84 1.87 2.686 (2) 164 O2*W*---H21*W*⋯O6^iii^ 0.84 2.06 2.873 (3) 165 O2*W*---H22*W*⋯O3*W*^iv^ 0.84 2.03 2.860 (3) 170 O3*W*---H31*W*⋯O6 0.84 2.09 2.887 (3) 157 O3*W*---H32*W*⋯O2^v^ 0.85 1.99 2.835 (2) 176 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . :::
PubMed Central
2024-06-05T04:04:17.812818
2011-2-16
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052000/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 16; 67(Pt 3):m342", "authors": [ { "first": "Huan-Fu", "last": "Hou" }, { "first": "Xiu-Ling", "last": "Zhang" } ] }
PMC3052001
Related literature {#sec1} ================== For general background to and the biological activity of COX-2 inhibitors, see: Orjales *et al.* (2008[@bb8]); Zarghi *et al.* (2008[@bb14]); Shah *et al.* (2010[@bb11]); Arico *et al.* (2002[@bb2]); Davies *et al.* (2002[@bb5]); Sawaoka *et al.* (1998[@bb10]); Liu *et al.* (2000[@bb6]); Pasinetti (2001[@bb9]); Norman *et al.* (1995[@bb7]). For a related structure, see: Charlier *et al.* (2004[@bb4]). For bond-length data, see: Allen *et al.* (1987[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~9~H~9~NO~2~S*M* *~r~* = 195.23Triclinic,*a* = 5.5599 (2) Å*b* = 8.0942 (3) Å*c* = 10.9006 (4) Åα = 81.162 (2)°β = 85.347 (2)°γ = 74.458 (2)°*V* = 466.60 (3) Å^3^*Z* = 2Mo *K*α radiationμ = 0.31 mm^−1^*T* = 296 K0.51 × 0.28 × 0.14 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb3]) *T* ~min~ = 0.810, *T* ~max~ = 0.9575970 measured reflections1826 independent reflections1673 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.023 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.038*wR*(*F* ^2^) = 0.110*S* = 1.091826 reflections119 parametersH-atom parameters constrainedΔρ~max~ = 0.29 e Å^−3^Δρ~min~ = −0.42 e Å^−3^ {#d5e481} Data collection: *APEX2* (Bruker, 2009[@bb3]); cell refinement: *SAINT* (Bruker, 2009[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb12]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb13]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003837/is2671sup1.cif](http://dx.doi.org/10.1107/S1600536811003837/is2671sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003837/is2671Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003837/is2671Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?is2671&file=is2671sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?is2671sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?is2671&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [IS2671](http://scripts.iucr.org/cgi-bin/sendsup?is2671)). HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Comment ======= Compounds bearing the 4-methylsulfonylphenyl moiety are found to possess diverse biological properties. They are found to be highly potent and specific COX-2 inhibitors (Orjales *et al.*, 2008; Zarghi *et al.*, 2008; Shah *et al.*, 2010). Recent studies have shown that selective COX-2 inhibitors can induce apoptosis in colon, stomach, prostate, and breast cancer cell lines (Arico *et al.*, 2002; Davies *et al.*, 2002; Sawaoka *et al.*, 1998; Liu *et al.*, 2000). Selective COX-2 inhibitors offer potential treatment for the prophylactic prevention of inflammatory neurodegerative disorders such as Alzheimer\'s disease (Pasinetti, 2001). They are also found to be anti-inflammatory agents (Norman *et al.*, 1995). The crystal structure of a methylsulfonylphenyl derivative has been reported (Charlier *et al.*, 2004). The molecular structure is shown in Fig. 1. Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The benzene ring (C1--C6) and the acetonitrile group (C7/C8/N1) are approximately coplanar \[torsion angles C1---C6---C7---C8 = 1.1 (3) and C5---C6---C7---C8 = -178.67 (16) °\]. In the crystal packing (Fig. 2), the molecules are linked *via* intermolecular C5--H5A···O1 and C9--H9B···O2 (Table 1) hydrogen bonds into infinite two-dimensional planes parallel to (001). Experimental {#experimental} ============ 4-Methylthiophenylacetonitrile (0.1 mol) was taken in 3 mL of acetic anhydride and cooled to 5°C. To the reaction mixture sodium tungstate (0.02 mol) was added followed by 30% hydrogen peroxide (0.2 mol) in 1.2 mL of acetic acid and water mixture (in 2:1 ratio). The temperature of the reaction mixture was slowly brought to room temperature. The completion of reaction was monitored by TLC. The solid precipitate was filtered and washed with water until the pH became neutral. The product was dried at 65 °C for 10-12 h. The product was then recrystallized in methanol (*m. p.*: 120--124 °C). Refinement {#refinement} ========== All H atoms were positioned geometrically and refined using a riding model with C---H = 0.93--0.97 Å and *U*~iso~(H) = 1.2 or 1.5 *U*~eq~(C). The highest residual electron density peak is located at 0.88 Å from C3 and the deepest hole is located at 0.74 Å from S1. A rotating-group model was applied for the methyl group. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. ::: ![](e-67-0o574-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. ::: ![](e-67-0o574-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e147 .table-wrap} ----------------------- --------------------------------------- C~9~H~9~NO~2~S *Z* = 2 *M~r~* = 195.23 *F*(000) = 204 Triclinic, *P*1 *D*~x~ = 1.390 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 5.5599 (2) Å Cell parameters from 4240 reflections *b* = 8.0942 (3) Å θ = 2.6--33.0° *c* = 10.9006 (4) Å µ = 0.31 mm^−1^ α = 81.162 (2)° *T* = 296 K β = 85.347 (2)° Block, colourless γ = 74.458 (2)° 0.51 × 0.28 × 0.14 mm *V* = 466.60 (3) Å^3^ ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e281 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII CCD area-detector diffractometer 1826 independent reflections Radiation source: fine-focus sealed tube 1673 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.023 φ and ω scans θ~max~ = 26.0°, θ~min~ = 1.9° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −6→6 *T*~min~ = 0.810, *T*~max~ = 0.957 *k* = −9→9 5970 measured reflections *l* = −13→13 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e398 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.038 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.110 H-atom parameters constrained *S* = 1.09 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.054*P*)^2^ + 0.1771*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1826 reflections (Δ/σ)~max~ = 0.001 119 parameters Δρ~max~ = 0.29 e Å^−3^ 0 restraints Δρ~min~ = −0.42 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e555 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e600 .table-wrap} ----- ------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 0.64766 (8) 0.30347 (6) 0.36428 (4) 0.04502 (19) O1 0.6714 (4) 0.45775 (18) 0.28743 (16) 0.0728 (5) O2 0.4011 (3) 0.2889 (2) 0.40261 (19) 0.0773 (5) N1 1.5750 (4) −0.2897 (2) −0.02043 (19) 0.0638 (5) C1 1.1353 (3) −0.0135 (2) 0.15700 (17) 0.0427 (4) H1A 1.2799 −0.0114 0.1081 0.051\* C2 1.0162 (3) 0.1282 (2) 0.21644 (17) 0.0429 (4) H2A 1.0801 0.2246 0.2080 0.051\* C3 0.8008 (3) 0.1237 (2) 0.28841 (15) 0.0365 (4) C4 0.7055 (3) −0.0194 (2) 0.30170 (17) 0.0439 (4) H4A 0.5607 −0.0212 0.3505 0.053\* C5 0.8260 (3) −0.1598 (2) 0.24231 (18) 0.0445 (4) H5A 0.7620 −0.2561 0.2512 0.053\* C6 1.0422 (3) −0.1580 (2) 0.16938 (15) 0.0370 (4) C7 1.1679 (4) −0.3160 (2) 0.10645 (18) 0.0464 (4) H7A 1.2073 −0.4167 0.1694 0.056\* H7B 1.0511 −0.3343 0.0517 0.056\* C8 1.3966 (4) −0.3021 (2) 0.03441 (18) 0.0468 (4) C9 0.8180 (4) 0.2777 (3) 0.4977 (2) 0.0586 (5) H9A 0.7482 0.3732 0.5433 0.088\* H9B 0.9891 0.2744 0.4738 0.088\* H9C 0.8100 0.1716 0.5490 0.088\* ----- ------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e928 .table-wrap} ---- ------------- ------------- ------------- --------------- --------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0405 (3) 0.0414 (3) 0.0506 (3) −0.00199 (19) −0.00442 (19) −0.0129 (2) O1 0.1054 (14) 0.0367 (8) 0.0691 (10) −0.0059 (8) −0.0101 (9) −0.0042 (7) O2 0.0381 (8) 0.0876 (12) 0.1116 (14) −0.0088 (7) 0.0091 (8) −0.0496 (11) N1 0.0653 (12) 0.0591 (11) 0.0703 (12) −0.0208 (9) 0.0182 (10) −0.0217 (9) C1 0.0428 (9) 0.0427 (10) 0.0458 (10) −0.0169 (7) 0.0069 (7) −0.0099 (7) C2 0.0466 (10) 0.0382 (9) 0.0479 (10) −0.0185 (7) 0.0028 (8) −0.0079 (7) C3 0.0367 (8) 0.0361 (8) 0.0354 (8) −0.0072 (7) −0.0024 (6) −0.0042 (6) C4 0.0390 (9) 0.0468 (10) 0.0474 (10) −0.0153 (8) 0.0042 (7) −0.0070 (8) C5 0.0471 (10) 0.0393 (9) 0.0519 (10) −0.0200 (8) −0.0002 (8) −0.0062 (8) C6 0.0395 (9) 0.0366 (8) 0.0351 (8) −0.0094 (7) −0.0051 (7) −0.0050 (7) C7 0.0500 (10) 0.0394 (9) 0.0516 (11) −0.0119 (8) −0.0004 (8) −0.0123 (8) C8 0.0567 (12) 0.0381 (9) 0.0463 (10) −0.0094 (8) −0.0016 (9) −0.0138 (8) C9 0.0550 (12) 0.0689 (14) 0.0505 (11) −0.0037 (10) −0.0073 (9) −0.0231 (10) ---- ------------- ------------- ------------- --------------- --------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1237 .table-wrap} ------------------- -------------- ------------------- -------------- S1---O1 1.4239 (16) C4---C5 1.381 (3) S1---O2 1.4306 (16) C4---H4A 0.9300 S1---C9 1.755 (2) C5---C6 1.388 (2) S1---C3 1.7657 (17) C5---H5A 0.9300 N1---C8 1.136 (3) C6---C7 1.519 (2) C1---C6 1.385 (2) C7---C8 1.461 (3) C1---C2 1.387 (2) C7---H7A 0.9700 C1---H1A 0.9300 C7---H7B 0.9700 C2---C3 1.383 (2) C9---H9A 0.9600 C2---H2A 0.9300 C9---H9B 0.9600 C3---C4 1.382 (3) C9---H9C 0.9600 O1---S1---O2 117.73 (12) C4---C5---H5A 119.8 O1---S1---C9 108.35 (11) C6---C5---H5A 119.8 O2---S1---C9 108.32 (12) C1---C6---C5 119.12 (16) O1---S1---C3 108.95 (9) C1---C6---C7 122.56 (16) O2---S1---C3 108.26 (9) C5---C6---C7 118.32 (15) C9---S1---C3 104.42 (9) C8---C7---C6 113.81 (15) C6---C1---C2 120.95 (16) C8---C7---H7A 108.8 C6---C1---H1A 119.5 C6---C7---H7A 108.8 C2---C1---H1A 119.5 C8---C7---H7B 108.8 C3---C2---C1 118.95 (16) C6---C7---H7B 108.8 C3---C2---H2A 120.5 H7A---C7---H7B 107.7 C1---C2---H2A 120.5 N1---C8---C7 179.0 (2) C4---C3---C2 120.80 (16) S1---C9---H9A 109.5 C4---C3---S1 119.91 (13) S1---C9---H9B 109.5 C2---C3---S1 119.28 (13) H9A---C9---H9B 109.5 C5---C4---C3 119.72 (16) S1---C9---H9C 109.5 C5---C4---H4A 120.1 H9A---C9---H9C 109.5 C3---C4---H4A 120.1 H9B---C9---H9C 109.5 C4---C5---C6 120.45 (16) C6---C1---C2---C3 −0.3 (3) C2---C3---C4---C5 −0.1 (3) C1---C2---C3---C4 0.3 (3) S1---C3---C4---C5 −179.93 (13) C1---C2---C3---S1 −179.94 (13) C3---C4---C5---C6 0.0 (3) O1---S1---C3---C4 −145.12 (16) C2---C1---C6---C5 0.1 (3) O2---S1---C3---C4 −15.97 (18) C2---C1---C6---C7 −179.65 (16) C9---S1---C3---C4 99.29 (17) C4---C5---C6---C1 0.0 (3) O1---S1---C3---C2 35.06 (17) C4---C5---C6---C7 179.80 (16) O2---S1---C3---C2 164.22 (15) C1---C6---C7---C8 1.1 (3) C9---S1---C3---C2 −80.53 (17) C5---C6---C7---C8 −178.67 (16) ------------------- -------------- ------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1633 .table-wrap} ------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C5---H5A···O1^i^ 0.93 2.47 3.384 (2) 169 C9---H9B···O2^ii^ 0.96 2.39 3.343 (3) 175 ------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*, *y*−1, *z*; (ii) *x*+1, *y*, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- --------- ------- ----------- ------------- C5---H5*A*⋯O1^i^ 0.93 2.47 3.384 (2) 169 C9---H9*B*⋯O2^ii^ 0.96 2.39 3.343 (3) 175 Symmetry codes: (i) ; (ii) . ::: [^1]: ‡ Thomson Reuters ResearcherID: A-3561-2009. [^2]: § Thomson Reuters ResearcherID: A-5525-2009.
PubMed Central
2024-06-05T04:04:17.818017
2011-2-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052001/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 5; 67(Pt 3):o574", "authors": [ { "first": "Hoong-Kun", "last": "Fun" }, { "first": "Ching Kheng", "last": "Quah" }, { "first": "V.", "last": "Sumangala" }, { "first": "D. Jagadeesh", "last": "Prasad" }, { "first": "Boja", "last": "Poojary" } ] }
PMC3052002
Related literature {#sec1} ================== For coordination polymers derived from H~3~BTC, see: Skakle *et al.* (2001[@bb7]); Cheng *et al.* (2009[@bb3]). For related structures, see: Barbour *et al.* (1998[@bb1]); Bowmaker *et al.* (1998[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Bi(C~9~H~4~O~6~)(NO~3~)(C~10~H~8~N~2~)(C~2~H~6~OS)\]·C~2~H~6~OS*M* *~r~* = 791.57Triclinic,*a* = 8.9562 (18) Å*b* = 9.882 (2) Å*c* = 16.111 (3) Åα = 89.78 (3)°β = 76.22 (3)°γ = 84.80 (3)°*V* = 1378.9 (5) Å^3^*Z* = 2Mo *K*α radiationμ = 6.61 mm^−1^*T* = 298 K0.15 × 0.10 × 0.1 mm ### Data collection {#sec2.1.2} STOE IPDS II diffractometerAbsorption correction: numerical \[shape of crystal determined optically (*X-SHAPE* and *X-RED32*; Stoe & Cie (2005[@bb8])\] *T* ~min~ = 0.455, *T* ~max~ = 0.51515461 measured reflections7396 independent reflections6043 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.124 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.072*wR*(*F* ^2^) = 0.195*S* = 1.137396 reflections373 parametersH-atom parameters constrainedΔρ~max~ = 2.25 e Å^−3^Δρ~min~ = −2.57 e Å^−3^ {#d5e646} Data collection: *X-AREA* (Stoe & Cie, 2005[@bb8]); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb4]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb5]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811005745/bt5453sup1.cif](http://dx.doi.org/10.1107/S1600536811005745/bt5453sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005745/bt5453Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005745/bt5453Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bt5453&file=bt5453sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bt5453sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bt5453&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BT5453](http://scripts.iucr.org/cgi-bin/sendsup?bt5453)). The authors grateful acknowledge the Islamic Azad University, North Tehran Branch, for financial support. Comment ======= Coordination polymers are currently of great interest due to structural versatility, unique properties and their applications in different area of science. 1,3,5-benzenetricarboxylic acid (H~3~BTC) has three carboxylate groups and it can form coordination polymers with wide range of dimensionality from one-dimensional to three-dimensional. The asymmetric unit of the title compound is presented in Fig. 1. In the the title compound, Bi^III^ ion is 9-coordinated in a N~2~O~7~ environment and its geometry is distorted tricapped trigonal prismatic. In the title compound, there is one H~3~BTC in which two carboxylic groups are deprotonate. There are also one bipyridine, one nitrate and one dimethylsulfoxide molecule. Also there is one uncoordinated DMSO molecule in the packing of the compound. Bond lengths are within normal ranges. The crystal structure of title compound shows that the compound is extended by HBTC^2-^ moieties and it is a one-dimensional coordination polymer. The polymeric structure of title compound is presented in Fig. 2. There are several O---H···O and C---H···O hydrogen bonds in the structure of the title compound which stabilize crystal packing (Table 1). Experimental {#experimental} ============ A solution of Bi(NO~3~)~3~.5H~2~O (0.5 mmol, 0.2425 g) in DMSO (5 ml) was added to a mixture of bipyridine (1 mmol, 0.1569 g) and 1,3,5-benzenetricarboxylic acid (1 mmol,0.2101 g) in absolute ethanol (10 ml) and stirred for 2 hrs at room temperature. After 5 months, colorless crystals of the title compound appeared (m.p: 270°C decompose). Refinement {#refinement} ========== All hydrogen atoms were positioned geometrically and refined as riding atoms with C---H = 0.93 Å and *U*iso(H) = 1.2 *U*eq(C) for aromatic C---H groups, C---H = 0.96 Å and *U*iso(H) = 1.5 *Ueq*(C) for methyl groups and O---H = 0.82 Å with *U*iso(H) = 1.5 *Ueq*(O). The sulfur atom of uncoordinated DMSO is disordered over two positions with refined site-occupancies of 0.430 (19) and 0.570 (19). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The asymmetric unit of title compound with displacement ellipsoids drawn at 30% probability level. ::: ![](e-67-0m353-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view of the one-dimensional coordination polymer of the title compound. Uncoordinated DMSO molecules have been omitted for clarity. ::: ![](e-67-0m353-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e143 .table-wrap} ------------------------------------------------------------------- --------------------------------------- \[Bi(C~9~H~4~O~6~)(NO~3~)(C~10~H~8~N~2~)(C~2~H~6~OS)\]·C~2~H~6~OS *Z* = 2 *M~r~* = 791.57 *F*(000) = 772.0 Triclinic, *P*1 *D*~x~ = 1.906 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.9562 (18) Å Cell parameters from 7396 reflections *b* = 9.882 (2) Å θ = 2.4--29.3° *c* = 16.111 (3) Å µ = 6.61 mm^−1^ α = 89.78 (3)° *T* = 298 K β = 76.22 (3)° Plate, colorless γ = 84.80 (3)° 0.15 × 0.1 × 0.1 mm *V* = 1378.9 (5) Å^3^ ------------------------------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e302 .table-wrap} ------------------------------------------------------------------------------------------------------------------------ -------------------------------------- STOE IPDS II diffractometer 7396 independent reflections Radiation source: fine-focus sealed tube 6043 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.124 Detector resolution: 0.15 mm pixels mm^-1^ θ~max~ = 29.3°, θ~min~ = 2.4° rotation method scans *h* = −12→12 Absorption correction: numerical \[shape of crystal determined optically (*X-SHAPE* and *X-RED32*; Stoe & Cie (2005)\] *k* = −13→13 *T*~min~ = 0.455, *T*~max~ = 0.515 *l* = −22→22 15461 measured reflections ------------------------------------------------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e423 .table-wrap} ------------------------------------- -------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.072 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.195 H-atom parameters constrained *S* = 1.13 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0865*P*)^2^ + 12.3704*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 7396 reflections (Δ/σ)~max~ \< 0.001 373 parameters Δρ~max~ = 2.25 e Å^−3^ 0 restraints Δρ~min~ = −2.57 e Å^−3^ ------------------------------------- -------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e580 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e679 .table-wrap} ------ ------------- -------------- ------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) S2B 0.8840 (10) 0.4785 (8) 0.2723 (6) 0.061 (3) 0.570 (19) S2A 0.9839 (16) 0.4592 (14) 0.2253 (8) 0.072 (4) 0.430 (19) Bi1 0.45530 (5) 0.03366 (4) 0.26887 (3) 0.02732 (13) S1 0.3345 (4) −0.2775 (3) 0.3990 (2) 0.0452 (7) O1 0.2022 (16) 0.4330 (11) −0.0595 (8) 0.065 (3) H1 0.1625 0.4435 −0.1003 0.097\* O2 0.1908 (14) 0.6580 (10) −0.0621 (6) 0.054 (3) O3 0.3771 (11) 0.1788 (7) 0.1652 (6) 0.0390 (19) O4 0.5178 (12) 0.2701 (8) 0.2386 (6) 0.0407 (19) O5 0.5247 (11) 0.7833 (8) 0.2306 (5) 0.0374 (18) O6 0.3481 (9) 0.8965 (7) 0.1763 (6) 0.0351 (17) O7 0.2078 (14) 0.1922 (12) 0.3655 (8) 0.061 (3) O8 0.4030 (14) 0.1866 (12) 0.4194 (7) 0.059 (3) O9 0.215 (2) 0.3348 (16) 0.4667 (10) 0.100 (6) O10 0.3402 (14) −0.1262 (10) 0.4050 (6) 0.053 (2) O11 0.898 (3) 0.5681 (15) 0.1982 (11) 0.116 (7) N1 0.7024 (12) −0.0147 (9) 0.3099 (6) 0.0336 (19) N2 0.6774 (11) 0.0000 (9) 0.1469 (6) 0.0308 (18) N3 0.2718 (18) 0.2378 (12) 0.4173 (8) 0.054 (3) C1 0.2933 (12) 0.5408 (10) 0.0437 (6) 0.0268 (19) C2 0.3340 (13) 0.4186 (10) 0.0780 (7) 0.030 (2) H2 0.3138 0.3382 0.0548 0.036\* C3 0.4043 (13) 0.4129 (10) 0.1462 (7) 0.030 (2) C4 0.4407 (14) 0.5316 (10) 0.1788 (7) 0.032 (2) H4 0.4945 0.5279 0.2217 0.039\* C5 0.3958 (14) 0.6593 (10) 0.1468 (6) 0.030 (2) C6 0.3241 (14) 0.6622 (10) 0.0792 (7) 0.032 (2) H6 0.2963 0.7452 0.0570 0.038\* C7 0.2216 (14) 0.5520 (12) −0.0301 (8) 0.036 (2) C8 0.4372 (15) 0.2817 (10) 0.1852 (7) 0.033 (2) C9 0.4271 (13) 0.7856 (10) 0.1874 (7) 0.030 (2) C10 0.7121 (18) −0.0062 (15) 0.3920 (8) 0.047 (3) H10 0.6233 0.0173 0.4346 0.057\* C11 0.852 (2) −0.0318 (16) 0.4135 (11) 0.056 (4) H11 0.8568 −0.0244 0.4703 0.068\* C12 0.982 (2) −0.0681 (18) 0.3517 (12) 0.062 (4) H12 1.0779 −0.0824 0.3651 0.074\* C13 0.9688 (18) −0.0835 (17) 0.2665 (10) 0.054 (4) H13 1.0547 −0.1136 0.2236 0.065\* C14 0.8294 (14) −0.0539 (12) 0.2481 (8) 0.037 (2) C15 0.8066 (15) −0.0620 (11) 0.1590 (8) 0.038 (2) C16 0.9191 (15) −0.1297 (15) 0.0941 (9) 0.045 (3) H16 1.0095 −0.1729 0.1043 0.054\* C17 0.8889 (18) −0.1293 (15) 0.0133 (9) 0.048 (3) H17 0.9598 −0.1751 −0.0317 0.058\* C18 0.7567 (19) −0.0627 (13) −0.0014 (8) 0.046 (3) H18 0.7385 −0.0598 −0.0559 0.055\* C19 0.6523 (14) −0.0003 (13) 0.0673 (8) 0.037 (2) H19 0.5608 0.0433 0.0588 0.045\* C20 0.512 (2) −0.359 (2) 0.4063 (13) 0.071 (5) H20A 0.5929 −0.3282 0.3615 0.107\* H20B 0.5108 −0.4554 0.4005 0.107\* H20C 0.5315 −0.3378 0.4607 0.107\* C21 0.223 (3) −0.319 (2) 0.5040 (13) 0.091 (7) H21A 0.2691 −0.2860 0.5470 0.137\* H21B 0.2219 −0.4163 0.5081 0.137\* H21C 0.1192 −0.2781 0.5123 0.137\* C22 1.032 (3) 0.514 (2) 0.3181 (14) 0.078 (6) H22A 1.0919 0.4415 0.3387 0.118\* 0.57 H22B 0.9395 0.5394 0.3611 0.118\* 0.57 H22C 1.0915 0.5907 0.3053 0.118\* 0.57 H22D 0.9901 0.6062 0.3314 0.118\* 0.43 H22E 1.1425 0.5084 0.3090 0.118\* 0.43 H22F 0.9905 0.4570 0.3647 0.118\* 0.43 C23 0.906 (6) 0.315 (3) 0.251 (2) 0.17 (2) H23A 0.8952 0.2659 0.3031 0.254\* 0.57 H23B 1.0072 0.2916 0.2148 0.254\* 0.57 H23C 0.8294 0.2923 0.2220 0.254\* 0.57 H23D 0.9260 0.3006 0.1901 0.254\* 0.43 H23E 0.8140 0.2750 0.2785 0.254\* 0.43 H23F 0.9918 0.2742 0.2712 0.254\* 0.43 ------ ------------- -------------- ------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1656 .table-wrap} ----- ------------ -------------- ------------- --------------- --------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S2B 0.053 (5) 0.069 (5) 0.060 (5) 0.007 (3) −0.018 (4) −0.008 (3) S2A 0.066 (8) 0.085 (8) 0.061 (7) −0.009 (6) −0.009 (6) 0.021 (6) Bi1 0.0362 (2) 0.01789 (17) 0.0299 (2) −0.00129 (12) −0.01221 (14) 0.00062 (12) S1 0.062 (2) 0.0341 (14) 0.0411 (16) −0.0055 (13) −0.0141 (15) 0.0042 (12) O1 0.107 (10) 0.044 (5) 0.059 (6) −0.011 (6) −0.050 (7) 0.007 (5) O2 0.085 (8) 0.037 (5) 0.045 (5) 0.012 (5) −0.031 (5) −0.001 (4) O3 0.064 (6) 0.018 (3) 0.044 (5) −0.012 (3) −0.027 (4) 0.005 (3) O4 0.063 (6) 0.023 (3) 0.041 (4) −0.002 (3) −0.022 (4) 0.005 (3) O5 0.052 (5) 0.026 (4) 0.037 (4) −0.008 (3) −0.015 (4) 0.001 (3) O6 0.034 (4) 0.022 (3) 0.047 (5) −0.004 (3) −0.005 (3) 0.003 (3) O7 0.055 (6) 0.063 (7) 0.070 (7) 0.005 (5) −0.029 (6) −0.008 (6) O8 0.069 (7) 0.062 (6) 0.049 (6) 0.021 (5) −0.029 (5) −0.017 (5) O9 0.126 (13) 0.084 (10) 0.087 (10) 0.046 (9) −0.038 (9) −0.053 (8) O10 0.076 (7) 0.037 (5) 0.041 (5) −0.005 (5) −0.007 (5) 0.002 (4) O11 0.23 (2) 0.062 (8) 0.100 (11) −0.031 (11) −0.122 (14) 0.028 (8) N1 0.039 (5) 0.028 (4) 0.038 (5) −0.006 (4) −0.016 (4) 0.006 (4) N2 0.041 (5) 0.022 (4) 0.031 (4) 0.000 (3) −0.012 (4) 0.001 (3) N3 0.078 (9) 0.040 (6) 0.042 (6) 0.004 (6) −0.014 (6) −0.003 (5) C1 0.025 (5) 0.026 (4) 0.027 (5) −0.006 (3) −0.001 (4) −0.003 (4) C2 0.038 (6) 0.025 (4) 0.025 (5) −0.004 (4) −0.003 (4) −0.006 (4) C3 0.035 (5) 0.024 (4) 0.029 (5) −0.003 (4) −0.003 (4) 0.004 (4) C4 0.049 (6) 0.020 (4) 0.026 (5) 0.003 (4) −0.010 (4) −0.001 (4) C5 0.044 (6) 0.019 (4) 0.023 (4) 0.004 (4) −0.003 (4) −0.003 (3) C6 0.040 (6) 0.023 (4) 0.035 (5) 0.004 (4) −0.016 (5) 0.001 (4) C7 0.038 (6) 0.034 (5) 0.034 (5) −0.006 (4) −0.007 (5) 0.004 (4) C8 0.051 (7) 0.018 (4) 0.027 (5) 0.004 (4) −0.006 (5) 0.002 (4) C9 0.038 (6) 0.024 (4) 0.028 (5) −0.011 (4) −0.005 (4) 0.001 (4) C10 0.056 (8) 0.060 (8) 0.027 (6) 0.001 (6) −0.014 (5) 0.000 (5) C11 0.076 (11) 0.051 (8) 0.051 (8) −0.003 (7) −0.034 (8) 0.000 (6) C12 0.058 (9) 0.069 (10) 0.066 (10) 0.012 (8) −0.035 (8) 0.009 (8) C13 0.043 (7) 0.069 (10) 0.054 (8) 0.000 (7) −0.019 (6) 0.004 (7) C14 0.038 (6) 0.034 (5) 0.041 (6) 0.002 (4) −0.014 (5) 0.004 (5) C15 0.046 (7) 0.021 (4) 0.047 (7) −0.002 (4) −0.013 (5) 0.005 (4) C16 0.033 (6) 0.053 (7) 0.042 (7) −0.006 (5) 0.004 (5) 0.001 (6) C17 0.051 (8) 0.048 (7) 0.043 (7) 0.004 (6) −0.008 (6) −0.012 (6) C18 0.074 (10) 0.034 (6) 0.032 (6) −0.016 (6) −0.011 (6) 0.005 (5) C19 0.036 (6) 0.046 (6) 0.035 (6) −0.010 (5) −0.016 (5) −0.002 (5) C20 0.086 (13) 0.067 (11) 0.071 (11) 0.004 (9) −0.042 (10) 0.010 (9) C21 0.14 (2) 0.066 (12) 0.061 (11) −0.025 (13) 0.003 (12) 0.016 (9) C22 0.080 (13) 0.095 (14) 0.078 (13) −0.028 (11) −0.047 (11) 0.026 (11) C23 0.35 (6) 0.085 (18) 0.14 (3) −0.06 (3) −0.17 (4) 0.039 (18) ----- ------------ -------------- ------------- --------------- --------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2469 .table-wrap} ------------------------ ------------- ------------------------ ------------- S2B---O11 1.471 (16) C4---H4 0.9300 S2B---C23 1.64 (3) C5---C6 1.390 (15) S2A---O11 1.395 (19) C5---C9 1.490 (14) S2A---C22 1.75 (2) C6---H6 0.9300 Bi1---O3 2.386 (8) C9---Bi1^ii^ 2.844 (10) Bi1---O6^i^ 2.432 (9) C10---C11 1.38 (2) Bi1---N2 2.440 (10) C10---H10 0.9300 Bi1---N1 2.463 (10) C11---C12 1.37 (3) Bi1---O4 2.472 (8) C11---H11 0.9300 Bi1---O5^i^ 2.537 (8) C12---C13 1.42 (2) Bi1---O7 2.745 (12) C12---H12 0.9300 Bi1---O10 2.750 (10) C13---C14 1.357 (18) Bi1---C9^i^ 2.844 (10) C13---H13 0.9300 S1---O10 1.505 (10) C14---C15 1.501 (18) S1---C20 1.749 (19) C15---C16 1.391 (18) S1---C21 1.82 (2) C16---C17 1.39 (2) O1---C7 1.311 (16) C16---H16 0.9300 O1---H1 0.8200 C17---C18 1.37 (2) O2---C7 1.204 (14) C17---H17 0.9300 O3---C8 1.268 (14) C18---C19 1.374 (19) O4---C8 1.248 (15) C18---H18 0.9300 O5---C9 1.239 (14) C19---H19 0.9300 O5---Bi1^ii^ 2.537 (8) C20---H20A 0.9600 O6---C9 1.286 (13) C20---H20B 0.9600 O6---Bi1^ii^ 2.432 (9) C20---H20C 0.9600 O7---N3 1.226 (17) C21---H21A 0.9600 O8---N3 1.245 (17) C21---H21B 0.9600 O9---N3 1.241 (17) C21---H21C 0.9600 N1---C14 1.348 (16) C22---H22A 0.9600 N1---C10 1.349 (15) C22---H22B 0.9600 N2---C15 1.316 (15) C22---H22C 0.9600 N2---C19 1.354 (14) C22---H22D 0.9600 C1---C2 1.380 (14) C22---H22E 0.9600 C1---C6 1.407 (14) C22---H22F 0.9600 C1---C7 1.479 (16) C23---H23A 0.9600 C2---C3 1.390 (15) C23---H23B 0.9600 C2---H2 0.9300 C23---H23C 0.9600 C3---C4 1.384 (15) C23---H23D 0.9600 C3---C8 1.475 (13) C23---H23E 0.9600 C4---C5 1.422 (13) C23---H23F 0.9600 O11---S2B---C23 115.9 (14) O6---C9---Bi1^ii^ 58.4 (5) O11---S2A---C22 106.9 (13) C5---C9---Bi1^ii^ 174.4 (8) O3---Bi1---O6^i^ 71.8 (3) N1---C10---C11 120.9 (14) O3---Bi1---N2 77.9 (3) N1---C10---H10 119.5 O6^i^---Bi1---N2 80.2 (3) C11---C10---H10 119.5 O3---Bi1---N1 133.0 (3) C12---C11---C10 120.1 (14) O6^i^---Bi1---N1 127.3 (3) C12---C11---H11 120.0 N2---Bi1---N1 66.6 (3) C10---C11---H11 120.0 O3---Bi1---O4 53.1 (3) C11---C12---C13 118.3 (14) O6^i^---Bi1---O4 123.8 (3) C11---C12---H12 120.9 N2---Bi1---O4 78.6 (3) C13---C12---H12 120.9 N1---Bi1---O4 89.2 (3) C14---C13---C12 119.4 (15) O3---Bi1---O5^i^ 118.1 (3) C14---C13---H13 120.3 O6^i^---Bi1---O5^i^ 52.6 (3) C12---C13---H13 120.3 N2---Bi1---O5^i^ 68.7 (3) N1---C14---C13 121.3 (12) N1---Bi1---O5^i^ 77.1 (3) N1---C14---C15 116.1 (10) O4---Bi1---O5^i^ 147.4 (3) C13---C14---C15 122.7 (12) O3---Bi1---O7 77.4 (3) N2---C15---C16 123.3 (12) O6^i^---Bi1---O7 105.3 (3) N2---C15---C14 116.0 (11) N2---Bi1---O7 151.4 (3) C16---C15---C14 120.6 (12) N1---Bi1---O7 123.6 (3) C15---C16---C17 116.4 (13) O4---Bi1---O7 75.1 (4) C15---C16---H16 121.8 O5^i^---Bi1---O7 137.0 (3) C17---C16---H16 121.8 O3---Bi1---O10 142.1 (3) C18---C17---C16 121.4 (13) O6^i^---Bi1---O10 90.1 (3) C18---C17---H17 119.3 N2---Bi1---O10 132.8 (3) C16---C17---H17 119.3 N1---Bi1---O10 84.6 (3) C17---C18---C19 117.5 (12) O4---Bi1---O10 139.9 (3) C17---C18---H18 121.2 O5^i^---Bi1---O10 68.9 (3) C19---C18---H18 121.2 O7---Bi1---O10 75.7 (3) N2---C19---C18 122.5 (12) O3---Bi1---C9^i^ 95.9 (3) N2---C19---H19 118.7 O6^i^---Bi1---C9^i^ 26.8 (3) C18---C19---H19 118.7 N2---Bi1---C9^i^ 73.5 (3) S1---C20---H20A 109.5 N1---Bi1---C9^i^ 102.1 (3) S1---C20---H20B 109.5 O4---Bi1---C9^i^ 142.3 (3) H20A---C20---H20B 109.5 O5^i^---Bi1---C9^i^ 25.8 (3) S1---C20---H20C 109.5 O7---Bi1---C9^i^ 123.3 (3) H20A---C20---H20C 109.5 O10---Bi1---C9^i^ 77.5 (3) H20B---C20---H20C 109.5 O10---S1---C20 109.1 (8) S1---C21---H21A 109.5 O10---S1---C21 103.5 (8) S1---C21---H21B 109.5 C20---S1---C21 97.9 (11) H21A---C21---H21B 109.5 C7---O1---H1 109.5 S1---C21---H21C 109.5 C8---O3---Bi1 95.3 (7) H21A---C21---H21C 109.5 C8---O4---Bi1 91.8 (7) H21B---C21---H21C 109.5 C9---O5---Bi1^ii^ 91.1 (6) S2A---C22---H22A 109.5 C9---O6---Bi1^ii^ 94.8 (7) S2A---C22---H22B 109.5 N3---O7---Bi1 98.6 (9) H22A---C22---H22B 109.5 S1---O10---Bi1 124.3 (5) S2A---C22---H22C 109.5 S2A---O11---S2B 42.0 (6) H22A---C22---H22C 109.5 C14---N1---C10 120.0 (11) H22B---C22---H22C 109.5 C14---N1---Bi1 118.2 (8) S2A---C22---H22D 109.5 C10---N1---Bi1 121.7 (9) H22A---C22---H22D 141.1 C15---N2---C19 118.8 (11) H22B---C22---H22D 56.3 C15---N2---Bi1 118.5 (8) H22C---C22---H22D 56.3 C19---N2---Bi1 118.6 (8) S2A---C22---H22E 109.5 O7---N3---O9 123.7 (16) H22A---C22---H22E 56.3 O7---N3---O8 118.7 (12) H22B---C22---H22E 141.1 O9---N3---O8 117.6 (15) H22C---C22---H22E 56.3 C2---C1---C6 118.9 (10) H22D---C22---H22E 109.5 C2---C1---C7 123.6 (9) S2A---C22---H22F 109.5 C6---C1---C7 117.5 (9) H22A---C22---H22F 56.3 C1---C2---C3 121.6 (9) H22B---C22---H22F 56.3 C1---C2---H2 119.2 H22C---C22---H22F 141.1 C3---C2---H2 119.2 H22D---C22---H22F 109.5 C4---C3---C2 119.6 (9) H22E---C22---H22F 109.5 C4---C3---C8 119.8 (10) S2B---C23---H23A 109.5 C2---C3---C8 120.5 (10) S2B---C23---H23B 109.5 C3---C4---C5 119.9 (10) H23A---C23---H23B 109.5 C3---C4---H4 120.0 S2B---C23---H23C 109.5 C5---C4---H4 120.0 H23A---C23---H23C 109.5 C6---C5---C4 119.1 (9) H23B---C23---H23C 109.5 C6---C5---C9 122.3 (9) S2B---C23---H23D 109.5 C4---C5---C9 118.6 (10) H23A---C23---H23D 141.1 C5---C6---C1 120.7 (9) H23B---C23---H23D 56.3 C5---C6---H6 119.7 H23C---C23---H23D 56.3 C1---C6---H6 119.7 S2B---C23---H23E 109.5 O2---C7---O1 123.5 (12) H23A---C23---H23E 56.3 O2---C7---C1 123.9 (11) H23B---C23---H23E 141.1 O1---C7---C1 112.4 (10) H23C---C23---H23E 56.3 O4---C8---O3 119.5 (9) H23D---C23---H23E 109.5 O4---C8---C3 122.1 (10) S2B---C23---H23F 109.5 O3---C8---C3 118.4 (10) H23A---C23---H23F 56.3 O5---C9---O6 121.4 (10) H23B---C23---H23F 56.3 O5---C9---C5 121.2 (10) H23C---C23---H23F 141.1 O6---C9---C5 117.4 (10) H23D---C23---H23F 109.5 O5---C9---Bi1^ii^ 63.1 (6) H23E---C23---H23F 109.5 O6^i^---Bi1---O3---C8 −171.6 (8) O5^i^---Bi1---N2---C19 90.6 (8) N2---Bi1---O3---C8 −88.1 (8) O7---Bi1---N2---C19 −67.0 (11) N1---Bi1---O3---C8 −47.1 (9) O10---Bi1---N2---C19 118.1 (8) O4---Bi1---O3---C8 −3.3 (7) C9^i^---Bi1---N2---C19 63.8 (8) O5^i^---Bi1---O3---C8 −145.8 (7) Bi1---O7---N3---O9 166.9 (16) O7---Bi1---O3---C8 77.4 (8) Bi1---O7---N3---O8 −11.3 (15) O10---Bi1---O3---C8 123.1 (7) C6---C1---C2---C3 0.0 (16) C9^i^---Bi1---O3---C8 −159.7 (7) C7---C1---C2---C3 178.5 (10) O3---Bi1---O4---C8 3.4 (7) C1---C2---C3---C4 −2.7 (17) O6^i^---Bi1---O4---C8 16.8 (8) C1---C2---C3---C8 175.9 (10) N2---Bi1---O4---C8 86.7 (7) C2---C3---C4---C5 4.7 (17) N1---Bi1---O4---C8 152.9 (7) C8---C3---C4---C5 −174.0 (10) O5^i^---Bi1---O4---C8 88.7 (9) C3---C4---C5---C6 −4.0 (17) O7---Bi1---O4---C8 −81.9 (7) C3---C4---C5---C9 175.8 (10) O10---Bi1---O4---C8 −126.4 (7) C4---C5---C6---C1 1.3 (17) C9^i^---Bi1---O4---C8 43.9 (10) C9---C5---C6---C1 −178.5 (10) O3---Bi1---O7---N3 −123.6 (9) C2---C1---C6---C5 0.7 (17) O6^i^---Bi1---O7---N3 169.5 (9) C7---C1---C6---C5 −178.0 (10) N2---Bi1---O7---N3 −92.8 (11) C2---C1---C7---O2 −177.3 (12) N1---Bi1---O7---N3 10.0 (11) C6---C1---C7---O2 1.2 (18) O4---Bi1---O7---N3 −68.8 (9) C2---C1---C7---O1 −0.5 (17) O5^i^---Bi1---O7---N3 118.6 (9) C6---C1---C7---O1 178.1 (11) O10---Bi1---O7---N3 83.4 (9) Bi1---O4---C8---O3 −5.8 (12) C9^i^---Bi1---O7---N3 147.6 (8) Bi1---O4---C8---C3 171.9 (10) C20---S1---O10---Bi1 84.5 (10) Bi1---O3---C8---O4 6.0 (12) C21---S1---O10---Bi1 −172.0 (11) Bi1---O3---C8---C3 −171.8 (9) O3---Bi1---O10---S1 96.9 (8) C4---C3---C8---O4 −11.0 (18) O6^i^---Bi1---O10---S1 37.1 (8) C2---C3---C8---O4 170.4 (11) N2---Bi1---O10---S1 −39.5 (10) C4---C3---C8---O3 166.8 (11) N1---Bi1---O10---S1 −90.4 (8) C2---C3---C8---O3 −11.8 (17) O4---Bi1---O10---S1 −172.7 (6) Bi1^ii^---O5---C9---O6 3.6 (11) O5^i^---Bi1---O10---S1 −12.1 (7) Bi1^ii^---O5---C9---C5 −176.0 (9) O7---Bi1---O10---S1 142.9 (8) Bi1^ii^---O6---C9---O5 −3.8 (11) C9^i^---Bi1---O10---S1 13.4 (7) Bi1^ii^---O6---C9---C5 175.8 (8) C22---S2A---O11---S2B −63.8 (12) C6---C5---C9---O5 −160.4 (11) C23---S2B---O11---S2A −53 (2) C4---C5---C9---O5 19.7 (16) O3---Bi1---N1---C14 −53.6 (9) C6---C5---C9---O6 20.0 (16) O6^i^---Bi1---N1---C14 46.4 (9) C4---C5---C9---O6 −159.9 (10) N2---Bi1---N1---C14 −9.3 (8) C14---N1---C10---C11 3(2) O4---Bi1---N1---C14 −87.2 (8) Bi1---N1---C10---C11 −179.1 (11) O5^i^---Bi1---N1---C14 62.9 (8) N1---C10---C11---C12 −1(2) O7---Bi1---N1---C14 −158.7 (8) C10---C11---C12---C13 −2(3) O10---Bi1---N1---C14 132.4 (8) C11---C12---C13---C14 4(3) C9^i^---Bi1---N1---C14 56.5 (8) C10---N1---C14---C13 −1.0 (19) O3---Bi1---N1---C10 128.1 (10) Bi1---N1---C14---C13 −179.3 (11) O6^i^---Bi1---N1---C10 −131.9 (9) C10---N1---C14---C15 179.2 (11) N2---Bi1---N1---C10 172.5 (10) Bi1---N1---C14---C15 0.9 (13) O4---Bi1---N1---C10 94.5 (10) C12---C13---C14---N1 −2(2) O5^i^---Bi1---N1---C10 −115.4 (10) C12---C13---C14---C15 177.4 (14) O7---Bi1---N1---C10 23.1 (11) C19---N2---C15---C16 −0.7 (17) O10---Bi1---N1---C10 −45.8 (10) Bi1---N2---C15---C16 156.1 (10) C9^i^---Bi1---N1---C10 −121.7 (10) C19---N2---C15---C14 178.1 (10) O3---Bi1---N2---C15 166.9 (9) Bi1---N2---C15---C14 −25.1 (13) O6^i^---Bi1---N2---C15 −119.7 (8) N1---C14---C15---N2 15.8 (15) N1---Bi1---N2---C15 18.4 (8) C13---C14---C15---N2 −164.0 (13) O4---Bi1---N2---C15 112.6 (8) N1---C14---C15---C16 −165.3 (11) O5^i^---Bi1---N2---C15 −66.2 (8) C13---C14---C15---C16 14.9 (19) O7---Bi1---N2---C15 136.2 (8) N2---C15---C16---C17 0.1 (19) O10---Bi1---N2---C15 −38.8 (10) C14---C15---C16---C17 −178.7 (12) C9^i^---Bi1---N2---C15 −93.1 (8) C15---C16---C17---C18 1(2) O3---Bi1---N2---C19 −36.2 (8) C16---C17---C18---C19 −2(2) O6^i^---Bi1---N2---C19 37.1 (8) C15---N2---C19---C18 −0.1 (17) N1---Bi1---N2---C19 175.3 (9) Bi1---N2---C19---C18 −157.0 (9) O4---Bi1---N2---C19 −90.5 (8) C17---C18---C19---N2 1.6 (19) ------------------------ ------------- ------------------------ ------------- ::: Symmetry codes: (i) *x*, *y*−1, *z*; (ii) *x*, *y*+1, *z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4535 .table-wrap} --------------------- --------- --------- ------------ --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1···O11^iii^ 0.82 1.79 2.60 (2) 167 C10---H10···O8 0.93 2.53 3.16 (2) 125 C12---H12···O10^iv^ 0.93 2.58 3.51 (2) 179 C13---H13···O6^v^ 0.93 2.57 3.350 (19) 142 C17---H17···O2^v^ 0.93 2.48 3.260 (19) 142 C18---H18···O3^vi^ 0.93 2.58 3.391 (17) 146 C21---H21B···O9^i^ 0.96 2.56 3.49 (3) 161 --------------------- --------- --------- ------------ --------------- ::: Symmetry codes: (iii) −*x*+1, −*y*+1, −*z*; (iv) *x*+1, *y*, *z*; (v) *x*+1, *y*−1, *z*; (vi) −*x*+1, −*y*, −*z*; (i) *x*, *y*−1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ------------ ------------- O1---H1⋯O11^i^ 0.82 1.79 2.60 (2) 167 C10---H10⋯O8 0.93 2.53 3.16 (2) 125 C12---H12⋯O10^ii^ 0.93 2.58 3.51 (2) 179 C13---H13⋯O6^iii^ 0.93 2.57 3.350 (19) 142 C17---H17⋯O2^iii^ 0.93 2.48 3.260 (19) 142 C18---H18⋯O3^iv^ 0.93 2.58 3.391 (17) 146 C21---H21*B*⋯O9^v^ 0.96 2.56 3.49 (3) 161 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . :::
PubMed Central
2024-06-05T04:04:17.821537
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052002/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):m353-m354", "authors": [ { "first": "Hoda", "last": "Pasdar" }, { "first": "Marjan", "last": "Namegh" }, { "first": "Hossein", "last": "Aghabozorg" }, { "first": "Behrouz", "last": "Notash" } ] }
PMC3052003
Related literature {#sec1} ================== For the crystal structure of the 12-bromo­dodecyl-substituted analog, see: Dardouri *et al.* (2010[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~25~H~40~N~2~O~2~*M* *~r~* = 400.59Monoclinic,*a* = 8.1286 (1) Å*b* = 33.5899 (5) Å*c* = 9.4095 (2) Åβ = 114.640 (1)°*V* = 2335.22 (7) Å^3^*Z* = 4Mo *K*α radiationμ = 0.07 mm^−1^*T* = 295 K0.20 × 0.02 × 0.02 mm ### Data collection {#sec2.1.2} Bruker X8 APEXII diffractometer29471 measured reflections5359 independent reflections3671 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.044 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.047*wR*(*F* ^2^) = 0.139*S* = 1.035359 reflections264 parametersH-atom parameters constrainedΔρ~max~ = 0.23 e Å^−3^Δρ~min~ = −0.19 e Å^−3^ {#d5e347} Data collection: *APEX2* (Bruker, 2008[@bb2]); cell refinement: *SAINT* (Bruker, 2008[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb5]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005782/bt5477sup1.cif](http://dx.doi.org/10.1107/S1600536811005782/bt5477sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005782/bt5477Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005782/bt5477Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bt5477&file=bt5477sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bt5477sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bt5477&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BT5477](http://scripts.iucr.org/cgi-bin/sendsup?bt5477)). We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study. Comment ======= The methylene part of 1,5-dimethyl-1,5-benzodiazepine-2,4-dione is relatively acidic, and one proton can be abstracted by using potassium *t*-butoxide; the resulting carbanion can undergo a nucleophlilic subsitution with a dibromoalkane to form 3-substituted derivatives. In a previous study, the compound was reacted with 1,12-dibromododecane to give the 12-bromododecyl substitued derivative (Dardouri *et al.*, 2010). The corresponding tetradecyl title compound (Scheme I, Fig. 1) was obtained by using 1-bromotetradecane. Experimental {#experimental} ============ To a solution of the potassium *t*-butoxide (0.42 g, 3.6 mmol) in DMF (15 ml) was added 1,5-dimethyl-1,5-benzodiazepine-2,4-dione (0.50 g, 2.4 mmol) and 1-bromotetradecane (0.78 ml, 2.88 mmol). Stirring was continued for 24 h. The reaction was monitored by thin layer ch romatography. The mixture was filtered and the solution evaporated to give colorless crystals. Refinement {#refinement} ========== H-atoms were placed in calculated positions (C---H 0.93--0.97 Å) and were included in the refinement in the riding model approximation, with *U*(H) set to 1.2--1.5*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Anisotropic displacement ellipsoid plot (Barbour, 2001) of C25H40N2O2 at the 50% probability level; hydrogen atoms are drawn as arbitrary radius. ::: ![](e-67-0o674-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e117 .table-wrap} ------------------------- --------------------------------------- C~25~H~40~N~2~O~2~ *F*(000) = 880 *M~r~* = 400.59 *D*~x~ = 1.139 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 5173 reflections *a* = 8.1286 (1) Å θ = 2.5--26.9° *b* = 33.5899 (5) Å µ = 0.07 mm^−1^ *c* = 9.4095 (2) Å *T* = 295 K β = 114.640 (1)° Plate, colorless *V* = 2335.22 (7) Å^3^ 0.20 × 0.02 × 0.02 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e247 .table-wrap} ------------------------------------------ -------------------------------------- Bruker X8 APEXII diffractometer 3671 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.044 graphite θ~max~ = 27.5°, θ~min~ = 2.5° φ and ω scans *h* = −10→10 29471 measured reflections *k* = −43→43 5359 independent reflections *l* = −12→12 ------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e345 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.047 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.139 H-atom parameters constrained *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0639*P*)^2^ + 0.5157*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5359 reflections (Δ/σ)~max~ = 0.001 264 parameters Δρ~max~ = 0.23 e Å^−3^ 0 restraints Δρ~min~ = −0.19 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e504 .table-wrap} ------ --------------- ------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.17583 (14) 0.70600 (3) 0.42788 (12) 0.0335 (3) O2 −0.24455 (15) 0.66528 (3) 0.46476 (13) 0.0383 (3) N1 −0.04415 (16) 0.72024 (4) 0.19047 (14) 0.0286 (3) N2 −0.36308 (16) 0.69006 (4) 0.21941 (14) 0.0280 (3) C1 −0.2029 (2) 0.70901 (4) 0.05774 (17) 0.0288 (3) C2 −0.2041 (3) 0.71320 (5) −0.09017 (19) 0.0405 (4) H2 −0.1015 0.7227 −0.0994 0.049\* C3 −0.3559 (3) 0.70346 (6) −0.2228 (2) 0.0492 (5) H3 −0.3547 0.7059 −0.3208 0.059\* C4 −0.5087 (3) 0.69014 (5) −0.2098 (2) 0.0485 (5) H4 −0.6116 0.6839 −0.2992 0.058\* C5 −0.5099 (2) 0.68592 (5) −0.06424 (19) 0.0393 (4) H5 −0.6144 0.6770 −0.0567 0.047\* C6 −0.3568 (2) 0.69484 (4) 0.07174 (17) 0.0281 (3) C7 −0.2317 (2) 0.67078 (4) 0.34230 (17) 0.0261 (3) C8 −0.06497 (19) 0.65811 (4) 0.31754 (16) 0.0240 (3) H8 −0.1044 0.6453 0.2150 0.029\* C9 0.03579 (19) 0.69634 (4) 0.31786 (16) 0.0253 (3) C10 −0.5273 (2) 0.70170 (5) 0.2374 (2) 0.0408 (4) H10A −0.4948 0.7121 0.3407 0.061\* H10B −0.6041 0.6789 0.2217 0.061\* H10C −0.5907 0.7218 0.1616 0.061\* C11 0.0474 (2) 0.75737 (5) 0.1834 (2) 0.0390 (4) H11A 0.1248 0.7658 0.2875 0.059\* H11B −0.0413 0.7776 0.1330 0.059\* H11C 0.1185 0.7530 0.1251 0.059\* C12 0.0535 (2) 0.62912 (5) 0.44311 (17) 0.0282 (3) H12A 0.1026 0.6426 0.5433 0.034\* H12B −0.0207 0.6072 0.4499 0.034\* C13 0.2087 (2) 0.61250 (5) 0.41109 (17) 0.0320 (4) H13A 0.2758 0.6345 0.3939 0.038\* H13B 0.1594 0.5968 0.3160 0.038\* C14 0.3380 (2) 0.58674 (5) 0.54351 (17) 0.0303 (3) H14A 0.3848 0.6023 0.6390 0.036\* H14B 0.2711 0.5645 0.5590 0.036\* C15 0.4961 (2) 0.57070 (5) 0.51467 (18) 0.0314 (4) H15A 0.5619 0.5929 0.4974 0.038\* H15B 0.4496 0.5547 0.4203 0.038\* C16 0.6259 (2) 0.54562 (5) 0.64913 (17) 0.0304 (3) H16A 0.5594 0.5237 0.6672 0.037\* H16B 0.6732 0.5618 0.7431 0.037\* C17 0.7836 (2) 0.52895 (5) 0.62100 (17) 0.0302 (3) H17A 0.8486 0.5508 0.6007 0.036\* H17B 0.7365 0.5123 0.5285 0.036\* C18 0.9155 (2) 0.50462 (5) 0.75784 (17) 0.0307 (3) H18A 0.9618 0.5213 0.8505 0.037\* H18B 0.8505 0.4827 0.7777 0.037\* C19 1.0743 (2) 0.48805 (5) 0.73090 (17) 0.0309 (3) H19A 1.1351 0.5098 0.7048 0.037\* H19B 1.0286 0.4701 0.6422 0.037\* C20 1.2114 (2) 0.46592 (5) 0.87169 (18) 0.0331 (4) H20A 1.2563 0.4839 0.9604 0.040\* H20B 1.1503 0.4441 0.8975 0.040\* C21 1.3712 (2) 0.44929 (5) 0.84705 (18) 0.0333 (4) H21A 1.4266 0.4706 0.8128 0.040\* H21B 1.3276 0.4296 0.7643 0.040\* C22 1.5143 (2) 0.43030 (5) 0.99273 (18) 0.0323 (4) H22A 1.4584 0.4092 1.0276 0.039\* H22B 1.5587 0.4501 1.0750 0.039\* C23 1.6742 (2) 0.41310 (5) 0.96896 (18) 0.0332 (4) H23A 1.6318 0.3914 0.8942 0.040\* H23B 1.7234 0.4335 0.9248 0.040\* C24 1.8235 (2) 0.39779 (5) 1.11869 (19) 0.0349 (4) H24A 1.7718 0.3792 1.1678 0.042\* H24B 1.8733 0.4200 1.1898 0.042\* C25 1.9760 (3) 0.37722 (6) 1.0943 (3) 0.0550 (5) H25A 2.0660 0.3685 1.1933 0.083\* H25B 2.0295 0.3955 1.0474 0.083\* H25C 1.9288 0.3547 1.0267 0.083\* ------ --------------- ------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1434 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0262 (6) 0.0391 (6) 0.0304 (6) −0.0010 (5) 0.0069 (5) 0.0018 (5) O2 0.0396 (7) 0.0461 (7) 0.0365 (6) 0.0029 (5) 0.0229 (5) 0.0055 (5) N1 0.0229 (7) 0.0311 (7) 0.0305 (7) 0.0021 (5) 0.0099 (5) 0.0082 (5) N2 0.0206 (6) 0.0278 (6) 0.0359 (7) 0.0023 (5) 0.0121 (5) 0.0007 (5) C1 0.0275 (8) 0.0286 (8) 0.0271 (7) 0.0093 (6) 0.0084 (6) 0.0047 (6) C2 0.0442 (10) 0.0446 (10) 0.0330 (9) 0.0161 (8) 0.0164 (8) 0.0131 (7) C3 0.0654 (13) 0.0466 (11) 0.0275 (8) 0.0204 (10) 0.0113 (9) 0.0077 (8) C4 0.0525 (12) 0.0354 (9) 0.0321 (9) 0.0075 (8) −0.0075 (8) −0.0010 (7) C5 0.0333 (9) 0.0291 (8) 0.0401 (9) 0.0025 (7) −0.0001 (7) 0.0024 (7) C6 0.0271 (8) 0.0216 (7) 0.0307 (8) 0.0058 (6) 0.0071 (6) 0.0013 (6) C7 0.0248 (8) 0.0240 (7) 0.0300 (7) −0.0013 (6) 0.0119 (6) −0.0012 (6) C8 0.0242 (8) 0.0260 (7) 0.0213 (7) 0.0034 (6) 0.0090 (6) 0.0018 (6) C9 0.0225 (8) 0.0300 (8) 0.0250 (7) 0.0041 (6) 0.0115 (6) 0.0013 (6) C10 0.0275 (9) 0.0382 (9) 0.0611 (11) 0.0025 (7) 0.0227 (8) 0.0008 (8) C11 0.0305 (9) 0.0395 (9) 0.0488 (10) −0.0003 (7) 0.0182 (8) 0.0147 (8) C12 0.0282 (8) 0.0300 (8) 0.0262 (7) 0.0061 (6) 0.0111 (6) 0.0068 (6) C13 0.0350 (9) 0.0324 (8) 0.0286 (8) 0.0109 (7) 0.0133 (7) 0.0076 (6) C14 0.0301 (8) 0.0313 (8) 0.0286 (8) 0.0078 (6) 0.0115 (7) 0.0062 (6) C15 0.0300 (8) 0.0331 (8) 0.0303 (8) 0.0081 (6) 0.0117 (7) 0.0064 (6) C16 0.0277 (8) 0.0339 (8) 0.0288 (8) 0.0060 (6) 0.0108 (7) 0.0053 (6) C17 0.0279 (8) 0.0327 (8) 0.0289 (8) 0.0051 (6) 0.0108 (7) 0.0042 (6) C18 0.0275 (8) 0.0328 (8) 0.0312 (8) 0.0064 (6) 0.0118 (7) 0.0074 (6) C19 0.0296 (9) 0.0327 (8) 0.0296 (8) 0.0063 (7) 0.0114 (7) 0.0043 (6) C20 0.0301 (9) 0.0368 (9) 0.0330 (8) 0.0081 (7) 0.0138 (7) 0.0071 (7) C21 0.0312 (9) 0.0366 (9) 0.0308 (8) 0.0079 (7) 0.0117 (7) 0.0041 (7) C22 0.0300 (9) 0.0345 (8) 0.0323 (8) 0.0069 (7) 0.0130 (7) 0.0046 (7) C23 0.0319 (9) 0.0343 (8) 0.0345 (8) 0.0079 (7) 0.0149 (7) 0.0051 (7) C24 0.0284 (8) 0.0312 (8) 0.0399 (9) 0.0024 (7) 0.0091 (7) 0.0006 (7) C25 0.0388 (11) 0.0557 (12) 0.0656 (13) 0.0178 (9) 0.0169 (10) 0.0056 (10) ----- ------------- ------------- ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1929 .table-wrap} -------------------- -------------- ----------------------- -------------- O1---C9 1.2208 (17) C14---H14A 0.9700 O2---C7 1.2139 (18) C14---H14B 0.9700 N1---C9 1.3618 (18) C15---C16 1.520 (2) N1---C1 1.4228 (19) C15---H15A 0.9700 N1---C11 1.468 (2) C15---H15B 0.9700 N2---C7 1.3666 (19) C16---C17 1.520 (2) N2---C6 1.421 (2) C16---H16A 0.9700 N2---C10 1.467 (2) C16---H16B 0.9700 C1---C2 1.395 (2) C17---C18 1.525 (2) C1---C6 1.395 (2) C17---H17A 0.9700 C2---C3 1.379 (3) C17---H17B 0.9700 C2---H2 0.9300 C18---C19 1.521 (2) C3---C4 1.373 (3) C18---H18A 0.9700 C3---H3 0.9300 C18---H18B 0.9700 C4---C5 1.381 (3) C19---C20 1.523 (2) C4---H4 0.9300 C19---H19A 0.9700 C5---C6 1.396 (2) C19---H19B 0.9700 C5---H5 0.9300 C20---C21 1.519 (2) C7---C8 1.528 (2) C20---H20A 0.9700 C8---C9 1.522 (2) C20---H20B 0.9700 C8---C12 1.5242 (19) C21---C22 1.520 (2) C8---H8 0.9800 C21---H21A 0.9700 C10---H10A 0.9600 C21---H21B 0.9700 C10---H10B 0.9600 C22---C23 1.522 (2) C10---H10C 0.9600 C22---H22A 0.9700 C11---H11A 0.9600 C22---H22B 0.9700 C11---H11B 0.9600 C23---C24 1.516 (2) C11---H11C 0.9600 C23---H23A 0.9700 C12---C13 1.520 (2) C23---H23B 0.9700 C12---H12A 0.9700 C24---C25 1.517 (2) C12---H12B 0.9700 C24---H24A 0.9700 C13---C14 1.5210 (19) C24---H24B 0.9700 C13---H13A 0.9700 C25---H25A 0.9600 C13---H13B 0.9700 C25---H25B 0.9600 C14---C15 1.519 (2) C25---H25C 0.9600 C9---N1---C1 122.79 (13) C14---C15---C16 113.18 (13) C9---N1---C11 118.43 (13) C14---C15---H15A 108.9 C1---N1---C11 118.49 (12) C16---C15---H15A 108.9 C7---N2---C6 123.17 (12) C14---C15---H15B 108.9 C7---N2---C10 117.17 (13) C16---C15---H15B 108.9 C6---N2---C10 119.21 (13) H15A---C15---H15B 107.8 C2---C1---C6 119.69 (15) C15---C16---C17 113.74 (13) C2---C1---N1 118.38 (15) C15---C16---H16A 108.8 C6---C1---N1 121.92 (13) C17---C16---H16A 108.8 C3---C2---C1 120.69 (18) C15---C16---H16B 108.8 C3---C2---H2 119.7 C17---C16---H16B 108.8 C1---C2---H2 119.7 H16A---C16---H16B 107.7 C4---C3---C2 119.84 (17) C16---C17---C18 113.44 (13) C4---C3---H3 120.1 C16---C17---H17A 108.9 C2---C3---H3 120.1 C18---C17---H17A 108.9 C3---C4---C5 120.19 (16) C16---C17---H17B 108.9 C3---C4---H4 119.9 C18---C17---H17B 108.9 C5---C4---H4 119.9 H17A---C17---H17B 107.7 C4---C5---C6 120.97 (18) C19---C18---C17 113.73 (13) C4---C5---H5 119.5 C19---C18---H18A 108.8 C6---C5---H5 119.5 C17---C18---H18A 108.8 C1---C6---C5 118.59 (15) C19---C18---H18B 108.8 C1---C6---N2 122.00 (13) C17---C18---H18B 108.8 C5---C6---N2 119.39 (15) H18A---C18---H18B 107.7 O2---C7---N2 121.93 (14) C18---C19---C20 113.43 (13) O2---C7---C8 122.37 (13) C18---C19---H19A 108.9 N2---C7---C8 115.66 (12) C20---C19---H19A 108.9 C9---C8---C12 111.82 (12) C18---C19---H19B 108.9 C9---C8---C7 105.98 (11) C20---C19---H19B 108.9 C12---C8---C7 111.95 (12) H19A---C19---H19B 107.7 C9---C8---H8 109.0 C21---C20---C19 114.14 (13) C12---C8---H8 109.0 C21---C20---H20A 108.7 C7---C8---H8 109.0 C19---C20---H20A 108.7 O1---C9---N1 121.58 (14) C21---C20---H20B 108.7 O1---C9---C8 122.46 (13) C19---C20---H20B 108.7 N1---C9---C8 115.90 (12) H20A---C20---H20B 107.6 N2---C10---H10A 109.5 C20---C21---C22 113.48 (13) N2---C10---H10B 109.5 C20---C21---H21A 108.9 H10A---C10---H10B 109.5 C22---C21---H21A 108.9 N2---C10---H10C 109.5 C20---C21---H21B 108.9 H10A---C10---H10C 109.5 C22---C21---H21B 108.9 H10B---C10---H10C 109.5 H21A---C21---H21B 107.7 N1---C11---H11A 109.5 C21---C22---C23 113.96 (13) N1---C11---H11B 109.5 C21---C22---H22A 108.8 H11A---C11---H11B 109.5 C23---C22---H22A 108.8 N1---C11---H11C 109.5 C21---C22---H22B 108.8 H11A---C11---H11C 109.5 C23---C22---H22B 108.8 H11B---C11---H11C 109.5 H22A---C22---H22B 107.7 C13---C12---C8 112.92 (12) C24---C23---C22 113.22 (13) C13---C12---H12A 109.0 C24---C23---H23A 108.9 C8---C12---H12A 109.0 C22---C23---H23A 108.9 C13---C12---H12B 109.0 C24---C23---H23B 108.9 C8---C12---H12B 109.0 C22---C23---H23B 108.9 H12A---C12---H12B 107.8 H23A---C23---H23B 107.7 C12---C13---C14 113.18 (12) C23---C24---C25 113.69 (15) C12---C13---H13A 108.9 C23---C24---H24A 108.8 C14---C13---H13A 108.9 C25---C24---H24A 108.8 C12---C13---H13B 108.9 C23---C24---H24B 108.8 C14---C13---H13B 108.9 C25---C24---H24B 108.8 H13A---C13---H13B 107.8 H24A---C24---H24B 107.7 C15---C14---C13 113.74 (12) C24---C25---H25A 109.5 C15---C14---H14A 108.8 C24---C25---H25B 109.5 C13---C14---H14A 108.8 H25A---C25---H25B 109.5 C15---C14---H14B 108.8 C24---C25---H25C 109.5 C13---C14---H14B 108.8 H25A---C25---H25C 109.5 H14A---C14---H14B 107.7 H25B---C25---H25C 109.5 C9---N1---C1---C2 −130.73 (16) O2---C7---C8---C12 15.1 (2) C11---N1---C1---C2 43.0 (2) N2---C7---C8---C12 −167.19 (12) C9---N1---C1---C6 50.6 (2) C1---N1---C9---O1 177.20 (14) C11---N1---C1---C6 −135.64 (15) C11---N1---C9---O1 3.4 (2) C6---C1---C2---C3 0.0 (2) C1---N1---C9---C8 −5.7 (2) N1---C1---C2---C3 −178.74 (15) C11---N1---C9---C8 −179.47 (13) C1---C2---C3---C4 1.1 (3) C12---C8---C9---O1 −16.4 (2) C2---C3---C4---C5 −0.9 (3) C7---C8---C9---O1 105.85 (15) C3---C4---C5---C6 −0.4 (3) C12---C8---C9---N1 166.53 (12) C2---C1---C6---C5 −1.2 (2) C7---C8---C9---N1 −71.22 (15) N1---C1---C6---C5 177.45 (13) C9---C8---C12---C13 −67.67 (16) C2---C1---C6---N2 −179.89 (14) C7---C8---C12---C13 173.57 (13) N1---C1---C6---N2 −1.2 (2) C8---C12---C13---C14 174.38 (13) C4---C5---C6---C1 1.4 (2) C12---C13---C14---C15 −178.69 (14) C4---C5---C6---N2 −179.87 (14) C13---C14---C15---C16 178.98 (14) C7---N2---C6---C1 −49.2 (2) C14---C15---C16---C17 179.30 (14) C10---N2---C6---C1 138.72 (15) C15---C16---C17---C18 178.70 (13) C7---N2---C6---C5 132.13 (15) C16---C17---C18---C19 −179.64 (13) C10---N2---C6---C5 −39.9 (2) C17---C18---C19---C20 176.52 (13) C6---N2---C7---O2 −176.13 (14) C18---C19---C20---C21 −179.80 (14) C10---N2---C7---O2 −3.9 (2) C19---C20---C21---C22 175.23 (14) C6---N2---C7---C8 6.2 (2) C20---C21---C22---C23 179.33 (14) C10---N2---C7---C8 178.37 (13) C21---C22---C23---C24 174.57 (14) O2---C7---C8---C9 −107.07 (15) C22---C23---C24---C25 174.79 (15) N2---C7---C8---C9 70.64 (15) -------------------- -------------- ----------------------- -------------- :::
PubMed Central
2024-06-05T04:04:17.831971
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052003/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o674", "authors": [ { "first": "Rachid", "last": "Dardouri" }, { "first": "Fouad", "last": "Ouazzani Chahdi" }, { "first": "Natalie", "last": "Saffon" }, { "first": "El Mokhtar", "last": "Essassi" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3052004
Related literature {#sec1} ================== For related structures, see: Zia-ul-Haq *et al.* (2007[@bb23]); Boudina *et al.* (2007[@bb4]); Doubia *et al.* (2007[@bb8]); Sanudo *et al.* (2009[@bb16]); Spencer *et al.* (2009[@bb20]); Swamy *et al.* (2008[@bb21]). For the psychotropic properties of aptaza­pine \[systematic name: 2-methyl-1,3,4,14b-tetra­hydro-2*H*,10*H*-pyrazino­\[1,2-*a*\]pyrrolo­\[2,1-*c*\]\[1,4\]benzodiazepine\] and bretazenil \[systematic name: *t*-butyl-8-bromo-11,12,13,13a-tetra­hydro-9-oxo-9*H*-imidazo(1,5-*a*)pyrrolo­(2,1-*c*)(1,4)benzodiazepine-1-carboxyl­ate\], see: Silvestri *et al.* (1994[@bb19]); Landquist (1984[@bb13]); Insuasty *et al.* (2008[@bb11]); Bennamane *et al.* (2008[@bb2]); Schutz (1982[@bb17]). For the bioactivity of benzodiazepines, see: Constanzo *et al.* (1990[@bb7]); Kelly *et al.* (1997[@bb12]). For the effect on the bioactivity of fusing different heterocyclic rings to the 1,4- and 1,5-benzodiazepine system, see: Chimirri *et al.* (1993**a*[@bb5],b* [@bb6]). For the synthesis of the title compound, see: Bassin *et al.* (2000[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~24~H~22~N~2~O~4~S*M* *~r~* = 434.51Triclinic,*a* = 11.9007 (4) Å*b* = 12.8521 (4) Å*c* = 14.6202 (5) Åα = 109.852 (2)°β = 90.743 (2)°γ = 92.775 (2)°*V* = 2099.76 (12) Å^3^*Z* = 4Mo *K*α radiationμ = 0.19 mm^−1^*T* = 120 K0.50 × 0.30 × 0.10 mm ### Data collection {#sec2.1.2} Bruker--Nonius KappaCCD diffractometerAbsorption correction: multi-scan (*SORTAV*; Blessing, 1997[@bb3]) *T* ~min~ = 0.912, *T* ~max~ = 0.98131054 measured reflections7393 independent reflections5463 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.060 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.041*wR*(*F* ^2^) = 0.106*S* = 1.017393 reflections566 parametersH-atom parameters constrainedΔρ~max~ = 0.29 e Å^−3^Δρ~min~ = −0.46 e Å^−3^ {#d5e587} Data collection: *COLLECT* (Hooft, 1998[@bb10]); cell refinement: *DENZO* (Otwinowski & Minor, 1997[@bb15]); data reduction: *DENZO*, *COLLECT* and *maXus* (Mackay *et al.*, 1999[@bb14]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb18]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb18]); molecular graphics: *CAMERON* (Watkin, *et al.*, 1993[@bb22]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb9]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004983/rk2256sup1.cif](http://dx.doi.org/10.1107/S1600536811004983/rk2256sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004983/rk2256Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004983/rk2256Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rk2256&file=rk2256sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rk2256sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rk2256&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RK2256](http://scripts.iucr.org/cgi-bin/sendsup?rk2256)). We thank the EPSRC for funding the National Crystallography Service, and the STFC (formerly CCLRC) for access to synchrotron facilities. Comment ======= In recent years tetracyclic benzodiazepines have received a great deal of attention due to the psychotropic properties of such compounds as aptazapine and bretazenil (Silvestri *et al.*, 1994; Landquist, 1984; Insuasty *et al.*, 2008; Bennamane *et al.*, 2008; Schutz, 1982). A number of structures of benzodiazepines have been reported: Zia-ul-Haq *et al.*, (2007); Boudina *et al.*, (2007); Doubia *et al.*, (2007); Sanudo *et al.*, (2009); Spencer *et al.*, (2009); Swamy *et al.*, (2008). Benzodiazepines containing heterocycles fused to the seven-membered ring have shown important and varied bioactivities (Constanzo *et al.*, 1990; Kelly *et al.*, 1997). It has been demonstrated that by fusing different heterocyclic rings to the 1,4- and 1,5-benzodiazepine system enhances the biological activity of these compounds (Chimirri *et al.*, 1993*a*,*b*). We previously reported the synthesis of a new heterocyclic ring system dihydrobenzo\[*b*\]benzo\[4,5\]isothiazolo\[2,3-*d*\]\[1,4\]diazepine 12,12-dioxide (Bassin *et al.*, 2000). As, an extension of this work we report the crystal structure of the enantiomeric mixture of 9,10-dimethoxy-3-methyl-6-phenyl-7,7*a*-dihydrobenzo\[*b*\] benzo\[4,5\]isothiazolo \[2,3-*d*\]\[1,4\]diazepine 12,12-dioxide. Experimental {#experimental} ============ The title compound was synthesised following a modified procedure (Bassin *et al.*, 2000) by refluxing (*E*)-4,5-dimethoxy-2-(3-oxo-3-phenylprop-1-en-1-yl)benzene-1-sulfonyl chloride with 3,4-diaminotoluene in ethanol for 1 hour. The reaction mixture was allowed to cool to room temperature the resulting precipitated product was filtered under suction and thoroughly washed with aqueous ethanol. The air dried product was re-crystallised from ethanol. A yellow crystalline product (yield: 82%, m.p.: 498 K) was obtained. Refinement {#refinement} ========== H atoms were positioned geometrically \[C--H = 0.95Å (for aromatic), 0.98Å (for methyl groups) and 0.99Å (for methylene groups)\] and refined using a riding model, with *U*~iso~(H) = 1.2*U*~eq~(C) and 1.5*U*~eq~(C) for methyl groups. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. ::: ![](e-67-0o684-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e172 .table-wrap} ------------------------- ---------------------------------------- C~24~H~22~N~2~O~4~S *Z* = 4 *M~r~* = 434.51 *F*(000) = 912 Triclinic, *P*1 *D*~x~ = 1.375 Mg m^−3^ Hall symbol: -P 1 Melting point: 498 K *a* = 11.9007 (4) Å Mo *K*α radiation, λ = 0.71073 Å *b* = 12.8521 (4) Å Cell parameters from 25443 reflections *c* = 14.6202 (5) Å θ = 2.9--27.5° α = 109.852 (2)° µ = 0.19 mm^−1^ β = 90.743 (2)° *T* = 120 K γ = 92.775 (2)° Prism, yellow *V* = 2099.76 (12) Å^3^ 0.50 × 0.30 × 0.10 mm ------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e310 .table-wrap} -------------------------------------------------------------- -------------------------------------- Bruker--Nonius KappaCCD diffractometer 7393 independent reflections Radiation source: fine-focus sealed tube 5463 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.060 Detector resolution: 9.091 pixels mm^-1^ θ~max~ = 25.0°, θ~min~ = 3.0° φ-- and ω scans *h* = −14→14 Absorption correction: multi-scan (*SORTAV*; Blessing, 1997) *k* = −15→15 *T*~min~ = 0.912, *T*~max~ = 0.981 *l* = −17→17 31054 measured reflections -------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e433 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.041 H-atom parameters constrained *wR*(*F*^2^) = 0.106 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0595*P*)^2^ + 0.1891*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.01 (Δ/σ)~max~ \< 0.001 7393 reflections Δρ~max~ = 0.29 e Å^−3^ 566 parameters Δρ~min~ = −0.46 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0053 (7) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e614 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e713 .table-wrap} ------ --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.3992 (2) −0.2363 (2) 0.14280 (18) 0.0360 (6) H1A 0.4094 −0.1782 0.2067 0.054\* H1B 0.4607 −0.2867 0.1329 0.054\* H1C 0.3272 −0.2778 0.1396 0.054\* C2 0.42922 (19) −0.05068 (19) −0.13723 (16) 0.0311 (5) H2A 0.3605 −0.0683 −0.1784 0.047\* H2B 0.4933 −0.0824 −0.1766 0.047\* H2C 0.4423 0.0299 −0.1089 0.047\* C3 0.16980 (16) 0.00163 (15) 0.14164 (14) 0.0188 (4) C4 0.24041 (17) −0.08172 (16) 0.14182 (14) 0.0217 (5) H4 0.2314 −0.1188 0.1877 0.026\* C5 0.32354 (17) −0.10949 (16) 0.07437 (15) 0.0225 (5) C6 0.33481 (17) −0.05692 (16) 0.00370 (14) 0.0215 (5) C7 0.26602 (17) 0.02657 (16) 0.00462 (14) 0.0222 (5) H7 0.2738 0.0637 −0.0413 0.027\* C8 0.18439 (16) 0.05466 (15) 0.07553 (14) 0.0197 (4) C9 0.07022 (16) 0.03569 (16) 0.20530 (14) 0.0195 (4) H9 0.0141 −0.0289 0.1893 0.023\* C10 0.09793 (17) 0.07586 (16) 0.31449 (14) 0.0211 (4) H10A 0.0271 0.0850 0.3505 0.025\* H10B 0.1404 0.0195 0.3303 0.025\* C11 0.16693 (16) 0.18492 (16) 0.34651 (13) 0.0194 (4) C12 0.29050 (17) 0.18973 (16) 0.36576 (14) 0.0210 (5) C13 0.34603 (18) 0.10086 (17) 0.37451 (15) 0.0265 (5) H13 0.3046 0.0338 0.3690 0.032\* C14 0.46215 (18) 0.10953 (19) 0.39138 (16) 0.0306 (5) H14 0.4992 0.0483 0.3976 0.037\* C15 0.52371 (18) 0.20556 (19) 0.39914 (15) 0.0317 (5) H15 0.6030 0.2107 0.4100 0.038\* C16 0.46915 (18) 0.2947 (2) 0.39095 (17) 0.0334 (6) H16 0.5111 0.3614 0.3962 0.040\* C17 0.35396 (17) 0.28733 (18) 0.37510 (15) 0.0272 (5) H17 0.3173 0.3495 0.3705 0.033\* C18 −0.04226 (16) 0.20694 (16) 0.24328 (14) 0.0207 (5) C19 −0.15279 (17) 0.21991 (17) 0.22056 (15) 0.0250 (5) H19 −0.1860 0.1735 0.1601 0.030\* C20 −0.21585 (17) 0.29909 (17) 0.28400 (15) 0.0259 (5) H20 −0.2914 0.3066 0.2665 0.031\* C21 −0.16983 (17) 0.36800 (16) 0.37326 (15) 0.0235 (5) C22 −0.05783 (17) 0.35632 (16) 0.39450 (15) 0.0235 (5) H22 −0.0245 0.4042 0.4543 0.028\* C23 0.00699 (17) 0.27780 (16) 0.33205 (15) 0.0213 (5) C24 −0.23848 (18) 0.45185 (18) 0.44470 (16) 0.0308 (5) H24A −0.2971 0.4754 0.4095 0.046\* H24B −0.1895 0.5162 0.4820 0.046\* H24C −0.2737 0.4185 0.4892 0.046\* N1 0.02092 (13) 0.12406 (13) 0.17640 (11) 0.0204 (4) N2 0.12208 (13) 0.27710 (13) 0.35685 (12) 0.0219 (4) O1 0.40000 (12) −0.18679 (11) 0.06850 (10) 0.0290 (4) O2 0.41702 (12) −0.09601 (12) −0.06133 (10) 0.0282 (3) O3 0.13467 (12) 0.26485 (11) 0.12453 (10) 0.0278 (4) O4 0.01497 (12) 0.12890 (11) 0.00291 (10) 0.0265 (3) S1 0.08537 (4) 0.15358 (4) 0.08842 (4) 0.02013 (14) C25 0.4183 (2) 0.30217 (18) 0.13538 (18) 0.0388 (6) H25A 0.3708 0.2635 0.1693 0.058\* H25B 0.4746 0.2526 0.0987 0.058\* H25C 0.3714 0.3246 0.0905 0.058\* C26 0.64950 (18) 0.67805 (19) 0.35264 (17) 0.0348 (6) H26A 0.6307 0.7317 0.3214 0.052\* H26B 0.7296 0.6639 0.3453 0.052\* H26C 0.6332 0.7079 0.4220 0.052\* C27 0.23523 (16) 0.57054 (16) 0.29537 (14) 0.0188 (4) C28 0.29256 (17) 0.47623 (16) 0.24852 (14) 0.0218 (5) H28 0.2523 0.4079 0.2147 0.026\* C29 0.40916 (17) 0.48312 (16) 0.25179 (14) 0.0233 (5) C30 0.46967 (16) 0.58300 (16) 0.30635 (14) 0.0215 (5) C31 0.41321 (17) 0.67598 (16) 0.35242 (14) 0.0210 (5) H31 0.4527 0.7439 0.3885 0.025\* C32 0.29588 (16) 0.66768 (16) 0.34460 (14) 0.0192 (4) C33 0.10869 (17) 0.57821 (16) 0.30258 (14) 0.0205 (4) H33 0.0811 0.5345 0.3437 0.025\* C34 0.04001 (16) 0.53834 (16) 0.20675 (14) 0.0201 (4) H34A 0.0568 0.4608 0.1700 0.024\* H34B −0.0411 0.5395 0.2210 0.024\* C35 0.06480 (17) 0.60900 (16) 0.14439 (14) 0.0213 (5) C36 0.13310 (17) 0.56838 (16) 0.05648 (14) 0.0224 (5) C37 0.17889 (19) 0.46524 (18) 0.02645 (16) 0.0309 (5) H37 0.1614 0.4149 0.0598 0.037\* C38 0.2498 (2) 0.4349 (2) −0.05163 (17) 0.0401 (6) H38 0.2808 0.3642 −0.0712 0.048\* C39 0.2754 (2) 0.5066 (2) −0.10083 (17) 0.0419 (6) H39 0.3262 0.4868 −0.1528 0.050\* C40 0.2270 (2) 0.6071 (2) −0.07446 (17) 0.0416 (6) H40 0.2429 0.6558 −0.1096 0.050\* C41 0.1557 (2) 0.63781 (19) 0.00233 (16) 0.0320 (5) H41 0.1215 0.7068 0.0187 0.038\* C42 −0.00310 (16) 0.75312 (16) 0.34128 (15) 0.0209 (5) C43 −0.05867 (18) 0.81701 (18) 0.42232 (16) 0.0274 (5) H43 −0.0384 0.8152 0.4848 0.033\* C44 −0.14299 (18) 0.88309 (18) 0.41306 (17) 0.0310 (5) H44 −0.1793 0.9274 0.4694 0.037\* C45 −0.17537 (17) 0.88550 (17) 0.32215 (17) 0.0284 (5) C46 −0.11840 (17) 0.82177 (17) 0.24161 (16) 0.0263 (5) H46 −0.1396 0.8231 0.1792 0.032\* C47 −0.03145 (17) 0.75615 (16) 0.24917 (15) 0.0222 (5) C48 −0.2672 (2) 0.9570 (2) 0.3111 (2) 0.0432 (6) H48A −0.2339 1.0214 0.2976 0.065\* H48B −0.3089 0.9822 0.3714 0.065\* H48C −0.3186 0.9142 0.2571 0.065\* N3 0.09285 (14) 0.69706 (13) 0.35612 (12) 0.0215 (4) N4 0.02928 (14) 0.70698 (14) 0.16533 (12) 0.0235 (4) O5 0.47410 (12) 0.39866 (11) 0.20519 (11) 0.0310 (4) O6 0.58380 (11) 0.57683 (12) 0.30791 (10) 0.0289 (4) O7 0.21847 (12) 0.81169 (12) 0.50136 (10) 0.0318 (4) O8 0.21966 (12) 0.86010 (11) 0.35488 (11) 0.0325 (4) S2 0.20873 (4) 0.77439 (4) 0.39734 (4) 0.02169 (14) ------ --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e2134 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0384 (14) 0.0364 (13) 0.0432 (15) 0.0115 (11) 0.0032 (11) 0.0250 (12) C2 0.0318 (13) 0.0387 (13) 0.0250 (13) 0.0040 (10) 0.0060 (10) 0.0130 (10) C3 0.0219 (11) 0.0144 (10) 0.0171 (11) −0.0015 (8) −0.0029 (8) 0.0020 (8) C4 0.0272 (12) 0.0181 (10) 0.0210 (11) −0.0001 (9) −0.0018 (9) 0.0085 (9) C5 0.0243 (11) 0.0168 (10) 0.0257 (12) 0.0038 (9) 0.0001 (9) 0.0058 (9) C6 0.0221 (11) 0.0213 (11) 0.0181 (11) 0.0007 (9) 0.0001 (9) 0.0028 (9) C7 0.0250 (11) 0.0215 (11) 0.0212 (11) 0.0003 (9) −0.0003 (9) 0.0089 (9) C8 0.0219 (11) 0.0154 (10) 0.0197 (11) −0.0015 (8) −0.0028 (9) 0.0038 (8) C9 0.0208 (11) 0.0170 (10) 0.0205 (11) 0.0008 (8) −0.0005 (8) 0.0061 (8) C10 0.0222 (11) 0.0209 (11) 0.0195 (11) 0.0018 (9) 0.0003 (8) 0.0061 (9) C11 0.0229 (11) 0.0201 (11) 0.0136 (10) 0.0013 (9) 0.0003 (8) 0.0038 (8) C12 0.0238 (11) 0.0241 (11) 0.0129 (10) 0.0015 (9) 0.0005 (8) 0.0034 (8) C13 0.0261 (12) 0.0243 (12) 0.0271 (12) 0.0036 (9) 0.0006 (9) 0.0058 (9) C14 0.0295 (13) 0.0343 (13) 0.0266 (13) 0.0117 (11) −0.0012 (10) 0.0074 (10) C15 0.0224 (12) 0.0484 (15) 0.0234 (13) 0.0033 (11) −0.0003 (9) 0.0110 (11) C16 0.0235 (12) 0.0401 (14) 0.0390 (14) −0.0061 (11) −0.0050 (10) 0.0180 (11) C17 0.0249 (12) 0.0279 (12) 0.0306 (13) 0.0016 (10) −0.0031 (9) 0.0123 (10) C18 0.0211 (11) 0.0182 (10) 0.0224 (11) 0.0027 (9) 0.0023 (9) 0.0063 (9) C19 0.0231 (11) 0.0267 (11) 0.0224 (12) 0.0012 (9) −0.0028 (9) 0.0049 (9) C20 0.0178 (11) 0.0305 (12) 0.0290 (13) 0.0039 (9) −0.0006 (9) 0.0095 (10) C21 0.0239 (11) 0.0202 (11) 0.0273 (12) 0.0037 (9) 0.0021 (9) 0.0090 (9) C22 0.0248 (11) 0.0200 (11) 0.0227 (12) 0.0008 (9) −0.0036 (9) 0.0037 (9) C23 0.0215 (11) 0.0186 (10) 0.0235 (11) −0.0001 (9) −0.0010 (9) 0.0069 (9) C24 0.0274 (12) 0.0310 (12) 0.0320 (13) 0.0075 (10) 0.0024 (10) 0.0074 (10) N1 0.0225 (9) 0.0190 (9) 0.0200 (9) 0.0036 (7) 0.0003 (7) 0.0067 (7) N2 0.0194 (9) 0.0219 (9) 0.0214 (10) 0.0016 (7) −0.0016 (7) 0.0036 (7) O1 0.0336 (9) 0.0255 (8) 0.0316 (9) 0.0116 (7) 0.0054 (7) 0.0131 (7) O2 0.0317 (8) 0.0301 (8) 0.0250 (8) 0.0102 (7) 0.0094 (7) 0.0110 (7) O3 0.0316 (8) 0.0169 (7) 0.0333 (9) −0.0017 (6) 0.0000 (7) 0.0069 (6) O4 0.0308 (8) 0.0269 (8) 0.0217 (8) 0.0024 (7) −0.0058 (6) 0.0084 (6) S1 0.0222 (3) 0.0166 (3) 0.0209 (3) 0.0006 (2) −0.0011 (2) 0.0056 (2) C25 0.0392 (14) 0.0256 (12) 0.0386 (14) 0.0070 (11) −0.0016 (11) −0.0064 (11) C26 0.0240 (12) 0.0359 (13) 0.0395 (14) −0.0033 (10) 0.0003 (10) 0.0072 (11) C27 0.0199 (10) 0.0196 (11) 0.0193 (11) 0.0006 (9) −0.0005 (8) 0.0098 (9) C28 0.0230 (11) 0.0168 (10) 0.0243 (12) 0.0010 (9) −0.0004 (9) 0.0053 (9) C29 0.0280 (12) 0.0202 (11) 0.0213 (12) 0.0077 (9) 0.0028 (9) 0.0057 (9) C30 0.0188 (11) 0.0258 (11) 0.0201 (11) 0.0022 (9) 0.0005 (8) 0.0080 (9) C31 0.0238 (11) 0.0178 (10) 0.0203 (11) −0.0015 (9) −0.0015 (9) 0.0057 (9) C32 0.0231 (11) 0.0172 (10) 0.0185 (11) 0.0022 (9) 0.0019 (8) 0.0076 (8) C33 0.0242 (11) 0.0162 (10) 0.0210 (11) 0.0027 (9) 0.0017 (9) 0.0060 (8) C34 0.0184 (10) 0.0183 (10) 0.0213 (11) 0.0017 (8) 0.0008 (8) 0.0037 (9) C35 0.0207 (11) 0.0218 (11) 0.0193 (11) −0.0007 (9) −0.0038 (8) 0.0046 (9) C36 0.0243 (11) 0.0217 (11) 0.0187 (11) 0.0002 (9) −0.0014 (9) 0.0039 (9) C37 0.0371 (13) 0.0298 (12) 0.0243 (13) 0.0038 (10) 0.0039 (10) 0.0068 (10) C38 0.0436 (15) 0.0391 (14) 0.0313 (14) 0.0121 (12) 0.0101 (11) 0.0024 (11) C39 0.0426 (15) 0.0534 (17) 0.0231 (13) 0.0006 (13) 0.0106 (11) 0.0046 (12) C40 0.0554 (16) 0.0442 (15) 0.0267 (14) −0.0024 (13) 0.0079 (12) 0.0145 (12) C41 0.0407 (14) 0.0310 (12) 0.0237 (13) 0.0012 (11) 0.0012 (10) 0.0086 (10) C42 0.0183 (10) 0.0191 (10) 0.0247 (12) 0.0022 (9) 0.0019 (9) 0.0065 (9) C43 0.0256 (12) 0.0298 (12) 0.0247 (12) 0.0041 (10) 0.0021 (9) 0.0060 (10) C44 0.0263 (12) 0.0283 (12) 0.0329 (14) 0.0087 (10) 0.0076 (10) 0.0020 (10) C45 0.0227 (11) 0.0209 (11) 0.0386 (14) 0.0036 (9) −0.0028 (10) 0.0059 (10) C46 0.0257 (12) 0.0221 (11) 0.0301 (13) 0.0008 (9) −0.0056 (9) 0.0078 (10) C47 0.0223 (11) 0.0177 (10) 0.0248 (12) 0.0001 (9) 0.0004 (9) 0.0053 (9) C48 0.0348 (14) 0.0366 (14) 0.0522 (17) 0.0131 (11) −0.0065 (12) 0.0059 (12) N3 0.0223 (9) 0.0180 (9) 0.0219 (9) 0.0034 (7) −0.0019 (7) 0.0037 (7) N4 0.0261 (10) 0.0224 (10) 0.0214 (10) 0.0021 (8) −0.0008 (8) 0.0066 (8) O5 0.0253 (8) 0.0238 (8) 0.0367 (9) 0.0079 (7) 0.0020 (7) 0.0002 (7) O6 0.0196 (8) 0.0302 (8) 0.0313 (9) 0.0003 (6) 0.0004 (6) 0.0032 (7) O7 0.0326 (9) 0.0336 (9) 0.0205 (8) 0.0070 (7) −0.0052 (6) −0.0024 (7) O8 0.0325 (9) 0.0213 (8) 0.0480 (10) 0.0031 (7) −0.0025 (7) 0.0172 (7) S2 0.0230 (3) 0.0175 (3) 0.0231 (3) 0.0027 (2) −0.0020 (2) 0.0048 (2) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e3198 .table-wrap} ------------------- ------------- ------------------- ------------- C1---O1 1.433 (2) C25---O5 1.437 (3) C1---H1A 0.9800 C25---H25A 0.9800 C1---H1B 0.9800 C25---H25B 0.9800 C1---H1C 0.9800 C25---H25C 0.9800 C2---O2 1.424 (2) C26---O6 1.429 (3) C2---H2A 0.9800 C26---H26A 0.9800 C2---H2B 0.9800 C26---H26B 0.9800 C2---H2C 0.9800 C26---H26C 0.9800 C3---C8 1.367 (3) C27---C32 1.373 (3) C3---C4 1.394 (3) C27---C28 1.390 (3) C3---C9 1.505 (3) C27---C33 1.517 (3) C4---C5 1.378 (3) C28---C29 1.385 (3) C4---H4 0.9500 C28---H28 0.9500 C5---O1 1.362 (2) C29---O5 1.354 (2) C5---C6 1.418 (3) C29---C30 1.415 (3) C6---O2 1.364 (2) C30---O6 1.365 (2) C6---C7 1.377 (3) C30---C31 1.370 (3) C7---C8 1.398 (3) C31---C32 1.395 (3) C7---H7 0.9500 C31---H31 0.9500 C8---S1 1.740 (2) C32---S2 1.730 (2) C9---N1 1.482 (2) C33---N3 1.484 (3) C9---C10 1.528 (3) C33---C34 1.528 (3) C9---H9 1.0000 C33---H33 1.0000 C10---C11 1.514 (3) C34---C35 1.512 (3) C10---H10A 0.9900 C34---H34A 0.9900 C10---H10B 0.9900 C34---H34B 0.9900 C11---N2 1.286 (2) C35---N4 1.285 (3) C11---C12 1.488 (3) C35---C36 1.482 (3) C12---C13 1.388 (3) C36---C37 1.388 (3) C12---C17 1.397 (3) C36---C41 1.399 (3) C13---C14 1.393 (3) C37---C38 1.386 (3) C13---H13 0.9500 C37---H37 0.9500 C14---C15 1.374 (3) C38---C39 1.374 (3) C14---H14 0.9500 C38---H38 0.9500 C15---C16 1.383 (3) C39---C40 1.374 (4) C15---H15 0.9500 C39---H39 0.9500 C16---C17 1.381 (3) C40---C41 1.376 (3) C16---H16 0.9500 C40---H40 0.9500 C17---H17 0.9500 C41---H41 0.9500 C18---C19 1.384 (3) C42---C43 1.388 (3) C18---C23 1.408 (3) C42---C47 1.398 (3) C18---N1 1.430 (3) C42---N3 1.432 (3) C19---C20 1.382 (3) C43---C44 1.380 (3) C19---H19 0.9500 C43---H43 0.9500 C20---C21 1.392 (3) C44---C45 1.390 (3) C20---H20 0.9500 C44---H44 0.9500 C21---C22 1.391 (3) C45---C46 1.392 (3) C21---C24 1.504 (3) C45---C48 1.503 (3) C22---C23 1.384 (3) C46---C47 1.393 (3) C22---H22 0.9500 C46---H46 0.9500 C23---N2 1.413 (3) C47---N4 1.402 (3) C24---H24A 0.9800 C48---H48A 0.9800 C24---H24B 0.9800 C48---H48B 0.9800 C24---H24C 0.9800 C48---H48C 0.9800 N1---S1 1.6479 (16) N3---S2 1.6406 (17) O3---S1 1.4374 (14) O7---S2 1.4321 (15) O4---S1 1.4295 (14) O8---S2 1.4383 (15) O1---C1---H1A 109.5 O5---C25---H25A 109.5 O1---C1---H1B 109.5 O5---C25---H25B 109.5 H1A---C1---H1B 109.5 H25A---C25---H25B 109.5 O1---C1---H1C 109.5 O5---C25---H25C 109.5 H1A---C1---H1C 109.5 H25A---C25---H25C 109.5 H1B---C1---H1C 109.5 H25B---C25---H25C 109.5 O2---C2---H2A 109.5 O6---C26---H26A 109.5 O2---C2---H2B 109.5 O6---C26---H26B 109.5 H2A---C2---H2B 109.5 H26A---C26---H26B 109.5 O2---C2---H2C 109.5 O6---C26---H26C 109.5 H2A---C2---H2C 109.5 H26A---C26---H26C 109.5 H2B---C2---H2C 109.5 H26B---C26---H26C 109.5 C8---C3---C4 119.80 (19) C32---C27---C28 119.02 (18) C8---C3---C9 114.71 (17) C32---C27---C33 114.27 (17) C4---C3---C9 125.35 (17) C28---C27---C33 126.65 (17) C5---C4---C3 118.94 (18) C29---C28---C27 119.12 (18) C5---C4---H4 120.5 C29---C28---H28 120.4 C3---C4---H4 120.5 C27---C28---H28 120.4 O1---C5---C4 124.86 (18) O5---C29---C28 124.54 (18) O1---C5---C6 114.49 (17) O5---C29---C30 114.72 (17) C4---C5---C6 120.65 (18) C28---C29---C30 120.74 (18) O2---C6---C7 125.27 (18) O6---C30---C31 125.14 (18) O2---C6---C5 114.49 (17) O6---C30---C29 114.80 (17) C7---C6---C5 120.23 (18) C31---C30---C29 120.06 (18) C6---C7---C8 117.64 (18) C30---C31---C32 117.85 (18) C6---C7---H7 121.2 C30---C31---H31 121.1 C8---C7---H7 121.2 C32---C31---H31 121.1 C3---C8---C7 122.65 (18) C27---C32---C31 123.09 (18) C3---C8---S1 111.35 (15) C27---C32---S2 111.58 (15) C7---C8---S1 125.92 (15) C31---C32---S2 125.30 (15) N1---C9---C3 105.11 (15) N3---C33---C27 104.51 (15) N1---C9---C10 111.04 (15) N3---C33---C34 110.71 (15) C3---C9---C10 114.78 (16) C27---C33---C34 116.61 (16) N1---C9---H9 108.6 N3---C33---H33 108.2 C3---C9---H9 108.6 C27---C33---H33 108.2 C10---C9---H9 108.6 C34---C33---H33 108.2 C11---C10---C9 111.25 (15) C35---C34---C33 112.47 (16) C11---C10---H10A 109.4 C35---C34---H34A 109.1 C9---C10---H10A 109.4 C33---C34---H34A 109.1 C11---C10---H10B 109.4 C35---C34---H34B 109.1 C9---C10---H10B 109.4 C33---C34---H34B 109.1 H10A---C10---H10B 108.0 H34A---C34---H34B 107.8 N2---C11---C12 117.02 (17) N4---C35---C36 116.87 (18) N2---C11---C10 121.73 (17) N4---C35---C34 122.00 (18) C12---C11---C10 121.24 (17) C36---C35---C34 121.12 (17) C13---C12---C17 118.26 (19) C37---C36---C41 118.0 (2) C13---C12---C11 122.76 (18) C37---C36---C35 123.05 (18) C17---C12---C11 118.97 (18) C41---C36---C35 118.94 (19) C12---C13---C14 120.3 (2) C38---C37---C36 120.7 (2) C12---C13---H13 119.8 C38---C37---H37 119.6 C14---C13---H13 119.8 C36---C37---H37 119.6 C15---C14---C13 120.8 (2) C39---C38---C37 120.3 (2) C15---C14---H14 119.6 C39---C38---H38 119.8 C13---C14---H14 119.6 C37---C38---H38 119.8 C14---C15---C16 119.4 (2) C38---C39---C40 119.6 (2) C14---C15---H15 120.3 C38---C39---H39 120.2 C16---C15---H15 120.3 C40---C39---H39 120.2 C17---C16---C15 120.3 (2) C39---C40---C41 120.7 (2) C17---C16---H16 119.8 C39---C40---H40 119.7 C15---C16---H16 119.8 C41---C40---H40 119.7 C16---C17---C12 120.9 (2) C40---C41---C36 120.6 (2) C16---C17---H17 119.5 C40---C41---H41 119.7 C12---C17---H17 119.5 C36---C41---H41 119.7 C19---C18---C23 118.93 (18) C43---C42---C47 120.06 (19) C19---C18---N1 120.14 (18) C43---C42---N3 118.37 (18) C23---C18---N1 120.92 (17) C47---C42---N3 121.01 (17) C20---C19---C18 121.32 (19) C44---C43---C42 120.7 (2) C20---C19---H19 119.3 C44---C43---H43 119.6 C18---C19---H19 119.3 C42---C43---H43 119.6 C19---C20---C21 120.70 (19) C43---C44---C45 120.6 (2) C19---C20---H20 119.6 C43---C44---H44 119.7 C21---C20---H20 119.6 C45---C44---H44 119.7 C22---C21---C20 117.61 (19) C44---C45---C46 118.09 (19) C22---C21---C24 120.97 (18) C44---C45---C48 121.1 (2) C20---C21---C24 121.42 (18) C46---C45---C48 120.8 (2) C23---C22---C21 122.67 (19) C45---C46---C47 122.4 (2) C23---C22---H22 118.7 C45---C46---H46 118.8 C21---C22---H22 118.7 C47---C46---H46 118.8 C22---C23---C18 118.72 (18) C46---C47---C42 118.05 (19) C22---C23---N2 118.58 (17) C46---C47---N4 117.27 (18) C18---C23---N2 122.55 (18) C42---C47---N4 124.33 (18) C21---C24---H24A 109.5 C45---C48---H48A 109.5 C21---C24---H24B 109.5 C45---C48---H48B 109.5 H24A---C24---H24B 109.5 H48A---C48---H48B 109.5 C21---C24---H24C 109.5 C45---C48---H48C 109.5 H24A---C24---H24C 109.5 H48A---C48---H48C 109.5 H24B---C24---H24C 109.5 H48B---C48---H48C 109.5 C18---N1---C9 120.90 (15) C42---N3---C33 123.39 (16) C18---N1---S1 118.90 (13) C42---N3---S2 116.39 (12) C9---N1---S1 115.15 (13) C33---N3---S2 115.50 (13) C11---N2---C23 120.09 (16) C35---N4---C47 121.94 (17) C5---O1---C1 117.25 (16) C29---O5---C25 116.94 (16) C6---O2---C2 117.44 (16) C30---O6---C26 117.05 (16) O4---S1---O3 114.70 (8) O7---S2---O8 115.28 (9) O4---S1---N1 112.29 (8) O7---S2---N3 111.89 (9) O3---S1---N1 110.02 (8) O8---S2---N3 110.19 (9) O4---S1---C8 111.83 (9) O7---S2---C32 111.60 (9) O3---S1---C8 112.54 (9) O8---S2---C32 112.07 (9) N1---S1---C8 93.60 (9) N3---S2---C32 93.86 (9) ------------------- ------------- ------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4637 .table-wrap} --------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C2---H2C···O1^i^ 0.98 2.59 3.423 (3) 142 C4---H4···O8^ii^ 0.95 2.55 3.451 (3) 157 C10---H10B···O8^ii^ 0.99 2.43 3.408 (3) 171 C13---H13···O8^ii^ 0.95 2.35 3.295 (3) 174 C15---H15···O7^iii^ 0.95 2.55 3.428 (3) 153 C25---H25B···O2^i^ 0.98 2.35 3.262 (3) 154 C28---H28···O3 0.95 2.27 3.205 (3) 169 C34---H34A···O3 0.99 2.60 3.552 (3) 162 C37---H37···O3 0.95 2.43 3.371 (3) 170 C39---H39···O6^iv^ 0.95 2.42 3.350 (3) 167 --------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*, −*z*; (ii) *x*, *y*−1, *z*; (iii) −*x*+1, −*y*+1, −*z*+1; (iv) −*x*+1, −*y*+1, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- --------- ------- ----------- ------------- N1---H1*A*⋯Cl1 0.89 2.44 3.303 (3) 162 N1---H1*B*⋯Cl1^i^ 0.89 2.36 3.236 (2) 170 N1---H1*C*⋯O1^ii^ 0.89 2.05 2.901 (4) 159 O1---H1*H*⋯Cl1 0.85 2.45 3.290 (3) 170 O1---H1*I*⋯Cl1^iii^ 0.85 2.39 3.228 (2) 170 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:17.840082
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052004/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o684-o685", "authors": [ { "first": "Jatinder P.", "last": "Bassin" }, { "first": "Virender P.", "last": "Shah" }, { "first": "Lee", "last": "Martin" }, { "first": "Peter N.", "last": "Horton" } ] }
PMC3052005
Related literature {#sec1} ================== For the structure of pyrimidin-2-amine, see: Scheinbeim & Schempp (1976[@bb12]) and for the structure of 1-phenyl­cyclo­pentane-1-carb­oxy­lic acid, see: Margulis (1975[@bb10]). For mol­ecular co-crystals of pyrimidin-2-amine, see: Serafin & Wheeler (2007[@bb13]); Shan *et al.* (2002[@bb14]); Goswami *et al.* (1999*a* [@bb4],*b* [@bb5], 2000[@bb6]); Chinnakali *et al.* (1999[@bb3]); Lynch *et al.* (1997[@bb9]). For a salt of 2-amino­pyridine and 1-phenyl-1-cyclo­propane­carb­oxy­lic acid, see: He *et al.* (2010[@bb7]). For a recent screening study for co-crystal and salt formation using pulse-gradient spin--echo nuclear magnetic resonance, see: He *et al.* (2009[@bb8]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~4~H~5~N~3~·C~12~H~14~O~2~*M* *~r~* = 285.34Monoclinic,*a* = 9.1461 (18) Å*b* = 10.490 (2) Å*c* = 15.474 (3) Åβ = 98.14 (3)°*V* = 1469.7 (5) Å^3^*Z* = 4Mo *K*α radiationμ = 0.09 mm^−1^*T* = 110 K0.44 × 0.44 × 0.22 mm ### Data collection {#sec2.1.2} Rigaku Saturn 70 CCD area-detector diffractometerAbsorption correction: multi-scan (Blessing, 1995[@bb2]) *T* ~min~ = 0.963, *T* ~max~ = 0.98120335 measured reflections3641 independent reflections3516 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.036 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.068*wR*(*F* ^2^) = 0.178*S* = 1.213641 reflections202 parameters1 restraintH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.28 e Å^−3^Δρ~min~ = −0.27 e Å^−3^ {#d5e496} Data collection: *CrystalClear* (Rigaku, 2007[@bb11]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb15]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb15]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003667/ng5101sup1.cif](http://dx.doi.org/10.1107/S1600536811003667/ng5101sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003667/ng5101Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003667/ng5101Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ng5101&file=ng5101sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ng5101sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ng5101&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NG5101](http://scripts.iucr.org/cgi-bin/sendsup?ng5101)). This work was supported by the Science and Engineering Research Council of A\*STAR (Agency for Science, Technology and Research), Singapore. Comment ======= An analysis of the crystal structure of pyrimidin-2-amine reveals that it forms a homosynthon (I) involving two N--H···N hydrogen bonds (Scheinbeim and Schempp, 1976). However, when it is cocrystallized with the molecules possessing at least one carboxylic acid group in the structure, it forms a pyrimidin-2-amine--carboxylic acid supramolecular heterosynthon (II) (Fig. 1) involving two hydrogen bonds, namely N--H···O and O--H···N. These strong hydrogen bonds are preferred over potential alternative arrangements and play a significant role in structure-directing (Shan *et al.*, 2002). We have chosen pyrimidin-2-amine and 1-phenylcyclopentane-1-carboxylic acid for cocrystallization experiment as an extension work to our previous study on screening for molecular cocrystals and salts (He *et al.*, 2009). The crystal structure of the title cocrystal contains one molecule of pyrimidin-2-amine and one molecule of 1-phenylcyclopentane-1-carboxylic acid in the crystallographic asymmetric unit (Fig. 2). The identity of the cocrystal was confirmed by Fourier Transform Infrared (FT---IR) spectrum which showed carboxylic acid O---H stretching band at 3167 cm^-1^ and carbonyl stretching band at 1685 cm^-1^ (Fig. 3). Two pyrimidin-2-amine molecules that are related by an inversion center form the synthon I involving N--H···O (N···O = 3.006 (2) Å) hydrogen bonds. Two 1-phenylcyclopentane-1-carboxylic acid molecules hydrogen bond to either side of the dimeric motif involving synthon II which is sustained by N--H···O (N···O = 2.966 (2) Å) and O--H···O (O···O = 2.653 (2) Å) hydrogen bonds and forms a four-component supramolecular unit (Fig. 4). These four-component supramolecular units self assemble in the crystal structure *via* several weak C--H···O interactions (Fig. 5). Experimental {#experimental} ============ 0.0957 g (1 mmol) of pyrimidin-2-amine (Alfa Aesar, 99%) and 0.1909 g (1 mmol) of 1-phenylcyclopentane-1-carboxylic acid (Alfa Aesar, 98%) and were dissolved into 7.6 ml of ethyl acetate (Fisher Scientific, HPLC). Solution was then filtered through a 0.22µm PTFE filter. Filtered solution was finally sealed with Parafilm and small holes were made to allow solvent to slowly evaporate. The block-shaped crystal (0.44 × 0.44 × 0.22 mm) suitable for single-crystal X-ray diffraction (Rigaku Saturn 70 CCD area detector with Mo *K*~α~ radiation = 0.71073 Å at 50 kV and 40 mA) was collected after one day. Fourier Transform Infrared (FT---IR) experiments were performed using Bio-Rad spectrometer (FTS3000MX) to confirm whether the resulting molecular complex is a cocrystal or a salt. Refinement {#refinement} ========== H atoms bonded to N and O atoms were located in a difference map and allowed to ride on their parent atoms in the refinement cycles.The O2---H6 bond distance which was found to be long in the normal refinement cycles was fixed using *DFIX* command in *SHELX*. Other H atoms were positioned geometrically and refined using a riding model. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### pyrimidin-2-amine--pyrimidin-2-amine supramolecular homosynthon (I) and pyrimidin-2-amine--carboxylic acid supramolecular heterosynthon (II). ::: ![](e-67-0o552-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The molecular structures of pyrimidin-2-amine and 1-phenyl-1-cyclopropentanecarboxylic acid, with atom labels and 50% probability displacement ellipsoids for non-H atoms. ::: ![](e-67-0o552-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### F T---IR spectra for pyrimidin-2-amine, 1-phenylcyclopentane-1-carboxylic acid and the 1/1 cocrystal of them, respectively. ::: ![](e-67-0o552-fig3) ::: ::: {#Fap4 .fig} Fig. 4. ::: {.caption} ###### A four-component supramolecular unit that features N--H···O and O--H···N heterosynthon interactions, and O--H···O homosynthon interaction in the crystal structure of the title cocrystal. ::: ![](e-67-0o552-fig4) ::: ::: {#Fap5 .fig} Fig. 5. ::: {.caption} ###### Part of the crystal structure of the title cocrystal, showing the arrangement of the four-component supramolecular units. ::: ![](e-67-0o552-fig5) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e145 .table-wrap} ----------------------------- --------------------------------------- C~4~H~5~N~3~·C~12~H~14~O~2~ *F*(000) = 608 *M~r~* = 285.34 *D*~x~ = 1.290 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å *a* = 9.1461 (18) Å Cell parameters from 4896 reflections *b* = 10.490 (2) Å θ = 1.9--31.1° *c* = 15.474 (3) Å µ = 0.09 mm^−1^ β = 98.14 (3)° *T* = 110 K *V* = 1469.7 (5) Å^3^ Block, colorless *Z* = 4 0.44 × 0.44 × 0.22 mm ----------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e278 .table-wrap} ---------------------------------------------------- -------------------------------------- Rigaku Saturn 70 CCD area-detector diffractometer 3641 independent reflections Radiation source: fine-focus sealed tube 3516 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.036 ω scans θ~max~ = 28.3°, θ~min~ = 2.4° Absorption correction: multi-scan (Blessing, 1995) *h* = −12→12 *T*~min~ = 0.963, *T*~max~ = 0.981 *k* = −13→13 20335 measured reflections *l* = −20→20 ---------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e389 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.068 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.178 H atoms treated by a mixture of independent and constrained refinement *S* = 1.21 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0804*P*)^2^ + 0.5855*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3641 reflections (Δ/σ)~max~ \< 0.001 202 parameters Δρ~max~ = 0.28 e Å^−3^ 1 restraint Δρ~min~ = −0.27 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e546 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e645 .table-wrap} ------ --------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O2 0.04632 (14) 0.55094 (13) 0.70052 (8) 0.0344 (3) O1 0.22224 (15) 0.40633 (14) 0.73866 (9) 0.0397 (3) C16 0.12059 (18) 0.47154 (16) 0.75641 (11) 0.0281 (3) C6 −0.09084 (18) 0.42117 (16) 0.83708 (10) 0.0273 (3) C5 0.06701 (18) 0.47220 (17) 0.84621 (11) 0.0289 (4) C8 −0.35533 (19) 0.45531 (18) 0.80273 (12) 0.0337 (4) H8 −0.4356 0.5110 0.7842 0.040\* C12 0.17880 (19) 0.3999 (2) 0.91211 (12) 0.0396 (4) H12A 0.2180 0.3247 0.8843 0.047\* H12B 0.1319 0.3709 0.9625 0.047\* C7 −0.21065 (18) 0.50062 (17) 0.81043 (11) 0.0305 (4) H7 −0.1936 0.5873 0.7972 0.037\* C10 −0.2643 (2) 0.24866 (18) 0.84809 (12) 0.0362 (4) H10 −0.2821 0.1620 0.8610 0.043\* C11 −0.1195 (2) 0.29396 (17) 0.85543 (12) 0.0332 (4) H11 −0.0395 0.2376 0.8731 0.040\* C15 0.0807 (2) 0.6105 (2) 0.88196 (13) 0.0380 (4) H15A 0.0410 0.6727 0.8365 0.046\* H15B 0.0279 0.6204 0.9332 0.046\* C9 −0.3820 (2) 0.32934 (19) 0.82208 (12) 0.0354 (4) H9 −0.4805 0.2985 0.8175 0.042\* C13 0.3039 (2) 0.4964 (3) 0.94177 (14) 0.0523 (6) H13A 0.3269 0.4975 1.0062 0.063\* H13B 0.3945 0.4731 0.9172 0.063\* C14 0.2473 (2) 0.6273 (2) 0.90771 (16) 0.0517 (6) H14A 0.2684 0.6930 0.9537 0.062\* H14B 0.2944 0.6530 0.8566 0.062\* H6 0.082 (3) 0.557 (3) 0.6516 (13) 0.066 (8)\* C2 0.24306 (19) 0.66091 (17) 0.39920 (12) 0.0318 (4) H2 0.2760 0.6860 0.3462 0.038\* N3 0.36606 (18) 0.47957 (17) 0.58582 (11) 0.0391 (4) N1 0.14713 (15) 0.58831 (14) 0.54997 (9) 0.0299 (3) N2 0.33123 (16) 0.58740 (14) 0.45437 (10) 0.0314 (3) C3 0.1056 (2) 0.70251 (18) 0.41554 (12) 0.0345 (4) H3 0.0445 0.7554 0.3757 0.041\* C4 0.06304 (19) 0.66250 (18) 0.49318 (12) 0.0346 (4) H4 −0.0304 0.6890 0.5068 0.041\* H5 0.331 (3) 0.447 (2) 0.6325 (17) 0.051 (7)\* C1 0.27973 (18) 0.55295 (16) 0.52886 (11) 0.0285 (3) H1 0.451 (3) 0.454 (2) 0.5716 (16) 0.051 (7)\* ------ --------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1188 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------ -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O2 0.0317 (6) 0.0434 (7) 0.0300 (6) 0.0106 (5) 0.0113 (5) 0.0085 (5) O1 0.0385 (7) 0.0472 (8) 0.0361 (7) 0.0150 (6) 0.0146 (6) 0.0093 (6) C16 0.0247 (7) 0.0303 (8) 0.0297 (8) −0.0005 (6) 0.0056 (6) 0.0009 (6) C6 0.0259 (7) 0.0322 (8) 0.0249 (8) −0.0013 (6) 0.0071 (6) −0.0011 (6) C5 0.0226 (7) 0.0380 (9) 0.0268 (8) −0.0023 (6) 0.0055 (6) −0.0003 (6) C8 0.0249 (8) 0.0410 (9) 0.0361 (9) 0.0003 (7) 0.0070 (7) −0.0050 (7) C12 0.0264 (8) 0.0626 (13) 0.0297 (9) 0.0001 (8) 0.0039 (7) 0.0093 (8) C7 0.0279 (8) 0.0307 (8) 0.0336 (9) −0.0016 (6) 0.0074 (6) −0.0031 (7) C10 0.0408 (10) 0.0329 (9) 0.0364 (9) −0.0097 (7) 0.0102 (7) −0.0021 (7) C11 0.0331 (9) 0.0333 (9) 0.0336 (9) 0.0005 (7) 0.0058 (7) 0.0018 (7) C15 0.0305 (9) 0.0449 (10) 0.0402 (10) −0.0110 (7) 0.0106 (7) −0.0113 (8) C9 0.0303 (8) 0.0436 (10) 0.0339 (9) −0.0108 (7) 0.0104 (7) −0.0084 (7) C13 0.0274 (9) 0.0954 (18) 0.0335 (10) −0.0092 (10) 0.0018 (8) −0.0042 (11) C14 0.0357 (10) 0.0700 (15) 0.0500 (12) −0.0211 (10) 0.0082 (9) −0.0156 (11) C2 0.0328 (8) 0.0344 (9) 0.0292 (8) 0.0018 (7) 0.0077 (6) 0.0018 (7) N3 0.0306 (8) 0.0513 (10) 0.0383 (9) 0.0149 (7) 0.0150 (7) 0.0168 (7) N1 0.0238 (6) 0.0371 (8) 0.0294 (7) 0.0027 (5) 0.0065 (5) 0.0024 (6) N2 0.0294 (7) 0.0340 (7) 0.0320 (8) 0.0035 (6) 0.0087 (6) 0.0040 (6) C3 0.0304 (8) 0.0403 (10) 0.0326 (9) 0.0052 (7) 0.0045 (7) 0.0057 (7) C4 0.0257 (8) 0.0437 (10) 0.0348 (9) 0.0070 (7) 0.0060 (6) 0.0041 (7) C1 0.0256 (8) 0.0291 (8) 0.0316 (8) 0.0016 (6) 0.0066 (6) 0.0010 (6) ----- ------------- ------------- ------------- -------------- ------------ -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1585 .table-wrap} ------------------- ------------- ------------------- ------------- O2---C16 1.318 (2) C15---H15A 0.9900 O2---H6 0.869 (17) C15---H15B 0.9900 O1---C16 1.217 (2) C9---H9 0.9500 C16---C5 1.537 (2) C13---C14 1.535 (4) C6---C7 1.392 (2) C13---H13A 0.9900 C6---C11 1.397 (2) C13---H13B 0.9900 C6---C5 1.527 (2) C14---H14A 0.9900 C5---C12 1.538 (2) C14---H14B 0.9900 C5---C15 1.551 (3) C2---N2 1.334 (2) C8---C9 1.384 (3) C2---C3 1.387 (2) C8---C7 1.395 (2) C2---H2 0.9500 C8---H8 0.9500 N3---C1 1.340 (2) C12---C13 1.548 (3) N3---H5 0.90 (3) C12---H12A 0.9900 N3---H1 0.88 (3) C12---H12B 0.9900 N1---C4 1.334 (2) C7---H7 0.9500 N1---C1 1.352 (2) C10---C9 1.384 (3) N2---C1 1.355 (2) C10---C11 1.397 (2) C3---C4 1.380 (3) C10---H10 0.9500 C3---H3 0.9500 C11---H11 0.9500 C4---H4 0.9500 C15---C14 1.530 (3) C16---O2---H6 113.4 (19) C5---C15---H15B 111.1 O1---C16---O2 123.13 (16) H15A---C15---H15B 109.1 O1---C16---C5 123.93 (16) C10---C9---C8 119.54 (16) O2---C16---C5 112.93 (14) C10---C9---H9 120.2 C7---C6---C11 118.03 (15) C8---C9---H9 120.2 C7---C6---C5 120.77 (15) C14---C13---C12 106.50 (16) C11---C6---C5 121.20 (15) C14---C13---H13A 110.4 C6---C5---C16 109.44 (13) C12---C13---H13A 110.4 C6---C5---C12 114.81 (15) C14---C13---H13B 110.4 C16---C5---C12 109.27 (14) C12---C13---H13B 110.4 C6---C5---C15 112.84 (14) H13A---C13---H13B 108.6 C16---C5---C15 107.86 (14) C15---C14---C13 105.13 (18) C12---C5---C15 102.24 (15) C15---C14---H14A 110.7 C9---C8---C7 120.06 (17) C13---C14---H14A 110.7 C9---C8---H8 120.0 C15---C14---H14B 110.7 C7---C8---H8 120.0 C13---C14---H14B 110.7 C5---C12---C13 105.58 (17) H14A---C14---H14B 108.8 C5---C12---H12A 110.6 N2---C2---C3 123.13 (16) C13---C12---H12A 110.6 N2---C2---H2 118.4 C5---C12---H12B 110.6 C3---C2---H2 118.4 C13---C12---H12B 110.6 C1---N3---H5 120.2 (16) H12A---C12---H12B 108.8 C1---N3---H1 118.2 (16) C6---C7---C8 121.24 (16) H5---N3---H1 121 (2) C6---C7---H7 119.4 C4---N1---C1 117.03 (15) C8---C7---H7 119.4 C2---N2---C1 116.58 (15) C9---C10---C11 120.36 (17) C4---C3---C2 115.97 (16) C9---C10---H10 119.8 C4---C3---H3 122.0 C11---C10---H10 119.8 C2---C3---H3 122.0 C10---C11---C6 120.76 (17) N1---C4---C3 122.94 (16) C10---C11---H11 119.6 N1---C4---H4 118.5 C6---C11---H11 119.6 C3---C4---H4 118.5 C14---C15---C5 103.19 (17) N3---C1---N1 117.64 (16) C14---C15---H15A 111.1 N3---C1---N2 118.00 (15) C5---C15---H15A 111.1 N1---C1---N2 124.36 (16) C14---C15---H15B 111.1 ------------------- ------------- ------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2111 .table-wrap} ----------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O2---H6···N1 0.87 (2) 1.79 (2) 2.653 (2) 173 (3) N3---H5···O1 0.90 (3) 2.08 (3) 2.966 (2) 168 (2) N3---H1···N2^i^ 0.88 (3) 2.13 (3) 3.006 (2) 173 (2) ----------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- ---------- ---------- ----------- ------------- O2---H6⋯N1 0.87 (2) 1.79 (2) 2.653 (2) 173 (3) N3---H5⋯O1 0.90 (3) 2.08 (3) 2.966 (2) 168 (2) N3---H1⋯N2^i^ 0.88 (3) 2.13 (3) 3.006 (2) 173 (2) Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.850621
2011-2-02
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052005/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 2; 67(Pt 3):o552-o553", "authors": [ { "first": "Guangwen", "last": "He" }, { "first": "Srinivasulu", "last": "Aitipamula" }, { "first": "Pui Shan", "last": "Chow" }, { "first": "Reginald B. H.", "last": "Tan" } ] }
PMC3052006
Related literature {#sec1} ================== For hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb1]). For related structures, see: Kargar *et al.* (2009[@bb3], 2010[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~21~H~26~N~2~O~4~*M* *~r~* = 370.44Monoclinic,*a* = 10.660 (2) Å*b* = 21.742 (4) Å*c* = 9.2767 (19) Åβ = 108.03 (3)°*V* = 2044.5 (7) Å^3^*Z* = 4Mo *K*α radiationμ = 0.08 mm^−1^*T* = 296 K0.23 × 0.15 × 0.08 mm ### Data collection {#sec2.1.2} Stoe IPDS 2T Image Plate diffractometerAbsorption correction: multi-scan (*MULABS* in *PLATON*; Blessing, 1995[@bb2]) *T* ~min~ = 0.965, *T* ~max~ = 1.0007094 measured reflections3375 independent reflections967 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.054 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.031*wR*(*F* ^2^) = 0.058*S* = 0.573375 reflections246 parametersH-atom parameters constrainedΔρ~max~ = 0.08 e Å^−3^Δρ~min~ = −0.11 e Å^−3^ {#d5e417} Data collection: *X-AREA* (Stoe & Cie, 2009[@bb7]); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004776/tk2716sup1.cif](http://dx.doi.org/10.1107/S1600536811004776/tk2716sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004776/tk2716Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004776/tk2716Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?tk2716&file=tk2716sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?tk2716sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?tk2716&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [TK2716](http://scripts.iucr.org/cgi-bin/sendsup?tk2716)). HK and EP thank PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University, Tehran. MNT thanks Sargodha University for the research facilities. RK thanks the Chemistry Departmet, University of Isfahan, for the the use of Stoe IPDS 2T diffractometer facility Comment ======= Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of potentially tetradenate Schiff bases (Kargar *et al.*, 2009; Kargar *et al.* 2010), we have determined the crystal structure of the title compound. The asymmetric unit of the title compound, Fig. 1, comprises a potentially tetradenate Schiff base ligand. The bond lengths are comparable to previously reported structures (Kargar *et al.*, 2009, Kargar *et al.*, 2010). The dihedral angle between the two benzene rings is 30.47 (15) °. Strong intramolecular O---H···N hydrogen bonds (Table 1) generate two *S(6)* ring motifs (Bernstein *et al.*, 1995). Experimental {#experimental} ============ The title compound was synthesized by adding 5-methoxy-salicylaldehyde (4 mmol) to a solution of 2,2-dimethyl-1,3-propanediamine (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for 30 min. The resultant yellow solution was filtered. Yellow crystals were obtained by slow evaporation of its ethanol solution at room temperature over several days. Refinement {#refinement} ========== H atoms of the hydroxy groups were located in a difference Fourier map and constrained at those positions with *U*~iso~(H) = 1.5 *U*~eq~(O), see Table 1 for distances. The remaining H atoms were positioned geometrically with C---H = 0.93--0.97 Å and included in a riding model approximation with *U*~iso~ (H) = 1.2 or 1.5 *U*~eq~ (C). A rotating group model was used only for the methyl groups of the methoxy substituents. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines. ::: ![](e-67-0o614-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e129 .table-wrap} ------------------------- --------------------------------------- C~21~H~26~N~2~O~4~ *F*(000) = 792 *M~r~* = 370.44 *D*~x~ = 1.204 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 3220 reflections *a* = 10.660 (2) Å θ = 2.0--24.2° *b* = 21.742 (4) Å µ = 0.08 mm^−1^ *c* = 9.2767 (19) Å *T* = 296 K β = 108.03 (3)° Plate, yellow *V* = 2044.5 (7) Å^3^ 0.23 × 0.15 × 0.08 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e259 .table-wrap} -------------------------------------------------------------------------- ------------------------------------- Stoe IPDS 2T Image Plate diffractometer 3375 independent reflections Radiation source: fine-focus sealed tube 967 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.054 Detector resolution: 0.15 mm pixels mm^-1^ θ~max~ = 25.0°, θ~min~ = 2.0° ω scans *h* = −12→12 Absorption correction: multi-scan (*MULABS* in *PLATON*; Blessing, 1995) *k* = −22→25 *T*~min~ = 0.965, *T*~max~ = 1.000 *l* = −11→10 7094 measured reflections -------------------------------------------------------------------------- ------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e382 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.031 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.058 H-atom parameters constrained *S* = 0.57 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0172*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3375 reflections (Δ/σ)~max~ = 0.001 246 parameters Δρ~max~ = 0.08 e Å^−3^ 0 restraints Δρ~min~ = −0.11 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e536 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e635 .table-wrap} ------ --------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 −0.05846 (17) 0.01529 (7) 0.75824 (19) 0.0807 (6) H1 −0.0997 0.0250 0.6727 0.121\* O2 −0.1706 (2) 0.31943 (8) 0.4769 (2) 0.0874 (6) H2 −0.2189 0.2892 0.4703 0.131\* O3 0.4634 (2) 0.07957 (10) 0.8988 (2) 0.1064 (8) O4 0.3081 (2) 0.30533 (10) 0.9255 (3) 0.0936 (7) N1 −0.1073 (3) 0.07562 (9) 0.5057 (3) 0.0629 (7) N2 −0.2263 (3) 0.21006 (10) 0.5539 (3) 0.0662 (7) C1 0.0688 (3) 0.03241 (12) 0.7858 (4) 0.0601 (8) C2 0.1605 (3) 0.01492 (12) 0.9224 (3) 0.0685 (8) H2A 0.1336 −0.0083 0.9917 0.082\* C3 0.2893 (3) 0.03161 (12) 0.9549 (3) 0.0750 (9) H3A 0.3502 0.0195 1.0460 0.090\* C4 0.3300 (3) 0.06678 (14) 0.8524 (4) 0.0720 (9) C5 0.2413 (3) 0.08523 (12) 0.7179 (3) 0.0705 (9) H5A 0.2691 0.1088 0.6498 0.085\* C6 0.1091 (3) 0.06829 (11) 0.6844 (3) 0.0557 (8) C7 0.0141 (3) 0.08981 (11) 0.5447 (3) 0.0621 (8) H7A 0.0435 0.1151 0.4811 0.075\* C8 −0.1960 (3) 0.10405 (11) 0.3705 (3) 0.0689 (8) H8A −0.2106 0.0760 0.2856 0.083\* H8B −0.1554 0.1410 0.3468 0.083\* C9 −0.3286 (3) 0.12057 (12) 0.3915 (3) 0.0647 (8) C10 −0.3096 (2) 0.15556 (12) 0.5410 (3) 0.0686 (8) H10A −0.3951 0.1680 0.5473 0.082\* H10B −0.2698 0.1282 0.6255 0.082\* C11 −0.1179 (3) 0.21062 (13) 0.6614 (3) 0.0647 (9) H11A −0.0969 0.1777 0.7287 0.078\* C12 −0.0261 (3) 0.26170 (13) 0.6810 (3) 0.0550 (8) C13 −0.0544 (3) 0.31384 (15) 0.5877 (3) 0.0673 (9) C14 0.0387 (4) 0.36057 (13) 0.6113 (4) 0.0794 (11) H14A 0.0205 0.3954 0.5500 0.095\* C15 0.1556 (4) 0.35591 (14) 0.7224 (4) 0.0804 (10) H15A 0.2167 0.3876 0.7359 0.096\* C16 0.1861 (4) 0.30500 (14) 0.8166 (4) 0.0677 (9) C17 0.0946 (3) 0.25820 (12) 0.7948 (3) 0.0628 (8) H17A 0.1140 0.2238 0.8573 0.075\* C18 −0.4084 (2) 0.06177 (12) 0.3967 (3) 0.0982 (10) H18A −0.3598 0.0366 0.4803 0.147\* H18B −0.4234 0.0393 0.3038 0.147\* H18C −0.4916 0.0729 0.4092 0.147\* C19 −0.4063 (3) 0.16042 (12) 0.2556 (3) 0.0975 (10) H19A −0.3572 0.1971 0.2522 0.146\* H19B −0.4901 0.1713 0.2666 0.146\* H19C −0.4199 0.1376 0.1634 0.146\* C20 0.5161 (3) 0.11165 (14) 0.7998 (4) 0.1184 (13) H20A 0.6098 0.1155 0.8448 0.178\* H20B 0.4771 0.1518 0.7810 0.178\* H20C 0.4974 0.0896 0.7059 0.178\* C21 0.3454 (3) 0.25225 (13) 1.0160 (3) 0.1204 (13) H21A 0.4318 0.2581 1.0868 0.181\* H21B 0.3463 0.2175 0.9525 0.181\* H21C 0.2834 0.2450 1.0703 0.181\* ------ --------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1363 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0710 (15) 0.0916 (13) 0.0825 (14) −0.0025 (12) 0.0279 (14) 0.0249 (11) O2 0.1028 (17) 0.0767 (14) 0.0822 (16) 0.0121 (13) 0.0279 (14) 0.0188 (12) O3 0.0738 (17) 0.154 (2) 0.0852 (18) −0.0283 (16) 0.0154 (16) 0.0102 (14) O4 0.0945 (18) 0.0784 (16) 0.0994 (19) −0.0159 (14) 0.0174 (16) 0.0104 (14) N1 0.0633 (17) 0.0646 (15) 0.0623 (18) 0.0079 (15) 0.0216 (16) 0.0016 (13) N2 0.078 (2) 0.0597 (16) 0.0666 (19) 0.0014 (16) 0.0305 (16) −0.0021 (14) C1 0.060 (2) 0.0550 (19) 0.070 (2) 0.0004 (17) 0.027 (2) −0.0008 (17) C2 0.081 (2) 0.070 (2) 0.062 (2) 0.006 (2) 0.034 (2) 0.0144 (17) C3 0.076 (3) 0.085 (2) 0.063 (2) 0.003 (2) 0.021 (2) 0.0031 (18) C4 0.061 (2) 0.084 (2) 0.073 (3) −0.015 (2) 0.024 (2) −0.007 (2) C5 0.069 (2) 0.082 (2) 0.064 (2) −0.0074 (19) 0.025 (2) 0.0053 (18) C6 0.062 (2) 0.0521 (18) 0.059 (2) 0.0031 (17) 0.027 (2) 0.0024 (16) C7 0.079 (2) 0.0551 (19) 0.063 (2) −0.0008 (19) 0.036 (2) 0.0015 (16) C8 0.072 (2) 0.077 (2) 0.060 (2) 0.0013 (18) 0.025 (2) −0.0030 (17) C9 0.058 (2) 0.0713 (19) 0.061 (2) −0.0044 (18) 0.0138 (19) −0.0057 (17) C10 0.058 (2) 0.082 (2) 0.071 (2) 0.0058 (18) 0.0274 (18) −0.0003 (17) C11 0.086 (3) 0.058 (2) 0.062 (2) 0.003 (2) 0.039 (2) −0.0006 (17) C12 0.071 (2) 0.0477 (18) 0.053 (2) 0.0033 (18) 0.0293 (19) −0.0010 (17) C13 0.080 (3) 0.067 (2) 0.061 (2) 0.012 (2) 0.031 (2) 0.001 (2) C14 0.112 (3) 0.051 (2) 0.089 (3) 0.004 (2) 0.050 (3) 0.017 (2) C15 0.105 (3) 0.057 (2) 0.092 (3) −0.007 (2) 0.048 (3) 0.002 (2) C16 0.086 (3) 0.057 (2) 0.066 (2) 0.007 (2) 0.032 (2) 0.0060 (19) C17 0.082 (2) 0.0454 (19) 0.065 (2) −0.0025 (19) 0.029 (2) 0.0042 (16) C18 0.085 (2) 0.099 (2) 0.102 (3) −0.023 (2) 0.017 (2) −0.015 (2) C19 0.093 (2) 0.108 (2) 0.078 (2) 0.017 (2) 0.006 (2) 0.012 (2) C20 0.082 (3) 0.161 (3) 0.113 (3) −0.043 (2) 0.032 (2) 0.014 (2) C21 0.114 (3) 0.098 (3) 0.119 (3) −0.014 (2) −0.008 (2) 0.028 (2) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1859 .table-wrap} -------------------- ------------ ----------------------- ------------- O1---C1 1.353 (3) C9---C19 1.543 (3) O1---H1 0.8074 C9---C18 1.544 (3) O2---C13 1.348 (3) C10---H10A 0.9700 O2---H2 0.8251 C10---H10B 0.9700 O3---C4 1.381 (3) C11---C12 1.454 (3) O3---C20 1.402 (3) C11---H11A 0.9300 O4---C16 1.377 (3) C12---C17 1.391 (3) O4---C21 1.410 (3) C12---C13 1.401 (3) N1---C7 1.269 (3) C13---C14 1.390 (3) N1---C8 1.455 (3) C14---C15 1.353 (4) N2---C11 1.272 (3) C14---H14A 0.9300 N2---C10 1.463 (3) C15---C16 1.385 (3) C1---C6 1.389 (3) C15---H15A 0.9300 C1---C2 1.392 (3) C16---C17 1.380 (3) C2---C3 1.360 (3) C17---H17A 0.9300 C2---H2A 0.9300 C18---H18A 0.9600 C3---C4 1.390 (3) C18---H18B 0.9600 C3---H3A 0.9300 C18---H18C 0.9600 C4---C5 1.371 (3) C19---H19A 0.9600 C5---C6 1.395 (3) C19---H19B 0.9600 C5---H5A 0.9300 C19---H19C 0.9600 C6---C7 1.453 (3) C20---H20A 0.9600 C7---H7A 0.9300 C20---H20B 0.9600 C8---C9 1.528 (3) C20---H20C 0.9600 C8---H8A 0.9700 C21---H21A 0.9600 C8---H8B 0.9700 C21---H21B 0.9600 C9---C10 1.539 (3) C21---H21C 0.9600 C1---O1---H1 108.8 N2---C11---C12 121.2 (3) C13---O2---H2 112.9 N2---C11---H11A 119.4 C4---O3---C20 118.6 (3) C12---C11---H11A 119.4 C16---O4---C21 117.4 (2) C17---C12---C13 119.0 (3) C7---N1---C8 118.4 (2) C17---C12---C11 118.8 (3) C11---N2---C10 116.9 (3) C13---C12---C11 122.2 (3) O1---C1---C6 121.9 (3) O2---C13---C14 119.8 (3) O1---C1---C2 118.5 (3) O2---C13---C12 121.0 (3) C6---C1---C2 119.5 (3) C14---C13---C12 119.2 (3) C3---C2---C1 120.3 (3) C15---C14---C13 120.6 (3) C3---C2---H2A 119.8 C15---C14---H14A 119.7 C1---C2---H2A 119.8 C13---C14---H14A 119.7 C2---C3---C4 120.1 (3) C14---C15---C16 121.5 (3) C2---C3---H3A 119.9 C14---C15---H15A 119.3 C4---C3---H3A 119.9 C16---C15---H15A 119.3 C5---C4---O3 125.3 (3) O4---C16---C17 125.1 (3) C5---C4---C3 120.7 (3) O4---C16---C15 116.3 (3) O3---C4---C3 114.0 (3) C17---C16---C15 118.6 (3) C4---C5---C6 119.3 (3) C16---C17---C12 121.1 (3) C4---C5---H5A 120.3 C16---C17---H17A 119.4 C6---C5---H5A 120.3 C12---C17---H17A 119.4 C1---C6---C5 120.0 (3) C9---C18---H18A 109.5 C1---C6---C7 120.5 (3) C9---C18---H18B 109.5 C5---C6---C7 119.4 (3) H18A---C18---H18B 109.5 N1---C7---C6 123.0 (3) C9---C18---H18C 109.5 N1---C7---H7A 118.5 H18A---C18---H18C 109.5 C6---C7---H7A 118.5 H18B---C18---H18C 109.5 N1---C8---C9 111.7 (2) C9---C19---H19A 109.5 N1---C8---H8A 109.3 C9---C19---H19B 109.5 C9---C8---H8A 109.3 H19A---C19---H19B 109.5 N1---C8---H8B 109.3 C9---C19---H19C 109.5 C9---C8---H8B 109.3 H19A---C19---H19C 109.5 H8A---C8---H8B 107.9 H19B---C19---H19C 109.5 C8---C9---C10 111.2 (2) O3---C20---H20A 109.5 C8---C9---C19 108.1 (2) O3---C20---H20B 109.5 C10---C9---C19 110.3 (2) H20A---C20---H20B 109.5 C8---C9---C18 110.4 (2) O3---C20---H20C 109.5 C10---C9---C18 107.6 (2) H20A---C20---H20C 109.5 C19---C9---C18 109.2 (2) H20B---C20---H20C 109.5 N2---C10---C9 112.4 (2) O4---C21---H21A 109.5 N2---C10---H10A 109.1 O4---C21---H21B 109.5 C9---C10---H10A 109.1 H21A---C21---H21B 109.5 N2---C10---H10B 109.1 O4---C21---H21C 109.5 C9---C10---H10B 109.1 H21A---C21---H21C 109.5 H10A---C10---H10B 107.9 H21B---C21---H21C 109.5 O1---C1---C2---C3 −179.5 (2) C11---N2---C10---C9 −116.9 (3) C6---C1---C2---C3 −1.5 (4) C8---C9---C10---N2 54.6 (3) C1---C2---C3---C4 0.6 (4) C19---C9---C10---N2 −65.3 (3) C20---O3---C4---C5 −2.9 (4) C18---C9---C10---N2 175.7 (2) C20---O3---C4---C3 176.3 (3) C10---N2---C11---C12 177.96 (19) C2---C3---C4---C5 0.2 (4) N2---C11---C12---C17 −176.1 (3) C2---C3---C4---O3 −179.0 (3) N2---C11---C12---C13 3.0 (4) O3---C4---C5---C6 179.1 (3) C17---C12---C13---O2 −179.4 (2) C3---C4---C5---C6 −0.1 (4) C11---C12---C13---O2 1.5 (4) O1---C1---C6---C5 179.6 (2) C17---C12---C13---C14 0.1 (3) C2---C1---C6---C5 1.7 (4) C11---C12---C13---C14 −179.0 (2) O1---C1---C6---C7 1.1 (4) O2---C13---C14---C15 179.7 (3) C2---C1---C6---C7 −176.8 (2) C12---C13---C14---C15 0.2 (4) C4---C5---C6---C1 −0.9 (4) C13---C14---C15---C16 −0.4 (5) C4---C5---C6---C7 177.6 (3) C21---O4---C16---C17 3.8 (4) C8---N1---C7---C6 174.6 (2) C21---O4---C16---C15 −175.7 (2) C1---C6---C7---N1 −2.5 (4) C14---C15---C16---O4 179.9 (3) C5---C6---C7---N1 179.0 (3) C14---C15---C16---C17 0.3 (4) C7---N1---C8---C9 −140.7 (2) O4---C16---C17---C12 −179.6 (2) N1---C8---C9---C10 48.8 (3) C15---C16---C17---C12 −0.1 (4) N1---C8---C9---C19 170.1 (2) C13---C12---C17---C16 −0.1 (4) N1---C8---C9---C18 −70.5 (3) C11---C12---C17---C16 179.0 (2) -------------------- ------------ ----------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2779 .table-wrap} --------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1···N1 0.81 1.88 2.593 (3) 147 O2---H2···N2 0.83 1.90 2.604 (3) 143 --------------- --------- --------- ----------- --------------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------- --------- ------- ----------- ------------- O1---H1⋯N1 0.81 1.88 2.593 (3) 147 O2---H2⋯N2 0.83 1.90 2.604 (3) 143 :::
PubMed Central
2024-06-05T04:04:17.856325
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052006/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o614", "authors": [ { "first": "Hadi", "last": "Kargar" }, { "first": "Reza", "last": "Kia" }, { "first": "Elham", "last": "Pahlavani" }, { "first": "Muhammad Nawaz", "last": "Tahir" } ] }
PMC3052008
Related literature {#sec1} ================== For the biological activity of imidazole derivatives, see: Biftu *et al.* (2006[@bb2]); Elhakmoui *et al.* (1994[@bb4]); Fisher & Lusi (1972[@bb5]); Gudmundsson & Johns (2003[@bb6], 2007[@bb7]); Kaminski *et al.* (1989[@bb8]); Rewankar *et al.* (1975[@bb9]); Rupert *et al.* (2003[@bb10]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein *et al.* (1995[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~10~H~6~F~3~N~3~*M* *~r~* = 225.18Monoclinic,*a* = 5.6871 (3) Å*b* = 8.5437 (5) Å*c* = 20.5403 (13) Åβ = 96.653 (4)°*V* = 991.31 (10) Å^3^*Z* = 4Mo *K*α radiationμ = 0.13 mm^−1^*T* = 297 K0.43 × 0.22 × 0.07 mm ### Data collection {#sec2.1.2} Bruker APEXII DUO CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb3]) *T* ~min~ = 0.945, *T* ~max~ = 0.99110175 measured reflections2820 independent reflections1720 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.029 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.049*wR*(*F* ^2^) = 0.130*S* = 1.032820 reflections176 parametersH-atom parameters constrainedΔρ~max~ = 0.13 e Å^−3^Δρ~min~ = −0.22 e Å^−3^ {#d5e486} Data collection: *APEX2* (Bruker, 2009[@bb3]); cell refinement: *SAINT* (Bruker, 2009[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb12]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003928/fl2329sup1.cif](http://dx.doi.org/10.1107/S1600536811003928/fl2329sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003928/fl2329Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003928/fl2329Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?fl2329&file=fl2329sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?fl2329sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?fl2329&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [FL2329](http://scripts.iucr.org/cgi-bin/sendsup?fl2329)). HKF and MMR thank USM for the Research University Grant (No. 1001/PFIZIK/ 811160). Comment ======= The imidazole nucleus is a widely used pharmacophore in medicinal compounds due to its broad spectrum of biological activities. Moreover imidazole derivatives are isosteres of naturally-occurring nucleotides which allow them to interact easily with the biopolymers of the living systems. It has been known that imidazo\[1,2-a\]pyridine derivatives exhibit diverse biological activities (Gudmundsson & Johns, 2003) and were used as antiviral (Elhakmoui *et al.*, 1994), antiulcer (Kaminski *et al.*, 1989), antibacterial (Rewankar *et al.*, 1975), antifungal (Fisher & Lusi, 1972), antiprotozoal (Biftu *et al.*, 2006), antiherpes (Gudmundsson & Johns, 2007) and anti-inflammatory (Rupert *et al.*, 2003) compounds. All bond lengths and angles in the compound are within normal range. The imidazo\[1,2-a\] pyridine group is planar with maximum deviation of -0.021 (1)Å for atom N1 (Fig. 1). The F atoms in the trifluoromethyl group and the methyl H atoms are disordered over two positions with refined site occupancies of 0.68 (1):0.32 (1). In the crystal structure, the molecules form infinite chains through C1---H1A···N3^i^ and C4---H4A···N2^ii^ (Table 1) interactions. These interactions also form R^2^~2~(12) and R^2^~2~(8) hydrogen ring motifs, respectively (Bernstein *et al.*, 1995). The chains are stacked along the *a*-axis (Fig. 2). Experimental {#experimental} ============ A mixture of 5-(trifluoromethyl) pyridin-2-amine (0.01mol) and dimethylacetamide dimethyl acetal (0.03mol) was refluxed for 24 hr at 900 C. The resultant product was recrystallized from ethanol. The product so obtained (0.01mol) was refluxed with bromoacetonitrile (0.01mol) in toluene at 600 C. The product was then removed by evaporation of toluene under reduced pressure and it was isolated by column chromatography using ethyl acetate as an eluent. It was then recrystallized by slow evaporation from ethanol to give crystals suitable for x-ray analysis. Refinement {#refinement} ========== H atoms were placed in calculated positions \[C--H = 0.93--0.96 Å\] and refined as riding with U~iso~(H) = 1.2~eq~(C) or 1.5U~eq~(methyl C). A rotating group model was used for the methyl group. The F atoms in trifluoromethyl group and the H atoms in methyl group are disordered over two position with refined site occupancies of 0.68 (1):0.32 (1). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show minor components. ::: ![](e-67-0o573-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of (I) viewed along the a axis showing molecular chains stacked down the a-axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity. Only major components are shown. ::: ![](e-67-0o573-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e146 .table-wrap} ------------------------- --------------------------------------- C~10~H~6~F~3~N~3~ *F*(000) = 456 *M~r~* = 225.18 *D*~x~ = 1.509 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 2837 reflections *a* = 5.6871 (3) Å θ = 2.6--25.3° *b* = 8.5437 (5) Å µ = 0.13 mm^−1^ *c* = 20.5403 (13) Å *T* = 297 K β = 96.653 (4)° Plate, colourless *V* = 991.31 (10) Å^3^ 0.43 × 0.22 × 0.07 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e276 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEXII DUO CCD area-detector diffractometer 2820 independent reflections Radiation source: fine-focus sealed tube 1720 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.029 φ and ω scans θ~max~ = 29.8°, θ~min~ = 2.6° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −7→7 *T*~min~ = 0.945, *T*~max~ = 0.991 *k* = −11→11 10175 measured reflections *l* = −28→28 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e393 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.049 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.130 H-atom parameters constrained *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0575*P*)^2^ + 0.0655*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2820 reflections (Δ/σ)~max~ \< 0.001 176 parameters Δρ~max~ = 0.13 e Å^−3^ 0 restraints Δρ~min~ = −0.22 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e550 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2^, conventional *R*-factors *R* are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2^ are statistically about twice as large as those based on F, and R-- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e617 .table-wrap} ----- -------------- -------------- ------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) C10 0.2247 (4) 0.2282 (2) 0.30231 (9) 0.0633 (5) F1 0.1174 (15) 0.0950 (4) 0.2794 (3) 0.1138 (18) 0.675 (13) F2 0.3304 (7) 0.2905 (11) 0.2575 (3) 0.134 (2) 0.675 (13) F3 0.0427 (9) 0.3205 (5) 0.3079 (2) 0.0858 (13) 0.675 (13) F1A 0.246 (3) 0.1157 (11) 0.2609 (4) 0.097 (3) 0.325 (13) F2A 0.329 (2) 0.3390 (12) 0.2678 (6) 0.131 (4) 0.325 (13) F3A 0.0178 (17) 0.271 (2) 0.3077 (6) 0.141 (5) 0.325 (13) N1 0.46963 (19) 0.24647 (12) 0.47742 (6) 0.0410 (3) N2 0.7873 (2) 0.15187 (14) 0.54049 (6) 0.0528 (3) N3 0.1553 (2) 0.49667 (17) 0.57317 (7) 0.0660 (4) C1 0.3230 (3) 0.27046 (16) 0.42094 (8) 0.0447 (4) H1A 0.1888 0.3328 0.4206 0.054\* C2 0.3776 (3) 0.20129 (17) 0.36531 (7) 0.0478 (4) C3 0.5809 (3) 0.10468 (18) 0.36599 (8) 0.0541 (4) H3A 0.6161 0.0581 0.3274 0.065\* C4 0.7237 (3) 0.07997 (17) 0.42235 (8) 0.0530 (4) H4A 0.8554 0.0153 0.4228 0.064\* C5 0.6712 (2) 0.15294 (16) 0.48021 (8) 0.0455 (4) C6 0.6634 (3) 0.24616 (17) 0.57735 (8) 0.0486 (4) C7 0.4662 (2) 0.30593 (16) 0.54019 (7) 0.0432 (3) C8 0.2918 (3) 0.40991 (17) 0.55779 (7) 0.0468 (4) C9 0.7402 (3) 0.2770 (2) 0.64782 (8) 0.0654 (5) H9A 0.7533 0.1797 0.6713 0.098\* 0.675 (13) H9B 0.6256 0.3425 0.6654 0.098\* 0.675 (13) H9C 0.8910 0.3287 0.6523 0.098\* 0.675 (13) H9D 0.8904 0.2278 0.6603 0.098\* 0.325 (13) H9E 0.6250 0.2353 0.6738 0.098\* 0.325 (13) H9F 0.7547 0.3878 0.6549 0.098\* 0.325 (13) ----- -------------- -------------- ------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1004 .table-wrap} ----- ------------- ------------- ------------- ------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C10 0.0701 (12) 0.0666 (11) 0.0522 (10) 0.0091 (10) 0.0024 (9) −0.0014 (8) F1 0.131 (3) 0.0749 (15) 0.117 (3) 0.001 (2) −0.065 (3) −0.0194 (17) F2 0.085 (2) 0.255 (7) 0.0643 (18) 0.003 (3) 0.0218 (15) 0.049 (3) F3 0.093 (3) 0.095 (2) 0.0627 (18) 0.0467 (16) −0.0183 (18) −0.0041 (12) F1A 0.116 (6) 0.093 (4) 0.071 (3) 0.011 (4) −0.032 (4) −0.018 (3) F2A 0.213 (10) 0.090 (5) 0.082 (5) −0.027 (4) −0.018 (5) 0.050 (3) F3A 0.039 (3) 0.302 (15) 0.081 (5) 0.003 (6) 0.002 (3) 0.042 (8) N1 0.0356 (6) 0.0390 (6) 0.0485 (7) 0.0048 (5) 0.0053 (5) 0.0016 (5) N2 0.0445 (7) 0.0524 (7) 0.0604 (8) 0.0094 (6) 0.0009 (6) 0.0029 (6) N3 0.0590 (8) 0.0662 (9) 0.0748 (10) 0.0127 (7) 0.0158 (7) −0.0053 (7) C1 0.0389 (7) 0.0421 (7) 0.0524 (9) 0.0057 (6) 0.0024 (7) 0.0051 (6) C2 0.0468 (8) 0.0463 (8) 0.0498 (9) 0.0012 (6) 0.0043 (7) 0.0004 (6) C3 0.0525 (9) 0.0530 (9) 0.0580 (10) 0.0038 (7) 0.0117 (8) −0.0084 (7) C4 0.0432 (8) 0.0486 (8) 0.0680 (10) 0.0103 (7) 0.0096 (8) −0.0042 (7) C5 0.0371 (7) 0.0400 (7) 0.0593 (9) 0.0067 (6) 0.0046 (7) 0.0022 (6) C6 0.0451 (8) 0.0471 (8) 0.0532 (9) 0.0008 (6) 0.0045 (7) 0.0036 (6) C7 0.0403 (7) 0.0434 (7) 0.0462 (8) 0.0040 (6) 0.0064 (6) 0.0027 (6) C8 0.0435 (8) 0.0466 (8) 0.0509 (8) 0.0023 (6) 0.0078 (7) 0.0010 (6) C9 0.0651 (11) 0.0746 (12) 0.0540 (10) 0.0025 (9) −0.0037 (9) 0.0045 (8) ----- ------------- ------------- ------------- ------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1361 .table-wrap} --------------------- -------------- ------------------- -------------- C10---F3A 1.249 (10) C2---C3 1.420 (2) C10---F2 1.273 (4) C3---C4 1.351 (2) C10---F1A 1.298 (7) C3---H3A 0.9300 C10---F3 1.316 (4) C4---C5 1.405 (2) C10---F1 1.350 (5) C4---H4A 0.9300 C10---F2A 1.359 (9) C6---C7 1.379 (2) C10---C2 1.491 (2) C6---C9 1.486 (2) N1---C1 1.3635 (19) C7---C8 1.4095 (19) N1---C7 1.3880 (18) C9---H9A 0.9600 N1---C5 1.3931 (17) C9---H9B 0.9600 N2---C5 1.3340 (19) C9---H9C 0.9600 N2---C6 1.3571 (19) C9---H9D 0.9600 N3---C8 1.1442 (17) C9---H9E 0.9600 C1---C2 1.354 (2) C9---H9F 0.9600 C1---H1A 0.9300 F3A---C10---F1A 115.7 (7) C2---C3---H3A 119.8 F2---C10---F3 104.8 (4) C3---C4---C5 119.33 (13) F2---C10---F1 109.4 (4) C3---C4---H4A 120.3 F3---C10---F1 102.0 (4) C5---C4---H4A 120.3 F3A---C10---F2A 108.3 (9) N2---C5---N1 111.00 (12) F1A---C10---F2A 95.5 (7) N2---C5---C4 130.66 (13) F3A---C10---C2 115.4 (6) N1---C5---C4 118.32 (14) F2---C10---C2 114.5 (3) N2---C6---C7 110.63 (14) F1A---C10---C2 111.4 (4) N2---C6---C9 122.40 (14) F3---C10---C2 113.7 (3) C7---C6---C9 126.97 (14) F1---C10---C2 111.5 (2) C6---C7---N1 106.29 (12) F2A---C10---C2 108.4 (5) C6---C7---C8 129.98 (14) C1---N1---C7 131.48 (12) N1---C7---C8 123.71 (13) C1---N1---C5 122.71 (12) N3---C8---C7 178.02 (17) C7---N1---C5 105.77 (12) C6---C9---H9A 109.5 C5---N2---C6 106.31 (12) C6---C9---H9B 109.5 C2---C1---N1 118.37 (13) C6---C9---H9C 109.5 C2---C1---H1A 120.8 C6---C9---H9D 109.5 N1---C1---H1A 120.8 C6---C9---H9E 109.5 C1---C2---C3 120.76 (15) H9D---C9---H9E 109.5 C1---C2---C10 119.84 (14) C6---C9---H9F 109.5 C3---C2---C10 119.40 (14) H9D---C9---H9F 109.5 C4---C3---C2 120.49 (14) H9E---C9---H9F 109.5 C4---C3---H3A 119.8 C7---N1---C1---C2 176.78 (13) C6---N2---C5---N1 −0.64 (16) C5---N1---C1---C2 −0.6 (2) C6---N2---C5---C4 177.88 (15) N1---C1---C2---C3 0.7 (2) C1---N1---C5---N2 178.33 (12) N1---C1---C2---C10 −178.43 (14) C7---N1---C5---N2 0.40 (16) F3A---C10---C2---C1 −22.2 (11) C1---N1---C5---C4 −0.4 (2) F2---C10---C2---C1 120.0 (5) C7---N1---C5---C4 −178.32 (13) F1A---C10---C2---C1 −156.7 (8) C3---C4---C5---N2 −177.24 (15) F3---C10---C2---C1 −0.4 (4) C3---C4---C5---N1 1.2 (2) F1---C10---C2---C1 −115.0 (5) C5---N2---C6---C7 0.64 (17) F2A---C10---C2---C1 99.5 (6) C5---N2---C6---C9 −178.97 (14) F3A---C10---C2---C3 158.6 (11) N2---C6---C7---N1 −0.40 (16) F2---C10---C2---C3 −59.1 (5) C9---C6---C7---N1 179.19 (14) F1A---C10---C2---C3 24.1 (8) N2---C6---C7---C8 −178.74 (14) F3---C10---C2---C3 −179.6 (3) C9---C6---C7---C8 0.8 (3) F1---C10---C2---C3 65.8 (5) C1---N1---C7---C6 −177.68 (14) F2A---C10---C2---C3 −79.7 (6) C5---N1---C7---C6 0.00 (15) C1---C2---C3---C4 0.1 (2) C1---N1---C7---C8 0.8 (2) C10---C2---C3---C4 179.24 (15) C5---N1---C7---C8 178.48 (13) C2---C3---C4---C5 −1.0 (2) --------------------- -------------- ------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1944 .table-wrap} ------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C1---H1A···N3^i^ 0.93 2.45 3.384 (2) 176 C4---H4A···N2^ii^ 0.93 2.53 3.428 (2) 163 ------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*+1; (ii) −*x*+2, −*y*, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- --------- ------- ----------- ------------- C1---H1*A*⋯N3^i^ 0.93 2.45 3.384 (2) 176 C4---H4*A*⋯N2^ii^ 0.93 2.53 3.428 (2) 163 Symmetry codes: (i) ; (ii) . ::: [^1]: ‡ Thomson Reuters ResearcherID: A-3561-2009.
PubMed Central
2024-06-05T04:04:17.862482
2011-2-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052008/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 5; 67(Pt 3):o573", "authors": [ { "first": "Hoong-Kun", "last": "Fun" }, { "first": "Mohd Mustaqim", "last": "Rosli" }, { "first": "D. J. Madhu", "last": "Kumar" }, { "first": "D. Jagadeesh", "last": "Prasad" }, { "first": "G. K.", "last": "Nagaraja" } ] }
PMC3052009
Related literature {#sec1} ================== For the biological activity of the title compound, see: Jang *et al.* (2008[@bb2]); Liu *et al.* (2008[@bb3]). For a related structure, see: Ma *et al.* (2005[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~15~H~12~O~4~·H~2~O*M* *~r~* = 274.26Monoclinic,*a* = 11.489 (2) Å*b* = 9.5903 (17) Å*c* = 12.498 (2) Åβ = 103.649 (3)°*V* = 1338.2 (4) Å^3^*Z* = 4Mo *K*α radiationμ = 0.10 mm^−1^*T* = 298 K0.12 × 0.10 × 0.10 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb5]) *T* ~min~ = 0.988, *T* ~max~ = 0.9908297 measured reflections2625 independent reflections2115 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.031 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.057*wR*(*F* ^2^) = 0.144*S* = 1.092625 reflections196 parameters5 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.33 e Å^−3^Δρ~min~ = −0.19 e Å^−3^ {#d5e513} Data collection: *SMART* (Bruker, 1997[@bb1]); cell refinement: *SAINT* (Bruker, 1997[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811006271/go2004sup1.cif](http://dx.doi.org/10.1107/S1600536811006271/go2004sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006271/go2004Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006271/go2004Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?go2004&file=go2004sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?go2004sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?go2004&checkcif=yes) Enhanced figure: [interactive version of Fig. 1](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=fignum&cnor=go2004&fignum=1) Enhanced figure: [interactive version of Fig. 2](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=fignum&cnor=go2004&fignum=2) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [GO2004](http://scripts.iucr.org/cgi-bin/sendsup?go2004)). This study was funded by the Jiangxi Provincial Department of Education (GJJ08433) and the Jiangxi Provincial Department of Science and Technology (2008ZD06100). The authors thank Professor Xianggao Meng at Hua-Zhong Normal University for the data acquisition. Comment ======= The title compound exhibits many biological activities such as tracheal relaxation effects (Liu *et al.*, 2008) and suppressing cocaine-induced extracellular dopamine release (Jang *et al.*, 2008). One (*E*)-1-(2,4-Dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one molecule bears one crystalline water molecule (Fig.1). In the molecule, the two benzene rings are not coplanar, the dihedral angle being 7.24 (16)°. The structure displays O---H···O and C---H···O hydrogen bonding (Table 1 and Fig. 2). Experimental {#experimental} ============ 2, 4-dihydroxyacetophenone (7.6 g, 0.05 mol) and 4-hydroxybenzaldehyde (8.54 g, 0.07 mol) were dissolved in diglycol (25 ml). Then 40% aq. KOH (50 ml) was added, and the reaction mixture was vigorously stirred under nitrogen atmosphere at 333 K for 2 h. The progress of the reaction was monitored by thin- layer chromatography (Si gel, developing solvent *V*(ethyl acetate)/*V*(benzene) = 1:2). The mixture was colled to room temperature and 1:1 (*v*/*v*) hydrochloric acid was added to acidize the mixture to pH=3 and a solid was obtained. After crystallized by ethanol-water, crystalline yellow needles were obtained, m.p. 472.5--474.2 K. Refinement {#refinement} ========== All the carbon-bounded hydrogen atoms were located at their ideal positions with the C---H=0.93Å and *U*~iso~(H)=1.2*U*~eq~(C). All the hydrogen atoms bonded to the oxygen atoms were located from the difference maps and refined with the restraints of O---H=0.82 (1)Å and *U*~iso~(H)=1.5*U*~eq~(O). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o732-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing for (I), with O---H···O and C---H···O interactions shown as dashed lines. ::: ![](e-67-0o732-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e139 .table-wrap} ------------------------- --------------------------------------- C~15~H~12~O~4~·H~2~O *F*(000) = 576 *M~r~* = 274.26 *D*~x~ = 1.361 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 2288 reflections *a* = 11.489 (2) Å θ = 2.7--25.3° *b* = 9.5903 (17) Å µ = 0.10 mm^−1^ *c* = 12.498 (2) Å *T* = 298 K β = 103.649 (3)° Block, yellow *V* = 1338.2 (4) Å^3^ 0.12 × 0.10 × 0.10 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e270 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART CCD area-detector diffractometer 2625 independent reflections Radiation source: fine-focus sealed tube 2115 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.031 phi and ω scans θ~max~ = 26.0°, θ~min~ = 2.7° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −14→14 *T*~min~ = 0.988, *T*~max~ = 0.990 *k* = −11→9 8297 measured reflections *l* = −15→15 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e385 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.057 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.144 H atoms treated by a mixture of independent and constrained refinement *S* = 1.09 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0569*P*)^2^ + 0.499*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2625 reflections (Δ/σ)~max~ \< 0.001 196 parameters Δρ~max~ = 0.33 e Å^−3^ 5 restraints Δρ~min~ = −0.19 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e542 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e641 .table-wrap} ----- -------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.19653 (18) 1.0001 (2) 0.07068 (17) 0.0402 (5) C2 0.10947 (18) 1.1026 (2) 0.07420 (17) 0.0412 (5) C3 0.0605 (2) 1.1156 (2) 0.16459 (19) 0.0475 (6) H3 0.0037 1.1844 0.1655 0.057\* C4 0.0950 (2) 1.0275 (2) 0.25329 (18) 0.0452 (5) C5 0.1818 (2) 0.9256 (3) 0.25306 (19) 0.0500 (6) H5 0.2061 0.8663 0.3131 0.060\* C6 0.2309 (2) 0.9138 (2) 0.16359 (19) 0.0473 (6) H6 0.2892 0.8462 0.1644 0.057\* C7 0.24678 (19) 0.9881 (2) −0.02538 (18) 0.0437 (5) C8 0.3403 (2) 0.8856 (3) −0.02910 (19) 0.0494 (6) H8 0.3588 0.8183 0.0258 0.059\* C9 0.3990 (2) 0.8858 (3) −0.10772 (19) 0.0493 (6) H9 0.3751 0.9540 −0.1613 0.059\* C10 0.49523 (19) 0.7959 (2) −0.12387 (17) 0.0431 (5) C11 0.5467 (2) 0.6925 (3) −0.05077 (19) 0.0566 (7) H11 0.5169 0.6760 0.0111 0.068\* C12 0.6406 (2) 0.6134 (3) −0.0672 (2) 0.0635 (7) H12 0.6750 0.5458 −0.0161 0.076\* C13 0.68407 (19) 0.6350 (3) −0.16102 (18) 0.0474 (6) C14 0.6341 (2) 0.7353 (3) −0.23509 (18) 0.0486 (6) H14 0.6628 0.7498 −0.2978 0.058\* C15 0.5412 (2) 0.8148 (3) −0.21662 (19) 0.0518 (6) H15 0.5080 0.8832 −0.2675 0.062\* O1 0.07099 (15) 1.19360 (19) −0.01001 (14) 0.0589 (5) H1A 0.107 (3) 1.171 (3) −0.061 (2) 0.088\* O2 0.04269 (18) 1.0443 (2) 0.33756 (14) 0.0649 (5) H2A 0.069 (3) 0.988 (3) 0.387 (2) 0.097\* O3 0.21067 (14) 1.06876 (19) −0.10709 (13) 0.0565 (5) O4 0.77775 (17) 0.5545 (2) −0.17385 (14) 0.0668 (6) H4A 0.784 (3) 0.563 (4) −0.2384 (17) 0.100\* O5 0.12061 (17) 0.6281 (2) 0.00416 (14) 0.0587 (5) H5A 0.072 (2) 0.687 (3) 0.017 (3) 0.088\* H5B 0.149 (3) 0.586 (3) 0.0630 (19) 0.088\* ----- -------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1124 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0381 (11) 0.0444 (12) 0.0430 (12) −0.0015 (9) 0.0192 (9) −0.0060 (10) C2 0.0413 (11) 0.0446 (12) 0.0415 (11) −0.0002 (10) 0.0174 (9) 0.0015 (10) C3 0.0457 (12) 0.0512 (14) 0.0524 (13) 0.0090 (11) 0.0251 (10) −0.0011 (11) C4 0.0502 (12) 0.0514 (13) 0.0409 (12) 0.0005 (10) 0.0247 (10) −0.0039 (10) C5 0.0583 (14) 0.0530 (14) 0.0436 (12) 0.0078 (11) 0.0217 (11) 0.0070 (10) C6 0.0485 (12) 0.0485 (13) 0.0497 (13) 0.0086 (10) 0.0213 (10) −0.0007 (10) C7 0.0400 (11) 0.0520 (14) 0.0432 (12) −0.0049 (10) 0.0183 (9) −0.0041 (10) C8 0.0513 (13) 0.0551 (14) 0.0483 (13) 0.0061 (11) 0.0249 (10) −0.0017 (11) C9 0.0475 (12) 0.0576 (15) 0.0485 (13) 0.0041 (11) 0.0229 (10) 0.0008 (11) C10 0.0404 (11) 0.0506 (13) 0.0431 (12) −0.0005 (10) 0.0193 (10) −0.0044 (10) C11 0.0605 (15) 0.0757 (18) 0.0437 (13) 0.0113 (13) 0.0323 (12) 0.0049 (12) C12 0.0690 (16) 0.0791 (19) 0.0495 (14) 0.0290 (15) 0.0285 (12) 0.0156 (13) C13 0.0425 (12) 0.0596 (15) 0.0446 (12) 0.0065 (11) 0.0193 (10) −0.0039 (11) C14 0.0493 (13) 0.0617 (15) 0.0427 (12) 0.0062 (11) 0.0267 (10) 0.0028 (11) C15 0.0528 (13) 0.0586 (15) 0.0507 (14) 0.0097 (11) 0.0254 (11) 0.0083 (11) O1 0.0648 (11) 0.0665 (12) 0.0538 (10) 0.0202 (9) 0.0307 (8) 0.0141 (9) O2 0.0793 (13) 0.0756 (13) 0.0531 (10) 0.0183 (10) 0.0424 (10) 0.0072 (9) O3 0.0571 (10) 0.0710 (12) 0.0492 (9) 0.0108 (8) 0.0284 (8) 0.0084 (8) O4 0.0654 (11) 0.0920 (14) 0.0512 (10) 0.0355 (10) 0.0302 (9) 0.0110 (10) O5 0.0702 (12) 0.0605 (12) 0.0539 (10) 0.0151 (9) 0.0315 (9) 0.0043 (9) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1494 .table-wrap} ------------------- ------------- ----------------------- ------------- C1---C6 1.405 (3) C9---H9 0.9300 C1---C2 1.410 (3) C10---C11 1.383 (3) C1---C7 1.454 (3) C10---C15 1.394 (3) C2---O1 1.359 (3) C11---C12 1.374 (3) C2---C3 1.382 (3) C11---H11 0.9300 C3---C4 1.375 (3) C12---C13 1.393 (3) C3---H3 0.9300 C12---H12 0.9300 C4---O2 1.340 (3) C13---C14 1.364 (3) C4---C5 1.397 (3) C13---O4 1.364 (3) C5---C6 1.371 (3) C14---C15 1.375 (3) C5---H5 0.9300 C14---H14 0.9300 C6---H6 0.9300 C15---H15 0.9300 C7---O3 1.270 (3) O1---H1A 0.867 (18) C7---C8 1.465 (3) O2---H2A 0.819 (18) C8---C9 1.316 (3) O4---H4A 0.829 (18) C8---H8 0.9300 O5---H5A 0.836 (18) C9---C10 1.453 (3) O5---H5B 0.836 (18) C6---C1---C2 116.61 (18) C8---C9---H9 115.0 C6---C1---C7 123.2 (2) C10---C9---H9 115.0 C2---C1---C7 120.24 (19) C11---C10---C15 117.1 (2) O1---C2---C3 117.03 (19) C11---C10---C9 123.66 (19) O1---C2---C1 121.81 (18) C15---C10---C9 119.2 (2) C3---C2---C1 121.2 (2) C12---C11---C10 121.7 (2) C4---C3---C2 120.5 (2) C12---C11---H11 119.1 C4---C3---H3 119.7 C10---C11---H11 119.1 C2---C3---H3 119.7 C11---C12---C13 119.6 (2) O2---C4---C3 117.5 (2) C11---C12---H12 120.2 O2---C4---C5 122.6 (2) C13---C12---H12 120.2 C3---C4---C5 119.90 (19) C14---C13---O4 122.43 (19) C6---C5---C4 119.4 (2) C14---C13---C12 119.9 (2) C6---C5---H5 120.3 O4---C13---C12 117.6 (2) C4---C5---H5 120.3 C13---C14---C15 119.7 (2) C5---C6---C1 122.4 (2) C13---C14---H14 120.1 C5---C6---H6 118.8 C15---C14---H14 120.1 C1---C6---H6 118.8 C14---C15---C10 121.9 (2) O3---C7---C1 119.85 (19) C14---C15---H15 119.0 O3---C7---C8 119.07 (19) C10---C15---H15 119.0 C1---C7---C8 121.1 (2) C2---O1---H1A 107 (2) C9---C8---C7 122.1 (2) C4---O2---H2A 111 (3) C9---C8---H8 119.0 C13---O4---H4A 108 (2) C7---C8---H8 119.0 H5A---O5---H5B 107 (3) C8---C9---C10 130.0 (2) C6---C1---C2---O1 178.7 (2) C2---C1---C7---C8 177.9 (2) C7---C1---C2---O1 −0.9 (3) O3---C7---C8---C9 8.8 (4) C6---C1---C2---C3 −0.5 (3) C1---C7---C8---C9 −170.2 (2) C7---C1---C2---C3 179.9 (2) C7---C8---C9---C10 178.4 (2) O1---C2---C3---C4 −179.8 (2) C8---C9---C10---C11 −3.0 (4) C1---C2---C3---C4 −0.6 (3) C8---C9---C10---C15 178.3 (3) C2---C3---C4---O2 −179.0 (2) C15---C10---C11---C12 1.3 (4) C2---C3---C4---C5 1.1 (4) C9---C10---C11---C12 −177.5 (2) O2---C4---C5---C6 179.5 (2) C10---C11---C12---C13 −1.5 (4) C3---C4---C5---C6 −0.6 (4) C11---C12---C13---C14 0.7 (4) C4---C5---C6---C1 −0.5 (4) C11---C12---C13---O4 179.7 (2) C2---C1---C6---C5 1.1 (3) O4---C13---C14---C15 −178.9 (2) C7---C1---C6---C5 −179.4 (2) C12---C13---C14---C15 0.1 (4) C6---C1---C7---O3 179.3 (2) C13---C14---C15---C10 −0.3 (4) C2---C1---C7---O3 −1.1 (3) C11---C10---C15---C14 −0.4 (4) C6---C1---C7---C8 −1.7 (3) C9---C10---C15---C14 178.4 (2) ------------------- ------------- ----------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2079 .table-wrap} -------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1A···O3 0.87 (2) 1.74 (2) 2.530 (2) 150 (3) O2---H2A···O5^i^ 0.82 (2) 1.83 (2) 2.644 (3) 175 (4) O4---H4A···O3^ii^ 0.83 (2) 1.95 (2) 2.776 (2) 175 (4) O5---H5A···O1^iii^ 0.84 (2) 1.99 (2) 2.802 (2) 164 (3) O5---H5B···O4^iv^ 0.84 (2) 1.97 (2) 2.785 (3) 165 (3) C9---H9···O4^v^ 0.93 2.56 3.402 (3) 151 -------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) *x*, −*y*+3/2, *z*+1/2; (ii) −*x*+1, *y*−1/2, −*z*−1/2; (iii) −*x*, −*y*+2, −*z*; (iv) −*x*+1, −*y*+1, −*z*; (v) −*x*+1, *y*+1/2, −*z*−1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- ---------- ---------- ----------- ------------- O1---H1*A*⋯O3 0.87 (2) 1.74 (2) 2.530 (2) 150 (3) O2---H2*A*⋯O5^i^ 0.82 (2) 1.83 (2) 2.644 (3) 175 (4) O4---H4*A*⋯O3^ii^ 0.83 (2) 1.95 (2) 2.776 (2) 175 (4) O5---H5*A*⋯O1^iii^ 0.84 (2) 1.99 (2) 2.802 (2) 164 (3) O5---H5*B*⋯O4^iv^ 0.84 (2) 1.97 (2) 2.785 (3) 165 (3) C9---H9⋯O4^v^ 0.93 2.56 3.402 (3) 151 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . :::
PubMed Central
2024-06-05T04:04:17.866848
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052009/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):o732", "authors": [ { "first": "Jian-Guo", "last": "Wang" }, { "first": "Lin", "last": "Wu" }, { "first": "Chan-Juan", "last": "Zhong" }, { "first": "Zhao-Hui", "last": "Ouyang" }, { "first": "De-Lian", "last": "Yi" } ] }
PMC3052010
Related literature {#sec1} ================== For background to disperse dyes, see: Freeman & Posey (1992[@bb4]); Freeman *et al.* (1997[@bb3]). For related structures, see: He *et al.* (2009[@bb5]); Maginn *et al.* (1993[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~16~H~17~ClN~4~O~2~*M* *~r~* = 332.79Monoclinic,*a* = 25.745 (2) Å*b* = 7.5774 (6) Å*c* = 18.8628 (15) Åβ = 121.795 (5)°*V* = 3127.6 (4) Å^3^*Z* = 8Mo *K*α radiationμ = 0.26 mm^−1^*T* = 110 K0.40 × 0.06 × 0.04 mm ### Data collection {#sec2.1.2} Bruker--Nonius X8 APEXII diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb7]) *T* ~min~ = 0.903, *T* ~max~ = 0.99021470 measured reflections3105 independent reflections1987 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.062 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.044*wR*(*F* ^2^) = 0.132*S* = 1.033105 reflections276 parametersAll H-atom parameters refinedΔρ~max~ = 0.30 e Å^−3^Δρ~min~ = −0.37 e Å^−3^ {#d5e343} Data collection: *APEX2* (Bruker, 2006[@bb2]); cell refinement: *SAINT* (Bruker, 2006[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994[@bb1]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008[@bb8]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S160053681100537X/ng5115sup1.cif](http://dx.doi.org/10.1107/S160053681100537X/ng5115sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100537X/ng5115Isup2.hkl](http://dx.doi.org/10.1107/S160053681100537X/ng5115Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ng5115&file=ng5115sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ng5115sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ng5115&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NG5115](http://scripts.iucr.org/cgi-bin/sendsup?ng5115)). Comment ======= It is important to investigate the structural properties of disperse dyes in solid state because the absorption and dyeing performance such as dye uptake by the fibers are dependent not only on the conformation of the solid dye but also on the interactions between fiber surface and dye in molecular level. Here, we report the crystal structure of 4-(*N*,*N*-diethylamino)-2\'-chloro-4\'-nitroazobenzene. In the title compound, C~16~H~17~ClN~4~O~2~, the aromatic rings in the azobenzene skeleton is essentially planar with respect to the plane of the azo group, although the N1---N2---C7---C8 torsion angle is -3.9 (4) °. The NO~2~ group is twisted relative to the aryl group to which it is bonded by 16.2 (4)° (O1---N3---C4---C3). In the *N*,*N*-diethylamino group, two ethyl chains tend to be sepatated as far apart as possible with one ethyl being above the aminobenzene plane and another one below both it. Experimental {#experimental} ============ The crystal was obtained by dissolving 0.5 g title compound in 50 ml acetone at room temperature and the resulting solution was covered with Parafilm plastic containing pin holes for slow evaporation of the solvent. Refinement {#refinement} ========== The hydrogen atoms were refined freely. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### ORTEP drawing of 4-(N,N-diethylamino)-2\'-chloro-4\'-nitroazobenzene showing 50% probability ellipsoids. ::: ![](e-67-0o662-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e127 .table-wrap} ----------------------- --------------------------------------- C~16~H~17~ClN~4~O~2~ *F*(000) = 1392 *M~r~* = 332.79 *D*~x~ = 1.413 Mg m^−3^ Monoclinic, *C*2/*c* Mo *K*α radiation, λ = 0.71070 Å *a* = 25.745 (2) Å Cell parameters from 4405 reflections *b* = 7.5774 (6) Å θ = 2.5--25.5° *c* = 18.8628 (15) Å µ = 0.26 mm^−1^ β = 121.795 (5)° *T* = 110 K *V* = 3127.6 (4) Å^3^ Prism, red *Z* = 8 0.40 × 0.06 × 0.04 mm ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e250 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker--Nonius X8 APEXII diffractometer 3105 independent reflections Radiation source: fine-focus sealed tube 1987 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.062 φ and ω scans θ~max~ = 26.1°, θ~min~ = 1.9° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −31→31 *T*~min~ = 0.903, *T*~max~ = 0.990 *k* = −9→8 21470 measured reflections *l* = −23→23 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e367 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.044 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.132 All H-atom parameters refined *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0616*P*)^2^ + 3.7461*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3105 reflections (Δ/σ)~max~ \< 0.001 276 parameters Δρ~max~ = 0.30 e Å^−3^ 0 restraints Δρ~min~ = −0.37 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e524 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e623 .table-wrap} ------ --------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.05101 (3) 0.47275 (10) 0.39144 (4) 0.0324 (2) O1 −0.16973 (10) 0.5393 (3) 0.13154 (12) 0.0404 (5) O2 −0.23165 (9) 0.4835 (3) 0.17351 (13) 0.0406 (6) N1 0.01886 (10) 0.2751 (3) 0.49659 (12) 0.0221 (5) N2 0.00367 (10) 0.1881 (3) 0.54089 (13) 0.0235 (5) N3 −0.18043 (11) 0.4861 (3) 0.18396 (14) 0.0312 (6) C1 −0.03294 (12) 0.3220 (3) 0.41830 (15) 0.0230 (6) C2 −0.02263 (12) 0.4170 (3) 0.36330 (16) 0.0232 (6) C3 −0.07057 (13) 0.4702 (4) 0.28604 (16) 0.0254 (6) H3 −0.0649 (13) 0.545 (4) 0.2500 (19) 0.034 (8)\* C4 −0.12889 (12) 0.4255 (3) 0.26414 (15) 0.0258 (6) C5 −0.14133 (13) 0.3303 (4) 0.31635 (16) 0.0268 (6) H5 −0.1831 (14) 0.302 (4) 0.3003 (18) 0.034 (8)\* C6 −0.09304 (12) 0.2792 (4) 0.39309 (17) 0.0248 (6) H6 −0.0984 (13) 0.214 (4) 0.4299 (18) 0.035 (8)\* C7 0.05212 (12) 0.1399 (3) 0.61996 (15) 0.0213 (6) C8 0.11401 (12) 0.1691 (3) 0.65168 (16) 0.0205 (6) H8 0.1255 (12) 0.223 (4) 0.6154 (16) 0.029 (7)\* C9 0.15720 (13) 0.1204 (3) 0.73204 (16) 0.0220 (6) H9 0.1982 (14) 0.138 (4) 0.7512 (17) 0.035 (8)\* C10 0.14028 (11) 0.0425 (3) 0.78528 (15) 0.0204 (6) C11 0.07782 (12) 0.0103 (4) 0.75163 (16) 0.0236 (6) H11 0.0638 (12) −0.040 (3) 0.7845 (17) 0.026 (7)\* C12 0.03514 (13) 0.0575 (4) 0.67093 (17) 0.0241 (6) H12 −0.0068 (13) 0.034 (3) 0.6497 (17) 0.025 (7)\* N4 0.18316 (9) −0.0024 (3) 0.86547 (13) 0.0233 (5) C13 0.24663 (12) 0.0550 (4) 0.90619 (17) 0.0251 (6) H13A 0.2599 (11) 0.074 (3) 0.9655 (17) 0.019 (7)\* H13B 0.2482 (12) 0.170 (4) 0.8836 (16) 0.023 (7)\* C14 0.28708 (14) −0.0772 (4) 0.8975 (2) 0.0293 (7) H14A 0.2819 (14) −0.196 (5) 0.917 (2) 0.053 (10)\* H14B 0.3270 (15) −0.039 (4) 0.9279 (18) 0.031 (8)\* H14C 0.2750 (13) −0.088 (4) 0.8404 (19) 0.030 (8)\* C15 0.16615 (14) −0.0922 (4) 0.91908 (17) 0.0271 (6) H15A 0.2026 (13) −0.159 (4) 0.9614 (18) 0.034 (8)\* H15B 0.1330 (11) −0.175 (3) 0.8853 (15) 0.015 (6)\* C16 0.14643 (15) 0.0348 (5) 0.96314 (19) 0.0341 (7) H16A 0.1835 (15) 0.110 (4) 1.005 (2) 0.047 (9)\* H16B 0.1328 (14) −0.027 (4) 0.994 (2) 0.044 (9)\* H16C 0.1166 (13) 0.112 (4) 0.9259 (18) 0.029 (8)\* ------ --------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1188 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0281 (4) 0.0469 (4) 0.0259 (4) 0.0027 (3) 0.0167 (3) 0.0077 (3) O1 0.0482 (14) 0.0484 (13) 0.0190 (11) 0.0144 (10) 0.0140 (10) 0.0060 (9) O2 0.0262 (12) 0.0426 (13) 0.0366 (12) 0.0003 (9) 0.0053 (10) 0.0060 (10) N1 0.0257 (12) 0.0269 (12) 0.0140 (11) 0.0030 (9) 0.0106 (10) 0.0017 (9) N2 0.0266 (13) 0.0275 (13) 0.0165 (11) 0.0023 (9) 0.0113 (10) −0.0005 (9) N3 0.0362 (15) 0.0270 (13) 0.0199 (13) 0.0060 (10) 0.0074 (11) −0.0003 (10) C1 0.0290 (15) 0.0255 (14) 0.0153 (13) 0.0025 (11) 0.0122 (12) −0.0029 (11) C2 0.0236 (14) 0.0273 (15) 0.0194 (14) 0.0027 (11) 0.0117 (12) −0.0007 (11) C3 0.0348 (16) 0.0240 (14) 0.0195 (14) 0.0058 (12) 0.0158 (13) 0.0015 (11) C4 0.0274 (15) 0.0278 (15) 0.0151 (13) 0.0070 (11) 0.0064 (12) −0.0015 (11) C5 0.0280 (16) 0.0278 (15) 0.0221 (15) 0.0012 (12) 0.0115 (13) −0.0028 (12) C6 0.0297 (16) 0.0265 (15) 0.0206 (14) 0.0008 (12) 0.0147 (13) −0.0013 (12) C7 0.0258 (15) 0.0226 (14) 0.0174 (13) 0.0031 (11) 0.0127 (12) 0.0003 (10) C8 0.0272 (15) 0.0214 (13) 0.0184 (14) 0.0005 (10) 0.0158 (12) 0.0009 (10) C9 0.0209 (14) 0.0262 (14) 0.0206 (14) −0.0018 (11) 0.0121 (12) −0.0015 (11) C10 0.0249 (14) 0.0221 (13) 0.0168 (13) 0.0042 (11) 0.0127 (11) 0.0004 (10) C11 0.0262 (15) 0.0323 (15) 0.0191 (14) 0.0010 (11) 0.0165 (12) 0.0020 (11) C12 0.0225 (15) 0.0307 (15) 0.0233 (15) −0.0004 (12) 0.0149 (13) 0.0003 (12) N4 0.0223 (12) 0.0320 (13) 0.0171 (11) 0.0015 (9) 0.0114 (10) 0.0049 (9) C13 0.0256 (15) 0.0308 (16) 0.0179 (14) 0.0004 (12) 0.0107 (12) 0.0020 (12) C14 0.0247 (17) 0.0366 (18) 0.0286 (17) 0.0031 (13) 0.0156 (14) 0.0059 (13) C15 0.0279 (16) 0.0371 (17) 0.0191 (14) 0.0053 (13) 0.0143 (13) 0.0090 (12) C16 0.0328 (18) 0.0495 (19) 0.0223 (16) 0.0079 (16) 0.0161 (15) 0.0034 (15) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1600 .table-wrap} -------------------- -------------- ---------------------- ------------ Cl1---C2 1.731 (3) C9---H9 0.93 (3) O1---N3 1.226 (3) C10---N4 1.365 (3) O2---N3 1.226 (3) C10---C11 1.405 (4) N1---N2 1.276 (3) C11---C12 1.375 (4) N1---C1 1.418 (3) C11---H11 0.95 (3) N2---C7 1.398 (3) C12---H12 0.95 (3) N3---C4 1.464 (3) N4---C13 1.458 (3) C1---C6 1.397 (4) N4---C15 1.465 (3) C1---C2 1.398 (4) C13---C14 1.514 (4) C2---C3 1.384 (4) C13---H13A 0.99 (3) C3---C4 1.373 (4) C13---H13B 0.98 (3) C3---H3 0.95 (3) C14---H14A 1.01 (3) C4---C5 1.388 (4) C14---H14B 0.92 (3) C5---C6 1.376 (4) C14---H14C 0.96 (3) C5---H5 0.98 (3) C15---C16 1.523 (4) C6---H6 0.92 (3) C15---H15A 0.99 (3) C7---C8 1.393 (4) C15---H15B 0.98 (3) C7---C12 1.396 (4) C16---H16A 1.03 (3) C8---C9 1.376 (4) C16---H16B 0.95 (3) C8---H8 0.97 (3) C16---H16C 0.93 (3) C9---C10 1.417 (4) N2---N1---C1 111.5 (2) C11---C10---C9 117.3 (2) N1---N2---C7 115.1 (2) C12---C11---C10 120.8 (2) O1---N3---O2 123.7 (2) C12---C11---H11 118.2 (17) O1---N3---C4 118.0 (2) C10---C11---H11 120.9 (17) O2---N3---C4 118.3 (2) C11---C12---C7 121.4 (3) C6---C1---C2 118.4 (2) C11---C12---H12 119.1 (16) C6---C1---N1 124.2 (2) C7---C12---H12 119.5 (16) C2---C1---N1 117.4 (2) C10---N4---C13 122.5 (2) C3---C2---C1 121.3 (3) C10---N4---C15 121.3 (2) C3---C2---Cl1 118.5 (2) C13---N4---C15 115.8 (2) C1---C2---Cl1 120.2 (2) N4---C13---C14 112.9 (2) C4---C3---C2 118.2 (3) N4---C13---H13A 105.2 (15) C4---C3---H3 119.1 (18) C14---C13---H13A 111.6 (14) C2---C3---H3 122.5 (18) N4---C13---H13B 109.2 (15) C3---C4---C5 122.6 (2) C14---C13---H13B 110.5 (15) C3---C4---N3 119.0 (2) H13A---C13---H13B 107 (2) C5---C4---N3 118.3 (2) C13---C14---H14A 108.4 (18) C6---C5---C4 118.3 (3) C13---C14---H14B 109.2 (18) C6---C5---H5 120.2 (17) H14A---C14---H14B 112 (3) C4---C5---H5 121.5 (17) C13---C14---H14C 110.1 (17) C5---C6---C1 121.2 (3) H14A---C14---H14C 109 (2) C5---C6---H6 122.2 (18) H14B---C14---H14C 109 (2) C1---C6---H6 116.6 (18) N4---C15---C16 113.0 (3) C8---C7---C12 118.5 (2) N4---C15---H15A 107.0 (16) C8---C7---N2 126.3 (2) C16---C15---H15A 109.2 (16) C12---C7---N2 115.1 (2) N4---C15---H15B 108.9 (14) C9---C8---C7 120.5 (2) C16---C15---H15B 109.6 (14) C9---C8---H8 121.5 (16) H15A---C15---H15B 109 (2) C7---C8---H8 118.0 (16) C15---C16---H16A 108.9 (18) C8---C9---C10 121.4 (2) C15---C16---H16B 111.3 (19) C8---C9---H9 118.9 (18) H16A---C16---H16B 107 (3) C10---C9---H9 119.7 (18) C15---C16---H16C 111.5 (17) N4---C10---C11 121.5 (2) H16A---C16---H16C 107 (3) N4---C10---C9 121.2 (2) H16B---C16---H16C 110 (3) C1---N1---N2---C7 −178.7 (2) N1---N2---C7---C8 −3.9 (4) N2---N1---C1---C6 0.3 (4) N1---N2---C7---C12 175.0 (2) N2---N1---C1---C2 −179.6 (2) C12---C7---C8---C9 −1.2 (4) C6---C1---C2---C3 0.9 (4) N2---C7---C8---C9 177.7 (2) N1---C1---C2---C3 −179.1 (2) C7---C8---C9---C10 −1.1 (4) C6---C1---C2---Cl1 −179.81 (19) C8---C9---C10---N4 −178.7 (2) N1---C1---C2---Cl1 0.1 (3) C8---C9---C10---C11 2.6 (4) C1---C2---C3---C4 −0.7 (4) N4---C10---C11---C12 179.5 (2) Cl1---C2---C3---C4 180.0 (2) C9---C10---C11---C12 −1.8 (4) C2---C3---C4---C5 0.2 (4) C10---C11---C12---C7 −0.5 (4) C2---C3---C4---N3 177.8 (2) C8---C7---C12---C11 2.0 (4) O1---N3---C4---C3 16.2 (4) N2---C7---C12---C11 −177.0 (2) O2---N3---C4---C3 −162.6 (2) C11---C10---N4---C13 −169.7 (2) O1---N3---C4---C5 −166.1 (2) C9---C10---N4---C13 11.6 (4) O2---N3---C4---C5 15.0 (4) C11---C10---N4---C15 2.3 (4) C3---C4---C5---C6 0.0 (4) C9---C10---N4---C15 −176.4 (2) N3---C4---C5---C6 −177.5 (2) C10---N4---C13---C14 −92.7 (3) C4---C5---C6---C1 0.2 (4) C15---N4---C13---C14 94.9 (3) C2---C1---C6---C5 −0.7 (4) C10---N4---C15---C16 −85.4 (3) N1---C1---C6---C5 179.4 (2) C13---N4---C15---C16 87.1 (3) -------------------- -------------- ---------------------- ------------ :::
PubMed Central
2024-06-05T04:04:17.871179
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052010/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o662", "authors": [ { "first": "Liangyu", "last": "Gong" }, { "first": "Lihua", "last": "Lu" } ] }
PMC3052011
Related literature {#sec1} ================== For background to the biological properties of aryl-substituted pyrazoles, see: Abdel-Aziz *et al.* (2010[@bb1], 2011[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~27~H~21~N~3~O~2~*M* *~r~* = 419.47Triclinic,*a* = 10.9995 (7) Å*b* = 11.0531 (8) Å*c* = 11.4381 (8) Åα = 95.113 (6)°β = 111.582 (6)°γ = 118.219 (7)°*V* = 1079.13 (18) Å^3^*Z* = 2Mo *K*α radiationμ = 0.08 mm^−1^*T* = 100 K0.20 × 0.15 × 0.05 mm ### Data collection {#sec2.1.2} Agilent SuperNova Dual diffractometer with Atlas detectorAbsorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010[@bb3]) *T* ~min~ = 0.984, *T* ~max~ = 0.9968250 measured reflections4779 independent reflections3346 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.033 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.053*wR*(*F* ^2^) = 0.133*S* = 1.054779 reflections291 parametersH-atom parameters constrainedΔρ~max~ = 0.21 e Å^−3^Δρ~min~ = −0.22 e Å^−3^ {#d5e448} Data collection: *CrysAlis PRO* (Agilent, 2010[@bb3]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *X-SEED* (Barbour, 2001[@bb4]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005770/xu5162sup1.cif](http://dx.doi.org/10.1107/S1600536811005770/xu5162sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005770/xu5162Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005770/xu5162Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5162&file=xu5162sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5162sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5162&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5162](http://scripts.iucr.org/cgi-bin/sendsup?xu5162)). We thank King Saud University and the University of Malaya for supporting this study. Comment ======= We have reported the antitumor activity of aryl-pyrazoles against CaCo-2 and HEP-2 cell lines (Abdel-Aziz *et al.*, 2010). Among these is the title compound (Scheme I), whose biological properties will be reported elsewhere (Abdel-Aziz *et al.*, 2011). The compound has methoxyphenylacryloyl, phenyl and tolyl substituents in the pyrazolyl ring. The methoxyphenylacryloyl substituent is twisted by 18.7 (1)° with respect to the pyrazolyl ring; the phenyl and tolyl substituents are aligned at 48.9 (1)° and 44.5 (1)° with respect to the five-membered ring (Fig. 1). Experimental {#experimental} ============ The synthesis will be reported elsewhere (Abdel-Aziz *et al.*, 2011). 3-Acetyl-5-phenyl-1-*p*-tolyl-1*H*-pyrazole-4-carbonitrile (10 mmol) was reacted with 4-methoxybenzaldehyde (10 mmol) in presence of sodium ethoxide solution (prepared by dissolving 0.23 g sodium metal in 50 ml absolute ethanol). The compound was recrystallized from an ethanol-DMF (3:1) mixture. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions \[C---H 0.95 to 0.98 Å, *U*~iso~(H) 1.2 to 1.5*U*~eq~(C)\] and were included in the refinement in the riding model approximation. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of C27H21N3O2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. ::: ![](e-67-0o694-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e125 .table-wrap} ------------------------- --------------------------------------- C~27~H~21~N~3~O~2~ *Z* = 2 *M~r~* = 419.47 *F*(000) = 440 Triclinic, *P*1 *D*~x~ = 1.291 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 10.9995 (7) Å Cell parameters from 2764 reflections *b* = 11.0531 (8) Å θ = 2.2--29.3° *c* = 11.4381 (8) Å µ = 0.08 mm^−1^ α = 95.113 (6)° *T* = 100 K β = 111.582 (6)° Prism, colorless γ = 118.219 (7)° 0.20 × 0.15 × 0.05 mm *V* = 1079.13 (18) Å^3^ ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e261 .table-wrap} ------------------------------------------------------------------- -------------------------------------- Agilent SuperNova Dual diffractometer with Atlas detector 4779 independent reflections Radiation source: SuperNova (Mo) X-ray Source 3346 reflections with *I* \> 2σ(*I*) Mirror *R*~int~ = 0.033 Detector resolution: 10.4041 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 2.2° ω scan *h* = −10→13 Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) *k* = −13→14 *T*~min~ = 0.984, *T*~max~ = 0.996 *l* = −14→14 8250 measured reflections ------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e381 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.053 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.133 H-atom parameters constrained *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0431*P*)^2^ + 0.3112*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4779 reflections (Δ/σ)~max~ = 0.001 291 parameters Δρ~max~ = 0.21 e Å^−3^ 0 restraints Δρ~min~ = −0.22 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e540 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.38684 (16) 0.57825 (15) 0.44798 (13) 0.0300 (3) O2 0.12051 (18) 0.40793 (16) 1.05036 (14) 0.0367 (4) N1 0.23698 (18) 0.80105 (17) 0.43686 (15) 0.0234 (4) N2 0.24257 (18) 0.88927 (17) 0.36089 (15) 0.0224 (4) N3 0.5147 (2) 0.73362 (19) 0.22677 (18) 0.0346 (4) C1 0.3312 (2) 0.9656 (2) 0.19190 (18) 0.0240 (4) C2 0.4740 (2) 1.0450 (2) 0.1918 (2) 0.0279 (4) H2 0.5633 1.0516 0.2562 0.033\* C3 0.4859 (3) 1.1146 (2) 0.0974 (2) 0.0333 (5) H3 0.5835 1.1689 0.0975 0.040\* C4 0.3566 (3) 1.1051 (2) 0.0037 (2) 0.0345 (5) H4 0.3654 1.1535 −0.0602 0.041\* C5 0.2142 (3) 1.0253 (2) 0.0027 (2) 0.0351 (5) H5 0.1252 1.0183 −0.0626 0.042\* C6 0.2004 (2) 0.9555 (2) 0.09631 (19) 0.0296 (5) H6 0.1024 0.9011 0.0954 0.036\* C7 0.3174 (2) 0.8880 (2) 0.28932 (18) 0.0232 (4) C8 0.3647 (2) 0.7940 (2) 0.32243 (18) 0.0231 (4) C9 0.3105 (2) 0.7419 (2) 0.41342 (18) 0.0230 (4) C10 0.4468 (2) 0.7579 (2) 0.26995 (19) 0.0253 (4) C11 0.1709 (2) 0.9692 (2) 0.36361 (17) 0.0219 (4) C12 0.2558 (2) 1.1174 (2) 0.39088 (18) 0.0242 (4) H12 0.3621 1.1678 0.4095 0.029\* C13 0.1838 (2) 1.1919 (2) 0.39070 (18) 0.0258 (4) H13 0.2418 1.2942 0.4103 0.031\* C14 0.0275 (2) 1.1190 (2) 0.36219 (18) 0.0237 (4) C15 −0.0541 (2) 0.9696 (2) 0.33824 (18) 0.0254 (4) H15 −0.1599 0.9188 0.3211 0.031\* C16 0.0174 (2) 0.8946 (2) 0.33918 (17) 0.0235 (4) H16 −0.0386 0.7929 0.3232 0.028\* C17 −0.0532 (3) 1.1984 (2) 0.3558 (2) 0.0328 (5) H17A 0.0250 1.3027 0.3984 0.049\* H17B −0.1163 1.1647 0.4020 0.049\* H17C −0.1209 1.1796 0.2627 0.049\* C18 0.3238 (2) 0.6344 (2) 0.47637 (18) 0.0238 (4) C19 0.2638 (2) 0.6043 (2) 0.57209 (19) 0.0258 (4) H19 0.1994 0.6368 0.5774 0.031\* C20 0.2979 (2) 0.5315 (2) 0.65250 (18) 0.0250 (4) H20 0.3597 0.4983 0.6416 0.030\* C21 0.2506 (2) 0.4980 (2) 0.75476 (18) 0.0235 (4) C22 0.3173 (2) 0.4435 (2) 0.84454 (19) 0.0259 (4) H22 0.3919 0.4272 0.8368 0.031\* C23 0.2780 (2) 0.4123 (2) 0.94527 (19) 0.0274 (4) H23 0.3254 0.3755 1.0058 0.033\* C24 0.1695 (2) 0.4353 (2) 0.95637 (19) 0.0285 (5) C25 0.0980 (2) 0.4876 (2) 0.8662 (2) 0.0309 (5) H25 0.0217 0.5016 0.8729 0.037\* C26 0.1392 (2) 0.5187 (2) 0.7676 (2) 0.0280 (4) H26 0.0911 0.5550 0.7069 0.034\* C27 0.1885 (3) 0.3532 (3) 1.1453 (2) 0.0384 (5) H27A 0.1401 0.3340 1.2040 0.058\* H27B 0.3008 0.4251 1.1981 0.058\* H27C 0.1710 0.2632 1.0988 0.058\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1232 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0359 (8) 0.0295 (8) 0.0345 (8) 0.0213 (7) 0.0202 (7) 0.0137 (7) O2 0.0487 (10) 0.0439 (9) 0.0351 (8) 0.0303 (8) 0.0269 (8) 0.0228 (8) N1 0.0264 (9) 0.0237 (8) 0.0233 (8) 0.0147 (8) 0.0126 (7) 0.0115 (7) N2 0.0256 (9) 0.0241 (8) 0.0229 (8) 0.0154 (8) 0.0130 (7) 0.0111 (7) N3 0.0394 (11) 0.0351 (10) 0.0423 (11) 0.0239 (9) 0.0255 (9) 0.0159 (9) C1 0.0312 (11) 0.0218 (10) 0.0229 (10) 0.0155 (9) 0.0147 (9) 0.0080 (8) C2 0.0316 (11) 0.0246 (10) 0.0310 (11) 0.0152 (9) 0.0178 (9) 0.0103 (9) C3 0.0456 (13) 0.0264 (11) 0.0382 (12) 0.0187 (11) 0.0295 (11) 0.0137 (10) C4 0.0575 (15) 0.0328 (12) 0.0295 (11) 0.0293 (12) 0.0278 (11) 0.0166 (10) C5 0.0473 (14) 0.0437 (13) 0.0271 (11) 0.0306 (12) 0.0201 (10) 0.0170 (10) C6 0.0328 (11) 0.0357 (12) 0.0274 (10) 0.0208 (10) 0.0170 (9) 0.0135 (10) C7 0.0232 (10) 0.0252 (10) 0.0221 (9) 0.0132 (9) 0.0112 (8) 0.0080 (8) C8 0.0227 (10) 0.0243 (10) 0.0236 (10) 0.0129 (9) 0.0116 (8) 0.0087 (8) C9 0.0214 (10) 0.0238 (10) 0.0227 (10) 0.0118 (9) 0.0102 (8) 0.0070 (8) C10 0.0283 (11) 0.0235 (10) 0.0289 (10) 0.0149 (9) 0.0159 (9) 0.0125 (9) C11 0.0254 (10) 0.0271 (10) 0.0196 (9) 0.0179 (9) 0.0112 (8) 0.0099 (8) C12 0.0213 (10) 0.0260 (10) 0.0255 (10) 0.0117 (9) 0.0122 (8) 0.0106 (9) C13 0.0314 (11) 0.0242 (10) 0.0223 (10) 0.0155 (9) 0.0122 (9) 0.0089 (9) C14 0.0302 (11) 0.0295 (11) 0.0186 (9) 0.0198 (9) 0.0127 (8) 0.0111 (8) C15 0.0226 (10) 0.0335 (11) 0.0233 (10) 0.0160 (9) 0.0120 (8) 0.0123 (9) C16 0.0252 (10) 0.0224 (10) 0.0218 (9) 0.0116 (9) 0.0113 (8) 0.0091 (8) C17 0.0401 (13) 0.0365 (12) 0.0334 (11) 0.0266 (11) 0.0196 (10) 0.0147 (10) C18 0.0215 (10) 0.0212 (10) 0.0251 (10) 0.0106 (9) 0.0093 (8) 0.0063 (8) C19 0.0289 (11) 0.0245 (10) 0.0287 (10) 0.0156 (9) 0.0161 (9) 0.0108 (9) C20 0.0250 (10) 0.0223 (10) 0.0267 (10) 0.0129 (9) 0.0114 (9) 0.0065 (9) C21 0.0242 (10) 0.0197 (9) 0.0255 (10) 0.0120 (9) 0.0106 (8) 0.0072 (8) C22 0.0254 (10) 0.0233 (10) 0.0291 (10) 0.0145 (9) 0.0111 (9) 0.0087 (9) C23 0.0271 (11) 0.0253 (10) 0.0266 (10) 0.0145 (9) 0.0088 (9) 0.0098 (9) C24 0.0341 (12) 0.0273 (11) 0.0258 (10) 0.0158 (10) 0.0164 (9) 0.0111 (9) C25 0.0345 (12) 0.0343 (12) 0.0380 (12) 0.0236 (10) 0.0220 (10) 0.0181 (10) C26 0.0334 (11) 0.0284 (11) 0.0308 (11) 0.0207 (10) 0.0164 (9) 0.0158 (9) C27 0.0477 (14) 0.0395 (13) 0.0306 (11) 0.0243 (12) 0.0184 (11) 0.0185 (11) ----- ------------- ------------- ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1758 .table-wrap} ----------------- ------------- ------------------- ------------- O1---C18 1.228 (2) C13---C14 1.393 (3) O2---C24 1.367 (2) C13---H13 0.9500 O2---C27 1.432 (2) C14---C15 1.394 (3) N1---C9 1.335 (2) C14---C17 1.505 (3) N1---N2 1.358 (2) C15---C16 1.386 (3) N2---C7 1.361 (2) C15---H15 0.9500 N2---C11 1.440 (2) C16---H16 0.9500 N3---C10 1.146 (2) C17---H17A 0.9800 C1---C2 1.391 (3) C17---H17B 0.9800 C1---C6 1.396 (3) C17---H17C 0.9800 C1---C7 1.474 (3) C18---C19 1.461 (3) C2---C3 1.390 (3) C19---C20 1.340 (3) C2---H2 0.9500 C19---H19 0.9500 C3---C4 1.378 (3) C20---C21 1.456 (3) C3---H3 0.9500 C20---H20 0.9500 C4---C5 1.382 (3) C21---C22 1.390 (3) C4---H4 0.9500 C21---C26 1.402 (3) C5---C6 1.386 (3) C22---C23 1.389 (3) C5---H5 0.9500 C22---H22 0.9500 C6---H6 0.9500 C23---C24 1.378 (3) C7---C8 1.389 (3) C23---H23 0.9500 C8---C9 1.417 (3) C24---C25 1.399 (3) C8---C10 1.425 (3) C25---C26 1.376 (3) C9---C18 1.481 (3) C25---H25 0.9500 C11---C12 1.379 (3) C26---H26 0.9500 C11---C16 1.380 (3) C27---H27A 0.9800 C12---C13 1.387 (3) C27---H27B 0.9800 C12---H12 0.9500 C27---H27C 0.9800 C24---O2---C27 117.63 (16) C16---C15---C14 120.69 (18) C9---N1---N2 105.08 (14) C16---C15---H15 119.7 N1---N2---C7 112.95 (14) C14---C15---H15 119.7 N1---N2---C11 118.61 (14) C11---C16---C15 119.32 (18) C7---N2---C11 128.44 (15) C11---C16---H16 120.3 C2---C1---C6 119.62 (18) C15---C16---H16 120.3 C2---C1---C7 119.97 (17) C14---C17---H17A 109.5 C6---C1---C7 120.36 (18) C14---C17---H17B 109.5 C3---C2---C1 119.9 (2) H17A---C17---H17B 109.5 C3---C2---H2 120.0 C14---C17---H17C 109.5 C1---C2---H2 120.0 H17A---C17---H17C 109.5 C4---C3---C2 120.2 (2) H17B---C17---H17C 109.5 C4---C3---H3 119.9 O1---C18---C19 123.83 (18) C2---C3---H3 119.9 O1---C18---C9 118.84 (17) C5---C4---C3 120.02 (19) C19---C18---C9 117.31 (16) C5---C4---H4 120.0 C20---C19---C18 121.14 (18) C3---C4---H4 120.0 C20---C19---H19 119.4 C4---C5---C6 120.5 (2) C18---C19---H19 119.4 C4---C5---H5 119.8 C19---C20---C21 127.01 (18) C6---C5---H5 119.8 C19---C20---H20 116.5 C5---C6---C1 119.7 (2) C21---C20---H20 116.5 C5---C6---H6 120.1 C22---C21---C26 117.69 (18) C1---C6---H6 120.1 C22---C21---C20 119.60 (17) N2---C7---C8 105.58 (16) C26---C21---C20 122.71 (17) N2---C7---C1 124.52 (16) C21---C22---C23 121.73 (18) C8---C7---C1 129.79 (17) C21---C22---H22 119.1 C7---C8---C9 105.63 (16) C23---C22---H22 119.1 C7---C8---C10 125.37 (17) C24---C23---C22 119.28 (18) C9---C8---C10 128.98 (17) C24---C23---H23 120.4 N1---C9---C8 110.75 (16) C22---C23---H23 120.4 N1---C9---C18 120.93 (16) O2---C24---C23 124.75 (18) C8---C9---C18 128.29 (17) O2---C24---C25 114.80 (18) N3---C10---C8 177.4 (2) C23---C24---C25 120.44 (18) C12---C11---C16 121.29 (17) C26---C25---C24 119.41 (19) C12---C11---N2 119.98 (17) C26---C25---H25 120.3 C16---C11---N2 118.73 (17) C24---C25---H25 120.3 C11---C12---C13 119.05 (18) C25---C26---C21 121.43 (18) C11---C12---H12 120.5 C25---C26---H26 119.3 C13---C12---H12 120.5 C21---C26---H26 119.3 C12---C13---C14 120.95 (18) O2---C27---H27A 109.5 C12---C13---H13 119.5 O2---C27---H27B 109.5 C14---C13---H13 119.5 H27A---C27---H27B 109.5 C13---C14---C15 118.65 (17) O2---C27---H27C 109.5 C13---C14---C17 121.14 (18) H27A---C27---H27C 109.5 C15---C14---C17 120.21 (18) H27B---C27---H27C 109.5 ----------------- ------------- ------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2443 .table-wrap} --------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C12---H12···O1^i^ 0.95 2.59 3.350 (3) 137 C22---H22···N3^ii^ 0.95 2.61 3.487 (3) 154 C25---H25···O2^iii^ 0.95 2.56 3.484 (3) 164 --------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+2, −*z*+1; (ii) −*x*+1, −*y*+1, −*z*+1; (iii) −*x*, −*y*+1, −*z*+2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- --------- ------- ----------- ------------- C12---H12⋯O1^i^ 0.95 2.59 3.350 (3) 137 C22---H22⋯N3^ii^ 0.95 2.61 3.487 (3) 154 C25---H25⋯O2^iii^ 0.95 2.56 3.484 (3) 164 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:17.875519
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052011/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o694", "authors": [ { "first": "Hatem A.", "last": "Abdel-Aziz" }, { "first": "Ahmed", "last": "Bari" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3052012
Related literature {#sec1} ================== For experimental and theoretical data for the title compound, see: Fischler *et al.* (1976[@bb3]); Kotzian *et al.* (1982[@bb5]); Kreiter & Özkar (1978[@bb6]); Okamoto *et al.* (1991[@bb7]); von Ragué Schleyer *et al.* (2000[@bb10]). For related chromium complexes, see: Pavkovic & Zaluzec (1989[@bb9]), Betz *et al.* (1993[@bb1]), Wang *et al.* (1990[@bb14]), Konietzny *et al.* (2010[@bb4]). For related s-*cis*-butadiene complexes, see: Reiss (2010[@bb11]), Reiss & Konietzny (2002[@bb12]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Cr(C~4~H~6~)(CO)~4~\]*M* *~r~* = 218.13Triclinic,*a* = 6.4011 (8) Å*b* = 6.7666 (8) Å*c* = 11.0642 (10) Åα = 84.728 (7)°β = 81.840 (8)°γ = 69.127 (8)°*V* = 442.80 (8) Å^3^*Z* = 2Mo *K*α radiationμ = 1.27 mm^−1^*T* = 137 K0.38 × 0.26 × 0.04 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur Eos diffractometerAbsorption correction: Gaussian (*CrysAlis PRO*; Oxford Diffraction, 2009[@bb8]) *T* ~min~ = 0.711, *T* ~max~ = 0.9462829 measured reflections1735 independent reflections1498 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.0203 standard reflections every 60 min intensity decay: none ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.028*wR*(*F* ^2^) = 0.068*S* = 1.051735 reflections140 parametersAll H-atom parameters refinedΔρ~max~ = 0.29 e Å^−3^Δρ~min~ = −0.38 e Å^−3^ {#d5e457} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009[@bb8]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb13]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb13]); molecular graphics: *DIAMOND* (Brandenburg, 2010[@bb2]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004636/si2332sup1.cif](http://dx.doi.org/10.1107/S1600536811004636/si2332sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004636/si2332Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004636/si2332Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?si2332&file=si2332sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?si2332sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?si2332&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SI2332](http://scripts.iucr.org/cgi-bin/sendsup?si2332)). Comment ======= Simple butadiene complexes of transition metals are of general interest because they are model systems that allow a deeper understanding of the bonding situation between transition metal centers and olefins that play an important role for example in catalysis. \[Cr(C~4~H~6~)(CO)~4~\] that was first described in the 70s of the last century (Fischler *et al.* 1976) was subject to a number of spectroscopic (Kotzian *et al.* 1982) as well as theoretical studies (von Ragué Schleyer *et al.* 2000) and its chemistry was investigated (Kreiter & Özkar, 1978; Okamoto *et al.* 1991) with the focus on photochemical ligand exchange reactions (Fischler *et al.* 1976). The coordination at Cr(0) in the title compound is best described as a distorted octahedron formed by four carbonyl ligands and one *s*-*cis*-1,3-butadiene ligand. The Cr--CO distances of the carbonyl ligands that are *trans* to the *s*-*cis*-1,3-butadiene ligand are slightly shorter than the two other Cr--CO distances (Table 1). This finding is in good agreement to Cr---CO distances in the structure of the related tetracarbonyl chromium(0) complex \[Cr(C~19~H~23~NO~2~)(CO)~4~\]: *d*(Cr--CO*~trans~*) = 1.884 (4), 1.887 (6) Å and *d*(Cr--CO) = 1.847 (5), 1.837 (4) Å (Pavkovic & Zaluzec, 1989). In the structure of the title complex the Cr--C distances to the terminal carbon atoms of the *s*-*cis*-1,3-butadiene ligand are longer compared to the respective distances to the central carbon atoms of the diene ligand. A similar trend to longer Cr--C distances for the terminal carbon atoms was found for example for the *s*-*cis*-1,3-butadiene chromium(1) complex \[CrCp\*(C~4~H~6~)(CO)\] (Betz *et al.* 1993). As known from a few other chromium(0) complexes of *s*-*cis*-1,3-butadiene and related coordination compounds (Pavkovic & Zaluzec, 1989; Betz *et al.* 1993; Wang *et al.* 1990; Konietzny *et al.* 2010) in \[Cr(C~4~H~6~)(CO)~4~\] the terminal C--C distances are significantly shorter than the central *d*(C--C) Δ(*d*(C--C)) = 0.057--0.065 Å. In contrast, for comparable iron(0) and manganese(0) complexes almost equilibrated C--C distances have been reported (Reiss, 2010; Reiss & Konietzny 2002), e. g. in the structure of the *s*-*cis*-1,3-butadiene iron(0) complex \[Fe(C~4~H~6~)(CO)~3~\] Δ(*d*(C--C)) = 0.005 Å \[*d*(C--C)~central~ = 1.4142 (19) Å, *d*(C--C)~terminal~ = 1.4194 (14) Å\] (Reiss, 2010). Experimental {#experimental} ============ Synthesis \[Cr(C~4~H~6~)(CO)~4~\] was synthesized according to a published procedure (Fischler, 1976). The crystal was obtained by slow evaporation of a solution of pentane. Refinement {#refinement} ========== All hydrogen atoms were located from difference Fourier synthesis. For the terminal H atom pairs of the CH~2~ groups common *U*~iso~(H) = 0.031 (4)/0.027 (4) Å^2^ and individual *U*~iso~(H) = 0.027 (6) and 0.019 (5) Å^2^ for the two central H atoms were refined freely with distances in the range 0.90 (2) - 0.98 (3) Å. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Hydrogen atoms are drawn with an arbitrary radius and the displacement ellipsoids are shown at the 50% probability level. ::: ![](e-67-0m333-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e270 .table-wrap} ------------------------- --------------------------------------- \[Cr(C~4~H~6~)(CO)~4~\] *Z* = 2 *M~r~* = 218.13 *F*(000) = 220 Triclinic, *P*1 *D*~x~ = 1.636 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 6.4011 (8) Å Cell parameters from 2257 reflections *b* = 6.7666 (8) Å θ = 3.4--28.7° *c* = 11.0642 (10) Å µ = 1.27 mm^−1^ α = 84.728 (7)° *T* = 137 K β = 81.840 (8)° Platelet, yellow γ = 69.127 (8)° 0.38 × 0.26 × 0.04 mm *V* = 442.80 (8) Å^3^ ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e404 .table-wrap} ---------------------------------------------------------------------------- -------------------------------------- Oxford Diffraction Xcalibur Eos diffractometer 1498 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.020 graphite θ~max~ = 26.0°, θ~min~ = 4.1° ω scans *h* = −7→7 Absorption correction: gaussian (*CrysAlis PRO*; Oxford Diffraction, 2009) *k* = −8→8 *T*~min~ = 0.711, *T*~max~ = 0.946 *l* = −13→13 2829 measured reflections 3 standard reflections every 60 min 1735 independent reflections intensity decay: none ---------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e523 .table-wrap} ------------------------------------- ----------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.028 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.068 All H-atom parameters refined *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.04*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1735 reflections (Δ/σ)~max~ = 0.001 140 parameters Δρ~max~ = 0.29 e Å^−3^ 0 restraints Δρ~min~ = −0.38 e Å^−3^ ------------------------------------- ----------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e677 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. A single-crystal suitable for structure determination was harvested under a dry nitrogen atmosphere and was directly transferred into the cooling stream of an Oxford-Xcalibur diffractometer equipped with an EOS-CCD detector. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06--11-2009). Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e785 .table-wrap} ----- ------------- ------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cr1 0.66351 (5) 0.59871 (5) 0.74506 (3) 0.01600 (12) O6 0.8591 (3) 0.2852 (3) 0.94893 (13) 0.0342 (4) C6 0.7852 (3) 0.4125 (3) 0.87540 (17) 0.0212 (4) O5 0.3023 (3) 0.4055 (2) 0.79702 (16) 0.0342 (4) O8 0.4722 (3) 0.7542 (3) 0.50255 (13) 0.0329 (4) C8 0.5444 (3) 0.7032 (3) 0.59328 (18) 0.0222 (4) C5 0.4434 (3) 0.4763 (3) 0.77460 (18) 0.0216 (4) O7 1.0248 (3) 0.2629 (3) 0.59598 (14) 0.0329 (4) C7 0.8870 (3) 0.3908 (3) 0.65151 (18) 0.0222 (4) C3 0.8024 (4) 0.8098 (3) 0.81772 (19) 0.0258 (5) H3 0.921 (4) 0.746 (4) 0.864 (2) 0.027 (6)\* C2 0.5762 (4) 0.8487 (3) 0.8746 (2) 0.0269 (5) H2 0.556 (3) 0.811 (3) 0.955 (2) 0.019 (5)\* C1 0.3978 (4) 0.9184 (4) 0.8059 (2) 0.0287 (5) H12 0.403 (4) 1.009 (4) 0.732 (2) 0.031 (4)\* H11 0.261 (4) 0.918 (4) 0.846 (2) 0.031 (4)\* C4 0.8493 (4) 0.8394 (4) 0.6940 (2) 0.0282 (5) H41 0.748 (4) 0.940 (4) 0.647 (2) 0.027 (4)\* H42 0.995 (4) 0.789 (4) 0.655 (2) 0.027 (4)\* ----- ------------- ------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1050 .table-wrap} ----- -------------- -------------- -------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cr1 0.01916 (18) 0.01729 (18) 0.01228 (17) −0.00607 (13) −0.00425 (11) −0.00170 (12) O6 0.0401 (9) 0.0363 (10) 0.0225 (8) −0.0080 (8) −0.0115 (7) 0.0083 (7) C6 0.0233 (10) 0.0242 (11) 0.0161 (10) −0.0078 (9) −0.0006 (8) −0.0052 (9) O5 0.0282 (8) 0.0266 (9) 0.0510 (10) −0.0139 (7) −0.0031 (7) −0.0027 (8) O8 0.0432 (9) 0.0350 (9) 0.0230 (8) −0.0128 (8) −0.0179 (7) 0.0042 (7) C8 0.0234 (10) 0.0225 (11) 0.0223 (11) −0.0089 (9) −0.0038 (8) −0.0034 (9) C5 0.0233 (10) 0.0165 (10) 0.0222 (10) −0.0017 (9) −0.0065 (8) −0.0023 (8) O7 0.0317 (9) 0.0334 (9) 0.0260 (8) −0.0027 (7) 0.0040 (7) −0.0098 (7) C7 0.0258 (11) 0.0263 (11) 0.0171 (10) −0.0113 (9) −0.0066 (8) 0.0025 (9) C3 0.0335 (12) 0.0233 (11) 0.0266 (11) −0.0133 (10) −0.0142 (9) −0.0010 (9) C2 0.0429 (13) 0.0194 (11) 0.0200 (11) −0.0111 (10) −0.0045 (9) −0.0073 (9) C1 0.0309 (12) 0.0188 (11) 0.0339 (13) −0.0047 (9) −0.0013 (10) −0.0080 (10) C4 0.0312 (13) 0.0305 (13) 0.0302 (12) −0.0189 (11) −0.0080 (10) 0.0021 (10) ----- -------------- -------------- -------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1359 .table-wrap} ------------------- ------------- ---------------- ------------ Cr1---C5 1.852 (2) O8---C8 1.138 (2) Cr1---C6 1.887 (2) C1---C2 1.379 (3) Cr1---C7 1.873 (2) C2---C3 1.436 (3) Cr1---C8 1.914 (2) C3---C4 1.371 (3) Cr1---C1 2.312 (2) C1---H11 0.92 (2) Cr1---C2 2.184 (2) C1---H12 0.98 (3) Cr1---C3 2.190 (2) C2---H2 0.90 (2) Cr1---C4 2.325 (2) C3---H3 0.92 (2) O5---C5 1.153 (3) C4---H41 0.93 (3) O6---C6 1.148 (3) C4---H42 0.93 (3) O7---C7 1.142 (3) C5---Cr1---C6 83.10 (9) C2---C3---C4 121.6 (2) C5---Cr1---C7 99.88 (9) C2---C1---H11 116.0 (15) C7---Cr1---C6 82.30 (8) C2---C1---H12 120.2 (14) C5---Cr1---C8 85.80 (9) C1---C2---H2 120.7 (14) C7---Cr1---C8 84.94 (9) C3---C2---H2 118.0 (14) C6---Cr1---C8 161.38 (9) C4---C3---H3 118.6 (15) O6---C6---Cr1 174.03 (18) C2---C3---H3 119.2 (15) O8---C8---Cr1 176.01 (19) C3---C4---H41 122.7 (15) O5---C5---Cr1 177.16 (18) C3---C4---H42 121.8 (15) O7---C7---Cr1 178.99 (18) H12---C1---H11 120 (2) C1---C2---C3 120.8 (2) H41---C4---H42 114 (2) C4---C3---C2---C1 −0.3 (3) ------------------- ------------- ---------------- ------------ ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: ---------- ----------- Cr1---C5 1.852 (2) Cr1---C6 1.887 (2) Cr1---C7 1.873 (2) Cr1---C8 1.914 (2) Cr1---C1 2.312 (2) Cr1---C2 2.184 (2) Cr1---C3 2.190 (2) Cr1---C4 2.325 (2) C1---C2 1.379 (3) C2---C3 1.436 (3) C3---C4 1.371 (3) ---------- ----------- :::
PubMed Central
2024-06-05T04:04:17.881330
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052012/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):m333", "authors": [ { "first": "Guido J.", "last": "Reiss" }, { "first": "Maik", "last": "Finze" } ] }
PMC3052013
Related literature {#sec1} ================== For related structures, see: Tukada & Mochizuki (2003[@bb7]); Zhao *et al.* (2003[@bb8]); Smith *et al.* (2004[@bb6]); He & Wen (2006[@bb2]); Zheng & Wang (2009[@bb9]). For puckering parameters, see: Cremer & Pople (1975[@bb1]). For ribbon hydrogen-bonding motifs, see: Hulme & Tocher (2006[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~10~H~18~N^+^·C~7~H~7~O~3~S^−^*M* *~r~* = 323.44Triclinic,*a* = 6.464 (2) Å*b* = 11.589 (4) Å*c* = 22.562 (8) Åα = 92.975 (4)°β = 94.034 (5)°γ = 96.408 (5)°*V* = 1672.4 (10) Å^3^*Z* = 4Mo *K*α radiationμ = 0.21 mm^−1^*T* = 298 K0.20 × 0.20 × 0.20 mm ### Data collection {#sec2.1.2} Rigaku SCXmini diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku, 2005[@bb4]) *T* ~min~ = 0.960, *T* ~max~ = 0.96018425 measured reflections7664 independent reflections5720 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.041 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.061*wR*(*F* ^2^) = 0.149*S* = 1.067664 reflections421 parameters6 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.45 e Å^−3^Δρ~min~ = −0.36 e Å^−3^ {#d5e597} Data collection: *CrystalClear* (Rigaku, 2005[@bb4]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb5]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003436/jh2261sup1.cif](http://dx.doi.org/10.1107/S1600536811003436/jh2261sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003436/jh2261Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003436/jh2261Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?jh2261&file=jh2261sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?jh2261sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?jh2261&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [JH2261](http://scripts.iucr.org/cgi-bin/sendsup?jh2261)). This work was supported by the Start-up Projects for Postdoctoral Research Funds (1112000064) and Major Postdoctoral Research Funds (3212000602) of Southeast University. Comment ======= Owing to its highly symmetrical and stable structure, adamantane and its derivatives have generated much interest in the past and continue to be actively studied as evidenced by the large number of compounds containing amantadine that have been synthesized (Tukada & Mochizuki, 2003; Zhao *et al.*, 2003; He & Wen, 2006). Our group have reported the crystal structures of the compounds of C~10~H~15~NH~3~^+^ .C~7~H~5~O~2~^-^. Here we report the synthesis and *CrystalStructure* of the title compound, (I), C~10~H~15~NH~3~^+^.C~7~H~7~O~3~S^-^, a salt obtained from the reaction of adamantane-1-ammonium hydrochloride and toluene-4-sulfonic acid sodium salt. In the molecule of the title compound, the bond lengths and angles are within their normal ranges. There are two pairs of adamantane-1-ammonium cation and toluene-4-sulfonic acid anion in one asymmetric unit(Fig. 1). The dihedral angle between the benzene ring A (C22--C27) and benzene ring B (C29--C34) is A/B = 20.83 °. The two molecules are both stabilized by N---H···O hydrogen bonding, among which, N1---H1C···O4 and N2---H2C···O1 are intramolecular hydrogen bonds. All three hydrogen donors of the protonated amine group give direct hydrogen-bonding associations, with three of the sulfonate O-atom acceptors from three independent toluene-4-sulfonic acid anions. The hydrogen bonds are summarized in Tab. 1. Fig. 2 shows a view down the *c* axis. The N---H···O hydrogen bonds between the discrete adamantane-1-ammoniumcations and toluene-4-sulfonic acid anions result in a noteworthy one-dimensional ribbon-like structure parallel to (1 0 0) (Fig. 2). This ribbon motif is the dominant hydrogen-bonding motif (Hulme *et al.*, 2006). In addition, strong π-ring C7 --H7A···*Cg*9^iii^, C4 --H4B···*Cg*10^iv^, C19 --H19B··· *Cg*10^v^ interactions exist which contribute to crystal stability \[*Cg*9 and *Cg*10 is the center of gravity of ring A and B, Symmetry code: (iii) -*x* + 1, -*y* + 1, -*z* + 1; (iv) *x* - 1, *y*, *z*; (v) *x*, *y* - 1, *z*.\] Experimental {#experimental} ============ A mixture of adamantane-1-ammonium hydrochloride (10 mmol, 1.94 g), toluene-4-sulfonic acidsodium salt (10 mmol, 1.88 g) and methanol (50 ml) was stirred in a beaker. There were many solid powders produced and the solution was filtered. Colorless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of the solvents over a period of a week. The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (*ε* = C/(T--T~0~)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature range between 93 K and 362 K (m.p. 99 *^o^*C). Refinement {#refinement} ========== The positional parameters of all C-bound H atoms were calculated geometrically and allowed to ride, with *U*~iso~(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. All ammonium H atoms were found in a difference Fourier map and refined with restraints for the N---H distances of 0.87 (2) Å. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, with the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level. ::: ![](e-67-0o543-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view of the crystal packing of the title compound. Dashed lines indicate N--H···O hydrogen bonds which form infinite, one-dimensional chains along the a axis of the unit cell. H atoms not involved in hydrogen bonding have been omitted for clarity. ::: ![](e-67-0o543-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e234 .table-wrap} --------------------------------- --------------------------------------- C~10~H~18~N^+^·C~7~H~7~O~3~S^−^ *Z* = 4 *M~r~* = 323.44 *F*(000) = 696 Triclinic, *P*1 *D*~x~ = 1.285 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 6.464 (2) Å Cell parameters from 2622 reflections *b* = 11.589 (4) Å θ = 3.0--27.5° *c* = 22.562 (8) Å µ = 0.21 mm^−1^ α = 92.975 (4)° *T* = 298 K β = 94.034 (5)° Prism, colourless γ = 96.408 (5)° 0.20 × 0.20 × 0.20 mm *V* = 1672.4 (10) Å^3^ --------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e381 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Rigaku SCXmini diffractometer 7664 independent reflections Radiation source: fine-focus sealed tube 5720 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.041 Detector resolution: 13.6612 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 3.2° ω scans *h* = −8→8 Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) *k* = −15→15 *T*~min~ = 0.960, *T*~max~ = 0.960 *l* = −29→29 18425 measured reflections ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e501 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.061 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.149 H atoms treated by a mixture of independent and constrained refinement *S* = 1.06 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0577*P*)^2^ + 0.5519*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 7664 reflections (Δ/σ)~max~ \< 0.001 421 parameters Δρ~max~ = 0.45 e Å^−3^ 6 restraints Δρ~min~ = −0.36 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e658 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e757 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 0.77493 (9) 0.69083 (5) 0.55264 (3) 0.03980 (16) S2 0.74660 (10) 0.63466 (5) 0.92134 (3) 0.04414 (17) O1 0.6491 (3) 0.69428 (16) 0.60347 (7) 0.0496 (4) O2 0.7429 (4) 0.57650 (17) 0.52171 (8) 0.0690 (6) O3 0.9931 (3) 0.73164 (18) 0.56771 (9) 0.0624 (5) O4 0.6009 (3) 0.53539 (17) 0.90067 (9) 0.0704 (6) O5 0.6549 (5) 0.72161 (19) 0.95484 (12) 0.1036 (10) O6 0.9274 (3) 0.5982 (2) 0.95394 (9) 0.0757 (7) N1 0.6926 (4) 0.34970 (18) 0.97681 (10) 0.0404 (5) H1E 0.807 (3) 0.369 (2) 1.0008 (10) 0.051 (8)\* H1D 0.584 (4) 0.331 (2) 0.9986 (11) 0.065 (9)\* H1C 0.662 (4) 0.408 (2) 0.9545 (11) 0.066 (9)\* N2 0.2620 (3) 0.5509 (2) 0.58768 (10) 0.0406 (5) H2C 0.390 (3) 0.593 (2) 0.5944 (12) 0.057 (8)\* H2B 0.254 (5) 0.503 (2) 0.5550 (11) 0.077 (11)\* H2A 0.172 (4) 0.603 (2) 0.5820 (12) 0.060 (9)\* C1 −0.0056 (4) 0.4160 (2) 0.62903 (11) 0.0451 (6) H1A −0.0101 0.3636 0.5939 0.054\* H1B −0.1082 0.4698 0.6221 0.054\* C2 0.2118 (3) 0.48292 (19) 0.64076 (9) 0.0323 (5) C3 0.2180 (4) 0.5664 (2) 0.69513 (11) 0.0478 (6) H3A 0.1161 0.6208 0.6888 0.057\* H3B 0.3552 0.6104 0.7019 0.057\* C4 0.1690 (5) 0.4966 (2) 0.74942 (11) 0.0540 (7) H4A 0.1728 0.5500 0.7847 0.065\* C5 −0.0484 (4) 0.4300 (3) 0.73803 (12) 0.0543 (7) H5A −0.0827 0.3868 0.7724 0.065\* H5B −0.1507 0.4842 0.7318 0.065\* C6 −0.0558 (4) 0.3464 (2) 0.68349 (12) 0.0487 (6) H6A −0.1957 0.3035 0.6766 0.058\* C7 0.3731 (4) 0.3978 (2) 0.65023 (11) 0.0455 (6) H7A 0.5118 0.4401 0.6569 0.055\* H7B 0.3703 0.3455 0.6151 0.055\* C8 0.3228 (4) 0.3284 (2) 0.70416 (12) 0.0505 (7) H8A 0.4257 0.2734 0.7105 0.061\* C9 0.1040 (4) 0.2613 (2) 0.69326 (12) 0.0530 (7) H9A 0.0989 0.2077 0.6586 0.064\* H9B 0.0721 0.2165 0.7273 0.064\* C10 0.3292 (5) 0.4114 (3) 0.75947 (12) 0.0593 (8) H10A 0.2984 0.3675 0.7939 0.071\* H10B 0.4676 0.4536 0.7670 0.071\* C11 0.7115 (3) 0.24380 (18) 0.93733 (9) 0.0313 (5) C12 0.5136 (4) 0.2176 (2) 0.89602 (11) 0.0404 (5) H12A 0.4953 0.2834 0.8721 0.049\* H12B 0.3934 0.2042 0.9192 0.049\* C13 0.9013 (4) 0.2673 (2) 0.90126 (10) 0.0394 (5) H13A 1.0267 0.2854 0.9278 0.047\* H13B 0.8857 0.3331 0.8772 0.047\* C14 0.7379 (4) 0.14183 (19) 0.97613 (10) 0.0389 (5) H14A 0.6193 0.1286 0.9999 0.047\* H14B 0.8631 0.1591 1.0028 0.047\* C15 0.7543 (4) 0.0330 (2) 0.93597 (11) 0.0441 (6) H15A 0.7712 −0.0331 0.9605 0.053\* C16 0.5573 (4) 0.0060 (2) 0.89403 (12) 0.0498 (6) H16A 0.4366 −0.0086 0.9170 0.060\* H16B 0.5672 −0.0633 0.8688 0.060\* C17 0.5313 (4) 0.1090 (2) 0.85546 (11) 0.0460 (6) H17A 0.4046 0.0916 0.8286 0.055\* C18 0.7210 (4) 0.1309 (3) 0.81899 (11) 0.0539 (7) H18A 0.7045 0.1956 0.7941 0.065\* H18B 0.7328 0.0625 0.7933 0.065\* C19 0.9435 (4) 0.0554 (2) 0.89951 (13) 0.0514 (7) H19A 0.9563 −0.0133 0.8742 0.062\* H19B 1.0694 0.0716 0.9260 0.062\* C20 0.9185 (4) 0.1586 (2) 0.86126 (11) 0.0458 (6) H20A 1.0402 0.1723 0.8379 0.055\* C21 0.4410 (6) 1.0064 (3) 0.37104 (14) 0.0785 (10) H21A 0.2931 0.9859 0.3635 0.118\* H21B 0.5080 0.9951 0.3349 0.118\* H21C 0.4687 1.0866 0.3853 0.118\* C22 0.5244 (4) 0.9307 (2) 0.41724 (11) 0.0480 (6) C23 0.7334 (5) 0.9425 (2) 0.43641 (12) 0.0541 (7) H23A 0.8241 0.9993 0.4209 0.065\* C24 0.8118 (4) 0.8718 (2) 0.47826 (11) 0.0463 (6) H24A 0.9535 0.8811 0.4904 0.056\* C25 0.6786 (3) 0.7876 (2) 0.50179 (10) 0.0362 (5) C26 0.4681 (4) 0.7753 (3) 0.48367 (12) 0.0509 (7) H26A 0.3768 0.7196 0.4997 0.061\* C27 0.3941 (4) 0.8462 (3) 0.44176 (12) 0.0525 (7) H27A 0.2524 0.8369 0.4296 0.063\* C28 1.0559 (6) 0.8874 (3) 0.70974 (14) 0.0758 (10) H28A 1.2028 0.9116 0.7170 0.114\* H28B 0.9827 0.9546 0.7059 0.114\* H28C 1.0310 0.8386 0.6737 0.114\* C29 0.9792 (4) 0.8206 (2) 0.76101 (11) 0.0474 (6) C30 1.1150 (4) 0.8022 (2) 0.80870 (11) 0.0460 (6) H30A 1.2555 0.8302 0.8084 0.055\* C31 1.0482 (4) 0.7432 (2) 0.85693 (11) 0.0423 (6) H31A 1.1430 0.7314 0.8883 0.051\* C32 0.8394 (4) 0.70212 (19) 0.85811 (10) 0.0361 (5) C33 0.7015 (4) 0.7182 (2) 0.81016 (11) 0.0479 (6) H33A 0.5612 0.6897 0.8103 0.057\* C34 0.7716 (5) 0.7760 (2) 0.76237 (12) 0.0551 (7) H34A 0.6778 0.7854 0.7303 0.066\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1953 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0379 (3) 0.0447 (3) 0.0370 (3) 0.0042 (2) 0.0006 (2) 0.0077 (3) S2 0.0530 (4) 0.0326 (3) 0.0478 (4) 0.0037 (3) 0.0118 (3) 0.0035 (3) O1 0.0476 (10) 0.0645 (12) 0.0381 (9) 0.0044 (8) 0.0080 (8) 0.0134 (8) O2 0.1153 (18) 0.0447 (11) 0.0475 (11) 0.0191 (11) −0.0045 (11) 0.0012 (9) O3 0.0337 (9) 0.0809 (14) 0.0734 (13) 0.0027 (9) −0.0023 (9) 0.0287 (11) O4 0.0761 (14) 0.0513 (12) 0.0760 (14) −0.0211 (10) −0.0186 (11) 0.0233 (10) O5 0.163 (3) 0.0508 (13) 0.116 (2) 0.0313 (15) 0.1022 (19) 0.0185 (13) O6 0.0668 (14) 0.0986 (17) 0.0568 (12) −0.0103 (12) −0.0185 (11) 0.0335 (12) N1 0.0456 (13) 0.0327 (11) 0.0431 (12) 0.0036 (9) 0.0064 (10) 0.0025 (9) N2 0.0378 (12) 0.0466 (13) 0.0380 (11) 0.0032 (10) 0.0046 (9) 0.0095 (10) C1 0.0362 (13) 0.0532 (15) 0.0452 (14) −0.0016 (11) −0.0002 (11) 0.0142 (12) C2 0.0287 (10) 0.0378 (12) 0.0310 (11) 0.0037 (9) 0.0027 (9) 0.0072 (9) C3 0.0614 (16) 0.0399 (13) 0.0422 (14) 0.0020 (12) 0.0107 (12) 0.0011 (11) C4 0.078 (2) 0.0509 (16) 0.0340 (13) 0.0054 (14) 0.0130 (13) −0.0007 (12) C5 0.0557 (16) 0.0606 (17) 0.0534 (16) 0.0161 (13) 0.0258 (13) 0.0188 (14) C6 0.0381 (13) 0.0541 (16) 0.0537 (16) −0.0042 (11) 0.0058 (12) 0.0182 (13) C7 0.0385 (13) 0.0559 (16) 0.0464 (14) 0.0162 (11) 0.0094 (11) 0.0115 (12) C8 0.0458 (14) 0.0590 (17) 0.0528 (15) 0.0242 (12) 0.0065 (12) 0.0204 (13) C9 0.0717 (19) 0.0403 (14) 0.0479 (15) 0.0025 (13) 0.0110 (14) 0.0108 (12) C10 0.0559 (17) 0.080 (2) 0.0396 (14) −0.0022 (15) −0.0075 (13) 0.0171 (14) C11 0.0351 (11) 0.0266 (10) 0.0333 (11) 0.0054 (8) 0.0051 (9) 0.0043 (9) C12 0.0346 (12) 0.0394 (13) 0.0485 (14) 0.0088 (10) −0.0002 (10) 0.0082 (11) C13 0.0358 (12) 0.0433 (13) 0.0392 (13) −0.0007 (10) 0.0063 (10) 0.0082 (10) C14 0.0436 (13) 0.0361 (12) 0.0382 (12) 0.0061 (10) 0.0050 (10) 0.0087 (10) C15 0.0524 (15) 0.0320 (12) 0.0496 (14) 0.0094 (10) 0.0037 (12) 0.0091 (11) C16 0.0497 (15) 0.0355 (13) 0.0623 (17) −0.0018 (11) 0.0060 (13) −0.0019 (12) C17 0.0389 (13) 0.0485 (14) 0.0468 (14) −0.0009 (11) −0.0097 (11) −0.0018 (12) C18 0.0636 (17) 0.0579 (17) 0.0390 (14) 0.0056 (13) 0.0024 (13) −0.0025 (12) C19 0.0452 (14) 0.0496 (15) 0.0608 (17) 0.0163 (12) 0.0041 (13) −0.0063 (13) C20 0.0395 (13) 0.0551 (15) 0.0438 (14) 0.0054 (11) 0.0142 (11) −0.0021 (12) C21 0.097 (3) 0.084 (2) 0.063 (2) 0.038 (2) 0.0034 (19) 0.0289 (18) C22 0.0590 (16) 0.0494 (15) 0.0385 (13) 0.0179 (12) 0.0036 (12) 0.0059 (11) C23 0.0620 (18) 0.0457 (15) 0.0543 (16) −0.0031 (13) 0.0072 (14) 0.0165 (13) C24 0.0389 (13) 0.0460 (14) 0.0526 (15) −0.0018 (11) 0.0024 (11) 0.0069 (12) C25 0.0344 (12) 0.0399 (12) 0.0345 (12) 0.0038 (9) 0.0049 (9) 0.0030 (10) C26 0.0361 (13) 0.0649 (17) 0.0526 (16) 0.0009 (12) 0.0050 (12) 0.0204 (13) C27 0.0388 (14) 0.0727 (19) 0.0477 (15) 0.0118 (13) 0.0000 (12) 0.0122 (14) C28 0.101 (3) 0.072 (2) 0.0554 (18) 0.0016 (19) 0.0131 (18) 0.0179 (17) C29 0.0646 (17) 0.0393 (13) 0.0388 (13) 0.0066 (12) 0.0070 (12) 0.0013 (11) C30 0.0437 (14) 0.0483 (15) 0.0456 (14) 0.0022 (11) 0.0079 (11) −0.0009 (12) C31 0.0402 (13) 0.0488 (14) 0.0375 (13) 0.0064 (11) 0.0011 (10) −0.0012 (11) C32 0.0403 (12) 0.0305 (11) 0.0371 (12) 0.0058 (9) 0.0023 (10) −0.0037 (9) C33 0.0411 (14) 0.0488 (15) 0.0520 (15) 0.0028 (11) −0.0048 (12) 0.0030 (12) C34 0.0592 (17) 0.0576 (17) 0.0460 (15) 0.0035 (13) −0.0117 (13) 0.0078 (13) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2720 .table-wrap} ----------------------- -------------- ----------------------- -------------- S1---O3 1.4474 (19) C13---C20 1.530 (3) S1---O2 1.452 (2) C13---H13A 0.9700 S1---O1 1.4535 (18) C13---H13B 0.9700 S1---C25 1.775 (2) C14---C15 1.532 (3) S2---O5 1.434 (2) C14---H14A 0.9700 S2---O4 1.438 (2) C14---H14B 0.9700 S2---O6 1.451 (2) C15---C16 1.525 (4) S2---C32 1.771 (2) C15---C19 1.527 (4) N1---C11 1.500 (3) C15---H15A 0.9800 N1---H1E 0.886 (17) C16---C17 1.530 (4) N1---H1D 0.897 (17) C16---H16A 0.9700 N1---H1C 0.894 (17) C16---H16B 0.9700 N2---C2 1.502 (3) C17---C18 1.530 (4) N2---H2C 0.908 (17) C17---H17A 0.9800 N2---H2B 0.894 (18) C18---C20 1.532 (4) N2---H2A 0.894 (17) C18---H18A 0.9700 C1---C2 1.526 (3) C18---H18B 0.9700 C1---C6 1.538 (3) C19---C20 1.527 (4) C1---H1A 0.9700 C19---H19A 0.9700 C1---H1B 0.9700 C19---H19B 0.9700 C2---C3 1.518 (3) C20---H20A 0.9800 C2---C7 1.525 (3) C21---C22 1.507 (4) C3---C4 1.535 (3) C21---H21A 0.9600 C3---H3A 0.9700 C21---H21B 0.9600 C3---H3B 0.9700 C21---H21C 0.9600 C4---C10 1.523 (4) C22---C23 1.379 (4) C4---C5 1.525 (4) C22---C27 1.383 (4) C4---H4A 0.9800 C23---C24 1.388 (4) C5---C6 1.520 (4) C23---H23A 0.9300 C5---H5A 0.9700 C24---C25 1.381 (3) C5---H5B 0.9700 C24---H24A 0.9300 C6---C9 1.519 (4) C25---C26 1.382 (3) C6---H6A 0.9800 C26---C27 1.379 (4) C7---C8 1.528 (3) C26---H26A 0.9300 C7---H7A 0.9700 C27---H27A 0.9300 C7---H7B 0.9700 C28---C29 1.507 (4) C8---C10 1.531 (4) C28---H28A 0.9600 C8---C9 1.533 (4) C28---H28B 0.9600 C8---H8A 0.9800 C28---H28C 0.9600 C9---H9A 0.9700 C29---C30 1.381 (4) C9---H9B 0.9700 C29---C34 1.386 (4) C10---H10A 0.9700 C30---C31 1.384 (3) C10---H10B 0.9700 C30---H30A 0.9300 C11---C12 1.521 (3) C31---C32 1.382 (3) C11---C14 1.524 (3) C31---H31A 0.9300 C11---C13 1.527 (3) C32---C33 1.386 (3) C12---C17 1.537 (3) C33---C34 1.376 (4) C12---H12A 0.9700 C33---H33A 0.9300 C12---H12B 0.9700 C34---H34A 0.9300 O3---S1---O2 113.03 (14) C11---C13---C20 108.48 (19) O3---S1---O1 113.08 (11) C11---C13---H13A 110.0 O2---S1---O1 110.73 (13) C20---C13---H13A 110.0 O3---S1---C25 106.86 (11) C11---C13---H13B 110.0 O2---S1---C25 105.94 (11) C20---C13---H13B 110.0 O1---S1---C25 106.65 (11) H13A---C13---H13B 108.4 O5---S2---O4 113.53 (17) C11---C14---C15 108.98 (18) O5---S2---O6 111.87 (17) C11---C14---H14A 109.9 O4---S2---O6 110.51 (13) C15---C14---H14A 109.9 O5---S2---C32 106.22 (12) C11---C14---H14B 109.9 O4---S2---C32 107.86 (12) C15---C14---H14B 109.9 O6---S2---C32 106.43 (12) H14A---C14---H14B 108.3 C11---N1---H1E 111.5 (18) C16---C15---C19 109.4 (2) C11---N1---H1D 105.9 (19) C16---C15---C14 109.8 (2) H1E---N1---H1D 109 (3) C19---C15---C14 108.9 (2) C11---N1---H1C 109.6 (19) C16---C15---H15A 109.6 H1E---N1---H1C 112 (3) C19---C15---H15A 109.6 H1D---N1---H1C 108 (3) C14---C15---H15A 109.6 C2---N2---H2C 110.1 (17) C15---C16---C17 109.6 (2) C2---N2---H2B 110 (2) C15---C16---H16A 109.8 H2C---N2---H2B 112 (3) C17---C16---H16A 109.8 C2---N2---H2A 110.5 (18) C15---C16---H16B 109.8 H2C---N2---H2A 106 (2) C17---C16---H16B 109.8 H2B---N2---H2A 109 (3) H16A---C16---H16B 108.2 C2---C1---C6 108.78 (19) C18---C17---C16 109.5 (2) C2---C1---H1A 109.9 C18---C17---C12 109.5 (2) C6---C1---H1A 109.9 C16---C17---C12 109.1 (2) C2---C1---H1B 109.9 C18---C17---H17A 109.6 C6---C1---H1B 109.9 C16---C17---H17A 109.6 H1A---C1---H1B 108.3 C12---C17---H17A 109.6 N2---C2---C3 109.12 (19) C17---C18---C20 109.3 (2) N2---C2---C7 108.77 (18) C17---C18---H18A 109.8 C3---C2---C7 110.1 (2) C20---C18---H18A 109.8 N2---C2---C1 109.05 (18) C17---C18---H18B 109.8 C3---C2---C1 110.0 (2) C20---C18---H18B 109.8 C7---C2---C1 109.8 (2) H18A---C18---H18B 108.3 C2---C3---C4 109.0 (2) C15---C19---C20 109.8 (2) C2---C3---H3A 109.9 C15---C19---H19A 109.7 C4---C3---H3A 109.9 C20---C19---H19A 109.7 C2---C3---H3B 109.9 C15---C19---H19B 109.7 C4---C3---H3B 109.9 C20---C19---H19B 109.7 H3A---C3---H3B 108.3 H19A---C19---H19B 108.2 C10---C4---C5 109.6 (2) C19---C20---C13 109.7 (2) C10---C4---C3 109.9 (2) C19---C20---C18 109.1 (2) C5---C4---C3 108.8 (2) C13---C20---C18 109.9 (2) C10---C4---H4A 109.5 C19---C20---H20A 109.4 C5---C4---H4A 109.5 C13---C20---H20A 109.4 C3---C4---H4A 109.5 C18---C20---H20A 109.4 C6---C5---C4 110.0 (2) C22---C21---H21A 109.5 C6---C5---H5A 109.7 C22---C21---H21B 109.5 C4---C5---H5A 109.7 H21A---C21---H21B 109.5 C6---C5---H5B 109.7 C22---C21---H21C 109.5 C4---C5---H5B 109.7 H21A---C21---H21C 109.5 H5A---C5---H5B 108.2 H21B---C21---H21C 109.5 C9---C6---C5 109.7 (2) C23---C22---C27 117.6 (2) C9---C6---C1 109.4 (2) C23---C22---C21 121.3 (3) C5---C6---C1 109.2 (2) C27---C22---C21 121.1 (3) C9---C6---H6A 109.5 C22---C23---C24 121.6 (2) C5---C6---H6A 109.5 C22---C23---H23A 119.2 C1---C6---H6A 109.5 C24---C23---H23A 119.2 C2---C7---C8 109.01 (19) C25---C24---C23 119.7 (2) C2---C7---H7A 109.9 C25---C24---H24A 120.1 C8---C7---H7A 109.9 C23---C24---H24A 120.1 C2---C7---H7B 109.9 C24---C25---C26 119.5 (2) C8---C7---H7B 109.9 C24---C25---S1 121.00 (18) H7A---C7---H7B 108.3 C26---C25---S1 119.45 (18) C7---C8---C10 109.6 (2) C27---C26---C25 119.7 (2) C7---C8---C9 109.6 (2) C27---C26---H26A 120.1 C10---C8---C9 109.2 (2) C25---C26---H26A 120.1 C7---C8---H8A 109.5 C26---C27---C22 121.9 (2) C10---C8---H8A 109.5 C26---C27---H27A 119.1 C9---C8---H8A 109.5 C22---C27---H27A 119.1 C6---C9---C8 109.5 (2) C29---C28---H28A 109.5 C6---C9---H9A 109.8 C29---C28---H28B 109.5 C8---C9---H9A 109.8 H28A---C28---H28B 109.5 C6---C9---H9B 109.8 C29---C28---H28C 109.5 C8---C9---H9B 109.8 H28A---C28---H28C 109.5 H9A---C9---H9B 108.2 H28B---C28---H28C 109.5 C4---C10---C8 109.3 (2) C30---C29---C34 117.6 (2) C4---C10---H10A 109.8 C30---C29---C28 120.6 (3) C8---C10---H10A 109.8 C34---C29---C28 121.7 (3) C4---C10---H10B 109.8 C29---C30---C31 121.9 (2) C8---C10---H10B 109.8 C29---C30---H30A 119.1 H10A---C10---H10B 108.3 C31---C30---H30A 119.1 N1---C11---C12 108.65 (18) C32---C31---C30 119.6 (2) N1---C11---C14 108.76 (18) C32---C31---H31A 120.2 C12---C11---C14 109.98 (18) C30---C31---H31A 120.2 N1---C11---C13 109.11 (18) C31---C32---C33 119.3 (2) C12---C11---C13 110.30 (18) C31---C32---S2 120.51 (18) C14---C11---C13 110.00 (18) C33---C32---S2 120.14 (19) C11---C12---C17 109.03 (18) C34---C33---C32 120.2 (2) C11---C12---H12A 109.9 C34---C33---H33A 119.9 C17---C12---H12A 109.9 C32---C33---H33A 119.9 C11---C12---H12B 109.9 C33---C34---C29 121.4 (2) C17---C12---H12B 109.9 C33---C34---H34A 119.3 H12A---C12---H12B 108.3 C29---C34---H34A 119.3 C6---C1---C2---N2 179.9 (2) C11---C12---C17---C16 60.3 (2) C6---C1---C2---C3 −60.5 (3) C16---C17---C18---C20 −60.1 (3) C6---C1---C2---C7 60.8 (3) C12---C17---C18---C20 59.5 (3) N2---C2---C3---C4 −179.4 (2) C16---C15---C19---C20 60.1 (3) C7---C2---C3---C4 −60.1 (3) C14---C15---C19---C20 −59.9 (3) C1---C2---C3---C4 61.0 (3) C15---C19---C20---C13 60.2 (3) C2---C3---C4---C10 59.7 (3) C15---C19---C20---C18 −60.3 (3) C2---C3---C4---C5 −60.4 (3) C11---C13---C20---C19 −59.8 (2) C10---C4---C5---C6 −59.5 (3) C11---C13---C20---C18 60.2 (3) C3---C4---C5---C6 60.7 (3) C17---C18---C20---C19 60.1 (3) C4---C5---C6---C9 59.4 (3) C17---C18---C20---C13 −60.2 (3) C4---C5---C6---C1 −60.5 (3) C27---C22---C23---C24 0.7 (4) C2---C1---C6---C9 −60.4 (3) C21---C22---C23---C24 −179.0 (3) C2---C1---C6---C5 59.7 (3) C22---C23---C24---C25 −0.3 (4) N2---C2---C7---C8 −180.0 (2) C23---C24---C25---C26 −0.5 (4) C3---C2---C7---C8 60.5 (3) C23---C24---C25---S1 176.9 (2) C1---C2---C7---C8 −60.7 (3) O3---S1---C25---C24 8.2 (2) C2---C7---C8---C10 −60.0 (3) O2---S1---C25---C24 −112.6 (2) C2---C7---C8---C9 59.8 (3) O1---S1---C25---C24 129.4 (2) C5---C6---C9---C8 −59.7 (3) O3---S1---C25---C26 −174.4 (2) C1---C6---C9---C8 60.1 (3) O2---S1---C25---C26 64.8 (2) C7---C8---C9---C6 −60.0 (3) O1---S1---C25---C26 −53.2 (2) C10---C8---C9---C6 60.1 (3) C24---C25---C26---C27 0.9 (4) C5---C4---C10---C8 59.9 (3) S1---C25---C26---C27 −176.5 (2) C3---C4---C10---C8 −59.7 (3) C25---C26---C27---C22 −0.5 (4) C7---C8---C10---C4 59.9 (3) C23---C22---C27---C26 −0.3 (4) C9---C8---C10---C4 −60.1 (3) C21---C22---C27---C26 179.4 (3) N1---C11---C12---C17 −179.86 (19) C34---C29---C30---C31 −1.1 (4) C14---C11---C12---C17 −60.9 (2) C28---C29---C30---C31 178.7 (3) C13---C11---C12---C17 60.6 (2) C29---C30---C31---C32 −0.6 (4) N1---C11---C13---C20 179.99 (19) C30---C31---C32---C33 1.6 (4) C12---C11---C13---C20 −60.7 (2) C30---C31---C32---S2 −175.92 (18) C14---C11---C13---C20 60.8 (2) O5---S2---C32---C31 99.4 (2) N1---C11---C14---C15 179.24 (19) O4---S2---C32---C31 −138.5 (2) C12---C11---C14---C15 60.4 (2) O6---S2---C32---C31 −19.9 (2) C13---C11---C14---C15 −61.3 (2) O5---S2---C32---C33 −78.1 (2) C11---C14---C15---C16 −59.6 (3) O4---S2---C32---C33 44.0 (2) C11---C14---C15---C19 60.2 (2) O6---S2---C32---C33 162.6 (2) C19---C15---C16---C17 −59.6 (3) C31---C32---C33---C34 −1.0 (4) C14---C15---C16---C17 59.9 (3) S2---C32---C33---C34 176.6 (2) C15---C16---C17---C18 59.9 (3) C32---C33---C34---C29 −0.7 (4) C15---C16---C17---C12 −60.0 (3) C30---C29---C34---C33 1.7 (4) C11---C12---C17---C18 −59.6 (3) C28---C29---C34---C33 −178.0 (3) ----------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4545 .table-wrap} ---------------------------------------------------------------------------------- Cg9 and Cg10 are the centroids of the C22--C27 and C29--C34 rings, respectively. ---------------------------------------------------------------------------------- ::: ::: {#d1e4549 .table-wrap} ---------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1C···O4 0.89 (2) 2.02 (2) 2.908 (3) 177 (3) N1---H1D···O5^i^ 0.90 (2) 1.99 (2) 2.883 (3) 177 (3) N1---H1E···O6^ii^ 0.89 (2) 1.92 (2) 2.806 (3) 173 (3) N2---H2C···O1 0.91 (2) 1.93 (2) 2.834 (3) 174 (3) N2---H2B···O2^iii^ 0.89 (2) 1.92 (2) 2.806 (3) 170 (3) N2---H2A···O3^iv^ 0.89 (2) 2.01 (2) 2.901 (3) 175 (3) C4---H4A···Cg10^iv^ 0.98 3.18 3.878 (3) 130 C7---H7B···Cg9^iii^ 0.97 2.87 3.801 (3) 161 C19---H19B···Cg10^v^ 0.97 2.91 3.861 (3) 167 ---------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+2; (ii) −*x*+2, −*y*+1, −*z*+2; (iii) −*x*+1, −*y*+1, −*z*+1; (iv) *x*−1, *y*, *z*; (v) *x*, *y*−1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*9 and *Cg*10 are the centroids of the C22--C27 and C29--C34 rings, respectively. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------ ---------- ---------- ----------- ------------- N1---H1*C*⋯O4 0.89 (2) 2.02 (2) 2.908 (3) 177 (3) N1---H1*D*⋯O5^i^ 0.90 (2) 1.99 (2) 2.883 (3) 177 (3) N1---H1*E*⋯O6^ii^ 0.89 (2) 1.92 (2) 2.806 (3) 173 (3) N2---H2*C*⋯O1 0.91 (2) 1.93 (2) 2.834 (3) 174 (3) N2---H2*B*⋯O2^iii^ 0.89 (2) 1.92 (2) 2.806 (3) 170 (3) N2---H2*A*⋯O3^iv^ 0.89 (2) 2.01 (2) 2.901 (3) 175 (3) C4---H4*A*⋯*Cg*10^iv^ 0.98 3.18 3.878 (3) 130 C7---H7*B*⋯*Cg*9^iii^ 0.97 2.87 3.801 (3) 161 C19---H19*B*⋯*Cg*10^v^ 0.97 2.91 3.861 (3) 167 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . :::
PubMed Central
2024-06-05T04:04:17.884535
2011-2-02
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052013/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 2; 67(Pt 3):o543", "authors": [ { "first": "Yi", "last": "Zhang" }, { "first": "Bo", "last": "Wang" } ] }
PMC3052014
Related literature {#sec1} ================== For calixarene derivatives and their applications, see: Gutsche (2008[@bb9]); Ikeda & Shinkai (1997[@bb12]). For the use of calixarenes in crystal engineering, see: Dalgrano *et al.* (2007[@bb5]). For the previous synthesis of the title compound, see: Ikeda & Shinkai (1994*a* [@bb10]). For its application in the formation of nanotubes, see: Ikeda & Shinkai (1994*b* [@bb11]). For reviews on weak non-classical hydrogen bonding, see: Desiraju & Steiner (1999[@bb7]); Steiner (2002[@bb14]); Desiraju (2005[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~44~H~52~Cl~4~O~4~*M* *~r~* = 786.66Monoclinic,*a* = 23.104 (3) Å*b* = 11.5871 (15) Å*c* = 17.618 (2) Åβ = 117.655 (2)°*V* = 4177.7 (9) Å^3^*Z* = 4Mo *K*α radiationμ = 0.32 mm^−1^*T* = 100 K0.49 × 0.31 × 0.15 mm ### Data collection {#sec2.1.2} Bruker Kappa APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb4]) *T* ~min~ = 0.658, *T* ~max~ = 0.74615796 measured reflections6176 independent reflections5280 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.019 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.045*wR*(*F* ^2^) = 0.119*S* = 0.976176 reflections235 parametersH-atom parameters constrainedΔρ~max~ = 0.84 e Å^−3^Δρ~min~ = −1.05 e Å^−3^ {#d5e465} Data collection: *APEX2* (Bruker, 2009[@bb4]); cell refinement: *SAINT* (Bruker, 2009[@bb4]); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb2]); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003[@bb3]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb8]) and *Mercury* (Macrae *et al.*, 2006[@bb13]); software used to prepare material for publication: *CRYSTALS*, *enCIFer* (Allen *et al.*, 2004[@bb1]) and *publCIF* (Westrip, 2010[@bb15]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S160053681100660X/rk2266sup1.cif](http://dx.doi.org/10.1107/S160053681100660X/rk2266sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100660X/rk2266Isup2.hkl](http://dx.doi.org/10.1107/S160053681100660X/rk2266Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rk2266&file=rk2266sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rk2266sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rk2266&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RK2266](http://scripts.iucr.org/cgi-bin/sendsup?rk2266)). We are grateful to Dr C. M. L. Vande Velde (Karel de Grote University College, Antwerp, Belgium) and Dr D. Watkin (University of Oxford) for helpful discussions. MHD is grateful to BFK NaWi, University of Bremen, for financial support. The X-ray diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491 and Youngstown State University. Comment ======= Calixarenes, a family of macrocyclic compounds, have shown to be superb molecular scaffolds for the construction of macromolecular and supramolecular architectures (Gutsche, 2008; Ikeda & Shinkai, 1997). Calix\[4\]arenes can adopt several conformations, of which the *cone* conformation is the most commonly employed one. Due to their bowl shape and ease of preparation, they are employed widely in supramolecular chemistry and crystal engineering (Dalgrano *et al.*, 2007) for preparation of species and materials suitable for molecular encapsulation. The *1,3--alternate* conformation of calix\[4\]arenes is much less commonly used. The title compound and its derivatives were previously synthesized (Ikeda & Shinkai, 1994*a*) to study binding of metal cations in solution, as well as for preparation of calixarene--based nanotubes (Ikeda & Shinkai, 1994*b*). The molecule of the title compound is shown in Fig. 1. The calix\[4\]arene bowl adopts the *1,3--alternate* conformation around a twofold symmetry axis; for that reason, the IUPAC numbering scheme for calix\[4\]arenes could not be applied. All bond lengths and angles may be considered normal. Four phenolic rings are pitched into the calix cavity, as defined by the angles, which the aromatic rings make with the plane of the four bridging methylenes (C1--C7--C1^i^--C7^i^): 77.42 (2)° (ring C2--6, C14) and 77.71 (2)° (ring C8--13), respectively (symmetry code: (i) -*x*+1, *y*, -*z*+3/2). Two pairs of opposite aromatic rings show interplanar angles of 25.16 (3)° (ring C2--6, C14) and 24.58 (4)° (ring C8--13), respectively. Four propyl chains point outside the cavity and adopt an *anti* conformation for all their bonds. Four chlorine atoms are also pointing outside from the calix cavity. Several non--classical intermolecular weak hydrogen bonds are present in the structure (Desiraju & Steiner, 1999; Steiner, 2002; Desiraju, 2005). Details of the packing interactions are given in Table 1. Molecules pack into infinite columns along the *b* axis. Two short C23--H231···Cl26^iii^ (symmetry code: (iii) *x*, *y*-1, *z*) contacts (2.90Å), parallel to the *b* axis, link molecules with each other (Fig. 2). Along the *c* axis, the molecules are interconnected side--to--side through pairs of C22--H222···Cl25^ii^ (symmetry code: (ii) *x*, -*y*, *z* - 1/2) interactions (2.90Å, Fig. 3). In both cases, hydrogen atoms of the C22--24 propyl chains serve as H--bond donors. When viewed along the *b* axis, calixarene backbones form infinite channels with a shortest distance of 8.8090 (13)Å between the two neighboring channel centers (Fig. 2). Experimental {#experimental} ============ A solution of 25,26,27,28--tetrapropoxycalix\[4\]arene (0.108 g, 0.169 mmol), paraformaldehyde (0.115 g, 3.83 mmol), glacial acetic acid (1.3 ml), and conc. H~3~PO~4~ (1.3 ml) in dioxane (5 ml) was stirred for 2 h at 353 K. After addition of conc. HCl (1.3 ml, 16.1 mmol) the solution was stirred for additional 16 h at 353 K. The mixture was concentrated under vacuum up to *ca* 3 ml, poured into ice/water (100 ml) and extracted with CH~2~Cl~2~ (3×20 ml). The combined organic phases were washed with water and brine, dried (Na~2~SO~4~), and evaporated to dryness. The resulting oil was dissolved in a small amount of CH~2~Cl~2~ and *Me*OH was slowly added. The precipitate was filtered off, washed with cold *Me*OH, dried under vacuum, and purified by column chromatography to yield 80 mg (0.102 mmol, 60%) of product as a white crystalline powder. *R*~f~ = 0.41 (CH~2~Cl~2~/PE, 1:1). Mp: 562--565 K (CHCl~3~/heptane, decomp.); Lit: 556--558 K (Ikeda & Shinkai, 1994*a*). ^1^H NMR (200 MHz, CDCl~3~): δ 1.02 (t, *J* = 7.5 Hz, 12 H), 1.78 (tq, *J* = 7.2, 7.5 Hz, 8 H), 3.55 (s, 8 H), 3.63 (t, *J* = 7.2 Hz, 8 H), 4.43 (s, 8 H), 7.01 (s, 8 H). ^13^C NMR (50 MHz, CDCl~3~): δ 10.6, 23.8, 36.0, 46.7, 73.8, 129.8, 130.5, 133.3, 156.7. HR--MS (EI, 70 eV): *m*/*z* 784.25829 (*M*^+^, C~44~H~52~Cl~4~O~4~^+^, calcd. 784.26197). X--ray quality crystals were grown by slow evaporation of a chloroform/heptane solution and appeared as large (up to 1--2 mm) transparent blocks. Refinement {#refinement} ========== All non--hydrogen atoms were refined with anisotropic displacement parameters. All H atoms were located in electron difference density maps and initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C---H in the range 0.93Å--0.98Å) and *U*~iso~(H) (in the range 1.2--1.5 times *U*~eq~ of the parent atom), after which the positions were refined with riding constraints. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### ORTEP--3 plot of the title molecule with the atom numbering scheme. Displacement ellipsoids are represented at 50% probability levels. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x+1, y, -z+3/2. ::: ![](e-67-0o728-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Crystal packing of the title compound viewed along the b axis into the infinite channels formed by the calixarene backbones. Short C---H···Cl contacts, interconnecting pairs of molecules along the c axis, are shown as dotted lines. ::: ![](e-67-0o728-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### Packing of the title compound viewed along the a axis. Short C---H···Cl contacts, interconnecting pairs of molecules along the b axis (vertical) and c axis (horizontal), are shown as dotted lines. ::: ![](e-67-0o728-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e327 .table-wrap} ----------------------- --------------------------------------- C~44~H~52~Cl~4~O~4~ *F*(000) = 1664 *M~r~* = 786.66 *D*~x~ = 1.251 Mg m^−3^ Monoclinic, *C*2/*c* Melting point = 562--565 K Hall symbol: -C 2yc Mo *K*α radiation, λ = 0.71073 Å *a* = 23.104 (3) Å Cell parameters from 6719 reflections *b* = 11.5871 (15) Å θ = 2.6--31.2° *c* = 17.618 (2) Å µ = 0.32 mm^−1^ β = 117.655 (2)° *T* = 100 K *V* = 4177.7 (9) Å^3^ Plate, colourless *Z* = 4 0.49 × 0.31 × 0.15 mm ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e455 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker Kappa APEXII CCD diffractometer 6176 independent reflections Radiation source: fine--focus sealed tube 5280 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.019 ω scans θ~max~ = 31.3°, θ~min~ = 2.0° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −32→21 *T*~min~ = 0.658, *T*~max~ = 0.746 *k* = −16→16 15796 measured reflections *l* = −25→24 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e569 .table-wrap} ------------------------------------- ---------------------------------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.045 H-atom parameters constrained *wR*(*F*^2^) = 0.119 Method: Modified Sheldrick *w* = 1/\[σ^2^(*F*^2^) + (0.06*P*)^2^ + 6.5*P*\], where *P* = (max(*F*~o~^2^,0) + 2*F*~c~^2^)/3 *S* = 0.97 (Δ/σ)~max~ = 0.001 6176 reflections Δρ~max~ = 0.84 e Å^−3^ 235 parameters Δρ~min~ = −1.05 e Å^−3^ 0 restraints ------------------------------------- ---------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e726 .table-wrap} ------ ------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.50019 (6) 0.26912 (11) 0.95475 (8) 0.0164 C2 0.54654 (6) 0.20061 (11) 0.93269 (8) 0.0149 C3 0.53732 (6) 0.08279 (11) 0.91462 (8) 0.0167 C4 0.57355 (6) 0.02376 (11) 0.88215 (8) 0.0170 C5 0.61874 (6) 0.08366 (11) 0.86547 (8) 0.0168 C6 0.62966 (6) 0.20102 (11) 0.88333 (8) 0.0148 C7 0.67218 (6) 0.27004 (11) 0.85493 (8) 0.0163 C8 0.62887 (6) 0.33794 (11) 0.77464 (8) 0.0143 C9 0.61781 (6) 0.45548 (11) 0.77855 (8) 0.0160 C10 0.57288 (6) 0.51528 (11) 0.70662 (8) 0.0164 C11 0.53667 (6) 0.45584 (11) 0.63009 (8) 0.0159 C12 0.54589 (6) 0.33795 (11) 0.62379 (8) 0.0144 C13 0.59403 (6) 0.28149 (10) 0.69587 (8) 0.0137 C14 0.59478 (6) 0.25714 (10) 0.91977 (8) 0.0145 C15 0.55982 (8) −0.10064 (12) 0.85763 (10) 0.0239 C16 0.56055 (8) 0.64034 (12) 0.71362 (10) 0.0231 O17 0.60538 (4) 0.37378 (8) 0.93772 (6) 0.0152 C18 0.65446 (7) 0.39656 (12) 1.02414 (8) 0.0203 C19 0.66500 (8) 0.52464 (13) 1.03584 (10) 0.0267 C20 0.71259 (8) 0.55535 (15) 1.12794 (11) 0.0327 O21 0.60378 (5) 0.16480 (8) 0.69063 (6) 0.0160 C22 0.65246 (7) 0.13892 (11) 0.66358 (9) 0.0186 C23 0.64766 (7) 0.01154 (13) 0.64361 (10) 0.0246 C24 0.69974 (8) −0.02954 (15) 0.61997 (11) 0.0314 Cl25 0.61811 (3) −0.19788 (3) 0.93509 (3) 0.0381 Cl26 0.62004 (3) 0.73262 (3) 0.70485 (3) 0.0407 H11 0.5243 0.3212 1.0025 0.0157\* H12 0.4747 0.2162 0.9728 0.0143\* H31 0.5042 0.0438 0.9235 0.0150\* H51 0.6414 0.0427 0.8393 0.0158\* H72 0.7020 0.3210 0.9014 0.0138\* H71 0.6988 0.2163 0.8411 0.0144\* H91 0.6406 0.4933 0.8305 0.0136\* H111 0.5048 0.4966 0.5830 0.0128\* H151 0.5183 −0.1218 0.8522 0.0232\* H152 0.5596 −0.1137 0.8038 0.0233\* H162 0.5642 0.6536 0.7693 0.0219\* H161 0.5193 0.6646 0.6685 0.0223\* H181 0.6947 0.3556 1.0335 0.0207\* H182 0.6413 0.3680 1.0656 0.0205\* H192 0.6830 0.5531 0.9985 0.0289\* H191 0.6222 0.5628 1.0206 0.0279\* H201 0.7230 0.6366 1.1318 0.0433\* H203 0.7532 0.5123 1.1473 0.0441\* H202 0.6935 0.5370 1.1652 0.0450\* H221 0.6956 0.1595 0.7082 0.0178\* H222 0.6420 0.1815 0.6115 0.0173\* H231 0.6530 −0.0287 0.6945 0.0258\* H232 0.6051 −0.0045 0.5971 0.0253\* H242 0.6953 −0.1109 0.6068 0.0429\* H241 0.7421 −0.0116 0.6648 0.0429\* H243 0.6957 0.0125 0.5702 0.0441\* ------ ------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1408 .table-wrap} ------ ------------ -------------- -------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0182 (6) 0.0177 (5) 0.0144 (5) 0.0010 (4) 0.0086 (5) 0.0009 (4) C2 0.0162 (6) 0.0154 (5) 0.0129 (5) 0.0013 (4) 0.0066 (5) 0.0018 (4) C3 0.0173 (6) 0.0153 (5) 0.0169 (6) −0.0003 (4) 0.0076 (5) 0.0026 (4) C4 0.0192 (6) 0.0138 (5) 0.0165 (5) 0.0009 (4) 0.0070 (5) 0.0011 (4) C5 0.0185 (6) 0.0150 (5) 0.0169 (6) 0.0029 (4) 0.0084 (5) 0.0017 (4) C6 0.0135 (5) 0.0160 (5) 0.0134 (5) 0.0012 (4) 0.0051 (4) 0.0027 (4) C7 0.0144 (5) 0.0181 (5) 0.0160 (5) 0.0007 (4) 0.0066 (5) 0.0021 (4) C8 0.0133 (5) 0.0147 (5) 0.0167 (5) −0.0002 (4) 0.0085 (5) 0.0012 (4) C9 0.0172 (6) 0.0152 (5) 0.0170 (6) −0.0020 (4) 0.0092 (5) −0.0009 (4) C10 0.0194 (6) 0.0130 (5) 0.0200 (6) −0.0006 (4) 0.0119 (5) 0.0006 (4) C11 0.0166 (6) 0.0147 (5) 0.0172 (6) 0.0008 (4) 0.0086 (5) 0.0026 (4) C12 0.0160 (6) 0.0151 (5) 0.0147 (5) −0.0010 (4) 0.0092 (5) 0.0003 (4) C13 0.0148 (5) 0.0125 (5) 0.0167 (5) −0.0002 (4) 0.0098 (5) 0.0008 (4) C14 0.0155 (6) 0.0131 (5) 0.0128 (5) 0.0004 (4) 0.0047 (4) 0.0012 (4) C15 0.0292 (7) 0.0166 (6) 0.0248 (7) −0.0011 (5) 0.0117 (6) −0.0009 (5) C16 0.0308 (7) 0.0146 (6) 0.0267 (7) 0.0017 (5) 0.0156 (6) 0.0007 (5) O17 0.0169 (4) 0.0129 (4) 0.0131 (4) −0.0005 (3) 0.0046 (3) 0.0000 (3) C18 0.0218 (6) 0.0190 (6) 0.0142 (6) 0.0007 (5) 0.0035 (5) −0.0003 (4) C19 0.0296 (8) 0.0202 (6) 0.0237 (7) −0.0023 (5) 0.0068 (6) −0.0047 (5) C20 0.0261 (8) 0.0328 (8) 0.0306 (8) −0.0005 (6) 0.0059 (6) −0.0149 (6) O21 0.0188 (4) 0.0126 (4) 0.0208 (4) 0.0013 (3) 0.0127 (4) −0.0002 (3) C22 0.0197 (6) 0.0185 (6) 0.0220 (6) 0.0025 (5) 0.0134 (5) −0.0003 (5) C23 0.0223 (7) 0.0215 (6) 0.0300 (7) 0.0024 (5) 0.0122 (6) −0.0073 (5) C24 0.0253 (7) 0.0352 (8) 0.0327 (8) 0.0104 (6) 0.0126 (6) −0.0073 (6) Cl25 0.0615 (3) 0.01859 (16) 0.02742 (19) 0.01114 (16) 0.01501 (19) 0.00475 (13) Cl26 0.0690 (3) 0.02000 (17) 0.0518 (3) −0.01600 (18) 0.0438 (3) −0.00762 (16) ------ ------------ -------------- -------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1886 .table-wrap} ------------------- ------------- ------------------- ------------- C1---C12^i^ 1.5220 (17) C14---O17 1.3837 (15) C1---C2 1.5214 (18) C15---Cl25 1.7998 (15) C1---H11 0.973 C15---H151 0.950 C1---H12 0.998 C15---H152 0.958 C2---C3 1.3956 (17) C16---Cl26 1.8037 (15) C2---C14 1.3994 (17) C16---H162 0.958 C3---C4 1.3927 (18) C16---H161 0.957 C3---H31 0.962 O17---C18 1.4392 (15) C4---C5 1.3940 (18) C18---C19 1.503 (2) C4---C15 1.4959 (19) C18---H181 0.988 C5---C6 1.3922 (17) C18---H182 0.970 C5---H51 0.967 C19---C20 1.521 (2) C6---C7 1.5203 (18) C19---H192 0.984 C6---C14 1.4018 (18) C19---H191 1.000 C7---C8 1.5190 (17) C20---H201 0.967 C7---H72 0.985 C20---H203 0.974 C7---H71 0.982 C20---H202 0.969 C8---C9 1.3933 (17) O21---C22 1.4420 (16) C8---C13 1.4016 (17) C22---C23 1.5094 (19) C9---C10 1.3938 (18) C22---H221 0.971 C9---H91 0.927 C22---H222 0.969 C10---C11 1.3946 (18) C23---C24 1.521 (2) C10---C16 1.4929 (18) C23---H231 0.966 C11---C12 1.3950 (17) C23---H232 0.961 C11---H111 0.941 C24---H242 0.965 C12---C13 1.4024 (17) C24---H241 0.952 C13---O21 1.3810 (14) C24---H243 0.968 C12^i^---C1---C2 108.63 (10) C4---C15---H151 110.3 C12^i^---C1---H11 109.8 Cl25---C15---H151 106.3 C2---C1---H11 110.8 C4---C15---H152 109.9 C12^i^---C1---H12 110.2 Cl25---C15---H152 108.1 C2---C1---H12 110.4 H151---C15---H152 108.5 H11---C1---H12 107.0 C10---C16---Cl26 112.72 (10) C1---C2---C3 121.19 (11) C10---C16---H162 108.1 C1---C2---C14 120.36 (11) Cl26---C16---H162 106.6 C3---C2---C14 118.00 (12) C10---C16---H161 111.8 C2---C3---C4 121.13 (12) Cl26---C16---H161 105.1 C2---C3---H31 118.1 H162---C16---H161 112.5 C4---C3---H31 120.7 C14---O17---C18 112.95 (9) C3---C4---C5 119.59 (12) O17---C18---C19 108.92 (11) C3---C4---C15 120.30 (12) O17---C18---H181 107.9 C5---C4---C15 119.87 (12) C19---C18---H181 111.8 C4---C5---C6 120.90 (12) O17---C18---H182 111.4 C4---C5---H51 118.7 C19---C18---H182 108.7 C6---C5---H51 120.3 H181---C18---H182 108.1 C5---C6---C7 121.09 (12) C18---C19---C20 111.62 (13) C5---C6---C14 118.31 (12) C18---C19---H192 109.3 C7---C6---C14 120.23 (11) C20---C19---H192 108.3 C6---C7---C8 109.38 (10) C18---C19---H191 108.8 C6---C7---H72 110.6 C20---C19---H191 108.6 C8---C7---H72 111.6 H192---C19---H191 110.1 C6---C7---H71 108.8 C19---C20---H201 109.7 C8---C7---H71 108.4 C19---C20---H203 110.9 H72---C7---H71 108.0 H201---C20---H203 107.8 C7---C8---C9 121.12 (11) C19---C20---H202 109.9 C7---C8---C13 120.51 (11) H201---C20---H202 110.0 C9---C8---C13 118.09 (11) H203---C20---H202 108.5 C8---C9---C10 121.15 (12) C13---O21---C22 113.71 (10) C8---C9---H91 118.5 O21---C22---C23 107.23 (11) C10---C9---H91 120.3 O21---C22---H221 110.3 C9---C10---C11 119.54 (11) C23---C22---H221 111.5 C9---C10---C16 119.84 (12) O21---C22---H222 108.5 C11---C10---C16 120.49 (12) C23---C22---H222 108.5 C10---C11---C12 121.02 (12) H221---C22---H222 110.7 C10---C11---H111 118.6 C22---C23---C24 112.83 (13) C12---C11---H111 120.4 C22---C23---H231 106.9 C1^i^---C12---C11 121.15 (11) C24---C23---H231 109.0 C1^i^---C12---C13 120.33 (11) C22---C23---H232 108.9 C11---C12---C13 118.09 (11) C24---C23---H232 109.3 C12---C13---C8 121.91 (11) H231---C23---H232 109.8 C12---C13---O21 118.79 (11) C23---C24---H242 111.2 C8---C13---O21 119.11 (11) C23---C24---H241 110.1 C6---C14---C2 121.86 (11) H242---C24---H241 111.5 C6---C14---O17 118.64 (11) C23---C24---H243 109.5 C2---C14---O17 119.34 (11) H242---C24---H243 108.6 C4---C15---Cl25 113.61 (10) H241---C24---H243 105.7 ------------------- ------------- ------------------- ------------- ::: Symmetry codes: (i) −*x*+1, *y*, −*z*+3/2. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2629 .table-wrap} ------------------------ --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C22---H222···Cl25^ii^ 0.97 2.90 3.786 (1) 153 C23---H231···Cl26^iii^ 0.97 2.90 3.557 (2) 127 ------------------------ --------- --------- ----------- --------------- ::: Symmetry codes: (ii) *x*, −*y*, *z*−1/2; (iii) *x*, *y*−1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- --------- ------- ----------- ------------- C22---H222⋯Cl25^i^ 0.97 2.90 3.786 (1) 153 C23---H231⋯Cl26^ii^ 0.97 2.90 3.557 (2) 127 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:17.894585
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052014/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):o728-o729", "authors": [ { "first": "Felix", "last": "Kutter" }, { "first": "Matthias H.", "last": "Düker" }, { "first": "Matthias", "last": "Zeller" }, { "first": "Vladimir A.", "last": "Azov" } ] }
PMC3052015
Related literature {#sec1} ================== For background to ligands based on 1,10-phenanthroline, see: Wang *et al.* (2010[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Mn(C~8~H~4~NO~6~)~2~(C~18~H~11~N~5~)~2~\]*M* *~r~* = 1069.82Monoclinic,*a* = 21.791 (3) Å*b* = 8.2215 (12) Å*c* = 27.270 (4) Åβ = 111.767 (3)°*V* = 4537.2 (12) Å^3^*Z* = 4Mo *K*α radiationμ = 0.38 mm^−1^*T* = 293 K0.22 × 0.18 × 0.16 mm ### Data collection {#sec2.1.2} Bruker APEX CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb4]) *T* ~min~ = 0.45, *T* ~max~ = 0.6922806 measured reflections8037 independent reflections3602 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.105 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.065*wR*(*F* ^2^) = 0.126*S* = 0.958037 reflections694 parametersH-atom parameters constrainedΔρ~max~ = 0.29 e Å^−3^Δρ~min~ = −0.24 e Å^−3^ {#d5e574} Data collection: *SMART* (Bruker, 1997[@bb2]); cell refinement: *SAINT* (Bruker, 1999[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *DIAMOND* (Brandenburg, 2006[@bb1]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004569/hb5800sup1.cif](http://dx.doi.org/10.1107/S1600536811004569/hb5800sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004569/hb5800Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004569/hb5800Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hb5800&file=hb5800sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hb5800sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hb5800&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HB5800](http://scripts.iucr.org/cgi-bin/sendsup?hb5800)). The authors thank Jilin Normal University for supporting this work. Comment ======= The coordination complexes based on 1,10-phenanthroline-like ligands have received intense interests of chemists (Wang *et al.*, 2010). The (6-(pyridin-4-yl)-5H-cyclopenta\[f\]\[1,10\]phenanthroline ligand (L), as a good candidate for N-donor ligand, has excellent coordinating ability. In this work, we selected 1,3-Hbdc ligand (1,3-Hbdc = 5-nitro-benzene-1-carboxylate-3-carboxylic acid) as a secondary ligand and L as a N-donor chelating ligand, generating a new molecular Mn^II^ complex, \[Mn(L)~2~(1,3-Hbdc)~2~\]. The central Mn^II^ atom is six-coordinated by four N atoms from two different L ligands, and two carboxylate O atoms from two different 1,3-Hbdc ligands in a distorted octahedral sphere. The O---H···N and N---H···O H-bonding interactions further stabilize the structure of (I). Experimental {#experimental} ============ A mixture of MnCl~2~^.^4H~2~O (0.5 mmol), 1,3-H~2~bdc (0.5 mmol) and L (0.5 mmol) in 1 ml distilled water was heated at 460 K in a Teflon-lined stainless steel autoclave for seven days. The reaction system was then slowly cooled to room temperature. Pale yellow blocks of (I) were collected from the final reaction system by filtration, washed several times with distilled water and dried in air at ambient temperature. Yield: 31% based on Mn(II). Refinement {#refinement} ========== All H atoms were positioned geometrically (C--H = 0.93 Å) and refined as riding, with U~iso~(H) = 1.2U~eq~(carrier). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The asymmetric unit in (I) with isplacement ellipsoids drawn at the 30% probability level. ::: ![](e-67-0m326-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e125 .table-wrap} --------------------------------------------- --------------------------------------- \[Mn(C~8~H~4~NO~6~)~2~(C~18~H~11~N~5~)~2~\] *F*(000) = 2188 *M~r~* = 1069.82 *D*~x~ = 1.566 Mg m^−3^ Monoclinic, *P*2/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yac Cell parameters from 8037 reflections *a* = 21.791 (3) Å θ = 1.5--25.1° *b* = 8.2215 (12) Å µ = 0.38 mm^−1^ *c* = 27.270 (4) Å *T* = 293 K β = 111.767 (3)° Block, pale yellow *V* = 4537.2 (12) Å^3^ 0.22 × 0.18 × 0.16 mm *Z* = 4 --------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e266 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEX CCD diffractometer 8037 independent reflections Radiation source: fine-focus sealed tube 3602 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.105 φ and ω scans θ~max~ = 25.1°, θ~min~ = 1.5° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −25→25 *T*~min~ = 0.45, *T*~max~ = 0.69 *k* = −9→9 22806 measured reflections *l* = −32→31 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e383 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.065 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.126 H-atom parameters constrained *S* = 0.95 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0333*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 8037 reflections (Δ/σ)~max~ = 0.001 694 parameters Δρ~max~ = 0.29 e Å^−3^ 0 restraints Δρ~min~ = −0.24 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e537 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e582 .table-wrap} ----- -------------- ------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.7839 (2) 0.3222 (6) 0.62459 (18) 0.0436 (13) H1 0.8208 0.2673 0.6237 0.052\* C2 0.7751 (2) 0.3328 (6) 0.67284 (18) 0.0517 (14) H2 0.8049 0.2840 0.7031 0.062\* C3 0.7218 (3) 0.4161 (6) 0.67451 (18) 0.0493 (14) H3 0.7151 0.4250 0.7062 0.059\* C4 0.6774 (2) 0.4880 (5) 0.62896 (18) 0.0370 (12) C5 0.6891 (2) 0.4700 (5) 0.58208 (17) 0.0341 (12) C6 0.6429 (2) 0.5362 (5) 0.53295 (18) 0.0340 (12) C7 0.5577 (3) 0.6533 (6) 0.43876 (19) 0.0543 (15) H7 0.5297 0.6911 0.4059 0.065\* C8 0.5446 (2) 0.6859 (6) 0.48274 (19) 0.0478 (14) H8 0.5078 0.7473 0.4805 0.057\* C9 0.6132 (3) 0.5630 (6) 0.44341 (19) 0.0479 (14) H9 0.6210 0.5401 0.4128 0.058\* C10 0.5871 (2) 0.6262 (5) 0.53116 (18) 0.0350 (12) C11 0.5787 (2) 0.6459 (5) 0.58042 (17) 0.0348 (12) C12 0.6213 (2) 0.5789 (5) 0.62744 (18) 0.0386 (13) C13 0.5485 (3) 0.7048 (6) 0.64667 (18) 0.0405 (13) C14 0.5122 (2) 0.7806 (6) 0.67659 (18) 0.0411 (13) C15 0.5311 (2) 0.7421 (6) 0.72934 (19) 0.0513 (14) H15 0.5663 0.6719 0.7453 0.062\* C16 0.4966 (3) 0.8096 (6) 0.7584 (2) 0.0570 (15) H16 0.5087 0.7800 0.7937 0.068\* C17 0.4303 (2) 0.9544 (6) 0.6870 (2) 0.0531 (15) H17 0.3963 1.0289 0.6721 0.064\* C18 0.4614 (2) 0.8892 (6) 0.65543 (19) 0.0475 (14) H18 0.4479 0.9189 0.6201 0.057\* C19 0.7020 (3) 0.2939 (6) 0.3780 (2) 0.0560 (15) H19 0.6655 0.2432 0.3812 0.067\* C20 0.7083 (3) 0.2884 (7) 0.3291 (2) 0.0684 (18) H20 0.6764 0.2379 0.3004 0.082\* C21 0.7624 (3) 0.3590 (7) 0.32447 (19) 0.0704 (18) H21 0.7685 0.3539 0.2925 0.084\* C22 0.8081 (3) 0.4382 (6) 0.36705 (19) 0.0450 (14) C23 0.7967 (2) 0.4395 (5) 0.41476 (18) 0.0361 (12) C24 0.8437 (2) 0.5203 (5) 0.46088 (18) 0.0347 (12) C25 0.9006 (2) 0.5974 (5) 0.45968 (19) 0.0366 (12) C26 0.8698 (3) 0.5916 (6) 0.5475 (2) 0.0563 (16) H26 0.8601 0.5896 0.5779 0.068\* C27 0.9269 (3) 0.6722 (6) 0.54986 (19) 0.0594 (16) H27 0.9539 0.7235 0.5807 0.071\* C28 0.9424 (2) 0.6740 (6) 0.50568 (19) 0.0545 (15) H28 0.9805 0.7260 0.5062 0.065\* C29 0.9102 (2) 0.5912 (6) 0.41070 (19) 0.0389 (13) C30 0.8663 (3) 0.5148 (6) 0.36690 (19) 0.0453 (14) C31 0.9408 (3) 0.6143 (6) 0.3431 (2) 0.0475 (14) C32 0.9772 (3) 0.6646 (6) 0.3097 (2) 0.0489 (14) C33 0.9535 (3) 0.6121 (6) 0.2575 (2) 0.0639 (17) H33 0.9162 0.5463 0.2447 0.077\* C34 0.9863 (3) 0.6595 (7) 0.2252 (2) 0.0756 (19) H34 0.9710 0.6210 0.1907 0.091\* C35 1.0604 (3) 0.8106 (6) 0.2904 (2) 0.0579 (15) H35 1.0967 0.8800 0.3014 0.070\* C36 1.0314 (3) 0.7674 (6) 0.3266 (2) 0.0561 (15) H36 1.0481 0.8067 0.3610 0.067\* C37 0.6338 (3) 0.1061 (6) 0.50156 (19) 0.0403 (13) C38 0.6636 (2) 0.0379 (5) 0.55716 (18) 0.0349 (12) C39 0.7235 (2) −0.0407 (5) 0.57444 (18) 0.0434 (13) H39 0.7468 −0.0535 0.5522 0.052\* C40 0.7486 (2) −0.1003 (5) 0.6254 (2) 0.0423 (13) C41 0.7181 (3) −0.0741 (5) 0.66075 (19) 0.0472 (14) H41 0.7361 −0.1155 0.6949 0.057\* C42 0.6608 (2) 0.0137 (6) 0.64488 (19) 0.0407 (13) C43 0.6323 (2) 0.0650 (5) 0.59284 (17) 0.0351 (12) H43 0.5917 0.1182 0.5815 0.042\* C44 0.8736 (3) 0.1424 (6) 0.5129 (2) 0.0470 (14) C45 0.8530 (2) 0.0571 (6) 0.4602 (2) 0.0439 (14) C46 0.7958 (2) −0.0331 (6) 0.4413 (2) 0.0482 (14) H46 0.7697 −0.0455 0.4614 0.058\* C47 0.8125 (3) −0.0839 (6) 0.3595 (2) 0.0495 (14) H47 0.7985 −0.1312 0.3262 0.059\* C48 0.7772 (3) −0.1052 (6) 0.3921 (2) 0.0477 (14) C49 0.8687 (3) 0.0087 (6) 0.3778 (2) 0.0494 (14) C50 0.8901 (2) 0.0752 (6) 0.42842 (19) 0.0470 (14) H50 0.9297 0.1325 0.4412 0.056\* C51 0.6322 (3) 0.0621 (6) 0.6850 (2) 0.0479 (14) C52 0.9079 (3) 0.0441 (7) 0.3441 (2) 0.0551 (16) N1 0.65586 (18) 0.5075 (4) 0.48869 (15) 0.0378 (10) N2 0.74218 (19) 0.3867 (4) 0.58012 (14) 0.0347 (10) N3 0.6016 (2) 0.6158 (5) 0.66824 (14) 0.0434 (11) N4 0.53191 (18) 0.7276 (4) 0.59346 (14) 0.0393 (10) H4A 0.4989 0.7820 0.5725 0.047\* N5 0.4470 (2) 0.9149 (5) 0.73788 (16) 0.0523 (12) N6 0.74414 (19) 0.3661 (5) 0.41993 (15) 0.0408 (10) N7 0.82803 (19) 0.5173 (5) 0.50504 (15) 0.0428 (11) N8 0.8854 (2) 0.5313 (5) 0.32436 (15) 0.0537 (12) N9 0.95818 (18) 0.6546 (4) 0.39486 (15) 0.0455 (11) H7A 0.9924 0.7090 0.4139 0.055\* N10 1.0382 (2) 0.7566 (6) 0.24085 (18) 0.0602 (13) N11 0.8121 (2) −0.1868 (6) 0.64354 (19) 0.0646 (14) N12 0.7165 (2) −0.2004 (6) 0.3723 (2) 0.0667 (14) O1 0.82859 (16) 0.1734 (4) 0.53061 (12) 0.0502 (9) O2 0.93284 (18) 0.1821 (4) 0.53423 (13) 0.0639 (11) O3 0.9592 (2) 0.1171 (5) 0.36019 (15) 0.0900 (15) O4 0.87938 (17) −0.0072 (4) 0.29559 (14) 0.0705 (11) H4 0.9027 0.0147 0.2788 0.106\* O5 0.57270 (17) 0.1200 (4) 0.48219 (12) 0.0573 (10) O6 0.67361 (16) 0.1446 (3) 0.47948 (11) 0.0446 (9) O7 0.58037 (18) 0.1549 (4) 0.66617 (13) 0.0674 (11) H9A 0.5669 0.1773 0.6897 0.101\* O8 0.65787 (18) 0.0239 (5) 0.73147 (14) 0.0726 (12) O9 0.8533 (2) −0.1451 (6) 0.62548 (17) 0.1025 (16) O10 0.8222 (2) −0.2911 (5) 0.67712 (18) 0.1011 (16) O11 0.6839 (2) −0.2126 (5) 0.39982 (18) 0.1066 (16) O12 0.6987 (2) −0.2588 (6) 0.32858 (19) 0.1047 (17) Mn1 0.74582 (4) 0.33502 (8) 0.50134 (3) 0.0390 (2) ----- -------------- ------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1945 .table-wrap} ----- ------------ ------------ ------------ -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.033 (3) 0.056 (3) 0.039 (3) 0.007 (3) 0.011 (3) −0.002 (3) C2 0.047 (4) 0.071 (4) 0.033 (3) 0.018 (3) 0.011 (3) 0.007 (3) C3 0.053 (4) 0.063 (4) 0.034 (3) 0.009 (3) 0.019 (3) −0.003 (3) C4 0.040 (3) 0.039 (3) 0.033 (3) 0.002 (3) 0.014 (3) −0.001 (3) C5 0.032 (3) 0.037 (3) 0.036 (3) −0.004 (3) 0.016 (2) 0.000 (2) C6 0.033 (3) 0.036 (3) 0.035 (3) −0.001 (3) 0.016 (2) 0.000 (2) C7 0.052 (4) 0.070 (4) 0.044 (3) 0.020 (3) 0.021 (3) 0.021 (3) C8 0.037 (3) 0.059 (4) 0.050 (3) 0.009 (3) 0.019 (3) 0.005 (3) C9 0.060 (4) 0.054 (4) 0.033 (3) 0.008 (3) 0.021 (3) 0.007 (3) C10 0.034 (3) 0.038 (3) 0.034 (3) −0.003 (3) 0.013 (2) 0.002 (3) C11 0.029 (3) 0.040 (3) 0.036 (3) −0.001 (3) 0.013 (2) −0.006 (3) C12 0.038 (3) 0.047 (3) 0.032 (3) 0.003 (3) 0.014 (3) −0.006 (3) C13 0.048 (4) 0.047 (3) 0.032 (3) 0.000 (3) 0.021 (3) −0.004 (3) C14 0.034 (3) 0.051 (3) 0.039 (3) −0.003 (3) 0.015 (3) −0.007 (3) C15 0.050 (4) 0.068 (4) 0.039 (3) 0.011 (3) 0.021 (3) 0.002 (3) C16 0.056 (4) 0.076 (4) 0.043 (3) −0.001 (4) 0.024 (3) −0.001 (3) C17 0.038 (4) 0.067 (4) 0.059 (4) 0.003 (3) 0.023 (3) −0.004 (3) C18 0.042 (4) 0.058 (4) 0.047 (3) −0.005 (3) 0.021 (3) −0.010 (3) C19 0.047 (4) 0.070 (4) 0.054 (4) −0.013 (3) 0.023 (3) −0.004 (3) C20 0.061 (4) 0.099 (5) 0.040 (4) −0.031 (4) 0.013 (3) −0.012 (3) C21 0.075 (5) 0.108 (5) 0.032 (3) −0.030 (4) 0.026 (3) −0.006 (3) C22 0.047 (4) 0.056 (4) 0.036 (3) −0.008 (3) 0.019 (3) 0.003 (3) C23 0.028 (3) 0.048 (3) 0.034 (3) 0.000 (3) 0.013 (2) 0.004 (3) C24 0.029 (3) 0.038 (3) 0.039 (3) 0.004 (3) 0.015 (2) 0.008 (3) C25 0.031 (3) 0.038 (3) 0.043 (3) 0.002 (3) 0.016 (3) 0.006 (3) C26 0.054 (4) 0.078 (4) 0.046 (4) −0.017 (3) 0.028 (3) −0.009 (3) C27 0.058 (4) 0.079 (4) 0.042 (3) −0.025 (4) 0.019 (3) −0.013 (3) C28 0.040 (3) 0.069 (4) 0.055 (4) −0.019 (3) 0.018 (3) −0.001 (3) C29 0.034 (3) 0.051 (3) 0.041 (3) 0.001 (3) 0.024 (3) 0.010 (3) C30 0.045 (4) 0.059 (4) 0.039 (3) −0.005 (3) 0.022 (3) 0.006 (3) C31 0.051 (4) 0.058 (4) 0.044 (4) 0.005 (3) 0.028 (3) 0.009 (3) C32 0.046 (4) 0.063 (4) 0.048 (4) 0.008 (3) 0.028 (3) 0.019 (3) C33 0.076 (5) 0.073 (4) 0.057 (4) −0.014 (3) 0.041 (4) 0.000 (3) C34 0.098 (6) 0.081 (5) 0.068 (4) −0.012 (4) 0.055 (4) 0.001 (4) C35 0.039 (3) 0.079 (4) 0.058 (4) 0.003 (3) 0.021 (3) 0.015 (4) C36 0.043 (4) 0.083 (4) 0.048 (3) 0.007 (3) 0.024 (3) 0.018 (3) C37 0.043 (4) 0.039 (3) 0.043 (3) 0.004 (3) 0.021 (3) −0.001 (3) C38 0.028 (3) 0.039 (3) 0.038 (3) 0.000 (3) 0.013 (2) −0.001 (2) C39 0.040 (3) 0.055 (4) 0.039 (3) 0.000 (3) 0.019 (3) −0.008 (3) C40 0.035 (3) 0.041 (3) 0.053 (4) 0.007 (3) 0.019 (3) −0.002 (3) C41 0.052 (4) 0.044 (3) 0.042 (3) −0.007 (3) 0.013 (3) 0.002 (3) C42 0.040 (3) 0.046 (3) 0.039 (3) −0.003 (3) 0.019 (3) 0.002 (3) C43 0.027 (3) 0.041 (3) 0.041 (3) −0.002 (2) 0.016 (2) −0.001 (3) C44 0.040 (4) 0.052 (4) 0.051 (4) 0.008 (3) 0.020 (3) 0.011 (3) C45 0.032 (3) 0.046 (3) 0.058 (4) 0.005 (3) 0.022 (3) 0.006 (3) C46 0.045 (4) 0.051 (4) 0.055 (4) 0.011 (3) 0.026 (3) 0.011 (3) C47 0.044 (4) 0.054 (4) 0.054 (4) 0.000 (3) 0.023 (3) −0.001 (3) C48 0.031 (3) 0.046 (3) 0.064 (4) −0.006 (3) 0.015 (3) 0.004 (3) C49 0.051 (4) 0.054 (4) 0.050 (4) −0.005 (3) 0.027 (3) 0.002 (3) C50 0.032 (3) 0.059 (4) 0.052 (4) −0.005 (3) 0.019 (3) 0.001 (3) C51 0.049 (4) 0.057 (4) 0.044 (4) −0.005 (3) 0.024 (3) −0.006 (3) C52 0.054 (4) 0.067 (4) 0.048 (4) −0.006 (3) 0.023 (3) −0.003 (3) N1 0.038 (3) 0.046 (3) 0.034 (2) 0.002 (2) 0.019 (2) 0.003 (2) N2 0.029 (2) 0.043 (3) 0.032 (2) 0.001 (2) 0.0108 (19) −0.001 (2) N3 0.039 (3) 0.055 (3) 0.039 (3) 0.007 (2) 0.019 (2) −0.006 (2) N4 0.038 (3) 0.045 (3) 0.038 (3) 0.007 (2) 0.018 (2) 0.001 (2) N5 0.048 (3) 0.069 (3) 0.042 (3) −0.003 (3) 0.020 (2) −0.012 (3) N6 0.027 (2) 0.052 (3) 0.042 (3) −0.009 (2) 0.011 (2) −0.003 (2) N7 0.043 (3) 0.053 (3) 0.038 (3) −0.006 (2) 0.023 (2) −0.003 (2) N8 0.050 (3) 0.077 (3) 0.041 (3) −0.010 (3) 0.025 (2) 0.004 (2) N9 0.036 (3) 0.060 (3) 0.046 (3) −0.005 (2) 0.022 (2) 0.005 (2) N10 0.056 (3) 0.075 (4) 0.060 (3) 0.007 (3) 0.034 (3) 0.016 (3) N11 0.054 (4) 0.074 (4) 0.060 (4) 0.011 (3) 0.014 (3) −0.009 (3) N12 0.050 (4) 0.064 (4) 0.088 (4) 0.003 (3) 0.028 (3) 0.008 (3) O1 0.044 (2) 0.063 (2) 0.054 (2) 0.011 (2) 0.0301 (18) 0.0069 (19) O2 0.046 (3) 0.093 (3) 0.058 (2) −0.007 (2) 0.027 (2) −0.009 (2) O3 0.073 (3) 0.145 (4) 0.066 (3) −0.048 (3) 0.042 (2) −0.026 (3) O4 0.070 (3) 0.102 (3) 0.050 (2) −0.022 (3) 0.034 (2) −0.012 (2) O5 0.038 (2) 0.088 (3) 0.048 (2) 0.011 (2) 0.0190 (18) 0.016 (2) O6 0.050 (2) 0.052 (2) 0.040 (2) −0.0106 (19) 0.0256 (17) −0.0011 (17) O7 0.065 (3) 0.093 (3) 0.060 (2) 0.021 (3) 0.041 (2) 0.000 (2) O8 0.078 (3) 0.106 (3) 0.039 (2) 0.004 (3) 0.028 (2) 0.000 (2) O9 0.065 (3) 0.146 (4) 0.107 (4) 0.043 (3) 0.044 (3) 0.016 (3) O10 0.075 (4) 0.083 (3) 0.119 (4) 0.007 (3) 0.005 (3) 0.028 (3) O11 0.079 (4) 0.133 (4) 0.120 (4) −0.049 (3) 0.052 (3) −0.008 (3) O12 0.069 (3) 0.133 (4) 0.108 (4) −0.027 (3) 0.028 (3) −0.042 (3) Mn1 0.0346 (5) 0.0506 (5) 0.0381 (4) −0.0011 (4) 0.0207 (3) 0.0009 (4) ----- ------------ ------------ ------------ -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e3298 .table-wrap} ----------------- ----------- ----------------- ------------- C1---N2 1.327 (5) C30---N8 1.378 (5) C1---C2 1.401 (5) C31---N8 1.313 (6) C1---H1 0.9300 C31---N9 1.359 (5) C2---C3 1.363 (6) C31---C32 1.473 (6) C2---H2 0.9300 C32---C36 1.384 (6) C3---C4 1.391 (6) C32---C33 1.390 (6) C3---H3 0.9300 C33---C34 1.381 (6) C4---C5 1.401 (5) C33---H33 0.9300 C4---C12 1.421 (6) C34---N10 1.320 (6) C5---N2 1.361 (5) C34---H34 0.9300 C5---C6 1.451 (6) C35---N10 1.330 (6) C6---N1 1.358 (5) C35---C36 1.400 (6) C6---C10 1.410 (6) C35---H35 0.9300 C7---C8 1.358 (6) C36---H36 0.9300 C7---C9 1.385 (6) C37---O5 1.242 (5) C7---H7 0.9300 C37---O6 1.266 (5) C8---C10 1.391 (6) C37---C38 1.518 (6) C8---H8 0.9300 C38---C39 1.374 (6) C9---N1 1.321 (5) C38---C43 1.398 (5) C9---H9 0.9300 C39---C40 1.380 (6) C10---C11 1.430 (6) C39---H39 0.9300 C11---N4 1.373 (5) C40---C41 1.377 (6) C11---C12 1.388 (6) C40---N11 1.469 (6) C12---N3 1.367 (5) C41---C42 1.366 (6) C13---N3 1.311 (5) C41---H41 0.9300 C13---N4 1.372 (5) C42---C43 1.387 (6) C13---C14 1.469 (6) C42---C51 1.500 (6) C14---C18 1.371 (6) C43---H43 0.9300 C14---C15 1.378 (6) C44---O2 1.247 (5) C15---C16 1.393 (6) C44---O1 1.269 (5) C15---H15 0.9300 C44---C45 1.510 (6) C16---N5 1.335 (6) C45---C46 1.378 (6) C16---H16 0.9300 C45---C50 1.395 (6) C17---N5 1.337 (5) C46---C48 1.382 (6) C17---C18 1.386 (6) C46---H46 0.9300 C17---H17 0.9300 C47---C49 1.369 (6) C18---H18 0.9300 C47---C48 1.385 (6) C19---N6 1.313 (5) C47---H47 0.9300 C19---C20 1.390 (6) C48---N12 1.458 (6) C19---H19 0.9300 C49---C50 1.394 (6) C20---C21 1.361 (7) C49---C52 1.499 (6) C20---H20 0.9300 C50---H50 0.9300 C21---C22 1.381 (6) C51---O8 1.221 (5) C21---H21 0.9300 C51---O7 1.300 (6) C22---C23 1.413 (5) C52---O3 1.199 (6) C22---C30 1.416 (6) C52---O4 1.305 (6) C23---N6 1.347 (5) Mn1---O1 2.142 (3) C23---C24 1.455 (6) Mn1---O6 2.142 (3) C24---N7 1.368 (5) Mn1---N1 2.339 (4) C24---C25 1.404 (6) Mn1---N2 2.220 (3) C25---C28 1.397 (6) Mn1---N6 2.221 (4) C25---C29 1.428 (6) Mn1---N7 2.309 (4) C26---N7 1.326 (5) N4---H4A 0.8600 C26---C27 1.391 (6) N9---H7A 0.8600 C26---H26 0.9300 N11---O10 1.214 (5) C27---C28 1.366 (6) N11---O9 1.222 (5) C27---H27 0.9300 N12---O12 1.208 (5) C28---H28 0.9300 N12---O11 1.214 (5) C29---N9 1.373 (5) O4---H4 0.8200 C29---C30 1.375 (6) O7---H9A 0.8200 N2---C1---C2 123.2 (4) N10---C35---C36 122.8 (5) N2---C1---H1 118.4 N10---C35---H35 118.6 C2---C1---H1 118.4 C36---C35---H35 118.6 C3---C2---C1 118.5 (4) C32---C36---C35 118.2 (5) C3---C2---H2 120.7 C32---C36---H36 120.9 C1---C2---H2 120.7 C35---C36---H36 120.9 C2---C3---C4 120.1 (5) O5---C37---O6 126.2 (5) C2---C3---H3 119.9 O5---C37---C38 116.9 (4) C4---C3---H3 119.9 O6---C37---C38 116.9 (5) C3---C4---C5 117.9 (5) C39---C38---C43 118.9 (4) C3---C4---C12 123.7 (4) C39---C38---C37 121.1 (4) C5---C4---C12 118.3 (4) C43---C38---C37 119.9 (4) N2---C5---C4 122.2 (4) C38---C39---C40 118.9 (4) N2---C5---C6 117.5 (4) C38---C39---H39 120.5 C4---C5---C6 120.3 (4) C40---C39---H39 120.5 N1---C6---C10 121.4 (4) C41---C40---C39 122.4 (5) N1---C6---C5 117.0 (4) C41---C40---N11 118.6 (5) C10---C6---C5 121.6 (4) C39---C40---N11 118.9 (5) C8---C7---C9 119.2 (5) C42---C41---C40 118.9 (5) C8---C7---H7 120.4 C42---C41---H41 120.6 C9---C7---H7 120.4 C40---C41---H41 120.6 C7---C8---C10 119.0 (5) C41---C42---C43 119.7 (4) C7---C8---H8 120.5 C41---C42---C51 119.2 (5) C10---C8---H8 120.5 C43---C42---C51 121.1 (5) N1---C9---C7 124.0 (5) C42---C43---C38 121.0 (5) N1---C9---H9 118.0 C42---C43---H43 119.5 C7---C9---H9 118.0 C38---C43---H43 119.5 C8---C10---C6 118.7 (4) O2---C44---O1 125.7 (5) C8---C10---C11 125.5 (5) O2---C44---C45 117.1 (5) C6---C10---C11 115.9 (4) O1---C44---C45 117.2 (5) N4---C11---C12 105.2 (4) C46---C45---C50 118.5 (5) N4---C11---C10 131.6 (4) C46---C45---C44 121.0 (5) C12---C11---C10 123.2 (4) C50---C45---C44 120.5 (5) N3---C12---C11 111.1 (4) C45---C46---C48 119.6 (5) N3---C12---C4 128.3 (5) C45---C46---H46 120.2 C11---C12---C4 120.6 (4) C48---C46---H46 120.2 N3---C13---N4 113.2 (4) C49---C47---C48 118.1 (5) N3---C13---C14 123.8 (4) C49---C47---H47 121.0 N4---C13---C14 123.0 (5) C48---C47---H47 121.0 C18---C14---C15 118.1 (4) C46---C48---C47 122.4 (5) C18---C14---C13 124.0 (4) C46---C48---N12 119.3 (5) C15---C14---C13 117.9 (5) C47---C48---N12 118.2 (5) C14---C15---C16 119.2 (5) C47---C49---C50 120.3 (5) C14---C15---H15 120.4 C47---C49---C52 121.4 (5) C16---C15---H15 120.4 C50---C49---C52 118.3 (5) N5---C16---C15 122.8 (5) C49---C50---C45 121.0 (5) N5---C16---H16 118.6 C49---C50---H50 119.5 C15---C16---H16 118.6 C45---C50---H50 119.5 N5---C17---C18 122.8 (5) O8---C51---O7 123.9 (5) N5---C17---H17 118.6 O8---C51---C42 122.3 (5) C18---C17---H17 118.6 O7---C51---C42 113.7 (5) C14---C18---C17 119.7 (5) O3---C52---O4 124.2 (5) C14---C18---H18 120.2 O3---C52---C49 122.6 (5) C17---C18---H18 120.2 O4---C52---C49 113.2 (5) N6---C19---C20 124.4 (5) C9---N1---C6 117.7 (4) N6---C19---H19 117.8 C9---N1---Mn1 127.4 (3) C20---C19---H19 117.8 C6---N1---Mn1 114.4 (3) C21---C20---C19 118.1 (5) C1---N2---C5 118.0 (4) C21---C20---H20 120.9 C1---N2---Mn1 123.3 (3) C19---C20---H20 120.9 C5---N2---Mn1 118.0 (3) C20---C21---C22 120.2 (5) C13---N3---C12 104.5 (4) C20---C21---H21 119.9 C13---N4---C11 106.1 (4) C22---C21---H21 119.9 C13---N4---H4A 126.9 C21---C22---C23 117.3 (5) C11---N4---H4A 126.9 C21---C22---C30 125.1 (5) C16---N5---C17 117.4 (4) C23---C22---C30 117.6 (5) C19---N6---C23 117.3 (4) N6---C23---C22 122.7 (4) C19---N6---Mn1 124.5 (3) N6---C23---C24 117.9 (4) C23---N6---Mn1 117.2 (3) C22---C23---C24 119.4 (4) C26---N7---C24 116.4 (4) N7---C24---C25 122.6 (4) C26---N7---Mn1 127.4 (3) N7---C24---C23 115.3 (4) C24---N7---Mn1 114.6 (3) C25---C24---C23 122.1 (4) C31---N8---C30 104.1 (4) C28---C25---C24 118.0 (4) C31---N9---C29 106.4 (4) C28---C25---C29 125.7 (5) C31---N9---H7A 126.8 C24---C25---C29 116.3 (4) C29---N9---H7A 126.8 N7---C26---C27 125.0 (5) C34---N10---C35 118.4 (5) N7---C26---H26 117.5 O10---N11---O9 123.2 (6) C27---C26---H26 117.5 O10---N11---C40 118.7 (5) C28---C27---C26 118.2 (5) O9---N11---C40 118.0 (5) C28---C27---H27 120.9 O12---N12---O11 122.1 (6) C26---C27---H27 120.9 O12---N12---C48 119.6 (5) C27---C28---C25 119.7 (5) O11---N12---C48 118.2 (6) C27---C28---H28 120.1 C44---O1---Mn1 130.2 (3) C25---C28---H28 120.1 C52---O4---H4 109.5 N9---C29---C30 105.5 (4) C37---O6---Mn1 127.8 (3) N9---C29---C25 132.3 (5) C51---O7---H9A 109.5 C30---C29---C25 122.2 (4) O6---Mn1---O1 94.61 (12) C29---C30---N8 110.8 (5) O6---Mn1---N2 97.07 (12) C29---C30---C22 122.5 (4) O1---Mn1---N2 94.91 (13) N8---C30---C22 126.6 (5) O6---Mn1---N6 93.88 (13) N8---C31---N9 113.2 (4) O1---Mn1---N6 98.23 (12) N8---C31---C32 122.2 (5) N2---Mn1---N6 162.14 (13) N9---C31---C32 124.5 (5) O6---Mn1---N7 164.73 (12) C36---C32---C33 118.5 (5) O1---Mn1---N7 81.61 (13) C36---C32---C31 123.7 (5) N2---Mn1---N7 97.99 (13) C33---C32---C31 117.6 (5) N6---Mn1---N7 72.19 (14) C34---C33---C32 118.8 (5) O6---Mn1---N1 85.01 (13) C34---C33---H33 120.6 O1---Mn1---N1 167.13 (12) C32---C33---H33 120.6 N2---Mn1---N1 72.42 (13) N10---C34---C33 123.3 (6) N6---Mn1---N1 94.62 (13) N10---C34---H34 118.4 N7---Mn1---N1 101.96 (12) C33---C34---H34 118.4 ----------------- ----------- ----------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4789 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O7---H9A···N10^i^ 0.82 1.81 2.629 (5) 176 O4---H4···N5^ii^ 0.82 1.82 2.636 (5) 173 N9---H7A···O2^iii^ 0.86 1.94 2.789 (5) 171 N4---H4A···O5^iv^ 0.86 1.89 2.745 (5) 171 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*−1/2, −*y*+1, *z*+1/2; (ii) *x*+1/2, −*y*+1, *z*−1/2; (iii) −*x*+2, −*y*+1, −*z*+1; (iv) −*x*+1, −*y*+1, −*z*+1. Table 1 ::: {.caption} ###### Selected geometric parameters (Å, °) ::: ::: {#d32e542 .table-wrap} ---------- ----------- Mn1---O1 2.142 (3) Mn1---O6 2.142 (3) Mn1---N1 2.339 (4) Mn1---N2 2.220 (3) Mn1---N6 2.221 (4) Mn1---N7 2.309 (4) ---------- ----------- ::: ::: {#d32e575 .table-wrap} --------------- ------------ N6---Mn1---N7 72.19 (14) N2---Mn1---N1 72.42 (13) --------------- ------------ ::: ::: {#table2 .table-wrap} Table 2 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- O7---H9*A*⋯N10^i^ 0.82 1.81 2.629 (5) 176 O4---H4⋯N5^ii^ 0.82 1.82 2.636 (5) 173 N9---H7*A*⋯O2^iii^ 0.86 1.94 2.789 (5) 171 N4---H4*A*⋯O5^iv^ 0.86 1.89 2.745 (5) 171 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:17.901327
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052015/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):m326", "authors": [ { "first": "Hong-Bin", "last": "Xu" }, { "first": "Shuai", "last": "Ma" }, { "first": "Yu", "last": "He" } ] }
PMC3052016
Related literature {#sec1} ================== For background to the use of lobelane analogues, see: Zheng *et al.* (2005[@bb5]). For pyrrolidine analogues of lobelane (systematic name 2-\[6-(2-hydroxy-2-phenyl-ethyl)-1-methyl-2-piperidyl\]-1-phenyl-ethanone), see: Vartak *et al.* (2009[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~22~H~28~F~2~NO~2~ ^+^·CHO~2~ ^−^*M* *~r~* = 421.47Orthorhombic,*a* = 7.8338 (1) Å*b* = 27.8759 (3) Å*c* = 29.3202 (3) Å*V* = 6402.78 (13) Å^3^*Z* = 12Mo *K*α radiationμ = 0.10 mm^−1^*T* = 90 K0.28 × 0.18 × 0.06 mm ### Data collection {#sec2.1.2} Nonius KappaCCD diffractometerAbsorption correction: multi-scan (*SCALEPACK*; Otwinowski & Minor, 1997[@bb2]) *T* ~min~ = 0.973, *T* ~max~ = 0.99480877 measured reflections8166 independent reflections5100 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.051 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.056*wR*(*F* ^2^) = 0.155*S* = 1.008166 reflections817 parametersH-atom parameters constrainedΔρ~max~ = 0.34 e Å^−3^Δρ~min~ = −0.28 e Å^−3^ {#d5e612} Data collection: *COLLECT* (Nonius, 1998[@bb1]); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997[@bb2]); data reduction: *DENZO-SMN* (Otwinowski & Minor, 1997[@bb2]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb3]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb3]); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008[@bb3]); software used to prepare material for publication: *SHELXL97* and local procedures. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811006143/hg2767sup1.cif](http://dx.doi.org/10.1107/S1600536811006143/hg2767sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006143/hg2767Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006143/hg2767Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hg2767&file=hg2767sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hg2767sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hg2767&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HG2767](http://scripts.iucr.org/cgi-bin/sendsup?hg2767)). This research was supported by NIH grant RO1 DA13519. The University of Kentucky holds patents on lobeline and the analogs described in the current work. A potential royalty stream to LPD and PAC may occur consistent with University of Kentucky policy. Comment ======= In endeavoring to develop lobelane analogs with high affinity for dihydrotetrabenazine binding sites on VMAT2 and as inhibiters of \[^3^H\]-DA uptake into cystolic vesicles (Zheng *et al.* (2005)), we have undertaken the design, synthesis and structural analysis of a series of 2,5-disubstitued phenethylpyrrolidine analogs. The primary goal of the X-ray analysis of the title compound was to confirm the stereochemistry of the substituted phenethyl groups in the molecule, and to obtain detailed information on the structural conformation of the molecule that may be useful in structure-activity relationship (SAR) analysis. The title compound is prepared by utilizing a previously reported procedure (Vartak *et al.* 2009). The X-ray studies revealed that the crystal lattice has three independent (2*R*,5*S*)-2,5-bis(2-fluoro-5-methoxyphenethyl) pyrrolidinium formate molecules. The central pyrrolidinium ring is not planar and the 2,5-disubstituted phenylethyl groups are in equatorial positions. The angle between the exact plane defined by C6, C7, C8 and by the mean plane passing closest to the atoms of the pyrrolidinium ring (N1, C2, C3, C4, C5) for molecule A is: 51.8 (3)° and 48.7 (3)°; molecule B is: 48.4 (3)° and 47.8 (3)° and for molecule C is: 48.5 (3)° and 44.8 (3)°. The dihedral angles between C5,C6, C7 plane to C8, C9, C13 planes and C2, C17, C18 plane to C19, C20, C24 plane for ion A is 86.26 (4)° and 73.06 (4)°; for ion B is: 81.87 (4)° and 74.37 (4)° and for ion C is: 72.58 (4)° and 84.89 (4)°. The molecules are linked into dimeric chains by a series of N---H···O hydrogen bonds. Significant intermolecular hydrogen-bonding interactions are found between pyrrolidinium N(1)---H(1)···O (formate anion) and N(1)---H(2)···O (formate anion). Experimental {#experimental} ============ The title compound was prepared by the reaction of (3*S*,5*R*, 7a*R*)-5-(benzotriazol-1-yl)-3-phenyl\[2,1-*b*\]oxazolopyrrolidine with 2-fluoro 5-methoxyphenethyl magnesium bromide in tetrahydrofuran to afford a mixture of crude 2*R*,5*S*- and 2*R*,5*R*-di-2-fluoro-5-methoxyethylpyrrolidine diastereomers, which are separated by silica gel column chromatography. The obtained 2*R*,5*R* compound was hydrogenolyzed by catalytic-transfer hydrogenation with palladium hydroxide-over-carbon, employing ammonium formate as the hydrogen source in refluxing methanol. These conditions afforded quantitative conversion to the product, (2*R*,5*S*)-2,5-bis-(2-fluoro-5-methoxyphenethyl)pyrrolidine within 30 min. The formate salt is prepared by treatment with formic acid in methylene chloride and recrystallization from diethyl ether. The crystals obtained from the solution of diethyl ether are suitable for X-ray diffraction studies. ^1^H NMR (CDCl~3~): δ 1.60--1.75 (*m*, 2H), 1.80--1.95 (*m*, 2H), 1.95--2.20 (*m*, 4H), 2.52--2.70 (*m*, 4H), 3.28 (*t*, *J*=6.0 Hz, 2H), 3.68 (*s*, 6H), 6.55--6.70 (*m*, 4H), 6.83 (*t*, *J* =9.3 Hz, 2H), 8.58 (*s*, 1H), 9.20 (*bs*, 2H) *p.p.m.*; ^13^C NMR (DMSO d~6~): δ 26.78, 29.68, 33.74, 55.88, 59.23, 112.69, 115.42, 115.59, 128.28, 128.51, 155.66, 168.47 *p.p.m.*. Refinement {#refinement} ========== H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH~3~), 0.99 Å (*R*~2~CH~2~), 1.00 Å (*R*~3~CH), 0.95 Å (C~Ar~H), 0.92 Å (N---H), and with *U*~iso~(H) values set to either 1.2*U*~eq~ or 1.5*U*~eq~ (RCH~3~) of the attached atom. Since this structure was refined using data from a Mo Kα anode, there is effectively no anomalous signal, and therefore no way to obtain a meaningful Flack parameter. For this reason, the 6574 Friedel pairs were merged prior to the final cycles of refinement. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A view of the asymmetric unit with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o737-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e246 .table-wrap} ---------------------------------- --------------------------------------- C~22~H~28~F~2~NO~2~^+^·CHO~2~^−^ *F*(000) = 2688 *M~r~* = 421.47 *D*~x~ = 1.312 Mg m^−3^ Orthorhombic, *P*2~1~2~1~2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2ac 2ab Cell parameters from 8196 reflections *a* = 7.8338 (1) Å θ = 1.0--27.5° *b* = 27.8759 (3) Å µ = 0.10 mm^−1^ *c* = 29.3202 (3) Å *T* = 90 K *V* = 6402.78 (13) Å^3^ Plate, colourless *Z* = 12 0.28 × 0.18 × 0.06 mm ---------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e382 .table-wrap} --------------------------------------------------------------------------- -------------------------------------- Nonius KappaCCD diffractometer 8166 independent reflections Radiation source: fine-focus sealed tube 5100 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.051 Detector resolution: 9.1 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 1.0° ω scans at fixed χ = 55° *h* = −10→10 Absorption correction: multi-scan (*SCALEPACK*; Otwinowski & Minor, 1997) *k* = −36→36 *T*~min~ = 0.973, *T*~max~ = 0.994 *l* = −37→38 80877 measured reflections --------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e505 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.056 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.155 H-atom parameters constrained *S* = 1.00 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0915*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 8166 reflections (Δ/σ)~max~ = 0.001 817 parameters Δρ~max~ = 0.34 e Å^−3^ 0 restraints Δρ~min~ = −0.28 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e659 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e758 .table-wrap} ------ ------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N1A 0.7000 (4) 0.33489 (10) 0.52187 (9) 0.0234 (7) H1A1 0.6523 0.3650 0.5228 0.028\* H1A2 0.8169 0.3381 0.5218 0.028\* C2A 0.6434 (5) 0.30603 (12) 0.56265 (11) 0.0243 (8) H2A 0.7412 0.2857 0.5731 0.029\* C3A 0.5015 (6) 0.27303 (13) 0.54478 (12) 0.0324 (10) H3A1 0.5356 0.2390 0.5477 0.039\* H3A2 0.3949 0.2781 0.5623 0.039\* C4A 0.4750 (5) 0.28602 (12) 0.49485 (12) 0.0248 (9) H4A1 0.4500 0.2570 0.4766 0.030\* H4A2 0.3793 0.3089 0.4914 0.030\* C5A 0.6423 (5) 0.30877 (12) 0.47979 (11) 0.0217 (8) H5A 0.7262 0.2828 0.4727 0.026\* C6A 0.6285 (5) 0.34214 (12) 0.43896 (11) 0.0243 (8) H6A1 0.5540 0.3694 0.4473 0.029\* H6A2 0.5722 0.3246 0.4137 0.029\* C7A 0.7984 (6) 0.36200 (13) 0.42158 (12) 0.0331 (10) H7A1 0.8629 0.3760 0.4474 0.040\* H7A2 0.8673 0.3355 0.4086 0.040\* C8A 0.7702 (5) 0.39970 (14) 0.38574 (12) 0.0302 (9) C9A 0.7528 (6) 0.38972 (13) 0.33965 (14) 0.0366 (11) C10A 0.7247 (6) 0.42351 (14) 0.30744 (13) 0.0431 (12) H10A 0.7149 0.4145 0.2763 0.052\* C11A 0.7103 (6) 0.47136 (14) 0.32002 (13) 0.0350 (10) H11A 0.6901 0.4955 0.2978 0.042\* C12A 0.7260 (5) 0.48291 (13) 0.36570 (12) 0.0313 (9) C13A 0.7538 (5) 0.44768 (13) 0.39795 (12) 0.0287 (9) H13A 0.7619 0.4564 0.4292 0.034\* C14A 0.7149 (8) 0.56681 (13) 0.35088 (14) 0.0605 (16) H14A 0.6098 0.5648 0.3328 0.091\* H14B 0.8139 0.5642 0.3306 0.091\* H14C 0.7185 0.5976 0.3669 0.091\* O15A 0.7182 (4) 0.52938 (9) 0.38272 (8) 0.0395 (8) F16A 0.7685 (4) 0.34235 (8) 0.32668 (8) 0.0555 (8) C17A 0.5908 (5) 0.33851 (12) 0.60142 (11) 0.0225 (8) H17A 0.5390 0.3188 0.6258 0.027\* H17B 0.5023 0.3610 0.5903 0.027\* C18A 0.7380 (5) 0.36745 (13) 0.62166 (12) 0.0260 (9) H18A 0.8298 0.3452 0.6313 0.031\* H18B 0.7852 0.3889 0.5979 0.031\* C19A 0.6829 (5) 0.39723 (12) 0.66218 (11) 0.0214 (8) C20A 0.6399 (5) 0.37604 (12) 0.70328 (12) 0.0235 (8) C21A 0.5787 (5) 0.40074 (13) 0.74026 (13) 0.0287 (9) H21A 0.5494 0.3843 0.7676 0.034\* C22A 0.5604 (5) 0.44993 (13) 0.73709 (12) 0.0294 (9) H22A 0.5186 0.4678 0.7623 0.035\* C23A 0.6033 (5) 0.47283 (12) 0.69689 (12) 0.0261 (9) C24A 0.6640 (5) 0.44693 (12) 0.65964 (12) 0.0240 (9) H24A 0.6929 0.4633 0.6323 0.029\* C25A 0.6306 (6) 0.54783 (13) 0.65779 (14) 0.0394 (11) H25A 0.5748 0.5350 0.6305 0.059\* H25B 0.7547 0.5449 0.6546 0.059\* H25C 0.6002 0.5817 0.6615 0.059\* O26A 0.5760 (4) 0.52174 (8) 0.69656 (9) 0.0352 (7) F27A 0.6578 (3) 0.32703 (7) 0.70685 (7) 0.0347 (6) N1B 0.1995 (4) 0.49637 (10) 0.53019 (9) 0.0211 (7) H1B1 0.3163 0.4928 0.5303 0.025\* H1B2 0.1506 0.4664 0.5283 0.025\* C2B 0.1418 (5) 0.52129 (12) 0.57307 (11) 0.0231 (8) H2B 0.2386 0.5409 0.5853 0.028\* C3B −0.0018 (5) 0.55540 (13) 0.55755 (12) 0.0313 (10) H3B1 −0.1097 0.5475 0.5735 0.038\* H3B2 0.0286 0.5891 0.5646 0.038\* C4B −0.0223 (5) 0.54870 (12) 0.50654 (12) 0.0258 (9) H4B1 −0.0426 0.5799 0.4913 0.031\* H4B2 −0.1192 0.5270 0.4998 0.031\* C5B 0.1452 (5) 0.52669 (11) 0.49051 (11) 0.0205 (8) H5B 0.2307 0.5529 0.4860 0.025\* C6B 0.1324 (5) 0.49765 (12) 0.44689 (11) 0.0231 (8) H6B1 0.0832 0.5183 0.4228 0.028\* H6B2 0.0518 0.4708 0.4521 0.028\* C7B 0.3001 (5) 0.47696 (13) 0.42935 (12) 0.0287 (9) H7B1 0.3770 0.5034 0.4201 0.034\* H7B2 0.3568 0.4587 0.4540 0.034\* C8B 0.2681 (5) 0.44441 (13) 0.38917 (12) 0.0263 (9) C9B 0.2464 (6) 0.46143 (13) 0.34513 (13) 0.0357 (11) C10B 0.2084 (7) 0.43254 (13) 0.30869 (13) 0.0438 (13) H10B 0.1926 0.4459 0.2792 0.053\* C11B 0.1932 (6) 0.38373 (13) 0.31543 (12) 0.0341 (10) H11B 0.1688 0.3631 0.2905 0.041\* C12B 0.2139 (5) 0.36502 (12) 0.35885 (12) 0.0277 (9) C13B 0.2498 (5) 0.39520 (13) 0.39497 (11) 0.0267 (9) H13B 0.2624 0.3819 0.4246 0.032\* C14B 0.1873 (7) 0.28431 (13) 0.33248 (14) 0.0503 (14) H14D 0.2829 0.2890 0.3114 0.075\* H14E 0.0795 0.2902 0.3165 0.075\* H14F 0.1889 0.2513 0.3440 0.075\* O15B 0.2027 (4) 0.31685 (8) 0.36954 (8) 0.0364 (7) F16B 0.2627 (4) 0.50973 (7) 0.33811 (7) 0.0570 (9) C17B 0.0877 (5) 0.48538 (12) 0.60918 (11) 0.0250 (9) H17C −0.0010 0.4641 0.5962 0.030\* H17D 0.0362 0.5029 0.6351 0.030\* C18B 0.2359 (5) 0.45452 (12) 0.62692 (11) 0.0238 (8) H18C 0.2832 0.4355 0.6014 0.029\* H18D 0.3276 0.4758 0.6384 0.029\* C19B 0.1814 (5) 0.42096 (12) 0.66466 (12) 0.0241 (9) C20B 0.1457 (5) 0.43818 (12) 0.70796 (12) 0.0276 (9) C21B 0.0951 (5) 0.40914 (13) 0.74316 (13) 0.0323 (10) H21B 0.0743 0.4222 0.7726 0.039\* C22B 0.0748 (5) 0.36083 (13) 0.73535 (13) 0.0316 (10) H22B 0.0382 0.3403 0.7593 0.038\* C23B 0.1076 (5) 0.34209 (12) 0.69258 (12) 0.0265 (9) C24B 0.1641 (5) 0.37192 (12) 0.65751 (13) 0.0250 (9) H24B 0.1909 0.3586 0.6285 0.030\* C25B 0.1377 (6) 0.27090 (13) 0.64725 (13) 0.0392 (11) H25D 0.2593 0.2777 0.6428 0.059\* H25E 0.0727 0.2832 0.6212 0.059\* H25F 0.1207 0.2362 0.6498 0.059\* O26B 0.0807 (4) 0.29337 (8) 0.68753 (8) 0.0342 (7) F27B 0.1639 (3) 0.48627 (7) 0.71591 (7) 0.0386 (6) N1C 0.2065 (4) 0.83060 (9) 0.49995 (9) 0.0217 (7) H1C1 0.3232 0.8270 0.4986 0.026\* H1C2 0.1574 0.8006 0.4993 0.026\* C2C 0.1453 (5) 0.85987 (11) 0.46041 (11) 0.0226 (8) H2C 0.2294 0.8860 0.4541 0.027\* C3C −0.0201 (5) 0.88190 (12) 0.47814 (11) 0.0244 (9) H3C1 −0.0443 0.9126 0.4625 0.029\* H3C2 −0.1173 0.8598 0.4732 0.029\* C4C 0.0097 (5) 0.88998 (13) 0.52889 (12) 0.0310 (9) H4C1 −0.0949 0.8823 0.5464 0.037\* H4C2 0.0406 0.9239 0.5347 0.037\* C5C 0.1567 (5) 0.85652 (11) 0.54309 (11) 0.0226 (8) H5C 0.2553 0.8767 0.5532 0.027\* C6C 0.1158 (5) 0.82101 (12) 0.58041 (11) 0.0247 (8) H6C1 0.0252 0.7991 0.5695 0.030\* H6C2 0.0705 0.8386 0.6071 0.030\* C7C 0.2707 (5) 0.79116 (12) 0.59547 (11) 0.0243 (9) H7C1 0.3130 0.7724 0.5691 0.029\* H7C2 0.3631 0.8131 0.6052 0.029\* C8C 0.2290 (5) 0.75704 (13) 0.63434 (11) 0.0230 (8) C9C 0.1995 (5) 0.77341 (12) 0.67784 (12) 0.0258 (9) C10C 0.1592 (5) 0.74395 (12) 0.71369 (12) 0.0272 (9) H10C 0.1365 0.7570 0.7430 0.033\* C11C 0.1521 (5) 0.69478 (13) 0.70668 (12) 0.0290 (9) H11C 0.1272 0.6736 0.7312 0.035\* C12C 0.1824 (5) 0.67695 (12) 0.66286 (12) 0.0259 (9) C13C 0.2188 (5) 0.70811 (12) 0.62752 (12) 0.0238 (9) H13C 0.2372 0.6956 0.5978 0.029\* C14C 0.1721 (7) 0.59550 (12) 0.68860 (14) 0.0495 (14) H14G 0.0598 0.5975 0.7032 0.074\* H14H 0.2610 0.6032 0.7109 0.074\* H14I 0.1901 0.5629 0.6770 0.074\* O15C 0.1799 (4) 0.62879 (8) 0.65165 (8) 0.0379 (8) F16C 0.2088 (3) 0.82192 (7) 0.68536 (7) 0.0363 (6) C17C 0.1235 (5) 0.82966 (12) 0.41795 (11) 0.0235 (8) H17E 0.0706 0.8498 0.3940 0.028\* H17F 0.0430 0.8033 0.4249 0.028\* C18C 0.2875 (5) 0.80786 (12) 0.39878 (11) 0.0253 (9) H18E 0.3666 0.8338 0.3896 0.030\* H18F 0.3443 0.7884 0.4226 0.030\* C19C 0.2472 (5) 0.77652 (12) 0.35794 (11) 0.0240 (9) C20C 0.2247 (5) 0.79575 (12) 0.31494 (12) 0.0278 (9) C21C 0.1729 (5) 0.76943 (14) 0.27767 (12) 0.0333 (10) H21C 0.1587 0.7842 0.2487 0.040\* C22C 0.1419 (5) 0.72082 (13) 0.28340 (12) 0.0312 (10) H22C 0.1077 0.7018 0.2581 0.037\* C23C 0.1607 (5) 0.69997 (13) 0.32604 (13) 0.0289 (9) C24C 0.2143 (5) 0.72757 (13) 0.36283 (12) 0.0267 (9) H24C 0.2288 0.7129 0.3918 0.032\* C25C 0.1776 (6) 0.62580 (13) 0.36764 (13) 0.0402 (11) H25G 0.1243 0.6393 0.3950 0.060\* H25H 0.3021 0.6281 0.3704 0.060\* H25I 0.1445 0.5921 0.3645 0.060\* O26C 0.1229 (4) 0.65175 (9) 0.32878 (9) 0.0368 (7) F27C 0.2552 (3) 0.84398 (7) 0.30887 (7) 0.0399 (6) C1S1 0.1081 (5) 0.37264 (12) 0.52746 (12) 0.0259 (9) H1S1 0.2286 0.3755 0.5296 0.031\* O1S1 0.0262 (4) 0.41060 (9) 0.52353 (9) 0.0310 (7) O2S1 0.0481 (4) 0.33102 (9) 0.52884 (9) 0.0308 (7) C1S2 0.1155 (5) 0.70727 (12) 0.49452 (11) 0.0255 (8) H1S2 0.2358 0.7101 0.4915 0.031\* O1S2 0.0346 (4) 0.74531 (9) 0.49840 (9) 0.0278 (6) O2S2 0.0557 (4) 0.66551 (9) 0.49421 (9) 0.0322 (7) C1S3 0.6079 (5) 0.45870 (12) 0.53183 (12) 0.0261 (9) H1S3 0.7286 0.4561 0.5338 0.031\* O1S3 0.5466 (3) 0.49960 (8) 0.53746 (9) 0.0320 (7) O2S3 0.5280 (3) 0.42086 (8) 0.52393 (8) 0.0271 (6) ------ ------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e2954 .table-wrap} ------ ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N1A 0.0222 (18) 0.0227 (16) 0.0252 (16) −0.0007 (14) 0.0016 (14) 0.0002 (13) C2A 0.029 (2) 0.0198 (18) 0.0240 (18) −0.0024 (17) 0.0014 (18) 0.0017 (15) C3A 0.038 (3) 0.031 (2) 0.028 (2) −0.010 (2) 0.002 (2) 0.0001 (17) C4A 0.024 (2) 0.0209 (19) 0.030 (2) −0.0049 (17) −0.0005 (18) −0.0030 (16) C5A 0.022 (2) 0.0218 (18) 0.0217 (18) 0.0015 (17) 0.0014 (17) −0.0037 (14) C6A 0.029 (2) 0.0227 (19) 0.0213 (18) 0.0025 (18) −0.0004 (17) −0.0024 (15) C7A 0.034 (2) 0.036 (2) 0.030 (2) −0.002 (2) 0.000 (2) 0.0054 (18) C8A 0.024 (2) 0.038 (2) 0.029 (2) −0.0033 (19) 0.0007 (18) 0.0078 (17) C9A 0.050 (3) 0.025 (2) 0.035 (2) −0.001 (2) 0.007 (2) 0.0001 (18) C10A 0.066 (3) 0.038 (2) 0.026 (2) −0.005 (2) −0.004 (2) 0.0023 (19) C11A 0.044 (3) 0.033 (2) 0.028 (2) 0.000 (2) −0.004 (2) 0.0053 (17) C12A 0.033 (2) 0.033 (2) 0.028 (2) −0.001 (2) 0.000 (2) 0.0018 (17) C13A 0.030 (2) 0.032 (2) 0.0241 (18) −0.0048 (19) 0.0020 (19) 0.0030 (16) C14A 0.109 (5) 0.031 (2) 0.041 (2) 0.010 (3) 0.004 (3) 0.007 (2) O15A 0.058 (2) 0.0286 (15) 0.0318 (14) 0.0059 (15) 0.0005 (15) 0.0012 (12) F16A 0.094 (2) 0.0329 (13) 0.0399 (13) −0.0057 (15) 0.0023 (15) −0.0009 (11) C17A 0.023 (2) 0.0212 (18) 0.0236 (18) −0.0026 (17) 0.0011 (17) 0.0020 (15) C18A 0.025 (2) 0.029 (2) 0.0246 (19) −0.0029 (18) 0.0023 (18) −0.0009 (15) C19A 0.018 (2) 0.028 (2) 0.0191 (17) 0.0001 (17) 0.0002 (16) −0.0026 (15) C20A 0.029 (2) 0.0186 (19) 0.0225 (18) −0.0015 (17) −0.0060 (18) −0.0019 (15) C21A 0.032 (2) 0.031 (2) 0.0229 (19) −0.0016 (19) −0.0006 (18) −0.0010 (17) C22A 0.033 (2) 0.031 (2) 0.0237 (19) −0.0054 (19) 0.0015 (18) −0.0030 (17) C23A 0.029 (2) 0.0209 (19) 0.029 (2) 0.0007 (18) −0.0023 (19) 0.0012 (16) C24A 0.026 (2) 0.0232 (19) 0.0227 (18) −0.0073 (17) 0.0009 (17) 0.0015 (15) C25A 0.049 (3) 0.025 (2) 0.044 (2) −0.007 (2) 0.005 (2) 0.0036 (18) O26A 0.0481 (19) 0.0240 (14) 0.0336 (15) 0.0007 (14) 0.0082 (15) 0.0004 (12) F27A 0.0526 (16) 0.0231 (11) 0.0286 (11) 0.0015 (11) 0.0036 (11) 0.0010 (9) N1B 0.0200 (17) 0.0221 (15) 0.0211 (15) 0.0036 (14) 0.0007 (14) 0.0021 (12) C2B 0.026 (2) 0.0204 (18) 0.0224 (18) 0.0033 (17) 0.0011 (17) −0.0024 (14) C3B 0.035 (2) 0.031 (2) 0.028 (2) 0.012 (2) 0.0026 (19) 0.0011 (17) C4B 0.027 (2) 0.0199 (19) 0.030 (2) 0.0001 (18) −0.0009 (18) −0.0011 (16) C5B 0.025 (2) 0.0152 (17) 0.0207 (17) 0.0017 (16) 0.0020 (16) 0.0026 (14) C6B 0.024 (2) 0.0216 (18) 0.0237 (19) 0.0015 (17) −0.0014 (17) 0.0011 (15) C7B 0.027 (2) 0.027 (2) 0.032 (2) 0.0024 (19) −0.0014 (19) −0.0021 (16) C8B 0.024 (2) 0.026 (2) 0.029 (2) 0.0036 (18) 0.0041 (18) −0.0041 (16) C9B 0.059 (3) 0.020 (2) 0.028 (2) 0.001 (2) 0.007 (2) 0.0002 (16) C10B 0.082 (4) 0.027 (2) 0.023 (2) 0.009 (2) 0.010 (2) −0.0003 (17) C11B 0.052 (3) 0.029 (2) 0.0221 (19) 0.005 (2) 0.001 (2) −0.0040 (16) C12B 0.031 (2) 0.024 (2) 0.028 (2) 0.0018 (18) 0.0002 (19) −0.0023 (16) C13B 0.031 (2) 0.031 (2) 0.0179 (17) 0.0063 (19) 0.0037 (17) −0.0021 (15) C14B 0.085 (4) 0.029 (2) 0.036 (2) −0.004 (3) 0.002 (3) −0.0073 (19) O15B 0.055 (2) 0.0270 (14) 0.0273 (13) −0.0026 (15) 0.0022 (15) −0.0028 (11) F16B 0.112 (3) 0.0245 (13) 0.0344 (13) 0.0018 (15) 0.0140 (16) 0.0006 (10) C17B 0.027 (2) 0.027 (2) 0.0213 (18) 0.0017 (18) 0.0002 (17) 0.0013 (15) C18B 0.023 (2) 0.0261 (19) 0.0223 (17) −0.0002 (18) 0.0023 (17) 0.0041 (15) C19B 0.021 (2) 0.026 (2) 0.0258 (19) 0.0012 (17) 0.0008 (17) 0.0041 (16) C20B 0.035 (2) 0.022 (2) 0.026 (2) −0.0009 (18) −0.0031 (19) 0.0007 (15) C21B 0.044 (3) 0.033 (2) 0.0207 (18) −0.001 (2) 0.002 (2) −0.0005 (17) C22B 0.033 (2) 0.033 (2) 0.029 (2) 0.0024 (19) 0.0042 (19) 0.0056 (18) C23B 0.025 (2) 0.025 (2) 0.030 (2) −0.0013 (18) −0.0032 (18) −0.0007 (16) C24B 0.023 (2) 0.027 (2) 0.0252 (19) 0.0019 (18) 0.0027 (17) 0.0005 (16) C25B 0.043 (3) 0.033 (2) 0.042 (2) 0.004 (2) 0.006 (2) −0.0021 (19) O26B 0.0428 (19) 0.0256 (14) 0.0342 (15) −0.0055 (13) 0.0058 (14) 0.0028 (12) F27B 0.0566 (17) 0.0275 (12) 0.0318 (12) −0.0022 (12) 0.0004 (12) 0.0016 (10) N1C 0.0238 (17) 0.0165 (15) 0.0246 (16) 0.0031 (14) −0.0013 (15) −0.0002 (12) C2C 0.024 (2) 0.0186 (18) 0.0256 (18) −0.0022 (16) −0.0013 (17) 0.0036 (14) C3C 0.025 (2) 0.0241 (19) 0.0240 (19) 0.0007 (17) 0.0002 (17) 0.0039 (16) C4C 0.035 (3) 0.036 (2) 0.0223 (19) 0.009 (2) 0.0032 (19) −0.0005 (17) C5C 0.027 (2) 0.0198 (18) 0.0215 (17) 0.0008 (17) −0.0004 (17) −0.0016 (14) C6C 0.026 (2) 0.0267 (19) 0.0211 (18) 0.0005 (18) 0.0027 (17) 0.0021 (15) C7C 0.025 (2) 0.0274 (19) 0.0206 (18) −0.0023 (18) 0.0038 (17) 0.0019 (15) C8C 0.020 (2) 0.029 (2) 0.0200 (18) 0.0039 (17) −0.0019 (17) 0.0036 (15) C9C 0.032 (2) 0.0178 (19) 0.028 (2) −0.0013 (18) 0.0007 (19) −0.0017 (15) C10C 0.040 (3) 0.025 (2) 0.0169 (17) 0.0009 (18) 0.0013 (18) 0.0027 (15) C11C 0.035 (2) 0.027 (2) 0.0247 (19) −0.0021 (19) −0.0006 (19) 0.0051 (16) C12C 0.030 (2) 0.0203 (19) 0.0271 (19) 0.0005 (18) −0.0062 (18) 0.0028 (16) C13C 0.029 (2) 0.0240 (19) 0.0188 (17) 0.0051 (18) −0.0001 (17) −0.0012 (15) C14C 0.095 (4) 0.019 (2) 0.034 (2) −0.004 (2) −0.005 (3) 0.0069 (17) O15C 0.064 (2) 0.0209 (14) 0.0286 (14) 0.0002 (15) −0.0058 (15) −0.0006 (11) F16C 0.0566 (17) 0.0216 (11) 0.0306 (12) −0.0011 (11) 0.0030 (12) −0.0013 (9) C17C 0.027 (2) 0.0185 (18) 0.0254 (18) −0.0025 (17) −0.0014 (17) −0.0002 (15) C18C 0.023 (2) 0.028 (2) 0.0247 (19) 0.0015 (18) −0.0022 (18) −0.0017 (16) C19C 0.021 (2) 0.028 (2) 0.0224 (18) 0.0073 (18) 0.0002 (17) −0.0055 (15) C20C 0.033 (2) 0.022 (2) 0.028 (2) 0.0015 (18) 0.0018 (19) −0.0003 (16) C21C 0.039 (3) 0.039 (2) 0.0226 (19) 0.004 (2) −0.0031 (19) −0.0035 (17) C22C 0.031 (2) 0.037 (2) 0.025 (2) 0.002 (2) −0.0046 (19) −0.0058 (17) C23C 0.028 (2) 0.028 (2) 0.031 (2) −0.0010 (19) −0.0037 (19) −0.0058 (17) C24C 0.028 (2) 0.027 (2) 0.0252 (19) 0.0035 (18) −0.0009 (18) −0.0033 (16) C25C 0.053 (3) 0.030 (2) 0.038 (2) 0.005 (2) −0.009 (2) −0.0005 (18) O26C 0.0473 (19) 0.0285 (15) 0.0346 (15) −0.0012 (15) −0.0121 (15) −0.0036 (12) F27C 0.0573 (18) 0.0298 (12) 0.0326 (12) −0.0010 (12) −0.0016 (13) −0.0003 (10) C1S1 0.026 (2) 0.023 (2) 0.0284 (19) 0.0001 (18) −0.0008 (18) −0.0039 (16) O1S1 0.0310 (17) 0.0246 (14) 0.0375 (15) 0.0011 (13) 0.0007 (14) 0.0016 (12) O2S1 0.0284 (17) 0.0239 (14) 0.0400 (15) −0.0026 (13) 0.0001 (13) −0.0013 (12) C1S2 0.022 (2) 0.027 (2) 0.0274 (19) −0.0033 (18) −0.0028 (18) 0.0004 (16) O1S2 0.0289 (15) 0.0225 (13) 0.0320 (13) 0.0015 (13) −0.0015 (13) −0.0012 (11) O2S2 0.0305 (17) 0.0215 (14) 0.0448 (16) −0.0047 (12) 0.0008 (14) 0.0013 (12) C1S3 0.024 (2) 0.027 (2) 0.028 (2) 0.0031 (18) −0.0017 (18) −0.0015 (17) O1S3 0.0269 (16) 0.0224 (14) 0.0466 (17) 0.0034 (13) −0.0005 (14) 0.0025 (13) O2S3 0.0262 (16) 0.0221 (13) 0.0330 (14) 0.0016 (12) 0.0001 (13) −0.0016 (12) ------ ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e4595 .table-wrap} -------------------- ----------- -------------------- ----------- N1A---C5A 1.502 (4) C14B---H14D 0.9800 N1A---C2A 1.508 (4) C14B---H14E 0.9800 N1A---H1A1 0.9200 C14B---H14F 0.9800 N1A---H1A2 0.9200 C17B---C18B 1.536 (5) C2A---C17A 1.511 (5) C17B---H17C 0.9900 C2A---C3A 1.535 (5) C17B---H17D 0.9900 C2A---H2A 1.0000 C18B---C19B 1.511 (5) C3A---C4A 1.522 (5) C18B---H18C 0.9900 C3A---H3A1 0.9900 C18B---H18D 0.9900 C3A---H3A2 0.9900 C19B---C20B 1.386 (5) C4A---C5A 1.522 (5) C19B---C24B 1.390 (5) C4A---H4A1 0.9900 C20B---F27B 1.368 (4) C4A---H4A2 0.9900 C20B---C21B 1.370 (5) C5A---C6A 1.520 (5) C21B---C22B 1.375 (5) C5A---H5A 1.0000 C21B---H21B 0.9500 C6A---C7A 1.529 (5) C22B---C23B 1.383 (5) C6A---H6A1 0.9900 C22B---H22B 0.9500 C6A---H6A2 0.9900 C23B---O26B 1.382 (4) C7A---C8A 1.503 (5) C23B---C24B 1.395 (5) C7A---H7A1 0.9900 C24B---H24B 0.9500 C7A---H7A2 0.9900 C25B---O26B 1.409 (4) C8A---C9A 1.386 (5) C25B---H25D 0.9800 C8A---C13A 1.391 (5) C25B---H25E 0.9800 C9A---C10A 1.352 (5) C25B---H25F 0.9800 C9A---F16A 1.380 (4) N1C---C2C 1.496 (4) C10A---C11A 1.388 (5) N1C---C5C 1.508 (4) C10A---H10A 0.9500 N1C---H1C1 0.9200 C11A---C12A 1.383 (5) N1C---H1C2 0.9200 C11A---H11A 0.9500 C2C---C17C 1.513 (4) C12A---C13A 1.380 (5) C2C---C3C 1.525 (5) C12A---O15A 1.389 (4) C2C---H2C 1.0000 C13A---H13A 0.9500 C3C---C4C 1.523 (5) C14A---O15A 1.400 (4) C3C---H3C1 0.9900 C14A---H14A 0.9800 C3C---H3C2 0.9900 C14A---H14B 0.9800 C4C---C5C 1.539 (5) C14A---H14C 0.9800 C4C---H4C1 0.9900 C17A---C18A 1.528 (5) C4C---H4C2 0.9900 C17A---H17A 0.9900 C5C---C6C 1.510 (4) C17A---H17B 0.9900 C5C---H5C 1.0000 C18A---C19A 1.512 (5) C6C---C7C 1.536 (5) C18A---H18A 0.9900 C6C---H6C1 0.9900 C18A---H18B 0.9900 C6C---H6C2 0.9900 C19A---C20A 1.384 (5) C7C---C8C 1.520 (5) C19A---C24A 1.395 (5) C7C---H7C1 0.9900 C20A---C21A 1.371 (5) C7C---H7C2 0.9900 C20A---F27A 1.377 (4) C8C---C9C 1.374 (5) C21A---C22A 1.382 (5) C8C---C13C 1.381 (5) C21A---H21A 0.9500 C9C---C10C 1.371 (5) C22A---C23A 1.382 (5) C9C---F16C 1.372 (4) C22A---H22A 0.9500 C10C---C11C 1.387 (5) C23A---O26A 1.380 (4) C10C---H10C 0.9500 C23A---C24A 1.393 (5) C11C---C12C 1.398 (5) C24A---H24A 0.9500 C11C---H11C 0.9500 C25A---O26A 1.416 (4) C12C---O15C 1.382 (4) C25A---H25A 0.9800 C12C---C13C 1.382 (5) C25A---H25B 0.9800 C13C---H13C 0.9500 C25A---H25C 0.9800 C14C---O15C 1.428 (4) N1B---C5B 1.500 (4) C14C---H14G 0.9800 N1B---C2B 1.506 (4) C14C---H14H 0.9800 N1B---H1B1 0.9200 C14C---H14I 0.9800 N1B---H1B2 0.9200 C17C---C18C 1.528 (5) C2B---C17B 1.517 (4) C17C---H17E 0.9900 C2B---C3B 1.542 (5) C17C---H17F 0.9900 C2B---H2B 1.0000 C18C---C19C 1.516 (5) C3B---C4B 1.516 (5) C18C---H18E 0.9900 C3B---H3B1 0.9900 C18C---H18F 0.9900 C3B---H3B2 0.9900 C19C---C20C 1.381 (5) C4B---C5B 1.522 (5) C19C---C24C 1.396 (5) C4B---H4B1 0.9900 C20C---C21C 1.378 (5) C4B---H4B2 0.9900 C20C---F27C 1.377 (4) C5B---C6B 1.517 (4) C21C---C22C 1.387 (5) C5B---H5B 1.0000 C21C---H21C 0.9500 C6B---C7B 1.524 (5) C22C---C23C 1.387 (5) C6B---H6B1 0.9900 C22C---H22C 0.9500 C6B---H6B2 0.9900 C23C---O26C 1.379 (4) C7B---C8B 1.508 (5) C23C---C24C 1.390 (5) C7B---H7B1 0.9900 C24C---H24C 0.9500 C7B---H7B2 0.9900 C25C---O26C 1.416 (4) C8B---C9B 1.386 (5) C25C---H25G 0.9800 C8B---C13B 1.390 (5) C25C---H25H 0.9800 C9B---F16B 1.368 (4) C25C---H25I 0.9800 C9B---C10B 1.371 (5) C1S1---O1S1 1.243 (4) C10B---C11B 1.380 (5) C1S1---O2S1 1.252 (4) C10B---H10B 0.9500 C1S1---H1S1 0.9500 C11B---C12B 1.385 (5) C1S2---O1S2 1.240 (4) C11B---H11B 0.9500 C1S2---O2S2 1.255 (4) C12B---C13B 1.382 (5) C1S2---H1S2 0.9500 C12B---O15B 1.381 (4) C1S3---O2S3 1.249 (4) C13B---H13B 0.9500 C1S3---O1S3 1.248 (4) C14B---O15B 1.421 (4) C1S3---H1S3 0.9500 C5A---N1A---C2A 107.7 (2) C12B---C13B---C8B 121.9 (3) C5A---N1A---H1A1 110.2 C12B---C13B---H13B 119.1 C2A---N1A---H1A1 110.2 C8B---C13B---H13B 119.1 C5A---N1A---H1A2 110.2 O15B---C14B---H14D 109.5 C2A---N1A---H1A2 110.2 O15B---C14B---H14E 109.5 H1A1---N1A---H1A2 108.5 H14D---C14B---H14E 109.5 N1A---C2A---C17A 110.9 (3) O15B---C14B---H14F 109.5 N1A---C2A---C3A 105.2 (3) H14D---C14B---H14F 109.5 C17A---C2A---C3A 114.7 (3) H14E---C14B---H14F 109.5 N1A---C2A---H2A 108.6 C12B---O15B---C14B 116.9 (3) C17A---C2A---H2A 108.6 C2B---C17B---C18B 113.3 (3) C3A---C2A---H2A 108.6 C2B---C17B---H17C 108.9 C4A---C3A---C2A 106.5 (3) C18B---C17B---H17C 108.9 C4A---C3A---H3A1 110.4 C2B---C17B---H17D 108.9 C2A---C3A---H3A1 110.4 C18B---C17B---H17D 108.9 C4A---C3A---H3A2 110.4 H17C---C17B---H17D 107.7 C2A---C3A---H3A2 110.4 C19B---C18B---C17B 112.4 (3) H3A1---C3A---H3A2 108.6 C19B---C18B---H18C 109.1 C5A---C4A---C3A 105.1 (3) C17B---C18B---H18C 109.1 C5A---C4A---H4A1 110.7 C19B---C18B---H18D 109.1 C3A---C4A---H4A1 110.7 C17B---C18B---H18D 109.1 C5A---C4A---H4A2 110.7 H18C---C18B---H18D 107.9 C3A---C4A---H4A2 110.7 C20B---C19B---C24B 117.3 (3) H4A1---C4A---H4A2 108.8 C20B---C19B---C18B 120.9 (3) N1A---C5A---C6A 111.8 (3) C24B---C19B---C18B 121.7 (3) N1A---C5A---C4A 102.9 (3) F27B---C20B---C21B 118.7 (3) C6A---C5A---C4A 115.0 (3) F27B---C20B---C19B 118.3 (3) N1A---C5A---H5A 109.0 C21B---C20B---C19B 122.9 (3) C6A---C5A---H5A 109.0 C20B---C21B---C22B 119.1 (4) C4A---C5A---H5A 109.0 C20B---C21B---H21B 120.4 C5A---C6A---C7A 115.0 (3) C22B---C21B---H21B 120.4 C5A---C6A---H6A1 108.5 C21B---C22B---C23B 120.0 (4) C7A---C6A---H6A1 108.5 C21B---C22B---H22B 120.0 C5A---C6A---H6A2 108.5 C23B---C22B---H22B 120.0 C7A---C6A---H6A2 108.5 O26B---C23B---C22B 116.1 (3) H6A1---C6A---H6A2 107.5 O26B---C23B---C24B 123.7 (3) C8A---C7A---C6A 111.0 (3) C22B---C23B---C24B 120.2 (3) C8A---C7A---H7A1 109.4 C19B---C24B---C23B 120.4 (3) C6A---C7A---H7A1 109.4 C19B---C24B---H24B 119.8 C8A---C7A---H7A2 109.4 C23B---C24B---H24B 119.8 C6A---C7A---H7A2 109.4 O26B---C25B---H25D 109.5 H7A1---C7A---H7A2 108.0 O26B---C25B---H25E 109.5 C9A---C8A---C13A 115.8 (3) H25D---C25B---H25E 109.5 C9A---C8A---C7A 123.8 (4) O26B---C25B---H25F 109.5 C13A---C8A---C7A 120.4 (3) H25D---C25B---H25F 109.5 C10A---C9A---F16A 119.3 (4) H25E---C25B---H25F 109.5 C10A---C9A---C8A 123.9 (4) C23B---O26B---C25B 118.6 (3) F16A---C9A---C8A 116.9 (3) C2C---N1C---C5C 107.8 (2) C9A---C10A---C11A 119.8 (4) C2C---N1C---H1C1 110.1 C9A---C10A---H10A 120.1 C5C---N1C---H1C1 110.1 C11A---C10A---H10A 120.1 C2C---N1C---H1C2 110.1 C12A---C11A---C10A 118.3 (4) C5C---N1C---H1C2 110.1 C12A---C11A---H11A 120.9 H1C1---N1C---H1C2 108.5 C10A---C11A---H11A 120.9 N1C---C2C---C17C 111.7 (3) C13A---C12A---C11A 120.8 (4) N1C---C2C---C3C 103.2 (3) C13A---C12A---O15A 115.1 (3) C17C---C2C---C3C 114.1 (3) C11A---C12A---O15A 124.1 (3) N1C---C2C---H2C 109.2 C12A---C13A---C8A 121.5 (3) C17C---C2C---H2C 109.2 C12A---C13A---H13A 119.2 C3C---C2C---H2C 109.2 C8A---C13A---H13A 119.2 C4C---C3C---C2C 105.2 (3) O15A---C14A---H14A 109.5 C4C---C3C---H3C1 110.7 O15A---C14A---H14B 109.5 C2C---C3C---H3C1 110.7 H14A---C14A---H14B 109.5 C4C---C3C---H3C2 110.7 O15A---C14A---H14C 109.5 C2C---C3C---H3C2 110.7 H14A---C14A---H14C 109.5 H3C1---C3C---H3C2 108.8 H14B---C14A---H14C 109.5 C3C---C4C---C5C 106.8 (3) C12A---O15A---C14A 117.1 (3) C3C---C4C---H4C1 110.4 C2A---C17A---C18A 113.7 (3) C5C---C4C---H4C1 110.4 C2A---C17A---H17A 108.8 C3C---C4C---H4C2 110.4 C18A---C17A---H17A 108.8 C5C---C4C---H4C2 110.4 C2A---C17A---H17B 108.8 H4C1---C4C---H4C2 108.6 C18A---C17A---H17B 108.8 N1C---C5C---C6C 110.4 (3) H17A---C17A---H17B 107.7 N1C---C5C---C4C 104.9 (3) C19A---C18A---C17A 112.3 (3) C6C---C5C---C4C 115.8 (3) C19A---C18A---H18A 109.1 N1C---C5C---H5C 108.5 C17A---C18A---H18A 109.1 C6C---C5C---H5C 108.5 C19A---C18A---H18B 109.1 C4C---C5C---H5C 108.5 C17A---C18A---H18B 109.1 C5C---C6C---C7C 113.3 (3) H18A---C18A---H18B 107.9 C5C---C6C---H6C1 108.9 C20A---C19A---C24A 116.4 (3) C7C---C6C---H6C1 108.9 C20A---C19A---C18A 121.3 (3) C5C---C6C---H6C2 108.9 C24A---C19A---C18A 122.2 (3) C7C---C6C---H6C2 108.9 C21A---C20A---F27A 118.3 (3) H6C1---C6C---H6C2 107.7 C21A---C20A---C19A 124.0 (3) C8C---C7C---C6C 112.7 (3) F27A---C20A---C19A 117.7 (3) C8C---C7C---H7C1 109.1 C20A---C21A---C22A 118.8 (4) C6C---C7C---H7C1 109.1 C20A---C21A---H21A 120.6 C8C---C7C---H7C2 109.1 C22A---C21A---H21A 120.6 C6C---C7C---H7C2 109.1 C23A---C22A---C21A 119.4 (4) H7C1---C7C---H7C2 107.8 C23A---C22A---H22A 120.3 C9C---C8C---C13C 116.9 (3) C21A---C22A---H22A 120.3 C9C---C8C---C7C 121.6 (3) O26A---C23A---C22A 115.1 (3) C13C---C8C---C7C 121.5 (3) O26A---C23A---C24A 124.0 (3) C10C---C9C---F16C 118.6 (3) C22A---C23A---C24A 120.8 (3) C10C---C9C---C8C 123.5 (3) C23A---C24A---C19A 120.6 (3) F16C---C9C---C8C 117.9 (3) C23A---C24A---H24A 119.7 C9C---C10C---C11C 119.2 (3) C19A---C24A---H24A 119.7 C9C---C10C---H10C 120.4 O26A---C25A---H25A 109.5 C11C---C10C---H10C 120.4 O26A---C25A---H25B 109.5 C10C---C11C---C12C 118.7 (3) H25A---C25A---H25B 109.5 C10C---C11C---H11C 120.6 O26A---C25A---H25C 109.5 C12C---C11C---H11C 120.6 H25A---C25A---H25C 109.5 O15C---C12C---C13C 115.8 (3) H25B---C25A---H25C 109.5 O15C---C12C---C11C 124.1 (3) C23A---O26A---C25A 117.8 (3) C13C---C12C---C11C 120.1 (3) C5B---N1B---C2B 107.6 (2) C8C---C13C---C12C 121.6 (3) C5B---N1B---H1B1 110.2 C8C---C13C---H13C 119.2 C2B---N1B---H1B1 110.2 C12C---C13C---H13C 119.2 C5B---N1B---H1B2 110.2 O15C---C14C---H14G 109.5 C2B---N1B---H1B2 110.2 O15C---C14C---H14H 109.5 H1B1---N1B---H1B2 108.5 H14G---C14C---H14H 109.5 N1B---C2B---C17B 111.2 (3) O15C---C14C---H14I 109.5 N1B---C2B---C3B 104.9 (3) H14G---C14C---H14I 109.5 C17B---C2B---C3B 114.1 (3) H14H---C14C---H14I 109.5 N1B---C2B---H2B 108.8 C12C---O15C---C14C 116.8 (3) C17B---C2B---H2B 108.8 C2C---C17C---C18C 115.4 (3) C3B---C2B---H2B 108.8 C2C---C17C---H17E 108.4 C4B---C3B---C2B 107.0 (3) C18C---C17C---H17E 108.4 C4B---C3B---H3B1 110.3 C2C---C17C---H17F 108.4 C2B---C3B---H3B1 110.3 C18C---C17C---H17F 108.4 C4B---C3B---H3B2 110.3 H17E---C17C---H17F 107.5 C2B---C3B---H3B2 110.3 C19C---C18C---C17C 110.1 (3) H3B1---C3B---H3B2 108.6 C19C---C18C---H18E 109.6 C3B---C4B---C5B 105.3 (3) C17C---C18C---H18E 109.6 C3B---C4B---H4B1 110.7 C19C---C18C---H18F 109.6 C5B---C4B---H4B1 110.7 C17C---C18C---H18F 109.6 C3B---C4B---H4B2 110.7 H18E---C18C---H18F 108.1 C5B---C4B---H4B2 110.7 C20C---C19C---C24C 116.7 (3) H4B1---C4B---H4B2 108.8 C20C---C19C---C18C 121.6 (3) N1B---C5B---C6B 111.8 (3) C24C---C19C---C18C 121.4 (3) N1B---C5B---C4B 103.4 (3) C21C---C20C---F27C 117.9 (3) C6B---C5B---C4B 114.8 (3) C21C---C20C---C19C 123.7 (3) N1B---C5B---H5B 108.9 F27C---C20C---C19C 118.3 (3) C6B---C5B---H5B 108.9 C20C---C21C---C22C 118.4 (3) C4B---C5B---H5B 108.9 C20C---C21C---H21C 120.8 C5B---C6B---C7B 115.4 (3) C22C---C21C---H21C 120.8 C5B---C6B---H6B1 108.4 C21C---C22C---C23C 120.0 (3) C7B---C6B---H6B1 108.4 C21C---C22C---H22C 120.0 C5B---C6B---H6B2 108.4 C23C---C22C---H22C 120.0 C7B---C6B---H6B2 108.4 O26C---C23C---C22C 116.0 (3) H6B1---C6B---H6B2 107.5 O26C---C23C---C24C 124.0 (3) C8B---C7B---C6B 110.4 (3) C22C---C23C---C24C 120.0 (3) C8B---C7B---H7B1 109.6 C23C---C24C---C19C 121.2 (3) C6B---C7B---H7B1 109.6 C23C---C24C---H24C 119.4 C8B---C7B---H7B2 109.6 C19C---C24C---H24C 119.4 C6B---C7B---H7B2 109.6 O26C---C25C---H25G 109.5 H7B1---C7B---H7B2 108.1 O26C---C25C---H25H 109.5 C9B---C8B---C13B 116.1 (3) H25G---C25C---H25H 109.5 C9B---C8B---C7B 122.8 (3) O26C---C25C---H25I 109.5 C13B---C8B---C7B 121.0 (3) H25G---C25C---H25I 109.5 F16B---C9B---C10B 118.8 (3) H25H---C25C---H25I 109.5 F16B---C9B---C8B 117.7 (3) C23C---O26C---C25C 118.7 (3) C10B---C9B---C8B 123.5 (3) O1S1---C1S1---O2S1 126.7 (4) C9B---C10B---C11B 119.1 (4) O1S1---C1S1---H1S1 116.6 C9B---C10B---H10B 120.4 O2S1---C1S1---H1S1 116.6 C11B---C10B---H10B 120.4 O1S2---C1S2---O2S2 127.1 (4) C10B---C11B---C12B 119.5 (3) O1S2---C1S2---H1S2 116.4 C10B---C11B---H11B 120.2 O2S2---C1S2---H1S2 116.4 C12B---C11B---H11B 120.2 O2S3---C1S3---O1S3 127.1 (4) C13B---C12B---O15B 115.5 (3) O2S3---C1S3---H1S3 116.5 C13B---C12B---C11B 119.9 (3) O1S3---C1S3---H1S3 116.5 O15B---C12B---C11B 124.5 (3) -------------------- ----------- -------------------- ----------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e6895 .table-wrap} ----------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1A---H1A1···O2S3 0.92 1.84 2.750 (4) 172 N1A---H1A2···O2S1^i^ 0.92 1.83 2.737 (4) 167 N1A---H1A2···O1S1^i^ 0.92 2.60 3.314 (4) 135 N1B---H1B1···O1S3 0.92 1.83 2.729 (4) 166 N1B---H1B1···O2S3 0.92 2.61 3.329 (4) 136 N1B---H1B2···O1S1 0.92 1.84 2.756 (4) 173 N1C---H1C1···O2S2^ii^ 0.92 1.85 2.743 (4) 165 N1C---H1C1···O1S2^ii^ 0.92 2.61 3.330 (4) 135 N1C---H1C2···O1S2 0.92 1.82 2.733 (4) 173 ----------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1/2, −*y*+3/2, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------------- --------- ------- ----------- ------------- N1*A*---H1*A*1⋯O2*S*3 0.92 1.84 2.750 (4) 172 N1*A*---H1*A*2⋯O2*S*1^i^ 0.92 1.83 2.737 (4) 167 N1*A*---H1*A*2⋯O1*S*1^i^ 0.92 2.60 3.314 (4) 135 N1*B*---H1*B*1⋯O1*S*3 0.92 1.83 2.729 (4) 166 N1*B*---H1*B*1⋯O2*S*3 0.92 2.61 3.329 (4) 136 N1*B*---H1*B*2⋯O1*S*1 0.92 1.84 2.756 (4) 173 N1*C*---H1*C*1⋯O2*S*2^ii^ 0.92 1.85 2.743 (4) 165 N1*C*---H1*C*1⋯O1*S*2^ii^ 0.92 2.61 3.330 (4) 135 N1*C*---H1*C*2⋯O1*S*2 0.92 1.82 2.733 (4) 173 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:17.911618
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052016/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):o737", "authors": [ { "first": "Purushothama Rao", "last": "Ponugoti" }, { "first": "Narsimha Reddy", "last": "Penthala" }, { "first": "Linda P.", "last": "Dwoskin" }, { "first": "Sean", "last": "Parkin" }, { "first": "Peter A.", "last": "Crooks" } ] }
PMC3052017
Related literature {#sec1} ================== For the crystal structure of the analogous CdCl~2~ complex, see: Ikmal Hisham *et al.* (2010[@bb7]). For the crystal structures of similar CdBr~2~ complexes, see: Bermejo *et al.* (1999[@bb3], 2003[@bb4]). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison *et al.* (1984[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[CdBr~2~(C~13~H~19~N~3~O)\]*M* *~r~* = 505.53Orthorhombic,*a* = 9.1906 (8) Å*b* = 12.2604 (10) Å*c* = 14.7499 (12) Å*V* = 1662.0 (2) Å^3^*Z* = 4Mo *K*α radiationμ = 6.12 mm^−1^*T* = 100 K0.33 × 0.27 × 0.19 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb8]) *T* ~min~ = 0.237, *T* ~max~ = 0.38920236 measured reflections3642 independent reflections3445 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.032 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.021*wR*(*F* ^2^) = 0.041*S* = 1.093642 reflections182 parametersH-atom parameters constrainedΔρ~max~ = 0.73 e Å^−3^Δρ~min~ = −0.54 e Å^−3^Absolute structure: Flack (1983[@bb6]), 1556 Friedel pairsFlack parameter: 0.023 (9) {#d5e489} Data collection: *APEX2* (Bruker, 2007[@bb5]); cell refinement: *SAINT* (Bruker, 2007[@bb5]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *X-SEED* (Barbour, 2001[@bb2]); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010[@bb10]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S160053681100554X/bg2390sup1.cif](http://dx.doi.org/10.1107/S160053681100554X/bg2390sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100554X/bg2390Isup2.hkl](http://dx.doi.org/10.1107/S160053681100554X/bg2390Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bg2390&file=bg2390sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bg2390sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bg2390&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BG2390](http://scripts.iucr.org/cgi-bin/sendsup?bg2390)). The authors thank University of Malaya for funding this study (FRGS grant No. FP004/2010B). Comment ======= The title compound was obtained upon the reaction of 2-morpholino-*N*-\[1-(2-pyridyl)ethylidene\]ethanamine with Cd^II^ ion in the presence of potassium bromide. Similar to the structure of the analogous CdCl~2~ complex (Ikmal Hisham *et al.*, 2010), the metal center is five-coordinated by the *N,N\',N\"*-tridentate Schiff base ligand and two halogen atoms. The geometry of the complexes can be determined by using the index τ = (*β*-*α*)/60, where *β* is the largest angle and *α* is the second one around the metal center. For an ideal square-pyramid τ is 0, while it is 1 in a perfect trigonal-bipyramid (Addison *et al.*,1984). The τ value in the present structure is calculated to be 0.18, indicative of a distorted square-pyramidal geometry. The Cd---Br bond lengths in the complex are in agreement with the values reported in the literature (Bermejo *et al.*, 1999; Bermejo *et al.*, 2003). In the crystal, the adjacent molecules are connected together *via* C---H···O and C---H···Br hydrogen bonds, forming infinite layers parallel to the *ab* plane. Moreover an intramolecluar C---H···Br occurs. Experimental {#experimental} ============ A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed. After 2 hr a solution of cadmium(II) acetate dihydrate (0.44 g, 1.65 mmol) and potassium bromide (0.196 g, 1.65 mmol) in a minimum amount of water was added. The resulting solution was refluxed for 30 min, and then left at room temperature. The crystals of the title complex were obtained in a few days. Refinement {#refinement} ========== H atoms were positioned geometrically (C-H: 0.95Å; C-H~2~: 0.99Å;C-H~3~: 0.98Å) and allowed to ride. *U*iso(H) set to 1.2--1.5 *U*eq(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot of the title compound at the 50% probability level. ::: ![](e-67-0m347-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e157 .table-wrap} ------------------------------- --------------------------------------- \[CdBr~2~(C~13~H~19~N~3~O)\] *F*(000) = 976 *M~r~* = 505.53 *D*~x~ = 2.020 Mg m^−3^ Orthorhombic, *P*2~1~2~1~2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2ac 2ab Cell parameters from 5963 reflections *a* = 9.1906 (8) Å θ = 2.6--30.7° *b* = 12.2604 (10) Å µ = 6.12 mm^−1^ *c* = 14.7499 (12) Å *T* = 100 K *V* = 1662.0 (2) Å^3^ Block, colorless *Z* = 4 0.33 × 0.27 × 0.19 mm ------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e285 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII CCD diffractometer 3642 independent reflections Radiation source: fine-focus sealed tube 3445 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.032 φ and ω scans θ~max~ = 27.0°, θ~min~ = 2.2° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −11→11 *T*~min~ = 0.237, *T*~max~ = 0.389 *k* = −15→15 20236 measured reflections *l* = −18→18 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e402 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.021 H-atom parameters constrained *wR*(*F*^2^) = 0.041 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.006*P*)^2^ + 1.6071*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.09 (Δ/σ)~max~ = 0.001 3642 reflections Δρ~max~ = 0.73 e Å^−3^ 182 parameters Δρ~min~ = −0.54 e Å^−3^ 0 restraints Absolute structure: Flack (1983), 1556 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: 0.023 (9) ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e564 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e663 .table-wrap} ------ -------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cd1 0.03808 (2) 0.00442 (2) 0.919266 (13) 0.01367 (5) Br1 −0.21463 (3) 0.00329 (4) 0.84484 (2) 0.02368 (7) Br2 0.07480 (3) −0.00774 (4) 1.092730 (19) 0.02169 (7) O1 −0.0135 (3) −0.34931 (19) 0.93888 (17) 0.0151 (6) N1 0.0632 (3) 0.1977 (2) 0.90768 (19) 0.0163 (6) N2 0.2634 (3) 0.0505 (2) 0.86157 (18) 0.0143 (6) N3 0.1405 (3) −0.1675 (2) 0.85991 (18) 0.0127 (6) C1 −0.0399 (4) 0.2704 (3) 0.9296 (2) 0.0194 (7) H1 −0.1334 0.2443 0.9463 0.023\* C2 −0.0157 (5) 0.3826 (3) 0.9291 (3) 0.0225 (9) H2 −0.0908 0.4322 0.9451 0.027\* C3 0.1197 (4) 0.4192 (3) 0.9049 (3) 0.0240 (8) H3 0.1400 0.4951 0.9051 0.029\* C4 0.2272 (4) 0.3455 (3) 0.8800 (2) 0.0209 (8) H4 0.3206 0.3701 0.8616 0.025\* C5 0.1948 (4) 0.2342 (3) 0.8827 (2) 0.0145 (7) C6 0.3044 (4) 0.1495 (3) 0.8549 (2) 0.0146 (7) C7 0.4496 (4) 0.1874 (3) 0.8209 (3) 0.0253 (8) H7A 0.4380 0.2199 0.7606 0.038\* H7B 0.5162 0.1252 0.8172 0.038\* H7C 0.4894 0.2420 0.8627 0.038\* C8 0.3532 (4) −0.0426 (2) 0.8376 (2) 0.0164 (7) H8A 0.4034 −0.0709 0.8922 0.020\* H8B 0.4278 −0.0207 0.7928 0.020\* C9 0.2553 (4) −0.1303 (3) 0.7977 (2) 0.0176 (7) H9A 0.2093 −0.1016 0.7419 0.021\* H9B 0.3160 −0.1937 0.7802 0.021\* C10 0.2041 (4) −0.2361 (3) 0.9323 (2) 0.0167 (7) H10A 0.2692 −0.1912 0.9705 0.020\* H10B 0.2630 −0.2950 0.9047 0.020\* C11 0.0853 (4) −0.2858 (3) 0.9907 (2) 0.0181 (7) H11A 0.1303 −0.3323 1.0378 0.022\* H11B 0.0313 −0.2267 1.0217 0.022\* C12 −0.0787 (4) −0.2837 (3) 0.8695 (2) 0.0177 (7) H12A −0.1356 −0.2242 0.8978 0.021\* H12B −0.1463 −0.3290 0.8333 0.021\* C13 0.0361 (4) −0.2354 (3) 0.8079 (2) 0.0174 (7) H13A 0.0894 −0.2950 0.7770 0.021\* H13B −0.0114 −0.1901 0.7609 0.021\* ------ -------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1232 .table-wrap} ----- -------------- -------------- -------------- -------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cd1 0.01446 (9) 0.01227 (9) 0.01429 (9) 0.00005 (13) 0.00293 (7) 0.00048 (13) Br1 0.01711 (14) 0.02244 (15) 0.03150 (16) 0.0017 (2) −0.00424 (12) 0.0024 (2) Br2 0.02749 (16) 0.02287 (17) 0.01472 (13) 0.00513 (19) −0.00019 (11) −0.00188 (19) O1 0.0147 (14) 0.0118 (11) 0.0190 (14) −0.0018 (10) −0.0005 (10) 0.0025 (10) N1 0.0184 (15) 0.0152 (13) 0.0154 (14) 0.0012 (11) 0.0020 (12) 0.0039 (11) N2 0.0147 (15) 0.0163 (13) 0.0120 (13) 0.0018 (11) 0.0003 (11) 0.0003 (11) N3 0.0155 (14) 0.0100 (13) 0.0128 (14) −0.0002 (11) 0.0015 (11) 0.0010 (11) C1 0.0217 (18) 0.0191 (16) 0.0173 (18) 0.0019 (15) 0.0056 (15) 0.0012 (14) C2 0.032 (2) 0.0147 (16) 0.021 (2) 0.0080 (16) −0.0011 (17) 0.0001 (15) C3 0.034 (2) 0.0116 (15) 0.027 (2) −0.0018 (14) −0.0087 (17) −0.0008 (15) C4 0.0203 (18) 0.0163 (17) 0.0260 (19) −0.0043 (14) −0.0043 (15) 0.0000 (14) C5 0.0152 (18) 0.0154 (16) 0.0128 (17) 0.0028 (13) −0.0030 (15) 0.0017 (14) C6 0.0145 (17) 0.0176 (16) 0.0116 (16) −0.0009 (13) −0.0011 (13) 0.0041 (13) C7 0.0204 (19) 0.0187 (17) 0.037 (2) −0.0055 (15) 0.0066 (17) 0.0005 (15) C8 0.0134 (17) 0.0135 (15) 0.0224 (18) 0.0018 (12) 0.0040 (14) 0.0031 (13) C9 0.0202 (18) 0.0164 (17) 0.0162 (17) 0.0017 (13) 0.0064 (14) −0.0013 (14) C10 0.0169 (17) 0.0155 (16) 0.0178 (18) 0.0023 (13) −0.0007 (15) 0.0045 (14) C11 0.0149 (17) 0.0172 (17) 0.0223 (18) −0.0020 (13) −0.0011 (14) 0.0052 (14) C12 0.0183 (18) 0.0150 (16) 0.0198 (18) −0.0016 (13) −0.0013 (15) −0.0005 (13) C13 0.0210 (18) 0.0165 (16) 0.0147 (16) 0.0011 (14) −0.0007 (14) −0.0049 (13) ----- -------------- -------------- -------------- -------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1628 .table-wrap} ----------------- -------------- ------------------- ----------- Cd1---N2 2.309 (3) C4---H4 0.9500 Cd1---N1 2.388 (3) C5---C6 1.504 (5) Cd1---N3 2.469 (3) C6---C7 1.500 (5) Cd1---Br1 2.5690 (4) C7---H7A 0.9800 Cd1---Br2 2.5851 (4) C7---H7B 0.9800 O1---C11 1.420 (4) C7---H7C 0.9800 O1---C12 1.433 (4) C8---C9 1.520 (5) N1---C1 1.340 (4) C8---H8A 0.9900 N1---C5 1.341 (4) C8---H8B 0.9900 N2---C6 1.275 (4) C9---H9A 0.9900 N2---C8 1.452 (4) C9---H9B 0.9900 N3---C9 1.471 (4) C10---C11 1.518 (5) N3---C10 1.479 (4) C10---H10A 0.9900 N3---C13 1.484 (4) C10---H10B 0.9900 C1---C2 1.393 (5) C11---H11A 0.9900 C1---H1 0.9500 C11---H11B 0.9900 C2---C3 1.370 (6) C12---C13 1.514 (5) C2---H2 0.9500 C12---H12A 0.9900 C3---C4 1.388 (5) C12---H12B 0.9900 C3---H3 0.9500 C13---H13A 0.9900 C4---C5 1.397 (5) C13---H13B 0.9900 N2---Cd1---N1 69.15 (9) C6---C7---H7B 109.5 N2---Cd1---N3 74.71 (9) H7A---C7---H7B 109.5 N1---Cd1---N3 141.76 (9) C6---C7---H7C 109.5 N2---Cd1---Br1 130.89 (7) H7A---C7---H7C 109.5 N1---Cd1---Br1 93.56 (7) H7B---C7---H7C 109.5 N3---Cd1---Br1 100.87 (6) N2---C8---C9 108.3 (3) N2---Cd1---Br2 105.18 (7) N2---C8---H8A 110.0 N1---Cd1---Br2 96.63 (7) C9---C8---H8A 110.0 N3---Cd1---Br2 104.59 (6) N2---C8---H8B 110.0 Br1---Cd1---Br2 122.729 (12) C9---C8---H8B 110.0 C11---O1---C12 110.1 (2) H8A---C8---H8B 108.4 C1---N1---C5 118.8 (3) N3---C9---C8 113.7 (3) C1---N1---Cd1 125.1 (2) N3---C9---H9A 108.8 C5---N1---Cd1 116.0 (2) C8---C9---H9A 108.8 C6---N2---C8 124.2 (3) N3---C9---H9B 108.8 C6---N2---Cd1 121.8 (2) C8---C9---H9B 108.8 C8---N2---Cd1 114.02 (19) H9A---C9---H9B 107.7 C9---N3---C10 110.1 (3) N3---C10---C11 110.7 (3) C9---N3---C13 108.4 (3) N3---C10---H10A 109.5 C10---N3---C13 108.1 (2) C11---C10---H10A 109.5 C9---N3---Cd1 103.29 (18) N3---C10---H10B 109.5 C10---N3---Cd1 112.3 (2) C11---C10---H10B 109.5 C13---N3---Cd1 114.57 (19) H10A---C10---H10B 108.1 N1---C1---C2 122.8 (3) O1---C11---C10 112.0 (3) N1---C1---H1 118.6 O1---C11---H11A 109.2 C2---C1---H1 118.6 C10---C11---H11A 109.2 C3---C2---C1 118.0 (4) O1---C11---H11B 109.2 C3---C2---H2 121.0 C10---C11---H11B 109.2 C1---C2---H2 121.0 H11A---C11---H11B 107.9 C2---C3---C4 120.1 (3) O1---C12---C13 110.9 (3) C2---C3---H3 119.9 O1---C12---H12A 109.5 C4---C3---H3 119.9 C13---C12---H12A 109.5 C3---C4---C5 118.4 (3) O1---C12---H12B 109.5 C3---C4---H4 120.8 C13---C12---H12B 109.5 C5---C4---H4 120.8 H12A---C12---H12B 108.0 N1---C5---C4 121.7 (3) N3---C13---C12 111.1 (3) N1---C5---C6 116.6 (3) N3---C13---H13A 109.4 C4---C5---C6 121.6 (3) C12---C13---H13A 109.4 N2---C6---C7 125.7 (3) N3---C13---H13B 109.4 N2---C6---C5 116.0 (3) C12---C13---H13B 109.4 C7---C6---C5 118.2 (3) H13A---C13---H13B 108.0 C6---C7---H7A 109.5 ----------------- -------------- ------------------- ----------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2219 .table-wrap} ---------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C3---H3···O1^i^ 0.95 2.42 3.132 (4) 131 C7---H7B···Br1^ii^ 0.98 2.92 3.840 (4) 157 C10---H10A···O1^iii^ 0.99 2.45 3.383 (4) 156 C11---H11B···Br2 0.99 2.91 3.727 (4) 141 ---------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*+1/2, −*y*−1/2, −*z*+2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------------- --------- ------- ----------- ------------- C3---H3⋯O1^i^ 0.95 2.42 3.132 (4) 131 C7---H7*B*⋯Br1^ii^ 0.98 2.92 3.840 (4) 157 C10---H10*A*⋯O1^iii^ 0.99 2.45 3.383 (4) 156 C11---H11*B*⋯Br2 0.99 2.91 3.727 (4) 141 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:17.926244
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052017/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):m347", "authors": [ { "first": "Nura", "last": "Suleiman Gwaram" }, { "first": "Hamid", "last": "Khaledi" }, { "first": "Hapipah", "last": "Mohd Ali" } ] }
PMC3052018
Related literature {#sec1} ================== For the structures of metal complexes with a 6,6′-dimethyl-2,2′-bipyridine ligand, see: Akbarzadeh Torbati *et al.* (2010[@bb1]); Alizadeh *et al.* (2010[@bb2]); Alizadeh, Kalateh, Ebadi *et al.* (2009[@bb3]); Alizadeh, Kalateh, Khoshtarkib *et al.* (2009[@bb4]); Alizadeh, Khoshtarkib *et al.* (2009[@bb5]); Itoh *et al.* (2005[@bb10]); Kou *et al.* (2008[@bb11]); Onggo *et al.* (2005[@bb12]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[HgI~2~(C~12~H~12~N~2~)\]*M* *~r~* = 638.63Monoclinic,*a* = 8.8096 (18) Å*b* = 12.025 (2) Å*c* = 14.693 (3) Åβ = 101.88 (3)°*V* = 1523.2 (5) Å^3^*Z* = 4Mo *K*α radiationμ = 14.14 mm^−1^*T* = 298 K0.16 × 0.15 × 0.12 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2001[@bb6]) *T* ~min~ = 0.128, *T* ~max~ = 0.1869361 measured reflections4057 independent reflections3409 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.051 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.040*wR*(*F* ^2^) = 0.095*S* = 1.104057 reflections154 parametersH-atom parameters constrainedΔρ~max~ = 1.22 e Å^−3^Δρ~min~ = −1.23 e Å^−3^ {#d5e415} Data collection: *APEX2* (Bruker, 2007[@bb7]); cell refinement: *SAINT* (Bruker, 2007[@bb7]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb13]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb8]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb9]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004041/ya2136sup1.cif](http://dx.doi.org/10.1107/S1600536811004041/ya2136sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004041/ya2136Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004041/ya2136Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ya2136&file=ya2136sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ya2136sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ya2136&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [YA2136](http://scripts.iucr.org/cgi-bin/sendsup?ya2136)). The authors are grateful to Damghan University for financial support. Comment ======= 6,6\'-Dimethyl-2,2\'-bipyridine (6,6\'-dmbipy) is a rather widely used bidentate ligand, and complexes of different metals with 6,6\'-dmbipy have been prepared, *e.g.* those of cobalt (Akbarzadeh Torbati *et al.*, 2010),cadmium (Alizadeh *et al.*, 2010),zinc (Alizadeh, Kalateh, Ebadi *et al.*, 2009; Alizadeh, Kalateh, Khoshtarkib *et al.*, 2009; Alizadeh, Khoshtarkib *et al.*, 2009), copper (Itoh *et al.*, 2005), nickel (Kou *et al.*, 2008), and ruthenium (Onggo *et al.*, 2005). We report herein the synthesis and first crystal structure of the mercury complex of this ligand (Fig. 1). The Hg1 atom has a distorted tetrahedral coordination formed by atoms N1 and N2 of the 6,6\'-dimethyl-2,2\'-bipyridine ligand and terminal I1 and I2 atoms \[N---Hg---N 70.1 (2)°; I---Hg---I 130.59 (3)°; see Table 1 for bond lengths involving Hg1\]. In the crystal structure, intermolecular /*p*-/p contacts (Fig. 2) between the pyridine rings and also between pyridine ring and chelate ring of the adjacent molecules may stabilize the structure: the centroid-centroid distances *Cg*1---*Cg*2^i^ and *Cg*2---*Cg*3^i^ are equal to 3.668 (4) and 3.773 (5)Å respectively \[*Cg*1, *Cg*2 and *Cg*3 represent centroids of the rings (Hg1/N1/C6/C7/N2), (N1/C2---C6), and (N2/C7---C11); symmetry code (i): 2 - *x*,1 - *y*,-*z*\]. Experimental {#experimental} ============ For the preparation of the title compound, a solution of 6,6\'-dimethyl-2,2\'-bipyridine (0.28 g, 1.50 mmol) in acetonitrile (10 ml) was added to a solution of HgI~2~ (0.68 g, 1.50 mmol) in methanol (10 ml), and the resulting colorless mixture was stirred for 30 min at 313 K. It was then left to evaporate slowly at room temperature. After six days, colorless prismatic crystals of the title compound, suitable for X-ray diffraction experiment, were isolated (yield 0.71 g; 74.1%). Refinement {#refinement} ========== All H atoms were positioned geometrically, with C---H 0.93 and 0.96 Å for aromatics and methyl hydrogen atoms, respectively, and constrained to ride on their parent atoms, with *U*~iso~(H)=1.2*U*~eq~. The highest residual density peak and the deepest hole (1.22 and -1.23 e A°^-3^) are located at distances of 0.83 and 0.82 Å from the Hg1 atom respectively. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structure of the title compound;. displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0m305-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram for the crystal of the title compound viewed along the a axis. ::: ![](e-67-0m305-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e187 .table-wrap} ---------------------------- --------------------------------------- \[HgI~2~(C~12~H~12~N~2~)\] *F*(000) = 1136 *M~r~* = 638.63 *D*~x~ = 2.785 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 1223 reflections *a* = 8.8096 (18) Å θ = 2.2--29.2° *b* = 12.025 (2) Å µ = 14.14 mm^−1^ *c* = 14.693 (3) Å *T* = 298 K β = 101.88 (3)° Prism, colorless *V* = 1523.2 (5) Å^3^ 0.16 × 0.15 × 0.12 mm *Z* = 4 ---------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e318 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEXII CCD area-detector diffractometer 4057 independent reflections Radiation source: fine-focus sealed tube 3409 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.051 φ and ω scans θ~max~ = 29.2°, θ~min~ = 2.2° Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *h* = −11→12 *T*~min~ = 0.128, *T*~max~ = 0.186 *k* = −16→13 9361 measured reflections *l* = −20→17 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e435 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.040 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.095 H-atom parameters constrained *S* = 1.10 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0397*P*)^2^ + 3.5854*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4057 reflections (Δ/σ)~max~ = 0.001 154 parameters Δρ~max~ = 1.22 e Å^−3^ 0 restraints Δρ~min~ = −1.23 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e592 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e691 .table-wrap} ------ ------------- ------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.6805 (9) 0.4904 (8) 0.1498 (7) 0.065 (2) H1A 0.6238 0.5560 0.1595 0.077\* H1B 0.7749 0.4868 0.1960 0.077\* H1C 0.6186 0.4258 0.1547 0.077\* C2 0.7174 (7) 0.4943 (6) 0.0569 (5) 0.0493 (16) C3 0.6678 (9) 0.4111 (7) −0.0091 (6) 0.061 (2) H3 0.6079 0.3520 0.0042 0.073\* C4 0.7097 (10) 0.4188 (7) −0.0941 (7) 0.069 (2) H4 0.6773 0.3644 −0.1388 0.083\* C5 0.7983 (9) 0.5055 (7) −0.1137 (6) 0.060 (2) H5 0.8272 0.5100 −0.1710 0.072\* C6 0.8444 (7) 0.5869 (6) −0.0461 (5) 0.0478 (15) C7 0.9441 (7) 0.6807 (6) −0.0608 (4) 0.0445 (14) C8 0.9964 (10) 0.6955 (9) −0.1438 (6) 0.066 (2) H8 0.9628 0.6477 −0.1936 0.079\* C9 1.0961 (13) 0.7794 (10) −0.1518 (8) 0.080 (3) H9 1.1294 0.7900 −0.2073 0.096\* C10 1.1474 (10) 0.8489 (8) −0.0772 (8) 0.074 (3) H10 1.2190 0.9046 −0.0812 0.089\* C11 1.0915 (9) 0.8353 (7) 0.0045 (7) 0.0592 (19) C12 1.1391 (11) 0.9092 (8) 0.0862 (8) 0.079 (3) H12A 1.1882 0.8659 0.1389 0.094\* H12B 1.0493 0.9456 0.0998 0.094\* H12C 1.2106 0.9640 0.0728 0.094\* N1 0.8032 (6) 0.5792 (4) 0.0366 (4) 0.0399 (11) N2 0.9903 (6) 0.7526 (5) 0.0104 (4) 0.0452 (12) I1 1.05284 (6) 0.68838 (5) 0.30203 (4) 0.06506 (16) I2 0.61128 (6) 0.85868 (4) 0.09788 (4) 0.05659 (14) Hg1 0.86805 (3) 0.73253 (2) 0.139654 (19) 0.04718 (9) ------ ------------- ------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1103 .table-wrap} ----- -------------- -------------- -------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.051 (4) 0.060 (5) 0.081 (6) −0.010 (3) 0.009 (4) 0.019 (4) C2 0.041 (3) 0.037 (3) 0.066 (4) 0.003 (2) 0.003 (3) 0.005 (3) C3 0.047 (3) 0.045 (4) 0.082 (6) 0.004 (3) −0.005 (4) −0.010 (4) C4 0.062 (4) 0.056 (5) 0.077 (6) 0.008 (4) −0.012 (4) −0.027 (4) C5 0.057 (4) 0.068 (5) 0.051 (4) 0.014 (4) 0.004 (3) −0.018 (4) C6 0.041 (3) 0.058 (4) 0.042 (3) 0.019 (3) 0.002 (2) −0.005 (3) C7 0.045 (3) 0.051 (4) 0.039 (3) 0.014 (3) 0.012 (2) 0.006 (3) C8 0.066 (5) 0.088 (6) 0.047 (4) 0.020 (4) 0.020 (4) 0.009 (4) C9 0.087 (6) 0.094 (8) 0.070 (6) 0.019 (6) 0.041 (5) 0.034 (6) C10 0.062 (5) 0.065 (6) 0.107 (8) 0.009 (4) 0.046 (5) 0.028 (5) C11 0.050 (4) 0.045 (4) 0.088 (6) 0.003 (3) 0.026 (4) 0.017 (4) C12 0.074 (6) 0.053 (5) 0.116 (8) −0.016 (4) 0.034 (6) −0.012 (5) N1 0.038 (2) 0.036 (3) 0.045 (3) 0.005 (2) 0.006 (2) −0.002 (2) N2 0.045 (3) 0.040 (3) 0.054 (3) 0.006 (2) 0.021 (2) 0.006 (2) I1 0.0656 (3) 0.0743 (4) 0.0493 (3) 0.0076 (3) −0.0020 (2) −0.0064 (2) I2 0.0534 (2) 0.0536 (3) 0.0609 (3) 0.0024 (2) 0.0073 (2) −0.0054 (2) Hg1 0.05023 (14) 0.04953 (15) 0.04286 (13) −0.00229 (11) 0.01209 (10) −0.00399 (11) ----- -------------- -------------- -------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1434 .table-wrap} ---------------------- ------------ ---------------------- ------------- C1---C2 1.468 (12) C8---C9 1.359 (15) C1---H1A 0.9600 C8---H8 0.9300 C1---H1B 0.9600 C9---C10 1.379 (16) C1---H1C 0.9600 C9---H9 0.9300 C2---N1 1.340 (9) C10---C11 1.398 (13) C2---C3 1.399 (10) C10---H10 0.9300 C3---C4 1.377 (14) C11---N2 1.351 (9) C3---H3 0.9300 C11---C12 1.483 (14) C4---C5 1.367 (13) C12---H12A 0.9600 C4---H4 0.9300 C12---H12B 0.9600 C5---C6 1.394 (10) C12---H12C 0.9600 C5---H5 0.9300 N1---Hg1 2.380 (5) C6---N1 1.341 (9) N2---Hg1 2.381 (6) C6---C7 1.473 (11) I1---Hg1 2.6503 (10) C7---N2 1.354 (9) I2---Hg1 2.6876 (7) C7---C8 1.401 (10) C2---C1---H1A 109.5 C8---C9---C10 119.5 (9) C2---C1---H1B 109.5 C8---C9---H9 120.2 H1A---C1---H1B 109.5 C10---C9---H9 120.2 C2---C1---H1C 109.5 C9---C10---C11 119.8 (9) H1A---C1---H1C 109.5 C9---C10---H10 120.1 H1B---C1---H1C 109.5 C11---C10---H10 120.1 N1---C2---C3 120.0 (8) N2---C11---C10 119.7 (9) N1---C2---C1 118.4 (7) N2---C11---C12 118.1 (8) C3---C2---C1 121.6 (7) C10---C11---C12 122.3 (8) C4---C3---C2 118.5 (8) C11---C12---H12A 109.5 C4---C3---H3 120.8 C11---C12---H12B 109.5 C2---C3---H3 120.8 H12A---C12---H12B 109.5 C5---C4---C3 120.9 (8) C11---C12---H12C 109.5 C5---C4---H4 119.5 H12A---C12---H12C 109.5 C3---C4---H4 119.5 H12B---C12---H12C 109.5 C4---C5---C6 118.7 (8) C2---N1---C6 121.6 (6) C4---C5---H5 120.6 C2---N1---Hg1 121.4 (5) C6---C5---H5 120.6 C6---N1---Hg1 116.7 (5) N1---C6---C5 120.2 (8) C11---N2---C7 121.2 (7) N1---C6---C7 117.8 (6) C11---N2---Hg1 122.6 (6) C5---C6---C7 121.9 (7) C7---N2---Hg1 116.0 (4) N2---C7---C8 119.4 (7) N1---Hg1---N2 70.1 (2) N2---C7---C6 118.0 (6) N1---Hg1---I1 116.12 (12) C8---C7---C6 122.6 (7) N2---Hg1---I1 116.33 (14) C9---C8---C7 120.3 (9) N1---Hg1---I2 102.20 (12) C9---C8---H8 119.8 N2---Hg1---I2 104.98 (13) C7---C8---H8 119.8 I1---Hg1---I2 130.59 (3) N1---C2---C3---C4 0.3 (10) C5---C6---N1---Hg1 −174.1 (5) C1---C2---C3---C4 −178.5 (7) C7---C6---N1---Hg1 8.4 (7) C2---C3---C4---C5 0.2 (12) C10---C11---N2---C7 1.4 (11) C3---C4---C5---C6 −0.7 (12) C12---C11---N2---C7 −178.7 (7) C4---C5---C6---N1 0.6 (10) C10---C11---N2---Hg1 −173.7 (6) C4---C5---C6---C7 177.9 (6) C12---C11---N2---Hg1 6.2 (10) N1---C6---C7---N2 1.0 (8) C8---C7---N2---C11 −3.1 (10) C5---C6---C7---N2 −176.4 (6) C6---C7---N2---C11 174.8 (6) N1---C6---C7---C8 178.7 (6) C8---C7---N2---Hg1 172.3 (5) C5---C6---C7---C8 1.3 (10) C6---C7---N2---Hg1 −9.8 (7) N2---C7---C8---C9 1.8 (11) C2---N1---Hg1---N2 176.3 (5) C6---C7---C8---C9 −175.9 (8) C6---N1---Hg1---N2 −9.7 (4) C7---C8---C9---C10 1.1 (14) C2---N1---Hg1---I1 65.9 (5) C8---C9---C10---C11 −2.7 (15) C6---N1---Hg1---I1 −120.0 (4) C9---C10---C11---N2 1.5 (13) C2---N1---Hg1---I2 −82.0 (4) C9---C10---C11---C12 −178.4 (9) C6---N1---Hg1---I2 92.1 (4) C3---C2---N1---C6 −0.4 (9) C11---N2---Hg1---N1 −174.6 (6) C1---C2---N1---C6 178.5 (6) C7---N2---Hg1---N1 10.1 (4) C3---C2---N1---Hg1 173.4 (5) C11---N2---Hg1---I1 −64.5 (6) C1---C2---N1---Hg1 −7.8 (8) C7---N2---Hg1---I1 120.2 (4) C5---C6---N1---C2 −0.1 (9) C11---N2---Hg1---I2 87.6 (5) C7---C6---N1---C2 −177.5 (5) C7---N2---Hg1---I2 −87.7 (4) ---------------------- ------------ ---------------------- ------------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: ---------- ------------- N1---Hg1 2.380 (5) N2---Hg1 2.381 (6) I1---Hg1 2.6503 (10) I2---Hg1 2.6876 (7) ---------- ------------- :::
PubMed Central
2024-06-05T04:04:17.932462
2011-2-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052018/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 5; 67(Pt 3):m305", "authors": [ { "first": "Robabeh", "last": "Alizadeh" }, { "first": "Sara", "last": "Seifi" }, { "first": "Vahid", "last": "Amani" } ] }
PMC3052019
Related literature {#sec1} ================== For the biological activity of related structures, see: El-subbagh *et al.* (2000[@bb5]); Emami *et al.* (2006[@bb6]); Foroumadi *et al.* (2007[@bb8]); Katritzky & Fan (1990[@bb9]); Mobio *et al.* (1989[@bb10]). For geometrical analysis, see: Cremer & Pople (1975[@bb4]); Emami *et al.* (2006[@bb6]); Foroumadi *et al.* (2007[@bb8]); Nardelli (1983[@bb11]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~28~H~35~N~3~O~4~*M* *~r~* = 477.59Monoclinic,*a* = 10.9073 (3) Å*b* = 19.1940 (6) Å*c* = 12.2246 (3) Åβ = 91.809 (2)°*V* = 2558.00 (12) Å^3^*Z* = 4Mo *K*α radiationμ = 0.08 mm^−1^*T* = 293 K0.30 × 0.20 × 0.20 mm ### Data collection {#sec2.1.2} Bruker Kappa APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 1999[@bb2]) *T* ~min~ = 0.975, *T* ~max~ = 0.98431692 measured reflections6941 independent reflections4703 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.029 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.047*wR*(*F* ^2^) = 0.142*S* = 1.016941 reflections316 parametersH-atom parameters constrainedΔρ~max~ = 0.38 e Å^−3^Δρ~min~ = −0.18 e Å^−3^ {#d5e456} Data collection: *APEX2* (Bruker, 2004[@bb3]); cell refinement: *APEX2* and *SAINT* (Bruker, 2004[@bb3]); data reduction: *SAINT* and *XPREP* (Bruker, 2004[@bb3]); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993)[@bb1]; program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb12]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb7]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003412/zq2086sup1.cif](http://dx.doi.org/10.1107/S1600536811003412/zq2086sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003412/zq2086Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003412/zq2086Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?zq2086&file=zq2086sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?zq2086sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?zq2086&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [ZQ2086](http://scripts.iucr.org/cgi-bin/sendsup?zq2086)). This study was supported financially by Pukyong National University in the 2010 post-doc programme. The authors are thankful to the SAIF, Indian Institute of Technology, Madras, for the data collection. Comment ======= Several interesting investigations have been carried out with piperidine based heterocyclic compounds and these compounds were found to exhibit numerous pharmacological properties and biological activities such as anticancer, antimicrobial, anti-inflammatory, antiviral, antimalarial and anesthetics (El-subbagh *et al.*, 2000; Mobio *et al.*, 1989; Katritzky & Fan, 1990). Similarly, some compounds containing piperazine are used as antibiotic drugs, *e.g.*, Norfloxacin, Ciprofloxacin, Enoxacin, Ofloxacin and Levofloxacine (Emami *et al.*, 2006; Foroumadi *et al.*, 2007). In the title compound, C~28~H~35~N~3~O~4~, the piperidine ring adopts a boat conformation. The corresponding puckering parameters (Cremer & Pople, 1975) and smallest displacement asymmetry parameters (Nardelli, 1983) are q~1~ = 0.6111 (15) Å, q~2~ = -0.0839 (15) Å, Q~T~= 0.6168 (15) Å, and θ = 97.81 (14) °. Unlike, the piperazine ring adopts a chair conformation with q~1~ = 0.0367 (15), q~2~ = 0.5606 (15) Å, Q~T~= 0.5618 (15) Å and θ = 3.75 (15)°. The phenyl groups are orientated to the same side of the piperazine ring. The dihedral angle between the mean planes of the benzene rings is 74.14 (8)°. The molecular conformation is stabilized by a weak intramolecular C5-H5···N2 interaction and the crystal packing by the weak intermolecular C8-H8···O2^i^ and C24-H24···O1^ii^ interactions \[Table 1; symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*\]. Experimental {#experimental} ============ A mixture of *N*-chloroacetyl-3,5-dimethyl-2,6-diphenylpiperidin-4-one (0.005 mol), triethylamine (0.01 mol) and *N*-ethoxycarbonylpiperazine (0.005 mol) in toluene were refluxed for about 6--8 h. After the completion of reaction, excess of solvent was removed under reduced pressure. The obtained residue was column chromatographed on silica gel using benzene:ethyl acetate (2:1) mixture as an eluent which afforded the title compound in good yield. Colourless crystals were grown by slow evaporation method using ethanol as solvent. Refinement {#refinement} ========== H atoms were positioned and refined using a riding model, with aromatic C---H = 0.93 Å, methine C---H = 0.98 Å, methylene C---H = 0.97 Å and methyl C---H = 0.96 Å. The displacement parameters were set to *U*~iso~(H) = 1.5*U*~eq~(C) for the methyl H atoms and to *U*~iso~(H) = 1.2*U*~eq~(C) for the other H atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A view of the molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0o541-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e195 .table-wrap} ------------------------- ---------------------------------- C~28~H~35~N~3~O~4~ *Z* = 4 *M~r~* = 477.59 *F*(000) = 1024 Monoclinic, *P*2~1~/*n* *D*~x~ = 1.240 Mg m^−3^ Hall symbol: -P 2yn Mo *K*α radiation, λ = 0.71073 Å *a* = 10.9073 (3) Å θ = 2.0--29.2° *b* = 19.1940 (6) Å µ = 0.08 mm^−1^ *c* = 12.2246 (3) Å *T* = 293 K β = 91.809 (2)° Prism, colourless *V* = 2558.00 (12) Å^3^ 0.30 × 0.20 × 0.20 mm ------------------------- ---------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e321 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker Kappa APEXII CCD diffractometer 6941 independent reflections Radiation source: fine-focus sealed tube 4703 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.029 ω and φ scans θ~max~ = 29.2°, θ~min~ = 2.0° Absorption correction: multi-scan (*SADABS*; Bruker, 1999) *h* = −14→14 *T*~min~ = 0.975, *T*~max~ = 0.984 *k* = −26→26 31692 measured reflections *l* = −16→16 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e438 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.047 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.142 H-atom parameters constrained *S* = 1.01 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0676*P*)^2^ + 0.4844*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 6941 reflections (Δ/σ)~max~ \< 0.001 316 parameters Δρ~max~ = 0.38 e Å^−3^ 0 restraints Δρ~min~ = −0.18 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e595 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e694 .table-wrap} ------ --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O2 0.30276 (10) 0.02315 (6) 0.45786 (8) 0.0474 (3) N1 0.27565 (10) 0.01252 (6) 0.27464 (8) 0.0346 (2) O3 0.83211 (11) 0.26851 (6) 0.33044 (11) 0.0674 (4) O4 0.87576 (10) 0.17829 (6) 0.44239 (10) 0.0594 (3) N2 0.48203 (10) 0.12188 (6) 0.31107 (9) 0.0354 (2) N3 0.72912 (11) 0.16692 (7) 0.31251 (11) 0.0469 (3) O1 0.36909 (18) −0.11603 (8) 0.02744 (11) 0.1013 (6) C21 0.35944 (12) 0.12158 (7) 0.35490 (11) 0.0385 (3) H21A 0.3047 0.1482 0.3068 0.046\* H21B 0.3618 0.1441 0.4260 0.046\* C20 0.30991 (11) 0.04850 (7) 0.36633 (10) 0.0346 (3) C1 0.24946 (13) −0.06249 (7) 0.28730 (11) 0.0379 (3) H1 0.2739 −0.0741 0.3630 0.045\* C23 0.69961 (13) 0.09713 (8) 0.34954 (14) 0.0481 (4) H23A 0.7577 0.0831 0.4071 0.058\* H23B 0.7059 0.0646 0.2893 0.058\* C6 0.11293 (13) −0.07761 (7) 0.27691 (11) 0.0391 (3) C2 0.33470 (14) −0.10402 (8) 0.21546 (12) 0.0458 (3) H2 0.3107 −0.1532 0.2182 0.055\* C7 0.03802 (14) −0.04948 (8) 0.35541 (12) 0.0454 (3) H7 0.0729 −0.0228 0.4118 0.054\* C12 0.18481 (14) 0.09997 (7) 0.14324 (11) 0.0414 (3) C5 0.28059 (13) 0.04335 (7) 0.16348 (10) 0.0380 (3) H5 0.3615 0.0648 0.1569 0.046\* C4 0.26648 (15) −0.01210 (8) 0.07262 (11) 0.0473 (3) H4 0.1785 −0.0218 0.0642 0.057\* C22 0.57133 (12) 0.09542 (7) 0.39208 (12) 0.0405 (3) H22A 0.5503 0.0479 0.4110 0.049\* H22B 0.5682 0.1234 0.4580 0.049\* C11 0.05813 (15) −0.11776 (8) 0.19519 (13) 0.0498 (4) H11 0.1063 −0.1380 0.1424 0.060\* C3 0.32775 (16) −0.08057 (9) 0.09817 (13) 0.0540 (4) C13 0.06182 (15) 0.08840 (9) 0.15817 (13) 0.0518 (4) H13 0.0359 0.0452 0.1832 0.062\* C25 0.51477 (13) 0.19283 (7) 0.28016 (12) 0.0434 (3) H25A 0.5134 0.2228 0.3440 0.052\* H25B 0.4549 0.2104 0.2266 0.052\* C24 0.64026 (14) 0.19466 (9) 0.23281 (12) 0.0490 (4) H24A 0.6408 0.1670 0.1664 0.059\* H24B 0.6616 0.2422 0.2145 0.059\* C8 −0.08692 (14) −0.06037 (9) 0.35137 (14) 0.0516 (4) H8 −0.1355 −0.0410 0.4046 0.062\* C9 −0.13964 (15) −0.09967 (9) 0.26901 (15) 0.0560 (4) H9 −0.2239 −0.1070 0.2660 0.067\* C17 0.21955 (18) 0.16440 (9) 0.10412 (14) 0.0577 (4) H17 0.3017 0.1731 0.0913 0.069\* C26 0.81377 (13) 0.20954 (8) 0.35904 (13) 0.0470 (3) C10 −0.06694 (16) −0.12810 (9) 0.19096 (15) 0.0590 (4) H10 −0.1025 −0.1546 0.1347 0.071\* C18 0.46803 (16) −0.09787 (11) 0.25605 (16) 0.0661 (5) H18A 0.4750 −0.1126 0.3310 0.099\* H18B 0.4943 −0.0503 0.2504 0.099\* H18C 0.5187 −0.1269 0.2122 0.099\* C27 0.97832 (14) 0.21660 (10) 0.49077 (15) 0.0575 (4) H27A 0.9891 0.2040 0.5673 0.069\* H27B 0.9616 0.2662 0.4867 0.069\* C16 0.1336 (2) 0.21594 (9) 0.08396 (15) 0.0719 (6) H16 0.1586 0.2593 0.0590 0.086\* C14 −0.02354 (18) 0.14019 (11) 0.13642 (15) 0.0678 (5) H14 −0.1063 0.1315 0.1465 0.081\* C15 0.0126 (2) 0.20387 (11) 0.10038 (16) 0.0750 (6) H15 −0.0450 0.2388 0.0871 0.090\* C19 0.3060 (2) 0.01732 (12) −0.03613 (14) 0.0801 (7) H19A 0.2654 0.0610 −0.0497 0.120\* H19B 0.2845 −0.0148 −0.0937 0.120\* H19C 0.3932 0.0244 −0.0336 0.120\* C28 1.09184 (17) 0.20086 (12) 0.43263 (18) 0.0743 (5) H28A 1.1589 0.2266 0.4653 0.111\* H28B 1.0813 0.2138 0.3571 0.111\* H28C 1.1090 0.1519 0.4377 0.111\* ------ --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1650 .table-wrap} ----- ------------- ------------- ------------- ------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O2 0.0544 (6) 0.0553 (6) 0.0324 (5) −0.0062 (5) 0.0018 (4) 0.0037 (4) N1 0.0375 (6) 0.0359 (6) 0.0303 (5) −0.0015 (4) 0.0027 (4) 0.0030 (4) O3 0.0553 (7) 0.0542 (7) 0.0916 (9) −0.0118 (5) −0.0117 (6) 0.0157 (7) O4 0.0454 (6) 0.0619 (7) 0.0702 (8) −0.0039 (5) −0.0110 (5) 0.0083 (6) N2 0.0334 (5) 0.0359 (6) 0.0368 (6) −0.0021 (4) 0.0000 (4) 0.0029 (4) N3 0.0357 (6) 0.0506 (7) 0.0544 (7) −0.0048 (5) 0.0009 (5) 0.0106 (6) O1 0.1630 (17) 0.0893 (10) 0.0528 (8) 0.0586 (11) 0.0210 (9) −0.0109 (7) C21 0.0356 (7) 0.0385 (7) 0.0414 (7) 0.0010 (5) 0.0016 (5) −0.0017 (6) C20 0.0284 (6) 0.0408 (7) 0.0347 (7) 0.0021 (5) 0.0036 (5) 0.0009 (5) C1 0.0429 (7) 0.0350 (7) 0.0359 (7) 0.0000 (5) 0.0037 (5) 0.0029 (5) C23 0.0386 (7) 0.0415 (8) 0.0642 (10) 0.0019 (6) 0.0009 (7) 0.0053 (7) C6 0.0447 (7) 0.0325 (6) 0.0402 (7) −0.0026 (5) 0.0020 (6) 0.0034 (5) C2 0.0509 (8) 0.0414 (7) 0.0454 (8) 0.0084 (6) 0.0059 (6) 0.0003 (6) C7 0.0473 (8) 0.0467 (8) 0.0423 (8) −0.0063 (6) 0.0044 (6) −0.0023 (6) C12 0.0502 (8) 0.0430 (7) 0.0308 (6) 0.0022 (6) 0.0003 (6) 0.0038 (5) C5 0.0400 (7) 0.0436 (7) 0.0306 (6) −0.0016 (6) 0.0037 (5) 0.0061 (5) C4 0.0538 (9) 0.0560 (9) 0.0323 (7) 0.0098 (7) 0.0023 (6) −0.0018 (6) C22 0.0381 (7) 0.0391 (7) 0.0439 (7) −0.0009 (5) −0.0020 (6) 0.0079 (6) C11 0.0549 (9) 0.0421 (8) 0.0525 (9) −0.0010 (7) 0.0014 (7) −0.0093 (7) C3 0.0638 (10) 0.0560 (9) 0.0426 (8) 0.0128 (8) 0.0065 (7) −0.0071 (7) C13 0.0530 (9) 0.0537 (9) 0.0491 (9) 0.0088 (7) 0.0108 (7) 0.0091 (7) C25 0.0416 (7) 0.0406 (7) 0.0475 (8) −0.0032 (6) −0.0077 (6) 0.0109 (6) C24 0.0485 (8) 0.0568 (9) 0.0415 (8) −0.0098 (7) −0.0012 (6) 0.0114 (7) C8 0.0465 (8) 0.0525 (9) 0.0563 (9) 0.0005 (7) 0.0090 (7) 0.0049 (7) C9 0.0439 (8) 0.0526 (9) 0.0710 (11) −0.0026 (7) −0.0050 (8) 0.0072 (8) C17 0.0710 (11) 0.0515 (9) 0.0501 (9) −0.0067 (8) −0.0075 (8) 0.0152 (7) C26 0.0344 (7) 0.0501 (9) 0.0565 (9) −0.0004 (6) 0.0049 (6) 0.0050 (7) C10 0.0600 (10) 0.0494 (9) 0.0665 (11) −0.0061 (7) −0.0146 (8) −0.0075 (8) C18 0.0532 (10) 0.0853 (13) 0.0599 (10) 0.0208 (9) 0.0053 (8) −0.0007 (9) C27 0.0483 (9) 0.0631 (10) 0.0605 (10) 0.0028 (7) −0.0062 (7) −0.0116 (8) C16 0.1107 (17) 0.0461 (10) 0.0582 (11) 0.0082 (10) −0.0092 (11) 0.0140 (8) C14 0.0632 (11) 0.0812 (13) 0.0598 (11) 0.0263 (10) 0.0130 (8) 0.0089 (10) C15 0.0996 (16) 0.0673 (12) 0.0581 (11) 0.0372 (12) 0.0015 (11) 0.0078 (9) C19 0.1185 (18) 0.0870 (14) 0.0359 (9) 0.0339 (13) 0.0186 (10) 0.0095 (9) C28 0.0501 (10) 0.0823 (14) 0.0905 (14) 0.0029 (9) 0.0049 (9) −0.0082 (11) ----- ------------- ------------- ------------- ------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2297 .table-wrap} ---------------------- -------------- ----------------------- -------------- O2---C20 1.2250 (15) C4---H4 0.9800 N1---C20 1.3590 (17) C22---H22A 0.9700 N1---C1 1.4768 (17) C22---H22B 0.9700 N1---C5 1.4846 (16) C11---C10 1.378 (2) O3---C26 1.2032 (19) C11---H11 0.9300 O4---C26 1.3460 (18) C13---C14 1.382 (2) O4---C27 1.4491 (19) C13---H13 0.9300 N2---C21 1.4561 (17) C25---C24 1.503 (2) N2---C22 1.4583 (16) C25---H25A 0.9700 N2---C25 1.4606 (17) C25---H25B 0.9700 N3---C26 1.3461 (19) C24---H24A 0.9700 N3---C23 1.4534 (19) C24---H24B 0.9700 N3---C24 1.4535 (18) C8---C9 1.370 (2) O1---C3 1.1995 (19) C8---H8 0.9300 C21---C20 1.5111 (19) C9---C10 1.373 (3) C21---H21A 0.9700 C9---H9 0.9300 C21---H21B 0.9700 C17---C16 1.380 (3) C1---C6 1.519 (2) C17---H17 0.9300 C1---C2 1.5240 (19) C10---H10 0.9300 C1---H1 0.9800 C18---H18A 0.9600 C23---C22 1.508 (2) C18---H18B 0.9600 C23---H23A 0.9700 C18---H18C 0.9600 C23---H23B 0.9700 C27---C28 1.478 (2) C6---C11 1.383 (2) C27---H27A 0.9700 C6---C7 1.389 (2) C27---H27B 0.9700 C2---C3 1.502 (2) C16---C15 1.362 (3) C2---C18 1.526 (2) C16---H16 0.9300 C2---H2 0.9800 C14---C15 1.362 (3) C7---C8 1.378 (2) C14---H14 0.9300 C7---H7 0.9300 C15---H15 0.9300 C12---C13 1.378 (2) C19---H19A 0.9600 C12---C17 1.383 (2) C19---H19B 0.9600 C12---C5 1.5224 (19) C19---H19C 0.9600 C5---C4 1.542 (2) C28---H28A 0.9600 C5---H5 0.9800 C28---H28B 0.9600 C4---C3 1.503 (2) C28---H28C 0.9600 C4---C19 1.519 (2) C20---N1---C1 117.26 (10) O1---C3---C2 120.61 (15) C20---N1---C5 122.37 (11) O1---C3---C4 121.42 (15) C1---N1---C5 119.82 (10) C2---C3---C4 117.97 (13) C26---O4---C27 116.47 (13) C12---C13---C14 120.76 (16) C21---N2---C22 110.50 (10) C12---C13---H13 119.6 C21---N2---C25 109.50 (10) C14---C13---H13 119.6 C22---N2---C25 109.69 (10) N2---C25---C24 110.76 (12) C26---N3---C23 125.75 (13) N2---C25---H25A 109.5 C26---N3---C24 119.64 (13) C24---C25---H25A 109.5 C23---N3---C24 113.39 (12) N2---C25---H25B 109.5 N2---C21---C20 111.89 (11) C24---C25---H25B 109.5 N2---C21---H21A 109.2 H25A---C25---H25B 108.1 C20---C21---H21A 109.2 N3---C24---C25 109.23 (12) N2---C21---H21B 109.2 N3---C24---H24A 109.8 C20---C21---H21B 109.2 C25---C24---H24A 109.8 H21A---C21---H21B 107.9 N3---C24---H24B 109.8 O2---C20---N1 121.85 (12) C25---C24---H24B 109.8 O2---C20---C21 119.11 (12) H24A---C24---H24B 108.3 N1---C20---C21 119.03 (11) C9---C8---C7 120.10 (16) N1---C1---C6 111.71 (10) C9---C8---H8 120.0 N1---C1---C2 109.03 (11) C7---C8---H8 120.0 C6---C1---C2 117.79 (12) C8---C9---C10 119.43 (16) N1---C1---H1 105.8 C8---C9---H9 120.3 C6---C1---H1 105.8 C10---C9---H9 120.3 C2---C1---H1 105.8 C16---C17---C12 120.73 (18) N3---C23---C22 110.14 (12) C16---C17---H17 119.6 N3---C23---H23A 109.6 C12---C17---H17 119.6 C22---C23---H23A 109.6 O3---C26---O4 123.71 (14) N3---C23---H23B 109.6 O3---C26---N3 124.54 (14) C22---C23---H23B 109.6 O4---C26---N3 111.75 (13) H23A---C23---H23B 108.1 C9---C10---C11 120.64 (15) C11---C6---C7 117.74 (14) C9---C10---H10 119.7 C11---C6---C1 124.57 (13) C11---C10---H10 119.7 C7---C6---C1 117.68 (12) C2---C18---H18A 109.5 C3---C2---C1 112.33 (12) C2---C18---H18B 109.5 C3---C2---C18 107.81 (14) H18A---C18---H18B 109.5 C1---C2---C18 111.38 (13) C2---C18---H18C 109.5 C3---C2---H2 108.4 H18A---C18---H18C 109.5 C1---C2---H2 108.4 H18B---C18---H18C 109.5 C18---C2---H2 108.4 O4---C27---C28 110.34 (15) C8---C7---C6 121.26 (14) O4---C27---H27A 109.6 C8---C7---H7 119.4 C28---C27---H27A 109.6 C6---C7---H7 119.4 O4---C27---H27B 109.6 C13---C12---C17 117.94 (14) C28---C27---H27B 109.6 C13---C12---C5 121.97 (13) H27A---C27---H27B 108.1 C17---C12---C5 120.03 (14) C15---C16---C17 120.54 (18) N1---C5---C12 112.88 (11) C15---C16---H16 119.7 N1---C5---C4 112.24 (11) C17---C16---H16 119.7 C12---C5---C4 108.85 (11) C15---C14---C13 120.53 (19) N1---C5---H5 107.5 C15---C14---H14 119.7 C12---C5---H5 107.5 C13---C14---H14 119.7 C4---C5---H5 107.5 C14---C15---C16 119.48 (17) C3---C4---C19 111.72 (14) C14---C15---H15 120.3 C3---C4---C5 114.84 (12) C16---C15---H15 120.3 C19---C4---C5 110.43 (14) C4---C19---H19A 109.5 C3---C4---H4 106.4 C4---C19---H19B 109.5 C19---C4---H4 106.4 H19A---C19---H19B 109.5 C5---C4---H4 106.4 C4---C19---H19C 109.5 N2---C22---C23 111.42 (12) H19A---C19---H19C 109.5 N2---C22---H22A 109.3 H19B---C19---H19C 109.5 C23---C22---H22A 109.3 C27---C28---H28A 109.5 N2---C22---H22B 109.3 C27---C28---H28B 109.5 C23---C22---H22B 109.3 H28A---C28---H28B 109.5 H22A---C22---H22B 108.0 C27---C28---H28C 109.5 C10---C11---C6 120.82 (15) H28A---C28---H28C 109.5 C10---C11---H11 119.6 H28B---C28---H28C 109.5 C6---C11---H11 119.6 C22---N2---C21---C20 −70.96 (14) C25---N2---C22---C23 −57.61 (15) C25---N2---C21---C20 168.12 (11) N3---C23---C22---N2 54.42 (16) C1---N1---C20---O2 −10.29 (18) C7---C6---C11---C10 1.3 (2) C5---N1---C20---O2 178.25 (12) C1---C6---C11---C10 −179.10 (14) C1---N1---C20---C21 169.07 (11) C1---C2---C3---O1 −164.94 (19) C5---N1---C20---C21 −2.39 (17) C18---C2---C3---O1 72.0 (2) N2---C21---C20---O2 107.37 (14) C1---C2---C3---C4 14.4 (2) N2---C21---C20---N1 −72.01 (15) C18---C2---C3---C4 −108.69 (17) C20---N1---C1---C6 106.90 (13) C19---C4---C3---O1 −21.7 (3) C5---N1---C1---C6 −81.41 (14) C5---C4---C3---O1 −148.50 (19) C20---N1---C1---C2 −121.17 (12) C19---C4---C3---C2 158.92 (17) C5---N1---C1---C2 50.52 (15) C5---C4---C3---C2 32.2 (2) C26---N3---C23---C22 113.00 (16) C17---C12---C13---C14 −1.1 (2) C24---N3---C23---C22 −54.22 (17) C5---C12---C13---C14 −178.29 (15) N1---C1---C6---C11 116.25 (15) C21---N2---C25---C24 −179.06 (11) C2---C1---C6---C11 −11.1 (2) C22---N2---C25---C24 59.52 (15) N1---C1---C6---C7 −64.17 (16) C26---N3---C24---C25 −112.15 (15) C2---C1---C6---C7 168.49 (12) C23---N3---C24---C25 55.93 (17) N1---C1---C2---C3 −54.18 (16) N2---C25---C24---N3 −57.96 (16) C6---C1---C2---C3 74.44 (17) C6---C7---C8---C9 0.1 (2) N1---C1---C2---C18 66.89 (16) C7---C8---C9---C10 0.1 (2) C6---C1---C2---C18 −164.50 (13) C13---C12---C17---C16 1.9 (2) C11---C6---C7---C8 −0.8 (2) C5---C12---C17---C16 179.12 (15) C1---C6---C7---C8 179.55 (13) C27---O4---C26---O3 −6.8 (2) C20---N1---C5---C12 −69.90 (15) C27---O4---C26---N3 173.41 (13) C1---N1---C5---C12 118.85 (13) C23---N3---C26---O3 −175.88 (16) C20---N1---C5---C4 166.64 (12) C24---N3---C26---O3 −9.4 (2) C1---N1---C5---C4 −4.61 (16) C23---N3---C26---O4 3.9 (2) C13---C12---C5---N1 −54.40 (18) C24---N3---C26---O4 170.36 (13) C17---C12---C5---N1 128.50 (14) C8---C9---C10---C11 0.4 (3) C13---C12---C5---C4 70.92 (17) C6---C11---C10---C9 −1.1 (3) C17---C12---C5---C4 −106.18 (15) C26---O4---C27---C28 −88.67 (19) N1---C5---C4---C3 −37.21 (18) C12---C17---C16---C15 −1.2 (3) C12---C5---C4---C3 −162.89 (13) C12---C13---C14---C15 −0.4 (3) N1---C5---C4---C19 −164.62 (14) C13---C14---C15---C16 1.1 (3) C12---C5---C4---C19 69.69 (17) C17---C16---C15---C14 −0.4 (3) C21---N2---C22---C23 −178.42 (11) ---------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3677 .table-wrap} --------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C5---H5···N2 0.98 2.51 3.1788 (17) 125 C8---H8···O2^i^ 0.93 2.54 3.4406 (19) 162 C24---H24A···O1^ii^ 0.97 2.56 3.520 (2) 169 --------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (i) −*x*, −*y*, −*z*+1; (ii) −*x*+1, −*y*, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- --------- ------- ------------- ------------- C5---H5⋯N2 0.98 2.51 3.1788 (17) 125 C8---H8⋯O2^i^ 0.93 2.54 3.4406 (19) 162 C24---H24*A*⋯O1^ii^ 0.97 2.56 3.520 (2) 169 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:17.937285
2011-2-02
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052019/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 2; 67(Pt 3):o541", "authors": [ { "first": "Mannangatty", "last": "Rani" }, { "first": "Rajamanickam", "last": "Ramachandran" }, { "first": "Senthamaraikannan", "last": "Kabilan" }, { "first": "Yeon Tae", "last": "Jeong" } ] }
PMC3052020
Related literature {#sec1} ================== For details of the synthesis and general background to the rational design and assembly of coordination polymers with thio­ethers, see: Dong *et al.* (2008[@bb3], 2009[@bb2]). For the crystal structures of coordination complexes with related ligands, see: Du *et al.* (2004[@bb4]); Zhu *et al.* (2009[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~13~H~13~N~3~O~2~S*M* *~r~* = 275.33Triclinic,*a* = 8.6579 (8) Å*b* = 9.7394 (9) Å*c* = 9.9188 (8) Åα = 62.661 (6)°β = 71.416 (5)°γ = 65.024 (6)°*V* = 665.35 (10) Å^3^*Z* = 2Mo *K*α radiationμ = 0.25 mm^−1^*T* = 291 K0.32 × 0.24 × 0.18 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2000[@bb1]) *T* ~min~ = 0.917, *T* ~max~ = 0.96611760 measured reflections3021 independent reflections2387 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.032 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.038*wR*(*F* ^2^) = 0.115*S* = 1.043021 reflections173 parametersH-atom parameters constrainedΔρ~max~ = 0.24 e Å^−3^Δρ~min~ = −0.20 e Å^−3^ {#d5e406} Data collection: *SMART* (Bruker, 2000[@bb1]); cell refinement: *SAINT* (Bruker, 2000[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004272/cv5047sup1.cif](http://dx.doi.org/10.1107/S1600536811004272/cv5047sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004272/cv5047Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004272/cv5047Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?cv5047&file=cv5047sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?cv5047sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?cv5047&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [CV5047](http://scripts.iucr.org/cgi-bin/sendsup?cv5047)). The author is indebted to the National Natural Science Foundation of China (grant No. 20871039) for financial support. Comment ======= Remarkable attention has been paid to the rational design and assembly of new coordination polymers with thioethers (Dong *et al.*, 2008; 2009; Du *et al.*, 2004; Zhu *et al.*, 2009). Herewith we report the synthesis and crystal structure of the title compound (I)- a new derivative of 4-(4-pyridinyl)pyrimidine-2-thiol. In (I) (Fig. 1), the pyridine and pyrimidine rings form a dihedral angle of 3.8 (1)°. The crystal packing exhibits weak intermolecular C---H···O hydrogen bonds (Table 1). Experimental {#experimental} ============ All solvents and chemicals were of analytical grade and were used without further purification. The title compound was prepared by similar procedure reported in the literature (Dong *et al.*, 2008; 2009), To a solution of 4-(4-pyridinyl)pyrimidine-2-thiol (3.78 g, 20 mmol) and sodium hydroxide (0.80 g, 20 mmol) in dry ethanol (100 ml), ethyl 2-bromoacetate (3.34 g, 20 mmol) in CCl~4~ (30 ml) was added. The mixture was stirred and refluxed for 8 h. After cooling, precipitates were filtered, washed by water and ethanol, and dried in vacuum. Single crystals suitable for X-ray diffraction were grown from methanol solution by slow evaporation in air at room temperature. Refinement {#refinement} ========== All H atoms were geometrically positioned (C---H 0.93--0.97 Å) and refined as riding, with *U*~iso~(H)=1.2--1.5 *U*~eq~ of the parent atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. ::: ![](e-67-0o690-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e115 .table-wrap} ------------------------ --------------------------------------- C~13~H~13~N~3~O~2~S *Z* = 2 *M~r~* = 275.33 *F*(000) = 288.0 Triclinic, *P*1 *D*~x~ = 1.374 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.6579 (8) Å Cell parameters from 3021 reflections *b* = 9.7394 (9) Å θ = 2.3--27.5° *c* = 9.9188 (8) Å µ = 0.25 mm^−1^ α = 62.661 (6)° *T* = 291 K β = 71.416 (5)° Block, colorless γ = 65.024 (6)° 0.32 × 0.24 × 0.18 mm *V* = 665.35 (10) Å^3^ ------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e252 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART CCD area-detector diffractometer 3021 independent reflections Radiation source: fine-focus sealed tube 2387 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.032 φ and ω scans θ~max~ = 27.5°, θ~min~ = 2.3° Absorption correction: multi-scan (*SADABS*; Bruker, 2000) *h* = −11→10 *T*~min~ = 0.917, *T*~max~ = 0.966 *k* = −12→12 11760 measured reflections *l* = −12→12 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e369 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.038 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.115 H-atom parameters constrained *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0658*P*)^2^ + 0.067*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3021 reflections (Δ/σ)~max~ \< 0.001 173 parameters Δρ~max~ = 0.24 e Å^−3^ 0 restraints Δρ~min~ = −0.20 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e526 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e631 .table-wrap} ------ -------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.21141 (18) 0.00339 (18) 0.89933 (17) 0.0411 (3) C2 0.3174 (2) −0.21822 (19) 1.10105 (19) 0.0496 (4) H2 0.3517 −0.3308 1.1555 0.060\* C3 0.3336 (2) −0.12042 (18) 1.15846 (18) 0.0459 (4) H3 0.3793 −0.1652 1.2484 0.055\* C4 0.27871 (17) 0.04721 (17) 1.07653 (16) 0.0376 (3) C5 0.28647 (18) 0.16653 (17) 1.12645 (16) 0.0388 (3) C6 0.3582 (2) 0.1176 (2) 1.25464 (18) 0.0478 (4) H6 0.4018 0.0070 1.3141 0.057\* C7 0.3641 (2) 0.2347 (2) 1.2930 (2) 0.0568 (4) H7 0.4126 0.1991 1.3794 0.068\* C8 0.2241 (2) 0.3332 (2) 1.04370 (19) 0.0525 (4) H8 0.1740 0.3725 0.9573 0.063\* C9 0.2372 (3) 0.4407 (2) 1.0913 (2) 0.0660 (5) H9 0.1960 0.5521 1.0335 0.079\* C10 0.0836 (2) 0.2913 (2) 0.6641 (2) 0.0515 (4) H10A 0.0315 0.3439 0.5718 0.062\* H10B −0.0042 0.3227 0.7439 0.062\* C11 0.2273 (2) 0.35667 (18) 0.63290 (16) 0.0422 (3) C12 0.2788 (2) 0.5879 (2) 0.6083 (2) 0.0620 (5) H12A 0.3426 0.6012 0.5056 0.074\* H12B 0.3603 0.5258 0.6805 0.074\* C13 0.1774 (3) 0.7498 (3) 0.6187 (3) 0.0927 (8) H13A 0.1014 0.8124 0.5432 0.139\* H13B 0.2542 0.8066 0.6002 0.139\* H13C 0.1108 0.7354 0.7193 0.139\* N1 0.3051 (2) 0.39441 (19) 1.21466 (18) 0.0644 (4) N2 0.21695 (15) 0.11055 (14) 0.94434 (14) 0.0392 (3) N3 0.25523 (17) −0.15909 (16) 0.97173 (16) 0.0482 (3) O1 0.37818 (15) 0.29263 (14) 0.59842 (13) 0.0516 (3) O2 0.15904 (14) 0.50272 (13) 0.64426 (13) 0.0512 (3) S1 0.14603 (6) 0.07492 (5) 0.72151 (5) 0.05259 (16) ------ -------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1065 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0408 (8) 0.0366 (8) 0.0520 (8) −0.0153 (6) −0.0068 (6) −0.0197 (6) C2 0.0542 (9) 0.0320 (8) 0.0601 (10) −0.0176 (7) −0.0095 (7) −0.0119 (7) C3 0.0514 (9) 0.0366 (8) 0.0489 (8) −0.0168 (7) −0.0111 (7) −0.0113 (7) C4 0.0365 (7) 0.0348 (7) 0.0428 (7) −0.0142 (6) −0.0023 (6) −0.0159 (6) C5 0.0402 (8) 0.0373 (8) 0.0415 (7) −0.0142 (6) −0.0015 (6) −0.0188 (6) C6 0.0573 (9) 0.0410 (8) 0.0463 (8) −0.0143 (7) −0.0124 (7) −0.0162 (7) C7 0.0713 (11) 0.0575 (11) 0.0533 (9) −0.0186 (9) −0.0167 (8) −0.0282 (8) C8 0.0712 (11) 0.0398 (9) 0.0521 (9) −0.0135 (8) −0.0201 (8) −0.0192 (7) C9 0.1000 (15) 0.0390 (9) 0.0678 (11) −0.0152 (9) −0.0285 (10) −0.0238 (8) C10 0.0549 (9) 0.0403 (8) 0.0677 (10) −0.0094 (7) −0.0271 (8) −0.0213 (8) C11 0.0533 (9) 0.0353 (8) 0.0405 (7) −0.0108 (7) −0.0175 (6) −0.0130 (6) C12 0.0637 (11) 0.0517 (10) 0.0791 (12) −0.0294 (9) −0.0024 (9) −0.0277 (9) C13 0.0989 (17) 0.0653 (14) 0.133 (2) −0.0416 (13) 0.0127 (15) −0.0589 (15) N1 0.0889 (11) 0.0530 (9) 0.0664 (9) −0.0200 (8) −0.0205 (8) −0.0321 (8) N2 0.0434 (7) 0.0334 (6) 0.0460 (7) −0.0143 (5) −0.0076 (5) −0.0172 (5) N3 0.0534 (8) 0.0346 (7) 0.0629 (8) −0.0176 (6) −0.0102 (6) −0.0199 (6) O1 0.0513 (7) 0.0473 (7) 0.0572 (7) −0.0104 (5) −0.0108 (5) −0.0241 (5) O2 0.0521 (6) 0.0386 (6) 0.0680 (7) −0.0148 (5) −0.0100 (5) −0.0237 (5) S1 0.0670 (3) 0.0416 (2) 0.0651 (3) −0.0161 (2) −0.0253 (2) −0.0246 (2) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1508 .table-wrap} -------------- ------------- ------------------- ------------- C1---N2 1.3323 (17) C8---H8 0.9300 C1---N3 1.3367 (19) C9---N1 1.332 (2) C1---S1 1.7582 (16) C9---H9 0.9300 C2---N3 1.329 (2) C10---C11 1.514 (2) C2---C3 1.383 (2) C10---S1 1.7858 (16) C2---H2 0.9300 C10---H10A 0.9700 C3---C4 1.387 (2) C10---H10B 0.9700 C3---H3 0.9300 C11---O1 1.1984 (18) C4---N2 1.3456 (18) C11---O2 1.3342 (17) C4---C5 1.4886 (19) C12---O2 1.4529 (19) C5---C8 1.385 (2) C12---C13 1.479 (3) C5---C6 1.388 (2) C12---H12A 0.9700 C6---C7 1.381 (2) C12---H12B 0.9700 C6---H6 0.9300 C13---H13A 0.9600 C7---N1 1.325 (2) C13---H13B 0.9600 C7---H7 0.9300 C13---H13C 0.9600 C8---C9 1.385 (2) N2---C1---N3 127.86 (14) C11---C10---S1 115.61 (11) N2---C1---S1 118.93 (11) C11---C10---H10A 108.4 N3---C1---S1 113.18 (10) S1---C10---H10A 108.4 N3---C2---C3 123.15 (14) C11---C10---H10B 108.4 N3---C2---H2 118.4 S1---C10---H10B 108.4 C3---C2---H2 118.4 H10A---C10---H10B 107.4 C2---C3---C4 117.32 (15) O1---C11---O2 124.33 (14) C2---C3---H3 121.3 O1---C11---C10 126.61 (14) C4---C3---H3 121.3 O2---C11---C10 109.02 (13) N2---C4---C3 120.88 (13) O2---C12---C13 107.85 (15) N2---C4---C5 116.22 (12) O2---C12---H12A 110.1 C3---C4---C5 122.90 (13) C13---C12---H12A 110.1 C8---C5---C6 116.98 (13) O2---C12---H12B 110.1 C8---C5---C4 120.72 (13) C13---C12---H12B 110.1 C6---C5---C4 122.29 (13) H12A---C12---H12B 108.5 C7---C6---C5 119.32 (15) C12---C13---H13A 109.5 C7---C6---H6 120.3 C12---C13---H13B 109.5 C5---C6---H6 120.3 H13A---C13---H13B 109.5 N1---C7---C6 124.28 (16) C12---C13---H13C 109.5 N1---C7---H7 117.9 H13A---C13---H13C 109.5 C6---C7---H7 117.9 H13B---C13---H13C 109.5 C9---C8---C5 119.20 (15) C7---N1---C9 116.14 (14) C9---C8---H8 120.4 C1---N2---C4 116.09 (12) C5---C8---H8 120.4 C2---N3---C1 114.65 (12) N1---C9---C8 124.07 (17) C11---O2---C12 116.28 (12) N1---C9---H9 118.0 C1---S1---C10 101.64 (7) C8---C9---H9 118.0 -------------- ------------- ------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1925 .table-wrap} ------------------ --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C3---H3···O1^i^ 0.93 2.52 3.383 (2) 154 C7---H7···O1^ii^ 0.93 2.61 3.373 (2) 140 ------------------ --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*, −*z*+2; (ii) *x*, *y*, *z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- --------- ------- ----------- ------------- C3---H3⋯O1^i^ 0.93 2.52 3.383 (2) 154 C7---H7⋯O1^ii^ 0.93 2.61 3.373 (2) 140 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:17.946168
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052020/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o690", "authors": [ { "first": "Chuan-Hu", "last": "Wang" } ] }
PMC3052021
Related literature {#sec1} ================== For the toxicity and insecticidal activity of the title compound, see: Altuntas *et al.* (2002[@bb1]). For related structures, see: Rohrbaugh *et al.* (1976[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~6~H~11~N~2~O~4~PS~3~*M* *~r~* = 302.32Monoclinic,*a* = 12.3944 (2) Å*b* = 10.8056 (1) Å*c* = 19.3631 (3) Åβ = 102.815 (1)°*V* = 2528.68 (6) Å^3^*Z* = 8Mo *K*α radiationμ = 0.71 mm^−1^*T* = 173 K0.30 × 0.27 × 0.19 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb5]) *T* ~min~ = 0.815, *T* ~max~ = 0.87720918 measured reflections5513 independent reflections4682 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.024 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.033*wR*(*F* ^2^) = 0.089*S* = 1.075513 reflections289 parametersH-atom parameters constrainedΔρ~max~ = 0.98 e Å^−3^Δρ~min~ = −0.55 e Å^−3^ {#d5e547} Data collection: *APEX2* (Bruker, 2006[@bb3]); cell refinement: *SAINT* (Bruker, 2006[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1998[@bb2]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005241/jh2268sup1.cif](http://dx.doi.org/10.1107/S1600536811005241/jh2268sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005241/jh2268Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005241/jh2268Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?jh2268&file=jh2268sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?jh2268sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?jh2268&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [JH2268](http://scripts.iucr.org/cgi-bin/sendsup?jh2268)). This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010--0009089). Comment ======= Methidathion (systematic name: *S*-2,3-dihydro-5-methoxy-2-oxo-1,3,4- thiadiazol-3-ylmethyl *O*,*O*-dimethyl phosphorodithioate), is one of the most widely used organophosphate insecticides in agriculture and public health programmes (Altuntas *et al.* 2002). However it\'s crystal structure has not been reported yet. In the title compound (Scheme 1, Fig. 1), crystallizes with two independent molecules in the asymmetric unit. The dihedral angles between the thiadiazol ring planes and the PS~2~ planes of the phosphorodithioate group are 86.51 (5)° and 56.33 (5)° in the two molecules. All bond lengths and bond angles are normal and comparable to those observed in similar structures (Rohrbaugh *et al.* 1976). In the crystal structure, as shown in Fig. 2, weak intermolecular C---H···O, C---H···N hydrogen bonds (Table 1) and S···S interactions with 3.3372 (8) Å are observed (Table 1). These intermolecular interactions may be contribute to the stabilization of the packing. Experimental {#experimental} ============ The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH~2~Cl~2~ gave single crystals suitable for X-ray analysis. Refinement {#refinement} ========== All H-atoms were positioned geometrically and refined using a riding model with d(C---H) = 0.99 Å, *U*~iso~ = 1.2*U*~eq~(C) for CH~2~ and d(C---H) = 0.98 Å, *U*~iso~ = 1.5*U*~eq~(C) for CH~3~ groups. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. ::: ![](e-67-0o653-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Crystal packing of the title compound with intermolecular C---H···O, C---H···N hydrogen bonds and S···S interactions shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. \[Symmetry codes: (i) -x, -y, -z; (ii) x + 1, y, z; (iii) -x + 1, -y, -z; (iv) -x + 1, -y + 1, -z; (v) -x, -y + 1, -z.\] ::: ![](e-67-0o653-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e197 .table-wrap} ------------------------- --------------------------------------- C~6~H~11~N~2~O~4~PS~3~ *F*(000) = 1248 *M~r~* = 302.32 *D*~x~ = 1.588 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 9930 reflections *a* = 12.3944 (2) Å θ = 2.5--28.2° *b* = 10.8056 (1) Å µ = 0.71 mm^−1^ *c* = 19.3631 (3) Å *T* = 173 K β = 102.815 (1)° Block, colourless *V* = 2528.68 (6) Å^3^ 0.30 × 0.27 × 0.19 mm *Z* = 8 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e330 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII CCD diffractometer 5513 independent reflections Radiation source: fine-focus sealed tube 4682 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.024 φ and ω scans θ~max~ = 27.0°, θ~min~ = 1.7° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −15→11 *T*~min~ = 0.815, *T*~max~ = 0.877 *k* = −11→13 20918 measured reflections *l* = −24→24 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e447 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.033 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.089 H-atom parameters constrained *S* = 1.07 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0424*P*)^2^ + 1.2139*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5513 reflections (Δ/σ)~max~ = 0.001 289 parameters Δρ~max~ = 0.98 e Å^−3^ 0 restraints Δρ~min~ = −0.55 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e604 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e703 .table-wrap} ------ --------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ P1 0.02509 (4) 0.14885 (4) 0.16800 (3) 0.02754 (12) P2 0.60901 (4) −0.02370 (5) 0.25072 (3) 0.02917 (13) S1 0.01168 (5) 0.17732 (6) 0.26343 (3) 0.04165 (15) S2 0.15513 (4) 0.02823 (5) 0.16946 (3) 0.03550 (14) S3 0.16030 (4) −0.35504 (4) 0.03186 (3) 0.03270 (13) S4 0.57301 (6) −0.06480 (7) 0.33906 (3) 0.05122 (17) S5 0.46376 (4) 0.01769 (5) 0.17901 (3) 0.03259 (13) S6 0.48755 (4) 0.34626 (5) −0.00393 (3) 0.03301 (13) O1 −0.07804 (11) 0.09769 (14) 0.11286 (7) 0.0355 (3) O2 0.04167 (15) 0.26370 (13) 0.12160 (8) 0.0459 (4) O3 0.31042 (11) −0.17257 (13) 0.05006 (8) 0.0363 (3) O4 −0.05059 (11) −0.37521 (12) 0.03211 (8) 0.0338 (3) O5 0.69519 (11) 0.08288 (13) 0.25149 (7) 0.0326 (3) O6 0.67189 (12) −0.12180 (13) 0.21387 (8) 0.0347 (3) O7 0.35232 (12) 0.15068 (14) −0.01300 (8) 0.0412 (4) O8 0.67746 (11) 0.41371 (13) 0.07718 (8) 0.0351 (3) N1 0.13193 (12) −0.12835 (14) 0.05709 (8) 0.0243 (3) N2 0.02836 (13) −0.18037 (14) 0.05340 (9) 0.0263 (3) N3 0.51734 (13) 0.14990 (15) 0.06949 (9) 0.0283 (4) N4 0.60999 (13) 0.22068 (15) 0.09789 (8) 0.0269 (3) C1 −0.14361 (19) −0.0019 (2) 0.13290 (14) 0.0459 (6) H1A −0.2042 −0.0227 0.0927 0.069\* H1B −0.1742 0.0246 0.1730 0.069\* H1C −0.0967 −0.0748 0.1465 0.069\* C2 0.1050 (3) 0.3680 (3) 0.14990 (15) 0.0700 (9) H2A 0.1047 0.4285 0.1122 0.105\* H2B 0.1813 0.3423 0.1703 0.105\* H2C 0.0731 0.4055 0.1869 0.105\* C3 0.14752 (16) 0.00052 (17) 0.07483 (10) 0.0273 (4) H3A 0.0853 0.0487 0.0464 0.033\* H3B 0.2167 0.0298 0.0626 0.033\* C4 0.21602 (15) −0.20269 (17) 0.04761 (10) 0.0259 (4) C5 0.03364 (15) −0.29610 (17) 0.04052 (10) 0.0263 (4) C6 −0.15623 (17) −0.31980 (19) 0.03375 (14) 0.0383 (5) H6A −0.2133 −0.3842 0.0272 0.057\* H6B −0.1755 −0.2586 −0.0043 0.057\* H6C −0.1515 −0.2791 0.0795 0.057\* C7 0.6764 (2) 0.2031 (2) 0.27938 (12) 0.0426 (5) H7A 0.7376 0.2585 0.2760 0.064\* H7B 0.6721 0.1949 0.3291 0.064\* H7C 0.6069 0.2375 0.2520 0.064\* C8 0.6314 (2) −0.2470 (2) 0.20117 (15) 0.0536 (7) H8A 0.6811 −0.2940 0.1780 0.080\* H8B 0.5570 −0.2456 0.1705 0.080\* H8C 0.6287 −0.2864 0.2464 0.080\* C9 0.50949 (17) 0.02671 (18) 0.09544 (10) 0.0291 (4) H9A 0.5829 −0.0133 0.1020 0.035\* H9B 0.4572 −0.0210 0.0591 0.035\* C10 0.43898 (16) 0.19916 (19) 0.01633 (11) 0.0305 (4) C11 0.60347 (16) 0.32287 (18) 0.06415 (10) 0.0275 (4) C12 0.7657 (2) 0.3958 (2) 0.13932 (13) 0.0494 (6) H12A 0.8163 0.4666 0.1448 0.074\* H12B 0.8063 0.3199 0.1339 0.074\* H12C 0.7342 0.3887 0.1813 0.074\* ------ --------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1463 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ P1 0.0317 (3) 0.0231 (2) 0.0290 (3) 0.00059 (19) 0.0094 (2) −0.0009 (2) P2 0.0291 (3) 0.0324 (3) 0.0282 (3) −0.0032 (2) 0.0112 (2) 0.0027 (2) S1 0.0511 (4) 0.0445 (3) 0.0318 (3) −0.0008 (3) 0.0143 (3) −0.0075 (2) S2 0.0322 (3) 0.0394 (3) 0.0307 (3) 0.0102 (2) −0.0021 (2) −0.0081 (2) S3 0.0272 (3) 0.0230 (2) 0.0480 (3) 0.00344 (19) 0.0086 (2) −0.0059 (2) S4 0.0610 (4) 0.0630 (4) 0.0361 (3) −0.0113 (3) 0.0247 (3) 0.0075 (3) S5 0.0229 (2) 0.0389 (3) 0.0378 (3) −0.0022 (2) 0.0106 (2) −0.0046 (2) S6 0.0327 (3) 0.0342 (3) 0.0299 (3) 0.0100 (2) 0.0021 (2) 0.0020 (2) O1 0.0268 (7) 0.0473 (9) 0.0317 (8) 0.0021 (6) 0.0051 (6) 0.0004 (7) O2 0.0710 (11) 0.0257 (7) 0.0442 (9) −0.0051 (7) 0.0200 (8) 0.0005 (7) O3 0.0253 (7) 0.0347 (8) 0.0505 (9) −0.0015 (6) 0.0119 (7) −0.0092 (7) O4 0.0269 (7) 0.0220 (6) 0.0529 (9) −0.0008 (5) 0.0098 (7) −0.0015 (6) O5 0.0290 (7) 0.0361 (8) 0.0335 (8) −0.0074 (6) 0.0089 (6) −0.0008 (6) O6 0.0360 (8) 0.0310 (7) 0.0394 (8) 0.0035 (6) 0.0131 (7) 0.0057 (6) O7 0.0283 (8) 0.0419 (9) 0.0463 (9) 0.0062 (7) −0.0068 (7) −0.0131 (7) O8 0.0297 (7) 0.0351 (8) 0.0396 (8) −0.0035 (6) 0.0054 (6) 0.0071 (7) N1 0.0219 (8) 0.0211 (7) 0.0304 (8) −0.0001 (6) 0.0067 (7) −0.0015 (6) N2 0.0240 (8) 0.0231 (8) 0.0321 (9) −0.0004 (6) 0.0071 (7) −0.0003 (7) N3 0.0264 (8) 0.0274 (8) 0.0283 (9) 0.0007 (6) 0.0002 (7) −0.0022 (7) N4 0.0238 (8) 0.0301 (8) 0.0262 (8) 0.0000 (6) 0.0041 (7) −0.0002 (7) C1 0.0336 (12) 0.0538 (14) 0.0530 (15) −0.0132 (10) 0.0157 (11) −0.0132 (12) C2 0.098 (2) 0.0519 (16) 0.0517 (16) −0.0435 (16) −0.0026 (16) 0.0031 (13) C3 0.0284 (10) 0.0230 (9) 0.0306 (10) −0.0004 (8) 0.0069 (8) −0.0014 (8) C4 0.0275 (10) 0.0241 (9) 0.0261 (9) 0.0023 (7) 0.0057 (8) −0.0020 (8) C5 0.0256 (10) 0.0239 (9) 0.0292 (10) 0.0028 (7) 0.0056 (8) 0.0007 (8) C6 0.0264 (11) 0.0295 (10) 0.0604 (15) −0.0019 (8) 0.0127 (10) −0.0041 (10) C7 0.0519 (14) 0.0384 (12) 0.0360 (12) −0.0105 (10) 0.0069 (11) −0.0075 (10) C8 0.0713 (18) 0.0287 (12) 0.0661 (17) −0.0002 (11) 0.0269 (15) 0.0012 (11) C9 0.0292 (10) 0.0279 (10) 0.0300 (10) 0.0007 (8) 0.0065 (8) −0.0053 (8) C10 0.0274 (10) 0.0327 (10) 0.0299 (10) 0.0088 (8) 0.0031 (9) −0.0074 (8) C11 0.0240 (9) 0.0324 (10) 0.0263 (10) 0.0050 (8) 0.0063 (8) 0.0003 (8) C12 0.0428 (14) 0.0520 (14) 0.0460 (14) −0.0172 (11) −0.0056 (11) 0.0082 (12) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2074 .table-wrap} --------------------- -------------- --------------------- -------------- P1---O2 1.5720 (15) N2---C5 1.280 (2) P1---O1 1.5730 (15) N3---C10 1.357 (3) P1---S1 1.9166 (7) N3---N4 1.388 (2) P1---S2 2.0681 (7) N3---C9 1.434 (2) P2---O5 1.5685 (14) N4---C11 1.277 (2) P2---O6 1.5770 (15) C1---H1A 0.9800 P2---S4 1.9135 (7) C1---H1B 0.9800 P2---S5 2.0640 (8) C1---H1C 0.9800 S2---C3 1.838 (2) C2---H2A 0.9800 S3---C5 1.7363 (19) C2---H2B 0.9800 S3---C4 1.7852 (19) C2---H2C 0.9800 S5---C9 1.832 (2) C3---H3A 0.9900 S6---C11 1.739 (2) C3---H3B 0.9900 S6---C10 1.774 (2) C6---H6A 0.9800 O1---C1 1.452 (3) C6---H6B 0.9800 O2---C2 1.413 (3) C6---H6C 0.9800 O3---C4 1.205 (2) C7---H7A 0.9800 O4---C5 1.331 (2) C7---H7B 0.9800 O4---C6 1.446 (2) C7---H7C 0.9800 O5---C7 1.446 (3) C8---H8A 0.9800 O6---C8 1.445 (3) C8---H8B 0.9800 O7---C10 1.217 (2) C8---H8C 0.9800 O8---C11 1.329 (2) C9---H9A 0.9900 O8---C12 1.448 (3) C9---H9B 0.9900 N1---C4 1.360 (2) C12---H12A 0.9800 N1---N2 1.389 (2) C12---H12B 0.9800 N1---C3 1.437 (2) C12---H12C 0.9800 O2---P1---O1 94.54 (9) N1---C3---H3B 109.3 O2---P1---S1 118.33 (6) S2---C3---H3B 109.3 O1---P1---S1 118.66 (6) H3A---C3---H3B 107.9 O2---P1---S2 107.77 (7) O3---C4---N1 126.98 (18) O1---P1---S2 107.54 (6) O3---C4---S3 126.24 (15) S1---P1---S2 108.78 (3) N1---C4---S3 106.78 (13) O5---P2---O6 95.40 (8) N2---C5---O4 125.36 (17) O5---P2---S4 117.08 (6) N2---C5---S3 117.62 (15) O6---P2---S4 119.02 (6) O4---C5---S3 117.00 (13) O5---P2---S5 109.75 (6) O4---C6---H6A 109.5 O6---P2---S5 106.63 (6) O4---C6---H6B 109.5 S4---P2---S5 108.07 (3) H6A---C6---H6B 109.5 C3---S2---P1 102.80 (7) O4---C6---H6C 109.5 C5---S3---C4 88.23 (9) H6A---C6---H6C 109.5 C9---S5---P2 102.19 (7) H6B---C6---H6C 109.5 C11---S6---C10 88.05 (9) O5---C7---H7A 109.5 C1---O1---P1 119.85 (14) O5---C7---H7B 109.5 C2---O2---P1 122.67 (16) H7A---C7---H7B 109.5 C5---O4---C6 114.88 (15) O5---C7---H7C 109.5 C7---O5---P2 119.87 (13) H7A---C7---H7C 109.5 C8---O6---P2 121.24 (14) H7B---C7---H7C 109.5 C11---O8---C12 114.92 (16) O6---C8---H8A 109.5 C4---N1---N2 118.77 (15) O6---C8---H8B 109.5 C4---N1---C3 122.56 (16) H8A---C8---H8B 109.5 N2---N1---C3 118.57 (14) O6---C8---H8C 109.5 C5---N2---N1 108.60 (15) H8A---C8---H8C 109.5 C10---N3---N4 118.32 (16) H8B---C8---H8C 109.5 C10---N3---C9 122.48 (17) N3---C9---S5 114.67 (13) N4---N3---C9 119.16 (16) N3---C9---H9A 108.6 C11---N4---N3 108.72 (16) S5---C9---H9A 108.6 O1---C1---H1A 109.5 N3---C9---H9B 108.6 O1---C1---H1B 109.5 S5---C9---H9B 108.6 H1A---C1---H1B 109.5 H9A---C9---H9B 107.6 O1---C1---H1C 109.5 O7---C10---N3 126.5 (2) H1A---C1---H1C 109.5 O7---C10---S6 126.18 (16) H1B---C1---H1C 109.5 N3---C10---S6 107.35 (14) O2---C2---H2A 109.5 N4---C11---O8 125.39 (18) O2---C2---H2B 109.5 N4---C11---S6 117.48 (15) H2A---C2---H2B 109.5 O8---C11---S6 117.12 (14) O2---C2---H2C 109.5 O8---C12---H12A 109.5 H2A---C2---H2C 109.5 O8---C12---H12B 109.5 H2B---C2---H2C 109.5 H12A---C12---H12B 109.5 N1---C3---S2 111.76 (13) O8---C12---H12C 109.5 N1---C3---H3A 109.3 H12A---C12---H12C 109.5 S2---C3---H3A 109.3 H12B---C12---H12C 109.5 O2---P1---S2---C3 −55.63 (9) C3---N1---C4---O3 −2.7 (3) O1---P1---S2---C3 45.23 (9) N2---N1---C4---S3 0.3 (2) S1---P1---S2---C3 174.93 (7) C3---N1---C4---S3 176.58 (14) O5---P2---S5---C9 61.04 (9) C5---S3---C4---O3 179.15 (19) O6---P2---S5---C9 −41.17 (9) C5---S3---C4---N1 −0.10 (14) S4---P2---S5---C9 −170.21 (7) N1---N2---C5---O4 −178.69 (17) O2---P1---O1---C1 −169.51 (15) N1---N2---C5---S3 0.2 (2) S1---P1---O1---C1 −43.64 (17) C6---O4---C5---N2 4.0 (3) S2---P1---O1---C1 80.24 (15) C6---O4---C5---S3 −174.91 (15) O1---P1---O2---C2 162.2 (2) C4---S3---C5---N2 −0.09 (17) S1---P1---O2---C2 36.1 (2) C4---S3---C5---O4 178.94 (16) S2---P1---O2---C2 −87.7 (2) C10---N3---C9---S5 −101.82 (19) O6---P2---O5---C7 178.26 (15) N4---N3---C9---S5 80.34 (19) S4---P2---O5---C7 −55.19 (16) P2---S5---C9---N3 −105.14 (14) S5---P2---O5---C7 68.42 (15) N4---N3---C10---O7 −178.22 (18) O5---P2---O6---C8 177.37 (18) C9---N3---C10---O7 3.9 (3) S4---P2---O6---C8 52.25 (19) N4---N3---C10---S6 3.0 (2) S5---P2---O6---C8 −70.14 (18) C9---N3---C10---S6 −174.84 (14) C4---N1---N2---C5 −0.3 (2) C11---S6---C10---O7 179.08 (19) C3---N1---N2---C5 −176.80 (17) C11---S6---C10---N3 −2.15 (14) C10---N3---N4---C11 −2.3 (2) N3---N4---C11---O8 179.59 (17) C9---N3---N4---C11 175.65 (16) N3---N4---C11---S6 0.3 (2) C4---N1---C3---S2 −101.78 (18) C12---O8---C11---N4 −6.0 (3) N2---N1---C3---S2 74.52 (18) C12---O8---C11---S6 173.21 (16) P1---S2---C3---N1 −120.69 (12) C10---S6---C11---N4 1.10 (16) N2---N1---C4---O3 −178.97 (19) C10---S6---C11---O8 −178.22 (15) --------------------- -------------- --------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3043 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C1---H1A···O7^i^ 0.98 2.53 3.464 (3) 159 C1---H1B···O5^ii^ 0.98 2.53 3.484 (3) 164 C2---H2B···O6^iii^ 0.98 2.59 3.373 (3) 138 C3---H3A···N2^i^ 0.99 2.56 3.506 (3) 161 C6---H6B···O7^i^ 0.98 2.57 2.996 (2) 106 C9---H9B···O3 0.99 2.42 3.246 (2) 140 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*, −*y*, −*z*; (ii) *x*−1, *y*, *z*; (iii) −*x*+1, *y*+1/2, −*z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- C1---H1*A*⋯O7^i^ 0.98 2.53 3.464 (3) 159 C1---H1*B*⋯O5^ii^ 0.98 2.53 3.484 (3) 164 C2---H2*B*⋯O6^iii^ 0.98 2.59 3.373 (3) 138 C3---H3*A*⋯N2^i^ 0.99 2.56 3.506 (3) 161 C9---H9*B*⋯O3 0.99 2.42 3.246 (2) 140 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:17.950168
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052021/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o653", "authors": [ { "first": "Hyunjee", "last": "Kim" }, { "first": "Yong Woon", "last": "Shin" }, { "first": "Ki-Min", "last": "Park" }, { "first": "Jineun", "last": "Kim" }, { "first": "Tae Ho", "last": "Kim" } ] }
PMC3052022
Related literature {#sec1} ================== For background to the pharmacological and biochemical properties of benzimidazolo­nes, see: Gbadamassi *et al.* (1988[@bb5]); Singh *et al.* (2000[@bb11]); Derand *et al.* (2003[@bb3]); Badarau *et al.* (2009[@bb2]). For similar structures, see: Saber *et al.* (2010[@bb9]); Ouzidan *et al.* (2011[@bb8]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~16~H~23~N~3~O~3~*M* *~r~* = 305.37Triclinic,*a* = 5.483 (1) Å*b* = 10.2092 (15) Å*c* = 14.746 (3) Åα = 74.275 (9)°β = 79.727 (6)°γ = 83.410 (8)°*V* = 779.9 (2) Å^3^*Z* = 2Mo *K*α radiationμ = 0.09 mm^−1^*T* = 90 K0.35 × 0.27 × 0.22 mm ### Data collection {#sec2.1.2} Nonius KappaCCD diffractometer21087 measured reflections6349 independent reflections5183 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.023 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.040*wR*(*F* ^2^) = 0.113*S* = 1.036349 reflections201 parametersH-atom parameters constrainedΔρ~max~ = 0.45 e Å^−3^Δρ~min~ = −0.28 e Å^−3^ {#d5e462} Data collection: *COLLECT* (Nonius, 2000[@bb6]); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997[@bb7]); data reduction: *DENZO* (Otwinowski & Minor, 1997[@bb7]) and *SCALEPACK*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb1]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb10]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb4]) and *PLATON* (Spek, 2009[@bb12]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811005654/gk2342sup1.cif](http://dx.doi.org/10.1107/S1600536811005654/gk2342sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005654/gk2342Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005654/gk2342Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?gk2342&file=gk2342sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?gk2342sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?gk2342&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [GK2342](http://scripts.iucr.org/cgi-bin/sendsup?gk2342)). Comment ======= Benzimidazoles are useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest (Gbadamassi *et al.,* 1988). Benzimidazolone and its derivatives are also an important class of bioactive molecules in the field of drugs and pharmaceuticals (Derand *et al.*, 2003). They found potential applications in diverse therapeutic areas including, anti-hypertensives and anti-virals (Badarau *et al.*, 2009; Singh *et al.*, 2000). The structural studies of benzimidazolone, linked to an isopropenyl and nonyl group respectively, have been published by Saber *et al.* (2010)and Ouzidan *et al.* (2011). The 5-nitro-1-nonyl-1*H*-benzimidazol-2(3*H*)-one molecule structure is built up from two fused six-and five-membered rings linked to C~9~H~19~ chain as shown in Fig.1. The aliphatic chain has all-antiperiplanar (all-*trans*) conformation. Furthermore, the fused-ring system and the nitro group are almost planar, with a maximum deviation of 0.0414 (8) Å and 0.0250 (7) Å for C4 and N1 respectively. The dihedral angle between the two rings and nitro group planes is 5.34 (9)°. The torsion angles C1 N2 C8 C9 and C13 C14 C15 C16 are 113.66 (8)° and 177.26 (7)° respectively. In the crystal, adjacent molecules are linked by pairs of N---H···O hydrogen bonds into inversion dimers. These molecules are further connected through C---H···O hydrogen bonds into a tape parallel to the (-1 2 2) plane, as schown in Fig. 2 and Table 1. Experimental {#experimental} ============ To 5-nitro-1*H*-benzoimidazol-2(3*H*)-one (0.2 g, 1.1 mmol), potassium carbonate (0.30 g, 2.2 mmol) and tetra-n-butylammonium bromide (0.07 g, 0.2 mmol) in DMF (15 ml) was added 1-bromononane (0.43 ml, 2.2 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. Colorless needle-shaped crystals were isolated when the solvent was allowed to evaporate \[(m.p. 392--394 K (ethanol)\]. Refinement {#refinement} ========== H atoms were located in a difference map and treated as riding with C---H = 0.99 Å, 0.98, Å, 0.95 Å, and 0.88 Å for --CH~2~--, --CH~3~, aromatic CH and NH respectively. All H atoms with *U*~iso~(H) = 1.2 *U*~eq~ (aromatic, methylene, N) and *U*~iso~(H) = 1.5 *U*~eq~(methyl). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### : Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles. ::: ![](e-67-0o669-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Partial packing view of the title compound, showing tapes in the (-1 2 2) plane, built up from molecules linked through N---H···O hydrogen bonds and intermolecular C--H···O contacts (dashed lines). ::: ![](e-67-0o669-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e166 .table-wrap} ---------------------- --------------------------------------- C~16~H~23~N~3~O~3~ *Z* = 2 *M~r~* = 305.37 *F*(000) = 328 Triclinic, *P*1 *D*~x~ = 1.300 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 5.483 (1) Å Cell parameters from 5537 reflections *b* = 10.2092 (15) Å θ = 2.5--34.9° *c* = 14.746 (3) Å µ = 0.09 mm^−1^ α = 74.275 (9)° *T* = 90 K β = 79.727 (6)° Needle, colourless γ = 83.410 (8)° 0.35 × 0.27 × 0.22 mm *V* = 779.9 (2) Å^3^ ---------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e302 .table-wrap} ------------------------------------------ -------------------------------------- Nonius KappaCCD diffractometer 5183 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.023 graphite θ~max~ = 34.9°, θ~min~ = 2.8° ω and φ scans *h* = −8→8 21087 measured reflections *k* = −15→16 6349 independent reflections *l* = −23→22 ------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e400 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.040 H-atom parameters constrained *wR*(*F*^2^) = 0.113 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0578*P*)^2^ + 0.1462*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.03 (Δ/σ)~max~ = 0.001 6349 reflections Δρ~max~ = 0.45 e Å^−3^ 201 parameters Δρ~min~ = −0.28 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.023 (5) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e581 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e680 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.92795 (11) 1.07035 (6) 0.37556 (4) 0.01618 (12) O2 0.40529 (12) 0.45052 (6) 0.71989 (4) 0.02109 (13) O3 0.12666 (12) 0.41865 (6) 0.64166 (5) 0.02143 (13) N1 0.78463 (12) 0.88673 (7) 0.50035 (5) 0.01369 (12) H1 0.8751 0.8904 0.5431 0.016\* N2 0.61923 (12) 0.93607 (7) 0.36748 (4) 0.01292 (12) N3 0.29292 (13) 0.48382 (7) 0.65097 (5) 0.01591 (13) C1 0.79248 (13) 0.97452 (8) 0.41127 (5) 0.01294 (13) C2 0.50448 (13) 0.82444 (7) 0.42883 (5) 0.01255 (13) C3 0.61268 (13) 0.79137 (8) 0.51286 (5) 0.01240 (13) C4 0.54726 (13) 0.68061 (8) 0.58770 (5) 0.01379 (13) H4 0.6229 0.6565 0.6437 0.017\* C5 0.36219 (13) 0.60623 (7) 0.57568 (5) 0.01384 (13) C6 0.24677 (14) 0.63920 (8) 0.49481 (6) 0.01500 (13) H6 0.1193 0.5860 0.4912 0.018\* C7 0.31799 (14) 0.75013 (8) 0.41917 (5) 0.01431 (13) H7 0.2421 0.7740 0.3632 0.017\* C8 0.56136 (14) 1.00911 (8) 0.27295 (5) 0.01453 (13) H8A 0.6475 1.0948 0.2508 0.017\* H8B 0.3804 1.0338 0.2778 0.017\* C9 0.63787 (14) 0.92606 (8) 0.19926 (5) 0.01496 (13) H9A 0.5714 0.9758 0.1402 0.018\* H9B 0.5589 0.8382 0.2237 0.018\* C10 0.91760 (14) 0.89612 (8) 0.17380 (5) 0.01536 (14) H10A 0.9848 0.8397 0.2311 0.018\* H10B 1.0005 0.9829 0.1522 0.018\* C11 0.97314 (15) 0.82089 (8) 0.09493 (6) 0.01648 (14) H11A 0.8959 0.7325 0.1186 0.020\* H11B 0.8936 0.8751 0.0400 0.020\* C12 1.24889 (15) 0.79376 (8) 0.06003 (6) 0.01714 (14) H12A 1.3281 0.7349 0.1137 0.021\* H12B 1.3293 0.8813 0.0386 0.021\* C13 1.29159 (14) 0.72462 (8) −0.02204 (6) 0.01650 (14) H13A 1.2188 0.6349 0.0010 0.020\* H13B 1.2018 0.7809 −0.0735 0.020\* C14 1.56428 (15) 0.70296 (8) −0.06374 (6) 0.01707 (14) H14A 1.6346 0.7928 −0.0918 0.020\* H14B 1.6575 0.6522 −0.0118 0.020\* C15 1.59873 (15) 0.62433 (9) −0.14015 (6) 0.01812 (15) H15A 1.5350 0.5330 −0.1111 0.022\* H15B 1.4981 0.6728 −0.1903 0.022\* C16 1.86819 (17) 0.60708 (10) −0.18635 (7) 0.02506 (18) H16A 1.9271 0.6967 −0.2215 0.038\* H16B 1.8795 0.5492 −0.2304 0.038\* H16C 1.9712 0.5643 −0.1368 0.038\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1284 .table-wrap} ----- ------------ ------------ ------------ --------------- --------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0171 (2) 0.0163 (3) 0.0153 (2) −0.00631 (19) −0.00140 (19) −0.0029 (2) O2 0.0265 (3) 0.0195 (3) 0.0162 (3) −0.0041 (2) −0.0049 (2) −0.0008 (2) O3 0.0224 (3) 0.0188 (3) 0.0235 (3) −0.0096 (2) −0.0006 (2) −0.0048 (2) N1 0.0147 (3) 0.0147 (3) 0.0125 (3) −0.0040 (2) −0.0026 (2) −0.0035 (2) N2 0.0138 (3) 0.0137 (3) 0.0117 (3) −0.0029 (2) −0.0018 (2) −0.0032 (2) N3 0.0177 (3) 0.0143 (3) 0.0153 (3) −0.0031 (2) 0.0006 (2) −0.0044 (2) C1 0.0130 (3) 0.0138 (3) 0.0126 (3) −0.0014 (2) −0.0010 (2) −0.0048 (2) C2 0.0120 (3) 0.0132 (3) 0.0126 (3) −0.0014 (2) −0.0005 (2) −0.0043 (2) C3 0.0119 (3) 0.0133 (3) 0.0130 (3) −0.0020 (2) −0.0009 (2) −0.0052 (2) C4 0.0143 (3) 0.0145 (3) 0.0128 (3) −0.0020 (2) −0.0011 (2) −0.0041 (2) C5 0.0147 (3) 0.0123 (3) 0.0141 (3) −0.0024 (2) 0.0000 (2) −0.0034 (2) C6 0.0140 (3) 0.0150 (3) 0.0168 (3) −0.0028 (2) −0.0017 (2) −0.0051 (3) C7 0.0132 (3) 0.0159 (3) 0.0148 (3) −0.0020 (2) −0.0030 (2) −0.0046 (2) C8 0.0158 (3) 0.0147 (3) 0.0125 (3) 0.0003 (2) −0.0026 (2) −0.0028 (2) C9 0.0157 (3) 0.0172 (3) 0.0125 (3) −0.0017 (2) −0.0026 (2) −0.0043 (2) C10 0.0163 (3) 0.0171 (3) 0.0135 (3) −0.0011 (2) −0.0024 (2) −0.0053 (3) C11 0.0173 (3) 0.0189 (3) 0.0142 (3) −0.0006 (3) −0.0017 (2) −0.0065 (3) C12 0.0179 (3) 0.0196 (4) 0.0153 (3) −0.0003 (3) −0.0029 (3) −0.0071 (3) C13 0.0168 (3) 0.0184 (3) 0.0150 (3) −0.0001 (3) −0.0020 (2) −0.0063 (3) C14 0.0173 (3) 0.0181 (3) 0.0157 (3) −0.0004 (3) −0.0015 (3) −0.0053 (3) C15 0.0200 (3) 0.0183 (4) 0.0157 (3) 0.0012 (3) −0.0015 (3) −0.0056 (3) C16 0.0217 (4) 0.0302 (5) 0.0221 (4) 0.0022 (3) 0.0013 (3) −0.0094 (3) ----- ------------ ------------ ------------ --------------- --------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1781 .table-wrap} ------------------- ------------- ----------------------- ------------- O1---C1 1.2387 (9) C9---H9A 0.9900 O2---N3 1.2313 (9) C9---H9B 0.9900 O3---N3 1.2352 (9) C10---C11 1.5297 (11) N1---C1 1.3715 (10) C10---H10A 0.9900 N1---C3 1.3864 (9) C10---H10B 0.9900 N1---H1 0.8800 C11---C12 1.5268 (11) N2---C1 1.3838 (10) C11---H11A 0.9900 N2---C2 1.3842 (10) C11---H11B 0.9900 N2---C8 1.4628 (10) C12---C13 1.5303 (11) N3---C5 1.4646 (10) C12---H12A 0.9900 C2---C7 1.3893 (10) C12---H12B 0.9900 C2---C3 1.4109 (10) C13---C14 1.5272 (11) C3---C4 1.3787 (11) C13---H13A 0.9900 C4---C5 1.3970 (11) C13---H13B 0.9900 C4---H4 0.9500 C14---C15 1.5263 (11) C5---C6 1.3924 (11) C14---H14A 0.9900 C6---C7 1.3930 (11) C14---H14B 0.9900 C6---H6 0.9500 C15---C16 1.5246 (12) C7---H7 0.9500 C15---H15A 0.9900 C8---C9 1.5266 (11) C15---H15B 0.9900 C8---H8A 0.9900 C16---H16A 0.9800 C8---H8B 0.9900 C16---H16B 0.9800 C9---C10 1.5284 (11) C16---H16C 0.9800 C1---N1---C3 109.78 (6) C9---C10---C11 110.76 (6) C1---N1---H1 125.1 C9---C10---H10A 109.5 C3---N1---H1 125.1 C11---C10---H10A 109.5 C1---N2---C2 109.39 (6) C9---C10---H10B 109.5 C1---N2---C8 124.01 (6) C11---C10---H10B 109.5 C2---N2---C8 126.52 (6) H10A---C10---H10B 108.1 O2---N3---O3 123.41 (7) C12---C11---C10 114.85 (6) O2---N3---C5 118.20 (7) C12---C11---H11A 108.6 O3---N3---C5 118.39 (7) C10---C11---H11A 108.6 O1---C1---N1 127.21 (7) C12---C11---H11B 108.6 O1---C1---N2 125.74 (7) C10---C11---H11B 108.6 N1---C1---N2 107.04 (6) H11A---C11---H11B 107.5 N2---C2---C7 131.59 (7) C11---C12---C13 112.22 (6) N2---C2---C3 106.99 (6) C11---C12---H12A 109.2 C7---C2---C3 121.42 (7) C13---C12---H12A 109.2 C4---C3---N1 131.24 (7) C11---C12---H12B 109.2 C4---C3---C2 121.98 (7) C13---C12---H12B 109.2 N1---C3---C2 106.77 (6) H12A---C12---H12B 107.9 C3---C4---C5 115.49 (7) C14---C13---C12 114.38 (7) C3---C4---H4 122.3 C14---C13---H13A 108.7 C5---C4---H4 122.3 C12---C13---H13A 108.7 C6---C5---C4 123.69 (7) C14---C13---H13B 108.7 C6---C5---N3 118.32 (7) C12---C13---H13B 108.7 C4---C5---N3 117.95 (7) H13A---C13---H13B 107.6 C5---C6---C7 120.08 (7) C15---C14---C13 112.45 (7) C5---C6---H6 120.0 C15---C14---H14A 109.1 C7---C6---H6 120.0 C13---C14---H14A 109.1 C2---C7---C6 117.29 (7) C15---C14---H14B 109.1 C2---C7---H7 121.4 C13---C14---H14B 109.1 C6---C7---H7 121.4 H14A---C14---H14B 107.8 N2---C8---C9 113.04 (6) C16---C15---C14 113.56 (7) N2---C8---H8A 109.0 C16---C15---H15A 108.9 C9---C8---H8A 109.0 C14---C15---H15A 108.9 N2---C8---H8B 109.0 C16---C15---H15B 108.9 C9---C8---H8B 109.0 C14---C15---H15B 108.9 H8A---C8---H8B 107.8 H15A---C15---H15B 107.7 C8---C9---C10 115.31 (6) C15---C16---H16A 109.5 C8---C9---H9A 108.4 C15---C16---H16B 109.5 C10---C9---H9A 108.4 H16A---C16---H16B 109.5 C8---C9---H9B 108.4 C15---C16---H16C 109.5 C10---C9---H9B 108.4 H16A---C16---H16C 109.5 H9A---C9---H9B 107.5 H16B---C16---H16C 109.5 C3---N1---C1---O1 −178.59 (7) C3---C4---C5---N3 177.28 (6) C3---N1---C1---N2 1.29 (8) O2---N3---C5---C6 175.91 (7) C2---N2---C1---O1 179.64 (7) O3---N3---C5---C6 −3.41 (11) C8---N2---C1---O1 −3.45 (12) O2---N3---C5---C4 −1.82 (10) C2---N2---C1---N1 −0.24 (8) O3---N3---C5---C4 178.86 (7) C8---N2---C1---N1 176.67 (6) C4---C5---C6---C7 1.40 (12) C1---N2---C2---C7 178.96 (8) N3---C5---C6---C7 −176.19 (7) C8---N2---C2---C7 2.15 (13) N2---C2---C7---C6 178.47 (7) C1---N2---C2---C3 −0.87 (8) C3---C2---C7---C6 −1.72 (11) C8---N2---C2---C3 −177.68 (6) C5---C6---C7---C2 −0.33 (11) C1---N1---C3---C4 176.91 (8) C1---N2---C8---C9 113.65 (8) C1---N1---C3---C2 −1.82 (8) C2---N2---C8---C9 −69.97 (9) N2---C2---C3---C4 −177.25 (7) N2---C8---C9---C10 −66.44 (9) C7---C2---C3---C4 2.90 (11) C8---C9---C10---C11 −176.26 (6) N2---C2---C3---N1 1.62 (8) C9---C10---C11---C12 176.47 (7) C7---C2---C3---N1 −178.23 (7) C10---C11---C12---C13 −177.19 (7) N1---C3---C4---C5 179.65 (7) C11---C12---C13---C14 176.46 (7) C2---C3---C4---C5 −1.79 (11) C12---C13---C14---C15 175.71 (7) C3---C4---C5---C6 −0.32 (11) C13---C14---C15---C16 177.26 (7) ------------------- ------------- ----------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2608 .table-wrap} ------------------ --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1···O1^i^ 0.88 1.89 2.7651 (9) 170 C6---H6···O3^ii^ 0.95 2.58 3.3139 (11) 134 ------------------ --------- --------- ------------- --------------- ::: Symmetry codes: (i) −*x*+2, −*y*+2, −*z*+1; (ii) −*x*, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- --------- ------- ------------- ------------- N1---H1⋯O1^i^ 0.88 1.89 2.7651 (9) 170 C6---H6⋯O3^ii^ 0.95 2.58 3.3139 (11) 134 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:17.956249
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052022/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o669", "authors": [ { "first": "Younes", "last": "Ouzidan" }, { "first": "Youssef", "last": "Kandri Rodi" }, { "first": "El Mokhtar", "last": "Essassi" }, { "first": "Lahcen", "last": "El Ammari" }, { "first": "Frank R.", "last": "Fronczek" }, { "first": "Ramaiyer", "last": "Venkatraman" } ] }
PMC3052023
Related literature {#sec1} ================== For the 4,4′-bipyridine adducts of diorganotin dichlorides, see: Ma *et al.* (2004[@bb3]); Ng (1998[@bb5]). For the dimethyl­tin di(isothio­cyanate) adduct of 1,10-phenanthroline, see: Najafi *et al.* (2011[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Sn(CH~3~)~2~(NCS)~2~(C~10~H~8~N~2~)\]*M* *~r~* = 421.10Monoclinic,*a* = 10.8697 (8) Å*b* = 7.7741 (6) Å*c* = 11.3979 (8) Åβ = 115.817 (1)°*V* = 867.0 (1) Å^3^*Z* = 2Mo *K*α radiationμ = 1.71 mm^−1^*T* = 295 K0.30 × 0.20 × 0.10 mm ### Data collection {#sec2.1.2} Bruker SMART APEX diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb6]) *T* ~min~ = 0.628, *T* ~max~ = 0.8474033 measured reflections1066 independent reflections1064 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.021 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.023*wR*(*F* ^2^) = 0.061*S* = 1.081066 reflections64 parametersH-atom parameters constrainedΔρ~max~ = 0.49 e Å^−3^Δρ~min~ = −0.82 e Å^−3^ {#d5e408} Data collection: *APEX2* (Bruker, 2009[@bb2]); cell refinement: *SAINT* (Bruker, 2009[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb8]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005459/si2334sup1.cif](http://dx.doi.org/10.1107/S1600536811005459/si2334sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005459/si2334Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005459/si2334Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?si2334&file=si2334sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?si2334sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?si2334&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SI2334](http://scripts.iucr.org/cgi-bin/sendsup?si2334)). We thank Shahid Beheshti University and the University of Malaya for supporting this study. Comment ======= The 4,4\'-bipyridine ligand forms a number of adducts with diorganotin dihalides; the adducts adopt linear chain structures as the ligand functions in a bridging mode. The organotin dihalides include dimethyltin dichloride (Ng, 1998), dibutyltin dichloride and dibenzyltin dichloride (Ma *et al.*, 2004); no pseudohalides have been reported. The dimethyltin diisothiocyanate adduct similarly adopts a chain motif (Scheme I, Fig. 1). Polymeric \[Sn(NCS)~2~(CH~3~)~2~(C~10~H~8~N~2~)~2~\]*~n~* has the *N*-heterocycle functioning as a bridging to adjacent all-*trans* octahedrally coordinated tin atoms. The tin atom lies on a special position of 2/*m* site symmetry, the methyl carbon on a special position of *2* site symmetry, and the isothiocyanate and 4,4\'-bipyridine on a special position of *m* site symmetry. The geometry of the tin atom in the dimethyltin di(isothiocyanate) adduct with 1,10-phenanthroline is a *cis*-octahedron (Najafi *et al.*, 2011). Experimental {#experimental} ============ Dimethyltin diisothiocyanate (1 mmol, 0.26 g) and 4,4\'-bipyridine (1 mmol, 0.16 g) were loaded into a convection tube. The tube was filled with acetonitrile and methanol (v:v / 9:1) and kept at 333 K. Colorless crystals were collected from the side arm after several days. Refinement {#refinement} ========== Hydrogen atoms were placed in calculated positions (C--H 0.93--0.96 Å) and were included in the refinement in the riding model approximation, with *U*~iso~(H) set to 1.2--1.5*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of a portion of the Sn(NCS)2(CH3)2(C10H8N2) chain at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. ::: ![](e-67-0m350-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e168 .table-wrap} ----------------------------------------- --------------------------------------- \[Sn(CH~3~)~2~(NCS)~2~(C~10~H~8~N~2~)\] *F*(000) = 416 *M~r~* = 421.10 *D*~x~ = 1.613 Mg m^−3^ Monoclinic, *C*2/*m* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -C 2y Cell parameters from 3765 reflections *a* = 10.8697 (8) Å θ = 3.8--28.3° *b* = 7.7741 (6) Å µ = 1.71 mm^−1^ *c* = 11.3979 (8) Å *T* = 295 K β = 115.817 (1)° Prism, colorless *V* = 867.0 (1) Å^3^ 0.30 × 0.20 × 0.10 mm *Z* = 2 ----------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e303 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART APEX diffractometer 1066 independent reflections Radiation source: fine-focus sealed tube 1064 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.021 ω scans θ~max~ = 27.5°, θ~min~ = 3.4° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −14→13 *T*~min~ = 0.628, *T*~max~ = 0.847 *k* = −10→10 4033 measured reflections *l* = −14→14 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e417 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.023 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.061 H-atom parameters constrained *S* = 1.08 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.048*P*)^2^ + 0.1158*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1066 reflections (Δ/σ)~max~ = 0.001 64 parameters Δρ~max~ = 0.49 e Å^−3^ 0 restraints Δρ~min~ = −0.82 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e576 .table-wrap} ----- ------------ ------------ -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Sn1 0.5000 0.5000 0.5000 0.03309 (11) S1 0.6834 (2) 0.5000 0.18029 (16) 0.0967 (5) N1 0.3011 (3) 0.5000 0.2981 (2) 0.0404 (5) N2 0.6379 (4) 0.5000 0.3960 (4) 0.0763 (12) C1 0.5000 0.2290 (5) 0.5000 0.0713 (12) H1A 0.5254 0.1878 0.5869 0.107\* 0.50 H1B 0.5644 0.1878 0.4697 0.107\* 0.50 H1C 0.4103 0.1878 0.4434 0.107\* 0.50 C2 0.1780 (4) 0.5000 0.2946 (3) 0.0713 (14) H2 0.1717 0.5000 0.3734 0.086\* C3 0.0584 (4) 0.5000 0.1812 (3) 0.0721 (15) H3 −0.0254 0.5000 0.1849 0.087\* C4 0.0628 (3) 0.5000 0.0623 (3) 0.0388 (6) C5 0.1893 (4) 0.5000 0.0663 (4) 0.102 (3) H5 0.1985 0.5000 −0.0112 0.122\* C6 0.3047 (4) 0.5000 0.1840 (4) 0.099 (2) H6 0.3896 0.5000 0.1826 0.119\* C7 0.6565 (3) 0.5000 0.3071 (4) 0.0501 (8) ----- ------------ ------------ -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e837 .table-wrap} ----- -------------- -------------- -------------- --------- -------------- --------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Sn1 0.02266 (15) 0.04968 (17) 0.02072 (15) 0.000 0.00366 (10) 0.000 S1 0.1031 (11) 0.1490 (14) 0.0594 (8) 0.000 0.0554 (8) 0.000 N1 0.0246 (11) 0.0643 (15) 0.0225 (11) 0.000 0.0011 (9) 0.000 N2 0.0413 (17) 0.146 (4) 0.0449 (19) 0.000 0.0216 (16) 0.000 C1 0.064 (3) 0.0532 (19) 0.068 (3) 0.000 0.002 (2) 0.000 C2 0.0298 (16) 0.154 (5) 0.0201 (15) 0.000 0.0018 (13) 0.000 C3 0.0252 (16) 0.157 (5) 0.0280 (17) 0.000 0.0057 (14) 0.000 C4 0.0231 (13) 0.0624 (16) 0.0215 (13) 0.000 0.0009 (12) 0.000 C5 0.0260 (17) 0.253 (8) 0.0205 (17) 0.000 0.0053 (14) 0.000 C6 0.0210 (16) 0.244 (8) 0.0231 (17) 0.000 0.0016 (14) 0.000 C7 0.0300 (15) 0.077 (2) 0.0387 (17) 0.000 0.0110 (13) 0.000 ----- -------------- -------------- -------------- --------- -------------- --------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1047 .table-wrap} ----------------------- ------------- ----------------------- ----------- Sn1---C1^i^ 2.107 (4) C1---H1B 0.9600 Sn1---C1 2.107 (4) C1---H1C 0.9600 Sn1---N2^i^ 2.280 (3) C2---C3 1.378 (5) Sn1---N2 2.280 (3) C2---H2 0.9300 Sn1---N1^i^ 2.374 (2) C3---C4 1.376 (4) Sn1---N1 2.374 (2) C3---H3 0.9300 S1---C7 1.595 (4) C4---C5 1.356 (5) N1---C6 1.318 (5) C4---C4^ii^ 1.480 (5) N1---C2 1.321 (5) C5---C6 1.381 (5) N2---C7 1.116 (5) C5---H5 0.9300 C1---H1A 0.9600 C6---H6 0.9300 C1^i^---Sn1---C1 180.0 H1A---C1---H1B 109.5 C1^i^---Sn1---N2^i^ 90.0 Sn1---C1---H1C 109.5 C1---Sn1---N2^i^ 90.000 (1) H1A---C1---H1C 109.5 C1^i^---Sn1---N2 90.000 (1) H1B---C1---H1C 109.5 C1---Sn1---N2 90.0 N1---C2---C3 123.9 (3) N2^i^---Sn1---N2 180.000 (1) N1---C2---H2 118.1 C1^i^---Sn1---N1^i^ 90.000 (1) C3---C2---H2 118.1 C1---Sn1---N1^i^ 90.000 (1) C4---C3---C2 120.0 (3) N2^i^---Sn1---N1^i^ 91.34 (12) C4---C3---H3 120.0 N2---Sn1---N1^i^ 88.66 (12) C2---C3---H3 120.0 C1^i^---Sn1---N1 90.0 C5---C4---C3 115.9 (3) C1---Sn1---N1 90.000 (1) C5---C4---C4^ii^ 122.0 (3) N2^i^---Sn1---N1 88.66 (12) C3---C4---C4^ii^ 122.1 (4) N2---Sn1---N1 91.34 (12) C4---C5---C6 120.7 (3) N1^i^---Sn1---N1 180.0 C4---C5---H5 119.6 C6---N1---C2 115.8 (3) C6---C5---H5 119.6 C6---N1---Sn1 123.4 (2) N1---C6---C5 123.6 (3) C2---N1---Sn1 120.8 (2) N1---C6---H6 118.2 C7---N2---Sn1 153.1 (3) C5---C6---H6 118.2 Sn1---C1---H1A 109.5 N2---C7---S1 179.8 (4) Sn1---C1---H1B 109.5 C1^i^---Sn1---N1---C6 90.0 N1---Sn1---N2---C7 0.000 (2) C1---Sn1---N1---C6 −90.0 C6---N1---C2---C3 0.0 N2^i^---Sn1---N1---C6 180.0 Sn1---N1---C2---C3 180.0 N2---Sn1---N1---C6 0.0 N1---C2---C3---C4 0.0 C1^i^---Sn1---N1---C2 −90.0 C2---C3---C4---C5 0.0 C1---Sn1---N1---C2 90.0 C2---C3---C4---C4^ii^ 180.0 N2^i^---Sn1---N1---C2 0.0 C3---C4---C5---C6 0.0 N2---Sn1---N1---C2 180.0 C4^ii^---C4---C5---C6 180.0 C1^i^---Sn1---N2---C7 −90.000 (1) C2---N1---C6---C5 0.0 C1---Sn1---N2---C7 90.000 (1) Sn1---N1---C6---C5 180.0 N1^i^---Sn1---N2---C7 180.000 (2) C4---C5---C6---N1 0.0 ----------------------- ------------- ----------------------- ----------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1; (ii) −*x*, −*y*+1, −*z*.
PubMed Central
2024-06-05T04:04:17.961559
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052023/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):m350", "authors": [ { "first": "Ezzatollah", "last": "Najafi" }, { "first": "Mostafa M.", "last": "Amini" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3052024
Related literature {#sec1} ================== For biological activity of chromenopyrrole, see: Ma *et al.* (2001[@bb4]); Zhao *et al.* (2002[@bb10]); Zhou *et al.* (2006[@bb11]); Rajeswaran *et al.* (1999[@bb5]); For related structures, see: Chakkaravarthi *et al.* (2007[@bb2]); Gunasekaran *et al.* (2009[@bb3]); Saravanan *et al.* (2010[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~19~H~13~NO~3~S~2~*M* *~r~* = 367.42Triclinic,*a* = 9.3605 (5) Å*b* = 10.8455 (5) Å*c* = 17.5482 (9) Åα = 88.716 (3)°β = 80.425 (2)°γ = 71.467 (2)°*V* = 1664.68 (15) Å^3^*Z* = 4Mo *K*α radiationμ = 0.34 mm^−1^*T* = 295 K0.35 × 0.25 × 0.20 mm ### Data collection {#sec2.1.2} Bruker Kappa APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb7]) *T* ~min~ = 0.924, *T* ~max~ = 0.95136289 measured reflections8039 independent reflections6195 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.040 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.077*wR*(*F* ^2^) = 0.245*S* = 1.078039 reflections453 parametersH-atom parameters constrainedΔρ~max~ = 0.55 e Å^−3^Δρ~min~ = −0.37 e Å^−3^ {#d5e452} Data collection: *APEX2* (Bruker, 2004[@bb1]); cell refinement: *SAINT* (Bruker, 2004[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *PLATON* (Spek, 2009[@bb9]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005666/bt5452sup1.cif](http://dx.doi.org/10.1107/S1600536811005666/bt5452sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005666/bt5452Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005666/bt5452Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bt5452&file=bt5452sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bt5452sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bt5452&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BT5452](http://scripts.iucr.org/cgi-bin/sendsup?bt5452)). CK thanks AMET University management for their kind support. Comment ======= Indole derivatives are found to possess anticancer, antimalarial and antihypertensive activities (Ma *et al.*, 2001; Zhou *et al.*, 2006; Zhao *et al.*, 2002). In addition, Indoles have been proved to display high aldose reductase inhibitory activity (Rajeswaran *et al.*, 1999). The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure(Chakkaravarthi *et al.*, 2007; Gunasekaran *et al.*, 2009; Saravanan *et al.*, 2010). The compound is non-merohedrally twinned, the suggested transformation matrix is (-1 0 0, 0 - 1 0, -0.664 0.110 1). The dihedral angle between the nine membered indole moiety and the thiophene ring is 54.91 (12) ° for molecule (I) and 56.92 (13) ° for molecule (II) respectively. The torsion angles O1---S1---N1---C1 and O2---S1---N1---C8 in molecule (I), O4---S3---N2---C20 and O5---S3---N2---C27 in molecule (II) \[-9.8 (4) ° and 27.7 (4) ° for molecule (I), 9.1 (4) ° and -27.2 (4) ° for molecule (II), respectively\] indicates the *syn* conformation of the sulfonyl moiety. The sum of bond angles around N1 and N2 are 358.9 (3) ° and 358.6 (3) ° respectively, indicates the *sp^2^* hybridization state of atoms N1 and N2. The molecular structure is stabilized by weak intramolecular C---H···O interactions and the crystal packing is stabilized by weak C---H···π \[C17---H17···*Cg*8(1 - *x*, 1 - *y*, 1 - *z*) distance of 3.693 (6)Å (*Cg*8 is the centroid of the ring defined by the atoms C20---C25)\] interactions. Experimental {#experimental} ============ To a solution of *N*-(2-Formylphenyl)benzenesulfonamide (0.5 g, 1.91 mmol) in dry CH3CN (20 ml), K2CO3 (0.8 g, 5.79 mmol), 2-bromo-1-(thiophen-2-yl) ethanone (0.5 g, 2.43 mmol) were added. The reaction mixture was stirred at room temperature for 6 h under N2 atmosphere. The solvent was removed and the residue was quenched with ice-water (50 ml), extracted with chloroform (3 *x* 10 ml) and dried (Na2SO4). Removal of solvent followed by the residue was dissolved in CH3CN (20 ml), Conc.HCl (3 ml) was added. The reaction mixture was then refluxed for 2 h. It was then poured over ice-water (50 ml), extracted with CHCl3 (3 *x* 10 ml) and dried (Na2SO4). Removal of solvent followed by crystallization from methanol afforded the compound as a colorless crystal. Refinement {#refinement} ========== H atoms were positioned geometrically and refined using riding model with C---H = 0.93Å and *U*~iso~(H) = 1.2Ueq(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. ::: ![](e-67-0o741-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e154 .table-wrap} ------------------------- --------------------------------------- C~19~H~13~NO~3~S~2~ *Z* = 4 *M~r~* = 367.42 *F*(000) = 760 Triclinic, *P*1 *D*~x~ = 1.466 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 9.3605 (5) Å Cell parameters from 6464 reflections *b* = 10.8455 (5) Å θ = 2.4--27.8° *c* = 17.5482 (9) Å µ = 0.34 mm^−1^ α = 88.716 (3)° *T* = 295 K β = 80.425 (2)° Block, colourless γ = 71.467 (2)° 0.35 × 0.25 × 0.20 mm *V* = 1664.68 (15) Å^3^ ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e290 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker Kappa APEXII CCD diffractometer 8039 independent reflections Radiation source: fine-focus sealed tube 6195 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.040 Detector resolution: 0 pixels mm^-1^ θ~max~ = 28.0°, θ~min~ = 1.2° ω and φ scans *h* = −12→12 Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *k* = −14→14 *T*~min~ = 0.924, *T*~max~ = 0.951 *l* = −23→23 36289 measured reflections --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e413 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.077 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.245 H-atom parameters constrained *S* = 1.07 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.092*P*)^2^ + 4.8598*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 8039 reflections (Δ/σ)~max~ \< 0.001 453 parameters Δρ~max~ = 0.55 e Å^−3^ 0 restraints Δρ~min~ = −0.37 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e570 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e669 .table-wrap} ----- -------------- --------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.4481 (5) 0.1880 (4) 0.3523 (2) 0.0356 (8) C2 0.3808 (6) 0.3165 (4) 0.3334 (3) 0.0465 (10) H2 0.4309 0.3781 0.3332 0.056\* C3 0.2370 (6) 0.3476 (5) 0.3150 (3) 0.0538 (12) H3 0.1889 0.4326 0.3021 0.065\* C4 0.1597 (6) 0.2562 (5) 0.3149 (3) 0.0565 (13) H4 0.0614 0.2816 0.3031 0.068\* C5 0.2277 (5) 0.1307 (5) 0.3320 (3) 0.0504 (11) H5 0.1768 0.0698 0.3314 0.061\* C6 0.3763 (5) 0.0933 (4) 0.3507 (3) 0.0404 (9) C7 0.4734 (5) −0.0266 (4) 0.3714 (3) 0.0431 (10) H7 0.4527 −0.1051 0.3736 0.052\* C8 0.6014 (5) −0.0084 (4) 0.3877 (3) 0.0376 (9) C9 0.7171 (5) −0.0981 (4) 0.4277 (3) 0.0380 (9) C10 0.7561 (5) −0.2365 (4) 0.4090 (2) 0.0366 (8) C11 0.7462 (5) −0.2983 (4) 0.3425 (3) 0.0408 (9) H11 0.7074 −0.2553 0.3003 0.049\* C12 0.8028 (6) −0.4352 (5) 0.3473 (3) 0.0530 (12) H12 0.8071 −0.4930 0.3080 0.064\* C13 0.8501 (6) −0.4731 (5) 0.4156 (3) 0.0561 (13) H13 0.8880 −0.5597 0.4285 0.067\* C14 0.7289 (5) 0.2305 (4) 0.4700 (3) 0.0383 (9) C15 0.8555 (5) 0.1793 (5) 0.5050 (3) 0.0493 (11) H15 0.9434 0.1191 0.4785 0.059\* C16 0.8498 (6) 0.2187 (5) 0.5801 (3) 0.0552 (12) H16 0.9335 0.1830 0.6049 0.066\* C17 0.7217 (6) 0.3102 (5) 0.6184 (3) 0.0537 (12) H17 0.7190 0.3373 0.6687 0.064\* C18 0.5971 (6) 0.3618 (5) 0.5823 (3) 0.0493 (11) H18 0.5104 0.4238 0.6086 0.059\* C19 0.5985 (5) 0.3231 (4) 0.5072 (3) 0.0442 (10) H19 0.5143 0.3583 0.4828 0.053\* N1 0.5908 (4) 0.1243 (3) 0.3762 (2) 0.0371 (7) O2 0.8724 (4) 0.0828 (4) 0.3479 (2) 0.0562 (9) O1 0.6943 (5) 0.3007 (4) 0.3310 (2) 0.0583 (9) O3 0.7730 (4) −0.0590 (3) 0.4761 (2) 0.0539 (9) S1 0.73502 (13) 0.18488 (11) 0.37382 (7) 0.0413 (3) S2 0.83327 (16) −0.34647 (13) 0.47492 (8) 0.0544 (3) C20 0.3630 (5) 0.6980 (4) 0.1576 (2) 0.0421 (9) C21 0.2888 (7) 0.8279 (5) 0.1809 (3) 0.0569 (13) H21 0.3425 0.8867 0.1815 0.068\* C22 0.1326 (7) 0.8653 (5) 0.2032 (3) 0.0645 (15) H22 0.0801 0.9519 0.2180 0.077\* C23 0.0509 (6) 0.7792 (6) 0.2043 (3) 0.0642 (15) H23 −0.0542 0.8078 0.2212 0.077\* C24 0.1237 (6) 0.6514 (6) 0.1808 (3) 0.0575 (13) H24 0.0684 0.5938 0.1807 0.069\* C25 0.2827 (5) 0.6092 (5) 0.1569 (3) 0.0448 (10) C26 0.3888 (5) 0.4867 (4) 0.1316 (3) 0.0440 (10) H26 0.3660 0.4097 0.1281 0.053\* C27 0.5280 (5) 0.5000 (4) 0.1135 (3) 0.0408 (9) C28 0.6673 (5) 0.4060 (4) 0.0691 (3) 0.0418 (9) C29 0.6939 (5) 0.2679 (4) 0.0865 (3) 0.0408 (9) C30 0.6482 (6) 0.2140 (5) 0.1540 (3) 0.0525 (12) H30 0.5864 0.2620 0.1974 0.063\* C31 0.7070 (8) 0.0763 (6) 0.1495 (4) 0.0739 (17) H31 0.6879 0.0228 0.1894 0.089\* C32 0.7944 (7) 0.0321 (5) 0.0798 (5) 0.0729 (18) H32 0.8415 −0.0558 0.0666 0.087\* C33 0.7163 (5) 0.7268 (4) 0.0347 (3) 0.0405 (9) C34 0.8649 (6) 0.6794 (5) −0.0023 (3) 0.0543 (12) H34 0.9382 0.6208 0.0221 0.065\* C35 0.9052 (7) 0.7184 (6) −0.0750 (4) 0.0673 (15) H35 1.0055 0.6852 −0.1006 0.081\* C36 0.7982 (8) 0.8063 (6) −0.1101 (3) 0.0643 (15) H36 0.8264 0.8334 −0.1594 0.077\* C37 0.6495 (7) 0.8549 (5) −0.0735 (3) 0.0593 (13) H37 0.5772 0.9144 −0.0979 0.071\* C38 0.6077 (6) 0.8155 (5) −0.0007 (3) 0.0500 (11) H38 0.5071 0.8483 0.0245 0.060\* N2 0.5175 (4) 0.6304 (3) 0.1284 (2) 0.0415 (8) O4 0.6061 (5) 0.8001 (4) 0.1772 (2) 0.0609 (10) O5 0.7862 (4) 0.5782 (4) 0.1510 (2) 0.0586 (9) O6 0.7506 (4) 0.4410 (3) 0.0187 (2) 0.0563 (9) S3 0.66525 (14) 0.68399 (12) 0.13007 (7) 0.0450 (3) S4 0.80927 (17) 0.15141 (14) 0.01948 (9) 0.0630 (4) ----- -------------- --------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1669 .table-wrap} ----- ------------- ------------- ------------ -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.038 (2) 0.033 (2) 0.034 (2) −0.0084 (16) −0.0079 (16) 0.0043 (15) C2 0.052 (3) 0.034 (2) 0.048 (3) −0.0044 (18) −0.009 (2) 0.0024 (18) C3 0.054 (3) 0.043 (3) 0.051 (3) 0.004 (2) −0.012 (2) 0.006 (2) C4 0.043 (3) 0.065 (3) 0.053 (3) −0.001 (2) −0.016 (2) −0.005 (2) C5 0.037 (2) 0.055 (3) 0.060 (3) −0.012 (2) −0.015 (2) 0.000 (2) C6 0.038 (2) 0.038 (2) 0.046 (2) −0.0112 (17) −0.0076 (17) −0.0050 (18) C7 0.043 (2) 0.034 (2) 0.056 (3) −0.0142 (18) −0.0142 (19) 0.0015 (19) C8 0.037 (2) 0.0271 (19) 0.048 (2) −0.0079 (15) −0.0099 (17) 0.0018 (16) C9 0.035 (2) 0.036 (2) 0.042 (2) −0.0094 (16) −0.0083 (16) 0.0012 (17) C10 0.038 (2) 0.0288 (19) 0.043 (2) −0.0084 (15) −0.0103 (17) 0.0036 (16) C11 0.043 (2) 0.030 (2) 0.048 (2) −0.0081 (17) −0.0082 (18) 0.0000 (17) C12 0.053 (3) 0.035 (2) 0.067 (3) −0.007 (2) −0.012 (2) −0.006 (2) C13 0.051 (3) 0.034 (2) 0.080 (4) −0.009 (2) −0.012 (2) 0.013 (2) C14 0.040 (2) 0.032 (2) 0.046 (2) −0.0149 (17) −0.0091 (17) −0.0033 (17) C15 0.037 (2) 0.055 (3) 0.057 (3) −0.0115 (19) −0.012 (2) −0.005 (2) C16 0.053 (3) 0.057 (3) 0.062 (3) −0.018 (2) −0.025 (2) −0.002 (2) C17 0.067 (3) 0.053 (3) 0.050 (3) −0.029 (2) −0.014 (2) −0.002 (2) C18 0.048 (3) 0.042 (2) 0.055 (3) −0.012 (2) −0.004 (2) −0.012 (2) C19 0.038 (2) 0.037 (2) 0.056 (3) −0.0097 (17) −0.0105 (19) −0.0022 (19) N1 0.0380 (17) 0.0296 (16) 0.046 (2) −0.0119 (14) −0.0123 (15) 0.0019 (14) O2 0.0428 (18) 0.064 (2) 0.058 (2) −0.0176 (16) 0.0042 (15) −0.0177 (17) O1 0.075 (2) 0.056 (2) 0.059 (2) −0.0395 (19) −0.0159 (18) 0.0106 (17) O3 0.060 (2) 0.0457 (18) 0.059 (2) −0.0120 (16) −0.0263 (17) −0.0055 (15) S1 0.0414 (6) 0.0411 (6) 0.0455 (6) −0.0193 (4) −0.0053 (4) −0.0028 (4) S2 0.0567 (7) 0.0483 (7) 0.0547 (7) −0.0088 (5) −0.0171 (6) 0.0126 (5) C20 0.048 (2) 0.040 (2) 0.033 (2) −0.0095 (18) 0.0001 (17) 0.0041 (17) C21 0.064 (3) 0.039 (2) 0.055 (3) −0.009 (2) 0.008 (2) −0.003 (2) C22 0.062 (3) 0.045 (3) 0.064 (3) 0.005 (2) 0.010 (3) 0.000 (2) C23 0.047 (3) 0.063 (3) 0.063 (3) 0.000 (2) 0.009 (2) 0.010 (3) C24 0.041 (3) 0.064 (3) 0.064 (3) −0.016 (2) −0.002 (2) 0.010 (3) C25 0.042 (2) 0.045 (2) 0.047 (2) −0.0137 (19) −0.0083 (19) 0.0121 (19) C26 0.048 (2) 0.037 (2) 0.047 (2) −0.0145 (19) −0.0047 (19) 0.0015 (18) C27 0.043 (2) 0.036 (2) 0.042 (2) −0.0111 (17) −0.0076 (18) 0.0010 (17) C28 0.040 (2) 0.043 (2) 0.041 (2) −0.0105 (18) −0.0063 (17) −0.0031 (18) C29 0.040 (2) 0.033 (2) 0.045 (2) −0.0063 (17) −0.0058 (17) −0.0075 (17) C30 0.061 (3) 0.040 (2) 0.049 (3) −0.006 (2) −0.006 (2) 0.001 (2) C31 0.073 (4) 0.044 (3) 0.097 (5) −0.010 (3) −0.012 (3) 0.012 (3) C32 0.058 (3) 0.039 (3) 0.115 (5) −0.006 (2) −0.013 (3) −0.015 (3) C33 0.043 (2) 0.040 (2) 0.043 (2) −0.0207 (18) −0.0083 (18) 0.0027 (18) C34 0.043 (2) 0.059 (3) 0.059 (3) −0.015 (2) −0.005 (2) 0.001 (2) C35 0.059 (3) 0.074 (4) 0.067 (4) −0.027 (3) 0.009 (3) −0.001 (3) C36 0.085 (4) 0.066 (4) 0.048 (3) −0.037 (3) −0.002 (3) 0.006 (3) C37 0.071 (4) 0.053 (3) 0.060 (3) −0.021 (3) −0.027 (3) 0.016 (2) C38 0.046 (2) 0.052 (3) 0.054 (3) −0.016 (2) −0.011 (2) 0.005 (2) N2 0.0423 (19) 0.0351 (18) 0.044 (2) −0.0114 (15) 0.0004 (15) −0.0031 (15) O4 0.076 (3) 0.058 (2) 0.055 (2) −0.0302 (19) −0.0089 (18) −0.0104 (17) O5 0.055 (2) 0.064 (2) 0.061 (2) −0.0171 (17) −0.0240 (17) 0.0103 (18) O6 0.055 (2) 0.051 (2) 0.054 (2) −0.0133 (16) 0.0062 (16) 0.0019 (16) S3 0.0491 (6) 0.0461 (6) 0.0439 (6) −0.0193 (5) −0.0107 (5) −0.0003 (5) S4 0.0559 (8) 0.0545 (8) 0.0683 (9) −0.0081 (6) 0.0023 (6) −0.0222 (7) ----- ------------- ------------- ------------ -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2686 .table-wrap} ----------------------- ------------- ----------------------- ------------ C1---C2 1.393 (6) C20---C21 1.394 (6) C1---C6 1.398 (6) C20---C25 1.399 (7) C1---N1 1.423 (5) C20---N2 1.410 (6) C2---C3 1.371 (7) C21---C22 1.377 (8) C2---H2 0.9300 C21---H21 0.9300 C3---C4 1.401 (8) C22---C23 1.381 (9) C3---H3 0.9300 C22---H22 0.9300 C4---C5 1.357 (7) C23---C24 1.373 (8) C4---H4 0.9300 C23---H23 0.9300 C5---C6 1.411 (6) C24---C25 1.403 (7) C5---H5 0.9300 C24---H24 0.9300 C6---C7 1.409 (6) C25---C26 1.410 (6) C7---C8 1.350 (6) C26---C27 1.342 (6) C7---H7 0.9300 C26---H26 0.9300 C8---N1 1.422 (5) C27---N2 1.414 (6) C8---C9 1.472 (6) C27---C28 1.483 (6) C9---O3 1.216 (5) C28---O6 1.216 (6) C9---C10 1.458 (6) C28---C29 1.472 (6) C10---C11 1.390 (6) C29---C30 1.373 (7) C10---S2 1.717 (4) C29---S4 1.710 (4) C11---C12 1.415 (6) C30---C31 1.417 (7) C11---H11 0.9300 C30---H30 0.9300 C12---C13 1.357 (8) C31---C32 1.356 (10) C12---H12 0.9300 C31---H31 0.9300 C13---S2 1.693 (6) C32---S4 1.678 (7) C13---H13 0.9300 C32---H32 0.9300 C14---C15 1.378 (6) C33---C34 1.371 (7) C14---C19 1.382 (6) C33---C38 1.381 (7) C14---S1 1.757 (4) C33---S3 1.757 (5) C15---C16 1.382 (7) C34---C35 1.367 (8) C15---H15 0.9300 C34---H34 0.9300 C16---C17 1.371 (8) C35---C36 1.365 (9) C16---H16 0.9300 C35---H35 0.9300 C17---C18 1.375 (7) C36---C37 1.372 (9) C17---H17 0.9300 C36---H36 0.9300 C18---C19 1.388 (7) C37---C38 1.371 (8) C18---H18 0.9300 C37---H37 0.9300 C19---H19 0.9300 C38---H38 0.9300 N1---S1 1.674 (3) N2---S3 1.666 (4) O2---S1 1.417 (4) O4---S3 1.423 (4) O1---S1 1.427 (4) O5---S3 1.424 (4) C2---C1---C6 122.4 (4) C21---C20---C25 121.7 (5) C2---C1---N1 131.5 (4) C21---C20---N2 131.5 (5) C6---C1---N1 106.1 (3) C25---C20---N2 106.8 (4) C3---C2---C1 116.7 (5) C22---C21---C20 117.1 (5) C3---C2---H2 121.7 C22---C21---H21 121.5 C1---C2---H2 121.7 C20---C21---H21 121.5 C2---C3---C4 122.5 (5) C21---C22---C23 122.4 (5) C2---C3---H3 118.7 C21---C22---H22 118.8 C4---C3---H3 118.7 C23---C22---H22 118.8 C5---C4---C3 120.2 (5) C24---C23---C22 120.5 (5) C5---C4---H4 119.9 C24---C23---H23 119.8 C3---C4---H4 119.9 C22---C23---H23 119.8 C4---C5---C6 119.5 (5) C23---C24---C25 119.0 (5) C4---C5---H5 120.2 C23---C24---H24 120.5 C6---C5---H5 120.2 C25---C24---H24 120.5 C1---C6---C7 109.0 (4) C20---C25---C24 119.3 (5) C1---C6---C5 118.6 (4) C20---C25---C26 108.2 (4) C7---C6---C5 132.3 (4) C24---C25---C26 132.5 (5) C8---C7---C6 108.6 (4) C27---C26---C25 108.4 (4) C8---C7---H7 125.7 C27---C26---H26 125.8 C6---C7---H7 125.7 C25---C26---H26 125.8 C7---C8---N1 108.6 (4) C26---C27---N2 109.3 (4) C7---C8---C9 126.8 (4) C26---C27---C28 127.3 (4) N1---C8---C9 123.1 (4) N2---C27---C28 122.2 (4) O3---C9---C10 121.8 (4) O6---C28---C29 122.1 (4) O3---C9---C8 121.5 (4) O6---C28---C27 121.6 (4) C10---C9---C8 116.7 (4) C29---C28---C27 116.2 (4) C11---C10---C9 129.9 (4) C30---C29---C28 129.0 (4) C11---C10---S2 111.6 (3) C30---C29---S4 111.7 (3) C9---C10---S2 118.4 (3) C28---C29---S4 119.1 (3) C10---C11---C12 111.2 (4) C29---C30---C31 111.7 (5) C10---C11---H11 124.4 C29---C30---H30 124.1 C12---C11---H11 124.4 C31---C30---H30 124.1 C13---C12---C11 112.6 (5) C32---C31---C30 111.7 (6) C13---C12---H12 123.7 C32---C31---H31 124.2 C11---C12---H12 123.7 C30---C31---H31 124.2 C12---C13---S2 113.1 (4) C31---C32---S4 113.5 (4) C12---C13---H13 123.5 C31---C32---H32 123.3 S2---C13---H13 123.5 S4---C32---H32 123.3 C15---C14---C19 121.7 (4) C34---C33---C38 120.3 (5) C15---C14---S1 119.8 (4) C34---C33---S3 120.2 (4) C19---C14---S1 118.4 (3) C38---C33---S3 119.3 (4) C14---C15---C16 119.0 (5) C35---C34---C33 119.9 (5) C14---C15---H15 120.5 C35---C34---H34 120.1 C16---C15---H15 120.5 C33---C34---H34 120.1 C17---C16---C15 120.5 (5) C36---C35---C34 120.0 (5) C17---C16---H16 119.8 C36---C35---H35 120.0 C15---C16---H16 119.8 C34---C35---H35 120.0 C16---C17---C18 119.9 (5) C35---C36---C37 120.6 (5) C16---C17---H17 120.1 C35---C36---H36 119.7 C18---C17---H17 120.1 C37---C36---H36 119.7 C17---C18---C19 121.1 (5) C38---C37---C36 119.9 (5) C17---C18---H18 119.4 C38---C37---H37 120.1 C19---C18---H18 119.4 C36---C37---H37 120.1 C14---C19---C18 117.9 (4) C37---C38---C33 119.4 (5) C14---C19---H19 121.1 C37---C38---H38 120.3 C18---C19---H19 121.1 C33---C38---H38 120.3 C8---N1---C1 107.6 (3) C20---N2---C27 107.2 (4) C8---N1---S1 125.1 (3) C20---N2---S3 126.1 (3) C1---N1---S1 126.2 (3) C27---N2---S3 125.3 (3) O2---S1---O1 120.2 (2) O4---S3---O5 119.6 (2) O2---S1---N1 107.27 (19) O4---S3---N2 105.7 (2) O1---S1---N1 105.2 (2) O5---S3---N2 107.4 (2) O2---S1---C14 109.9 (2) O4---S3---C33 108.0 (2) O1---S1---C14 107.8 (2) O5---S3---C33 109.9 (2) N1---S1---C14 105.41 (19) N2---S3---C33 105.2 (2) C13---S2---C10 91.4 (2) C32---S4---C29 91.5 (3) C6---C1---C2---C3 1.9 (7) C25---C20---C21---C22 −0.3 (8) N1---C1---C2---C3 −177.6 (4) N2---C20---C21---C22 176.6 (5) C1---C2---C3---C4 0.0 (7) C20---C21---C22---C23 1.4 (9) C2---C3---C4---C5 −1.3 (8) C21---C22---C23---C24 −1.9 (10) C3---C4---C5---C6 0.7 (8) C22---C23---C24---C25 1.2 (9) C2---C1---C6---C7 179.1 (4) C21---C20---C25---C24 −0.4 (7) N1---C1---C6---C7 −1.2 (5) N2---C20---C25---C24 −177.9 (4) C2---C1---C6---C5 −2.5 (7) C21---C20---C25---C26 −179.3 (5) N1---C1---C6---C5 177.2 (4) N2---C20---C25---C26 3.2 (5) C4---C5---C6---C1 1.2 (7) C23---C24---C25---C20 −0.1 (8) C4---C5---C6---C7 179.1 (5) C23---C24---C25---C26 178.5 (5) C1---C6---C7---C8 1.4 (5) C20---C25---C26---C27 −3.0 (5) C5---C6---C7---C8 −176.6 (5) C24---C25---C26---C27 178.3 (5) C6---C7---C8---N1 −1.1 (5) C25---C26---C27---N2 1.5 (5) C6---C7---C8---C9 165.5 (4) C25---C26---C27---C28 −165.7 (4) C7---C8---C9---O3 −138.0 (5) C26---C27---C28---O6 135.6 (5) N1---C8---C9---O3 26.8 (7) N2---C27---C28---O6 −30.2 (7) C7---C8---C9---C10 39.3 (7) C26---C27---C28---C29 −41.2 (7) N1---C8---C9---C10 −155.9 (4) N2---C27---C28---C29 153.0 (4) O3---C9---C10---C11 −157.1 (5) O6---C28---C29---C30 155.8 (5) C8---C9---C10---C11 25.6 (7) C27---C28---C29---C30 −27.5 (7) O3---C9---C10---S2 20.2 (6) O6---C28---C29---S4 −18.3 (6) C8---C9---C10---S2 −157.1 (3) C27---C28---C29---S4 158.4 (3) C9---C10---C11---C12 177.3 (4) C28---C29---C30---C31 −175.4 (5) S2---C10---C11---C12 −0.1 (5) S4---C29---C30---C31 −0.9 (6) C10---C11---C12---C13 1.1 (6) C29---C30---C31---C32 0.4 (8) C11---C12---C13---S2 −1.7 (6) C30---C31---C32---S4 0.4 (8) C19---C14---C15---C16 2.0 (7) C38---C33---C34---C35 −1.1 (8) S1---C14---C15---C16 178.4 (4) S3---C33---C34---C35 −176.6 (4) C14---C15---C16---C17 −1.8 (8) C33---C34---C35---C36 1.2 (9) C15---C16---C17---C18 0.9 (8) C34---C35---C36---C37 −0.8 (9) C16---C17---C18---C19 −0.1 (8) C35---C36---C37---C38 0.3 (9) C15---C14---C19---C18 −1.2 (7) C36---C37---C38---C33 −0.2 (8) S1---C14---C19---C18 −177.7 (4) C34---C33---C38---C37 0.5 (7) C17---C18---C19---C14 0.3 (7) S3---C33---C38---C37 176.2 (4) C7---C8---N1---C1 0.3 (5) C21---C20---N2---C27 −179.5 (5) C9---C8---N1---C1 −166.9 (4) C25---C20---N2---C27 −2.3 (5) C7---C8---N1---S1 −168.3 (3) C21---C20---N2---S3 13.4 (7) C9---C8---N1---S1 24.5 (6) C25---C20---N2---S3 −169.5 (3) C2---C1---N1---C8 −179.8 (5) C26---C27---N2---C20 0.5 (5) C6---C1---N1---C8 0.6 (5) C28---C27---N2---C20 168.5 (4) C2---C1---N1---S1 −11.4 (7) C26---C27---N2---S3 167.8 (3) C6---C1---N1---S1 169.0 (3) C28---C27---N2---S3 −24.2 (6) C8---N1---S1---O2 27.6 (4) C20---N2---S3---O4 9.0 (4) C1---N1---S1---O2 −138.9 (4) C27---N2---S3---O4 −156.0 (4) C8---N1---S1---O1 156.7 (4) C20---N2---S3---O5 137.7 (4) C1---N1---S1---O1 −9.8 (4) C27---N2---S3---O5 −27.2 (4) C8---N1---S1---C14 −89.5 (4) C20---N2---S3---C33 −105.2 (4) C1---N1---S1---C14 104.0 (4) C27---N2---S3---C33 89.9 (4) C15---C14---S1---O2 7.8 (4) C34---C33---S3---O4 119.1 (4) C19---C14---S1---O2 −175.7 (3) C38---C33---S3---O4 −56.5 (4) C15---C14---S1---O1 −125.0 (4) C34---C33---S3---O5 −13.0 (5) C19---C14---S1---O1 51.6 (4) C38---C33---S3---O5 171.3 (4) C15---C14---S1---N1 123.1 (4) C34---C33---S3---N2 −128.4 (4) C19---C14---S1---N1 −60.4 (4) C38---C33---S3---N2 56.0 (4) C12---C13---S2---C10 1.4 (4) C31---C32---S4---C29 −0.8 (5) C11---C10---S2---C13 −0.7 (4) C30---C29---S4---C32 1.0 (4) C9---C10---S2---C13 −178.5 (4) C28---C29---S4---C32 176.1 (4) ----------------------- ------------- ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4335 .table-wrap} ------------------------------------------ Cg is the centroid of the C20--C25 ring. ------------------------------------------ ::: ::: {#d1e4339 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C2---H2···O1 0.93 2.33 2.879 (6) 117 C15---H15···O2 0.93 2.56 2.932 (6) 104 C21---H21···O4 0.93 2.33 2.878 (7) 117 C34---H34···O5 0.93 2.58 2.950 (7) 104 C17---H17···Cg8^i^ 0.93 2.88 3.693 (6) 147 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg* is the centroid of the C20--C25 ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- C17---H17⋯*Cg*8^i^ 0.93 2.88 3.693 (6) 147 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.965111
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052024/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):o741", "authors": [ { "first": "C.", "last": "KamalaKumar" }, { "first": "V.", "last": "Dhayalan" }, { "first": "A. K.", "last": "Mohanakrishnan" }, { "first": "V.", "last": "Balasubramanian" }, { "first": "V.", "last": "Manivannan" } ] }
PMC3052025
Related literature {#sec1} ================== For electrophilic aromatic substitution of naphthalene deriv­atives affording *peri-*aroylated compounds regioselectively, see: Okamoto & Yonezawa (2009[@bb10]). For the structures of closely related compounds, see: Kataoka *et al.* (2010[@bb4]); Kato *et al.* (2010[@bb5]); Muto *et al.* (2010[@bb6]); Nakaema, Okamoto *et al.* (2008[@bb7]); Nakaema, Watanabe *et al.* (2008[@bb8]); Nishijima *et al.* (2010[@bb9]); Watanabe *et al.* (2010[@bb14]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~19~H~16~O~3~*M* *~r~* = 292.32Monoclinic,*a* = 8.7186 (2) Å*b* = 20.4650 (4) Å*c* = 8.5675 (2) Åβ = 102.475 (1)°*V* = 1492.57 (6) Å^3^*Z* = 4Cu *K*α radiationμ = 0.71 mm^−1^*T* = 193 K0.60 × 0.50 × 0.20 mm ### Data collection {#sec2.1.2} Rigaku R-AXIS RAPID diffractometerAbsorption correction: numerical (*NUMABS*; Higashi, 1999[@bb3]) *T* ~min~ = 0.677, *T* ~max~ = 0.87226682 measured reflections2735 independent reflections2509 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.044 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.034*wR*(*F* ^2^) = 0.098*S* = 1.062735 reflections202 parametersH-atom parameters constrainedΔρ~max~ = 0.23 e Å^−3^Δρ~min~ = −0.17 e Å^−3^ {#d5e468} Data collection: *PROCESS-AUTO* (Rigaku, 1998[@bb11]); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku, 2010[@bb12]); program(s) used to solve structure: *Il Milione* (Burla *et al.*, 2007[@bb1]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb13]); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996[@bb2]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811005630/fk2037sup1.cif](http://dx.doi.org/10.1107/S1600536811005630/fk2037sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005630/fk2037Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005630/fk2037Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?fk2037&file=fk2037sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?fk2037sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?fk2037&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [FK2037](http://scripts.iucr.org/cgi-bin/sendsup?fk2037)). The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Mukai Science and Technology Foundation, Tokyo, Japan. Comment ======= In the course of our study on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, *peri-*aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we have reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes such as 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto *et al.*, 2010) and 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima *et al.*, 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are bonded in a nearly perpendicular manner but the benzene rings of the aroyl groups tilt slightly toward the *exo* sides of the naphthalene rings. Such 1-aroylnaphthalene homologues as (2,7-dimethoxynaphthalen-1-yl)(3-nitrophenyl)methanone (Kataoka *et al.*, 2010) are also revealed to have essentially the same non-coplanar structure as observed for 1,8-diaroylated naphthalenes. Furthermore, we reported the crystal structure analysis of the corresponding *β*-isomers of 3-aroyl-2,7-dimethoxynaphthalenes such as 2-(4-chlorobenzoyl)-3,6-dimethoxynaphthalene (Nakaema, Okamoto *et al.*, 2008) and (4-fluorophenyl) (3,6-dimethoxy-2-naphthyl)methanone (Watanabe *et al.*, 2010). In the 3-aroylated naphthalenes, which are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, the aroyl groups are connected to the naphthalene rings in a moderately twisted fashion. On the other hand, there are several unique structural features in the benzoylated naphthalene homologues, 1-benzoyl-2,7-dimethoxynaphthalene (Kato *et al.*, 2010) and 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema, Watanabe *et al.*, 2008). 1-Benzoyl-2,7-dimethoxynaphthalene contains three independent conformers and each of them forms a columnar structure, respectively. As a part of our ongoing study on the synthesis and structure of these homologous molecules, the crystal structure analysis of the title compound, a 3-monoaroylnaphthalene, is discussed in this article. The molecular structure of the title molecule is displayed in Fig. 1. The benzene group is bonded to the naphthalene ring with a non-coplanar configuration. The dihedral angle between the best planes of the benzene ring (C12---C17) and the naphthalene ring (C1---C10) is 68.32 (5)°. The bridging carbonyl plane (O1---C3---C11---C12) makes a relatively large dihedral angle of 54.32 (5)° with the naphthalene ring (C1---C10) \[C2---C3---C11---O1 torsion angle = -125.86 (12)°\], whereas it makes a rather small dihedral angle of 21.45 (6)° with benzene ring (C12---C17) \[O1---C11---C12---C13 torsion angle = -156.47 (11)°\]. The crystal packing exhibits a weak C---H···O intermolecular interaction between the oxygen atom of the carbonyl group and the hydrogen atom of the naphthalene ring (Table 1, Fig. 2). The packing is additionally stabilized by a C---H···O hydrogen bond between the hydrogen of the 2-methoxy group, which is situated adjacent to the benzoyl group, and the ethereal oxygen atom of the 7-methoxy group in the neighboring molecule (Table 1, Fig. 3). Experimental {#experimental} ============ A mixture of 2,7-dimethoxynaphthalene (3.74 g, 19.9 mmol), FeCl~3~ (4.95 g, 37.1 mmol), trichloromethylbenzene (2.9 ml, 20 mmol) and dichloromethane (50 ml) was stirred at 293 K for 6 h, and the reaction mixture was poured into ice-cooled water followed by extraction with CHCl~3~ (30 ml × 3). The combined extracts were washed with 2 *M* aqueous NaOH followed by washing with brine. The organic layer thus obtained was dried over anhydrous MgSO~4~. The solvent was removed under reduced pressure to give cakes (yield 72%). The crude product was purified by flush silica gel chromatography (CHCl~3~). Colorless platelet single crystals suitable for X-ray diffraction were obtained by crystallization from hexane and chloroform (yield 21%). Spectroscopic Data: ^1^H NMR δ (400 MHz, CDCl~3~); 3.83 (3*H*, s), 3.95 (3*H*, s), 7.05 (1*H*, dd, *J* = 2.4, 9.2 Hz), 7.11 (1*H*, d, *J* = 2.4 Hz), 7.14 (1*H*, s), 7.44 (2*H*, t, *J* = 8.0 Hz), 7.56 (1*H*, t, *J* = 7.6 Hz), 7.69 (1*H*, d, *J* = 9.2 Hz), 7.78 (1*H*, s), 7.83--7.85 (2*H*, m) p.p.m.. ^13^C NMR δ (75 MHz, CDCl~3~); 55.34, 55.54, 105.00, 105.38, 117.02, 123.15, 127.89, 128.18, 129.93, 130.01, 130.07, 132.87, 137.11, 138.06, 155.83, 159.30, 196.02 p.p.m.. IR (KBr): 1627 (C═O), 1580, 1502 (Ar, naphthalene), 1213 cm^-1^. HRMS (*m/z*): \[*M* + H\]^+^ Calcd for C~19~H~17~O~3~, 293.1178; found, 293.1203. m.p. = 438.7--441.5 K. Refinement {#refinement} ========== H atom positions were derived from geometrical considerations and were subsequently refined as riding atoms, with C---H = 0.95 (aromatic) and 0.98 (methyl) Å, and with *U*~iso~(H) = 1.2*U*~eq~(C) or 1.5(methyl). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structure with displacement ellipsoids at 50% probability level for non-H atoms. ::: ![](e-67-0o668-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The C4---H4···O1 intermolecular interaction \[symmetry code: (i) -- x + 2, -- y, -- z + 1\]. ::: ![](e-67-0o668-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### The C18---H18B···O3 intermolecular interaction \[symmetry code: (ii) x -- 1, y, z -- 1\]. ::: ![](e-67-0o668-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e285 .table-wrap} ------------------------- ---------------------------------------- C~19~H~16~O~3~ *F*(000) = 616 *M~r~* = 292.32 *D*~x~ = 1.301 Mg m^−3^ Monoclinic, *P*2~1~/*c* Melting point = 438.7--441.5 K Hall symbol: -P 2ybc Cu *K*α radiation, λ = 1.54187 Å *a* = 8.7186 (2) Å Cell parameters from 16018 reflections *b* = 20.4650 (4) Å θ = 4.3--68.2° *c* = 8.5675 (2) Å µ = 0.71 mm^−1^ β = 102.475 (1)° *T* = 193 K *V* = 1492.57 (6) Å^3^ Platelet, colorless *Z* = 4 0.60 × 0.50 × 0.20 mm ------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e413 .table-wrap} ------------------------------------------------------------ -------------------------------------- Rigaku R-AXIS RAPID diffractometer 2735 independent reflections Radiation source: rotating anode 2509 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.044 Detector resolution: 10.000 pixels mm^-1^ θ~max~ = 68.2°, θ~min~ = 4.3° ω scans *h* = −10→10 Absorption correction: numerical (*NUMABS*; Higashi, 1999) *k* = −24→24 *T*~min~ = 0.677, *T*~max~ = 0.872 *l* = −10→10 26682 measured reflections ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e533 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.034 H-atom parameters constrained *wR*(*F*^2^) = 0.098 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0584*P*)^2^ + 0.2227*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.06 (Δ/σ)~max~ = 0.001 2735 reflections Δρ~max~ = 0.23 e Å^−3^ 202 parameters Δρ~min~ = −0.17 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0131 (8) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e714 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e813 .table-wrap} ------ -------------- ------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.78878 (10) 0.03272 (4) 0.31564 (10) 0.0421 (2) O2 0.82137 (9) 0.20198 (4) 0.16422 (9) 0.0365 (2) O3 1.49637 (9) 0.28351 (4) 0.80270 (10) 0.0420 (2) C1 1.04784 (12) 0.23386 (5) 0.36717 (13) 0.0299 (2) H1 1.0346 0.2786 0.3379 0.036\* C2 0.94725 (12) 0.18810 (5) 0.28459 (13) 0.0297 (2) C3 0.96544 (12) 0.12068 (5) 0.32677 (12) 0.0301 (2) C4 1.08301 (13) 0.10241 (5) 0.45329 (12) 0.0314 (3) H4 1.0931 0.0577 0.4834 0.038\* C5 1.18928 (12) 0.14824 (5) 0.53981 (12) 0.0307 (3) C6 1.31320 (13) 0.13009 (5) 0.66941 (13) 0.0361 (3) H6 1.3272 0.0854 0.6992 0.043\* C7 1.41212 (13) 0.17582 (6) 0.75144 (14) 0.0378 (3) H7 1.4948 0.1629 0.8374 0.045\* C8 1.39183 (12) 0.24263 (6) 0.70863 (13) 0.0335 (3) C9 1.27567 (12) 0.26199 (5) 0.58315 (13) 0.0314 (3) H9 1.2648 0.3069 0.5544 0.038\* C10 1.17134 (12) 0.21514 (5) 0.49575 (12) 0.0288 (2) C11 0.85594 (12) 0.06982 (5) 0.24066 (13) 0.0312 (2) C12 0.83398 (13) 0.06328 (5) 0.06375 (13) 0.0320 (3) C13 0.94512 (15) 0.08664 (5) −0.01647 (14) 0.0386 (3) H13 1.0356 0.1089 0.0408 0.046\* C14 0.92417 (18) 0.07753 (6) −0.18018 (15) 0.0495 (3) H14 1.0017 0.0925 −0.2343 0.059\* C15 0.7911 (2) 0.04677 (6) −0.26460 (16) 0.0550 (4) H15 0.7757 0.0418 −0.3772 0.066\* C16 0.67992 (18) 0.02314 (7) −0.18521 (16) 0.0546 (4) H16 0.5884 0.0018 −0.2432 0.066\* C17 0.70235 (15) 0.03068 (6) −0.02102 (15) 0.0436 (3) H17 0.6274 0.0135 0.0337 0.052\* C18 0.78092 (13) 0.26937 (5) 0.13734 (15) 0.0371 (3) H18A 0.7644 0.2890 0.2367 0.044\* H18B 0.6843 0.2730 0.0545 0.044\* H18C 0.8663 0.2923 0.1024 0.044\* C19 1.47866 (16) 0.35166 (6) 0.77225 (16) 0.0468 (3) H19A 1.4949 0.3611 0.6648 0.056\* H19B 1.5563 0.3757 0.8514 0.056\* H19C 1.3727 0.3652 0.7795 0.056\* ------ -------------- ------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1324 .table-wrap} ----- ------------- ------------ ------------ ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0504 (5) 0.0376 (4) 0.0393 (5) −0.0111 (4) 0.0122 (4) 0.0032 (3) O2 0.0385 (4) 0.0293 (4) 0.0366 (4) 0.0020 (3) −0.0034 (3) −0.0004 (3) O3 0.0390 (5) 0.0418 (5) 0.0411 (5) −0.0081 (3) −0.0008 (4) −0.0024 (4) C1 0.0344 (5) 0.0250 (5) 0.0309 (6) 0.0011 (4) 0.0086 (4) 0.0016 (4) C2 0.0317 (5) 0.0303 (5) 0.0273 (5) 0.0022 (4) 0.0067 (4) 0.0012 (4) C3 0.0344 (5) 0.0282 (5) 0.0291 (5) −0.0002 (4) 0.0095 (4) −0.0009 (4) C4 0.0376 (6) 0.0267 (5) 0.0308 (6) 0.0017 (4) 0.0096 (5) 0.0024 (4) C5 0.0327 (5) 0.0311 (5) 0.0293 (5) 0.0015 (4) 0.0091 (4) 0.0016 (4) C6 0.0387 (6) 0.0333 (6) 0.0353 (6) 0.0025 (4) 0.0053 (5) 0.0056 (4) C7 0.0348 (6) 0.0421 (6) 0.0341 (6) 0.0019 (5) 0.0022 (5) 0.0048 (5) C8 0.0305 (5) 0.0392 (6) 0.0314 (6) −0.0038 (4) 0.0079 (4) −0.0028 (4) C9 0.0329 (5) 0.0298 (5) 0.0324 (6) −0.0009 (4) 0.0093 (4) 0.0000 (4) C10 0.0298 (5) 0.0305 (5) 0.0278 (5) 0.0005 (4) 0.0099 (4) 0.0000 (4) C11 0.0330 (5) 0.0262 (5) 0.0345 (6) 0.0018 (4) 0.0076 (4) 0.0019 (4) C12 0.0375 (6) 0.0243 (5) 0.0330 (6) 0.0023 (4) 0.0053 (4) −0.0010 (4) C13 0.0491 (7) 0.0298 (5) 0.0386 (6) −0.0008 (5) 0.0135 (5) −0.0006 (5) C14 0.0766 (9) 0.0365 (6) 0.0407 (7) 0.0071 (6) 0.0247 (7) 0.0016 (5) C15 0.0892 (11) 0.0407 (7) 0.0322 (7) 0.0188 (7) 0.0062 (7) −0.0044 (5) C16 0.0614 (8) 0.0492 (8) 0.0447 (8) 0.0046 (6) −0.0076 (6) −0.0125 (6) C17 0.0428 (6) 0.0416 (6) 0.0438 (7) −0.0027 (5) 0.0034 (5) −0.0060 (5) C18 0.0373 (6) 0.0318 (6) 0.0390 (6) 0.0040 (4) 0.0014 (5) 0.0045 (4) C19 0.0488 (7) 0.0413 (7) 0.0480 (7) −0.0118 (5) 0.0053 (6) −0.0059 (5) ----- ------------- ------------ ------------ ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1743 .table-wrap} -------------------- -------------- ----------------------- -------------- O1---C11 1.2224 (13) C9---C10 1.4188 (15) O2---C2 1.3637 (13) C9---H9 0.9500 O2---C18 1.4299 (13) C11---C12 1.4921 (15) O3---C8 1.3649 (13) C12---C13 1.3884 (16) O3---C19 1.4211 (15) C12---C17 1.3891 (16) C1---C2 1.3706 (15) C13---C14 1.3873 (17) C1---C10 1.4168 (15) C13---H13 0.9500 C1---H1 0.9500 C14---C15 1.379 (2) C2---C3 1.4265 (14) C14---H14 0.9500 C3---C4 1.3731 (15) C15---C16 1.386 (2) C3---C11 1.4948 (15) C15---H15 0.9500 C4---C5 1.4110 (15) C16---C17 1.3864 (18) C4---H4 0.9500 C16---H16 0.9500 C5---C10 1.4198 (14) C17---H17 0.9500 C5---C6 1.4212 (15) C18---H18A 0.9800 C6---C7 1.3607 (17) C18---H18B 0.9800 C6---H6 0.9500 C18---H18C 0.9800 C7---C8 1.4166 (16) C19---H19A 0.9800 C7---H7 0.9500 C19---H19B 0.9800 C8---C9 1.3668 (16) C19---H19C 0.9800 C2---O2---C18 116.93 (8) O1---C11---C3 120.03 (10) C8---O3---C19 117.45 (9) C12---C11---C3 119.46 (9) C2---C1---C10 120.71 (9) C13---C12---C17 119.52 (11) C2---C1---H1 119.6 C13---C12---C11 121.46 (10) C10---C1---H1 119.6 C17---C12---C11 118.97 (10) O2---C2---C1 124.67 (9) C14---C13---C12 120.04 (12) O2---C2---C3 114.85 (9) C14---C13---H13 120.0 C1---C2---C3 120.42 (10) C12---C13---H13 120.0 C4---C3---C2 119.11 (10) C15---C14---C13 120.24 (13) C4---C3---C11 119.23 (9) C15---C14---H14 119.9 C2---C3---C11 121.62 (9) C13---C14---H14 119.9 C3---C4---C5 121.82 (10) C14---C15---C16 120.00 (12) C3---C4---H4 119.1 C14---C15---H15 120.0 C5---C4---H4 119.1 C16---C15---H15 120.0 C4---C5---C10 118.63 (10) C15---C16---C17 119.92 (13) C4---C5---C6 122.61 (10) C15---C16---H16 120.0 C10---C5---C6 118.76 (10) C17---C16---H16 120.0 C7---C6---C5 120.92 (10) C16---C17---C12 120.23 (12) C7---C6---H6 119.5 C16---C17---H17 119.9 C5---C6---H6 119.5 C12---C17---H17 119.9 C6---C7---C8 120.02 (10) O2---C18---H18A 109.5 C6---C7---H7 120.0 O2---C18---H18B 109.5 C8---C7---H7 120.0 H18A---C18---H18B 109.5 O3---C8---C9 125.00 (10) O2---C18---H18C 109.5 O3---C8---C7 114.12 (10) H18A---C18---H18C 109.5 C9---C8---C7 120.88 (10) H18B---C18---H18C 109.5 C8---C9---C10 120.06 (10) O3---C19---H19A 109.5 C8---C9---H9 120.0 O3---C19---H19B 109.5 C10---C9---H9 120.0 H19A---C19---H19B 109.5 C1---C10---C9 121.37 (10) O3---C19---H19C 109.5 C1---C10---C5 119.28 (10) H19A---C19---H19C 109.5 C9---C10---C5 119.34 (10) H19B---C19---H19C 109.5 O1---C11---C12 120.47 (10) C18---O2---C2---C1 −8.42 (15) C8---C9---C10---C1 178.71 (10) C18---O2---C2---C3 168.77 (9) C8---C9---C10---C5 −0.15 (15) C10---C1---C2---O2 176.97 (9) C4---C5---C10---C1 0.12 (15) C10---C1---C2---C3 −0.07 (16) C6---C5---C10---C1 −179.74 (9) O2---C2---C3---C4 −175.98 (9) C4---C5---C10---C9 179.01 (9) C1---C2---C3---C4 1.34 (16) C6---C5---C10---C9 −0.85 (15) O2---C2---C3---C11 1.64 (14) C4---C3---C11---O1 51.76 (14) C1---C2---C3---C11 178.96 (9) C2---C3---C11---O1 −125.86 (11) C2---C3---C4---C5 −1.91 (16) C4---C3---C11---C12 −126.07 (10) C11---C3---C4---C5 −179.58 (9) C2---C3---C11---C12 56.32 (14) C3---C4---C5---C10 1.18 (16) O1---C11---C12---C13 −156.48 (11) C3---C4---C5---C6 −178.96 (10) C3---C11---C12---C13 21.34 (15) C4---C5---C6---C7 −179.10 (10) O1---C11---C12---C17 20.86 (15) C10---C5---C6---C7 0.75 (16) C3---C11---C12---C17 −161.33 (10) C5---C6---C7---C8 0.35 (17) C17---C12---C13---C14 0.16 (17) C19---O3---C8---C9 2.94 (16) C11---C12---C13---C14 177.48 (10) C19---O3---C8---C7 −176.95 (10) C12---C13---C14---C15 1.68 (18) C6---C7---C8---O3 178.50 (10) C13---C14---C15---C16 −1.88 (19) C6---C7---C8---C9 −1.40 (17) C14---C15---C16---C17 0.2 (2) O3---C8---C9---C10 −178.60 (9) C15---C16---C17---C12 1.61 (19) C7---C8---C9---C10 1.28 (16) C13---C12---C17---C16 −1.80 (17) C2---C1---C10---C9 −179.52 (9) C11---C12---C17---C16 −179.19 (11) C2---C1---C10---C5 −0.65 (15) -------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2500 .table-wrap} --------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C4---H4···O1^i^ 0.95 2.58 3.4439 (13) 151 C18---H18B···O3^ii^ 0.98 2.42 3.3742 (15) 164 --------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (i) −*x*+2, −*y*, −*z*+1; (ii) *x*−1, *y*, *z*−1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- --------- ------- ------------- ------------- C4---H4⋯O1^i^ 0.95 2.58 3.4439 (13) 151 C18---H18*B*⋯O3^ii^ 0.98 2.42 3.3742 (15) 164 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:17.975036
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052025/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o668", "authors": [ { "first": "Yuichi", "last": "Kato" }, { "first": "Ryo", "last": "Takeuchi" }, { "first": "Toyokazu", "last": "Muto" }, { "first": "Akiko", "last": "Okamoto" }, { "first": "Noriyuki", "last": "Yonezawa" } ] }
PMC3052026
Related literature {#sec1} ================== For background to proton-transfer compounds, see: Aghabozorg *et al.* (2008[@bb1]). For examples of proton transfer from pyridine-2,6-dicarb­oxy­lic acid (pydcH~2~) to different amine base ligands, see: Eshtiagh-Hosseini *et al.* (2010*a* [@bb4],**b*[@bb2],c* [@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} (C~10~H~10~NO)~2~\[Cu(C~7~H~3~NO~4~)~2~\]·CH~4~O·H~2~O*M* *~r~* = 764.20Triclinic,*a* = 10.116 (2) Å*b* = 12.895 (3) Å*c* = 14.816 (3) Åα = 64.45 (3)°β = 76.23 (3)°γ = 83.74 (3)°*V* = 1693.5 (8) Å^3^*Z* = 2Mo *K*α radiationμ = 0.72 mm^−1^*T* = 298 K0.5 × 0.4 × 0.3 mm ### Data collection {#sec2.1.2} Stoe IPDS II diffractometerAbsorption correction: numerical (*X-SHAPE*; Stoe & Cie, 2005[@bb8]) *T* ~min~ = 0.714, *T* ~max~ = 0.80318924 measured reflections9061 independent reflections7185 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.028 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.038*wR*(*F* ^2^) = 0.109*S* = 1.019061 reflections498 parameters2 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.70 e Å^−3^Δρ~min~ = −0.45 e Å^−3^ {#d5e733} Data collection: *X-AREA* (Stoe & Cie, 2005[@bb8]); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb5]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S160053681100674X/vm2078sup1.cif](http://dx.doi.org/10.1107/S160053681100674X/vm2078sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100674X/vm2078Isup2.hkl](http://dx.doi.org/10.1107/S160053681100674X/vm2078Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?vm2078&file=vm2078sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?vm2078sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?vm2078&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [VM2078](http://scripts.iucr.org/cgi-bin/sendsup?vm2078)). The authors thank the Faculty of Chemistry, Islamic Azad University, North Tehran Branch, for financial support. Comment ======= Our research focusses on water soluble proton transfer compounds as novel self-assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported examples of proton transfer from pyridine-2,6-dicarboxylic acid (pydcH~2~) to different amine base ligands (Eshtiagh-Hosseini *et al.* 2010*a*,**b*,c*). This has resulted in the formation of some novel proton transfer compounds based on carboxylic acid ligand derivatives (Aghabozorg *et al.* 2008). The molecular structure of the title compound is presented in Fig. 1. In the title compound, Cu^II^ ion is six-coordinated by two pyridine-2,6-dicarboxylate, or (pydc)^2-^ groups and each (pydc)^2-^ ligand is coordinating through one pyridine N atom and two carboxylate O atoms. The atoms N1 and N2 of the two (pydc)^2-^ fragments occupy the axial positions, while atoms O1, O3, O5, and O7 form the equatorial plane \[with Cu---O distances ranging from 2.1799 (16) to 2.2070 (16) Å\]. The N1---Cu1---N2 angle \[174.84 (5)°\] deviates little from linearity. The O3---Cu1---O7 and O1---Cu1---O5 bond angles are equal to 91.22 (6)° and 94.25 (6)°, respectively. So the geometry of the resulting CuN2O4 coordination can be described as distorted octahedral. The packing diagram of the title compound is shown in Fig. 2. It is interesting to note that the space between the layers of \[Cu(pydc)~2~\]^2-^ units is occupied by (8hmqH)^+^ cations and uncoordinated water and methanol molecules, which the latter bridge the anionic and cationic units *via* hydrogen bonds (Fig 2 and Table 1). In the crystal structure, there are several intermolecular O---H···O, N---H···O, C---H···O and intramolecular N---H···O hydrogen bonds (Fig 2 and Table 1). There are also extensive π--π interactions (Fig. 3) between the rings of (8hmqH)^+^ fragments with centroid--centroid distances for *Cg*7---*Cg*10^vi^, *Cg*10---*Cg*11^vii^, *Cg*7---*Cg*7^iv^ and *Cg*10---*Cg*7^viii^ equal to 3.4567 (13), 3.5342 (14), 3.6941 (14) and 3.4568 (13) Å, respectively, where *Cg*7, *Cg*10 and *Cg*11 are the centroids of N3/C16---C19/C24, N4/C26---C29/C34 and C29---C34, respectively (symmetry codes: iv: 1 - *x*,2 - *y*,1 - *z*; vi: *x*,1 + *y*,*z*; vii:1 - *x*,-*y*,2 - *z*; viii: *x*,-1 + *y*,*z*). In the crystal packing a wide range of non-covalent interactions, consisting of hydrogen bonding and π ···π interactions plays an important role in the stabilization of the three-dimensional supramolecular network. Experimental {#experimental} ============ A solution of 8-hydroxy-2-methylquinoline (0.320 g, 2 mmol) in methanol (10 ml) and 2,6-pyridine dicarboxylic acid (0.170 g, 1 mmol) in methanol (10 ml) were mixed and stirrered until a clear solution was obtained. A solution of Cu(NO~3~)~2~.3H~2~0 (0.121 g, 0.5 mmol) in methanol (5 ml) was added to the acid-base mixture and stirred for 30 min. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation after two weeks. Refinement {#refinement} ========== The hydrogen atoms bonded to O and N atoms were found in difference Fourier map and refined isotropically. The water hydrogen atoms were refined with *U*iso(H) = 1.2 *U*eq(O) and distance restraints of O---H 0.82 (3) and 0.82 (4) Å for H12A and H12B, respectively. The C---H protons were positioned geometrically and refined as riding atoms with C---H = 0.93 Å and *U*iso(H) = 1.2 *U*eq(C) for aromatic C---H groups, C---H = 0.96 Å and *U*iso(H) = 1.5 *Ueq*(C) for methyl group. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. ::: ![](e-67-0m379-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The packing diagram of the title compound. The intermolecular N---H···O, O---H···O and C---H···O hydrogen bonds are shown as green dashed lines. ::: ![](e-67-0m379-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### The packing diagram of the title compound showing π-π interactions between (8hmqH)+ fragments. Only (8hmqH)+ fragments without hydrogen atoms are shown for clarity. Cg7, Cg10 and Cg11 are the centroids of rings N3/C16---C19/C24, N4/C26---C29/C34 and C29---C34, respectively (symmetry codes: iv: 1 - x,2 - y,1 - z; vi: x,1 + y,z; vii:1 - x,-y,2 - z; viii: x,-1 + y,z). ::: ![](e-67-0m379-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e339 .table-wrap} -------------------------------------------------------- --------------------------------------- (C~10~H~10~NO)~2~\[Cu(C~7~H~3~NO~4~)~2~\]·CH~4~O·H~2~O *Z* = 2 *M~r~* = 764.20 *F*(000) = 790 Triclinic, *P*1 *D*~x~ = 1.499 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 10.116 (2) Å Cell parameters from 9061 reflections *b* = 12.895 (3) Å θ = 2.3--29.2° *c* = 14.816 (3) Å µ = 0.72 mm^−1^ α = 64.45 (3)° *T* = 298 K β = 76.23 (3)° Block, green γ = 83.74 (3)° 0.5 × 0.4 × 0.3 mm *V* = 1693.5 (8) Å^3^ -------------------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e492 .table-wrap} ---------------------------------------------------------------- -------------------------------------- Stoe IPDS II diffractometer 9061 independent reflections Radiation source: fine-focus sealed tube 7185 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.028 Detector resolution: 0.15 mm pixels mm^-1^ θ~max~ = 29.2°, θ~min~ = 2.3° rotation method scans *h* = −13→13 Absorption correction: numerical (*X-SHAPE*; Stoe & Cie, 2005) *k* = −17→17 *T*~min~ = 0.714, *T*~max~ = 0.803 *l* = −20→18 18924 measured reflections ---------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e610 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.038 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.109 H atoms treated by a mixture of independent and constrained refinement *S* = 1.01 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0728*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 9061 reflections (Δ/σ)~max~ = 0.002 498 parameters Δρ~max~ = 0.70 e Å^−3^ 2 restraints Δρ~min~ = −0.45 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e764 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e863 .table-wrap} ------ --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cu1 0.987953 (19) 0.531740 (17) 0.743974 (16) 0.03101 (7) N1 0.88383 (13) 0.54422 (11) 0.86756 (11) 0.0300 (3) N2 1.09007 (13) 0.53417 (11) 0.61416 (10) 0.0279 (3) O5 0.89361 (13) 0.67395 (12) 0.63268 (11) 0.0447 (3) O3 0.81065 (14) 0.42206 (13) 0.78562 (11) 0.0460 (3) O1 1.11637 (13) 0.64363 (13) 0.76480 (11) 0.0440 (3) O7 1.12019 (15) 0.38075 (12) 0.79369 (10) 0.0450 (3) O8 1.28336 (16) 0.28824 (13) 0.72425 (12) 0.0545 (4) O2 1.11205 (17) 0.73177 (15) 0.86636 (13) 0.0587 (4) O4 0.61123 (14) 0.37723 (14) 0.89804 (13) 0.0536 (4) C1 0.92907 (16) 0.61020 (14) 0.90270 (13) 0.0317 (3) C5 0.76455 (16) 0.48968 (14) 0.91421 (13) 0.0331 (3) C7 0.72560 (18) 0.42323 (15) 0.86147 (14) 0.0371 (4) C6 1.06461 (17) 0.66757 (15) 0.84037 (14) 0.0368 (4) C8 1.06465 (16) 0.61551 (13) 0.52592 (13) 0.0305 (3) C14 1.19898 (18) 0.36591 (15) 0.72033 (14) 0.0351 (3) C2 0.8541 (2) 0.62252 (17) 0.98891 (15) 0.0420 (4) H2 0.8858 0.6685 1.0132 0.050\* C12 1.18579 (16) 0.45418 (14) 0.61431 (13) 0.0313 (3) O9 0.66369 (14) 0.76955 (12) 0.66892 (13) 0.0495 (4) O6 0.92311 (15) 0.77708 (13) 0.46303 (12) 0.0573 (4) C9 1.13573 (19) 0.61976 (16) 0.43302 (14) 0.0400 (4) H9 1.1166 0.6763 0.3723 0.048\* C10 1.2365 (2) 0.53816 (19) 0.43151 (15) 0.0481 (5) H10 1.2865 0.5394 0.3696 0.058\* N3 0.45289 (14) 0.91753 (13) 0.63308 (11) 0.0325 (3) C23 0.68490 (17) 0.87638 (16) 0.65494 (15) 0.0375 (4) C24 0.57362 (16) 0.95441 (15) 0.63553 (13) 0.0325 (3) C11 1.2618 (2) 0.45481 (18) 0.52344 (15) 0.0452 (4) H11 1.3295 0.3998 0.5239 0.054\* C16 0.34540 (17) 0.98636 (16) 0.61397 (13) 0.0372 (4) C3 0.7318 (2) 0.5658 (2) 1.03830 (16) 0.0487 (5) H3 0.6807 0.5730 1.0965 0.058\* C15 0.21709 (19) 0.9375 (2) 0.61694 (17) 0.0477 (5) H15A 0.2375 0.8892 0.5809 0.072\* H15B 0.1575 0.9988 0.5850 0.072\* H15C 0.1735 0.8929 0.6868 0.072\* C4 0.68596 (19) 0.49856 (19) 1.00097 (15) 0.0452 (4) H4 0.6038 0.4598 1.0334 0.054\* O10 0.52372 (17) 0.25204 (13) 0.83028 (15) 0.0587 (4) N4 0.38002 (15) 0.08098 (13) 0.84401 (12) 0.0349 (3) C21 0.8161 (2) 1.0311 (2) 0.64068 (19) 0.0548 (5) H21 0.8979 1.0560 0.6426 0.066\* C26 0.30049 (18) 0.00004 (17) 0.85244 (14) 0.0400 (4) C19 0.58640 (19) 1.06926 (16) 0.61857 (14) 0.0389 (4) C33 0.58524 (19) 0.14932 (17) 0.85447 (16) 0.0415 (4) C25 0.1594 (2) 0.0336 (2) 0.83583 (19) 0.0551 (5) H25A 0.1027 0.0378 0.8961 0.083\* H25B 0.1237 −0.0227 0.8219 0.083\* H25C 0.1609 0.1072 0.7787 0.083\* C17 0.3561 (2) 1.10237 (18) 0.59373 (15) 0.0460 (5) H17 0.2828 1.1521 0.5778 0.055\* C22 0.80401 (19) 0.9164 (2) 0.65722 (18) 0.0490 (5) H22 0.8780 0.8667 0.6700 0.059\* C34 0.50978 (17) 0.05901 (15) 0.86173 (13) 0.0337 (3) C18 0.4726 (2) 1.14235 (17) 0.59722 (16) 0.0475 (5) H18 0.4775 1.2189 0.5854 0.057\* C20 0.7101 (2) 1.10638 (19) 0.62198 (18) 0.0508 (5) H20 0.7194 1.1819 0.6115 0.061\* C32 0.7142 (2) 0.1243 (2) 0.87438 (17) 0.0510 (5) H32 0.7665 0.1821 0.8698 0.061\* C29 0.56299 (19) −0.05345 (16) 0.88863 (14) 0.0399 (4) C27 0.3516 (2) −0.11168 (18) 0.87752 (16) 0.0474 (5) H27 0.2976 −0.1686 0.8825 0.057\* C28 0.4794 (2) −0.13769 (17) 0.89464 (16) 0.0478 (5) H28 0.5124 −0.2123 0.9106 0.057\* C31 0.7666 (2) 0.0131 (2) 0.90131 (18) 0.0567 (6) H31 0.8536 −0.0018 0.9148 0.068\* C30 0.6951 (2) −0.0749 (2) 0.90864 (18) 0.0537 (5) H30 0.7330 −0.1482 0.9266 0.064\* C13 0.95099 (17) 0.69800 (15) 0.53946 (15) 0.0371 (4) O11 0.37869 (17) 0.70218 (16) 0.6708 (2) 0.0806 (7) C35 0.4497 (3) 0.6032 (2) 0.6755 (3) 0.0786 (9) H35A 0.5415 0.6223 0.6374 0.118\* H35B 0.4066 0.5655 0.6467 0.118\* H35C 0.4505 0.5528 0.7456 0.118\* O12 0.9690 (3) 0.1914 (2) 0.96545 (19) 0.0947 (8) H3A 0.446 (2) 0.8493 (19) 0.6449 (16) 0.035 (5)\* H4A 0.342 (2) 0.156 (2) 0.8246 (19) 0.054 (7)\* H9A 0.732 (3) 0.738 (3) 0.660 (2) 0.070 (9)\* H10A 0.564 (3) 0.296 (3) 0.846 (2) 0.075 (9)\* H11A 0.298 (4) 0.689 (3) 0.702 (3) 0.094 (11)\* H12A 1.029 (3) 0.227 (3) 0.917 (2) 0.113\* H12B 0.927 (4) 0.221 (3) 1.003 (3) 0.113\* ------ --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1932 .table-wrap} ----- -------------- -------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cu1 0.02831 (10) 0.03006 (11) 0.03525 (12) 0.00009 (7) −0.00293 (7) −0.01629 (8) N1 0.0281 (6) 0.0299 (6) 0.0327 (7) −0.0011 (5) −0.0045 (5) −0.0146 (6) N2 0.0274 (6) 0.0269 (6) 0.0296 (7) 0.0023 (5) −0.0063 (5) −0.0126 (5) O5 0.0377 (6) 0.0417 (7) 0.0478 (8) 0.0125 (5) −0.0056 (6) −0.0172 (6) O3 0.0490 (7) 0.0507 (8) 0.0423 (8) −0.0129 (6) 0.0001 (6) −0.0253 (6) O1 0.0337 (6) 0.0550 (8) 0.0484 (8) −0.0097 (5) 0.0033 (5) −0.0304 (7) O7 0.0557 (8) 0.0449 (7) 0.0320 (7) 0.0042 (6) −0.0071 (6) −0.0161 (6) O8 0.0634 (9) 0.0454 (8) 0.0517 (9) 0.0267 (7) −0.0230 (7) −0.0183 (7) O2 0.0605 (9) 0.0664 (10) 0.0627 (10) −0.0269 (8) −0.0034 (7) −0.0386 (8) O4 0.0424 (7) 0.0590 (9) 0.0635 (10) −0.0217 (6) 0.0021 (7) −0.0316 (8) C1 0.0317 (7) 0.0315 (8) 0.0344 (8) 0.0016 (6) −0.0082 (6) −0.0160 (7) C5 0.0301 (7) 0.0335 (8) 0.0335 (8) −0.0038 (6) −0.0032 (6) −0.0130 (7) C7 0.0377 (8) 0.0354 (9) 0.0378 (9) −0.0072 (7) −0.0048 (7) −0.0149 (7) C6 0.0349 (8) 0.0376 (9) 0.0413 (10) −0.0057 (7) −0.0065 (7) −0.0194 (8) C8 0.0291 (7) 0.0269 (7) 0.0348 (8) 0.0005 (6) −0.0098 (6) −0.0108 (6) C14 0.0390 (8) 0.0329 (8) 0.0356 (9) 0.0057 (6) −0.0129 (7) −0.0153 (7) C2 0.0466 (10) 0.0473 (10) 0.0410 (10) 0.0029 (8) −0.0099 (8) −0.0273 (9) C12 0.0329 (7) 0.0307 (8) 0.0335 (8) 0.0061 (6) −0.0093 (6) −0.0167 (7) O9 0.0309 (6) 0.0377 (7) 0.0792 (11) 0.0076 (5) −0.0099 (7) −0.0266 (7) O6 0.0513 (8) 0.0447 (8) 0.0548 (9) 0.0159 (6) −0.0168 (7) −0.0022 (7) C9 0.0460 (9) 0.0398 (9) 0.0307 (9) 0.0008 (7) −0.0107 (7) −0.0105 (7) C10 0.0538 (11) 0.0567 (12) 0.0327 (9) 0.0082 (9) −0.0030 (8) −0.0229 (9) N3 0.0306 (7) 0.0334 (7) 0.0327 (7) 0.0039 (5) −0.0044 (5) −0.0153 (6) C23 0.0317 (8) 0.0381 (9) 0.0422 (10) 0.0035 (7) −0.0053 (7) −0.0186 (8) C24 0.0308 (7) 0.0367 (8) 0.0302 (8) 0.0021 (6) −0.0037 (6) −0.0162 (7) C11 0.0467 (10) 0.0489 (11) 0.0414 (10) 0.0176 (8) −0.0082 (8) −0.0249 (9) C16 0.0310 (8) 0.0473 (10) 0.0292 (8) 0.0087 (7) −0.0048 (6) −0.0151 (7) C3 0.0452 (10) 0.0655 (13) 0.0383 (10) 0.0003 (9) 0.0021 (8) −0.0302 (10) C15 0.0321 (8) 0.0600 (12) 0.0479 (11) 0.0052 (8) −0.0096 (8) −0.0207 (10) C4 0.0350 (9) 0.0570 (12) 0.0390 (10) −0.0082 (8) 0.0031 (7) −0.0197 (9) O10 0.0600 (9) 0.0412 (8) 0.0869 (13) −0.0020 (7) −0.0339 (9) −0.0282 (8) N4 0.0353 (7) 0.0378 (8) 0.0338 (8) −0.0020 (6) −0.0096 (6) −0.0155 (6) C21 0.0419 (10) 0.0660 (14) 0.0639 (14) −0.0103 (9) −0.0095 (9) −0.0328 (12) C26 0.0380 (9) 0.0491 (10) 0.0346 (9) −0.0105 (7) −0.0024 (7) −0.0195 (8) C19 0.0434 (9) 0.0373 (9) 0.0353 (9) 0.0007 (7) −0.0040 (7) −0.0171 (7) C33 0.0429 (9) 0.0444 (10) 0.0429 (10) −0.0047 (8) −0.0140 (8) −0.0201 (8) C25 0.0367 (10) 0.0753 (15) 0.0601 (14) −0.0075 (9) −0.0082 (9) −0.0341 (12) C17 0.0470 (10) 0.0436 (10) 0.0400 (10) 0.0173 (8) −0.0110 (8) −0.0139 (8) C22 0.0334 (9) 0.0571 (12) 0.0597 (13) 0.0040 (8) −0.0121 (8) −0.0275 (10) C34 0.0360 (8) 0.0367 (8) 0.0297 (8) −0.0025 (6) −0.0090 (6) −0.0136 (7) C18 0.0566 (12) 0.0333 (9) 0.0472 (11) 0.0059 (8) −0.0067 (9) −0.0155 (8) C20 0.0561 (12) 0.0436 (11) 0.0563 (13) −0.0106 (9) −0.0070 (10) −0.0246 (10) C32 0.0411 (10) 0.0705 (14) 0.0522 (12) −0.0073 (9) −0.0134 (9) −0.0323 (11) C29 0.0444 (9) 0.0401 (9) 0.0322 (9) 0.0020 (7) −0.0087 (7) −0.0128 (7) C27 0.0549 (11) 0.0419 (10) 0.0439 (11) −0.0167 (8) −0.0006 (9) −0.0181 (9) C28 0.0617 (12) 0.0349 (9) 0.0419 (11) −0.0013 (8) −0.0065 (9) −0.0138 (8) C31 0.0369 (10) 0.0833 (17) 0.0556 (13) 0.0081 (10) −0.0177 (9) −0.0323 (12) C30 0.0521 (11) 0.0576 (13) 0.0495 (12) 0.0180 (10) −0.0198 (10) −0.0203 (10) C13 0.0302 (8) 0.0301 (8) 0.0455 (10) 0.0033 (6) −0.0095 (7) −0.0107 (7) O11 0.0351 (8) 0.0562 (10) 0.139 (2) −0.0101 (7) 0.0123 (10) −0.0444 (12) C35 0.0630 (15) 0.0560 (15) 0.107 (2) −0.0065 (12) 0.0113 (15) −0.0386 (16) O12 0.125 (2) 0.0851 (16) 0.0707 (15) −0.0470 (14) 0.0092 (13) −0.0350 (12) ----- -------------- -------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2999 .table-wrap} ---------------------- -------------- ----------------------- -------------- Cu1---N2 1.9433 (15) C15---H15A 0.9600 Cu1---N1 1.9461 (15) C15---H15B 0.9600 Cu1---O5 2.1799 (16) C15---H15C 0.9600 Cu1---O7 2.1880 (16) C4---H4 0.9300 Cu1---O1 2.2018 (14) O10---C33 1.337 (3) Cu1---O3 2.2070 (16) O10---H10A 0.87 (3) N1---C1 1.336 (2) N4---C26 1.332 (2) N1---C5 1.341 (2) N4---C34 1.375 (2) N2---C12 1.335 (2) N4---H4A 0.95 (3) N2---C8 1.339 (2) C21---C20 1.360 (3) O5---C13 1.276 (2) C21---C22 1.405 (3) O3---C7 1.247 (2) C21---H21 0.9300 O1---C6 1.268 (2) C26---C27 1.396 (3) O7---C14 1.260 (2) C26---C25 1.492 (3) O8---C14 1.234 (2) C19---C20 1.407 (3) O2---C6 1.230 (2) C19---C18 1.412 (3) O4---C7 1.248 (2) C33---C32 1.379 (3) C1---C2 1.386 (3) C33---C34 1.413 (3) C1---C6 1.520 (2) C25---H25A 0.9600 C5---C4 1.385 (3) C25---H25B 0.9600 C5---C7 1.516 (2) C25---H25C 0.9600 C8---C9 1.374 (3) C17---C18 1.357 (3) C8---C13 1.517 (2) C17---H17 0.9300 C14---C12 1.518 (2) C22---H22 0.9300 C2---C3 1.380 (3) C34---C29 1.409 (3) C2---H2 0.9300 C18---H18 0.9300 C12---C11 1.380 (3) C20---H20 0.9300 O9---C23 1.336 (2) C32---C31 1.392 (3) O9---H9A 0.78 (3) C32---H32 0.9300 O6---C13 1.223 (2) C29---C28 1.409 (3) C9---C10 1.387 (3) C29---C30 1.410 (3) C9---H9 0.9300 C27---C28 1.355 (3) C10---C11 1.385 (3) C27---H27 0.9300 C10---H10 0.9300 C28---H28 0.9300 N3---C16 1.330 (2) C31---C30 1.362 (4) N3---C24 1.372 (2) C31---H31 0.9300 N3---H3A 0.83 (2) C30---H30 0.9300 C23---C22 1.375 (3) O11---C35 1.378 (3) C23---C24 1.421 (2) O11---H11A 0.83 (4) C24---C19 1.407 (3) C35---H35A 0.9600 C11---H11 0.9300 C35---H35B 0.9600 C16---C17 1.404 (3) C35---H35C 0.9600 C16---C15 1.487 (3) O12---H12A 0.82 (3) C3---C4 1.378 (3) O12---H12B 0.82 (4) C3---H3 0.9300 N2---Cu1---N1 174.84 (5) C16---C15---H15B 109.5 N2---Cu1---O5 77.26 (6) H15A---C15---H15B 109.5 N1---Cu1---O5 98.34 (6) C16---C15---H15C 109.5 N2---Cu1---O7 78.01 (6) H15A---C15---H15C 109.5 N1---Cu1---O7 106.57 (6) H15B---C15---H15C 109.5 O5---Cu1---O7 154.84 (6) C3---C4---C5 118.75 (18) N2---Cu1---O1 100.11 (6) C3---C4---H4 120.6 N1---Cu1---O1 77.38 (6) C5---C4---H4 120.6 O5---Cu1---O1 94.25 (6) C33---O10---H10A 110.9 (19) O7---Cu1---O1 94.57 (6) C26---N4---C34 122.97 (16) N2---Cu1---O3 104.79 (6) C26---N4---H4A 115.8 (15) N1---Cu1---O3 77.75 (6) C34---N4---H4A 121.2 (15) O5---Cu1---O3 90.63 (6) C20---C21---C22 121.13 (19) O7---Cu1---O3 91.22 (6) C20---C21---H21 119.4 O1---Cu1---O3 155.09 (5) C22---C21---H21 119.4 C1---N1---C5 120.77 (15) N4---C26---C27 118.97 (17) C1---N1---Cu1 119.89 (12) N4---C26---C25 117.88 (18) C5---N1---Cu1 119.29 (12) C27---C26---C25 123.14 (19) C12---N2---C8 120.70 (15) C24---C19---C20 119.47 (17) C12---N2---Cu1 119.15 (12) C24---C19---C18 117.23 (18) C8---N2---Cu1 120.15 (11) C20---C19---C18 123.29 (19) C13---O5---Cu1 114.39 (11) O10---C33---C32 125.54 (19) C7---O3---Cu1 112.59 (12) O10---C33---C34 116.62 (17) C6---O1---Cu1 113.61 (11) C32---C33---C34 117.83 (19) C14---O7---Cu1 113.22 (11) C26---C25---H25A 109.5 N1---C1---C2 120.51 (16) C26---C25---H25B 109.5 N1---C1---C6 114.34 (15) H25A---C25---H25B 109.5 C2---C1---C6 125.15 (16) C26---C25---H25C 109.5 N1---C5---C4 121.03 (17) H25A---C25---H25C 109.5 N1---C5---C7 113.87 (15) H25B---C25---H25C 109.5 C4---C5---C7 125.08 (16) C18---C17---C16 120.42 (17) O3---C7---O4 127.36 (18) C18---C17---H17 119.8 O3---C7---C5 116.32 (15) C16---C17---H17 119.8 O4---C7---C5 116.30 (17) C23---C22---C21 121.22 (19) O2---C6---O1 126.85 (17) C23---C22---H22 119.4 O2---C6---C1 118.45 (17) C21---C22---H22 119.4 O1---C6---C1 114.70 (15) N4---C34---C29 119.13 (16) N2---C8---C9 121.44 (15) N4---C34---C33 119.13 (16) N2---C8---C13 113.94 (15) C29---C34---C33 121.73 (17) C9---C8---C13 124.61 (15) C17---C18---C19 120.87 (19) O8---C14---O7 128.10 (17) C17---C18---H18 119.6 O8---C14---C12 116.60 (16) C19---C18---H18 119.6 O7---C14---C12 115.30 (14) C21---C20---C19 119.6 (2) C3---C2---C1 119.29 (18) C21---C20---H20 120.2 C3---C2---H2 120.4 C19---C20---H20 120.2 C1---C2---H2 120.4 C33---C32---C31 120.5 (2) N2---C12---C11 120.58 (16) C33---C32---H32 119.8 N2---C12---C14 114.29 (15) C31---C32---H32 119.8 C11---C12---C14 125.13 (15) C28---C29---C34 117.42 (17) C23---O9---H9A 111 (2) C28---C29---C30 124.26 (19) C8---C9---C10 118.74 (17) C34---C29---C30 118.31 (19) C8---C9---H9 120.6 C28---C27---C26 120.44 (19) C10---C9---H9 120.6 C28---C27---H27 119.8 C11---C10---C9 119.10 (18) C26---C27---H27 119.8 C11---C10---H10 120.5 C27---C28---C29 121.04 (19) C9---C10---H10 120.5 C27---C28---H28 119.5 C16---N3---C24 122.87 (16) C29---C28---H28 119.5 C16---N3---H3A 118.3 (14) C30---C31---C32 122.37 (19) C24---N3---H3A 118.8 (14) C30---C31---H31 118.8 O9---C23---C22 125.73 (17) C32---C31---H31 118.8 O9---C23---C24 116.22 (16) C31---C30---C29 119.3 (2) C22---C23---C24 118.04 (18) C31---C30---H30 120.3 N3---C24---C19 119.72 (15) C29---C30---H30 120.3 N3---C24---C23 119.76 (16) O6---C13---O5 127.45 (17) C19---C24---C23 120.52 (16) O6---C13---C8 118.55 (18) C12---C11---C10 119.43 (16) O5---C13---C8 113.99 (15) C12---C11---H11 120.3 C35---O11---H11A 112 (2) C10---C11---H11 120.3 O11---C35---H35A 109.5 N3---C16---C17 118.85 (18) O11---C35---H35B 109.5 N3---C16---C15 118.99 (18) H35A---C35---H35B 109.5 C17---C16---C15 122.15 (16) O11---C35---H35C 109.5 C4---C3---C2 119.63 (18) H35A---C35---H35C 109.5 C4---C3---H3 120.2 H35B---C35---H35C 109.5 C2---C3---H3 120.2 H12A---O12---H12B 120 (4) C16---C15---H15A 109.5 O5---Cu1---N1---C1 −90.30 (13) Cu1---N2---C12---C14 2.18 (19) O7---Cu1---N1---C1 93.28 (13) O8---C14---C12---N2 177.89 (16) O1---Cu1---N1---C1 2.21 (12) O7---C14---C12---N2 −1.2 (2) O3---Cu1---N1---C1 −179.13 (13) O8---C14---C12---C11 −1.1 (3) O5---Cu1---N1---C5 87.16 (13) O7---C14---C12---C11 179.80 (18) O7---Cu1---N1---C5 −89.26 (13) N2---C8---C9---C10 −0.5 (3) O1---Cu1---N1---C5 179.67 (13) C13---C8---C9---C10 −179.33 (18) O3---Cu1---N1---C5 −1.67 (12) C8---C9---C10---C11 0.3 (3) O5---Cu1---N2---C12 −177.07 (13) C16---N3---C24---C19 0.8 (3) O7---Cu1---N2---C12 −1.75 (12) C16---N3---C24---C23 −179.05 (16) O1---Cu1---N2---C12 90.82 (13) O9---C23---C24---N3 0.6 (3) O3---Cu1---N2---C12 −89.82 (13) C22---C23---C24---N3 −179.72 (18) O5---Cu1---N2---C8 3.17 (12) O9---C23---C24---C19 −179.23 (17) O7---Cu1---N2---C8 178.49 (13) C22---C23---C24---C19 0.4 (3) O1---Cu1---N2---C8 −88.94 (13) N2---C12---C11---C10 −1.2 (3) O3---Cu1---N2---C8 90.42 (13) C14---C12---C11---C10 177.78 (19) N2---Cu1---O5---C13 −4.78 (13) C9---C10---C11---C12 0.5 (3) N1---Cu1---O5---C13 172.49 (13) C24---N3---C16---C17 1.1 (3) O7---Cu1---O5---C13 −15.6 (2) C24---N3---C16---C15 −177.64 (17) O1---Cu1---O5---C13 94.64 (14) C1---C2---C3---C4 −0.4 (3) O3---Cu1---O5---C13 −109.81 (14) C2---C3---C4---C5 0.0 (3) N2---Cu1---O3---C7 −171.70 (13) N1---C5---C4---C3 0.7 (3) N1---Cu1---O3---C7 3.68 (13) C7---C5---C4---C3 −177.43 (18) O5---Cu1---O3---C7 −94.71 (14) C34---N4---C26---C27 −1.9 (3) O7---Cu1---O3---C7 110.38 (14) C34---N4---C26---C25 177.28 (18) O1---Cu1---O3---C7 6.8 (2) N3---C24---C19---C20 179.49 (17) N2---Cu1---O1---C6 172.75 (13) C23---C24---C19---C20 −0.6 (3) N1---Cu1---O1---C6 −2.65 (13) N3---C24---C19---C18 −1.4 (3) O5---Cu1---O1---C6 94.96 (14) C23---C24---C19---C18 178.43 (17) O7---Cu1---O1---C6 −108.63 (14) N3---C16---C17---C18 −2.3 (3) O3---Cu1---O1---C6 −5.8 (2) C15---C16---C17---C18 176.36 (19) N2---Cu1---O7---C14 1.00 (13) O9---C23---C22---C21 179.5 (2) N1---Cu1---O7---C14 −176.57 (13) C24---C23---C22---C21 −0.1 (3) O5---Cu1---O7---C14 11.8 (2) C20---C21---C22---C23 0.1 (4) O1---Cu1---O7---C14 −98.39 (14) C26---N4---C34---C29 0.9 (3) O3---Cu1---O7---C14 105.86 (14) C26---N4---C34---C33 −177.81 (18) C5---N1---C1---C2 0.7 (2) O10---C33---C34---N4 0.0 (3) Cu1---N1---C1---C2 178.13 (13) C32---C33---C34---N4 178.91 (18) C5---N1---C1---C6 −179.02 (14) O10---C33---C34---C29 −178.76 (18) Cu1---N1---C1---C6 −1.60 (19) C32---C33---C34---C29 0.2 (3) C1---N1---C5---C4 −1.1 (3) C16---C17---C18---C19 1.7 (3) Cu1---N1---C5---C4 −178.51 (14) C24---C19---C18---C17 0.2 (3) C1---N1---C5---C7 177.25 (14) C20---C19---C18---C17 179.2 (2) Cu1---N1---C5---C7 −0.19 (19) C22---C21---C20---C19 −0.3 (4) Cu1---O3---C7---O4 174.11 (17) C24---C19---C20---C21 0.6 (3) Cu1---O3---C7---C5 −4.8 (2) C18---C19---C20---C21 −178.4 (2) N1---C5---C7---O3 3.6 (2) O10---C33---C32---C31 178.4 (2) C4---C5---C7---O3 −178.13 (18) C34---C33---C32---C31 −0.4 (3) N1---C5---C7---O4 −175.40 (16) N4---C34---C29---C28 0.8 (3) C4---C5---C7---O4 2.8 (3) C33---C34---C29---C28 179.49 (19) Cu1---O1---C6---O2 −176.75 (17) N4---C34---C29---C30 −178.67 (17) Cu1---O1---C6---C1 2.55 (19) C33---C34---C29---C30 0.1 (3) N1---C1---C6---O2 178.49 (17) N4---C26---C27---C28 1.1 (3) C2---C1---C6---O2 −1.2 (3) C25---C26---C27---C28 −178.0 (2) N1---C1---C6---O1 −0.9 (2) C26---C27---C28---C29 0.6 (3) C2---C1---C6---O1 179.41 (17) C34---C29---C28---C27 −1.5 (3) C12---N2---C8---C9 −0.1 (2) C30---C29---C28---C27 177.9 (2) Cu1---N2---C8---C9 179.63 (13) C33---C32---C31---C30 0.4 (4) C12---N2---C8---C13 178.78 (14) C32---C31---C30---C29 −0.2 (4) Cu1---N2---C8---C13 −1.46 (19) C28---C29---C30---C31 −179.5 (2) Cu1---O7---C14---O8 −179.14 (17) C34---C29---C30---C31 −0.1 (3) Cu1---O7---C14---C12 −0.18 (19) Cu1---O5---C13---O6 −175.71 (17) N1---C1---C2---C3 0.0 (3) Cu1---O5---C13---C8 5.28 (19) C6---C1---C2---C3 179.72 (18) N2---C8---C13---O6 178.03 (17) C8---N2---C12---C11 1.0 (3) C9---C8---C13---O6 −3.1 (3) Cu1---N2---C12---C11 −178.77 (14) N2---C8---C13---O5 −2.9 (2) C8---N2---C12---C14 −178.06 (14) C9---C8---C13---O5 176.01 (17) ---------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4851 .table-wrap} --------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N3---H3A···O9 0.83 (3) 2.37 (2) 2.692 (2) 104.3 (17) N3---H3A···O11 0.83 (3) 1.93 (3) 2.739 (3) 164 (2) N4---H4A···O8^i^ 0.95 (3) 1.87 (3) 2.723 (2) 149 (2) O9---H9A···O5 0.78 (3) 1.79 (3) 2.563 (2) 176 (3) O10---H10A···O4 0.87 (4) 1.70 (4) 2.555 (3) 167 (3) O11---H11A···O1^i^ 0.83 (4) 1.88 (4) 2.706 (3) 172 (4) O12---H12A···O7 0.82 (3) 2.14 (3) 2.895 (3) 154 (4) O12---H12B···O2^ii^ 0.82 (4) 2.21 (4) 2.974 (3) 156 (4) C10---H10···O3^iii^ 0.93 2.55 3.177 (3) 125 C15---H15C···O2^i^ 0.96 2.55 3.480 (3) 163 C17---H17···O6^iv^ 0.93 2.29 3.185 (3) 161 C25---H25C···O8^i^ 0.96 2.48 3.212 (3) 133 C27---H27···O2^v^ 0.93 2.50 3.394 (3) 162 --------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) *x*−1, *y*, *z*; (ii) −*x*+2, −*y*+1, −*z*+2; (iii) −*x*+2, −*y*+1, −*z*+1; (iv) −*x*+1, −*y*+2, −*z*+1; (v) *x*−1, *y*−1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- ---------- ---------- ----------- ------------- N3---H3*A*⋯O9 0.83 (3) 2.37 (2) 2.692 (2) 104.3 (17) N3---H3*A*⋯O11 0.83 (3) 1.93 (3) 2.739 (3) 164 (2) N4---H4*A*⋯O8^i^ 0.95 (3) 1.87 (3) 2.723 (2) 149 (2) O9---H9*A*⋯O5 0.78 (3) 1.79 (3) 2.563 (2) 176 (3) O10---H10*A*⋯O4 0.87 (4) 1.70 (4) 2.555 (3) 167 (3) O11---H11*A*⋯O1^i^ 0.83 (4) 1.88 (4) 2.706 (3) 172 (4) O12---H12*A*⋯O7 0.82 (3) 2.14 (3) 2.895 (3) 154 (4) O12---H12*B*⋯O2^ii^ 0.82 (4) 2.21 (4) 2.974 (3) 156 (4) C10---H10⋯O3^iii^ 0.93 2.55 3.177 (3) 125 C15---H15*C*⋯O2^i^ 0.96 2.55 3.480 (3) 163 C17---H17⋯O6^iv^ 0.93 2.29 3.185 (3) 161 C25---H25*C*⋯O8^i^ 0.96 2.48 3.212 (3) 133 C27---H27⋯O2^v^ 0.93 2.50 3.394 (3) 162 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . :::
PubMed Central
2024-06-05T04:04:17.981726
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052026/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):m379-m380", "authors": [ { "first": "Hossein", "last": "Aghabozorg" }, { "first": "Ahmad", "last": "Gholizadeh" }, { "first": "Masoud", "last": "Mirzaei" }, { "first": "Behrouz", "last": "Notash" } ] }
PMC3052027
Related literature {#sec1} ================== A blue-emitting LED device fabricated with the tris­(2-amino­eth­yl)amine cerium complex was reported by Zheng *et al.* (2007[@bb5]). For the crystal structures of related tris(1*H*-benzimidazol-2-ylmethyl)amine adducts with H~2~O and 1.5H~2~O·0.5MeOH·MeCN, see: Zhang *et al.* (2005[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~24~H~24~N~7~ ^3+^·3NO~3~ ^−^*M* *~r~* = 596.53Triclinic,*a* = 8.9493 (3) Å*b* = 9.2209 (3) Å*c* = 15.8027 (6) Åα = 98.438 (1)°β = 91.910 (1)°γ = 101.156 (1)°*V* = 1263.00 (8) Å^3^*Z* = 2Mo *K*α radiationμ = 0.12 mm^−1^*T* = 153 K0.10 × 0.10 × 0.10 mm ### Data collection {#sec2.1.2} Bruker SMART 1K CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 2004[@bb2]) *T* ~min~ = 0.972, *T* ~max~ = 0.98512387 measured reflections5703 independent reflections4738 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.014 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.034*wR*(*F* ^2^) = 0.103*S* = 1.095703 reflections413 parameters6 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.36 e Å^−3^Δρ~min~ = −0.22 e Å^−3^ {#d5e564} Data collection: *SMART* (Bruker, 2001[@bb1]); cell refinement: *SAINT* (Bruker, 2001[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb3]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S160053681100393X/cv5044sup1.cif](http://dx.doi.org/10.1107/S160053681100393X/cv5044sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100393X/cv5044Isup2.hkl](http://dx.doi.org/10.1107/S160053681100393X/cv5044Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?cv5044&file=cv5044sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?cv5044sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?cv5044&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [CV5044](http://scripts.iucr.org/cgi-bin/sendsup?cv5044)). This work was supported by the NSF of Shandong Province (grant No. 2009ZRA02071), the Doctoral Science Foundation of Shandong Province (grant No. 2007BS04023) and the Project of Shandong Province Higher Educational Science and Technology Program (No. J09LB53). Comment ======= The tripodal ligands derived from the Schiff-base condensation with tris(2-aminoethyl)amine (H~3~ntb) are of particular interest since the benzimidazole ring in a terpyridine-like ligand allows easy derivation and incorporation in segmental di- and trileptic ligands used as building blocks in self-assembling processes (Zheng *et al.*, 2007). A blue-emitting LED device was fabricated using one ntb cerium complex (Zheng *et al.*, 2007). In the corresponding ntb adduct \[ntb.H~2~O and ntb.1.5H~2~O.0.5MeOH.MeCN\] (Zhang *et al.*, 2005).the ntb adopts a tripodal \'mode to form hydrogen bonds with a solvent water molecule *via* N---H···O and O---H···N hydrogen bond. As a part of our study of the assembly of supramolecular aggregates with ntb-related compounds, we report here the synthesis and crystal structure of the title compound (I). In (I) (Fig. 1), the three free N atoms were all pronated, and ntb adopts a tripodal mode to form strong N---H···O hydrogen bonds (Table 1) with O atoms of three nitrate anions building the 1-D chains along the *a* axis. In the cation, three benzimidazole rings form in pairs the dihedral angles in the region 9.4 (1) to 19.1 (1)°. There are also some weak C---H···O inter- and intramolecular interactions, which further stabilize the structure of (I). Experimental {#experimental} ============ Tris(2-aminoethyl)amine was prepared from the condensation reaction between nitrilotriacetate and 1,2-diaminobenzene in diethylene glycol (yield 73%). Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation from a 50% nitric acid solution at room temperature. Refinement {#refinement} ========== C-bound H atoms were geometrically positioned with C---H distances of 0.93--0.97 Å. and refined as riding, with U~iso~(H) = 1.2 U~eq~(C). N-bound H atoms were located in difference Fourier maps and refined isotropically, with N---H bond length restrained to 0.87 (2) Å. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. N---H···O hydrogen bonds are shown by dashed lines. ::: ![](e-67-0o625-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e121 .table-wrap} ------------------------------ -------------------------------------- C~24~H~24~N~7~^3+^·3NO~3~^−^ *Z* = 2 *M~r~* = 596.53 *F*(000) = 620 Triclinic, *P*1 *D*~x~ = 1.569 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.9493 (3) Å Cell parameters from 520 reflections *b* = 9.2209 (3) Å θ = 10--14° *c* = 15.8027 (6) Å µ = 0.12 mm^−1^ α = 98.438 (1)° *T* = 153 K β = 91.910 (1)° Block, colorless γ = 101.156 (1)° 0.10 × 0.10 × 0.10 mm *V* = 1263.00 (8) Å^3^ ------------------------------ -------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e262 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART 1K CCD diffractometer 5703 independent reflections Radiation source: fine-focus sealed tube 4738 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.014 Thin--slice ω scans θ~max~ = 27.5°, θ~min~ = 3.1° Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) *h* = −11→11 *T*~min~ = 0.972, *T*~max~ = 0.985 *k* = −11→11 12387 measured reflections *l* = −20→20 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e377 .table-wrap} ---------------------------------------------------------------- --------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.034 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.103 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.052*P*)^2^ + 0.4262*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.09 (Δ/σ)~max~ = 0.001 5703 reflections Δρ~max~ = 0.36 e Å^−3^ 413 parameters Δρ~min~ = −0.22 e Å^−3^ 6 restraints Extinction correction: *SHELXTL* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0084 (12) ---------------------------------------------------------------- --------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e558 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e603 .table-wrap} ------ --------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.09657 (13) 0.85873 (13) 0.28627 (8) 0.0368 (3) O2 0.22174 (12) 1.06093 (11) 0.36368 (7) 0.0297 (2) O3 0.32723 (11) 0.86872 (11) 0.33719 (6) 0.0250 (2) O4 0.80054 (11) 0.48938 (11) 0.36252 (7) 0.0264 (2) O5 0.55693 (11) 0.47164 (14) 0.36810 (8) 0.0370 (3) O6 0.70944 (15) 0.65439 (13) 0.44643 (8) 0.0395 (3) N1 −0.23863 (12) 0.23077 (12) 0.23824 (7) 0.0189 (2) N2 −0.17444 (12) 0.05714 (13) 0.14645 (7) 0.0211 (2) N3 0.09014 (12) 0.61176 (12) 0.43150 (7) 0.0176 (2) N4 0.33476 (12) 0.62438 (12) 0.44885 (7) 0.0174 (2) N5 0.36487 (13) 0.63293 (12) 0.22864 (7) 0.0195 (2) N6 0.31324 (13) 0.43181 (13) 0.13275 (7) 0.0198 (2) N7 0.07227 (12) 0.38082 (12) 0.28051 (7) 0.0170 (2) N8 0.21321 (13) 0.93021 (13) 0.32878 (7) 0.0203 (2) N9 0.68763 (13) 0.53995 (13) 0.39242 (7) 0.0225 (2) C1 −0.37391 (15) 0.14343 (14) 0.19857 (8) 0.0182 (3) C2 −0.52618 (15) 0.14841 (16) 0.21100 (9) 0.0228 (3) H2A −0.5549 0.2226 0.2520 0.027\* C3 −0.63329 (15) 0.03933 (16) 0.16042 (9) 0.0237 (3) H3A −0.7386 0.0385 0.1670 0.028\* C4 −0.59187 (16) −0.06976 (16) 0.09986 (9) 0.0248 (3) H4A −0.6695 −0.1418 0.0660 0.030\* C5 −0.44094 (16) −0.07550 (16) 0.08808 (9) 0.0251 (3) H5A −0.4123 −0.1499 0.0472 0.030\* C6 −0.33291 (14) 0.03357 (15) 0.13940 (8) 0.0188 (3) C7 −0.12222 (15) 0.17477 (14) 0.20604 (8) 0.0179 (3) C8 0.04170 (14) 0.22638 (14) 0.23621 (9) 0.0189 (3) H8A 0.0697 0.1603 0.2756 0.023\* H8B 0.1057 0.2190 0.1865 0.023\* C9 0.19329 (14) 0.40230 (14) 0.34832 (8) 0.0184 (3) H9A 0.2919 0.4008 0.3220 0.022\* H9B 0.1729 0.3183 0.3815 0.022\* C10 0.20520 (14) 0.54612 (14) 0.40762 (8) 0.0167 (2) C11 0.30374 (14) 0.74700 (14) 0.50206 (8) 0.0176 (3) C12 0.39816 (15) 0.86314 (15) 0.55629 (9) 0.0218 (3) H12A 0.5049 0.8685 0.5640 0.026\* C13 0.32688 (17) 0.97029 (16) 0.59821 (9) 0.0257 (3) H13A 0.3869 1.0523 0.6358 0.031\* C14 0.16882 (16) 0.96283 (16) 0.58755 (9) 0.0244 (3) H14A 0.1253 1.0392 0.6183 0.029\* C15 0.07526 (15) 0.84738 (15) 0.53349 (8) 0.0208 (3) H15A −0.0315 0.8421 0.5259 0.025\* C16 0.14675 (14) 0.73898 (14) 0.49072 (8) 0.0173 (3) C17 0.09618 (14) 0.49279 (14) 0.22158 (8) 0.0185 (3) H17A 0.0746 0.5882 0.2511 0.022\* H17B 0.0227 0.4578 0.1711 0.022\* C18 0.25514 (15) 0.52073 (14) 0.19152 (8) 0.0181 (3) C19 0.46906 (15) 0.48775 (15) 0.13232 (8) 0.0192 (3) C20 0.58288 (16) 0.43787 (16) 0.08460 (9) 0.0237 (3) H20A 0.5605 0.3513 0.0419 0.028\* C21 0.72911 (16) 0.52014 (17) 0.10235 (9) 0.0250 (3) H21A 0.8094 0.4899 0.0708 0.030\* C22 0.76262 (16) 0.64709 (16) 0.16559 (9) 0.0247 (3) H22A 0.8653 0.6999 0.1765 0.030\* C23 0.65013 (16) 0.69746 (15) 0.21250 (9) 0.0228 (3) H23A 0.6728 0.7837 0.2554 0.027\* C24 0.50187 (15) 0.61558 (14) 0.19387 (8) 0.0190 (3) H4N 0.4215 (13) 0.6001 (19) 0.4400 (11) 0.032 (5)\* H1N −0.227 (2) 0.3081 (15) 0.2784 (10) 0.041 (5)\* H2N −0.121 (2) 0.0014 (19) 0.1165 (11) 0.043 (5)\* H3N −0.0046 (12) 0.580 (2) 0.4113 (12) 0.041 (5)\* H5N 0.346 (2) 0.7090 (16) 0.2639 (11) 0.047 (6)\* H6N 0.263 (2) 0.3528 (16) 0.0987 (11) 0.043 (5)\* O7 0.02490 (14) −0.30337 (14) −0.02717 (8) 0.0398 (3) O8 0.02242 (11) −0.12078 (12) 0.07496 (7) 0.0311 (3) O9 −0.16701 (12) −0.19196 (12) −0.01998 (7) 0.0287 (2) N10 −0.03802 (13) −0.20607 (13) 0.00941 (7) 0.0221 (2) ------ --------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1507 .table-wrap} ----- ------------ ------------ ------------ ------------ ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0259 (5) 0.0319 (6) 0.0470 (7) 0.0034 (5) −0.0091 (5) −0.0065 (5) O2 0.0341 (6) 0.0190 (5) 0.0359 (6) 0.0113 (4) 0.0015 (5) −0.0041 (4) O3 0.0276 (5) 0.0216 (5) 0.0270 (5) 0.0127 (4) −0.0016 (4) −0.0011 (4) O4 0.0135 (4) 0.0282 (5) 0.0353 (6) 0.0080 (4) 0.0015 (4) −0.0072 (4) O5 0.0134 (5) 0.0479 (7) 0.0496 (7) 0.0061 (5) −0.0002 (4) 0.0077 (6) O6 0.0485 (7) 0.0303 (6) 0.0397 (7) 0.0162 (5) 0.0092 (5) −0.0071 (5) N1 0.0154 (5) 0.0180 (5) 0.0216 (5) 0.0031 (4) 0.0003 (4) −0.0015 (4) N2 0.0153 (5) 0.0207 (6) 0.0248 (6) 0.0033 (4) 0.0014 (4) −0.0043 (5) N3 0.0137 (5) 0.0188 (5) 0.0194 (5) 0.0035 (4) 0.0002 (4) 0.0001 (4) N4 0.0140 (5) 0.0185 (5) 0.0198 (5) 0.0056 (4) 0.0007 (4) 0.0000 (4) N5 0.0198 (5) 0.0162 (5) 0.0208 (5) 0.0030 (4) 0.0018 (4) −0.0015 (4) N6 0.0175 (5) 0.0204 (6) 0.0196 (5) 0.0036 (5) 0.0005 (4) −0.0028 (4) N7 0.0136 (5) 0.0157 (5) 0.0205 (5) 0.0034 (4) −0.0003 (4) −0.0014 (4) N8 0.0216 (6) 0.0196 (5) 0.0202 (5) 0.0060 (5) 0.0023 (4) 0.0022 (4) N9 0.0190 (5) 0.0256 (6) 0.0250 (6) 0.0085 (5) 0.0036 (4) 0.0044 (5) C1 0.0172 (6) 0.0166 (6) 0.0203 (6) 0.0026 (5) −0.0005 (5) 0.0022 (5) C2 0.0192 (6) 0.0239 (7) 0.0257 (7) 0.0076 (5) 0.0017 (5) 0.0010 (5) C3 0.0150 (6) 0.0273 (7) 0.0296 (7) 0.0050 (5) 0.0009 (5) 0.0063 (6) C4 0.0189 (6) 0.0263 (7) 0.0260 (7) 0.0000 (6) −0.0046 (5) 0.0008 (6) C5 0.0205 (6) 0.0248 (7) 0.0259 (7) 0.0019 (6) −0.0010 (5) −0.0050 (5) C6 0.0151 (6) 0.0196 (6) 0.0215 (6) 0.0034 (5) 0.0005 (5) 0.0030 (5) C7 0.0171 (6) 0.0159 (6) 0.0199 (6) 0.0029 (5) 0.0020 (5) 0.0010 (5) C8 0.0140 (6) 0.0173 (6) 0.0236 (6) 0.0034 (5) 0.0000 (5) −0.0026 (5) C9 0.0169 (6) 0.0167 (6) 0.0210 (6) 0.0054 (5) −0.0005 (5) −0.0010 (5) C10 0.0160 (6) 0.0179 (6) 0.0168 (6) 0.0049 (5) 0.0006 (5) 0.0026 (5) C11 0.0175 (6) 0.0191 (6) 0.0163 (6) 0.0043 (5) 0.0019 (5) 0.0021 (5) C12 0.0177 (6) 0.0235 (7) 0.0218 (6) 0.0019 (5) −0.0005 (5) −0.0008 (5) C13 0.0253 (7) 0.0232 (7) 0.0246 (7) 0.0026 (6) −0.0013 (5) −0.0056 (5) C14 0.0267 (7) 0.0230 (7) 0.0232 (7) 0.0092 (6) 0.0035 (5) −0.0027 (5) C15 0.0188 (6) 0.0230 (7) 0.0218 (6) 0.0073 (5) 0.0041 (5) 0.0025 (5) C16 0.0167 (6) 0.0179 (6) 0.0170 (6) 0.0031 (5) 0.0015 (5) 0.0019 (5) C17 0.0161 (6) 0.0179 (6) 0.0210 (6) 0.0052 (5) 0.0000 (5) −0.0007 (5) C18 0.0184 (6) 0.0174 (6) 0.0185 (6) 0.0043 (5) 0.0000 (5) 0.0018 (5) C19 0.0176 (6) 0.0203 (6) 0.0193 (6) 0.0031 (5) 0.0006 (5) 0.0023 (5) C20 0.0240 (7) 0.0245 (7) 0.0219 (6) 0.0073 (6) 0.0027 (5) −0.0020 (5) C21 0.0212 (7) 0.0308 (7) 0.0252 (7) 0.0093 (6) 0.0046 (5) 0.0056 (6) C22 0.0172 (6) 0.0270 (7) 0.0297 (7) 0.0023 (6) 0.0007 (5) 0.0062 (6) C23 0.0209 (6) 0.0199 (6) 0.0263 (7) 0.0027 (5) 0.0007 (5) 0.0008 (5) C24 0.0203 (6) 0.0185 (6) 0.0186 (6) 0.0052 (5) 0.0019 (5) 0.0027 (5) O7 0.0381 (6) 0.0415 (7) 0.0384 (6) 0.0190 (5) 0.0028 (5) −0.0135 (5) O8 0.0211 (5) 0.0365 (6) 0.0292 (5) 0.0039 (4) −0.0023 (4) −0.0127 (4) O9 0.0237 (5) 0.0295 (5) 0.0298 (5) 0.0071 (4) −0.0061 (4) −0.0058 (4) N10 0.0201 (5) 0.0225 (6) 0.0213 (6) 0.0022 (5) 0.0042 (4) −0.0026 (4) ----- ------------ ------------ ------------ ------------ ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2268 .table-wrap} ----------------------- -------------- ----------------------- -------------- O1---N8 1.2380 (16) C5---C6 1.3914 (18) O2---N8 1.2367 (15) C5---H5A 0.9500 O3---N8 1.2717 (15) C7---C8 1.4908 (17) O4---N9 1.2694 (14) C8---H8A 0.9900 O5---N9 1.2355 (16) C8---H8B 0.9900 O6---N9 1.2349 (16) C9---C10 1.4907 (17) N1---C7 1.3332 (16) C9---H9A 0.9900 N1---C1 1.3897 (16) C9---H9B 0.9900 N1---H1N 0.869 (9) C11---C12 1.3883 (18) N2---C7 1.3254 (17) C11---C16 1.3966 (18) N2---C6 1.3907 (16) C12---C13 1.379 (2) N2---H2N 0.869 (9) C12---H12A 0.9500 N3---C10 1.3301 (16) C13---C14 1.406 (2) N3---C16 1.3874 (16) C13---H13A 0.9500 N3---H3N 0.874 (9) C14---C15 1.3801 (19) N4---C10 1.3333 (16) C14---H14A 0.9500 N4---C11 1.3859 (16) C15---C16 1.3940 (18) N4---H4N 0.859 (9) C15---H15A 0.9500 N5---C18 1.3301 (17) C17---C18 1.5016 (17) N5---C24 1.3877 (17) C17---H17A 0.9900 N5---H5N 0.876 (9) C17---H17B 0.9900 N6---C18 1.3338 (17) C19---C24 1.3900 (18) N6---C19 1.3906 (17) C19---C20 1.3959 (18) N6---H6N 0.873 (9) C20---C21 1.377 (2) N7---C8 1.4618 (16) C20---H20A 0.9500 N7---C9 1.4621 (16) C21---C22 1.400 (2) N7---C17 1.4795 (16) C21---H21A 0.9500 C1---C6 1.3870 (18) C22---C23 1.381 (2) C1---C2 1.3918 (18) C22---H22A 0.9500 C2---C3 1.382 (2) C23---C24 1.3923 (19) C2---H2A 0.9500 C23---H23A 0.9500 C3---C4 1.397 (2) O7---N10 1.2334 (16) C3---H3A 0.9500 O8---N10 1.2422 (15) C4---C5 1.3796 (19) O9---N10 1.2671 (15) C4---H4A 0.9500 C7---N1---C1 108.62 (11) C10---C9---H9A 109.1 C7---N1---H1N 123.1 (13) N7---C9---H9B 109.1 C1---N1---H1N 128.3 (13) C10---C9---H9B 109.1 C7---N2---C6 108.74 (11) H9A---C9---H9B 107.9 C7---N2---H2N 127.1 (13) N3---C10---N4 109.55 (11) C6---N2---H2N 124.1 (13) N3---C10---C9 126.25 (11) C10---N3---C16 108.76 (11) N4---C10---C9 124.10 (11) C10---N3---H3N 124.8 (13) N4---C11---C12 131.68 (12) C16---N3---H3N 126.5 (13) N4---C11---C16 106.07 (11) C10---N4---C11 109.06 (11) C12---C11---C16 122.23 (12) C10---N4---H4N 122.4 (12) C13---C12---C11 115.64 (13) C11---N4---H4N 128.5 (12) C13---C12---H12A 122.2 C18---N5---C24 108.72 (11) C11---C12---H12A 122.2 C18---N5---H5N 122.6 (14) C12---C13---C14 122.55 (13) C24---N5---H5N 128.2 (14) C12---C13---H13A 118.7 C18---N6---C19 108.57 (11) C14---C13---H13A 118.7 C18---N6---H6N 126.8 (13) C15---C14---C13 121.68 (13) C19---N6---H6N 124.7 (13) C15---C14---H14A 119.2 C8---N7---C9 110.26 (10) C13---C14---H14A 119.2 C8---N7---C17 113.30 (10) C14---C15---C16 116.02 (12) C9---N7---C17 114.46 (10) C14---C15---H15A 122.0 O2---N8---O1 121.43 (12) C16---C15---H15A 122.0 O2---N8---O3 118.84 (11) N3---C16---C15 131.56 (12) O1---N8---O3 119.73 (11) N3---C16---C11 106.56 (11) O6---N9---O5 120.93 (12) C15---C16---C11 121.87 (12) O6---N9---O4 119.88 (12) N7---C17---C18 113.13 (10) O5---N9---O4 119.17 (12) N7---C17---H17A 109.0 C6---C1---N1 106.39 (11) C18---C17---H17A 109.0 C6---C1---C2 121.54 (12) N7---C17---H17B 109.0 N1---C1---C2 132.03 (12) C18---C17---H17B 109.0 C3---C2---C1 116.25 (13) H17A---C17---H17B 107.8 C3---C2---H2A 121.9 N5---C18---N6 109.73 (11) C1---C2---H2A 121.9 N5---C18---C17 123.04 (12) C2---C3---C4 122.15 (13) N6---C18---C17 126.80 (12) C2---C3---H3A 118.9 C24---C19---N6 106.41 (11) C4---C3---H3A 118.9 C24---C19---C20 121.45 (12) C5---C4---C3 121.58 (13) N6---C19---C20 132.15 (12) C5---C4---H4A 119.2 C21---C20---C19 116.78 (13) C3---C4---H4A 119.2 C21---C20---H20A 121.6 C4---C5---C6 116.35 (13) C19---C20---H20A 121.6 C4---C5---H5A 121.8 C20---C21---C22 121.76 (13) C6---C5---H5A 121.8 C20---C21---H21A 119.1 C1---C6---N2 106.50 (11) C22---C21---H21A 119.1 C1---C6---C5 122.10 (12) C23---C22---C21 121.64 (13) N2---C6---C5 131.38 (13) C23---C22---H22A 119.2 N2---C7---N1 109.74 (11) C21---C22---H22A 119.2 N2---C7---C8 124.00 (11) C22---C23---C24 116.70 (13) N1---C7---C8 126.08 (11) C22---C23---H23A 121.7 N7---C8---C7 111.44 (10) C24---C23---H23A 121.7 N7---C8---H8A 109.3 N5---C24---C19 106.57 (11) C7---C8---H8A 109.3 N5---C24---C23 131.74 (12) N7---C8---H8B 109.3 C19---C24---C23 121.66 (12) C7---C8---H8B 109.3 O7---N10---O8 121.37 (12) H8A---C8---H8B 108.0 O7---N10---O9 119.80 (12) N7---C9---C10 112.30 (10) O8---N10---O9 118.84 (11) N7---C9---H9A 109.1 C7---N1---C1---C6 −1.23 (14) C11---C12---C13---C14 0.4 (2) C7---N1---C1---C2 176.57 (14) C12---C13---C14---C15 −0.5 (2) C6---C1---C2---C3 −0.8 (2) C13---C14---C15---C16 0.3 (2) N1---C1---C2---C3 −178.35 (13) C10---N3---C16---C15 178.43 (13) C1---C2---C3---C4 −0.2 (2) C10---N3---C16---C11 −0.29 (14) C2---C3---C4---C5 0.8 (2) C14---C15---C16---N3 −178.53 (13) C3---C4---C5---C6 −0.3 (2) C14---C15---C16---C11 0.03 (19) N1---C1---C6---N2 0.92 (14) N4---C11---C16---N3 0.22 (13) C2---C1---C6---N2 −177.16 (12) C12---C11---C16---N3 178.73 (12) N1---C1---C6---C5 179.44 (12) N4---C11---C16---C15 −178.66 (12) C2---C1---C6---C5 1.4 (2) C12---C11---C16---C15 −0.1 (2) C7---N2---C6---C1 −0.30 (15) C8---N7---C17---C18 −81.34 (13) C7---N2---C6---C5 −178.63 (14) C9---N7---C17---C18 46.25 (14) C4---C5---C6---C1 −0.7 (2) C24---N5---C18---N6 −1.14 (15) C4---C5---C6---N2 177.38 (14) C24---N5---C18---C17 171.75 (12) C6---N2---C7---N1 −0.48 (15) C19---N6---C18---N5 0.82 (15) C6---N2---C7---C8 174.92 (12) C19---N6---C18---C17 −171.74 (12) C1---N1---C7---N2 1.07 (15) N7---C17---C18---N5 −95.69 (14) C1---N1---C7---C8 −174.21 (12) N7---C17---C18---N6 75.95 (17) C9---N7---C8---C7 147.42 (11) C18---N6---C19---C24 −0.18 (14) C17---N7---C8---C7 −82.83 (13) C18---N6---C19---C20 179.29 (14) N2---C7---C8---N7 162.01 (12) C24---C19---C20---C21 0.9 (2) N1---C7---C8---N7 −23.35 (18) N6---C19---C20---C21 −178.50 (14) C8---N7---C9---C10 −167.25 (10) C19---C20---C21---C22 0.5 (2) C17---N7---C9---C10 63.62 (13) C20---C21---C22---C23 −1.0 (2) C16---N3---C10---N4 0.25 (14) C21---C22---C23---C24 0.1 (2) C16---N3---C10---C9 176.69 (12) C18---N5---C24---C19 1.00 (15) C11---N4---C10---N3 −0.11 (14) C18---N5---C24---C23 −176.96 (14) C11---N4---C10---C9 −176.64 (11) N6---C19---C24---N5 −0.49 (14) N7---C9---C10---N3 34.37 (17) C20---C19---C24---N5 179.97 (12) N7---C9---C10---N4 −149.68 (12) N6---C19---C24---C23 177.72 (12) C10---N4---C11---C12 −178.39 (13) C20---C19---C24---C23 −1.8 (2) C10---N4---C11---C16 −0.07 (14) C22---C23---C24---N5 178.97 (14) N4---C11---C12---C13 178.02 (13) C22---C23---C24---C19 1.3 (2) C16---C11---C12---C13 −0.07 (19) ----------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3503 .table-wrap} ---------------------- ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1N···O4^i^ 0.87 (2) 1.95 (2) 2.8147 (15) 176.(2) N2---H2N···O8 0.87 (2) 1.94 (2) 2.7891 (15) 167.(2) N3---H3N···O4^i^ 0.88 (1) 1.87 (1) 2.7382 (15) 172.(2) N2---H2N···O9 0.87 (2) 2.56 (2) 3.2396 (16) 136.(2) N5---H5N···O3 0.88 (2) 1.77 (2) 2.6477 (15) 175.(2) N4---H4N···O5 0.86 (1) 2.10 (2) 2.8793 (16) 150.(2) N4---H4N···O6 0.86 (1) 2.52 (1) 3.3127 (18) 153.(2) C5---H5A···O9 0.95 2.54 3.2922 (18) 136 C8---H8A···O2^ii^ 0.99 2.32 3.2585 (17) 159 C9---H9B···O2^ii^ 0.99 2.47 3.2500 (16) 135 C13---H13A···O3^iii^ 0.95 2.52 3.2240 (18) 131 ---------------------- ---------- ---------- ------------- --------------- ::: Symmetry codes: (i) *x*−1, *y*, *z*; (ii) *x*, *y*−1, *z*; (iii) −*x*+1, −*y*+2, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------------- ---------- ---------- ------------- ------------- N1---H1*N*⋯O4^i^ 0.87 (2) 1.95 (2) 2.8147 (15) 176 (2) N2---H2*N*⋯O8 0.87 (2) 1.94 (2) 2.7891 (15) 167 (2) N3---H3*N*⋯O4^i^ 0.88 (1) 1.87 (1) 2.7382 (15) 172 (2) N2---H2*N*⋯O9 0.87 (2) 2.56 (2) 3.2396 (16) 136 (2) N5---H5*N*⋯O3 0.88 (2) 1.77 (2) 2.6477 (15) 175 (2) N4---H4*N*⋯O5 0.86 (1) 2.10 (2) 2.8793 (16) 150 (2) N4---H4*N*⋯O6 0.86 (1) 2.52 (1) 3.3127 (18) 153 (2) C5---H5*A*⋯O9 0.95 2.54 3.2922 (18) 136 C8---H8*A*⋯O2^ii^ 0.99 2.32 3.2585 (17) 159 C9---H9*B*⋯O2^ii^ 0.99 2.47 3.2500 (16) 135 C13---H13*A*⋯O3^iii^ 0.95 2.52 3.2240 (18) 131 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:17.992655
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052027/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o625-o626", "authors": [ { "first": "Yi", "last": "Cui" } ] }
PMC3052028
Related literature {#sec1} ================== For the preparation of the title compound, see: Rai & Braunwarth (1961[@bb6]). For a related structure, see: Clegg & Elsegood (2005[@bb5]). For S⋯π inter­actions, see: Singh *et al.* (2006[@bb8]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~16~H~12~N~2~S~3~*M* *~r~* = 328.46Triclinic,*a* = 6.3714 (10) Å*b* = 7.8748 (13) Å*c* = 15.339 (3) Åα = 78.616 (3)°β = 89.537 (3)°γ = 74.707 (3)°*V* = 727.0 (2) Å^3^*Z* = 2Mo *K*α radiationμ = 0.50 mm^−1^*T* = 100 K0.15 × 0.13 × 0.13 mm ### Data collection {#sec2.1.2} Bruker APEX CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2002[@bb3]) *T* ~min~ = 0.809, *T* ~max~ = 0.9388237 measured reflections2942 independent reflections2584 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.028 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.035*wR*(*F* ^2^) = 0.088*S* = 1.052942 reflections190 parametersH-atom parameters constrainedΔρ~max~ = 0.37 e Å^−3^Δρ~min~ = −0.21 e Å^−3^ {#d5e468} Data collection: *SMART* (Bruker, 2002[@bb3]); cell refinement: *SAINT* (Bruker, 2003[@bb4]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *X-SEED* (Barbour, 2001[@bb2]; Atwood & Barbour, 2003[@bb1]); software used to prepare material for publication: *X-SEED* and *PLATON* (Spek, 2009[@bb9]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004478/zq2087sup1.cif](http://dx.doi.org/10.1107/S1600536811004478/zq2087sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004478/zq2087Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004478/zq2087Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?zq2087&file=zq2087sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?zq2087sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?zq2087&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [ZQ2087](http://scripts.iucr.org/cgi-bin/sendsup?zq2087)). We would like to thank the National Research Foundation (NRF) of South Africa for financial support. Comment ======= Within the benzothiazole rings of the title compound (Fig. 1) no differences are observed in bond lengths and angles. In the bridge, however, the values for the two S---C---C angles \[107.72 (13)° and 113.74 (14)°\] and S---C bonds \[1.823 (2) and 1.803 (2) Å\] differ significantly. This deviation may be explained with the two different S3---C---C---S torsion angles of 71.44 (17) and 27.1 (2)° of the respective benzothiazolyl moieties. A related structure where one benzothiazole and one benzimidazole moiety is present was determined by Clegg & Elsegood (2005). The arrangement of the molecule in this structure is similar to the one determined here, albeit the orientation of the heterocycles with respect to the CH~2~ groups is more uniform \[values for the S1---C9---C10---N3(H) and S1---C1---C2---S2 torsion angles -90.6 (7)° and -69.4 (6)°, respectively\]. Interactions between neighbouring molecules in the title compound are summarized in Table 1. They include two unique C---H···N contacts between H1B and N1^i^ \[symmetry code (i) --*x* + 2, --*y* + 1, --*z* + 1\] as well as between H13 and N2^ii^ \[symmetry code (ii) *x* -- 1, *y*, *z*\], leading to columns of associated molecules running parallel to the crystallographic *a* axis. The hydrogen atoms H1A and H9A of the CH~2~ groups are furthermore engaged in C---H···π interactions with benzo groups at distances of 2.75 Å \[H1A···*Cg*1^iii^, (iii) --*x* + 1, --*y* + 1, --*z* + 1\] and 2.84 Å \[H9A···*Cg*1^iv^, (iv) --*x* + 2, --*y*, --*z* + 1\] \[C1···*Cg*1^iii^ 3.650 (2) Å, C9···*Cg*1^iv^ 3.610 (3) Å\]. An offset parallel thiazole ring stacking \[centroid distance *Cg*2···*Cg*2^iii^ 3.6724 (12) Å\] of the rings containing S1 related by a centre of inversion is also found. Finally, a S···π interaction is observed between S3 and the thiazole ring containing S1, the S3···*Cg*2^iv^ distance is 3.3627 (11) Å which is shorter than the thione S···π interaction (3.631 Å) found in the solid state of 5-(2-chloroethyl)-6-methyl-2-thiouracil (Singh *et al.*, 2006). Experimental {#experimental} ============ The compound was synthesized from 2,2\'-thiodiethanoic acid and *o*-aminothiophenol as described in the literature procedure for the preparation of 2,2\'-\[thiobis(ethylene)\]bis(benzo-1,3-thiazole) (Rai & Braunwarth, 1961). NMR (CD~2~Cl~2~): ^1^H (400 MHz): *δ* 7.95 (m, 2 H), 7.87 (m, 2 H), 7.47 (m, 2 H), 7.38 (m, 2 H), 4.24 (s, 4 H, CH~2~) p.p.m.; ^13^C{^1^H} (101 MHz): *δ* 169.0, 153.8, 136.4, 126.6, 125.7, 123.5, 122.2, 34.4 p.p.m. MS (ESI): *m*/*z* (intensity) 332.0331 (2%, C~15~^13^CH~13~N~2~S~2~^34^S^+^ calcd. 332.0227), 331.0282 (15, C~16~H~13~N~2~S~2~^34^S^+^ calcd. 331.0193), 330.0335 (18, C~15~^13^CH~13~N~2~S~3~^+^ calcd. 330.0270), 329.0242 (100, C~16~H~13~N~2~S~3~^+^ calcd. 329.0235), 295.0449 (4, C~16~H~11~N~2~S~2~^+^ calcd. 295.0358). Refinement {#refinement} ========== All H atoms were positioned geometrically (C---H = 0.95 Å for aromatic CH and 0.99 Å for CH~2~ groups, respectively) and constrained to ride on their parent atoms with *U*~iso~(H) values set at 1.2 times *U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The asymmetric unit of the title compound. Ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o622-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e338 .table-wrap} ---------------------- --------------------------------------- C~16~H~12~N~2~S~3~ *Z* = 2 *M~r~* = 328.46 *F*(000) = 340 Triclinic, *P*1 *D*~x~ = 1.500 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 6.3714 (10) Å Cell parameters from 2489 reflections *b* = 7.8748 (13) Å θ = 2.7--26.3° *c* = 15.339 (3) Å µ = 0.50 mm^−1^ α = 78.616 (3)° *T* = 100 K β = 89.537 (3)° Prism, colourless γ = 74.707 (3)° 0.15 × 0.13 × 0.13 mm *V* = 727.0 (2) Å^3^ ---------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e474 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEX CCD area-detector diffractometer 2942 independent reflections Radiation source: fine-focus sealed tube 2584 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.028 ω scans θ~max~ = 26.4°, θ~min~ = 2.7° Absorption correction: multi-scan (*SADABS*; Bruker, 2002) *h* = −7→7 *T*~min~ = 0.809, *T*~max~ = 0.938 *k* = −9→9 8237 measured reflections *l* = −19→19 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e588 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.035 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.088 H-atom parameters constrained *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0441*P*)^2^ + 0.3246*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2942 reflections (Δ/σ)~max~ = 0.001 190 parameters Δρ~max~ = 0.37 e Å^−3^ 0 restraints Δρ~min~ = −0.21 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e745 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e844 .table-wrap} ----- ------------- ------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 0.53975 (8) 0.21565 (6) 0.51882 (3) 0.01656 (13) N1 0.7847 (3) 0.3908 (2) 0.42435 (10) 0.0151 (3) C1 0.9069 (3) 0.2967 (3) 0.58191 (13) 0.0172 (4) H1A 0.8209 0.3306 0.6328 0.021\* H1B 1.0025 0.3779 0.5661 0.021\* S2 0.82962 (8) 0.06186 (7) 0.79611 (3) 0.01754 (14) N2 1.1321 (3) 0.1947 (2) 0.84450 (11) 0.0168 (4) C2 0.7589 (3) 0.3120 (2) 0.50442 (13) 0.0146 (4) S3 1.07030 (8) 0.06391 (6) 0.61145 (3) 0.01686 (13) C3 0.6238 (3) 0.3805 (2) 0.36660 (13) 0.0154 (4) C4 0.4736 (3) 0.2891 (2) 0.40572 (12) 0.0155 (4) C5 0.3029 (3) 0.2694 (3) 0.35627 (14) 0.0192 (4) H5 0.2021 0.2076 0.3834 0.023\* C6 0.2851 (3) 0.3430 (3) 0.26593 (14) 0.0222 (5) H6 0.1697 0.3317 0.2306 0.027\* C7 0.4337 (3) 0.4336 (3) 0.22579 (13) 0.0207 (4) H7 0.4178 0.4823 0.1637 0.025\* C8 0.6032 (3) 0.4535 (3) 0.27507 (13) 0.0190 (4) H8 0.7035 0.5153 0.2475 0.023\* C9 1.2192 (3) 0.0752 (3) 0.70864 (13) 0.0189 (4) H9A 1.3282 −0.0417 0.7291 0.023\* H9B 1.2992 0.1681 0.6919 0.023\* C10 1.0779 (3) 0.1183 (3) 0.78436 (12) 0.0161 (4) C11 0.9748 (3) 0.2116 (3) 0.90792 (13) 0.0163 (4) C12 0.7962 (3) 0.1475 (3) 0.89280 (12) 0.0160 (4) C13 0.6216 (3) 0.1623 (3) 0.94854 (13) 0.0197 (4) H13 0.4992 0.1214 0.9367 0.024\* C14 0.6321 (3) 0.2384 (3) 1.02160 (13) 0.0212 (4) H14 0.5158 0.2489 1.0610 0.025\* C15 0.8112 (3) 0.3003 (3) 1.03843 (13) 0.0218 (4) H15 0.8152 0.3514 1.0893 0.026\* C16 0.9823 (3) 0.2883 (3) 0.98216 (13) 0.0201 (4) H16 1.1031 0.3314 0.9937 0.024\* ----- ------------- ------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1281 .table-wrap} ----- ------------- ------------- ------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0170 (3) 0.0169 (3) 0.0167 (2) −0.0062 (2) 0.00418 (18) −0.00351 (19) N1 0.0156 (8) 0.0127 (8) 0.0178 (8) −0.0045 (7) 0.0012 (6) −0.0040 (6) C1 0.0226 (10) 0.0131 (9) 0.0165 (10) −0.0057 (8) −0.0003 (8) −0.0034 (8) S2 0.0194 (3) 0.0194 (3) 0.0163 (2) −0.0091 (2) −0.00021 (19) −0.00424 (19) N2 0.0154 (8) 0.0172 (8) 0.0172 (8) −0.0037 (7) −0.0014 (6) −0.0029 (7) C2 0.0154 (9) 0.0108 (9) 0.0188 (10) −0.0038 (8) 0.0024 (7) −0.0058 (7) S3 0.0175 (3) 0.0159 (3) 0.0170 (3) −0.00225 (19) −0.00110 (19) −0.00597 (19) C3 0.0156 (10) 0.0105 (9) 0.0190 (10) −0.0010 (8) 0.0006 (8) −0.0042 (7) C4 0.0157 (10) 0.0129 (9) 0.0170 (9) −0.0016 (8) 0.0025 (7) −0.0042 (8) C5 0.0143 (10) 0.0152 (10) 0.0271 (11) −0.0013 (8) 0.0010 (8) −0.0053 (8) C6 0.0218 (11) 0.0158 (10) 0.0278 (11) 0.0002 (8) −0.0069 (9) −0.0084 (9) C7 0.0260 (11) 0.0144 (10) 0.0181 (10) 0.0009 (8) −0.0047 (8) −0.0027 (8) C8 0.0229 (11) 0.0151 (10) 0.0180 (10) −0.0040 (8) 0.0023 (8) −0.0029 (8) C9 0.0158 (10) 0.0230 (11) 0.0177 (10) −0.0032 (8) −0.0012 (8) −0.0065 (8) C10 0.0156 (10) 0.0139 (9) 0.0169 (10) −0.0029 (8) −0.0029 (8) 0.0001 (8) C11 0.0158 (10) 0.0130 (9) 0.0177 (10) −0.0023 (8) −0.0022 (8) 0.0007 (8) C12 0.0195 (10) 0.0129 (9) 0.0150 (9) −0.0051 (8) −0.0022 (8) −0.0003 (7) C13 0.0191 (10) 0.0201 (10) 0.0197 (10) −0.0086 (8) 0.0006 (8) 0.0006 (8) C14 0.0211 (11) 0.0219 (11) 0.0187 (10) −0.0042 (9) 0.0039 (8) −0.0016 (8) C15 0.0250 (11) 0.0212 (11) 0.0184 (10) −0.0030 (9) −0.0013 (8) −0.0067 (8) C16 0.0205 (10) 0.0192 (10) 0.0219 (10) −0.0061 (9) −0.0024 (8) −0.0064 (8) ----- ------------- ------------- ------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1740 .table-wrap} ------------------- -------------- ----------------------- -------------- S1---C4 1.7346 (19) C6---C7 1.399 (3) S1---C2 1.7503 (19) C6---H6 0.9500 N1---C2 1.292 (2) C7---C8 1.383 (3) N1---C3 1.389 (2) C7---H7 0.9500 C1---C2 1.489 (3) C8---H8 0.9500 C1---S3 1.823 (2) C9---C10 1.501 (3) C1---H1A 0.9900 C9---H9A 0.9900 C1---H1B 0.9900 C9---H9B 0.9900 S2---C12 1.736 (2) C11---C16 1.397 (3) S2---C10 1.751 (2) C11---C12 1.399 (3) N2---C10 1.291 (3) C12---C13 1.392 (3) N2---C11 1.390 (2) C13---C14 1.381 (3) S3---C9 1.803 (2) C13---H13 0.9500 C3---C8 1.401 (3) C14---C15 1.398 (3) C3---C4 1.406 (3) C14---H14 0.9500 C4---C5 1.390 (3) C15---C16 1.380 (3) C5---C6 1.386 (3) C15---H15 0.9500 C5---H5 0.9500 C16---H16 0.9500 C4---S1---C2 88.91 (9) C7---C8---H8 120.7 C2---N1---C3 110.15 (16) C3---C8---H8 120.7 C2---C1---S3 107.72 (13) C10---C9---S3 113.74 (14) C2---C1---H1A 110.2 C10---C9---H9A 108.8 S3---C1---H1A 110.2 S3---C9---H9A 108.8 C2---C1---H1B 110.2 C10---C9---H9B 108.8 S3---C1---H1B 110.2 S3---C9---H9B 108.8 H1A---C1---H1B 108.5 H9A---C9---H9B 107.7 C12---S2---C10 88.55 (9) N2---C10---C9 122.79 (18) C10---N2---C11 110.20 (17) N2---C10---S2 116.52 (15) N1---C2---C1 123.58 (17) C9---C10---S2 120.68 (15) N1---C2---S1 116.45 (15) N2---C11---C16 125.20 (18) C1---C2---S1 119.96 (14) N2---C11---C12 115.28 (17) C9---S3---C1 99.65 (9) C16---C11---C12 119.52 (18) N1---C3---C8 124.87 (17) C13---C12---C11 121.76 (18) N1---C3---C4 115.51 (17) C13---C12---S2 128.76 (16) C8---C3---C4 119.62 (18) C11---C12---S2 109.43 (14) C5---C4---C3 121.90 (18) C14---C13---C12 117.83 (19) C5---C4---S1 129.11 (15) C14---C13---H13 121.1 C3---C4---S1 108.99 (14) C12---C13---H13 121.1 C6---C5---C4 117.59 (18) C13---C14---C15 121.05 (19) C6---C5---H5 121.2 C13---C14---H14 119.5 C4---C5---H5 121.2 C15---C14---H14 119.5 C5---C6---C7 121.29 (19) C16---C15---C14 120.97 (19) C5---C6---H6 119.4 C16---C15---H15 119.5 C7---C6---H6 119.4 C14---C15---H15 119.5 C8---C7---C6 121.10 (19) C15---C16---C11 118.84 (19) C8---C7---H7 119.5 C15---C16---H16 120.6 C6---C7---H7 119.5 C11---C16---H16 120.6 C7---C8---C3 118.51 (18) C3---N1---C2---C1 178.89 (17) C1---S3---C9---C10 64.24 (16) C3---N1---C2---S1 0.4 (2) C11---N2---C10---C9 −177.69 (17) S3---C1---C2---N1 −106.97 (19) C11---N2---C10---S2 1.1 (2) S3---C1---C2---S1 71.44 (17) S3---C9---C10---N2 −154.18 (16) C4---S1---C2---N1 −0.29 (16) S3---C9---C10---S2 27.1 (2) C4---S1---C2---C1 −178.80 (16) C12---S2---C10---N2 −0.75 (16) C2---C1---S3---C9 −176.45 (13) C12---S2---C10---C9 178.10 (16) C2---N1---C3---C8 179.46 (18) C10---N2---C11---C16 179.98 (19) C2---N1---C3---C4 −0.4 (2) C10---N2---C11---C12 −1.0 (2) N1---C3---C4---C5 179.49 (17) N2---C11---C12---C13 −177.23 (17) C8---C3---C4---C5 −0.4 (3) C16---C11---C12---C13 1.8 (3) N1---C3---C4---S1 0.2 (2) N2---C11---C12---S2 0.5 (2) C8---C3---C4---S1 −179.68 (15) C16---C11---C12---S2 179.54 (15) C2---S1---C4---C5 −179.21 (19) C10---S2---C12---C13 177.61 (19) C2---S1---C4---C3 0.05 (14) C10---S2---C12---C11 0.12 (14) C3---C4---C5---C6 0.2 (3) C11---C12---C13---C14 −1.8 (3) S1---C4---C5---C6 179.35 (15) S2---C12---C13---C14 −179.05 (16) C4---C5---C6---C7 0.1 (3) C12---C13---C14---C15 0.7 (3) C5---C6---C7---C8 −0.3 (3) C13---C14---C15---C16 0.4 (3) C6---C7---C8---C3 0.1 (3) C14---C15---C16---C11 −0.5 (3) N1---C3---C8---C7 −179.63 (17) N2---C11---C16---C15 178.31 (18) C4---C3---C8---C7 0.2 (3) C12---C11---C16---C15 −0.7 (3) ------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2438 .table-wrap} ------------------------------------------ Cg1 is the centroid of the C3---C8 ring. ------------------------------------------ ::: ::: {#d1e2442 .table-wrap} ----------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C1---H1B···N1^i^ 0.99 2.57 3.519 (3) 161 C13---H13···N2^ii^ 0.95 2.61 3.441 (3) 146 C1---H1A···*Cg*1^iii^ 0.99 2.75 3.650 (2) ? C9---H9A···*Cg*1^iv^ 0.99 2.84 3.610 (3) ? ----------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+2, −*y*+1, −*z*+1; (ii) *x*−1, *y*, *z*; (iii) −*x*+1, −*y*+1, −*z*+1; (iv) −*x*+2, −*y*, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1 is the centroid of the C3---C8 ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ----------------------- --------- ------- ----------- ------------- C1---H1*B*⋯N1^i^ 0.99 2.57 3.519 (3) 161 C13---H13⋯N2^ii^ 0.95 2.61 3.441 (3) 146 C1---H1*A*⋯*Cg*1^iii^ 0.99 2.75 3.650 (2) ? C9---H9*A*⋯*Cg*1^iv^ 0.99 2.84 3.610 (3) ? Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:18.002492
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052028/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o622", "authors": [ { "first": "Christoph E.", "last": "Strasser" }, { "first": "Leigh-Anne", "last": "de Jongh" }, { "first": "Helgard G.", "last": "Raubenheimer" }, { "first": "Stephanie", "last": "Cronje" } ] }
PMC3052029
Related literature {#sec1} ================== For the structure determination of a bis-sulfane­diyl­di­acetato­nickelate(II), see: Delaunay *et al.* (1976[@bb3]). For a dinuclear sulfanediyldiacetato complex, see: Baggio *et al.* (1999[@bb1]). For an example with a solely bidentate coordination mode of the sulfanediyldiacetato ligand, see: Marek *et al.* (2003[@bb4]). For bond-valence-sum calculations, see: Zhang *et al.* (2004[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} (C~4~H~12~N~2~)\[Ce~2~(C~4~H~4~O~4~S)~4~(H~2~O)~2~\]·3H~2~O*M* *~r~* = 1051.00Triclinic,*a* = 6.4361 (7) Å*b* = 11.1135 (12) Å*c* = 12.5627 (14) Åα = 96.693 (4)°β = 104.646 (3)°γ = 101.192 (3)°*V* = 839.76 (16) Å^3^*Z* = 1Mo *K*α radiationμ = 3.01 mm^−1^*T* = 90 K0.25 × 0.22 × 0.05 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb5]) *T* ~min~ = 0.520, *T* ~max~ = 0.86411816 measured reflections4482 independent reflections4433 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.021 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.021*wR*(*F* ^2^) = 0.056*S* = 1.114482 reflections229 parameters3 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 1.79 e Å^−3^Δρ~min~ = −1.81 e Å^−3^ {#d5e732} Data collection: *APEX2* (Bruker, 2009[@bb2]); cell refinement: *SAINT* (Bruker, 2009[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811002923/wm2442sup1.cif](http://dx.doi.org/10.1107/S1600536811002923/wm2442sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002923/wm2442Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002923/wm2442Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?wm2442&file=wm2442sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?wm2442sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?wm2442&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [WM2442](http://scripts.iucr.org/cgi-bin/sendsup?wm2442)). MMO thanks the University of California, Davis, for the purchase of the X-ray diffractometer. Financial support from University of Kurdistan, Sanandaj, is gratefully acknowledged. Comment ======= Thiodiacetic acid is one class of dicarboxylic acid ligands that has been used for construction of coordination polymers. It is a versatile complexing agent with one sulfur and two oxygen donor atoms and can strongly complex metal ions. Although the structural study of sulfanediyldiacetate-transition metal compounds was initiated several decades ago (Delaunay, *et al.*, 1976), interest in the structural aspects of sulfanediyldiacetate compounds has remarkably increased in recent years, and many structures with *d*- and *f*-block metals are known to date. The ligand is usually tridentate, but at least one Mn(II) complex has been reported in which it is solely bidentate where the thioether S atom is not involved in bonding to the metal (Marek *et al.*, 2003). The ligand can be simply chelating or is involved in both bridging and chelating modes to give rise to dinuclear complexes (Baggio *et al.*, 1999). The crystal structure of {(C~4~H~12~N~2~)\[Ce(C~4~H~4~O~4~S)~2~(H~2~O)\]~2~^.^3H~2~O}~n~ or {\[(pipzH~2~)\[Ce(tda)~2~(H~2~O)\]~2~.3H~2~O}~n~, where tda = \[S(CH~2~COO)~2~\]^2-^, sulfanediyldiacetate, and pipzH~2~ is doubly protonated piperazine, is composed of a polymeric dinuclear anion \[Ce(tda)~2~(H~2~O)\]~2~^2-^, \[pipzH~2~\]^2+^ cations, and three water molecules of hydration. The components of the structure are shown in Fig. 1. The sulfanediyldiacetate group involving S1 behaves as both a tridentate chelating ligand and a bridging ligand to form a centrosymmetric dimer. The Ce1···Ce1^i^ (i = 1 - *x*, 1 - *y*, -*z*) distance is 4.3625 (4) Å. The sulfanediyldiacetate ligand involving S2 is also a tridentate chelating ligand while its oxygen, O8, coordinates to the Ce of an adjoining dimer and propagates the structure as a coordination polymer parallel to \[100\] (Fig. 2). The more distant Ce1^iii^ (iii = 1 + *x*, *y*, *z*) is 6.4361 (7) Å away from Ce1. The local coordination of the Ce^III^ cations consists of two thioethers (S1 and S2) and four O atoms (O1, O4, O5 and O7) from two chelating sulfanediyldiacetate groups, three oxygen atoms (O3, O4 and O8) of the carboxylate moieties from other sulfanediyldiacetate groups, and one oxygen atom from the coordinated water molecule (O9), resulting in an S~2~O~8~ distorted bicapped cubic environment. The Ce---O and Ce---S distances are normal and are gathered in Table 1. Bond valence sum calculations (Zhang *et al.*, 2004) yield a value of 2.9, in agreement with the oxidation state +III for the cerium atom. The \[pipzH~2~\]^2+^ cations and water molecules are further engaged in hydrogen bonding between polymeric units (Table 2). Although the H atoms of the uncoordinated water molecules could not be located, O···O contacts between 2.58 and 2.86 Å suggest that these molecules also participate in O---H···O hydrogen bonding. Experimental {#experimental} ============ The title compound was prepared by mixing two solutions containing 1.5 g (10 mmol) of 2,2\'-thiodiacetic acid in 10 ml THF and 0.86 g (10 mmol) piperazine in 10 ml THF. A white precipitate was obtained after evaporating the solvent. An aqueous solution containing 0.34 g (1.5 mmol) of the obtained ion pair in 20 ml water was added dropwise to 0.21 g (0.5 mmol) Ce(NO~3~)~3~^.^6H~2~O in 15 ml water. After 60 min stirring and heating to 303 K, the solution became clear. Yellow crystals of the title compound were obtained after allowing the mixture to stand for 3 weeks at room temperature to evaporate the solvent. Refinement {#refinement} ========== The C-bound and N-bound hydrogen atoms were placed at calculated positions (C---H 0.99 Å, N---H 0.92 Å) and were treated as riding on their parent atoms with *U*(H) set to 1.2 *U*~eq~(C). The hydrogen atoms bonded to the coordinated water were located in a difference Fourier map and were refined with distance restraints of O---H 0.83 (2) Å and H···H 1.34 (4) Å and their isotropic displacement parameters allowed to refine. There are two sites for water moleculess of hydration. One of the hydrate molecules is disordered with respect to a center of symmetry and was kept at 0.5 occupancy and refined with an isotropic displacement parameter. Hydrogen atoms bonded to the water molecules of crystallisation could not be reliably located and were eventually omitted from the refinement. The highest peak in the final difference map is 0.83 Å from Ce1 and the largest hole is 0.87 Å from the same atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are removed for clarity except those bonded to the piperazine N atoms and the coordinated water molecule. Hydrogen atoms are drawn as spheres of arbitrary radius. Atoms that indicate the propagation of the coordination polymer are shown. Symmetry codes: i = 1 - x, 1 - y, -z; ii = x - 1, y z; iii = 1 + x, y, z; iv = -x, 1 - y, -z; v = -x, 2 - y, -z. ::: ![](e-67-0m291-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view down \[100\] of the polymeric structure. ::: ![](e-67-0m291-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e306 .table-wrap} ------------------------------------------------------------- --------------------------------------- (C~4~H~12~N~2~)\[Ce~2~(C~4~H~4~O~4~S)~4~(H~2~O)~2~\]·3H~2~O *Z* = 1 *M~r~* = 1051.00 *F*(000) = 520 Triclinic, *P*1 *D*~x~ = 2.078 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 6.4361 (7) Å Cell parameters from 9880 reflections *b* = 11.1135 (12) Å θ = 2.7--31.5° *c* = 12.5627 (14) Å µ = 3.01 mm^−1^ α = 96.693 (4)° *T* = 90 K β = 104.646 (3)° Plate, colourless γ = 101.192 (3)° 0.25 × 0.22 × 0.05 mm *V* = 839.76 (16) Å^3^ ------------------------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e465 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART APEXII diffractometer 4482 independent reflections Radiation source: fine-focus sealed tube 4433 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.021 Detector resolution: 8.3 pixels mm^-1^ θ~max~ = 29.1°, θ~min~ = 2.8° ω scans *h* = −8→8 Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *k* = −15→15 *T*~min~ = 0.520, *T*~max~ = 0.864 *l* = −17→17 11816 measured reflections --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e585 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.021 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.056 H atoms treated by a mixture of independent and constrained refinement *S* = 1.11 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0319*P*)^2^ + 0.9355*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4482 reflections (Δ/σ)~max~ = 0.002 229 parameters Δρ~max~ = 1.79 e Å^−3^ 3 restraints Δρ~min~ = −1.81 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e742 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e841 .table-wrap} ------ --------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Ce1 0.572270 (15) 0.396056 (9) 0.136487 (8) 0.00772 (4) S1 0.50618 (8) 0.61593 (5) 0.31570 (4) 0.01299 (10) S2 0.81761 (8) 0.37549 (4) 0.38182 (4) 0.01047 (9) O1 0.8397 (2) 0.60785 (14) 0.18806 (12) 0.0126 (3) O2 0.9817 (3) 0.81191 (14) 0.24661 (13) 0.0155 (3) O3 0.4131 (3) 0.75180 (14) 0.03785 (13) 0.0150 (3) O4 0.3790 (2) 0.55553 (13) 0.05890 (12) 0.0116 (3) O5 0.5613 (2) 0.18686 (13) 0.17676 (12) 0.0121 (3) O6 0.5126 (3) 0.02205 (15) 0.25991 (14) 0.0204 (3) O7 0.9607 (2) 0.36963 (14) 0.16697 (12) 0.0128 (3) O8 1.2946 (2) 0.33740 (14) 0.24070 (12) 0.0118 (3) O9 0.1631 (2) 0.30107 (14) 0.00472 (12) 0.0118 (3) H9C 0.092 (5) 0.329 (3) 0.043 (2) 0.024 (8)\* H9D 0.146 (6) 0.332 (3) −0.052 (2) 0.034 (9)\* N1 0.1458 (3) 0.94944 (16) 0.08009 (15) 0.0121 (3) H1A 0.2761 0.9585 0.1349 0.015\* H1B 0.0661 0.8687 0.0701 0.015\* C1 0.7895 (4) 0.7018 (2) 0.35817 (17) 0.0144 (4) H1C 0.8004 0.7868 0.3965 0.017\* H1D 0.8795 0.6601 0.4116 0.017\* C2 0.8790 (3) 0.70996 (19) 0.25730 (16) 0.0117 (3) C3 0.3913 (4) 0.7073 (2) 0.21616 (18) 0.0174 (4) H3A 0.2354 0.7020 0.2151 0.021\* H3B 0.4716 0.7955 0.2429 0.021\* C4 0.3986 (3) 0.67031 (19) 0.09779 (16) 0.0114 (3) C5 0.6813 (4) 0.2163 (2) 0.37811 (18) 0.0164 (4) H5A 0.7899 0.1761 0.4223 0.020\* H5B 0.5635 0.2172 0.4156 0.020\* C6 0.5786 (3) 0.13566 (19) 0.26210 (17) 0.0126 (4) C7 1.0804 (3) 0.3580 (2) 0.36422 (17) 0.0159 (4) H7A 1.1962 0.4274 0.4151 0.019\* H7B 1.1077 0.2799 0.3895 0.019\* C8 1.1111 (3) 0.35473 (17) 0.24746 (16) 0.0100 (3) C9 0.0173 (3) 1.03697 (19) 0.11667 (17) 0.0134 (4) H9A 0.1071 1.1235 0.1328 0.016\* H9B −0.0169 1.0173 0.1861 0.016\* C10 −0.1952 (3) 1.02600 (19) 0.02648 (17) 0.0133 (4) H10A −0.2903 0.9413 0.0146 0.016\* H10B −0.2757 1.0867 0.0502 0.016\* O10 0.0974 (4) 0.0278 (2) 0.41702 (19) 0.0388 (5) O11 0.4926 (7) 0.0607 (4) 0.5455 (3) 0.0312 (8)\* 0.50 ------ --------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1384 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ce1 0.00901 (6) 0.00557 (6) 0.00889 (6) 0.00190 (4) 0.00262 (4) 0.00197 (4) S1 0.0153 (2) 0.0122 (2) 0.0120 (2) 0.00179 (17) 0.00535 (18) 0.00315 (17) S2 0.0117 (2) 0.0087 (2) 0.0111 (2) 0.00170 (16) 0.00410 (16) 0.00140 (16) O1 0.0135 (7) 0.0103 (6) 0.0125 (6) 0.0009 (5) 0.0036 (5) −0.0009 (5) O2 0.0177 (7) 0.0109 (7) 0.0174 (7) 0.0011 (5) 0.0058 (6) 0.0022 (5) O3 0.0214 (7) 0.0108 (7) 0.0148 (7) 0.0063 (6) 0.0060 (6) 0.0038 (5) O4 0.0133 (6) 0.0093 (6) 0.0130 (6) 0.0045 (5) 0.0034 (5) 0.0028 (5) O5 0.0146 (7) 0.0089 (6) 0.0132 (6) 0.0033 (5) 0.0038 (5) 0.0032 (5) O6 0.0244 (8) 0.0098 (7) 0.0199 (8) −0.0015 (6) −0.0035 (6) 0.0060 (6) O7 0.0130 (6) 0.0150 (7) 0.0124 (6) 0.0052 (5) 0.0045 (5) 0.0045 (5) O8 0.0112 (6) 0.0116 (6) 0.0135 (6) 0.0029 (5) 0.0045 (5) 0.0030 (5) O9 0.0143 (7) 0.0103 (6) 0.0115 (6) 0.0027 (5) 0.0048 (5) 0.0023 (5) N1 0.0129 (8) 0.0080 (7) 0.0144 (8) 0.0024 (6) 0.0016 (6) 0.0027 (6) C1 0.0165 (9) 0.0130 (9) 0.0118 (9) 0.0006 (7) 0.0033 (7) 0.0007 (7) C2 0.0108 (8) 0.0120 (9) 0.0112 (8) 0.0022 (7) 0.0018 (7) 0.0015 (7) C3 0.0234 (10) 0.0202 (10) 0.0123 (9) 0.0137 (8) 0.0049 (8) 0.0025 (7) C4 0.0103 (8) 0.0123 (9) 0.0118 (8) 0.0047 (7) 0.0020 (7) 0.0021 (7) C5 0.0209 (10) 0.0105 (9) 0.0132 (9) −0.0015 (7) −0.0010 (8) 0.0056 (7) C6 0.0114 (8) 0.0096 (8) 0.0160 (9) 0.0026 (7) 0.0015 (7) 0.0036 (7) C7 0.0112 (9) 0.0255 (11) 0.0114 (9) 0.0052 (8) 0.0033 (7) 0.0031 (8) C8 0.0123 (8) 0.0048 (8) 0.0128 (8) 0.0011 (6) 0.0041 (7) 0.0010 (6) C9 0.0172 (9) 0.0098 (8) 0.0132 (9) 0.0041 (7) 0.0037 (7) 0.0014 (7) C10 0.0144 (9) 0.0114 (9) 0.0154 (9) 0.0039 (7) 0.0055 (7) 0.0027 (7) O10 0.0566 (14) 0.0248 (10) 0.0376 (11) 0.0073 (9) 0.0213 (10) 0.0010 (8) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1801 .table-wrap} ---------------------------- -------------- ----------------------------- -------------- Ce1---S1 3.2903 (6) O9---H9D 0.825 (18) Ce1---S2 3.1445 (6) N1---C10^iii^ 1.495 (3) Ce1---O1 2.5359 (15) N1---C9 1.497 (3) Ce1---O4 2.5069 (14) N1---H1A 0.9200 Ce1---O5 2.4278 (14) N1---H1B 0.9200 Ce1---O7 2.5117 (15) C1---C2 1.524 (3) Ce1---O8^i^ 2.5024 (15) C1---H1C 0.9900 Ce1---O3^ii^ 2.6137 (16) C1---H1D 0.9900 Ce1---O4^ii^ 2.6542 (15) C3---C4 1.511 (3) Ce1---O9 2.6644 (15) C3---H3A 0.9900 S1---C1 1.798 (2) C3---H3B 0.9900 S1---C3 1.806 (2) C5---C6 1.531 (3) S2---C7 1.804 (2) C5---H5A 0.9900 S2---C5 1.805 (2) C5---H5B 0.9900 O1---C2 1.287 (2) C7---C8 1.526 (3) O2---C2 1.236 (3) C7---H7A 0.9900 O3---C4 1.248 (2) C7---H7B 0.9900 O4---C4 1.282 (2) C9---C10 1.513 (3) O5---C6 1.262 (2) C9---H9A 0.9900 O6---C6 1.246 (3) C9---H9B 0.9900 O7---C8 1.262 (2) C10---H10A 0.9900 O8---C8 1.255 (2) C10---H10B 0.9900 O9---H9C 0.817 (17) O5---Ce1---O8^i^ 69.44 (5) C8---O7---Ce1 136.54 (13) O5---Ce1---O4 150.35 (5) C8---O8---Ce1^iv^ 140.41 (13) O8^i^---Ce1---O4 91.13 (5) Ce1---O9---H9C 101 (2) O5---Ce1---O7 74.48 (5) Ce1---O9---H9D 109 (3) O8^i^---Ce1---O7 131.20 (5) H9C---O9---H9D 108 (3) O4---Ce1---O7 133.20 (5) C10^iii^---N1---C9 111.17 (15) O5---Ce1---O1 138.75 (5) C10^iii^---N1---H1A 109.4 O8^i^---Ce1---O1 121.49 (5) C9---N1---H1A 109.4 O4---Ce1---O1 70.37 (5) C10^iii^---N1---H1B 109.4 O7---Ce1---O1 70.20 (5) C9---N1---H1B 109.4 O5---Ce1---O3^ii^ 69.93 (5) H1A---N1---H1B 108.0 O8^i^---Ce1---O3^ii^ 121.93 (5) C2---C1---S1 110.59 (14) O4---Ce1---O3^ii^ 105.26 (5) C2---C1---H1C 109.5 O7---Ce1---O3^ii^ 71.75 (5) S1---C1---H1C 109.5 O1---Ce1---O3^ii^ 116.48 (5) C2---C1---H1D 109.5 O5---Ce1---O4^ii^ 119.23 (5) S1---C1---H1D 109.5 O8^i^---Ce1---O4^ii^ 144.10 (5) H1C---C1---H1D 108.1 O4---Ce1---O4^ii^ 64.63 (6) O2---C2---O1 124.50 (19) O7---Ce1---O4^ii^ 82.62 (5) O2---C2---C1 119.06 (18) O1---Ce1---O4^ii^ 76.75 (5) O1---C2---C1 116.43 (18) O3^ii^---Ce1---O4^ii^ 49.44 (5) C4---C3---S1 115.90 (15) O5---Ce1---O9 85.38 (5) C4---C3---H3A 108.3 O8^i^---Ce1---O9 66.23 (5) S1---C3---H3A 108.3 O4---Ce1---O9 65.95 (5) C4---C3---H3B 108.3 O7---Ce1---O9 141.72 (5) S1---C3---H3B 108.3 O1---Ce1---O9 135.87 (5) H3A---C3---H3B 107.4 O3^ii^---Ce1---O9 70.84 (5) O3---C4---O4 121.12 (19) O4^ii^---Ce1---O9 79.35 (5) O3---C4---C3 119.05 (19) O5---Ce1---S2 63.64 (4) O4---C4---C3 119.73 (18) O8^i^---Ce1---S2 70.54 (4) C6---C5---S2 116.14 (15) O4---Ce1---S2 132.01 (3) C6---C5---H5A 108.3 O7---Ce1---S2 64.42 (3) S2---C5---H5A 108.3 O1---Ce1---S2 82.04 (4) C6---C5---H5B 108.3 O3^ii^---Ce1---S2 122.24 (4) S2---C5---H5B 108.3 O4^ii^---Ce1---S2 145.36 (3) H5A---C5---H5B 107.4 O9---Ce1---S2 133.47 (3) O6---C6---O5 124.6 (2) C4^ii^---Ce1---S2 139.09 (4) O6---C6---C5 116.06 (18) O5---Ce1---S1 120.96 (4) O5---C6---C5 119.27 (18) O8^i^---Ce1---S1 62.01 (4) C8---C7---S2 117.92 (15) O4---Ce1---S1 62.43 (4) C8---C7---H7A 107.8 O7---Ce1---S1 115.38 (4) S2---C7---H7A 107.8 O1---Ce1---S1 60.23 (4) C8---C7---H7B 107.8 O3^ii^---Ce1---S1 167.65 (3) S2---C7---H7B 107.8 O4^ii^---Ce1---S1 119.75 (3) H7A---C7---H7B 107.2 O9---Ce1---S1 102.88 (3) O8---C8---O7 124.80 (19) C4^ii^---Ce1---S1 144.33 (4) O8---C8---C7 114.35 (17) S2---Ce1---S1 69.898 (14) O7---C8---C7 120.85 (18) C1---S1---C3 99.14 (11) N1---C9---C10 110.34 (16) C1---S1---Ce1 95.72 (7) N1---C9---H9A 109.6 C3---S1---Ce1 97.65 (7) C10---C9---H9A 109.6 C7---S2---C5 101.63 (11) N1---C9---H9B 109.6 C7---S2---Ce1 100.18 (7) C10---C9---H9B 109.6 C5---S2---Ce1 97.24 (7) H9A---C9---H9B 108.1 C2---O1---Ce1 138.15 (13) N1^iii^---C10---C9 110.03 (17) C4---O3---Ce1^ii^ 95.97 (12) N1^iii^---C10---H10A 109.7 C4---O4---Ce1 131.30 (13) C9---C10---H10A 109.7 C4---O4---Ce1^ii^ 93.20 (12) N1^iii^---C10---H10B 109.7 Ce1---O4---Ce1^ii^ 115.37 (5) C9---C10---H10B 109.7 C6---O5---Ce1 136.68 (13) H10A---C10---H10B 108.2 O5---Ce1---S1---C1 108.05 (8) O1---Ce1---O4---Ce1^ii^ 84.25 (6) O8^i^---Ce1---S1---C1 146.53 (8) O3^ii^---Ce1---O4---Ce1^ii^ −28.92 (7) O4---Ce1---S1---C1 −105.85 (8) O4^ii^---Ce1---O4---Ce1^ii^ 0.0 O7---Ce1---S1---C1 21.53 (8) O9---Ce1---O4---Ce1^ii^ −89.30 (6) O1---Ce1---S1---C1 −23.78 (8) S2---Ce1---O4---Ce1^ii^ 142.97 (3) O3^ii^---Ce1---S1---C1 −101.58 (18) S1---Ce1---O4---Ce1^ii^ 150.14 (7) O4^ii^---Ce1---S1---C1 −74.64 (8) O8^i^---Ce1---O5---C6 −53.69 (19) O9---Ce1---S1---C1 −159.61 (8) O4---Ce1---O5---C6 −105.6 (2) S2---Ce1---S1---C1 68.49 (7) O7---Ce1---O5---C6 92.87 (19) O5---Ce1---S1---C3 −151.90 (9) O1---Ce1---O5---C6 61.1 (2) O8^i^---Ce1---S1---C3 −113.42 (9) O3^ii^---Ce1---O5---C6 168.7 (2) O4---Ce1---S1---C3 −5.79 (9) O4^ii^---Ce1---O5---C6 164.92 (18) O7---Ce1---S1---C3 121.59 (9) O9---Ce1---O5---C6 −120.01 (19) O1---Ce1---S1---C3 76.28 (9) S2---Ce1---O5---C6 24.12 (18) O3^ii^---Ce1---S1---C3 −1.53 (19) S1---Ce1---O5---C6 −17.8 (2) O4^ii^---Ce1---S1---C3 25.42 (9) O5---Ce1---O7---C8 −65.42 (18) O9---Ce1---S1---C3 −59.56 (9) O8^i^---Ce1---O7---C8 −22.1 (2) S2---Ce1---S1---C3 168.54 (8) O4---Ce1---O7---C8 127.01 (18) O5---Ce1---S2---C7 84.51 (9) O1---Ce1---O7---C8 92.90 (19) O8^i^---Ce1---S2---C7 160.59 (9) O3^ii^---Ce1---O7---C8 −138.95 (19) O4---Ce1---S2---C7 −126.28 (9) O4^ii^---Ce1---O7---C8 171.42 (19) O7---Ce1---S2---C7 −0.10 (9) O9---Ce1---O7---C8 −126.28 (18) O1---Ce1---S2---C7 −71.91 (9) S2---Ce1---O7---C8 2.38 (17) O3^ii^---Ce1---S2---C7 44.46 (9) S1---Ce1---O7---C8 51.92 (19) O4^ii^---Ce1---S2---C7 −19.46 (10) C3---S1---C1---C2 −56.27 (16) O9---Ce1---S2---C7 138.09 (9) Ce1---S1---C1---C2 42.45 (15) S1---Ce1---S2---C7 −133.04 (8) Ce1---O1---C2---O2 −159.61 (15) O5---Ce1---S2---C5 −18.75 (9) Ce1---O1---C2---C1 20.0 (3) O8^i^---Ce1---S2---C5 57.33 (9) S1---C1---C2---O2 132.49 (17) O4---Ce1---S2---C5 130.46 (9) S1---C1---C2---O1 −47.1 (2) O7---Ce1---S2---C5 −103.36 (9) C1---S1---C3---C4 87.74 (18) O1---Ce1---S2---C5 −175.16 (9) Ce1---S1---C3---C4 −9.35 (18) O3^ii^---Ce1---S2---C5 −58.80 (9) Ce1^ii^---O3---C4---O4 −5.3 (2) O4^ii^---Ce1---S2---C5 −122.72 (10) Ce1^ii^---O3---C4---C3 178.13 (16) O9---Ce1---S2---C5 34.83 (9) Ce1---O4---C4---O3 133.58 (17) S1---Ce1---S2---C5 123.70 (8) Ce1^ii^---O4---C4---O3 5.2 (2) O5---Ce1---O1---C2 −97.7 (2) Ce1---O4---C4---C3 −49.9 (3) O8^i^---Ce1---O1---C2 −3.5 (2) Ce1^ii^---O4---C4---C3 −178.26 (17) O4---Ce1---O1---C2 75.31 (19) Ce1---O4---C4---Ce1^ii^ 128.35 (15) O7---Ce1---O1---C2 −130.4 (2) S1---C3---C4---O3 −150.05 (17) O3^ii^---Ce1---O1---C2 173.03 (18) S1---C3---C4---O4 33.4 (3) O4^ii^---Ce1---O1---C2 142.8 (2) C7---S2---C5---C6 −79.97 (18) O9---Ce1---O1---C2 83.8 (2) Ce1---S2---C5---C6 22.04 (17) S2---Ce1---O1---C2 −64.81 (19) Ce1---O5---C6---O6 160.71 (16) S1---Ce1---O1---C2 6.54 (18) Ce1---O5---C6---C5 −17.5 (3) O5---Ce1---O4---C4 135.03 (17) S2---C5---C6---O6 170.16 (17) O8^i^---Ce1---O4---C4 87.52 (17) S2---C5---C6---O5 −11.5 (3) O7---Ce1---O4---C4 −69.76 (19) C5---S2---C7---C8 98.32 (18) O1---Ce1---O4---C4 −35.69 (17) Ce1---S2---C7---C8 −1.33 (17) O3^ii^---Ce1---O4---C4 −148.85 (17) Ce1^iv^---O8---C8---O7 32.5 (3) O4^ii^---Ce1---O4---C4 −119.94 (19) Ce1^iv^---O8---C8---C7 −146.95 (16) O9---Ce1---O4---C4 150.77 (18) Ce1---O7---C8---O8 176.41 (13) S2---Ce1---O4---C4 23.04 (19) Ce1---O7---C8---C7 −4.1 (3) S1---Ce1---O4---C4 30.20 (16) S2---C7---C8---O8 −177.31 (15) O5---Ce1---O4---Ce1^ii^ −105.03 (10) S2---C7---C8---O7 3.2 (3) O8^i^---Ce1---O4---Ce1^ii^ −152.54 (6) C10^iii^---N1---C9---C10 57.6 (2) O7---Ce1---O4---Ce1^ii^ 50.18 (9) N1---C9---C10---N1^iii^ −57.0 (2) ---------------------------- -------------- ----------------------------- -------------- ::: Symmetry codes: (i) *x*−1, *y*, *z*; (ii) −*x*+1, −*y*+1, −*z*; (iii) −*x*, −*y*+2, −*z*; (iv) *x*+1, *y*, *z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3475 .table-wrap} ------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O9---H9C···O7^i^ 0.82 (2) 2.00 (2) 2.793 (2) 163 (3) O9---H9D···O1^ii^ 0.83 (2) 1.92 (2) 2.729 (2) 167 (3) N1---H1A···O6^v^ 0.92 1.84 2.732 (2) 162 N1---H1B···O9^vi^ 0.92 2.10 2.988 (2) 161 ------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) *x*−1, *y*, *z*; (ii) −*x*+1, −*y*+1, −*z*; (v) *x*, *y*+1, *z*; (vi) −*x*, −*y*+1, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: -------------- ------------- Ce1---S1 3.2903 (6) Ce1---S2 3.1445 (6) Ce1---O1 2.5359 (15) Ce1---O4 2.5069 (14) Ce1---O5 2.4278 (14) Ce1---O7 2.5117 (15) Ce1---O8^i^ 2.5024 (15) Ce1---O3^ii^ 2.6137 (16) Ce1---O4^ii^ 2.6542 (15) Ce1---O9 2.6644 (15) -------------- ------------- Symmetry codes: (i) ; (ii) . ::: ::: {#table2 .table-wrap} Table 2 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- ---------- ---------- ----------- ------------- O9---H9*C*⋯O7^i^ 0.82 (2) 2.00 (2) 2.793 (2) 163 (3) O9---H9*D*⋯O1^ii^ 0.83 (2) 1.92 (2) 2.729 (2) 167 (3) N1---H1*A*⋯O6^iii^ 0.92 1.84 2.732 (2) 162 N1---H1*B*⋯O9^iv^ 0.92 2.10 2.988 (2) 161 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:18.008298
2011-2-02
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052029/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 2; 67(Pt 3):m291-m292", "authors": [ { "first": "Mohammad", "last": "Ghadermazi" }, { "first": "Marilyn M.", "last": "Olmstead" }, { "first": "Shahideh", "last": "Rostami" }, { "first": "Jafar", "last": "Attar Gharamaleki" } ] }
PMC3052030
Related literature {#sec1} ================== For the preparation, see: Ezzine *et al.* (2009[@bb9]). For structural relationships, see: Leclaire *et al.* (2002[@bb15]); Lii *et al.* (1990[@bb16]); Haddad *et al.* (1992[@bb12]); Haddad & Jouini (1994[@bb11]); Borel *et al.* (1997[@bb4]). For properties of related compounds, see: Aranda *et al.* (1992[@bb2]); Daidouh *et al.* (1997[@bb7]); Nguyen & Sleight (1996[@bb18]). For bond-valence data, see: Brown & Altermatt (1985[@bb6]). For related structures with formula *M*O*X*O~4~ (*M* = V, Nb, Mo, Sb; *X* = P, S), see: Amos *et al.* (1998[@bb1]); Boghosian *et al.* (1995[@bb3]); Kierkegaard & Longo (1970[@bb14]); Piffard *et al.* (1986[@bb20]); Tachez *et al.* (1981[@bb22]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} VOAsO~4~*M* *~r~* = 205.86Monoclinic,*a* = 6.3338 (7) Å*b* = 8.2826 (8) Å*c* = 6.3599 (7) Åβ = 90.19 (1)°*V* = 333.64 (6) Å^3^*Z* = 4Mo *K*α radiationμ = 12.69 mm^−1^*T* = 298 K0.21 × 0.11 × 0.10 mm ### Data collection {#sec2.1.2} Enraf--Nonius CAD-4 diffractometerAbsorption correction: ψ scan (North *et al.*, 1968[@bb19]) *T* ~min~ = 0.201, *T* ~max~ = 0.2761646 measured reflections724 independent reflections672 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.0222 standard reflections every 120 min intensity decay: 1.2% ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.018*wR*(*F* ^2^) = 0.057*S* = 1.16724 reflections65 parametersΔρ~max~ = 0.63 e Å^−3^Δρ~min~ = −0.72 e Å^−3^ {#d5e477} Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992[@bb8]; Macíček & Yordanov, 1992[@bb17]); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995[@bb13]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb21]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb21]); molecular graphics: *DIAMOND* (Brandenburg, 1998[@bb5]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb10]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004053/ru2001sup1.cif](http://dx.doi.org/10.1107/S1600536811004053/ru2001sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004053/ru2001Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004053/ru2001Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ru2001&file=ru2001sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ru2001sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ru2001&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RU2001](http://scripts.iucr.org/cgi-bin/sendsup?ru2001)). Comment ======= Le vanadium peut adopter différentes coordinations et divers états d\'oxydation. En outre, la jonction des polyèdres VO~n~ avec des tetraèdres XO~4~ (X= P ou As), peut mener à des composés possédant des charpentes anioniques ouvertes mixtes uni, bi ou tridimensionnelles (Leclaire *et al.*, 2002; Lii *et al.*, 1990; Haddad *et al.*, 1994; Borel *et al.*, 1997; Ezzine *et al.*, 2009), pouvant manifester certaines propriétés physiques intéressantes notamment: de conduction ionique (Daidouh *et al.*, 1997), d\'échange d\'ions (Aranda *et al.*, 1992) ou parfois catalytique (Nguyen & Sleight, 1996). L\'unité asymétrique dans la structure renferme un tétraèdre AsO~4~ et un octaèdre VO~6~ reliés par mise en commun d\'un sommet formant l\'unité classique VAsO~9~ (Fig. 1), présentant une distance courte caractéristique d\'un groupement vanadyl ( d(V--O)= 1,570 (3) Å). Ces unités se connectent pour établir des chaînes infinies VAsO~8~ parallèles respectivement à a et c. L\'association de celles-ci, assurée par partage de sommets entre les polyèdres de nature différente conduit à des couches infinies VAsO~7~ disposées parallèlement au plan ac (Fig. 2). La jonction de ces dernières est réalisée par partage d\'arêtes ente octaèdres VO~6~ appartenant à deux couches adjacentes pour conduire à une structure tridimentionnelle (Fig. 3). La formule empirique de Brown (Brown & Altermatt, 1985) a été utilisée pour le calcul des différentes valences des liaisons qui vérifient bien les valeurs des charges des ions V(5,036) et As(4,936) dans cet oxyde. La comparaison de la structure de VOAsO~4~ avec des travaux antérieurs de formulation analogue MOXO~4~ (avec M= V, Nb, Mo ou Sb; X= P ou S) révèle la présence des chaînes classiques MXO~8~ dans les composés MOPO~4~ (M= V, Mo, Nb, Sb) ( Amos *et al.*, 1998; Piffard *et al.*, 1986; Tachez *et al.*, 1981; Kierkegaard *et al.*, 1970 ) et VOSO~4~ (Boghosian *et al.*, 1995) analogues à celles rencontrées dans la phase étudiée. La jonction entre ces chaînes, dans VOPO~4~, MoOPO~4~, NbOPO~4~ conduit aux mêmes types de couches MXO~7~ rencontrées dans notre oxyde VOAsO~4~. Cependant dans les composés VOSO~4~ et SbOPO~4~ ces chaînes se lient par partage de sommets moyennant les octaèdres MO~6~ et établissent des couches infinies MXO~7~ (Fig. 4). Ces dernières se connectent entre elles par partage de sommets entre les octaèdres MO~6~ dans les phosphates de niobium, vanadium ou molybdène et par ponts mixtes M-O-X dans le sulfate de vanadium et le phosphate d\'antimoine. L\'association des couches conduit dans chaque cas à une structure tridimensionnelle. Experimental {#experimental} ============ Des cristaux de la phase VOAsO~4~ ont été obtenus au cours de l\'exploration du système Na~2~O--V~2~O~5~--As~2~O~5~. En effet, un mélange réalisé dans les conditions stoechiométriques (1:2:2) à partir des réactifs solides NH~4~H~2~AsO~4~ (préparé au laboratoire, ASTM 01--775), NH~4~VO~3~ (Riedel-De Haën) et NaNO~3~ (Fluka) est finement broyé et pré-chauffé à 573 K pendant une nuit. La température est ensuite portée à 873 K pendant deux jours. Après refroidissement, l\'observation du mélange révèle la présence de deux types de cristaux. La phase majoritaire, sous forme parallélepipédique de couleur verte, s\'avère moyennant la diffraction des rayons-*X*, le composé NaVAsO~5~ (Haddad *et al.*1992). Un cristal de la phase minoritaire a été donc choisi pour la détermination de sa structure. Refinement {#refinement} ========== Le facteur de consistance interne *R*~int~ calculé pour les facteurs de structure supposés équivalents soit dans les cas orthorhombic ou tetragonal conduit à des valeurs supérieures à 26%. *L*\'affinement final est par conséquent mené dans le sysème monoclinic avec une valeur de *R*~int~ égale à 2,2%. Les densités d\'électrons maximum et minimum restants dans la Fourier-différence sont situées respectivements à 0,73 Å de O2 et à 0,93 Å de As. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Unité asymétrique dans VOAsO4. Les éllipsoïdes ont été définis avec 50% de probabilité. \[codes de symmétrie: (i) x - 1/2, -y + 1/2, z - 1/2; (ii) x - 1, y, z; (iii) x - 1, y, z - 1; (iv) -x + 1, -y, -z + 1; (v) x - 1/2, -y + 1/2, z + 1/2\]. ::: ![](e-67-00i21-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Projection d\'une couche VAsO7 selon b montrant la connexion des chaînes infinies VAsO8. ::: ![](e-67-00i21-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### Projection de la structure de VOAsO4 selon a. ::: ![](e-67-00i21-fig3) ::: ::: {#Fap4 .fig} Fig. 4. ::: {.caption} ###### Projection d\'une couche VSO7 selon c dans l\'oxyde VOSO4. ::: ![](e-67-00i21-fig4) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e348 .table-wrap} ------------------------- ------------------------------------- VOAsO~4~ *F*(000) = 384 *M~r~* = 205.86 *D*~x~ = 4.098 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 25 reflections *a* = 6.3338 (7) Å θ = 10--15° *b* = 8.2826 (8) Å µ = 12.69 mm^−1^ *c* = 6.3599 (7) Å *T* = 298 K β = 90.19 (1)° Prism, orange *V* = 333.64 (6) Å^3^ 0.21 × 0.11 × 0.10 mm *Z* = 4 ------------------------- ------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e469 .table-wrap} ------------------------------------------------------ -------------------------------------- Enraf--Nonius CAD-4 diffractometer 672 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.022 graphite θ~max~ = 27.0°, θ~min~ = 4.0° ω/2θ scans *h* = −8→8 Absorption correction: ψ scan (North *et al.*, 1968) *k* = −1→10 *T*~min~ = 0.201, *T*~max~ = 0.276 *l* = −8→8 1646 measured reflections 2 standard reflections every 120 min 724 independent reflections intensity decay: 1.2% ------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e594 .table-wrap} ------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.018 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0302*P*)^2^ + 0.2701*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *wR*(*F*^2^) = 0.057 (Δ/σ)~max~ \< 0.001 *S* = 1.16 Δρ~max~ = 0.63 e Å^−3^ 724 reflections Δρ~min~ = −0.72 e Å^−3^ 65 parameters Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ 0 restraints Extinction coefficient: 0.0051 (10) ------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e770 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e869 .table-wrap} ---- ------------- ------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ V 0.03529 (6) 0.17105 (6) 0.15935 (6) 0.00436 (16) As 0.03636 (4) 0.24811 (3) 0.65771 (4) 0.00357 (14) O1 0.0152 (3) −0.1177 (2) 0.1408 (3) 0.0055 (4) O2 0.0313 (3) 0.3600 (3) 0.1395 (3) 0.0113 (5) O3 0.2446 (3) 0.3664 (2) 0.7158 (3) 0.0073 (4) O4 0.3279 (3) 0.1316 (2) 0.1083 (3) 0.0076 (4) O5 0.0968 (3) 0.1379 (2) 0.4438 (3) 0.0071 (4) ---- ------------- ------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e991 .table-wrap} ---- -------------- ------------- ------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ V 0.0029 (2) 0.0063 (3) 0.0039 (3) −0.00016 (15) −0.00034 (17) −0.00090 (15) As 0.00167 (19) 0.0062 (2) 0.0028 (2) −0.00011 (8) −0.00033 (12) 0.00060 (8) O1 0.0066 (9) 0.0064 (9) 0.0035 (8) −0.0010 (7) −0.0004 (6) 0.0009 (6) O2 0.0127 (11) 0.0088 (11) 0.0125 (10) −0.0003 (7) −0.0011 (8) 0.0000 (7) O3 0.0028 (8) 0.0095 (10) 0.0095 (8) −0.0022 (7) −0.0001 (7) −0.0010 (7) O4 0.0023 (8) 0.0109 (10) 0.0094 (8) −0.0019 (7) −0.0004 (6) −0.0030 (7) O5 0.0074 (9) 0.0110 (9) 0.0030 (8) 0.0004 (7) −0.0017 (7) −0.0006 (7) ---- -------------- ------------- ------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1175 .table-wrap} -------------------- ------------ ----------------------- ------------- V---O2 1.570 (3) V---O1 2.398 (2) V---O5 1.869 (2) As---O3 1.683 (2) V---O3^i^ 1.903 (2) As---O4^iii^ 1.683 (2) V---O4 1.911 (2) As---O5 1.683 (2) V---O1^ii^ 1.985 (2) As---O1^iv^ 1.708 (2) O2---V---O5 103.14 (9) O5---V---O1 84.95 (7) O2---V---O3^i^ 99.33 (9) O3^i^---V---O1 78.20 (7) O5---V---O3^i^ 89.55 (8) O4---V---O1 82.66 (7) O2---V---O4 99.93 (9) O1^ii^---V---O1 73.88 (8) O5---V---O4 86.58 (8) O3---As---O4^iii^ 108.07 (10) O3^i^---V---O4 160.74 (9) O3---As---O5 108.23 (9) O2---V---O1^ii^ 98.17 (9) O4^iii^---As---O5 110.52 (9) O5---V---O1^ii^ 158.54 (9) O3---As---O1^iv^ 110.81 (9) O3^i^---V---O1^ii^ 89.55 (8) O4^iii^---As---O1^iv^ 111.25 (9) O4---V---O1^ii^ 87.24 (7) O5---As---O1^iv^ 107.93 (9) O2---V---O1 171.60 (8) -------------------- ------------ ----------------------- ------------- ::: Symmetry codes: (i) *x*−1/2, −*y*+1/2, *z*−1/2; (ii) −*x*, −*y*, −*z*; (iii) *x*−1/2, −*y*+1/2, *z*+1/2; (iv) −*x*, −*y*, −*z*+1.
PubMed Central
2024-06-05T04:04:18.015257
2011-2-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052030/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 5; 67(Pt 3):i21", "authors": [ { "first": "Safa", "last": "Ezzine Yahmed" }, { "first": "Mohamed Faouzi", "last": "Zid" }, { "first": "Ahmed", "last": "Driss" } ] }
PMC3052031
Related literature {#sec1} ================== For the bioactivity of indole derivatives, see: Di Fabio *et al.* (2007[@bb1]); Sharma & Tepe (2004[@bb6]). For related structures, see: Huang *et al.* (2009[@bb3], 2010[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~12~H~12~N~2~O~3~*M* *~r~* = 232.24Orthorhombic,*a* = 8.0024 (2) Å*b* = 9.1279 (2) Å*c* = 15.9767 (3) Å*V* = 1167.02 (4) Å^3^*Z* = 4Cu *K*α radiationμ = 0.80 mm^−1^*T* = 150 K0.49 × 0.17 × 0.12 mm ### Data collection {#sec2.1.2} Oxford Gemini S Ultra area-detector diffractometerAbsorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010)[@bb5] *T* ~min~ = 0.694, *T* ~max~ = 0.9102269 measured reflections1642 independent reflections1613 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.016 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.029*wR*(*F* ^2^) = 0.077*S* = 1.051642 reflections155 parametersH-atom parameters constrainedΔρ~max~ = 0.13 e Å^−3^Δρ~min~ = −0.14 e Å^−3^Absolute structure: Flack (1983[@bb2]), 568 Friedel pairsFlack parameter: −0.2 (3) {#d5e439} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010[@bb5]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb7]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811006660/rz2556sup1.cif](http://dx.doi.org/10.1107/S1600536811006660/rz2556sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006660/rz2556Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006660/rz2556Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rz2556&file=rz2556sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rz2556sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rz2556&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RZ2556](http://scripts.iucr.org/cgi-bin/sendsup?rz2556)). We thank the Natural Science Foundation of Guangdong Province, China (No. 06300581) for generously supporting this study. Comment ======= Many indole derivatives show important bioactivities, such as metabotropic receptor antagonists (Di Fabio *et al.*, 2007) and protein kinase inhibiting activity (Sharma & Tepe, 2004). This is the reason they have attracted our interest. This study is related to our previous structural investigations of methyl 3-(1-butyl-1*H*-indole-3-carbonyl)aminopropionate (Huang *et al.*, 2009) and methyl 3-(1*H*-indole-3-carbonyl)aminopropionate hemihydrate (Huang *et al.*, 2010). The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, molecules of the title compound are linked through N2---H2···O1 H-bonds (Table 1) to form chains extending along the *b* axis, which are further connected by N1---HA···O2 H-bonds to form the three-dimensional network (Fig. 2 and Fig. 3). Bond lengths and angles are unexceptional. Experimental {#experimental} ============ The hydrochloric acid salt of methyl aminoacetate (0.63 g, 5 mmol) and 3-trichloroacetylindole (1.32 g, 5 mmol) were added to acetonitrile (10 ml), followed by the dropwise addition of triethylamine (1.2 ml). The mixture was stirred at room temperature for 12 h and then poured into water. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in EtOH at room temperature, light yellow orthorhombic crystals suitable for X-ray analysis (m.p. 448 K, 89.2% yield) grew over a period of one week on slow evaporation of the solvent. Refinement {#refinement} ========== All non-H atoms were refined with anisotropic displacement parameters. The H atoms were positioned geometrically \[C---H = 0.99Å for CH~2~, 0.98Å for CH~3~, 0.95Å for CH(aromatic) and N---H = 0.88 Å\] and refined using a riding model, with *U*~iso~ = 1.2*U*~eq~ (1.5*U*~eq~ for the methyl group) of the parent atom. Friedel pairs were not merged in the refinement Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0o742-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Crystal packing of the title compound viewed approximately along the a axis. Dashed lines indicate hydrogen bonds. ::: ![](e-67-0o742-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### Crystal packing of the title compound viewed along the b axis. Dashed lines indicate hydrogen bonds. ::: ![](e-67-0o742-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e150 .table-wrap} ------------------------------- --------------------------------------- C~12~H~12~N~2~O~3~ *D*~x~ = 1.322 Mg m^−3^ *M~r~* = 232.24 Melting point: 448 K Orthorhombic, *P*2~1~2~1~2~1~ Cu *K*α radiation, λ = 1.54178 Å Hall symbol: P 2ac 2ab Cell parameters from 1985 reflections *a* = 8.0024 (2) Å θ = 4.8--62.6° *b* = 9.1279 (2) Å µ = 0.80 mm^−1^ *c* = 15.9767 (3) Å *T* = 150 K *V* = 1167.02 (4) Å^3^ Prism, light yellow *Z* = 4 0.49 × 0.17 × 0.12 mm *F*(000) = 488 ------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e281 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Gemini S Ultra area-detector diffractometer 1642 independent reflections Radiation source: fine-focus sealed tube 1613 reflections with *I* \> 2σ(*I*) mirror *R*~int~ = 0.016 φ and ω scans θ~max~ = 62.7°, θ~min~ = 5.6° Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) *h* = −5→9 *T*~min~ = 0.694, *T*~max~ = 0.910 *k* = −10→8 2269 measured reflections *l* = −18→15 ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e398 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.029 H-atom parameters constrained *wR*(*F*^2^) = 0.077 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0478*P*)^2^ + 0.0803*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.05 (Δ/σ)~max~ = 0.011 1642 reflections Δρ~max~ = 0.13 e Å^−3^ 155 parameters Δρ~min~ = −0.14 e Å^−3^ 0 restraints Absolute structure: Flack (1983), 568 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: −0.2 (3) ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e563 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e662 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.8259 (2) 0.08538 (18) 0.12627 (10) 0.0418 (4) H1 0.9222 0.0261 0.1184 0.050\* N1 0.68538 (19) 0.07824 (16) 0.07961 (9) 0.0491 (4) H1A 0.6691 0.0180 0.0374 0.059\* C8 0.5711 (2) 0.17992 (19) 0.10821 (10) 0.0451 (4) C3 0.6450 (2) 0.25391 (16) 0.17586 (9) 0.0400 (4) C4 0.5524 (2) 0.36258 (18) 0.21720 (11) 0.0498 (4) H4 0.5985 0.4145 0.2633 0.060\* C5 0.3925 (3) 0.3921 (2) 0.18931 (12) 0.0608 (5) H5 0.3288 0.4657 0.2167 0.073\* C6 0.3219 (3) 0.3166 (3) 0.12172 (14) 0.0660 (6) H6 0.2115 0.3397 0.1044 0.079\* C7 0.4094 (3) 0.2099 (2) 0.08007 (12) 0.0593 (5) H7 0.3621 0.1586 0.0341 0.071\* C9 0.9272 (2) 0.22893 (16) 0.25277 (10) 0.0383 (4) C10 1.1689 (2) 0.1685 (2) 0.33471 (10) 0.0432 (4) H10A 1.2129 0.2687 0.3260 0.052\* H10B 1.2642 0.0995 0.3315 0.052\* C11 1.0915 (2) 0.15897 (18) 0.42041 (10) 0.0394 (4) C12 1.1129 (3) 0.2444 (3) 0.55958 (11) 0.0767 (7) H12A 1.1425 0.1492 0.5839 0.115\* H12B 0.9915 0.2577 0.5621 0.115\* H12C 1.1680 0.3226 0.5912 0.115\* C2 0.8088 (2) 0.19136 (16) 0.18683 (10) 0.0380 (4) N2 1.05189 (17) 0.13476 (14) 0.26902 (8) 0.0419 (3) H2 1.0620 0.0534 0.2399 0.050\* O1 0.91340 (16) 0.34378 (12) 0.29446 (7) 0.0476 (3) O2 0.97901 (16) 0.07845 (14) 0.43919 (8) 0.0561 (4) O3 1.16709 (15) 0.24943 (15) 0.47336 (7) 0.0549 (4) ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1048 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0480 (9) 0.0397 (8) 0.0377 (8) 0.0024 (8) −0.0025 (8) −0.0015 (7) N1 0.0594 (9) 0.0479 (8) 0.0401 (7) 0.0050 (8) −0.0094 (7) −0.0091 (7) C8 0.0508 (10) 0.0442 (9) 0.0404 (9) 0.0019 (8) −0.0013 (8) 0.0033 (8) C3 0.0511 (9) 0.0351 (8) 0.0339 (7) 0.0003 (7) 0.0034 (8) 0.0053 (7) C4 0.0644 (11) 0.0433 (8) 0.0417 (9) 0.0059 (9) 0.0127 (9) 0.0024 (8) C5 0.0680 (12) 0.0583 (11) 0.0561 (11) 0.0205 (10) 0.0158 (11) 0.0109 (9) C6 0.0540 (11) 0.0778 (14) 0.0662 (13) 0.0175 (11) 0.0044 (11) 0.0201 (12) C7 0.0564 (11) 0.0669 (12) 0.0546 (11) 0.0039 (11) −0.0117 (10) 0.0074 (10) C9 0.0491 (9) 0.0338 (7) 0.0319 (7) −0.0079 (7) 0.0056 (7) 0.0023 (7) C10 0.0386 (8) 0.0511 (9) 0.0398 (8) −0.0043 (8) 0.0017 (8) −0.0026 (8) C11 0.0371 (8) 0.0409 (8) 0.0403 (9) −0.0010 (8) −0.0037 (7) 0.0024 (7) C12 0.0694 (13) 0.1237 (19) 0.0370 (9) −0.0244 (14) 0.0026 (10) −0.0143 (12) C2 0.0483 (9) 0.0319 (8) 0.0337 (8) −0.0024 (7) 0.0030 (7) 0.0011 (6) N2 0.0491 (8) 0.0394 (6) 0.0372 (7) −0.0002 (6) 0.0000 (6) −0.0061 (6) O1 0.0636 (7) 0.0346 (5) 0.0446 (6) −0.0035 (6) −0.0024 (6) −0.0080 (5) O2 0.0574 (7) 0.0629 (7) 0.0481 (7) −0.0217 (7) 0.0045 (6) 0.0062 (6) O3 0.0528 (7) 0.0742 (8) 0.0376 (6) −0.0197 (7) −0.0002 (6) −0.0072 (7) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1395 .table-wrap} --------------------- -------------- ---------------------- -------------- C1---N1 1.351 (2) C7---H7 0.9500 C1---C2 1.375 (2) C9---O1 1.2470 (19) C1---H1 0.9500 C9---N2 1.342 (2) N1---C8 1.381 (2) C9---C2 1.458 (2) N1---H1A 0.8800 C10---N2 1.440 (2) C8---C7 1.397 (3) C10---C11 1.505 (2) C8---C3 1.405 (2) C10---H10A 0.9900 C3---C4 1.403 (2) C10---H10B 0.9900 C3---C2 1.440 (2) C11---O2 1.2002 (19) C4---C5 1.381 (3) C11---O3 1.328 (2) C4---H4 0.9500 C12---O3 1.445 (2) C5---C6 1.400 (3) C12---H12A 0.9800 C5---H5 0.9500 C12---H12B 0.9800 C6---C7 1.372 (3) C12---H12C 0.9800 C6---H6 0.9500 N2---H2 0.8800 N1---C1---C2 109.84 (15) O1---C9---C2 121.73 (15) N1---C1---H1 125.1 N2---C9---C2 118.18 (13) C2---C1---H1 125.1 N2---C10---C11 112.53 (13) C1---N1---C8 109.64 (14) N2---C10---H10A 109.1 C1---N1---H1A 125.2 C11---C10---H10A 109.1 C8---N1---H1A 125.2 N2---C10---H10B 109.1 N1---C8---C7 129.68 (17) C11---C10---H10B 109.1 N1---C8---C3 107.41 (15) H10A---C10---H10B 107.8 C7---C8---C3 122.90 (17) O2---C11---O3 124.28 (16) C4---C3---C8 118.67 (16) O2---C11---C10 124.84 (15) C4---C3---C2 134.70 (16) O3---C11---C10 110.86 (14) C8---C3---C2 106.61 (14) O3---C12---H12A 109.5 C5---C4---C3 118.38 (18) O3---C12---H12B 109.5 C5---C4---H4 120.8 H12A---C12---H12B 109.5 C3---C4---H4 120.8 O3---C12---H12C 109.5 C4---C5---C6 121.75 (18) H12A---C12---H12C 109.5 C4---C5---H5 119.1 H12B---C12---H12C 109.5 C6---C5---H5 119.1 C1---C2---C3 106.50 (14) C7---C6---C5 121.2 (2) C1---C2---C9 127.52 (15) C7---C6---H6 119.4 C3---C2---C9 125.89 (14) C5---C6---H6 119.4 C9---N2---C10 119.16 (13) C6---C7---C8 117.10 (19) C9---N2---H2 120.4 C6---C7---H7 121.4 C10---N2---H2 120.4 C8---C7---H7 121.4 C11---O3---C12 116.79 (14) O1---C9---N2 120.08 (15) C2---C1---N1---C8 0.05 (19) N1---C1---C2---C3 −0.22 (18) C1---N1---C8---C7 −178.97 (19) N1---C1---C2---C9 176.50 (15) C1---N1---C8---C3 0.15 (19) C4---C3---C2---C1 178.82 (17) N1---C8---C3---C4 −179.08 (14) C8---C3---C2---C1 0.30 (17) C7---C8---C3---C4 0.1 (3) C4---C3---C2---C9 2.0 (3) N1---C8---C3---C2 −0.28 (18) C8---C3---C2---C9 −176.48 (14) C7---C8---C3---C2 178.92 (16) O1---C9---C2---C1 166.46 (15) C8---C3---C4---C5 −0.1 (2) N2---C9---C2---C1 −14.7 (2) C2---C3---C4---C5 −178.51 (18) O1---C9---C2---C3 −17.4 (2) C3---C4---C5---C6 0.2 (3) N2---C9---C2---C3 161.42 (15) C4---C5---C6---C7 −0.2 (3) O1---C9---N2---C10 −0.2 (2) C5---C6---C7---C8 0.2 (3) C2---C9---N2---C10 −179.07 (14) N1---C8---C7---C6 178.87 (18) C11---C10---N2---C9 69.72 (19) C3---C8---C7---C6 −0.1 (3) O2---C11---O3---C12 2.6 (3) N2---C10---C11---O2 30.2 (2) C10---C11---O3---C12 −175.89 (17) N2---C10---C11---O3 −151.31 (14) --------------------- -------------- ---------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1956 .table-wrap} ------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H2···O1^i^ 0.88 2.00 2.8566 (17) 164 N1---H1A···O2^ii^ 0.88 2.15 2.9680 (18) 154 ------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (i) −*x*+2, *y*−1/2, −*z*+1/2; (ii) −*x*+3/2, −*y*, *z*−1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- --------- ------- ------------- ------------- N2---H2⋯O1^i^ 0.88 2.00 2.8566 (17) 164 N1---H1*A*⋯O2^ii^ 0.88 2.15 2.9680 (18) 154 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.018005
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052031/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):o742", "authors": [ { "first": "Fang", "last": "Hu" }, { "first": "Le", "last": "Zheng" }, { "first": "Xiang Chao", "last": "Zeng" }, { "first": "Kai Ping", "last": "Li" } ] }
PMC3052032
Related literature {#sec1} ================== For a report of the unit-cell dimensions and space group of the title compound, see: Ellas & García-Blanco (1963[@bb4]). For comparisons with other hydrogen-bond donors, see: Moreno-Fuquen *et al.* (1997[@bb9], 2009[@bb10], 2011[@bb8]). For related structures, see: Barcon *et al.* (1997[@bb2]). For bond-length data, see: Allen *et al.* (1987[@bb1]). For a structural discussion of hydrogen bonding, see: Desiraju & Steiner (1999[@bb3]). For general analysis of inter­molecular inter­actions, see: Nardelli (1995[@bb11]) and for graph-set notation of hydrogen-bond patterns, see: Etter (1990[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~8~H~8~O~2~*M* *~r~* = 136.14Monoclinic,*a* = 10.3693 (9) Å*b* = 8.1844 (7) Å*c* = 16.4715 (17) Åβ = 92.836 (9)°*V* = 1396.2 (2) Å^3^*Z* = 8Mo *K*α radiationμ = 0.09 mm^−1^*T* = 123 K0.22 × 0.18 × 0.06 mm ### Data collection {#sec2.1.2} Oxford Diffraction Gemini S diffractometer13219 measured reflections3705 independent reflections1898 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.055 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.045*wR*(*F* ^2^) = 0.104*S* = 0.833705 reflections187 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.23 e Å^−3^Δρ~min~ = −0.26 e Å^−3^ {#d5e515} Data collection: *CrysAlis RED* (Oxford Diffraction, 2009[@bb12]); cell refinement: *CrysAlis RED*; data reduction: *CrysAlis CCD* (Oxford Diffraction, 2009[@bb12]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb13]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb13]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb6]) and *Mercury* (Macrae *et al.*, 2006[@bb7]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003849/sj5096sup1.cif](http://dx.doi.org/10.1107/S1600536811003849/sj5096sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003849/sj5096Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003849/sj5096Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?sj5096&file=sj5096sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?sj5096sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?sj5096&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SJ5096](http://scripts.iucr.org/cgi-bin/sendsup?sj5096)). RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, and the Instituto de Química de São Carlos, USP, Brazil for partial financial support. Comment ======= The title compound (I) was investigated in a continuation of our studies on the formation of molecular complexes from N-oxide derivatives with different hydrogen bond donors (Moreno-Fuquen *et al.*, 1997, 2009, 2011). The structure of a similar molecule was taken to compare with the title molecule (Barcon *et al.*, 1997). A perspective view of the dimeric hydrogen-bonding in (I), showing the atomic numbering scheme, is given in Figure 1. Both molecules of *m*-toluic acid are held together by intermolecular O···H---O hydrogen bonds of moderate character (Desiraju & Steiner, 1999). Indeed, carbonylic O4 and O2 atoms are linked to O1 and O3 atoms with O···O distances of 2.6149 (16) and 2.6205 (16)Å respectively. The two aromatic rings in (I) form a dihedral angle of 7.30 (8)°. Both methyl groups display rotational disorder. The rotamer ratio found in this modeling was 50:50. In (I), Fig. 1, bond lengths and bond angles are in normal ranges (Allen *et al.*, 1987). The title crystal structure also exhibits other weak C---H···O interactions (see Table 1, Nardelli, 1995). Indeed, in a first substructure, atom C7 acts as hydrogen bond donor to O1^i^ in the molecule at (-*x* + 1,-*y* + 1,-*z*) and the C16 atom acts as hydrogen bond donor to O1^ii^ in the molecule at (-*x* + 2,-*y* + 2,-*z*). The propagation of these interactions generates rings with graph-set notation *R*~2~^2^(10) and *R*~4~^4^(18) (Etter, 1990), running along the \[110\] direction (see Fig. 2). In a second substructure, atom C14 acts as a hydrogen bond donor to O2^iii^ in the molecule at (*x*,-*y* + 1/2 + 1,+*z* - 1/2). The propagation of this interaction forms an infinite zigzag chain of dimers along the \[001\] direction (see Fig. 3). All of these interactions in the \[110\] and \[001\] directions define the bulk structure of the crystal. Experimental {#experimental} ============ 3-Methylbenzoic acid (0.545 g, 4 mmol) (Aldrich) was disssolved in ethanol (200 ml). The solution was left to evaporate slowly at room temperature. After three days, colourless crystals of a good quality suitable for X-ray analysis were obtained. *M*. p. 383 (1) K Refinement {#refinement} ========== All non-hydrogen atoms were identified by direct methods. All H atoms were observed in a difference Fourier map. The H-atoms in (I) were placed geometrically \[C---H= 0.95 Å for aromatic, C---H= 0.98 Å for methyl, *U*~iso~(H) (1.2 and 1.5 times *U*~eq~ of the parent atom respectivelly\]. The coordinates of the H1H and H2H hydroxyl H atoms were refined. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The asymmetric unit of the title compound with the atomic labelling scheme and displacement ellipsoids drawn at the 50% probability level. H bonds are drawn as open dashed lines and only one component of the disordered methyl groups is shown. ::: ![](e-67-0o569-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Part of the crystal structure of (I), showing the formation of R22(10) and R44(18) rings, running along \[110\]. H bonds are drawn as dashed lines. Symmetry codes: (i) -x + 1, -y + 1,-z; (ii) -x + 2,-y + 2,-z. ::: ![](e-67-0o569-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### Part of the crystal structure of (I), showing the formation of an infinite zigzag chain of dimers along the \[001\] direction. H bonds are drawn as dashed lines. Symmetry code: (iii) x,-y + 1/2 + 1,+z - 1/2. ::: ![](e-67-0o569-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e222 .table-wrap} ------------------------- --------------------------------------- C~8~H~8~O~2~ *F*(000) = 576 *M~r~* = 136.14 *D*~x~ = 1.295 Mg m^−3^ Monoclinic, *P*2~1~/*c* Melting point: 383(1) K Hall symbol: -P 2ybc Mo *K*α radiation, λ = 0.71073 Å *a* = 10.3693 (9) Å Cell parameters from 2724 reflections *b* = 8.1844 (7) Å θ = 2.5--31.0° *c* = 16.4715 (17) Å µ = 0.09 mm^−1^ β = 92.836 (9)° *T* = 123 K *V* = 1396.2 (2) Å^3^ Tablet, colourless *Z* = 8 0.22 × 0.18 × 0.06 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e350 .table-wrap} -------------------------------------------- -------------------------------------- Oxford Diffraction Gemini S diffractometer 1898 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.055 graphite θ~max~ = 29.0°, θ~min~ = 2.8° ω scans *h* = −12→14 13219 measured reflections *k* = −11→11 3705 independent reflections *l* = −22→21 -------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e445 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.045 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.104 H atoms treated by a mixture of independent and constrained refinement *S* = 0.83 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0487*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3705 reflections (Δ/σ)~max~ \< 0.001 187 parameters Δρ~max~ = 0.23 e Å^−3^ 0 restraints Δρ~min~ = −0.26 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e599 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e698 .table-wrap} ------ -------------- -------------- --------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) O1 0.71126 (10) 0.51712 (14) 0.01320 (7) 0.0292 (3) H1H 0.7709 (16) 0.584 (2) −0.0173 (11) 0.044\* O2 0.86464 (10) 0.53282 (13) 0.11340 (7) 0.0282 (3) O3 1.01280 (11) 0.71203 (14) 0.02472 (7) 0.0305 (3) H2H 0.9547 (16) 0.646 (2) 0.0585 (11) 0.046\* O4 0.85611 (10) 0.70355 (14) −0.07354 (7) 0.0331 (3) C1 0.75522 (14) 0.48677 (17) 0.08633 (9) 0.0210 (3) C2 0.66970 (14) 0.39351 (17) 0.13857 (9) 0.0206 (3) C3 0.71441 (14) 0.34920 (18) 0.21672 (9) 0.0224 (4) H3 0.7986 0.3812 0.2357 0.027\* C4 0.63808 (15) 0.25912 (19) 0.26726 (10) 0.0261 (4) C5 0.51487 (15) 0.2154 (2) 0.23776 (10) 0.0285 (4) H5 0.4613 0.1529 0.2711 0.034\* C6 0.46861 (15) 0.2611 (2) 0.16069 (10) 0.0290 (4) H6 0.3836 0.2314 0.1422 0.035\* C7 0.54596 (14) 0.35009 (18) 0.11062 (10) 0.0247 (4) H7 0.5146 0.3811 0.0577 0.030\* C8 0.68850 (17) 0.2078 (2) 0.35071 (10) 0.0404 (5) H8A 0.6218 0.1456 0.3774 0.061\* 0.50 H8B 0.7111 0.3050 0.3831 0.061\* 0.50 H8C 0.7653 0.1394 0.3460 0.061\* 0.50 H8D 0.7770 0.2478 0.3602 0.061\* 0.50 H8E 0.6877 0.0883 0.3545 0.061\* 0.50 H8F 0.6335 0.2539 0.3917 0.061\* 0.50 C9 0.96396 (14) 0.75391 (18) −0.04584 (10) 0.0229 (4) C10 1.04204 (14) 0.86537 (18) −0.09412 (10) 0.0217 (3) C11 1.15930 (14) 0.92586 (18) −0.06163 (10) 0.0236 (4) H11 1.1880 0.8960 −0.0080 0.028\* C12 1.23462 (14) 1.02899 (18) −0.10643 (10) 0.0244 (4) C13 1.19025 (15) 1.07092 (19) −0.18470 (10) 0.0284 (4) H13 1.2408 1.1415 −0.2161 0.034\* C14 1.07403 (15) 1.01207 (19) −0.21794 (10) 0.0287 (4) H14 1.0454 1.0425 −0.2715 0.034\* C15 0.99964 (14) 0.90856 (19) −0.17276 (10) 0.0256 (4) H15 0.9201 0.8673 −0.1954 0.031\* C16 1.36251 (15) 1.0906 (2) −0.07154 (11) 0.0331 (4) H16A 1.4020 1.1616 −0.1112 0.050\* 0.50 H16B 1.4197 0.9977 −0.0589 0.050\* 0.50 H16C 1.3491 1.1525 −0.0217 0.050\* 0.50 H16D 1.3785 1.0462 −0.0167 0.050\* 0.50 H16E 1.3608 1.2102 −0.0690 0.050\* 0.50 H16F 1.4315 1.0554 −0.1062 0.050\* 0.50 ------ -------------- -------------- --------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1294 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0287 (6) 0.0374 (7) 0.0211 (6) −0.0020 (5) −0.0018 (5) 0.0040 (6) O2 0.0249 (6) 0.0303 (6) 0.0290 (7) −0.0045 (5) −0.0046 (5) 0.0047 (5) O3 0.0291 (6) 0.0339 (6) 0.0284 (7) −0.0014 (5) 0.0009 (5) 0.0092 (6) O4 0.0247 (6) 0.0380 (7) 0.0361 (7) −0.0051 (5) −0.0029 (5) 0.0029 (6) C1 0.0227 (8) 0.0188 (7) 0.0215 (9) 0.0042 (7) 0.0000 (7) −0.0023 (7) C2 0.0220 (8) 0.0183 (7) 0.0217 (9) 0.0024 (6) 0.0012 (7) −0.0023 (7) C3 0.0185 (8) 0.0257 (8) 0.0227 (9) 0.0011 (6) −0.0023 (7) −0.0022 (7) C4 0.0267 (8) 0.0276 (9) 0.0240 (9) 0.0012 (7) 0.0004 (7) 0.0004 (7) C5 0.0257 (9) 0.0313 (9) 0.0287 (10) −0.0030 (7) 0.0042 (8) 0.0013 (8) C6 0.0221 (8) 0.0331 (9) 0.0314 (10) −0.0015 (7) −0.0032 (7) −0.0025 (8) C7 0.0247 (8) 0.0262 (8) 0.0228 (9) 0.0023 (7) −0.0030 (7) −0.0006 (7) C8 0.0397 (11) 0.0515 (12) 0.0292 (10) −0.0039 (9) −0.0047 (9) 0.0111 (9) C9 0.0223 (8) 0.0219 (8) 0.0242 (9) 0.0032 (7) −0.0020 (7) −0.0007 (7) C10 0.0212 (8) 0.0188 (7) 0.0251 (9) 0.0033 (6) 0.0015 (7) 0.0002 (7) C11 0.0242 (8) 0.0231 (8) 0.0233 (9) 0.0057 (7) −0.0015 (7) −0.0004 (7) C12 0.0227 (8) 0.0221 (8) 0.0283 (9) 0.0034 (7) 0.0005 (7) −0.0029 (7) C13 0.0285 (9) 0.0240 (8) 0.0331 (10) −0.0019 (7) 0.0038 (8) 0.0044 (8) C14 0.0301 (9) 0.0295 (9) 0.0261 (9) 0.0030 (7) −0.0025 (8) 0.0049 (8) C15 0.0216 (8) 0.0246 (8) 0.0300 (10) 0.0005 (7) −0.0040 (7) 0.0008 (7) C16 0.0280 (9) 0.0316 (9) 0.0396 (11) −0.0023 (8) −0.0012 (8) −0.0030 (8) ----- ------------- ------------- ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1700 .table-wrap} ------------------- -------------- ----------------------- -------------- O1---C1 1.2909 (17) C8---H8D 0.9800 O1---H1H 0.984 (18) C8---H8E 0.9800 O2---C1 1.2562 (17) C8---H8F 0.9800 O3---C9 1.2911 (18) C9---C10 1.478 (2) O3---H2H 0.998 (19) C10---C15 1.393 (2) O4---C9 1.2563 (16) C10---C11 1.395 (2) C1---C2 1.478 (2) C11---C12 1.387 (2) C2---C7 1.3878 (19) C11---H11 0.9500 C2---C3 1.394 (2) C12---C13 1.390 (2) C3---C4 1.389 (2) C12---C16 1.506 (2) C3---H3 0.9500 C13---C14 1.385 (2) C4---C5 1.391 (2) C13---H13 0.9500 C4---C8 1.506 (2) C14---C15 1.387 (2) C5---C6 1.386 (2) C14---H14 0.9500 C5---H5 0.9500 C15---H15 0.9500 C6---C7 1.385 (2) C16---H16A 0.9800 C6---H6 0.9500 C16---H16B 0.9800 C7---H7 0.9500 C16---H16C 0.9800 C8---H8A 0.9800 C16---H16D 0.9800 C8---H8B 0.9800 C16---H16E 0.9800 C8---H8C 0.9800 C16---H16F 0.9800 C1---O1---H1H 112.5 (10) H8E---C8---H8F 109.5 C9---O3---H2H 115.1 (10) O4---C9---O3 122.84 (15) O2---C1---O1 122.99 (14) O4---C9---C10 120.58 (14) O2---C1---C2 120.38 (13) O3---C9---C10 116.58 (13) O1---C1---C2 116.63 (13) C15---C10---C11 119.73 (14) C7---C2---C3 119.96 (14) C15---C10---C9 120.06 (14) C7---C2---C1 120.70 (13) C11---C10---C9 120.20 (14) C3---C2---C1 119.34 (13) C12---C11---C10 121.00 (14) C4---C3---C2 121.21 (14) C12---C11---H11 119.5 C4---C3---H3 119.4 C10---C11---H11 119.5 C2---C3---H3 119.4 C11---C12---C13 118.31 (14) C3---C4---C5 117.90 (14) C11---C12---C16 120.61 (14) C3---C4---C8 120.86 (14) C13---C12---C16 121.07 (15) C5---C4---C8 121.23 (15) C14---C13---C12 121.48 (15) C6---C5---C4 121.38 (16) C14---C13---H13 119.3 C6---C5---H5 119.3 C12---C13---H13 119.3 C4---C5---H5 119.3 C13---C14---C15 119.76 (15) C7---C6---C5 120.18 (15) C13---C14---H14 120.1 C7---C6---H6 119.9 C15---C14---H14 120.1 C5---C6---H6 119.9 C14---C15---C10 119.71 (14) C6---C7---C2 119.35 (14) C14---C15---H15 120.1 C6---C7---H7 120.3 C10---C15---H15 120.1 C2---C7---H7 120.3 C12---C16---H16A 109.5 C4---C8---H8A 109.5 C12---C16---H16B 109.5 C4---C8---H8B 109.5 H16A---C16---H16B 109.5 H8A---C8---H8B 109.5 C12---C16---H16C 109.5 C4---C8---H8C 109.5 H16A---C16---H16C 109.5 H8A---C8---H8C 109.5 H16B---C16---H16C 109.5 H8B---C8---H8C 109.5 C12---C16---H16D 109.5 C4---C8---H8D 109.5 H16A---C16---H16D 141.1 H8A---C8---H8D 141.1 H16B---C16---H16D 56.3 H8B---C8---H8D 56.3 H16C---C16---H16D 56.3 H8C---C8---H8D 56.3 C12---C16---H16E 109.5 C4---C8---H8E 109.5 H16A---C16---H16E 56.3 H8A---C8---H8E 56.3 H16B---C16---H16E 141.1 H8B---C8---H8E 141.1 H16C---C16---H16E 56.3 H8C---C8---H8E 56.3 H16D---C16---H16E 109.5 H8D---C8---H8E 109.5 C12---C16---H16F 109.5 C4---C8---H8F 109.5 H16A---C16---H16F 56.3 H8A---C8---H8F 56.3 H16B---C16---H16F 56.3 H8B---C8---H8F 56.3 H16C---C16---H16F 141.1 H8C---C8---H8F 141.1 H16D---C16---H16F 109.5 H8D---C8---H8F 109.5 H16E---C16---H16F 109.5 O2---C1---C2---C7 176.39 (14) O4---C9---C10---C15 −3.5 (2) O1---C1---C2---C7 −3.5 (2) O3---C9---C10---C15 176.20 (14) O2---C1---C2---C3 −3.6 (2) O4---C9---C10---C11 177.45 (14) O1---C1---C2---C3 176.54 (13) O3---C9---C10---C11 −2.9 (2) C7---C2---C3---C4 1.2 (2) C15---C10---C11---C12 0.1 (2) C1---C2---C3---C4 −178.85 (14) C9---C10---C11---C12 179.20 (14) C2---C3---C4---C5 −0.5 (2) C10---C11---C12---C13 0.1 (2) C2---C3---C4---C8 178.29 (15) C10---C11---C12---C16 −178.59 (14) C3---C4---C5---C6 −0.6 (2) C11---C12---C13---C14 0.0 (2) C8---C4---C5---C6 −179.39 (16) C16---C12---C13---C14 178.60 (15) C4---C5---C6---C7 1.0 (2) C12---C13---C14---C15 −0.2 (2) C5---C6---C7---C2 −0.3 (2) C13---C14---C15---C10 0.4 (2) C3---C2---C7---C6 −0.8 (2) C11---C10---C15---C14 −0.4 (2) C1---C2---C7---C6 179.30 (14) C9---C10---C15---C14 −179.42 (14) ------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2463 .table-wrap} --------------------- ------------ ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1H···O4 0.984 (18) 1.634 (19) 2.6149 (16) 173.7 (16) O3---H2H···O2 0.998 (19) 1.623 (19) 2.6205 (16) 177.6 (16) C7---H7···O1^i^ 0.95 2.70 3.4520 (18) 137 C16---H16E···O1^ii^ 0.98 2.54 3.448 (2) 154 C14---H14···O2^iii^ 0.95 2.67 3.460 (2) 141 --------------------- ------------ ------------ ------------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*; (ii) −*x*+2, −*y*+2, −*z*; (iii) *x*, −*y*+3/2, *z*−1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- ------------ ------------ ------------- ------------- O1---H1*H*⋯O4 0.984 (18) 1.634 (19) 2.6149 (16) 173.7 (16) O3---H2*H*⋯O2 0.998 (19) 1.623 (19) 2.6205 (16) 177.6 (16) C7---H7⋯O1^i^ 0.95 2.70 3.4520 (18) 137 C16---H16*E*⋯O1^ii^ 0.98 2.54 3.448 (2) 154 C14---H14⋯O2^iii^ 0.95 2.67 3.460 (2) 141 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:18.022351
2011-2-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052032/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 5; 67(Pt 3):o569-o570", "authors": [ { "first": "Rodolfo", "last": "Moreno-Fuquen" }, { "first": "Regina", "last": "De Almeida Santos" }, { "first": "Alan R.", "last": "Kennedy" } ] }
PMC3052033
Related literature {#sec1} ================== For general background to pyrrolidine derivatives, see: Bello *et al.* (2010[@bb2]); Pettersson *et al.* (2011[@bb7]). For related structures, see: Abdul Ajees *et al.* (2002[@bb1]); Selvanayagam *et al.* (2005[@bb8]). For ring puckering parameters, see: Cremer & Pople (1975[@bb4]); Nardelli (1983[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~32~H~25~NO~3~*M* *~r~* = 471.53Orthorhombic,*a* = 10.8442 (9) Å*b* = 11.431 (1) Å*c* = 19.2701 (16) Å*V* = 2388.7 (3) Å^3^*Z* = 4Mo *K*α radiationμ = 0.08 mm^−1^*T* = 292 K0.24 × 0.22 × 0.20 mm ### Data collection {#sec2.1.2} Bruker SMART APEX CCD area-detector diffractometer28122 measured reflections3233 independent reflections2941 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.025 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.039*wR*(*F* ^2^) = 0.112*S* = 1.103233 reflections326 parametersH-atom parameters constrainedΔρ~max~ = 0.23 e Å^−3^Δρ~min~ = −0.16 e Å^−3^ {#d5e479} Data collection: *SMART* (Bruker, 2001[@bb3]); cell refinement: *SAINT* (Bruker, 2001[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb5]) and *PLATON* (Spek, 2009[@bb10]); software used to prepare material for publication: *SHELXL97* and *PLATON*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004880/ng5116sup1.cif](http://dx.doi.org/10.1107/S1600536811004880/ng5116sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004880/ng5116Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004880/ng5116Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ng5116&file=ng5116sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ng5116sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ng5116&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NG5116](http://scripts.iucr.org/cgi-bin/sendsup?ng5116)). SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST-Fast Track Scheme and also thanks the Vice Chancellor and management of Kalasalingam University, Krishnankoil, for their support and encouragement. Comment ======= Pyrrolidine derivatives are used as norepinephrine reuptake inhibitors and 5-HT(1A) partial agonists for treating neuropsychiatric disorders including depression and anxiety (Pettersson *et al.*, 2011). These derivatives are used as alpha-mannosidase inhibitors and with antitumor activities against hematological and solid malignancies (Bello *et al.*, 2010). In view of these importance, we have undertaken the crystal structure determination of the title compound, a pyrrolidine derivative, and the results are presented here. The molecular structure of (I) is illustrated in Fig. 1. The C---C bond lengths in the pyrrolidine ring are somewhat longer in particular at two spiro junctions C1 and C2 and the C---N bond lengths are somewhat shorter than normal values. This may be due to steric forces of the bulky substituents at atoms C1 and C2 of the pyrrolidine ring (Abdul Ajees *et al.*, 2002; Selvanayagam *et al.*, 2005). The sum of the angles at N1 of the pyrrolidine ring \[336.3°\] is in accordance with sp^3^ hybridization. The short contacts H3···H24 (2.12 Å) and H4A···H31 (1.96 Å) result in substantial widening of the C24---C23---C22 and C31---C22---C3 bond angles \[123.8 (2)° and 122.4 (2)°, respectively\]. The indanedione moiety is planar with a maximum deviation of 0.051 (3) Å for atom C9. The keto O atoms O1 and O2 deviate from this system by 0.115 (2) and 0.177 (2) Å, respectively. The naphthyl group is also planar with a maximum deviation of 0.013 (2) Å for atom C30. This group is oriented at an angle of 58.9° with respect to the indanedione moiety. Pyrrolidine ring is in an envelope conformation, with puckering parameters q~2~ = 0.406 (2) Å and φ = 5.3 (2) °, and with atom N1 deviating 0.601 (2) Å from the least-squares plane passing through the remaining four atoms (C1-C4) of that ring (Cremer & Pople, 1975). The cyclohexanone ring in the tetrahydro naphthalin ring system has a half-chair conformation with the lowest asymmetry parameters of ΔC~2~(C2-C13) = 0.070 (1)° (Nardelli, 1983). The molecular structure is influenced by an intramolecular C---H···O hydrogen bonds and weak C---H···π interactions. In the molecular packing, C---H···O hydrogen bonds involving atoms C17 and O1 link symmetry related molecules to form a helical shape arrangement in the unit cell (Fig. 2 and Table 1). In addition to this another C---H···O hydrogen bonds form a C(10) chain motif in the unit cell. Experimental {#experimental} ============ To a mixture of ninhydrin (1mmol), sarcosine (1mmol) and 2-napthalidene- 1,2,3,4-tetrahydronaphthalene-1-ones (1mmol) was added and heated under reflux in methanol (20ml) until the disappearance of the starting materials as evidenced by TLC. The solvent was removed under vacuo. The crude product was subjected to column chromatography using petroleum ether-ethyl acetate as eluent. Single crystals were grown by slow evaporation from methanol. Refinement {#refinement} ========== H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C---H distances of 0.93-0.97 Å, and Uiso(H) = 1.5U~eq~(C) for methyl H and Uiso(H) = 1.2U~eq~(C,N) for all other H atoms. Due to the lack of anomalous scatterers the absolute configuration was not determined from the X-ray diffraction data and Friedel pairs were merged. The absolute configuration of (I) is unknown. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level ::: ![](e-67-0o629-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Molecular packing of the title compound, viewed along the a axis; H-bonds are shown as dashed lines. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted ::: ![](e-67-0o629-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e141 .table-wrap} ------------------------------- ---------------------------------------- C~32~H~25~NO~3~ *F*(000) = 992 *M~r~* = 471.53 *D*~x~ = 1.311 Mg m^−3^ Orthorhombic, *P*2~1~2~1~2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2ac 2ab Cell parameters from 18128 reflections *a* = 10.8442 (9) Å θ = 2.2--27.7° *b* = 11.431 (1) Å µ = 0.08 mm^−1^ *c* = 19.2701 (16) Å *T* = 292 K *V* = 2388.7 (3) Å^3^ Block, colourless *Z* = 4 0.24 × 0.22 × 0.20 mm ------------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e265 .table-wrap} ---------------------------------------------------- -------------------------------------- Bruker SMART APEX CCD area-detector diffractometer 2941 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.025 graphite θ~max~ = 28.0°, θ~min~ = 2.1° ω scans *h* = −14→14 28122 measured reflections *k* = −15→14 3233 independent reflections *l* = −24→25 ---------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e360 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.039 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.112 H-atom parameters constrained *S* = 1.10 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0796*P*)^2^ + 0.0432*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3233 reflections (Δ/σ)~max~ \< 0.001 326 parameters Δρ~max~ = 0.23 e Å^−3^ 0 restraints Δρ~min~ = −0.16 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e517 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e562 .table-wrap} ------ --------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.39079 (16) 0.65842 (13) 0.26515 (8) 0.0626 (4) O2 0.27742 (18) 1.00671 (13) 0.15142 (9) 0.0670 (4) O3 0.19107 (14) 0.83352 (13) 0.03036 (7) 0.0548 (4) N1 0.42985 (14) 0.79880 (14) 0.13310 (8) 0.0437 (3) C1 0.32344 (15) 0.80317 (14) 0.17897 (8) 0.0373 (3) C2 0.22397 (15) 0.73033 (13) 0.13771 (8) 0.0344 (3) C3 0.30573 (15) 0.64431 (14) 0.09301 (8) 0.0379 (3) H3 0.2908 0.6644 0.0443 0.045\* C4 0.43936 (17) 0.67881 (18) 0.10855 (11) 0.0500 (4) H4A 0.4747 0.6285 0.1439 0.060\* H4B 0.4897 0.6743 0.0670 0.060\* C5 0.34951 (17) 0.75451 (17) 0.25266 (9) 0.0453 (4) C6 0.32235 (18) 0.8468 (2) 0.30327 (9) 0.0526 (5) C7 0.3266 (2) 0.8410 (3) 0.37595 (11) 0.0731 (7) H7 0.3516 0.7735 0.3989 0.088\* C8 0.2919 (3) 0.9403 (4) 0.41183 (14) 0.0961 (12) H8 0.2931 0.9388 0.4601 0.115\* C9 0.2557 (3) 1.0410 (4) 0.37891 (19) 0.0943 (11) H9 0.2323 1.1056 0.4051 0.113\* C10 0.2536 (2) 1.0476 (2) 0.30753 (15) 0.0730 (7) H10 0.2307 1.1161 0.2849 0.088\* C11 0.28692 (19) 0.94840 (19) 0.27055 (11) 0.0530 (5) C12 0.29105 (18) 0.93236 (16) 0.19442 (10) 0.0463 (4) C13 0.12866 (17) 0.66910 (15) 0.18410 (9) 0.0412 (4) H13A 0.0767 0.6198 0.1554 0.049\* H13B 0.1716 0.6188 0.2166 0.049\* C14 0.04745 (18) 0.75315 (19) 0.22442 (9) 0.0474 (4) H14A −0.0166 0.7092 0.2480 0.057\* H14B 0.0968 0.7921 0.2595 0.057\* C15 −0.01132 (16) 0.84350 (17) 0.17879 (9) 0.0451 (4) C16 −0.1179 (2) 0.90178 (19) 0.19927 (13) 0.0607 (6) H16 −0.1524 0.8854 0.2424 0.073\* C17 −0.17298 (18) 0.9832 (2) 0.15681 (15) 0.0664 (6) H17 −0.2446 1.0208 0.1713 0.080\* C18 −0.1227 (2) 1.0096 (2) 0.09295 (15) 0.0639 (6) H18 −0.1602 1.0648 0.0644 0.077\* C19 −0.01693 (18) 0.95372 (18) 0.07168 (11) 0.0517 (4) H19 0.0173 0.9716 0.0287 0.062\* C20 0.03943 (16) 0.87038 (16) 0.11414 (9) 0.0417 (4) C21 0.15470 (15) 0.81437 (15) 0.08854 (8) 0.0379 (3) C22 0.27640 (16) 0.51479 (15) 0.10044 (9) 0.0392 (3) C23 0.17262 (16) 0.46728 (15) 0.06386 (8) 0.0394 (3) C24 0.09433 (18) 0.53423 (18) 0.02056 (10) 0.0481 (4) H24 0.1111 0.6134 0.0144 0.058\* C25 −0.0049 (2) 0.4864 (2) −0.01248 (12) 0.0605 (5) H25 −0.0552 0.5332 −0.0400 0.073\* C26 −0.0314 (2) 0.3677 (2) −0.00510 (14) 0.0702 (6) H26 −0.0985 0.3352 −0.0281 0.084\* C27 0.0406 (2) 0.3001 (2) 0.03549 (13) 0.0656 (6) H27 0.0218 0.2211 0.0401 0.079\* C28 0.1443 (2) 0.34598 (15) 0.07131 (10) 0.0480 (4) C29 0.2201 (2) 0.27509 (17) 0.11260 (11) 0.0577 (5) H29 0.2024 0.1958 0.1169 0.069\* C30 0.3187 (2) 0.32053 (19) 0.14624 (12) 0.0600 (5) H30 0.3686 0.2725 0.1732 0.072\* C31 0.34582 (19) 0.44138 (18) 0.14031 (10) 0.0509 (4) H31 0.4130 0.4716 0.1644 0.061\* C32 0.54458 (19) 0.8442 (2) 0.16095 (12) 0.0592 (5) H32A 0.5318 0.9224 0.1777 0.089\* H32B 0.6061 0.8450 0.1251 0.089\* H32C 0.5718 0.7954 0.1985 0.089\* ------ --------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1369 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0718 (9) 0.0584 (8) 0.0577 (8) 0.0018 (8) −0.0114 (7) 0.0189 (7) O2 0.0855 (12) 0.0406 (7) 0.0750 (10) 0.0010 (8) −0.0074 (9) 0.0104 (7) O3 0.0616 (8) 0.0629 (8) 0.0400 (6) 0.0169 (7) 0.0096 (6) 0.0150 (6) N1 0.0374 (7) 0.0486 (8) 0.0451 (7) −0.0078 (6) 0.0025 (6) 0.0002 (7) C1 0.0399 (8) 0.0374 (8) 0.0346 (7) −0.0028 (7) −0.0015 (6) 0.0035 (6) C2 0.0358 (7) 0.0346 (7) 0.0327 (7) −0.0020 (6) 0.0013 (6) 0.0028 (6) C3 0.0376 (8) 0.0387 (8) 0.0373 (7) 0.0012 (6) 0.0013 (6) −0.0007 (6) C4 0.0375 (8) 0.0540 (10) 0.0584 (10) −0.0019 (8) 0.0070 (8) −0.0072 (9) C5 0.0437 (9) 0.0532 (10) 0.0391 (8) −0.0092 (8) −0.0046 (7) 0.0081 (7) C6 0.0436 (9) 0.0732 (13) 0.0409 (8) −0.0159 (9) −0.0009 (7) −0.0064 (9) C7 0.0628 (13) 0.115 (2) 0.0416 (9) −0.0265 (14) −0.0014 (9) −0.0075 (12) C8 0.0746 (17) 0.162 (3) 0.0520 (13) −0.036 (2) 0.0115 (13) −0.0458 (19) C9 0.0712 (17) 0.124 (3) 0.0873 (19) −0.0207 (19) 0.0137 (15) −0.062 (2) C10 0.0568 (12) 0.0728 (14) 0.0895 (17) −0.0096 (12) 0.0046 (12) −0.0365 (14) C11 0.0445 (9) 0.0590 (11) 0.0554 (10) −0.0092 (9) 0.0025 (8) −0.0154 (9) C12 0.0448 (9) 0.0405 (8) 0.0535 (9) −0.0047 (8) −0.0013 (8) −0.0034 (8) C13 0.0425 (8) 0.0435 (8) 0.0377 (7) −0.0075 (7) 0.0048 (7) 0.0055 (7) C14 0.0445 (8) 0.0577 (10) 0.0399 (8) −0.0105 (8) 0.0119 (7) −0.0032 (8) C15 0.0366 (8) 0.0483 (9) 0.0505 (9) −0.0072 (7) 0.0051 (7) −0.0137 (8) C16 0.0459 (10) 0.0619 (12) 0.0744 (14) −0.0072 (9) 0.0156 (10) −0.0261 (11) C17 0.0381 (9) 0.0605 (12) 0.1007 (17) 0.0060 (9) 0.0001 (11) −0.0292 (13) C18 0.0488 (10) 0.0517 (11) 0.0913 (17) 0.0112 (9) −0.0177 (11) −0.0161 (11) C19 0.0484 (10) 0.0489 (10) 0.0577 (10) 0.0064 (8) −0.0114 (8) −0.0061 (9) C20 0.0362 (8) 0.0430 (8) 0.0459 (8) 0.0014 (7) −0.0026 (7) −0.0069 (7) C21 0.0363 (7) 0.0403 (8) 0.0370 (7) 0.0020 (7) 0.0021 (6) 0.0024 (6) C22 0.0406 (8) 0.0386 (8) 0.0383 (7) 0.0046 (7) 0.0025 (7) −0.0006 (6) C23 0.0432 (8) 0.0371 (8) 0.0379 (7) 0.0018 (7) 0.0034 (7) −0.0026 (6) C24 0.0519 (10) 0.0474 (9) 0.0449 (9) −0.0006 (8) −0.0057 (8) 0.0011 (7) C25 0.0532 (11) 0.0731 (14) 0.0551 (11) −0.0015 (11) −0.0117 (9) −0.0020 (11) C26 0.0621 (13) 0.0746 (15) 0.0740 (15) −0.0168 (12) −0.0070 (11) −0.0181 (13) C27 0.0706 (14) 0.0475 (10) 0.0789 (14) −0.0110 (11) 0.0082 (12) −0.0151 (11) C28 0.0580 (11) 0.0361 (8) 0.0501 (9) 0.0004 (8) 0.0097 (8) −0.0059 (7) C29 0.0759 (14) 0.0347 (8) 0.0625 (11) 0.0090 (9) 0.0135 (11) 0.0012 (8) C30 0.0762 (14) 0.0471 (10) 0.0566 (11) 0.0250 (10) 0.0023 (11) 0.0087 (9) C31 0.0531 (10) 0.0507 (10) 0.0488 (10) 0.0124 (9) −0.0060 (8) −0.0002 (8) C32 0.0446 (9) 0.0717 (13) 0.0613 (11) −0.0167 (10) −0.0039 (9) 0.0028 (11) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2075 .table-wrap} ---------------------- -------------- ----------------------- -------------- O1---C5 1.210 (3) C14---H14B 0.9700 O2---C12 1.196 (2) C15---C16 1.391 (3) O3---C21 1.208 (2) C15---C20 1.396 (3) N1---C32 1.451 (2) C16---C17 1.376 (4) N1---C1 1.454 (2) C16---H16 0.9300 N1---C4 1.455 (3) C17---C18 1.379 (4) C1---C12 1.547 (2) C17---H17 0.9300 C1---C5 1.551 (2) C18---C19 1.376 (3) C1---C2 1.578 (2) C18---H18 0.9300 C2---C13 1.535 (2) C19---C20 1.397 (3) C2---C21 1.544 (2) C19---H19 0.9300 C2---C3 1.580 (2) C20---C21 1.489 (2) C3---C22 1.521 (2) C22---C31 1.364 (3) C3---C4 1.531 (2) C22---C23 1.435 (2) C3---H3 0.9800 C23---C24 1.415 (3) C4---H4A 0.9700 C23---C28 1.428 (2) C4---H4B 0.9700 C24---C25 1.365 (3) C5---C6 1.466 (3) C24---H24 0.9300 C6---C11 1.376 (3) C25---C26 1.394 (4) C6---C7 1.403 (3) C25---H25 0.9300 C7---C8 1.381 (5) C26---C27 1.348 (4) C7---H7 0.9300 C26---H26 0.9300 C8---C9 1.372 (5) C27---C28 1.419 (3) C8---H8 0.9300 C27---H27 0.9300 C9---C10 1.378 (5) C28---C29 1.402 (3) C9---H9 0.9300 C29---C30 1.354 (3) C10---C11 1.387 (3) C29---H29 0.9300 C10---H10 0.9300 C30---C31 1.417 (3) C11---C12 1.479 (3) C30---H30 0.9300 C13---C14 1.517 (3) C31---H31 0.9300 C13---H13A 0.9700 C32---H32A 0.9600 C13---H13B 0.9700 C32---H32B 0.9600 C14---C15 1.499 (3) C32---H32C 0.9600 C14---H14A 0.9700 C32---N1---C1 116.31 (15) C15---C14---H14B 109.1 C32---N1---C4 113.40 (16) C13---C14---H14B 109.1 C1---N1---C4 106.64 (14) H14A---C14---H14B 107.8 N1---C1---C12 109.27 (14) C16---C15---C20 118.4 (2) N1---C1---C5 113.54 (14) C16---C15---C14 121.12 (18) C12---C1---C5 101.98 (14) C20---C15---C14 120.50 (16) N1---C1---C2 102.60 (12) C17---C16---C15 121.1 (2) C12---C1---C2 116.46 (14) C17---C16---H16 119.5 C5---C1---C2 113.37 (13) C15---C16---H16 119.5 C13---C2---C21 108.26 (13) C16---C17---C18 120.4 (2) C13---C2---C1 114.05 (12) C16---C17---H17 119.8 C21---C2---C1 108.27 (12) C18---C17---H17 119.8 C13---C2---C3 114.30 (13) C19---C18---C17 119.6 (2) C21---C2---C3 109.00 (12) C19---C18---H18 120.2 C1---C2---C3 102.69 (12) C17---C18---H18 120.2 C22---C3---C4 115.47 (15) C18---C19---C20 120.5 (2) C22---C3---C2 115.93 (13) C18---C19---H19 119.8 C4---C3---C2 105.32 (13) C20---C19---H19 119.8 C22---C3---H3 106.5 C15---C20---C19 120.02 (17) C4---C3---H3 106.5 C15---C20---C21 122.15 (17) C2---C3---H3 106.5 C19---C20---C21 117.83 (16) N1---C4---C3 103.85 (14) O3---C21---C20 120.24 (16) N1---C4---H4A 111.0 O3---C21---C2 121.55 (15) C3---C4---H4A 111.0 C20---C21---C2 118.21 (14) N1---C4---H4B 111.0 C31---C22---C23 118.48 (17) C3---C4---H4B 111.0 C31---C22---C3 122.43 (17) H4A---C4---H4B 109.0 C23---C22---C3 119.09 (15) O1---C5---C6 126.50 (17) C24---C23---C28 117.09 (17) O1---C5---C1 125.10 (17) C24---C23---C22 123.75 (16) C6---C5---C1 108.31 (16) C28---C23---C22 119.15 (16) C11---C6---C7 120.4 (2) C25---C24---C23 122.1 (2) C11---C6---C5 111.01 (16) C25---C24---H24 118.9 C7---C6---C5 128.6 (2) C23---C24---H24 118.9 C8---C7---C6 116.9 (3) C24---C25---C26 120.3 (2) C8---C7---H7 121.5 C24---C25---H25 119.9 C6---C7---H7 121.5 C26---C25---H25 119.9 C9---C8---C7 122.4 (3) C27---C26---C25 119.9 (2) C9---C8---H8 118.8 C27---C26---H26 120.1 C7---C8---H8 118.8 C25---C26---H26 120.1 C8---C9---C10 120.8 (3) C26---C27---C28 121.9 (2) C8---C9---H9 119.6 C26---C27---H27 119.0 C10---C9---H9 119.6 C28---C27---H27 119.0 C9---C10---C11 117.7 (3) C29---C28---C27 121.79 (19) C9---C10---H10 121.2 C29---C28---C23 119.48 (19) C11---C10---H10 121.2 C27---C28---C23 118.72 (19) C6---C11---C10 121.8 (2) C30---C29---C28 120.87 (18) C6---C11---C12 109.95 (17) C30---C29---H29 119.6 C10---C11---C12 128.2 (2) C28---C29---H29 119.6 O2---C12---C11 126.53 (19) C29---C30---C31 119.94 (19) O2---C12---C1 124.96 (17) C29---C30---H30 120.0 C11---C12---C1 108.43 (16) C31---C30---H30 120.0 C14---C13---C2 113.59 (14) C22---C31---C30 122.0 (2) C14---C13---H13A 108.8 C22---C31---H31 119.0 C2---C13---H13A 108.8 C30---C31---H31 119.0 C14---C13---H13B 108.8 N1---C32---H32A 109.5 C2---C13---H13B 108.8 N1---C32---H32B 109.5 H13A---C13---H13B 107.7 H32A---C32---H32B 109.5 C15---C14---C13 112.50 (14) N1---C32---H32C 109.5 C15---C14---H14A 109.1 H32A---C32---H32C 109.5 C13---C14---H14A 109.1 H32B---C32---H32C 109.5 C32---N1---C1---C12 64.5 (2) C5---C1---C12---C11 −5.58 (18) C4---N1---C1---C12 −167.92 (15) C2---C1---C12---C11 118.38 (16) C32---N1---C1---C5 −48.6 (2) C21---C2---C13---C14 −55.95 (19) C4---N1---C1---C5 78.99 (18) C1---C2---C13---C14 64.64 (19) C32---N1---C1---C2 −171.34 (16) C3---C2---C13---C14 −177.63 (14) C4---N1---C1---C2 −43.74 (17) C2---C13---C14---C15 51.9 (2) N1---C1---C2---C13 151.52 (14) C13---C14---C15---C16 157.93 (17) C12---C1---C2---C13 −89.21 (17) C13---C14---C15---C20 −21.5 (2) C5---C1---C2---C13 28.67 (19) C20---C15---C16---C17 0.6 (3) N1---C1---C2---C21 −87.90 (15) C14---C15---C16---C17 −178.84 (18) C12---C1---C2---C21 31.37 (18) C15---C16---C17---C18 −0.6 (3) C5---C1---C2---C21 149.25 (14) C16---C17---C18---C19 0.1 (3) N1---C1---C2---C3 27.30 (15) C17---C18---C19---C20 0.3 (3) C12---C1---C2---C3 146.57 (14) C16---C15---C20---C19 −0.2 (3) C5---C1---C2---C3 −95.55 (15) C14---C15---C20---C19 179.24 (17) C13---C2---C3---C22 1.7 (2) C16---C15---C20---C21 178.65 (16) C21---C2---C3---C22 −119.53 (15) C14---C15---C20---C21 −1.9 (3) C1---C2---C3---C22 125.80 (14) C18---C19---C20---C15 −0.2 (3) C13---C2---C3---C4 −127.23 (16) C18---C19---C20---C21 −179.14 (17) C21---C2---C3---C4 111.49 (16) C15---C20---C21---O3 174.69 (18) C1---C2---C3---C4 −3.18 (16) C19---C20---C21---O3 −6.4 (3) C32---N1---C4---C3 171.27 (16) C15---C20---C21---C2 −4.2 (2) C1---N1---C4---C3 41.97 (18) C19---C20---C21---C2 174.68 (16) C22---C3---C4---N1 −151.38 (14) C13---C2---C21---O3 −146.97 (17) C2---C3---C4---N1 −22.13 (18) C1---C2---C21---O3 88.92 (19) N1---C1---C5---O1 −54.7 (2) C3---C2---C21---O3 −22.1 (2) C12---C1---C5---O1 −172.11 (18) C13---C2---C21---C20 31.93 (19) C2---C1---C5---O1 61.9 (2) C1---C2---C21---C20 −92.19 (16) N1---C1---C5---C6 122.12 (16) C3---C2---C21---C20 156.82 (14) C12---C1---C5---C6 4.71 (18) C4---C3---C22---C31 22.4 (2) C2---C1---C5---C6 −121.30 (15) C2---C3---C22---C31 −101.47 (19) O1---C5---C6---C11 174.55 (19) C4---C3---C22---C23 −157.10 (15) C1---C5---C6---C11 −2.2 (2) C2---C3---C22---C23 79.05 (19) O1---C5---C6---C7 −6.6 (3) C31---C22---C23---C24 −179.52 (17) C1---C5---C6---C7 176.6 (2) C3---C22---C23---C24 0.0 (3) C11---C6---C7---C8 1.1 (3) C31---C22---C23---C28 1.1 (2) C5---C6---C7---C8 −177.6 (2) C3---C22---C23---C28 −179.40 (15) C6---C7---C8---C9 −0.6 (4) C28---C23---C24---C25 0.6 (3) C7---C8---C9---C10 −0.6 (5) C22---C23---C24---C25 −178.80 (18) C8---C9---C10---C11 1.3 (4) C23---C24---C25---C26 −0.9 (3) C7---C6---C11---C10 −0.5 (3) C24---C25---C26---C27 0.8 (4) C5---C6---C11---C10 178.48 (18) C25---C26---C27---C28 −0.3 (4) C7---C6---C11---C12 179.53 (19) C26---C27---C28---C29 −179.0 (2) C5---C6---C11---C12 −1.5 (2) C26---C27---C28---C23 −0.1 (3) C9---C10---C11---C6 −0.7 (4) C24---C23---C28---C29 178.86 (18) C9---C10---C11---C12 179.3 (2) C22---C23---C28---C29 −1.7 (3) C6---C11---C12---O2 −172.2 (2) C24---C23---C28---C27 −0.1 (3) C10---C11---C12---O2 7.8 (4) C22---C23---C28---C27 179.34 (17) C6---C11---C12---C1 4.7 (2) C27---C28---C29---C30 179.9 (2) C10---C11---C12---C1 −175.3 (2) C23---C28---C29---C30 0.9 (3) N1---C1---C12---O2 50.9 (2) C28---C29---C30---C31 0.4 (3) C5---C1---C12---O2 171.4 (2) C23---C22---C31---C30 0.3 (3) C2---C1---C12---O2 −64.7 (2) C3---C22---C31---C30 −179.19 (18) N1---C1---C12---C11 −126.03 (16) C29---C30---C31---C22 −1.1 (3) ---------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3554 .table-wrap} ----------------------------------------------- Cg1 is centroid of the C1/C5/C6/C11/C12 ring. ----------------------------------------------- ::: ::: {#d1e3558 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C3---H3···O3 0.98 2.23 2.772 (2) 114 C4---H4A···O1 0.97 2.53 3.072 (3) 115 C13---H13B···O1 0.97 2.59 3.246 (3) 125 C29---H29···O2^i^ 0.93 2.40 3.218 (2) 146 C17---H17···O1^ii^ 0.93 2.55 3.442 (3) 163 C14---H14B···Cg1 0.97 2.51 3.146 (2) 123 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*, *y*−1, *z*; (ii) −*x*, *y*+1/2, −*z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1 is centroid of the C1/C5/C6/C11/C12 ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- C3---H3⋯O3 0.98 2.23 2.772 (2) 114 C4---H4*A*⋯O1 0.97 2.53 3.072 (3) 115 C13---H13*B*⋯O1 0.97 2.59 3.246 (3) 125 C29---H29⋯O2^i^ 0.93 2.40 3.218 (2) 146 C17---H17⋯O1^ii^ 0.93 2.55 3.442 (3) 163 C14---H14*B*⋯*Cg*1 0.97 2.51 3.146 (2) 123 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.027621
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052033/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o629", "authors": [ { "first": "S.", "last": "Selvanayagam" }, { "first": "B.", "last": "Sridhar" }, { "first": "K.", "last": "Ravikumar" }, { "first": "P.", "last": "Saravanan" }, { "first": "R.", "last": "Raghunathan" } ] }
PMC3052034
Related literature {#sec1} ================== For applications of rare earth--β-diketone complexes, see: Chu & Elgavish (1995[@bb2]); Tsukube & Shinoda (2002[@bb9]); Iwamuro *et al.* (1997[@bb4]). For related structures, see: Ma *et al.* (2000[@bb5]); Tian *et al.* (2009[@bb8]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} (C~5~H~6~N)\[Dy(C~5~H~4~F~3~O~2~)~4~\]*M* *~r~* = 854.94Monoclinic,*a* = 10.619 (4) Å*b* = 19.799 (7) Å*c* = 15.715 (6) Åβ = 103.116 (6)°*V* = 3217.8 (19) Å^3^*Z* = 4Mo *K*α radiationμ = 2.44 mm^−1^*T* = 298 K0.22 × 0.22 × 0.06 mm ### Data collection {#sec2.1.2} Bruker SMART 1K CCD area detector diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 2000[@bb6]) *T* ~min~ = 0.616, *T* ~max~ = 0.86814449 measured reflections5670 independent reflections4126 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.039 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.050*wR*(*F* ^2^) = 0.121*S* = 1.025670 reflections483 parameters78 restraintsH-atom parameters constrainedΔρ~max~ = 0.95 e Å^−3^Δρ~min~ = −0.45 e Å^−3^ {#d5e506} Data collection: *SMART* (Bruker, 2000[@bb1]); cell refinement: *SAINT* (Bruker, 2000[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb3]); software used to prepare material for publication: *SHELXTL/PC* (Sheldrick, 2008[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811005034/om2404sup1.cif](http://dx.doi.org/10.1107/S1600536811005034/om2404sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005034/om2404Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005034/om2404Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?om2404&file=om2404sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?om2404sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?om2404&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [OM2404](http://scripts.iucr.org/cgi-bin/sendsup?om2404)). This research was supported by the National Natural Science Foundation of China (grant No. 20673069) and the Natural Science Foundation of Shanxi province (grant No. 2007011021). Comment ======= Rare earth-β-diketone complexes have attracted considerable attention in the past decades owing to their important applications as laser (Iwamuro *et al.*, 1997), fluorescent probe (Tsukube & Shinoda, 2002) and NMR reagents (Chu & Elgavish, 1995). As part of our interest in this field, we have been engaged in a major effort directed toward the development of syntheses of new lanthanide-β-diketon complexes. The structure of the title Dy^3+^ complex is shown in Fig. 1. It contains an eight-coordinate dysprosium ion bonded to four TAA anions with bidentate chelation, forming the \[Dy(TAA)~4~\]^-^ anions. These are connected to pyridinium cations by a N---H···O hydrogen bond. The co-ordination polyhedron may be described as an approximate square antiprism and the two sets of four O atoms (O2, O4, O5, O7) and (O1, O3, O6, O8) form the twisted upper and lower sides respectively. The Dy---O bond lengths are in the range of 2.305 (5)--2.423 (5) Å, average 2.351 (2) Å, which is consistent with other work in literature (Ma *et al.*, 2000; Tian *et al.*, 2009). The average angle of O---Dy---O is 100.25° and the average dihydral angle (C---O---Dy---O) is -10.49°. Experimental {#experimental} ============ A mixture of Dy~2~O~3~ (0.186 g) and concentrated hydrochloric (5 mL) was heated and distilled to slight dryness, yielding a crystalline precipitate (DyCl~3~). Then, the DyCl~3~ solid was redissolved in 5 mL absolute ethanol, and heated with 10 mL of absolute ethanol solution containing HTAA (0.50 mL) and pyridine (0.32 mL) at about 363 K. The reaction mixture was maintained at ambient temperature for one month until yellow crystals formed. Refinement {#refinement} ========== All F atoms were found to be disordered. There is disorder of the two different types: 1) disorder due to rotational disorder of the CF~3~ group bonded to a single carbon. F4, F5, and F6 atoms was split into to two sets of positions using restraints on their anisotropic displacement parameters. The major and minor disorder components had refined occupancies of 0.56 (2) and 0.44 (2), respectively; 2) disorder due to exchange of CH~3~ and CF~3~ groups on the same ligand. Namely, F10, F11, and F12 as well as related H atoms were modelled over two sets of positions using restraint on their anisotropic displacement parameters. The major and minor disorder components had refined occupancies of 0.64 (1) and 0.36 (1), respectively. In the final refinement, the occupancies of these disordered atoms were fixed to aid convergence. Atoms F11B, F4, F5, F6, F4B, F5B, and F6B were refined anisotropically using 42 restraints (ISOR) and the geometrical parameters of CF~3~ group were refined using 36 restraints (*DFIX* and DANG) because of the unacceptable parameters of their ellipsoids and distances between atoms. H atoms attached to C and N were placed in geometrically idealized positions with C*sp*\^2\^---H = 0.93, C*sp*\^3\^---H = 0.96, N*sp*\^2\^---H = 0.86 Å, and constrained to ride on their carrier atoms, with Uĩso\~(H) = 1.2Ũeq\~(C & N) and Uĩso\~(H) = 1.5Ũeq\~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A view of the structure of the complex with displacement ellipsoids drawn at the 30% probability level. H atoms without H-bond (dotting line) and minor disorder components were omitted for clarity. ::: ![](e-67-0m341-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e151 .table-wrap} ---------------------------------------- --------------------------------------- (C~5~H~6~N)\[Dy(C~5~H~4~F~3~O~2~)~4~\] *F*(000) = 1668 *M~r~* = 854.94 *D*~x~ = 1.765 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 3207 reflections *a* = 10.619 (4) Å θ = 2.2--21.0° *b* = 19.799 (7) Å µ = 2.44 mm^−1^ *c* = 15.715 (6) Å *T* = 298 K β = 103.116 (6)° Plate, colorless *V* = 3217.8 (19) Å^3^ 0.22 × 0.22 × 0.06 mm *Z* = 4 ---------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e292 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART 1K CCD area detector diffractometer 5670 independent reflections Radiation source: fine-focus sealed tube 4126 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.039 ω scans θ~max~ = 25.0°, θ~min~ = 1.7° Absorption correction: multi-scan (*SADABS*; Sheldrick, 2000) *h* = −12→12 *T*~min~ = 0.616, *T*~max~ = 0.868 *k* = −19→23 14449 measured reflections *l* = −18→15 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e406 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.050 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.121 H-atom parameters constrained *S* = 1.02 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0621*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5670 reflections (Δ/σ)~max~ = 0.001 483 parameters Δρ~max~ = 0.95 e Å^−3^ 78 restraints Δρ~min~ = −0.45 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e560 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e659 .table-wrap} ------ ------------- --------------- --------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Dy1 0.54349 (3) 0.155070 (15) 0.274306 (19) 0.05328 (14) O1 0.4836 (5) 0.2430 (2) 0.3649 (3) 0.0698 (13) O2 0.3848 (5) 0.2201 (2) 0.1874 (3) 0.0664 (13) C1 0.3730 (10) 0.3186 (5) 0.4363 (6) 0.105 (3) H1A 0.4141 0.2953 0.4889 0.157\* H1B 0.2835 0.3259 0.4360 0.157\* H1C 0.4147 0.3614 0.4339 0.157\* C2 0.3834 (8) 0.2772 (4) 0.3590 (5) 0.0656 (19) C3 0.2847 (8) 0.2808 (4) 0.2828 (5) 0.069 (2) H3 0.2086 0.3029 0.2860 0.083\* C4 0.2930 (7) 0.2543 (4) 0.2051 (5) 0.0633 (19) C5 0.1851 (9) 0.2668 (5) 0.1261 (6) 0.088 (3) F1 0.2181 (6) 0.3041 (4) 0.0687 (4) 0.170 (3) F2 0.1395 (7) 0.2116 (4) 0.0866 (5) 0.165 (3) F3 0.0817 (7) 0.2960 (4) 0.1425 (4) 0.170 (3) O3 0.3793 (5) 0.1120 (2) 0.3346 (3) 0.0691 (13) O4 0.4291 (6) 0.0745 (3) 0.1777 (3) 0.0813 (15) C6 0.1664 (9) 0.1026 (6) 0.3557 (6) 0.116 (3) H6A 0.1652 0.0631 0.3908 0.173\* H6B 0.0825 0.1092 0.3180 0.173\* H6C 0.1886 0.1413 0.3930 0.173\* C7 0.2647 (9) 0.0938 (4) 0.3014 (6) 0.076 (2) C8 0.2294 (10) 0.0660 (5) 0.2176 (7) 0.097 (3) H8 0.1438 0.0530 0.1968 0.116\* C9 0.3145 (12) 0.0569 (4) 0.1642 (5) 0.090 (3) C10 0.2692 (12) 0.0137 (6) 0.0779 (8) 0.129 (4) F4 0.2652 (17) 0.0495 (7) 0.0147 (8) 0.139 (5) 0.560 (15) F5 0.3418 (14) −0.0434 (6) 0.0845 (8) 0.138 (5) 0.560 (15) F6 0.1486 (13) −0.0078 (8) 0.0698 (9) 0.152 (6) 0.560 (15) F4B 0.237 (2) −0.0437 (7) 0.0915 (10) 0.136 (6) 0.440 (15) F5B 0.158 (2) 0.0463 (12) 0.0364 (15) 0.201 (10) 0.440 (15) F6B 0.3444 (16) 0.0219 (8) 0.0223 (10) 0.123 (6) 0.440 (15) O5 0.6258 (5) 0.1812 (2) 0.1486 (3) 0.0685 (13) O6 0.6880 (5) 0.0700 (2) 0.2623 (3) 0.0687 (13) C11 0.7528 (9) 0.1973 (5) 0.0427 (5) 0.103 (3) H11A 0.6789 0.2041 −0.0045 0.155\* H11B 0.8178 0.1727 0.0219 0.155\* H11C 0.7869 0.2402 0.0652 0.155\* C12 0.7130 (8) 0.1571 (4) 0.1151 (5) 0.0664 (19) C13 0.7781 (8) 0.0965 (4) 0.1434 (5) 0.075 (2) H13 0.8392 0.0817 0.1135 0.089\* C14 0.7591 (7) 0.0577 (3) 0.2112 (5) 0.0641 (19) C15 0.8293 (10) −0.0080 (5) 0.2295 (7) 0.093 (3) F7 0.9130 (8) −0.0209 (3) 0.1817 (6) 0.170 (3) F8 0.7516 (7) −0.0582 (3) 0.2151 (6) 0.185 (4) F9 0.8939 (9) −0.0126 (4) 0.3073 (5) 0.194 (4) O7 0.7171 (5) 0.2319 (2) 0.3091 (3) 0.0692 (13) O8 0.6620 (5) 0.1262 (2) 0.4147 (3) 0.0624 (12) C16 0.9245 (11) 0.2782 (6) 0.3435 (7) 0.104 (3) H16A 0.9699 0.2688 0.2962 0.104\* 0.64 H16B 1.0012 0.2854 0.3963 0.104\* 0.64 H16C 0.8937 0.3261 0.3317 0.104\* 0.64 F10B 1.0364 (15) 0.2718 (10) 0.3858 (12) 0.157 (8) 0.36 F11B 0.924 (2) 0.2781 (10) 0.2596 (11) 0.160 (7) 0.36 F12B 0.879 (2) 0.3390 (8) 0.3519 (18) 0.193 (12) 0.36 C17 0.8278 (8) 0.2252 (4) 0.3569 (5) 0.068 (2) C18 0.8665 (8) 0.1759 (4) 0.4206 (5) 0.070 (2) H18 0.9536 0.1735 0.4483 0.084\* C19 0.7838 (7) 0.1309 (3) 0.4447 (4) 0.0589 (18) C20 0.8358 (10) 0.0834 (5) 0.5191 (6) 0.099 (3) H20A 0.7625 0.0425 0.5206 0.099\* 0.36 H20B 0.8509 0.0975 0.5761 0.099\* 0.36 H20C 0.9073 0.0496 0.5146 0.099\* 0.36 F10 0.9621 (9) 0.0751 (5) 0.5361 (6) 0.141 (3) 0.64 F11 0.7907 (13) 0.0241 (5) 0.5025 (9) 0.243 (9) 0.64 F12 0.8159 (13) 0.1056 (7) 0.5915 (6) 0.194 (6) 0.64 N1 0.5608 (8) 0.3261 (3) 0.1375 (6) 0.096 (2) H1 0.5924 0.2859 0.1424 0.115\* C21 0.5610 (9) 0.3615 (5) 0.2096 (6) 0.089 (3) H21 0.5963 0.3435 0.2645 0.106\* C22 0.5089 (10) 0.4241 (4) 0.2015 (6) 0.088 (3) H22 0.5072 0.4495 0.2510 0.105\* C23 0.4599 (9) 0.4493 (4) 0.1219 (6) 0.089 (3) H23 0.4224 0.4920 0.1162 0.106\* C24 0.4647 (9) 0.4130 (4) 0.0494 (6) 0.088 (3) H24 0.4341 0.4316 −0.0057 0.106\* C25 0.5124 (10) 0.3516 (4) 0.0571 (7) 0.089 (3) H25 0.5129 0.3259 0.0076 0.107\* ------ ------------- --------------- --------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1675 .table-wrap} ------ ------------ ------------ ------------ -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Dy1 0.0585 (2) 0.0521 (2) 0.0466 (2) 0.00072 (16) 0.00630 (14) 0.00471 (15) O1 0.067 (3) 0.074 (3) 0.062 (3) 0.006 (3) 0.002 (2) −0.007 (2) O2 0.062 (3) 0.078 (3) 0.054 (3) 0.011 (3) 0.004 (2) 0.009 (2) C1 0.123 (9) 0.100 (6) 0.092 (7) 0.029 (6) 0.027 (6) −0.018 (5) C2 0.068 (5) 0.054 (4) 0.075 (5) 0.003 (4) 0.017 (4) 0.007 (4) C3 0.068 (5) 0.063 (5) 0.076 (5) 0.015 (4) 0.013 (4) 0.009 (4) C4 0.058 (5) 0.062 (4) 0.063 (5) 0.004 (4) −0.001 (4) 0.020 (4) C5 0.072 (6) 0.108 (7) 0.077 (6) 0.010 (6) 0.000 (5) 0.014 (6) F1 0.125 (5) 0.248 (8) 0.120 (5) −0.011 (5) −0.008 (4) 0.111 (6) F2 0.137 (6) 0.161 (6) 0.148 (6) −0.001 (5) −0.067 (4) −0.004 (5) F3 0.106 (5) 0.275 (9) 0.111 (5) 0.088 (6) −0.010 (4) 0.003 (5) O3 0.071 (4) 0.071 (3) 0.063 (3) −0.009 (3) 0.009 (3) 0.010 (3) O4 0.084 (4) 0.085 (4) 0.071 (3) −0.020 (3) 0.008 (3) −0.026 (3) C6 0.078 (7) 0.159 (10) 0.122 (8) −0.001 (7) 0.049 (6) 0.015 (7) C7 0.075 (6) 0.065 (5) 0.083 (6) −0.013 (4) 0.007 (5) 0.014 (4) C8 0.081 (7) 0.105 (7) 0.096 (7) −0.021 (5) 0.002 (6) 0.004 (6) C9 0.123 (9) 0.069 (5) 0.063 (5) −0.020 (6) −0.008 (5) −0.006 (4) C10 0.130 (11) 0.126 (11) 0.122 (10) −0.037 (9) 0.008 (8) 0.026 (8) F4 0.147 (7) 0.143 (7) 0.122 (6) −0.008 (5) 0.021 (5) −0.001 (4) F5 0.145 (7) 0.131 (7) 0.130 (6) 0.002 (4) 0.015 (4) −0.025 (4) F6 0.148 (7) 0.151 (7) 0.151 (7) −0.022 (5) 0.020 (5) −0.006 (5) F4B 0.143 (8) 0.128 (7) 0.137 (7) −0.008 (5) 0.030 (5) −0.011 (5) F5B 0.201 (11) 0.203 (11) 0.194 (11) −0.002 (5) 0.033 (5) −0.008 (5) F6B 0.127 (7) 0.125 (7) 0.115 (7) −0.006 (5) 0.025 (5) −0.012 (5) O5 0.083 (4) 0.067 (3) 0.058 (3) 0.006 (3) 0.021 (3) 0.011 (2) O6 0.085 (4) 0.061 (3) 0.064 (3) 0.015 (3) 0.024 (3) 0.005 (2) C11 0.118 (8) 0.129 (8) 0.078 (6) 0.001 (7) 0.053 (6) 0.021 (6) C12 0.064 (5) 0.077 (5) 0.057 (4) −0.002 (4) 0.013 (4) −0.010 (4) C13 0.078 (6) 0.081 (6) 0.071 (5) 0.001 (5) 0.030 (4) −0.014 (4) C14 0.065 (5) 0.051 (4) 0.070 (5) −0.005 (4) 0.002 (4) −0.018 (4) C15 0.099 (8) 0.077 (6) 0.108 (8) 0.014 (6) 0.034 (6) 0.001 (6) F7 0.184 (7) 0.125 (5) 0.231 (8) 0.067 (5) 0.112 (7) 0.020 (5) F8 0.154 (7) 0.062 (3) 0.348 (12) −0.006 (4) 0.074 (7) −0.012 (5) F9 0.267 (10) 0.153 (6) 0.129 (6) 0.118 (7) −0.024 (6) 0.014 (5) O7 0.061 (3) 0.072 (3) 0.071 (3) −0.005 (3) 0.006 (3) 0.007 (3) O8 0.063 (3) 0.067 (3) 0.053 (3) 0.004 (3) 0.005 (2) 0.012 (2) C16 0.091 (8) 0.123 (9) 0.095 (7) −0.029 (7) 0.015 (6) 0.000 (6) F10B 0.084 (13) 0.21 (2) 0.160 (16) −0.055 (13) −0.010 (11) 0.055 (14) F11B 0.158 (8) 0.168 (8) 0.157 (8) −0.016 (5) 0.043 (5) 0.003 (5) F12B 0.15 (2) 0.110 (14) 0.35 (4) −0.061 (13) 0.14 (2) −0.024 (16) C17 0.067 (5) 0.074 (5) 0.064 (5) −0.008 (4) 0.019 (4) −0.016 (4) C18 0.056 (5) 0.076 (5) 0.069 (5) 0.008 (4) −0.002 (4) −0.005 (4) C19 0.060 (5) 0.058 (4) 0.050 (4) 0.017 (4) −0.004 (3) −0.006 (3) C20 0.086 (7) 0.105 (8) 0.085 (7) 0.005 (6) −0.025 (5) 0.028 (6) F10 0.107 (8) 0.146 (8) 0.145 (8) 0.029 (6) −0.020 (6) 0.041 (6) F11 0.243 (14) 0.124 (8) 0.253 (15) −0.077 (9) −0.170 (12) 0.118 (9) F12 0.239 (14) 0.273 (15) 0.079 (6) 0.122 (12) 0.052 (8) 0.063 (8) N1 0.114 (7) 0.059 (4) 0.134 (7) 0.011 (4) 0.069 (6) 0.016 (5) C21 0.098 (7) 0.094 (7) 0.073 (6) −0.007 (5) 0.017 (5) 0.020 (5) C22 0.126 (8) 0.065 (5) 0.074 (6) −0.003 (5) 0.024 (5) −0.011 (5) C23 0.098 (7) 0.064 (5) 0.105 (7) 0.017 (5) 0.024 (6) −0.002 (5) C24 0.109 (7) 0.080 (6) 0.072 (5) −0.008 (5) 0.010 (5) 0.017 (5) C25 0.116 (8) 0.067 (6) 0.100 (7) −0.023 (5) 0.058 (6) −0.016 (5) ------ ------------ ------------ ------------ -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2643 .table-wrap} --------------------- ------------- ------------------------ ------------- Dy1---O2 2.305 (5) C13---H13 0.9300 Dy1---O6 2.315 (5) C14---C15 1.494 (11) Dy1---O3 2.326 (5) C15---F9 1.263 (10) Dy1---O4 2.342 (5) C15---F8 1.278 (10) Dy1---O8 2.349 (4) C15---F7 1.313 (9) Dy1---O7 2.356 (5) O7---C17 1.250 (9) Dy1---O5 2.390 (5) O8---C19 1.275 (8) Dy1---O1 2.423 (5) C16---F10B 1.230 (14) O1---C2 1.247 (8) C16---F12B 1.314 (14) O2---C4 1.269 (8) C16---F11B 1.317 (14) C1---C2 1.492 (10) C16---C17 1.517 (12) C1---H1A 0.9600 C16---H16A 0.9912 C1---H1B 0.9600 C16---H16B 1.0321 C1---H1C 0.9600 C16---H16C 1.0056 C2---C3 1.403 (10) F10B---H16A 1.4259 C3---C4 1.350 (10) F10B---H16B 0.5180 C3---H3 0.9300 F11B---H16A 0.6894 C4---C5 1.507 (11) F12B---H16C 0.4623 C5---F1 1.275 (9) C17---C18 1.392 (10) C5---F2 1.295 (9) C18---C19 1.363 (10) C5---F3 1.317 (9) C18---H18 0.9300 O3---C7 1.264 (8) C19---C20 1.505 (10) O4---C9 1.238 (11) C20---F11 1.272 (11) C6---C7 1.501 (11) C20---F12 1.281 (11) C6---H6A 0.9600 C20---F10 1.317 (10) C6---H6B 0.9600 C20---H20A 1.1271 C6---H6C 0.9600 C20---H20B 0.9180 C7---C8 1.397 (12) C20---H20C 1.0263 C8---C9 1.378 (13) F10---H20C 0.7857 C8---H8 0.9300 F11---H20A 0.5838 C9---C10 1.582 (14) F11---H20C 1.3102 C10---F4 1.213 (12) F12---H20B 0.5114 C10---F4B 1.220 (14) N1---C21 1.333 (11) C10---F6B 1.321 (14) N1---C25 1.350 (12) C10---F6 1.328 (13) N1---H1 0.8600 C10---F5 1.359 (13) C21---C22 1.350 (11) C10---F5B 1.372 (16) C21---H21 0.9300 O5---C12 1.258 (8) C22---C23 1.338 (11) O6---C14 1.245 (8) C22---H22 0.9300 C11---C12 1.525 (10) C23---C24 1.358 (11) C11---H11A 0.9600 C23---H23 0.9300 C11---H11B 0.9600 C24---C25 1.312 (11) C11---H11C 0.9600 C24---H24 0.9300 C12---C13 1.405 (10) C25---H25 0.9300 C13---C14 1.365 (10) O2---Dy1---O6 140.08 (17) F6---C10---C9 110.8 (11) O2---Dy1---O3 86.05 (17) F5---C10---C9 109.1 (10) O6---Dy1---O3 109.78 (17) F5B---C10---C9 102.3 (13) O2---Dy1---O4 78.12 (19) C12---O5---Dy1 134.9 (5) O6---Dy1---O4 73.0 (2) C14---O6---Dy1 134.8 (5) O3---Dy1---O4 71.84 (18) C12---C11---H11A 109.5 O2---Dy1---O8 148.85 (17) C12---C11---H11B 109.5 O6---Dy1---O8 71.07 (16) H11A---C11---H11B 109.5 O3---Dy1---O8 79.62 (17) C12---C11---H11C 109.5 O4---Dy1---O8 122.14 (17) H11A---C11---H11C 109.5 O2---Dy1---O7 101.87 (18) H11B---C11---H11C 109.5 O6---Dy1---O7 89.42 (18) O5---C12---C13 123.2 (7) O3---Dy1---O7 139.54 (17) O5---C12---C11 118.0 (7) O4---Dy1---O7 148.56 (18) C13---C12---C11 118.7 (7) O8---Dy1---O7 73.40 (16) C14---C13---C12 125.3 (7) O2---Dy1---O5 75.24 (17) C14---C13---H13 117.4 O6---Dy1---O5 73.54 (16) C12---C13---H13 117.4 O3---Dy1---O5 149.75 (18) O6---C14---C13 127.8 (7) O4---Dy1---O5 81.05 (18) O6---C14---C15 113.3 (7) O8---Dy1---O5 127.59 (17) C13---C14---C15 119.0 (8) O7---Dy1---O5 68.84 (17) F9---C15---F8 107.6 (10) O2---Dy1---O1 72.12 (16) F9---C15---F7 104.5 (9) O6---Dy1---O1 146.89 (17) F8---C15---F7 103.9 (8) O3---Dy1---O1 72.74 (17) F9---C15---C14 112.7 (8) O4---Dy1---O1 134.69 (19) F8---C15---C14 111.7 (8) O8---Dy1---O1 77.24 (16) F7---C15---C14 115.7 (8) O7---Dy1---O1 72.29 (17) C17---O7---Dy1 130.6 (5) O5---Dy1---O1 121.60 (16) C19---O8---Dy1 127.7 (4) C2---O1---Dy1 132.8 (5) F10B---C16---F12B 112.0 (17) C4---O2---Dy1 131.5 (4) F10B---C16---F11B 108.9 (15) C2---C1---H1A 109.5 F12B---C16---F11B 100.6 (16) C2---C1---H1B 109.5 F10B---C16---C17 117.0 (12) H1A---C1---H1B 109.5 F12B---C16---C17 110.0 (11) C2---C1---H1C 109.5 F11B---C16---C17 106.8 (12) H1A---C1---H1C 109.5 C17---C16---H16A 115.7 H1B---C1---H1C 109.5 C17---C16---H16B 114.7 O1---C2---C3 123.5 (7) H16A---C16---H16B 101.5 O1---C2---C1 117.3 (7) C17---C16---H16C 118.4 C3---C2---C1 119.2 (8) H16A---C16---H16C 103.4 C4---C3---C2 124.2 (7) H16B---C16---H16C 100.6 C4---C3---H3 117.9 H16A---F10B---H16B 96.0 C2---C3---H3 117.9 C16---F11B---H16A 47.4 O2---C4---C3 128.1 (7) O7---C17---C18 126.1 (7) O2---C4---C5 112.7 (7) O7---C17---C16 114.7 (8) C3---C4---C5 119.2 (7) C18---C17---C16 119.1 (8) F1---C5---F2 106.4 (9) C19---C18---C17 123.6 (7) F1---C5---F3 105.0 (8) C19---C18---H18 118.2 F2---C5---F3 103.1 (9) C17---C18---H18 118.2 F1---C5---C4 113.5 (8) O8---C19---C18 127.5 (6) F2---C5---C4 112.8 (7) O8---C19---C20 113.8 (7) F3---C5---C4 115.0 (8) C18---C19---C20 118.6 (7) C7---O3---Dy1 132.6 (5) F11---C20---F12 111.6 (13) C9---O4---Dy1 130.5 (6) F11---C20---F10 104.2 (11) C7---C6---H6A 109.5 F12---C20---F10 103.2 (9) C7---C6---H6B 109.5 F11---C20---C19 111.3 (8) H6A---C6---H6B 109.5 F12---C20---C19 111.8 (9) C7---C6---H6C 109.5 F10---C20---C19 114.4 (9) H6A---C6---H6C 109.5 C19---C20---H20A 109.4 H6B---C6---H6C 109.5 C19---C20---H20B 121.4 O3---C7---C8 121.9 (8) H20A---C20---H20B 99.6 O3---C7---C6 117.5 (8) C19---C20---H20C 120.1 C8---C7---C6 120.6 (9) H20A---C20---H20C 93.3 C9---C8---C7 123.6 (9) H20B---C20---H20C 107.3 C9---C8---H8 118.2 C20---F10---H20C 51.2 C7---C8---H8 118.2 C20---F11---H20A 62.4 O4---C9---C8 127.8 (8) C20---F11---H20C 46.8 O4---C9---C10 113.3 (9) H20A---F11---H20C 105.2 C8---C9---C10 118.7 (10) C21---N1---C25 121.7 (7) F4---C10---F4B 136.8 (15) C21---N1---H1 119.2 F4---C10---F6B 45.6 (9) C25---N1---H1 119.2 F4B---C10---F6B 117.9 (15) N1---C21---C22 118.8 (8) F4---C10---F6 104.8 (13) N1---C21---H21 120.6 F4B---C10---F6 54.0 (10) C22---C21---H21 120.6 F6B---C10---F6 133.7 (13) C23---C22---C21 119.7 (8) F4---C10---F5 117.5 (14) C23---C22---H22 120.1 F4B---C10---F5 52.5 (10) C21---C22---H22 120.1 F6B---C10---F5 74.6 (12) C22---C23---C24 120.3 (8) F6---C10---F5 105.0 (12) C22---C23---H23 119.8 F4---C10---F5B 57.9 (11) C24---C23---H23 119.8 F4B---C10---F5B 106.0 (15) C25---C24---C23 120.0 (9) F6B---C10---F5B 102.1 (14) C25---C24---H24 120.0 F6---C10---F5B 53.2 (11) C23---C24---H24 120.0 F5---C10---F5B 147.1 (15) C24---C25---N1 119.4 (8) F4---C10---C9 109.5 (10) C24---C25---H25 120.3 F4B---C10---C9 113.3 (11) N1---C25---H25 120.3 F6B---C10---C9 112.8 (11) O2---Dy1---O1---C2 24.6 (6) O7---Dy1---O6---C14 −67.3 (7) O6---Dy1---O1---C2 −166.8 (6) O5---Dy1---O6---C14 0.8 (6) O3---Dy1---O1---C2 −66.9 (6) O1---Dy1---O6---C14 −122.4 (6) O4---Dy1---O1---C2 −26.9 (7) Dy1---O5---C12---C13 9.0 (11) O8---Dy1---O1---C2 −149.8 (7) Dy1---O5---C12---C11 −168.6 (5) O7---Dy1---O1---C2 133.8 (7) O5---C12---C13---C14 −2.2 (12) O5---Dy1---O1---C2 83.7 (7) C11---C12---C13---C14 175.4 (8) O6---Dy1---O2---C4 161.1 (6) Dy1---O6---C14---C13 3.7 (12) O3---Dy1---O2---C4 44.6 (6) Dy1---O6---C14---C15 −176.3 (5) O4---Dy1---O2---C4 116.9 (6) C12---C13---C14---O6 −4.2 (13) O8---Dy1---O2---C4 −17.8 (8) C12---C13---C14---C15 175.7 (8) O7---Dy1---O2---C4 −95.3 (6) O6---C14---C15---F9 −54.8 (11) O5---Dy1---O2---C4 −159.4 (6) C13---C14---C15---F9 125.2 (9) O1---Dy1---O2---C4 −28.5 (6) O6---C14---C15---F8 66.5 (10) Dy1---O1---C2---C1 169.3 (5) C13---C14---C15---F8 −113.5 (9) C1---C2---C3---C4 169.1 (8) O6---C14---C15---F7 −175.0 (8) Dy1---O2---C4---C5 −158.1 (5) C13---C14---C15---F7 5.0 (12) C2---C3---C4---C5 −174.7 (7) O2---Dy1---O7---C17 177.5 (6) C3---C4---C5---F1 112.4 (10) O6---Dy1---O7---C17 −41.1 (6) O2---C4---C5---F2 55.4 (10) O3---Dy1---O7---C17 79.6 (7) C3---C4---C5---F2 −126.4 (9) O4---Dy1---O7---C17 −95.9 (7) O2---C4---C5---F3 173.3 (8) O8---Dy1---O7---C17 29.3 (6) O2---Dy1---O3---C7 42.0 (7) O5---Dy1---O7---C17 −113.6 (6) O6---Dy1---O3---C7 −100.4 (7) O1---Dy1---O7---C17 110.9 (6) O4---Dy1---O3---C7 −36.8 (7) O2---Dy1---O8---C19 −119.0 (6) O8---Dy1---O3---C7 −165.8 (7) O6---Dy1---O8---C19 61.8 (5) O7---Dy1---O3---C7 145.7 (6) O3---Dy1---O8---C19 177.0 (6) O5---Dy1---O3---C7 −9.3 (9) O4---Dy1---O8---C19 116.3 (5) O1---Dy1---O3---C7 114.5 (7) O7---Dy1---O8---C19 −33.5 (5) O2---Dy1---O4---C9 −60.3 (7) O5---Dy1---O8---C19 11.7 (6) O6---Dy1---O4---C9 147.6 (7) O1---Dy1---O8---C19 −108.5 (6) O3---Dy1---O4---C9 29.4 (7) Dy1---O7---C17---C18 −18.4 (11) O8---Dy1---O4---C9 93.9 (7) Dy1---O7---C17---C16 163.5 (6) O7---Dy1---O4---C9 −153.7 (6) F10B---C16---C17---O7 −176.4 (14) O5---Dy1---O4---C9 −137.0 (7) F12B---C16---C17---O7 54.3 (17) O1---Dy1---O4---C9 −10.8 (8) F11B---C16---C17---O7 −54.0 (14) Dy1---O3---C7---C6 −148.8 (6) F10B---C16---C17---C18 5.4 (18) C6---C7---C8---C9 179.6 (9) F12B---C16---C17---C18 −123.9 (16) Dy1---O4---C9---C10 166.1 (6) F11B---C16---C17---C18 127.7 (12) C7---C8---C9---C10 169.6 (8) O7---C17---C18---C19 −5.8 (12) O4---C9---C10---F6B −20.3 (15) C16---C17---C18---C19 172.2 (8) C8---C9---C10---F6B 164.5 (13) Dy1---O8---C19---C18 28.9 (10) O4---C9---C10---F6 175.6 (11) Dy1---O8---C19---C20 −155.5 (6) C8---C9---C10---F6 0.5 (15) C17---C18---C19---O8 −0.1 (12) O4---C9---C10---F5 60.6 (12) C17---C18---C19---C20 −175.5 (7) C8---C9---C10---F5 −114.6 (12) O8---C19---C20---F11 46.0 (14) O4---C9---C10---F5B −129.3 (15) C18---C19---C20---F11 −138.1 (12) O2---Dy1---O5---C12 −162.0 (7) O8---C19---C20---F12 −79.5 (12) O6---Dy1---O5---C12 −7.2 (7) C18---C19---C20---F12 96.5 (12) O3---Dy1---O5---C12 −108.4 (7) O8---C19---C20---F10 163.7 (8) O4---Dy1---O5---C12 −82.0 (7) C18---C19---C20---F10 −20.3 (13) O8---Dy1---O5---C12 41.9 (7) C25---N1---C21---C22 1.3 (13) O7---Dy1---O5---C12 88.7 (7) N1---C21---C22---C23 −0.7 (14) O1---Dy1---O5---C12 140.3 (6) C21---C22---C23---C24 −1.4 (15) O2---Dy1---O6---C14 40.7 (8) C22---C23---C24---C25 3.0 (14) O3---Dy1---O6---C14 149.1 (6) C23---C24---C25---N1 −2.4 (14) O4---Dy1---O6---C14 86.2 (7) C21---N1---C25---C24 0.3 (14) O8---Dy1---O6---C14 −139.9 (7) --------------------- ------------- ------------------------ ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4495 .table-wrap} --------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1···O5 0.86 2.10 2.947 (8) 167 --------------- --------- --------- ----------- --------------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: ---------- ----------- Dy1---O2 2.305 (5) Dy1---O6 2.315 (5) Dy1---O3 2.326 (5) Dy1---O4 2.342 (5) Dy1---O8 2.349 (4) Dy1---O7 2.356 (5) Dy1---O5 2.390 (5) Dy1---O1 2.423 (5) ---------- ----------- ::: ::: {#table2 .table-wrap} Table 2 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------- --------- ------- ----------- ------------- N1---H1⋯O5 0.86 2.10 2.947 (8) 167 :::
PubMed Central
2024-06-05T04:04:18.036629
2011-2-16
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052034/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 16; 67(Pt 3):m341", "authors": [ { "first": "Yan", "last": "Wang" }, { "first": "Yuekui", "last": "Wang" }, { "first": "Jie", "last": "Jia" }, { "first": "Xiaoli", "last": "Gao" }, { "first": "Xiaoling", "last": "Su" } ] }
PMC3052035
Related literature {#sec1} ================== For the structure of a related 18-crown-6 clathrate, see: Ge & Zhao (2010[@bb2]). For ferroelectric properties, see: Fu *et al.* (2007[@bb1]); Ye *et al.*(2009[@bb5]); Zhang *et al.* (2009[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~6~H~7~IN^+^·ClO~4~ ^−^·C~12~H~24~O~6~*M* *~r~* = 583.79Orthorhombic,*a* = 15.8805 (11) Å*b* = 11.3878 (11) Å*c* = 12.6754 (8) Å*V* = 2292.3 (3) Å^3^*Z* = 4Mo *K*α radiationμ = 1.57 mm^−1^*T* = 93 K0.40 × 0.30 × 0.20 mm ### Data collection {#sec2.1.2} Rigaku SCXmini diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku, 2005[@bb3]) *T* ~min~ = 0.575, *T* ~max~ = 0.73124048 measured reflections2755 independent reflections2611 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.034 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.024*wR*(*F* ^2^) = 0.093*S* = 1.112755 reflections154 parametersH-atom parameters constrainedΔρ~max~ = 0.81 e Å^−3^Δρ~min~ = −0.65 e Å^−3^ {#d5e442} Data collection: *CrystalClear* (Rigaku, 2005[@bb3]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb4]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004260/rz2549sup1.cif](http://dx.doi.org/10.1107/S1600536811004260/rz2549sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004260/rz2549Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004260/rz2549Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rz2549&file=rz2549sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rz2549sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rz2549&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RZ2549](http://scripts.iucr.org/cgi-bin/sendsup?rz2549)). This work was supported by the Start-up Projects for Postdoctoral Research Funds (1112000064) and the Major Postdoctoral Research Funds (3212000602) of Southeast University. Comment ======= As a continuation of our studies on the synthesis and characterization of host-guest compounds of 18-crown-6 (Ge & Zhao, 2010), the crystal structure of the title compound is reported herein. The dielectric permittivity of the title compound was tested to investigate the ferroelectric phase transitions materials (Fu *et al.* 2007; Ye *et al.* 2009; Zhang *et al.* 2009). The title compound have no dielectric anomalies under 1*M* Hz in the temperature range from 90 to 473 K (the compound m. p. \> 473 K), suggesting that in the compound no distinct phase transition occurred within the measured temperature range. The title compound is composed of C~6~H~4~INH~3~^+^ cations, 18-crown-6 molecules and ClO~4~^-^ anions (Fig 1). A supramolecular rotator-stator structure is assembled between the protonated 4-iodoanilinium cation and 18-crown-6 molecule by three N---H···O hydrogen bonds (Table 1). The nitrogen atom of the NH~3~^+^ group is in the perching position of the crown ring, rather than in the nesting position. The macrocycle adopts a conformation with approximate D~3d~ symmetry, all O---C---C---O torsion angles being *gauche* and alternating in sign, and all C---O---C---C torsion angles being *trans*. The C---N bond of the 4-iodoanilinium cation is almost perpendicular to the mean plane of the crown-ether O atoms. The ClO~4~^-^ anion, the cation and the 18-crown-6 have all crystallographically imposed mirror symmetry. Fig. 2 shows a view of the structure down the *b* axis. The couples of head-to-head rotator-stator cations almost paralleling and plumbing the (101) direction are alternating arranged. The anions inhabit the cavities formed by the couples of head-to-head rotator-stator cations. In the title compound no intermolecular hydrogen bonds are observed. Experimental {#experimental} ============ 4-Iodoaniline (2 mmol) and excess perchloric acid (4 mmol) were dissolved in methanol, then 18-crown-6 (2 mmol) was added to the mixture. The precipitate was filtered and washed with a small amount of methanol. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of the methanol solution at room temperature after two days. Refinement {#refinement} ========== All hydrogen atoms were calculated geometrically allowed to ride, with C---H = 0.93-0.97 Å, N---H = 0.90 Å, and with *U*~iso~(H) = 1.2 *U*~iso~(C, N). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (A) x, 1/2-y, z; (B) 3/2-x, 1-y, 1/2+z; (C) 3/2-x, -1/2+y, 1/2+z; (D) x, 3/2-y, z. ::: ![](e-67-0o596-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram of the title compound viewed along the b axis. Dashed lines indicate hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. ::: ![](e-67-0o596-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e162 .table-wrap} ---------------------------------------- ---------------------------------------- C~6~H~7~IN^+^·ClO~4~^−^·C~12~H~24~O~6~ *F*(000) = 1184 *M~r~* = 583.79 *D*~x~ = 1.692 Mg m^−3^ Orthorhombic, *Pnma* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ac 2n Cell parameters from 17071 reflections *a* = 15.8805 (11) Å θ = 3.2--27.8° *b* = 11.3878 (11) Å µ = 1.57 mm^−1^ *c* = 12.6754 (8) Å *T* = 93 K *V* = 2292.3 (3) Å^3^ Prism, colourless *Z* = 4 0.40 × 0.30 × 0.20 mm ---------------------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e299 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Rigaku SCXmini diffractometer 2755 independent reflections Radiation source: fine-focus sealed tube 2611 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.034 Detector resolution: 13.6612 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 2.1° CCD\_Profile\_fitting scans *h* = −20→20 Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) *k* = −14→14 *T*~min~ = 0.575, *T*~max~ = 0.731 *l* = −16→16 24048 measured reflections ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e417 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.024 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.093 H-atom parameters constrained *S* = 1.11 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0591*P*)^2^ + 1.2714*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2755 reflections (Δ/σ)~max~ \< 0.001 154 parameters Δρ~max~ = 0.81 e Å^−3^ 0 restraints Δρ~min~ = −0.65 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e574 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e673 .table-wrap} ------ --------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ I1 1.020717 (13) 0.7500 0.497027 (14) 0.01781 (10) N2 0.69020 (16) 0.7500 0.21864 (19) 0.0118 (5) H2A 0.6919 0.6850 0.1782 0.018\* H2C 0.6440 0.7500 0.2599 0.018\* C25 0.87428 (14) 0.6439 (2) 0.37576 (16) 0.0155 (4) H25A 0.8994 0.5711 0.3975 0.019\* C26 0.80150 (13) 0.64394 (18) 0.31502 (16) 0.0141 (4) H26A 0.7757 0.5713 0.2941 0.017\* C27 0.76611 (18) 0.7500 0.2846 (2) 0.0116 (5) C30 0.91063 (18) 0.7500 0.4050 (2) 0.0146 (6) O4 0.79657 (9) 0.45595 (13) 0.59043 (12) 0.0152 (3) O5 0.70915 (15) 0.2500 0.52965 (18) 0.0158 (4) C6 0.81605 (14) 0.56511 (19) 0.64275 (17) 0.0160 (4) H6A 0.7730 0.5830 0.6947 0.019\* H6B 0.8177 0.6286 0.5917 0.019\* C7 0.71692 (14) 0.4594 (2) 0.53731 (19) 0.0176 (5) H7A 0.7124 0.5309 0.4961 0.021\* H7B 0.6715 0.4584 0.5885 0.021\* C8 0.71071 (15) 0.3540 (2) 0.46600 (18) 0.0182 (5) H8A 0.6598 0.3587 0.4239 0.022\* H8B 0.7586 0.3518 0.4186 0.022\* O1 0.89363 (9) 0.46966 (13) 0.78008 (12) 0.0141 (3) O2 0.95815 (15) 0.2500 0.84574 (18) 0.0137 (4) C1 0.97204 (13) 0.4574 (2) 0.83409 (18) 0.0155 (4) H1A 0.9841 0.5282 0.8739 0.019\* H1B 1.0171 0.4456 0.7835 0.019\* C2 0.96711 (14) 0.35433 (19) 0.90738 (17) 0.0150 (4) H2D 1.0178 0.3498 0.9499 0.018\* H2E 0.9193 0.3629 0.9543 0.018\* Cl1 0.60734 (4) 0.7500 0.70231 (5) 0.01306 (16) O17 0.62206 (10) 0.64643 (15) 0.76547 (13) 0.0230 (4) O21 0.52124 (13) 0.7500 0.6644 (2) 0.0173 (5) O22 0.66395 (14) 0.7500 0.61313 (17) 0.0179 (5) C5 0.90019 (14) 0.55317 (19) 0.69569 (17) 0.0157 (4) H5A 0.9419 0.5269 0.6450 0.019\* H5B 0.9179 0.6287 0.7233 0.019\* ------ --------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1144 .table-wrap} ----- -------------- -------------- -------------- ------------- -------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ I1 0.01152 (15) 0.02558 (16) 0.01632 (15) 0.000 −0.00231 (6) 0.000 N2 0.0115 (11) 0.0107 (11) 0.0132 (11) 0.000 0.0000 (10) 0.000 C25 0.0162 (10) 0.0170 (10) 0.0135 (9) 0.0027 (8) 0.0001 (8) 0.0020 (8) C26 0.0154 (10) 0.0123 (10) 0.0145 (10) −0.0008 (8) 0.0009 (8) −0.0015 (8) C27 0.0095 (13) 0.0148 (14) 0.0104 (13) 0.000 0.0009 (11) 0.000 C30 0.0101 (13) 0.0228 (15) 0.0108 (13) 0.000 0.0019 (11) 0.000 O4 0.0136 (7) 0.0131 (7) 0.0189 (7) 0.0020 (6) −0.0022 (6) 0.0007 (6) O5 0.0195 (11) 0.0148 (11) 0.0131 (10) 0.000 −0.0012 (9) 0.000 C6 0.0195 (10) 0.0107 (10) 0.0177 (10) 0.0017 (8) 0.0015 (9) 0.0025 (8) C7 0.0152 (10) 0.0195 (11) 0.0180 (11) 0.0027 (8) −0.0034 (9) 0.0037 (9) C8 0.0181 (11) 0.0235 (12) 0.0128 (10) 0.0002 (9) −0.0026 (9) 0.0047 (9) O1 0.0130 (7) 0.0137 (7) 0.0156 (7) −0.0019 (5) −0.0003 (6) 0.0031 (6) O2 0.0184 (10) 0.0099 (10) 0.0128 (10) 0.000 −0.0013 (9) 0.000 C1 0.0137 (10) 0.0138 (11) 0.0189 (11) −0.0020 (8) −0.0009 (8) −0.0013 (8) C2 0.0158 (10) 0.0142 (10) 0.0151 (10) 0.0002 (8) −0.0015 (8) −0.0027 (8) Cl1 0.0118 (3) 0.0126 (3) 0.0148 (3) 0.000 0.0005 (3) 0.000 O17 0.0210 (8) 0.0224 (9) 0.0257 (9) 0.0028 (7) 0.0004 (7) 0.0111 (7) O21 0.0116 (11) 0.0177 (12) 0.0225 (13) 0.000 −0.0016 (8) 0.000 O22 0.0154 (11) 0.0215 (11) 0.0169 (11) 0.000 0.0053 (9) 0.000 C5 0.0188 (10) 0.0120 (10) 0.0163 (10) −0.0030 (8) 0.0027 (8) 0.0021 (8) ----- -------------- -------------- -------------- ------------- -------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1524 .table-wrap} -------------------- ------------- -------------------- ------------- I1---C30 2.102 (3) C7---H7A 0.9700 N2---C27 1.467 (4) C7---H7B 0.9702 N2---H2A 0.9002 C8---H8A 0.9700 N2---H2C 0.9006 C8---H8B 0.9700 C25---C26 1.389 (3) O1---C1 1.428 (3) C25---C30 1.390 (3) O1---C5 1.435 (2) C25---H25A 0.9599 O2---C2 1.429 (2) C26---C27 1.387 (3) O2---C2^ii^ 1.429 (2) C26---H26A 0.9601 C1---C2 1.499 (3) C27---C26^i^ 1.387 (3) C1---H1A 0.9699 C30---C25^i^ 1.390 (3) C1---H1B 0.9700 O4---C7 1.433 (3) C2---H2D 0.9701 O4---C6 1.443 (3) C2---H2E 0.9701 O5---C8^ii^ 1.433 (3) Cl1---O22 1.444 (2) O5---C8 1.433 (3) Cl1---O17^i^ 1.4445 (16) C6---C5 1.501 (3) Cl1---O17 1.4445 (16) C6---H6A 0.9700 Cl1---O21 1.449 (2) C6---H6B 0.9701 C5---H5A 0.9701 C7---C8 1.506 (3) C5---H5B 0.9700 C27---N2---H2A 107.4 C7---C8---H8A 110.0 C27---N2---H2C 109.7 O5---C8---H8B 109.9 H2A---N2---H2C 110.8 C7---C8---H8B 109.9 C26---C25---C30 119.5 (2) H8A---C8---H8B 108.3 C26---C25---H25A 120.4 C1---O1---C5 111.03 (16) C30---C25---H25A 120.1 C2---O2---C2^ii^ 112.5 (2) C27---C26---C25 119.5 (2) O1---C1---C2 109.15 (17) C27---C26---H26A 120.0 O1---C1---H1A 109.9 C25---C26---H26A 120.5 C2---C1---H1A 109.8 C26^i^---C27---C26 121.1 (3) O1---C1---H1B 109.9 C26^i^---C27---N2 119.44 (13) C2---C1---H1B 109.8 C26---C27---N2 119.44 (14) H1A---C1---H1B 108.3 C25---C30---C25^i^ 120.9 (3) O2---C2---C1 108.51 (18) C25---C30---I1 119.56 (14) O2---C2---H2D 110.0 C25^i^---C30---I1 119.56 (14) C1---C2---H2D 110.0 C7---O4---C6 112.42 (16) O2---C2---H2E 110.0 C8^ii^---O5---C8 111.4 (2) C1---C2---H2E 110.0 O4---C6---C5 108.56 (17) H2D---C2---H2E 108.4 O4---C6---H6A 110.0 O22---Cl1---O17^i^ 109.46 (9) C5---C6---H6A 110.0 O22---Cl1---O17 109.46 (9) O4---C6---H6B 110.0 O17^i^---Cl1---O17 109.47 (15) C5---C6---H6B 110.0 O22---Cl1---O21 109.14 (14) H6A---C6---H6B 108.4 O17^i^---Cl1---O21 109.65 (9) O4---C7---C8 108.52 (18) O17---Cl1---O21 109.65 (9) O4---C7---H7A 110.0 O1---C5---C6 109.19 (17) C8---C7---H7A 109.9 O1---C5---H5A 109.8 O4---C7---H7B 110.0 C6---C5---H5A 109.9 C8---C7---H7B 110.0 O1---C5---H5B 109.9 H7A---C7---H7B 108.4 C6---C5---H5B 109.8 O5---C8---C7 108.78 (18) H5A---C5---H5B 108.3 O5---C8---H8A 109.9 -------------------- ------------- -------------------- ------------- ::: Symmetry codes: (i) *x*, −*y*+3/2, *z*; (ii) *x*, −*y*+1/2, *z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2054 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H2A···O4^iii^ 0.90 1.96 2.861 (2) 176 N2---H2C···O2^iii^ 0.90 1.95 2.854 (3) 178 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (iii) −*x*+3/2, −*y*+1, *z*−1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- N2---H2*A*⋯O4^i^ 0.90 1.96 2.861 (2) 176 N2---H2*C*⋯O2^i^ 0.90 1.95 2.854 (3) 178 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.048129
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052035/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o596", "authors": [ { "first": "Yi", "last": "Zhang" }, { "first": "Min-Min", "last": "Zhao" } ] }
PMC3052036
Related literature {#sec1} ================== For the synthesis of chalcones, see: Loh *et al.* (2010[@bb5]). For a related structure, see: Gao & Ng (2006[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~11~H~10~O~3~*M* *~r~* = 190.19Monoclinic,*a* = 5.3469 (3) Å*b* = 16.4849 (8) Å*c* = 10.5475 (6) Åβ = 99.183 (5)°*V* = 917.77 (9) Å^3^*Z* = 4Cu *K*α radiationμ = 0.83 mm^−1^*T* = 293 K0.18 × 0.11 × 0.09 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur Ruby Gemini diffractometerAbsorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009[@bb6]) *T* ~min~ = 0.950, *T* ~max~ = 1.0005375 measured reflections1737 independent reflections1121 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.029 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.036*wR*(*F* ^2^) = 0.094*S* = 0.921737 reflections167 parametersAll H-atom parameters refinedΔρ~max~ = 0.12 e Å^−3^Δρ~min~ = −0.15 e Å^−3^ {#d5e445} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009[@bb6]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994[@bb1]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb2]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb3]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004077/ng5110sup1.cif](http://dx.doi.org/10.1107/S1600536811004077/ng5110sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004077/ng5110Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004077/ng5110Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ng5110&file=ng5110sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ng5110sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ng5110&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NG5110](http://scripts.iucr.org/cgi-bin/sendsup?ng5110)). VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal). Financial support was provided by the Agencia Española de Cooperación Inter­nacional y Desarrollo (AECID), FEDER funding and the Spanish MICINN (MAT2006--01997, MAT2010--15095 and the Factoría de Cristalización Consolider Ingenio 2010). Comment ======= Chalcones and its heterocyclic analogs have been used as intermediates in organic synthesis and exhibit diverse biological activities such as antimicrobial and cytotoxic agents. From a chemistry point of view, an important feature of chalcones and their heteroanalogs is the ability to act as activated unsaturated systems in conjugated addition reactions of carbanions. In continuation with our interest in the synthesis of chalcones (Loh *et al.*, 2010) herein we report the structure of the title compound (I). In the title compound (I) the spatial arrangement of the keto group C(10)═ O(3) and the olefinic double bond C(8)═C(9) with respect to the single bond C9---C10 is *trans*, as indicated the C(8)---C(9)---C(10)---O(3) torsion angle value(-176.10 (18)°). The C(8)═C(9) (1.325 (2))Å), C(9)---C(10) (1.459 (2) Å) and C10═O3 (1.225 (2) Å) distances values are similar of the structures previously reported (Gao and Ng, 2006). Plane A is refered to C(8)/C(9)/C(10)/O(3) atoms (maximum desviation C(9) 0.0229 (17) Å). The dihedral angle between C(2)/C(7) benzene ring (maximum desviation C(4) -0.0040 (18) Å) and *plane A* is 7.25 (10)°. In benzodioxole ring C(1) is displaced from mean plane by 0.1351 (22) Å, forming a flattened envelope conformation with C(1) as the flap atom. The packing in the crystal structure is dominated by molecular chains made of dimers connected by C---H--O weak hydrogen bonds and extended along *bc* plane. Insert scheme 1. The asymmetric unit consists of a single molecule (I), shown in Figure 1. Experimental {#experimental} ============ A mixture of acetone (3.0 g 0.005*M*) and benzo\[*d*\]\[1,3\]dioxole-5-carbaldehyde (1.5 g 0.01*M*) and a catalytic amount of KOH in distilled ethanol was stirred for about 12 h, the resulting mixture was concentrated to remove ethanol then poured on to ice and neutralized with dill acetic acid. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of ethyl acetate and petroleum ether. Recrystallized from acetone; Yield: 49% and m.pt: 412--414 K. Refinement {#refinement} ========== At the end of the refinement the highest peak in the electron density was 0.124 e Å ^-3^, while the deepest hole was -0.154 e Å ^-3^. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o583-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram viewed parallel to the bc plane. Hydrogen bonds are indicated by dashed lines. ::: ![](e-67-0o583-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e145 .table-wrap} ------------------------- --------------------------------------- C~11~H~10~O~3~ *F*(000) = 400 *M~r~* = 190.19 *D*~x~ = 1.376 Mg m^−3^ Monoclinic, *P*2~1~/*c* Melting point: 413 K Hall symbol: -P 2ybc Cu *K*α radiation, λ = 1.54184 Å *a* = 5.3469 (3) Å Cell parameters from 1941 reflections *b* = 16.4849 (8) Å θ = 4.2--70.6° *c* = 10.5475 (6) Å µ = 0.83 mm^−1^ β = 99.183 (5)° *T* = 293 K *V* = 917.77 (9) Å^3^ Prismatic, yellow *Z* = 4 0.18 × 0.11 × 0.09 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e273 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Xcalibur Ruby Gemini diffractometer 1737 independent reflections Radiation source: fine-focus sealed tube 1121 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.029 Detector resolution: 10.2673 pixels mm^-1^ θ~max~ = 70.5°, θ~min~ = 5.0° ω scans *h* = −5→6 Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) *k* = −14→19 *T*~min~ = 0.950, *T*~max~ = 1.000 *l* = −12→11 5375 measured reflections ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e393 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.036 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.094 All H-atom parameters refined *S* = 0.92 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0547*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1737 reflections (Δ/σ)~max~ \< 0.001 167 parameters Δρ~max~ = 0.12 e Å^−3^ 0 restraints Δρ~min~ = −0.15 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e547 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e646 .table-wrap} ------ ------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O2 0.5552 (2) 0.23540 (7) −0.17522 (12) 0.0686 (3) O1 0.5790 (2) 0.09846 (7) −0.13128 (11) 0.0669 (4) C2 0.4130 (3) 0.13463 (9) −0.06159 (15) 0.0528 (4) C6 0.1246 (3) 0.14906 (9) 0.08521 (14) 0.0528 (4) C5 0.1132 (3) 0.23186 (10) 0.05728 (16) 0.0597 (4) C7 0.2809 (3) 0.09884 (10) 0.02303 (16) 0.0556 (4) C3 0.3994 (3) 0.21645 (9) −0.08768 (15) 0.0557 (4) C8 −0.0220 (3) 0.11602 (10) 0.17895 (16) 0.0563 (4) C4 0.2514 (3) 0.26731 (10) −0.02911 (17) 0.0627 (4) C9 −0.0146 (3) 0.04080 (10) 0.22361 (17) 0.0591 (4) O3 −0.1186 (3) −0.06111 (8) 0.35856 (14) 0.0857 (4) C10 −0.1536 (3) 0.00895 (11) 0.32109 (16) 0.0632 (4) C11 −0.3362 (5) 0.06204 (16) 0.3750 (3) 0.0802 (6) C1 0.6491 (4) 0.16001 (11) −0.2141 (2) 0.0683 (5) H8 −0.129 (3) 0.1522 (10) 0.2107 (17) 0.065 (5)\* H7 0.295 (3) 0.0424 (10) 0.0405 (15) 0.058 (4)\* H4 0.242 (3) 0.3245 (11) −0.0461 (17) 0.074 (5)\* H9 0.085 (3) 0.0018 (11) 0.1929 (15) 0.069 (5)\* H5 0.007 (3) 0.2651 (10) 0.0987 (15) 0.061 (4)\* H1A 0.567 (3) 0.1472 (11) −0.304 (2) 0.079 (6)\* H1B 0.839 (4) 0.1638 (11) −0.2067 (17) 0.078 (5)\* H11A −0.415 (6) 0.0290 (19) 0.423 (3) 0.156 (12)\* H11C −0.247 (5) 0.1005 (18) 0.433 (3) 0.148 (12)\* H11B −0.442 (6) 0.0918 (19) 0.316 (3) 0.147 (12)\* ------ ------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1010 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O2 0.0755 (7) 0.0532 (7) 0.0818 (8) 0.0007 (5) 0.0272 (6) 0.0100 (6) O1 0.0752 (8) 0.0532 (7) 0.0789 (8) 0.0086 (5) 0.0323 (6) 0.0055 (6) C2 0.0533 (8) 0.0466 (8) 0.0587 (9) 0.0033 (7) 0.0092 (7) −0.0001 (7) C6 0.0540 (8) 0.0482 (9) 0.0560 (9) 0.0025 (7) 0.0082 (7) −0.0004 (7) C5 0.0658 (10) 0.0485 (9) 0.0663 (10) 0.0081 (8) 0.0148 (8) −0.0030 (8) C7 0.0602 (9) 0.0430 (9) 0.0643 (10) 0.0042 (7) 0.0121 (7) 0.0024 (8) C3 0.0569 (9) 0.0497 (9) 0.0605 (10) −0.0023 (7) 0.0090 (7) 0.0046 (7) C8 0.0565 (9) 0.0530 (10) 0.0594 (9) 0.0041 (7) 0.0094 (7) −0.0033 (8) C4 0.0719 (10) 0.0427 (9) 0.0745 (11) 0.0031 (8) 0.0144 (8) 0.0047 (8) C9 0.0610 (9) 0.0497 (10) 0.0684 (10) 0.0019 (7) 0.0153 (8) −0.0020 (8) O3 0.1042 (10) 0.0586 (8) 0.0963 (10) −0.0024 (7) 0.0216 (8) 0.0171 (7) C10 0.0642 (10) 0.0564 (10) 0.0673 (10) −0.0067 (8) 0.0048 (8) 0.0047 (8) C11 0.0771 (13) 0.0829 (15) 0.0875 (16) 0.0063 (12) 0.0340 (12) 0.0146 (14) C1 0.0753 (12) 0.0575 (10) 0.0766 (13) 0.0014 (9) 0.0260 (10) 0.0071 (9) ----- ------------- ------------- ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1282 .table-wrap} ------------------- -------------- --------------------- -------------- O2---C3 1.3746 (19) C8---C9 1.325 (2) O2---C1 1.425 (2) C8---H8 0.926 (18) O1---C2 1.3755 (18) C4---H4 0.960 (18) O1---C1 1.428 (2) C9---C10 1.459 (2) C2---C7 1.358 (2) C9---H9 0.927 (18) C2---C3 1.376 (2) O3---C10 1.225 (2) C6---C5 1.396 (2) C10---C11 1.490 (3) C6---C7 1.410 (2) C11---H11A 0.90 (3) C6---C8 1.462 (2) C11---H11C 0.95 (3) C5---C4 1.390 (2) C11---H11B 0.92 (3) C5---H5 0.944 (17) C1---H1A 1.005 (19) C7---H7 0.948 (17) C1---H1B 1.009 (19) C3---C4 1.366 (2) C3---O2---C1 105.93 (12) C3---C4---H4 122.5 (11) C2---O1---C1 105.90 (12) C5---C4---H4 121.1 (11) C7---C2---O1 127.63 (14) C8---C9---C10 126.69 (16) C7---C2---C3 122.73 (14) C8---C9---H9 120.7 (11) O1---C2---C3 109.63 (13) C10---C9---H9 112.6 (11) C5---C6---C7 119.01 (14) O3---C10---C9 119.83 (17) C5---C6---C8 119.81 (14) O3---C10---C11 120.43 (17) C7---C6---C8 121.17 (14) C9---C10---C11 119.74 (17) C4---C5---C6 122.66 (16) C10---C11---H11A 105 (2) C4---C5---H5 118.7 (10) C10---C11---H11C 110.3 (18) C6---C5---H5 118.6 (10) H11A---C11---H11C 106 (2) C2---C7---C6 117.36 (15) C10---C11---H11B 115.3 (19) C2---C7---H7 121.4 (9) H11A---C11---H11B 115 (3) C6---C7---H7 121.3 (9) H11C---C11---H11B 106 (3) C4---C3---O2 128.40 (14) O2---C1---O1 107.73 (14) C4---C3---C2 121.79 (15) O2---C1---H1A 109.7 (11) O2---C3---C2 109.80 (13) O1---C1---H1A 108.3 (11) C9---C8---C6 126.90 (16) O2---C1---H1B 108.7 (10) C9---C8---H8 117.3 (11) O1---C1---H1B 110.9 (10) C6---C8---H8 115.8 (11) H1A---C1---H1B 111.5 (15) C3---C4---C5 116.44 (16) C1---O1---C2---C7 174.79 (18) C7---C2---C3---O2 179.18 (15) C1---O1---C2---C3 −6.33 (18) O1---C2---C3---O2 0.24 (18) C7---C6---C5---C4 −0.4 (3) C5---C6---C8---C9 −173.77 (17) C8---C6---C5---C4 178.81 (16) C7---C6---C8---C9 5.4 (3) O1---C2---C7---C6 178.83 (15) O2---C3---C4---C5 −179.36 (16) C3---C2---C7---C6 0.1 (2) C2---C3---C4---C5 −0.6 (3) C5---C6---C7---C2 0.0 (2) C6---C5---C4---C3 0.7 (3) C8---C6---C7---C2 −179.22 (15) C6---C8---C9---C10 177.30 (16) C1---O2---C3---C4 −175.19 (18) C8---C9---C10---O3 −176.10 (17) C1---O2---C3---C2 5.96 (19) C8---C9---C10---C11 3.5 (3) C7---C2---C3---C4 0.3 (3) C3---O2---C1---O1 −9.8 (2) O1---C2---C3---C4 −178.69 (15) C2---O1---C1---O2 9.91 (19) ------------------- -------------- --------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1742 .table-wrap} ------------------ ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C7---H7···O1^i^ 0.95 (2) 2.56 (2) 3.489 (2) 166 (1) C9---H9···O1^i^ 0.93 (2) 2.60 (2) 3.517 (2) 171 (1) C8---H8···O2^ii^ 0.93 (2) 2.90 (2) 3.819 (2) 177 (1) ------------------ ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*, −*z*; (ii) *x*−1, −*y*+1/2, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- ---------- ---------- ----------- ------------- C7---H7⋯O1^i^ 0.95 (2) 2.56 (2) 3.489 (2) 166 (1) C9---H9⋯O1^i^ 0.93 (2) 2.60 (2) 3.517 (2) 171 (1) C8---H8⋯O2^ii^ 0.93 (2) 2.90 (2) 3.819 (2) 177 (1) Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.053893
2011-2-09
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052036/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 9; 67(Pt 3):o583", "authors": [ { "first": "S.", "last": "Sarveswari" }, { "first": "V.", "last": "Vijayakumar" }, { "first": "Priya Susan", "last": "Mathew" }, { "first": "Rafael", "last": "Mendoza-Meroño" }, { "first": "Santiago", "last": "García-Granda" } ] }
PMC3052037
Related literature {#sec1} ================== For background to the biological properties of aryl-substituted pyrazoles, see: Abdel-Aziz *et al.* (2010[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~30~H~24~N~4~O~2~S*M* *~r~* = 504.59Monoclinic,*a* = 6.2829 (2) Å*b* = 24.5162 (7) Å*c* = 15.9180 (5) Åβ = 91.925 (3)°*V* = 2450.51 (13) Å^3^*Z* = 4Mo *K*α radiationμ = 0.17 mm^−1^*T* = 100 K0.20 × 0.02 × 0.02 mm ### Data collection {#sec2.1.2} Agilent SuperNova Dual diffractometer with an Atlas detectorAbsorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010[@bb2]) *T* ~min~ = 0.967, *T* ~max~ = 0.99716288 measured reflections5524 independent reflections3897 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.054 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.062*wR*(*F* ^2^) = 0.158*S* = 1.025524 reflections422 parameters139 restraintsH-atom parameters constrainedΔρ~max~ = 0.38 e Å^−3^Δρ~min~ = −0.40 e Å^−3^ {#d5e412} Data collection: *CrysAlis PRO* (Agilent, 2010[@bb2]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *X-SEED* (Barbour, 2001[@bb3]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb5]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005940/xu5163sup1.cif](http://dx.doi.org/10.1107/S1600536811005940/xu5163sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005940/xu5163Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005940/xu5163Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5163&file=xu5163sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5163sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5163&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5163](http://scripts.iucr.org/cgi-bin/sendsup?xu5163)). We thank King Saud University and the University of Malaya for supporting this study. Comment ======= We have reported the antitumor activity of aryl-pyrazoles against CaCo-2 and HEP-2 cell lines (Abdel-Aziz *et al.*, 2010). These compounds were synthesized by a cycloaddition under microwave conditions. The study is now extended to the synthesis of a pyrazole having a dihydroquinoxaline substituent (Scheme I). The dihydroquinoxalinyl subsitutent of the pyrazolyl ring of C~30~H~24~N~4~O~2~S adopts three orientations. The orientations refined to a 0.358 (2): 0.318 (3): 0.324 (3) ratio. The mean planes of the atoms passing through the non-hydrogen atoms of the disorder components are aligned at 4.0 (3), 11.8 (4) and 41.7 (2)° with respect to the five-membered ring (Fig. 1). Experimental {#experimental} ============ The acetyl portion of 1-\[5-phenyl-4-(phenylfulonyl)-1-*p*-tolyl-1*H*-pyrazol-3-yl\]ethane was first converted to a bromoacetyl unit by bromination at 363--373 K to yield 2-bromo-1-\[5-phenyl-4-(phenylsulfonyl)-1-*p*-tolyl-1*H*-pyrazol-3-yl)ethanone. The compound (10 mmol) was heated with *o*-phenylenediamine (10 mmol) in ethanol to yield the title compound. Crystals were obtained upon recrystallization from ethanol. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions \[C---H 0.95 to 0.98 Å, *U*~iso~(H) 1.2 to 1.5*U*~eq~(C)\] and were included in the refinement in the riding model approximation. The dihydroquinoxalinyl fused-ring is disordered over three orientations in a 0.358 (2): 0.318 (3): 0.324 (3) ratio. The first two disorder components are close to each other, so that the temperature factors of the singly-primed atoms were set to those of the unprimed atoms. The anisotropic temperature factors of the atoms of the three disorder components were restrained to be nearly isotropic, with the restraint being much tighter for the C1/C1\'/C1\" set of atoms. The aromatic rings were refined as rigid hexagons of 1.39 Å sides. The carbon--nitrogen~tertiary~ distances were restrained to 1.35±0.01 Å and the carbon--nitrogen~secondary~ to 1.45±0.01 Å. The carbon--carbon single-bond distances were restrained to 1.50±0.01 Å. The amino H-atoms were treated in the riding mode \[N---H 0.88 Å, *U*~iso~(H) 1.2*U*~eq~(N)\]. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of C30H24N4O2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown. ::: ![](e-67-0o695-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e158 .table-wrap} ------------------------- --------------------------------------- C~30~H~24~N~4~O~2~S *F*(000) = 1056 *M~r~* = 504.59 *D*~x~ = 1.368 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 4169 reflections *a* = 6.2829 (2) Å θ = 2.5--29.3° *b* = 24.5162 (7) Å µ = 0.17 mm^−1^ *c* = 15.9180 (5) Å *T* = 100 K β = 91.925 (3)° Prism, yellow *V* = 2450.51 (13) Å^3^ 0.20 × 0.02 × 0.02 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e289 .table-wrap} ------------------------------------------------------------------- -------------------------------------- Agilent SuperNova Dual diffractometer with an Atlas detector 5524 independent reflections Radiation source: SuperNova (Mo) X-ray Source 3897 reflections with *I* \> 2σ(*I*) Mirror *R*~int~ = 0.054 Detector resolution: 10.4041 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 2.6° ω scans *h* = −8→8 Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) *k* = −31→31 *T*~min~ = 0.967, *T*~max~ = 0.997 *l* = −20→20 16288 measured reflections ------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e409 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.062 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.158 H-atom parameters constrained *S* = 1.02 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0634*P*)^2^ + 1.9372*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5524 reflections (Δ/σ)~max~ = 0.001 422 parameters Δρ~max~ = 0.38 e Å^−3^ 139 restraints Δρ~min~ = −0.40 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e568 .table-wrap} ------- -------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) S1 0.81495 (10) 0.59167 (2) 0.63024 (4) 0.02549 (18) O1 1.0308 (3) 0.59391 (8) 0.66188 (15) 0.0434 (6) O2 0.7677 (3) 0.62026 (7) 0.55309 (12) 0.0317 (5) N1 0.804 (2) 0.5182 (4) 0.8067 (8) 0.034 (3) 0.358 (2) N2 0.6304 (13) 0.5044 (4) 0.9751 (5) 0.0518 (19) 0.358 (2) H2 0.5832 0.5024 1.0264 0.062\* 0.358 (2) N1\' 0.854 (3) 0.5300 (7) 0.8110 (12) 0.034 (3) 0.318 (3) N2\' 0.7437 (15) 0.5043 (5) 0.9645 (7) 0.0518 (19) 0.318 (3) H2\' 0.6985 0.4916 1.0125 0.062\* 0.318 (3) N1\" 0.8972 (12) 0.5346 (4) 0.7959 (8) 0.018 (2) 0.324 (3) N2\" 0.6519 (13) 0.4503 (3) 0.8722 (6) 0.058 (3) 0.324 (3) H2\" 0.5796 0.4244 0.8967 0.070\* 0.324 (3) N3 0.4322 (4) 0.62374 (9) 0.81706 (14) 0.0300 (5) N4 0.3835 (3) 0.66333 (8) 0.76021 (13) 0.0224 (5) C1 0.696 (2) 0.5572 (4) 0.8435 (7) 0.027 (2) 0.358 (2) C2 0.5687 (19) 0.5421 (6) 0.9157 (8) 0.049 (3) 0.358 (2) H2A 0.5418 0.5764 0.9465 0.059\* 0.358 (2) H2B 0.4290 0.5298 0.8922 0.059\* 0.358 (2) C3 0.7815 (8) 0.4692 (2) 0.9407 (3) 0.0328 (14) 0.358 (2) C4 0.8492 (9) 0.4250 (2) 0.9894 (3) 0.0443 (16) 0.358 (2) H4A 0.7923 0.4194 1.0433 0.053\* 0.358 (2) C5 1.0001 (10) 0.3892 (2) 0.9594 (3) 0.0458 (17) 0.358 (2) H5 1.0464 0.3590 0.9927 0.055\* 0.358 (2) C6 1.0834 (10) 0.3974 (2) 0.8806 (4) 0.054 (2) 0.358 (2) H6 1.1865 0.3729 0.8600 0.065\* 0.358 (2) C7 1.0157 (10) 0.4416 (2) 0.8318 (3) 0.0432 (18) 0.358 (2) H7 1.0726 0.4472 0.7780 0.052\* 0.358 (2) C8 0.8647 (9) 0.47745 (19) 0.8619 (3) 0.0314 (16) 0.358 (2) C1\' 0.659 (2) 0.5469 (5) 0.8348 (9) 0.027 (2) 0.318 (3) C2\' 0.634 (2) 0.5474 (6) 0.9271 (9) 0.049 (3) 0.318 (3) H2\'A 0.6885 0.5822 0.9506 0.059\* 0.318 (3) H2\'B 0.4809 0.5446 0.9396 0.059\* 0.318 (3) C3\' 0.9213 (9) 0.4799 (2) 0.9307 (4) 0.0328 (14) 0.318 (3) C4\' 1.0383 (11) 0.4432 (3) 0.9802 (3) 0.0443 (16) 0.318 (3) H4\' 0.9969 0.4356 1.0358 0.053\* 0.318 (3) C5\' 1.2157 (10) 0.4176 (3) 0.9483 (4) 0.0458 (17) 0.318 (3) H5\' 1.2957 0.3925 0.9821 0.055\* 0.318 (3) C6\' 1.2763 (11) 0.4288 (3) 0.8669 (4) 0.054 (2) 0.318 (3) H6\' 1.3976 0.4113 0.8451 0.065\* 0.318 (3) C7\' 1.1594 (14) 0.4655 (4) 0.8174 (3) 0.0432 (18) 0.318 (3) H7\' 1.2007 0.4731 0.7617 0.052\* 0.318 (3) C8\' 0.9819 (12) 0.4911 (3) 0.8493 (4) 0.0314 (16) 0.318 (3) C1\" 0.6918 (14) 0.5421 (4) 0.8112 (7) 0.030 (3) 0.324 (3) C2\" 0.5589 (15) 0.4998 (3) 0.8485 (6) 0.042 (2) 0.324 (3) H2\"A 0.4948 0.5157 0.8989 0.050\* 0.324 (3) H2\"B 0.4406 0.4917 0.8078 0.050\* 0.324 (3) C3\" 0.8676 (10) 0.4445 (3) 0.8547 (5) 0.053 (3) 0.324 (3) C4\" 0.9628 (12) 0.3945 (3) 0.8730 (6) 0.065 (4) 0.324 (3) H4\" 0.8816 0.3659 0.8962 0.078\* 0.324 (3) C5\" 1.1768 (13) 0.3865 (3) 0.8573 (6) 0.075 (4) 0.324 (3) H5\" 1.2419 0.3523 0.8698 0.089\* 0.324 (3) C6\" 1.2956 (10) 0.4284 (3) 0.8234 (6) 0.065 (4) 0.324 (3) H6\" 1.4419 0.4229 0.8126 0.078\* 0.324 (3) C7\" 1.2003 (12) 0.4783 (3) 0.8051 (5) 0.051 (3) 0.324 (3) H7\" 1.2815 0.5070 0.7819 0.061\* 0.324 (3) C8\" 0.9863 (12) 0.4864 (2) 0.8208 (5) 0.044 (3) 0.324 (3) C9 0.5873 (4) 0.59504 (10) 0.78359 (17) 0.0275 (6) C10 0.6366 (4) 0.61620 (9) 0.70379 (16) 0.0213 (5) C11 0.5021 (4) 0.66014 (9) 0.69050 (15) 0.0193 (5) C12 0.7410 (4) 0.52265 (10) 0.61533 (16) 0.0222 (5) C13 0.9002 (4) 0.48606 (10) 0.59728 (18) 0.0306 (6) H13 1.0449 0.4974 0.5986 0.037\* C14 0.8469 (4) 0.43271 (11) 0.57721 (18) 0.0313 (6) H14 0.9554 0.4075 0.5637 0.038\* C15 0.6385 (4) 0.41603 (10) 0.57666 (17) 0.0279 (6) H15 0.6029 0.3793 0.5633 0.034\* C16 0.4805 (4) 0.45288 (10) 0.5956 (2) 0.0336 (7) H16 0.3364 0.4412 0.5960 0.040\* C17 0.5304 (4) 0.50657 (10) 0.61392 (18) 0.0299 (6) H17 0.4213 0.5321 0.6254 0.036\* C18 0.4762 (4) 0.69961 (9) 0.62105 (16) 0.0230 (5) C19 0.2844 (4) 0.70325 (11) 0.57537 (16) 0.0279 (6) H19 0.1721 0.6785 0.5860 0.033\* C20 0.2575 (5) 0.74308 (13) 0.51430 (19) 0.0420 (8) H20 0.1263 0.7456 0.4831 0.050\* C21 0.4199 (7) 0.77902 (13) 0.4985 (2) 0.0522 (9) H21 0.3998 0.8068 0.4575 0.063\* C22 0.6139 (6) 0.77443 (13) 0.5431 (2) 0.0519 (9) H22 0.7273 0.7986 0.5312 0.062\* C23 0.6420 (5) 0.73508 (11) 0.60416 (18) 0.0352 (7) H23 0.7741 0.7322 0.6347 0.042\* C24 0.2196 (4) 0.70160 (11) 0.77998 (16) 0.0273 (6) C25 0.2472 (4) 0.75683 (11) 0.76539 (19) 0.0338 (6) H25 0.3723 0.7698 0.7401 0.041\* C26 0.0889 (5) 0.79293 (13) 0.7884 (2) 0.0409 (7) H26 0.1070 0.8309 0.7790 0.049\* C27 −0.0956 (4) 0.77443 (13) 0.8251 (2) 0.0406 (8) C28 −0.1194 (4) 0.71885 (13) 0.83758 (19) 0.0383 (7) H28 −0.2454 0.7057 0.8620 0.046\* C29 0.0362 (4) 0.68207 (12) 0.81537 (17) 0.0310 (6) H29 0.0174 0.6441 0.8242 0.037\* C30 −0.2606 (5) 0.81477 (15) 0.8538 (2) 0.0539 (10) H30A −0.3979 0.7962 0.8585 0.081\* H30B −0.2750 0.8445 0.8129 0.081\* H30C −0.2157 0.8297 0.9087 0.081\* ------- -------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1818 .table-wrap} ------ ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0197 (3) 0.0221 (3) 0.0349 (4) −0.0019 (2) 0.0043 (3) −0.0087 (3) O1 0.0207 (9) 0.0356 (11) 0.0736 (16) −0.0014 (8) −0.0025 (10) −0.0245 (11) O2 0.0408 (11) 0.0249 (9) 0.0305 (10) −0.0031 (8) 0.0153 (9) −0.0025 (8) N1 0.061 (6) 0.015 (5) 0.025 (3) 0.003 (4) −0.019 (4) −0.008 (3) N2 0.062 (5) 0.062 (3) 0.033 (3) 0.014 (5) 0.013 (4) 0.021 (3) N1\' 0.061 (6) 0.015 (5) 0.025 (3) 0.003 (4) −0.019 (4) −0.008 (3) N2\' 0.062 (5) 0.062 (3) 0.033 (3) 0.014 (5) 0.013 (4) 0.021 (3) N1\" 0.017 (3) 0.021 (4) 0.018 (4) −0.001 (3) 0.011 (3) 0.007 (3) N2\" 0.081 (6) 0.034 (4) 0.062 (6) 0.000 (4) 0.027 (5) 0.017 (4) N3 0.0298 (12) 0.0392 (13) 0.0211 (11) −0.0052 (10) 0.0004 (9) 0.0040 (10) N4 0.0209 (10) 0.0268 (10) 0.0193 (10) −0.0008 (8) 0.0009 (8) −0.0030 (9) C1 0.044 (4) 0.017 (4) 0.021 (3) −0.011 (3) −0.014 (3) −0.003 (3) C2 0.068 (7) 0.044 (4) 0.033 (4) −0.022 (4) −0.033 (4) 0.010 (3) C3 0.041 (3) 0.031 (3) 0.026 (3) 0.008 (3) 0.004 (3) 0.007 (2) C4 0.052 (4) 0.041 (3) 0.040 (3) 0.010 (3) 0.003 (3) 0.007 (3) C5 0.054 (4) 0.037 (3) 0.045 (4) 0.013 (3) −0.006 (3) 0.013 (3) C6 0.055 (5) 0.048 (4) 0.058 (5) 0.028 (4) −0.005 (4) 0.006 (4) C7 0.049 (4) 0.042 (4) 0.039 (4) 0.022 (3) 0.006 (4) 0.009 (3) C8 0.031 (4) 0.026 (3) 0.038 (4) 0.002 (3) −0.002 (3) 0.002 (3) C1\' 0.044 (4) 0.017 (4) 0.021 (3) −0.011 (3) −0.014 (3) −0.003 (3) C2\' 0.068 (7) 0.044 (4) 0.033 (4) −0.022 (4) −0.033 (4) 0.010 (3) C3\' 0.041 (3) 0.031 (3) 0.026 (3) 0.008 (3) 0.004 (3) 0.007 (2) C4\' 0.052 (4) 0.041 (3) 0.040 (3) 0.010 (3) 0.003 (3) 0.007 (3) C5\' 0.054 (4) 0.037 (3) 0.045 (4) 0.013 (3) −0.006 (3) 0.013 (3) C6\' 0.055 (5) 0.048 (4) 0.058 (5) 0.028 (4) −0.005 (4) 0.006 (4) C7\' 0.049 (4) 0.042 (4) 0.039 (4) 0.022 (3) 0.006 (4) 0.009 (3) C8\' 0.031 (4) 0.026 (3) 0.038 (4) 0.002 (3) −0.002 (3) 0.002 (3) C1\" 0.040 (4) 0.033 (5) 0.017 (4) 0.002 (4) 0.006 (4) 0.009 (4) C2\" 0.055 (5) 0.029 (4) 0.042 (5) 0.003 (4) 0.012 (4) 0.000 (4) C3\" 0.064 (6) 0.056 (6) 0.041 (5) 0.014 (5) 0.018 (5) 0.011 (5) C4\" 0.087 (8) 0.053 (6) 0.057 (6) 0.026 (6) 0.008 (6) 0.014 (5) C5\" 0.088 (8) 0.062 (7) 0.076 (7) 0.030 (6) 0.022 (6) 0.012 (6) C6\" 0.071 (7) 0.067 (7) 0.056 (7) 0.024 (6) −0.001 (6) 0.012 (6) C7\" 0.049 (6) 0.050 (6) 0.054 (6) 0.023 (5) 0.001 (5) 0.000 (5) C8\" 0.058 (6) 0.042 (6) 0.033 (5) 0.017 (5) 0.003 (5) 0.009 (5) C9 0.0296 (13) 0.0253 (13) 0.0274 (14) −0.0026 (11) −0.0031 (11) 0.0049 (11) C10 0.0210 (12) 0.0188 (11) 0.0240 (13) −0.0009 (9) −0.0013 (10) −0.0032 (10) C11 0.0178 (11) 0.0213 (11) 0.0186 (12) −0.0043 (9) 0.0001 (9) −0.0045 (10) C12 0.0223 (12) 0.0224 (12) 0.0220 (13) 0.0006 (10) −0.0002 (10) −0.0041 (10) C13 0.0193 (12) 0.0294 (13) 0.0431 (17) 0.0014 (10) 0.0017 (12) −0.0059 (12) C14 0.0283 (14) 0.0254 (13) 0.0406 (16) 0.0070 (11) 0.0065 (12) −0.0037 (12) C15 0.0324 (14) 0.0199 (12) 0.0317 (15) −0.0008 (10) 0.0049 (12) −0.0048 (11) C16 0.0223 (13) 0.0262 (13) 0.0528 (19) −0.0042 (11) 0.0066 (13) −0.0061 (13) C17 0.0197 (12) 0.0225 (12) 0.0477 (17) 0.0029 (10) 0.0034 (12) −0.0058 (12) C18 0.0301 (13) 0.0190 (11) 0.0200 (13) 0.0008 (10) 0.0009 (10) −0.0017 (10) C19 0.0293 (13) 0.0302 (13) 0.0241 (14) 0.0045 (11) −0.0007 (11) −0.0040 (11) C20 0.0542 (19) 0.0457 (18) 0.0258 (15) 0.0225 (16) −0.0046 (14) 0.0014 (14) C21 0.094 (3) 0.0345 (17) 0.0286 (17) 0.0108 (18) 0.0036 (18) 0.0107 (14) C22 0.083 (3) 0.0366 (17) 0.0364 (18) −0.0200 (17) 0.0049 (18) 0.0102 (15) C23 0.0440 (17) 0.0307 (14) 0.0307 (15) −0.0110 (13) −0.0007 (13) 0.0031 (12) C24 0.0213 (12) 0.0349 (14) 0.0257 (14) 0.0010 (11) −0.0010 (10) −0.0155 (12) C25 0.0258 (13) 0.0356 (15) 0.0403 (16) −0.0025 (12) 0.0038 (12) −0.0164 (13) C26 0.0339 (15) 0.0380 (16) 0.0503 (19) 0.0039 (13) −0.0052 (14) −0.0230 (15) C27 0.0241 (14) 0.0551 (19) 0.0420 (18) 0.0051 (13) −0.0048 (12) −0.0297 (15) C28 0.0223 (13) 0.060 (2) 0.0330 (16) −0.0050 (13) 0.0014 (12) −0.0234 (15) C29 0.0223 (13) 0.0443 (16) 0.0261 (14) −0.0013 (12) −0.0025 (11) −0.0129 (13) C30 0.0335 (16) 0.064 (2) 0.064 (2) 0.0130 (15) −0.0042 (16) −0.0388 (19) ------ ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2862 .table-wrap} --------------------------- ------------- ------------------------- -------------- S1---O1 1.432 (2) C1\"---C9 1.512 (8) S1---O2 1.436 (2) C2\"---H2\"A 0.9900 S1---C10 1.754 (2) C2\"---H2\"B 0.9900 S1---C12 1.769 (2) C3\"---C4\" 1.3900 N1---C1 1.322 (9) C3\"---C8\" 1.3900 N1---C8 1.375 (9) C4\"---C5\" 1.3900 N2---C2 1.370 (9) C4\"---H4\" 0.9500 N2---C3 1.408 (7) C5\"---C6\" 1.3900 N2---N2^i^ 1.856 (16) C5\"---H5\" 0.9500 N2---H2 0.8800 C6\"---C7\" 1.3900 N1\'---C1\' 1.358 (10) C6\"---H6\" 0.9500 N1\'---C8\' 1.379 (9) C7\"---C8\" 1.3900 N2\'---C2\' 1.385 (9) C7\"---H7\" 0.9500 N2\'---C3\' 1.390 (8) C9---C10 1.416 (4) N2\'---H2\' 0.8800 C10---C11 1.381 (3) N1\"---C1\" 1.335 (8) C11---C18 1.474 (3) N1\"---C8\" 1.361 (8) C12---C13 1.381 (3) N2\"---C2\" 1.392 (8) C12---C17 1.380 (3) N2\"---C3\" 1.400 (8) C13---C14 1.385 (4) N2\"---H2\" 0.8800 C13---H13 0.9500 N3---C9 1.328 (3) C14---C15 1.371 (4) N3---N4 1.355 (3) C14---H14 0.9500 N4---C11 1.359 (3) C15---C16 1.383 (4) N4---C24 1.436 (3) C15---H15 0.9500 C1---C2 1.469 (9) C16---C17 1.382 (4) C1---C9 1.480 (8) C16---H16 0.9500 C2---H2A 0.9900 C17---H17 0.9500 C2---H2B 0.9900 C18---C19 1.389 (4) C3---C4 1.3900 C18---C23 1.390 (4) C3---C8 1.3900 C19---C20 1.384 (4) C4---C5 1.3900 C19---H19 0.9500 C4---H4A 0.9500 C20---C21 1.378 (5) C5---C6 1.3900 C20---H20 0.9500 C5---H5 0.9500 C21---C22 1.394 (5) C6---C7 1.3900 C21---H21 0.9500 C6---H6 0.9500 C22---C23 1.377 (4) C7---C8 1.3900 C22---H22 0.9500 C7---H7 0.9500 C23---H23 0.9500 C1\'---C2\' 1.483 (10) C24---C29 1.385 (4) C1\'---C9 1.494 (9) C24---C25 1.386 (4) C2\'---H2\'A 0.9900 C25---C26 1.390 (4) C2\'---H2\'B 0.9900 C25---H25 0.9500 C3\'---C4\' 1.3900 C26---C27 1.391 (4) C3\'---C8\' 1.3900 C26---H26 0.9500 C4\'---C5\' 1.3900 C27---C28 1.386 (5) C4\'---H4\' 0.9500 C27---C30 1.515 (4) C5\'---C6\' 1.3900 C28---C29 1.384 (4) C5\'---H5\' 0.9500 C28---H28 0.9500 C6\'---C7\' 1.3900 C29---H29 0.9500 C6\'---H6\' 0.9500 C30---H30A 0.9800 C7\'---C8\' 1.3900 C30---H30B 0.9800 C7\'---H7\' 0.9500 C30---H30C 0.9800 C1\"---C2\" 1.470 (9) O1---S1---O2 116.63 (13) C8\"---C3\"---N2\" 122.5 (6) O1---S1---C10 111.78 (12) C5\"---C4\"---C3\" 120.0 O2---S1---C10 106.57 (11) C5\"---C4\"---H4\" 120.0 O1---S1---C12 108.98 (12) C3\"---C4\"---H4\" 120.0 O2---S1---C12 107.84 (11) C4\"---C5\"---C6\" 120.0 C10---S1---C12 104.29 (12) C4\"---C5\"---H5\" 120.0 C1---N1---C8 112.2 (10) C6\"---C5\"---H5\" 120.0 C2---N2---C3 108.9 (9) C7\"---C6\"---C5\" 120.0 C2---N2---N2^i^ 98.0 (8) C7\"---C6\"---H6\" 120.0 C3---N2---N2^i^ 135.4 (9) C5\"---C6\"---H6\" 120.0 C2---N2---H2 125.5 C8\"---C7\"---C6\" 120.0 C3---N2---H2 125.5 C8\"---C7\"---H7\" 120.0 C1\'---N1\'---C8\' 127.4 (13) C6\"---C7\"---H7\" 120.0 C2\'---N2\'---C3\' 123.8 (10) N1\"---C8\"---C7\" 117.5 (6) C2\'---N2\'---H2\' 118.1 N1\"---C8\"---C3\" 122.3 (6) C3\'---N2\'---H2\' 118.1 C7\"---C8\"---C3\" 120.0 C1\"---N1\"---C8\" 117.2 (7) N3---C9---C10 110.6 (2) C2\"---N2\"---C3\" 115.8 (7) N3---C9---C1 113.7 (6) C2\"---N2\"---H2\" 122.1 C10---C9---C1 134.2 (6) C3\"---N2\"---H2\" 122.1 N3---C9---C1\' 114.3 (7) C9---N3---N4 105.3 (2) C10---C9---C1\' 135.1 (7) N3---N4---C11 112.7 (2) N3---C9---C1\" 130.9 (4) N3---N4---C24 118.0 (2) C10---C9---C1\" 118.0 (4) C11---N4---C24 129.3 (2) C11---C10---C9 105.8 (2) N1---C1---C2 117.8 (10) C11---C10---S1 124.51 (19) N1---C1---C9 113.7 (8) C9---C10---S1 129.57 (19) C2---C1---C9 114.3 (8) N4---C11---C10 105.6 (2) N2---C2---C1 124.2 (11) N4---C11---C18 121.6 (2) N2---C2---H2A 106.3 C10---C11---C18 132.7 (2) C1---C2---H2A 106.3 C13---C12---C17 120.8 (2) N2---C2---H2B 106.3 C13---C12---S1 117.43 (19) C1---C2---H2B 106.3 C17---C12---S1 121.52 (19) H2A---C2---H2B 106.4 C12---C13---C14 119.3 (2) C4---C3---C8 120.0 C12---C13---H13 120.3 C4---C3---N2 117.2 (5) C14---C13---H13 120.3 C8---C3---N2 122.8 (5) C15---C14---C13 120.5 (2) C5---C4---C3 120.0 C15---C14---H14 119.8 C5---C4---H4A 120.0 C13---C14---H14 119.8 C3---C4---H4A 120.0 C14---C15---C16 119.7 (2) C4---C5---C6 120.0 C14---C15---H15 120.1 C4---C5---H5 120.0 C16---C15---H15 120.1 C6---C5---H5 120.0 C15---C16---C17 120.6 (2) C7---C6---C5 120.0 C15---C16---H16 119.7 C7---C6---H6 120.0 C17---C16---H16 119.7 C5---C6---H6 120.0 C12---C17---C16 119.1 (2) C6---C7---C8 120.0 C12---C17---H17 120.5 C6---C7---H7 120.0 C16---C17---H17 120.5 C8---C7---H7 120.0 C19---C18---C23 120.1 (2) N1---C8---C7 114.6 (7) C19---C18---C11 120.5 (2) N1---C8---C3 125.3 (7) C23---C18---C11 119.4 (2) C7---C8---C3 120.0 C20---C19---C18 119.8 (3) N1\'---C1\'---C2\' 113.9 (12) C20---C19---H19 120.1 N1\'---C1\'---C9 110.2 (9) C18---C19---H19 120.1 C2\'---C1\'---C9 119.7 (10) C21---C20---C19 120.4 (3) N2\'---C2\'---C1\' 110.7 (11) C21---C20---H20 119.8 N2\'---C2\'---H2\'A 109.5 C19---C20---H20 119.8 C1\'---C2\'---H2\'A 109.5 C20---C21---C22 119.8 (3) N2\'---C2\'---H2\'B 109.5 C20---C21---H21 120.1 C1\'---C2\'---H2\'B 109.5 C22---C21---H21 120.1 H2\'A---C2\'---H2\'B 108.1 C23---C22---C21 120.3 (3) C4\'---C3\'---C8\' 120.0 C23---C22---H22 119.8 C4\'---C3\'---N2\' 118.3 (6) C21---C22---H22 119.8 C8\'---C3\'---N2\' 121.7 (6) C22---C23---C18 119.7 (3) C3\'---C4\'---C5\' 120.0 C22---C23---H23 120.1 C3\'---C4\'---H4\' 120.0 C18---C23---H23 120.1 C5\'---C4\'---H4\' 120.0 C29---C24---C25 121.1 (2) C4\'---C5\'---C6\' 120.0 C29---C24---N4 118.4 (2) C4\'---C5\'---H5\' 120.0 C25---C24---N4 120.4 (2) C6\'---C5\'---H5\' 120.0 C24---C25---C26 118.9 (3) C7\'---C6\'---C5\' 120.0 C24---C25---H25 120.6 C7\'---C6\'---H6\' 120.0 C26---C25---H25 120.6 C5\'---C6\'---H6\' 120.0 C25---C26---C27 121.1 (3) C6\'---C7\'---C8\' 120.0 C25---C26---H26 119.4 C6\'---C7\'---H7\' 120.0 C27---C26---H26 119.4 C8\'---C7\'---H7\' 120.0 C28---C27---C26 118.4 (3) N1\'---C8\'---C7\' 128.0 (9) C28---C27---C30 121.4 (3) N1\'---C8\'---C3\' 112.0 (9) C26---C27---C30 120.1 (3) C7\'---C8\'---C3\' 120.0 C29---C28---C27 121.6 (3) N1\"---C1\"---C2\" 122.8 (7) C29---C28---H28 119.2 N1\"---C1\"---C9 118.6 (7) C27---C28---H28 119.2 C2\"---C1\"---C9 118.5 (7) C24---C29---C28 118.9 (3) N2\"---C2\"---C1\" 119.1 (8) C24---C29---H29 120.6 N2\"---C2\"---H2\"A 107.5 C28---C29---H29 120.6 C1\"---C2\"---H2\"A 107.5 C27---C30---H30A 109.5 N2\"---C2\"---H2\"B 107.5 C27---C30---H30B 109.5 C1\"---C2\"---H2\"B 107.5 H30A---C30---H30B 109.5 H2\"A---C2\"---H2\"B 107.0 C27---C30---H30C 109.5 C4\"---C3\"---C8\" 120.0 H30A---C30---H30C 109.5 C4\"---C3\"---N2\" 117.5 (6) H30B---C30---H30C 109.5 C9---N3---N4---C11 0.9 (3) C2\'---C1\'---C9---N3 −26.6 (14) C9---N3---N4---C24 −179.4 (2) N1\'---C1\'---C9---C10 23.1 (17) C8---N1---C1---C2 −29.4 (15) C2\'---C1\'---C9---C10 158.1 (8) C8---N1---C1---C9 −167.0 (9) N1\'---C1\'---C9---C1 −71 (4) C3---N2---C2---C1 −22.3 (15) C2\'---C1\'---C9---C1 64 (4) N2^i^---N2---C2---C1 −166.2 (11) N1\'---C1\'---C9---C1\" 32 (2) N1---C1---C2---N2 37.2 (17) C2\'---C1\'---C9---C1\" 167 (4) C9---C1---C2---N2 174.5 (10) N1\"---C1\"---C9---N3 −147.6 (10) C2---N2---C3---C4 −174.5 (7) C2\"---C1\"---C9---N3 36.5 (13) N2^i^---N2---C3---C4 −50.6 (14) N1\"---C1\"---C9---C10 41.6 (14) C2---N2---C3---C8 6.3 (11) C2\"---C1\"---C9---C10 −134.3 (8) N2^i^---N2---C3---C8 130.2 (11) N1\"---C1\"---C9---C1 −96 (2) C8---C3---C4---C5 0.0 C2\"---C1\"---C9---C1 87.9 (17) N2---C3---C4---C5 −179.2 (7) N1\"---C1\"---C9---C1\' −132 (3) C3---C4---C5---C6 0.0 C2\"---C1\"---C9---C1\' 53 (2) C4---C5---C6---C7 0.0 N3---C9---C10---C11 0.3 (3) C5---C6---C7---C8 0.0 C1---C9---C10---C11 −164.4 (7) C1---N1---C8---C7 −167.1 (8) C1\'---C9---C10---C11 175.7 (9) C1---N1---C8---C3 15.5 (14) C1\"---C9---C10---C11 172.9 (5) C6---C7---C8---N1 −177.5 (8) N3---C9---C10---S1 −175.66 (19) C6---C7---C8---C3 0.0 C1---C9---C10---S1 19.6 (7) C4---C3---C8---N1 177.3 (8) C1\'---C9---C10---S1 −0.3 (9) N2---C3---C8---N1 −3.6 (10) C1\"---C9---C10---S1 −3.1 (6) C4---C3---C8---C7 0.0 O1---S1---C10---C11 119.9 (2) N2---C3---C8---C7 179.2 (7) O2---S1---C10---C11 −8.6 (2) C8\'---N1\'---C1\'---C2\' 34 (3) C12---S1---C10---C11 −122.5 (2) C8\'---N1\'---C1\'---C9 172.2 (17) O1---S1---C10---C9 −64.8 (3) C3\'---N2\'---C2\'---C1\' 26.5 (18) O2---S1---C10---C9 166.7 (2) N1\'---C1\'---C2\'---N2\' −35.5 (18) C12---S1---C10---C9 52.8 (3) C9---C1\'---C2\'---N2\' −169.0 (11) N3---N4---C11---C10 −0.7 (3) C2\'---N2\'---C3\'---C4\' 169.7 (10) C24---N4---C11---C10 179.7 (2) C2\'---N2\'---C3\'---C8\' −10.8 (16) N3---N4---C11---C18 −179.4 (2) C8\'---C3\'---C4\'---C5\' 0.0 C24---N4---C11---C18 0.9 (4) N2\'---C3\'---C4\'---C5\' 179.4 (8) C9---C10---C11---N4 0.2 (3) C3\'---C4\'---C5\'---C6\' 0.0 S1---C10---C11---N4 176.44 (17) C4\'---C5\'---C6\'---C7\' 0.0 C9---C10---C11---C18 178.8 (2) C5\'---C6\'---C7\'---C8\' 0.0 S1---C10---C11---C18 −5.0 (4) C1\'---N1\'---C8\'---C7\' 165.9 (14) O1---S1---C12---C13 −28.8 (3) C1\'---N1\'---C8\'---C3\' −17 (2) O2---S1---C12---C13 98.7 (2) C6\'---C7\'---C8\'---N1\' 176.9 (14) C10---S1---C12---C13 −148.3 (2) C6\'---C7\'---C8\'---C3\' 0.0 O1---S1---C12---C17 157.2 (2) C4\'---C3\'---C8\'---N1\' −177.4 (12) O2---S1---C12---C17 −75.4 (2) N2\'---C3\'---C8\'---N1\' 3.2 (13) C10---S1---C12---C17 37.7 (3) C4\'---C3\'---C8\'---C7\' 0.0 C17---C12---C13---C14 0.3 (4) N2\'---C3\'---C8\'---C7\' −179.4 (9) S1---C12---C13---C14 −173.9 (2) C8\"---N1\"---C1\"---C2\" −4(2) C12---C13---C14---C15 −1.1 (4) C8\"---N1\"---C1\"---C9 −179.4 (10) C13---C14---C15---C16 0.5 (4) C3\"---N2\"---C2\"---C1\" −2.6 (15) C14---C15---C16---C17 0.9 (4) N1\"---C1\"---C2\"---N2\" 2.7 (18) C13---C12---C17---C16 1.2 (4) C9---C1\"---C2\"---N2\" 178.4 (9) S1---C12---C17---C16 175.0 (2) C2\"---N2\"---C3\"---C4\" −176.3 (7) C15---C16---C17---C12 −1.8 (5) C2\"---N2\"---C3\"---C8\" 3.9 (12) N4---C11---C18---C19 −63.1 (3) C8\"---C3\"---C4\"---C5\" 0.0 C10---C11---C18---C19 118.5 (3) N2\"---C3\"---C4\"---C5\" −179.7 (9) N4---C11---C18---C23 113.8 (3) C3\"---C4\"---C5\"---C6\" 0.0 C10---C11---C18---C23 −64.6 (4) C4\"---C5\"---C6\"---C7\" 0.0 C23---C18---C19---C20 −1.4 (4) C5\"---C6\"---C7\"---C8\" 0.0 C11---C18---C19---C20 175.5 (2) C1\"---N1\"---C8\"---C7\" −179.9 (10) C18---C19---C20---C21 0.1 (4) C1\"---N1\"---C8\"---C3\" 5.0 (17) C19---C20---C21---C22 1.4 (5) C6\"---C7\"---C8\"---N1\" −175.1 (10) C20---C21---C22---C23 −1.7 (5) C6\"---C7\"---C8\"---C3\" 0.0 C21---C22---C23---C18 0.4 (5) C4\"---C3\"---C8\"---N1\" 174.9 (11) C19---C18---C23---C22 1.2 (4) N2\"---C3\"---C8\"---N1\" −5.4 (12) C11---C18---C23---C22 −175.7 (3) C4\"---C3\"---C8\"---C7\" 0.0 N3---N4---C24---C29 −42.7 (3) N2\"---C3\"---C8\"---C7\" 179.7 (9) C11---N4---C24---C29 136.9 (3) N4---N3---C9---C10 −0.7 (3) N3---N4---C24---C25 136.0 (3) N4---N3---C9---C1 167.4 (5) C11---N4---C24---C25 −44.4 (4) N4---N3---C9---C1\' −177.1 (7) C29---C24---C25---C26 1.3 (4) N4---N3---C9---C1\" −172.0 (6) N4---C24---C25---C26 −177.4 (2) N1---C1---C9---N3 161.6 (8) C24---C25---C26---C27 −0.4 (4) C2---C1---C9---N3 22.5 (11) C25---C26---C27---C28 −0.5 (5) N1---C1---C9---C10 −34.1 (13) C25---C26---C27---C30 176.8 (3) C2---C1---C9---C10 −173.2 (7) C26---C27---C28---C29 0.7 (4) N1---C1---C9---C1\' 66 (4) C30---C27---C28---C29 −176.6 (3) C2---C1---C9---C1\' −73 (4) C25---C24---C29---C28 −1.1 (4) N1---C1---C9---C1\" 21.7 (12) N4---C24---C29---C28 177.6 (2) C2---C1---C9---C1\" −117 (2) C27---C28---C29---C24 0.1 (4) N1\'---C1\'---C9---N3 −161.6 (12) --------------------------- ------------- ------------------------- -------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+2. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e5047 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C19---H19···O1^ii^ 0.95 2.57 3.430 (3) 150 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (ii) *x*−1, *y*, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ----------------- --------- ------- ----------- ------------- C19---H19⋯O1^i^ 0.95 2.57 3.430 (3) 150 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.057871
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052037/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o695", "authors": [ { "first": "Hatem A.", "last": "Abdel-Aziz" }, { "first": "Ahmed", "last": "Bari" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3052038
Related literature {#sec1} ================== For background to Schiff bases, see: Mobinikhaledi *et al.* (2010[@bb8]); Hamaker *et al.* (2010[@bb3]); Mirkhani *et al.* (2010[@bb7]); Thangadurai *et al.* (2002[@bb12]). Ji & Lu (2010*a* [@bb4],*b* [@bb5]); Lü *et al.* (2008[@bb6]). For a related structure, see: Zhang & Li (2008[@bb13]). For bioactivity, see: Chohan *et al.* (2004[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~8~H~8~ClN~3~S*M* *~r~* = 213.68Triclinic,*a* = 5.7611 (5) Å*b* = 7.8329 (7) Å*c* = 11.2016 (10) Åα = 83.852 (7)°β = 75.373 (7)°γ = 76.353 (7)°*V* = 474.69 (7) Å^3^*Z* = 2Mo *K*α radiationμ = 0.58 mm^−1^*T* = 173 K0.38 × 0.35 × 0.27 mm ### Data collection {#sec2.1.2} Stoe IPDS II two-circle diffractometerAbsorption correction: multi-scan (*MULABS*; Spek, 2009;[@bb10] Blessing, 1995[@bb1]) *T* ~min~ = 0.811, *T* ~max~ = 0.8608657 measured reflections2179 independent reflections2054 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.055 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.029*wR*(*F* ^2^) = 0.079*S* = 1.102179 reflections131 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.39 e Å^−3^Δρ~min~ = −0.27 e Å^−3^ {#d5e474} Data collection: *X-AREA* (Stoe & Cie, 2001[@bb11]); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *XP* (Sheldrick, 2008[@bb9]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004120/bg2386sup1.cif](http://dx.doi.org/10.1107/S1600536811004120/bg2386sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004120/bg2386Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004120/bg2386Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bg2386&file=bg2386sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bg2386sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bg2386&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BG2386](http://scripts.iucr.org/cgi-bin/sendsup?bg2386)). Comment ======= Schiff bases derived from semicarbazide and aromatic aldehydes are an important class of organic compounds because of their applications in many fields including inorganic, biological, and analytical chemistry (Mobinikhaledi *et al.*, 2010; Thangadurai *et al.*, 2002). Schiff bases are known to be versatile ligands in coordination chemistry (Ji & Lu, 2010*a*,2010*b*; Hamaker *et al.*, 2010; Mirkhani *et al.*, 2010). Shiff bases and their complexes are also important in material science applications like organic light emitting diodes (Lü *et al.*, 2008). The title compound features an essentially planar molecule: the largest deviation of a torsion angle from 0 or 180Å is 13.02 (19)° for N1---C1---C11---C12. Bond lengths and angles do not show any unusual values. In the crystal, the molecules are connected by N---H···S hydrogen bonds into strips parallel to the (1 1 2) planes and running along \[1 1 0\]. One of the amino H atoms is not involved in a classical hydrogen bond. In addition there is a rather short intermolecular Cl···S^i^ distance of 3.3814 (5)Å (symmetry operator (i): *x* - 2, *y*, *z* + 1). Experimental {#experimental} ============ Semicarbazide, 0.137 g (1 mmol) dissolved in 5 ml e thanol was added dropwise to a solution of 4-chlorobenzaldehyde, 0.122 g (1.1 mmol) in 10 ml e thanol at room temperature with continuous stirring. The reaction mixture was refluxed for 4 h and completion monitored by TLC. The reaction mixture was concentrated and the resulting product was separated. Colourless single crystals of the compound, suitable for X-ray crystallography, were grown by slow evaporation from a (2:1) ethyl acetate-ethanol solution. Anal.: calcd. for C~8~H~8~N~3~SCl: C, 44.95; H, 3.74; N, 19.66; S, 14.98%; found: C, 45.01; H, 3.61; N, 19.81; S, 14.83%. Refinement {#refinement} ========== H atoms bonded to N were freely refined. H atoms bonded to C were geometrically positioned and refined using a riding model with C---H = 0.95Å and U(H) set to 1.2*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o649-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Crystal packing with intermolecular hydrogen bonds indicated as dashed lines. ::: ![](e-67-0o649-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e148 .table-wrap} ----------------------- --------------------------------------- C~8~H~8~ClN~3~S *Z* = 2 *M~r~* = 213.68 *F*(000) = 220 Triclinic, *P*1 *D*~x~ = 1.495 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 5.7611 (5) Å Cell parameters from 7492 reflections *b* = 7.8329 (7) Å θ = 3.4--27.8° *c* = 11.2016 (10) Å µ = 0.58 mm^−1^ α = 83.852 (7)° *T* = 173 K β = 75.373 (7)° Block, colourless γ = 76.353 (7)° 0.38 × 0.35 × 0.27 mm *V* = 474.69 (7) Å^3^ ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e282 .table-wrap} -------------------------------------------------------------------------- -------------------------------------- Stoe IPDS II two-circle diffractometer 2179 independent reflections Radiation source: fine-focus sealed tube 2054 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.055 ω scans θ~max~ = 27.7°, θ~min~ = 3.4° Absorption correction: multi-scan (*MULABS*; Spek, 2009; Blessing, 1995) *h* = −7→7 *T*~min~ = 0.811, *T*~max~ = 0.860 *k* = −10→10 8657 measured reflections *l* = −14→14 -------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e396 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.029 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.079 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0425*P*)^2^ + 0.1107*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.10 (Δ/σ)~max~ = 0.001 2179 reflections Δρ~max~ = 0.39 e Å^−3^ 131 parameters Δρ~min~ = −0.27 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.061 (7) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e577 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e676 .table-wrap} ----- -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.16691 (5) 0.24404 (4) 0.64870 (3) 0.02702 (12) S1 1.79101 (5) 0.26359 (4) −0.06509 (3) 0.02625 (12) N1 1.18834 (19) 0.23473 (14) 0.18778 (10) 0.0215 (2) N2 1.35359 (19) 0.28547 (14) 0.08531 (10) 0.0220 (2) H2 1.322 (3) 0.392 (3) 0.0550 (17) 0.033 (4)\* N3 1.6366 (2) 0.03361 (14) 0.11273 (11) 0.0256 (2) H3A 1.787 (3) −0.030 (3) 0.0942 (17) 0.037 (5)\* H3B 1.529 (4) 0.002 (2) 0.1674 (19) 0.037 (5)\* C1 0.9739 (2) 0.33723 (16) 0.20735 (11) 0.0206 (2) H1 0.9408 0.4333 0.1503 0.025\* C2 1.5844 (2) 0.18669 (15) 0.05230 (11) 0.0200 (2) C11 0.7791 (2) 0.30948 (15) 0.31550 (11) 0.0194 (2) C12 0.8261 (2) 0.19449 (17) 0.41513 (12) 0.0258 (3) H12 0.9887 0.1297 0.4129 0.031\* C13 0.6388 (2) 0.17389 (17) 0.51702 (12) 0.0275 (3) H13 0.6721 0.0962 0.5847 0.033\* C14 0.4012 (2) 0.26838 (16) 0.51905 (11) 0.0209 (2) C15 0.3492 (2) 0.38356 (16) 0.42174 (11) 0.0221 (2) H15 0.1859 0.4470 0.4241 0.027\* C16 0.5394 (2) 0.40491 (16) 0.32075 (11) 0.0216 (2) H16 0.5060 0.4855 0.2544 0.026\* ----- -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e969 .table-wrap} ----- -------------- -------------- -------------- --------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.02137 (17) 0.02970 (19) 0.02380 (18) −0.00376 (12) 0.00323 (12) 0.00098 (12) S1 0.01985 (17) 0.02394 (18) 0.02535 (18) 0.00043 (12) 0.00505 (12) 0.00406 (12) N1 0.0187 (5) 0.0228 (5) 0.0206 (5) −0.0050 (4) 0.0009 (4) −0.0024 (4) N2 0.0171 (5) 0.0214 (5) 0.0217 (5) −0.0008 (4) 0.0018 (4) 0.0005 (4) N3 0.0193 (5) 0.0236 (5) 0.0260 (5) 0.0001 (4) 0.0024 (4) 0.0035 (4) C1 0.0185 (5) 0.0218 (5) 0.0206 (5) −0.0041 (4) −0.0026 (4) −0.0023 (4) C2 0.0192 (5) 0.0212 (5) 0.0177 (5) −0.0023 (4) −0.0021 (4) −0.0023 (4) C11 0.0165 (5) 0.0190 (5) 0.0215 (6) −0.0035 (4) −0.0016 (4) −0.0040 (4) C12 0.0167 (5) 0.0248 (6) 0.0298 (6) 0.0024 (4) −0.0023 (5) 0.0017 (5) C13 0.0223 (6) 0.0259 (6) 0.0278 (6) 0.0011 (5) −0.0031 (5) 0.0064 (5) C14 0.0173 (5) 0.0216 (5) 0.0209 (5) −0.0031 (4) 0.0003 (4) −0.0032 (4) C15 0.0148 (5) 0.0260 (6) 0.0233 (6) −0.0005 (4) −0.0034 (4) −0.0027 (5) C16 0.0183 (5) 0.0248 (6) 0.0201 (5) −0.0016 (4) −0.0047 (4) −0.0010 (4) ----- -------------- -------------- -------------- --------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1256 .table-wrap} ----------------------- -------------- ----------------------- -------------- Cl1---C14 1.7435 (12) C11---C16 1.3967 (16) S1---C2 1.6992 (12) C11---C12 1.3972 (18) N1---C1 1.2853 (16) C12---C13 1.3835 (18) N1---N2 1.3824 (14) C12---H12 0.9500 N2---C2 1.3530 (15) C13---C14 1.3898 (17) N2---H2 0.863 (19) C13---H13 0.9500 N3---C2 1.3211 (16) C14---C15 1.3851 (17) N3---H3A 0.877 (19) C15---C16 1.3886 (17) N3---H3B 0.82 (2) C15---H15 0.9500 C1---C11 1.4648 (16) C16---H16 0.9500 C1---H1 0.9500 C1---N1---N2 114.01 (10) C13---C12---C11 120.82 (11) C2---N2---N1 120.12 (10) C13---C12---H12 119.6 C2---N2---H2 119.3 (12) C11---C12---H12 119.6 N1---N2---H2 118.7 (12) C12---C13---C14 119.15 (12) C2---N3---H3A 118.9 (13) C12---C13---H13 120.4 C2---N3---H3B 119.0 (13) C14---C13---H13 120.4 H3A---N3---H3B 122.1 (18) C15---C14---C13 121.30 (11) N1---C1---C11 121.62 (11) C15---C14---Cl1 119.81 (9) N1---C1---H1 119.2 C13---C14---Cl1 118.88 (10) C11---C1---H1 119.2 C14---C15---C16 119.00 (11) N3---C2---N2 117.92 (11) C14---C15---H15 120.5 N3---C2---S1 123.29 (9) C16---C15---H15 120.5 N2---C2---S1 118.78 (9) C15---C16---C11 120.85 (11) C16---C11---C12 118.86 (11) C15---C16---H16 119.6 C16---C11---C1 118.86 (11) C11---C16---H16 119.6 C12---C11---C1 122.26 (10) C1---N1---N2---C2 −178.33 (11) C11---C12---C13---C14 0.5 (2) N2---N1---C1---C11 −176.64 (10) C12---C13---C14---C15 −0.6 (2) N1---N2---C2---N3 6.86 (18) C12---C13---C14---Cl1 −179.11 (10) N1---N2---C2---S1 −173.83 (8) C13---C14---C15---C16 −0.29 (19) N1---C1---C11---C16 −168.81 (11) Cl1---C14---C15---C16 178.22 (9) N1---C1---C11---C12 13.02 (19) C14---C15---C16---C11 1.31 (18) C16---C11---C12---C13 0.53 (19) C12---C11---C16---C15 −1.43 (18) C1---C11---C12---C13 178.70 (12) C1---C11---C16---C15 −179.66 (11) ----------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1614 .table-wrap} ------------------- ------------ ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H2···S1^i^ 0.863 (19) 2.628 (19) 3.4288 (12) 154.7 (16) N3---H3A···S1^ii^ 0.877 (19) 2.65 (2) 3.5119 (12) 170.1 (17) ------------------- ------------ ------------ ------------- --------------- ::: Symmetry codes: (i) −*x*+3, −*y*+1, −*z*; (ii) −*x*+4, −*y*, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- ------------ ------------ ------------- ------------- N2---H2⋯S1^i^ 0.863 (19) 2.628 (19) 3.4288 (12) 154.7 (16) N3---H3*A*⋯S1^ii^ 0.877 (19) 2.65 (2) 3.5119 (12) 170.1 (17) Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.068217
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052038/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o649", "authors": [ { "first": "Aamer", "last": "Saeed" }, { "first": "Shams-ul", "last": "Mahmood" }, { "first": "Michael", "last": "Bolte" }, { "first": "Abdul", "last": "Rauf" }, { "first": "Mohammad", "last": "Subhan" } ] }
PMC3052039
Related literature {#sec1} ================== For background to proton-transfer compounds, see: Aghabozorg *et al.* (2008[@bb1]). For related structures, see: Aghabozorg *et al.* (2005[@bb2]); Daneshvar *et al.* (2008[@bb3]); Willey *et al.* (1998[@bb10]); Pasdar *et al.* (2010[@bb6], 2011[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} (C~6~H~9~N~2~)~2~\[Zr(C~7~H~3~NO~4~)~3~\]·2H~2~O*M* *~r~* = 840.87Monoclinic,*a* = 18.719 (4) Å*b* = 10.536 (2) Å*c* = 18.781 (4) Åβ = 108.58 (3)°*V* = 3511.0 (14) Å^3^*Z* = 4Mo *K*α radiationμ = 0.39 mm^−1^*T* = 298 K0.35 × 0.30 × 0.25 mm ### Data collection {#sec2.1.2} Stoe IPDS II diffractometerAbsorption correction: numerical \[shape of crystal determined optically (*X-SHAPE* and *X-RED32*; Stoe & Cie, 2005[@bb9])\] *T* ~min~ = 0.870, *T* ~max~ = 0.90312273 measured reflections4705 independent reflections4284 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.025 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.023*wR*(*F* ^2^) = 0.060*S* = 1.034705 reflections271 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.33 e Å^−3^Δρ~min~ = −0.27 e Å^−3^ {#d5e624} Data collection: *X-AREA* (Stoe & Cie, 2005[@bb9]); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb4]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb5]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003072/bt5467sup1.cif](http://dx.doi.org/10.1107/S1600536811003072/bt5467sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003072/bt5467Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003072/bt5467Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bt5467&file=bt5467sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bt5467sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bt5467&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BT5467](http://scripts.iucr.org/cgi-bin/sendsup?bt5467)). We are grateful to the Islamic Azad University, North Tehran Branch, for financial support. Comment ======= Pyridine-2,6-dicarboxylic acid (pydcH~2~) was commonly used as an acid in proton transfer systems (Aghabozorg *et al.*, 2008). Continuing the path to synthesize proton transfer compounds, our group has focused on forming ion pairs between 2,6-pydcH~2~ and various organic bases (Pasdar *et al.*, 2010; Pasdar *et al.*, 2011). The structures of two proton transfer compounds containing \[Zr^IV^(2,6-pydc)~3~\]^2-^ moiety were reported with the counter cationic part of 2,6-pyridinediamine (Aghabozorg *et al.*, 2005) and 2,4,6-triamino-1,3,5-triazine (Daneshvar *et al.*, 2008), respectively. The structure of K~4~\[Zr^IV^(2,6-pydc)~3~\]~2~ has been reported by Willey *et al.* (1998). We report herein the synthesis and crystal structure of (2a6mpH)~2~\[Zr(2,6-pydc)~3~\].2H~2~O by the reaction of ZrCl~4~, 2-amino-6-methylpyridine and 2,6-pyridinedicarboxylic acid in aqueous media. The molecular structure of the title compound is shown in Fig.1. The zirconium(IV) ion is coordinated by three pydc^2-^ ligands in a distorted tricapped trigonal prismatic geometry. The geometry around the zirconium(IV) centre in the title compound is shown in Fig. 2. The Zr---N and Zr---O bond lengths and angles are comprable with those previously reported (Aghabozorg *et al.*, 2005; Daneshvar *et al.*, 2008). The crystal packing diagram of (2a6mpH)~2~\[Zr(2,6-pydc)~3~\].2H~2~O is presented in Fig. 3. There are several intermolecular N---H···O, O---H···O hydrogen bonds which stabilize crystal structure of the compound (Table 1 and Fig. 3). Experimental {#experimental} ============ A solution of ZrCl~4~ (0.114 mg,0.5 mmol) in water (15 ml) was added to an aqueous solution of 2-amino-6-methylpyridine (0.114,1 mmol) and 2,6-pyridinedicarboxylic acid (0.504 mg, 3 mmol) in water (15 ml). Crystals of the title compound suitable for X-ray characterization were obtained after a few weeks at room temperature (m.p: 145 °C). Refinement {#refinement} ========== The hydrogen atoms bonded to N and O were found in difference Fourier map and refined isotropically without restraint. The C---H protons were positioned geometrically and refined as riding atoms with C---H = 0.93 Å and *U*iso(H) = 1.2 *U*eq(C) for aromatic C---H and C---H = 0.96 Å and *U*iso(H) = 1.5 *Ueq*(C) for methyl groups. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of (2a6mpH)2\[Zr(2,6-pydc)3\].2H2O with displacement ellipsoids drawn at 30% probability level.Symmetry code: (a) -x + 1, y, -z + 3/2. ::: ![](e-67-0m294-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The coordination environment around ZrIV ion in the title compound. Symmetry code: (a) -x + 1, y, -z + 3/2. ::: ![](e-67-0m294-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### The packing diagram of (2a6mpH)2\[Zr(2,6-pydc)3\].2H2O. The intermolecular N---H···O, O---H···O hydrogen bonds are shown as blue dashed lines. ::: ![](e-67-0m294-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e243 .table-wrap} -------------------------------------------------- --------------------------------------- (C~6~H~9~N~2~)~2~\[Zr(C~7~H~3~NO~4~)~3~\]·2H~2~O *F*(000) = 1720 *M~r~* = 840.87 *D*~x~ = 1.591 Mg m^−3^ Monoclinic, *C*2/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -C 2yc Cell parameters from 4705 reflections *a* = 18.719 (4) Å θ = 2.3--29.2° *b* = 10.536 (2) Å µ = 0.39 mm^−1^ *c* = 18.781 (4) Å *T* = 298 K β = 108.58 (3)° Prism, colorless *V* = 3511.0 (14) Å^3^ 0.35 × 0.3 × 0.25 mm *Z* = 4 -------------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e387 .table-wrap} ----------------------------------------------------------------------------------------------------------------------- -------------------------------------- Stoe IPDS II diffractometer 4705 independent reflections Radiation source: fine-focus sealed tube 4284 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.025 Detector resolution: 0.15 mm pixels mm^-1^ θ~max~ = 29.2°, θ~min~ = 2.3° rotation method scans *h* = −25→25 Absorption correction: numerical \[shape of crystal determined optically (*X-SHAPE* and *X-RED32*; Stoe& Cie, 2005)\] *k* = −12→14 *T*~min~ = 0.870, *T*~max~ = 0.903 *l* = −25→25 12273 measured reflections ----------------------------------------------------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e508 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.023 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.060 H atoms treated by a mixture of independent and constrained refinement *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0339*P*)^2^ + 1.0948*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4705 reflections (Δ/σ)~max~ = 0.001 271 parameters Δρ~max~ = 0.33 e Å^−3^ 0 restraints Δρ~min~ = −0.27 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e665 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e764 .table-wrap} ------ -------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C17 0.61732 (13) 0.9817 (2) 0.98635 (13) 0.0731 (5) H17A 0.6130 1.0629 1.0079 0.110\* H17B 0.6397 0.9220 1.0258 0.110\* H17C 0.5681 0.9524 0.9571 0.110\* Zr1 0.5000 0.572850 (14) 0.7500 0.02355 (5) N1 0.48851 (5) 0.45657 (9) 0.63879 (6) 0.02849 (19) C5 0.53457 (7) 0.35957 (11) 0.64083 (7) 0.0320 (2) C1 0.43464 (7) 0.48587 (12) 0.57517 (7) 0.0322 (2) C2 0.42369 (9) 0.41586 (14) 0.51009 (8) 0.0426 (3) H2 0.3856 0.4369 0.4661 0.051\* C4 0.52766 (9) 0.28548 (14) 0.57799 (8) 0.0449 (3) H4 0.5604 0.2182 0.5800 0.054\* C3 0.47076 (10) 0.31419 (15) 0.51223 (9) 0.0502 (4) H3 0.4643 0.2650 0.4695 0.060\* N3 0.68745 (7) 0.88262 (13) 0.91339 (7) 0.0443 (3) N4 0.74780 (9) 0.76062 (17) 0.84880 (10) 0.0600 (4) C12 0.73020 (8) 0.87419 (17) 0.86785 (9) 0.0468 (3) C16 0.66558 (9) 0.99384 (17) 0.93708 (10) 0.0539 (4) C13 0.75373 (9) 0.98893 (19) 0.84391 (10) 0.0580 (4) H13 0.7833 0.9879 0.8124 0.070\* C15 0.68835 (12) 1.10440 (19) 0.91395 (13) 0.0694 (5) H15 0.6743 1.1819 0.9292 0.083\* C14 0.73318 (11) 1.10031 (19) 0.86693 (12) 0.0675 (5) H14 0.7491 1.1759 0.8513 0.081\* O1 0.40841 (5) 0.64343 (9) 0.65095 (5) 0.03362 (18) O2 0.34539 (6) 0.65095 (11) 0.52861 (6) 0.0505 (3) C6 0.39137 (7) 0.60152 (12) 0.58346 (7) 0.0333 (2) N2 0.5000 0.79516 (13) 0.7500 0.0288 (3) O5 0.42116 (5) 0.65285 (9) 0.80434 (5) 0.03414 (18) C8 0.45374 (7) 0.85771 (12) 0.77872 (7) 0.0326 (2) C11 0.40782 (7) 0.77095 (12) 0.81082 (7) 0.0332 (2) O6 0.36459 (7) 0.81504 (11) 0.84149 (7) 0.0520 (3) C9 0.45124 (9) 0.98904 (14) 0.77885 (10) 0.0483 (3) H9 0.4178 1.0321 0.7977 0.058\* C10 0.5000 1.0542 (2) 0.7500 0.0603 (7) H10 0.5000 1.1425 0.7500 0.072\* O4 0.64121 (6) 0.25978 (10) 0.72642 (6) 0.0482 (2) C7 0.59251 (7) 0.34202 (12) 0.71639 (7) 0.0324 (2) O3 0.58564 (5) 0.41882 (9) 0.76672 (5) 0.03380 (18) O7 0.74136 (9) 0.47442 (18) 0.85925 (12) 0.0865 (6) H3A 0.6742 (11) 0.810 (2) 0.9320 (12) 0.064 (6)\* H4B 0.7294 (12) 0.690 (2) 0.8587 (12) 0.066 (6)\* H4A 0.7747 (12) 0.755 (2) 0.8218 (12) 0.068 (6)\* H7A 0.7728 (18) 0.425 (3) 0.8528 (17) 0.105 (10)\* H7B 0.6993 (19) 0.445 (3) 0.8293 (19) 0.121 (12)\* ------ -------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1344 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C17 0.0748 (13) 0.0714 (13) 0.0801 (14) 0.0028 (11) 0.0344 (11) −0.0088 (11) Zr1 0.02282 (7) 0.02414 (7) 0.02305 (8) 0.000 0.00640 (5) 0.000 N1 0.0303 (4) 0.0279 (4) 0.0274 (5) −0.0010 (3) 0.0094 (4) −0.0011 (4) C5 0.0370 (6) 0.0285 (5) 0.0338 (6) 0.0001 (4) 0.0158 (5) −0.0007 (5) C1 0.0338 (5) 0.0335 (6) 0.0279 (6) −0.0029 (5) 0.0080 (4) −0.0008 (5) C2 0.0499 (7) 0.0455 (7) 0.0289 (6) −0.0053 (6) 0.0077 (5) −0.0046 (6) C4 0.0597 (8) 0.0364 (7) 0.0426 (7) 0.0051 (6) 0.0222 (7) −0.0067 (6) C3 0.0703 (10) 0.0455 (8) 0.0366 (7) −0.0022 (7) 0.0196 (7) −0.0127 (6) N3 0.0399 (6) 0.0458 (6) 0.0432 (7) −0.0095 (5) 0.0077 (5) 0.0018 (5) N4 0.0627 (9) 0.0603 (9) 0.0665 (10) −0.0172 (7) 0.0342 (8) −0.0101 (8) C12 0.0372 (6) 0.0571 (9) 0.0406 (7) −0.0126 (6) 0.0048 (6) 0.0019 (7) C16 0.0480 (8) 0.0519 (9) 0.0550 (9) −0.0017 (7) 0.0069 (7) −0.0012 (8) C13 0.0472 (8) 0.0668 (11) 0.0538 (10) −0.0144 (8) 0.0073 (7) 0.0165 (8) C15 0.0661 (11) 0.0478 (9) 0.0845 (14) 0.0016 (8) 0.0102 (10) 0.0063 (9) C14 0.0571 (10) 0.0577 (11) 0.0746 (13) −0.0119 (8) 0.0026 (9) 0.0254 (9) O1 0.0330 (4) 0.0357 (4) 0.0283 (4) 0.0059 (3) 0.0044 (3) −0.0009 (3) O2 0.0530 (6) 0.0550 (6) 0.0322 (5) 0.0155 (5) −0.0024 (4) 0.0022 (5) C6 0.0307 (5) 0.0356 (6) 0.0296 (6) 0.0004 (4) 0.0041 (4) 0.0018 (5) N2 0.0306 (6) 0.0285 (6) 0.0260 (6) 0.000 0.0072 (5) 0.000 O5 0.0361 (4) 0.0330 (4) 0.0374 (5) 0.0024 (3) 0.0174 (4) 0.0019 (4) C8 0.0353 (6) 0.0304 (6) 0.0308 (6) 0.0035 (5) 0.0089 (5) −0.0012 (5) C11 0.0331 (5) 0.0368 (6) 0.0306 (6) 0.0051 (5) 0.0112 (5) 0.0002 (5) O6 0.0572 (6) 0.0494 (6) 0.0625 (7) 0.0113 (5) 0.0375 (6) −0.0011 (5) C9 0.0575 (8) 0.0322 (6) 0.0612 (10) 0.0056 (6) 0.0273 (8) −0.0039 (6) C10 0.0776 (16) 0.0267 (9) 0.0865 (19) 0.000 0.0399 (15) 0.000 O4 0.0482 (5) 0.0431 (5) 0.0556 (6) 0.0190 (4) 0.0197 (5) 0.0058 (5) C7 0.0320 (5) 0.0292 (5) 0.0389 (6) 0.0022 (4) 0.0154 (5) 0.0037 (5) O3 0.0314 (4) 0.0355 (4) 0.0324 (4) 0.0060 (3) 0.0072 (3) 0.0000 (4) O7 0.0527 (8) 0.0816 (11) 0.1081 (13) 0.0094 (8) 0.0016 (8) −0.0399 (10) ----- ------------- ------------- ------------- ------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1876 .table-wrap} ----------------------- -------------- -------------------------- -------------- C17---C16 1.491 (3) N4---C12 1.320 (2) C17---H17A 0.9600 N4---H4B 0.86 (2) C17---H17B 0.9600 N4---H4A 0.82 (2) C17---H17C 0.9600 C12---C13 1.409 (2) Zr1---O5 2.2113 (9) C16---C15 1.358 (3) Zr1---O5^i^ 2.2113 (9) C13---C14 1.348 (3) Zr1---O1^i^ 2.2183 (11) C13---H13 0.9300 Zr1---O1 2.2183 (11) C15---C14 1.399 (3) Zr1---O3^i^ 2.2320 (9) C15---H15 0.9300 Zr1---O3 2.2320 (9) C14---H14 0.9300 Zr1---N2 2.3422 (15) O1---C6 1.2828 (15) Zr1---N1 2.3713 (10) O2---C6 1.2280 (16) Zr1---N1^i^ 2.3713 (11) N2---C8 1.3314 (14) N1---C5 1.3297 (15) N2---C8^i^ 1.3314 (14) N1---C1 1.3313 (16) O5---C11 1.2824 (16) C5---C4 1.3863 (18) C8---C9 1.3845 (19) C5---C7 1.4979 (19) C8---C11 1.5062 (18) C1---C2 1.3857 (18) C11---O6 1.2246 (15) C1---C6 1.4986 (18) C9---C10 1.3834 (19) C2---C3 1.379 (2) C9---H9 0.9300 C2---H2 0.9300 C10---C9^i^ 1.3834 (19) C4---C3 1.383 (2) C10---H10 0.9300 C4---H4 0.9300 O4---C7 1.2279 (15) C3---H3 0.9300 C7---O3 1.2814 (15) N3---C12 1.348 (2) O7---H7A 0.82 (3) N3---C16 1.362 (2) O7---H7B 0.87 (4) N3---H3A 0.91 (2) C16---C17---H17A 109.5 C1---C2---H2 120.9 C16---C17---H17B 109.5 C3---C4---C5 118.26 (13) H17A---C17---H17B 109.5 C3---C4---H4 120.9 C16---C17---H17C 109.5 C5---C4---H4 120.9 H17A---C17---H17C 109.5 C2---C3---C4 119.92 (13) H17B---C17---H17C 109.5 C2---C3---H3 120.0 O5---Zr1---O5^i^ 135.19 (5) C4---C3---H3 120.0 O5---Zr1---O1^i^ 86.35 (4) C12---N3---C16 124.41 (15) O5^i^---Zr1---O1^i^ 78.94 (4) C12---N3---H3A 118.6 (13) O5---Zr1---O1 78.94 (4) C16---N3---H3A 116.9 (13) O5^i^---Zr1---O1 86.35 (4) C12---N4---H4B 124.6 (14) O1^i^---Zr1---O1 140.83 (5) C12---N4---H4A 118.8 (16) O5---Zr1---O3^i^ 77.70 (4) H4B---N4---H4A 116 (2) O5^i^---Zr1---O3^i^ 140.11 (3) N4---C12---N3 118.80 (15) O1^i^---Zr1---O3^i^ 133.65 (3) N4---C12---C13 124.11 (16) O1---Zr1---O3^i^ 78.30 (4) N3---C12---C13 117.09 (17) O5---Zr1---O3 140.11 (3) C15---C16---N3 118.41 (18) O5^i^---Zr1---O3 77.70 (4) C15---C16---C17 125.88 (19) O1^i^---Zr1---O3 78.30 (4) N3---C16---C17 115.71 (16) O1---Zr1---O3 133.65 (3) C14---C13---C12 119.64 (17) O3^i^---Zr1---O3 86.71 (5) C14---C13---H13 120.2 O5---Zr1---N2 67.59 (2) C12---C13---H13 120.2 O5^i^---Zr1---N2 67.59 (2) C16---C15---C14 119.2 (2) O1^i^---Zr1---N2 70.41 (3) C16---C15---H15 120.4 O1---Zr1---N2 70.41 (3) C14---C15---H15 120.4 O3^i^---Zr1---N2 136.64 (2) C13---C14---C15 121.26 (17) O3---Zr1---N2 136.64 (2) C13---C14---H14 119.4 O5---Zr1---N1 135.80 (4) C15---C14---H14 119.4 O5^i^---Zr1---N1 71.15 (4) C6---O1---Zr1 126.56 (8) O1^i^---Zr1---N1 137.80 (3) O2---C6---O1 124.76 (12) O1---Zr1---N1 66.77 (4) O2---C6---C1 121.01 (12) O3^i^---Zr1---N1 68.96 (4) O1---C6---C1 114.21 (11) O3---Zr1---N1 66.91 (4) C8---N2---C8^i^ 120.65 (15) N2---Zr1---N1 121.11 (2) C8---N2---Zr1 119.67 (8) O5---Zr1---N1^i^ 71.15 (4) C8^i^---N2---Zr1 119.67 (8) O5^i^---Zr1---N1^i^ 135.80 (4) C11---O5---Zr1 126.32 (8) O1^i^---Zr1---N1^i^ 66.77 (4) N2---C8---C9 121.48 (12) O1---Zr1---N1^i^ 137.80 (3) N2---C8---C11 112.92 (11) O3^i^---Zr1---N1^i^ 66.91 (4) C9---C8---C11 125.59 (11) O3---Zr1---N1^i^ 68.96 (4) O6---C11---O5 126.19 (12) N2---Zr1---N1^i^ 121.11 (3) O6---C11---C8 120.34 (12) N1---Zr1---N1^i^ 117.79 (5) O5---C11---C8 113.43 (10) C5---N1---C1 120.19 (11) C10---C9---C8 117.95 (14) C5---N1---Zr1 119.72 (8) C10---C9---H9 121.0 C1---N1---Zr1 120.07 (8) C8---C9---H9 121.0 N1---C5---C4 121.64 (13) C9---C10---C9^i^ 120.45 (19) N1---C5---C7 112.91 (10) C9---C10---H10 119.8 C4---C5---C7 125.46 (12) C9^i^---C10---H10 119.8 N1---C1---C2 121.68 (12) O4---C7---O3 125.20 (13) N1---C1---C6 112.04 (10) O4---C7---C5 120.70 (12) C2---C1---C6 126.27 (12) O3---C7---C5 114.10 (10) C3---C2---C1 118.30 (14) C7---O3---Zr1 126.28 (8) C3---C2---H2 120.9 H7A---O7---H7B 103 (3) O5---Zr1---N1---C5 −137.47 (8) C2---C1---C6---O1 174.88 (12) O5^i^---Zr1---N1---C5 86.13 (9) O5---Zr1---N2---C8 −2.02 (7) O1^i^---Zr1---N1---C5 38.83 (11) O5^i^---Zr1---N2---C8 177.98 (7) O1---Zr1---N1---C5 −179.67 (9) O1^i^---Zr1---N2---C8 −96.24 (7) O3^i^---Zr1---N1---C5 −93.76 (9) O1---Zr1---N2---C8 83.76 (7) O3---Zr1---N1---C5 1.82 (8) O3^i^---Zr1---N2---C8 37.42 (7) N2---Zr1---N1---C5 133.57 (8) O3---Zr1---N2---C8 −142.58 (7) N1^i^---Zr1---N1---C5 −46.43 (8) N1---Zr1---N2---C8 129.04 (7) O5---Zr1---N1---C1 40.43 (11) N1^i^---Zr1---N2---C8 −50.96 (7) O5^i^---Zr1---N1---C1 −95.97 (9) O5---Zr1---N2---C8^i^ 177.98 (7) O1^i^---Zr1---N1---C1 −143.27 (8) O5^i^---Zr1---N2---C8^i^ −2.02 (7) O1---Zr1---N1---C1 −1.77 (8) O1^i^---Zr1---N2---C8^i^ 83.76 (7) O3^i^---Zr1---N1---C1 84.14 (9) O1---Zr1---N2---C8^i^ −96.24 (7) O3---Zr1---N1---C1 179.72 (10) O3^i^---Zr1---N2---C8^i^ −142.58 (7) N2---Zr1---N1---C1 −48.53 (9) O3---Zr1---N2---C8^i^ 37.42 (7) N1^i^---Zr1---N1---C1 131.47 (9) N1---Zr1---N2---C8^i^ −50.96 (7) C1---N1---C5---C4 −0.84 (18) N1^i^---Zr1---N2---C8^i^ 129.04 (7) Zr1---N1---C5---C4 177.05 (10) O5^i^---Zr1---O5---C11 1.94 (9) C1---N1---C5---C7 178.88 (10) O1^i^---Zr1---O5---C11 72.24 (10) Zr1---N1---C5---C7 −3.22 (13) O1---Zr1---O5---C11 −71.27 (10) C5---N1---C1---C2 1.35 (18) O3^i^---Zr1---O5---C11 −151.55 (11) Zr1---N1---C1---C2 −176.54 (10) O3---Zr1---O5---C11 139.09 (10) C5---N1---C1---C6 −177.21 (10) N2---Zr1---O5---C11 1.94 (9) Zr1---N1---C1---C6 4.90 (13) N1---Zr1---O5---C11 −110.25 (10) N1---C1---C2---C3 −0.5 (2) N1^i^---Zr1---O5---C11 138.93 (11) C6---C1---C2---C3 177.80 (13) C8^i^---N2---C8---C9 0.92 (11) N1---C5---C4---C3 −0.4 (2) Zr1---N2---C8---C9 −179.08 (11) C7---C5---C4---C3 179.87 (13) C8^i^---N2---C8---C11 −178.02 (11) C1---C2---C3---C4 −0.8 (2) Zr1---N2---C8---C11 1.98 (11) C5---C4---C3---C2 1.2 (2) Zr1---O5---C11---O6 −179.35 (11) C16---N3---C12---N4 179.94 (16) Zr1---O5---C11---C8 −1.59 (15) C16---N3---C12---C13 0.3 (2) N2---C8---C11---O6 177.52 (11) C12---N3---C16---C15 −0.3 (2) C9---C8---C11---O6 −1.4 (2) C12---N3---C16---C17 179.07 (16) N2---C8---C11---O5 −0.38 (15) N4---C12---C13---C14 −179.53 (18) C9---C8---C11---O5 −179.28 (14) N3---C12---C13---C14 0.1 (2) N2---C8---C9---C10 −1.8 (2) N3---C16---C15---C14 0.0 (3) C11---C8---C9---C10 177.02 (11) C17---C16---C15---C14 −179.37 (19) C8---C9---C10---C9^i^ 0.86 (10) C12---C13---C14---C15 −0.4 (3) N1---C5---C7---O4 −176.83 (11) C16---C15---C14---C13 0.4 (3) C4---C5---C7---O4 2.9 (2) O5---Zr1---O1---C6 −154.09 (10) N1---C5---C7---O3 3.20 (15) O5^i^---Zr1---O1---C6 68.45 (10) C4---C5---C7---O3 −177.09 (12) O1^i^---Zr1---O1---C6 135.95 (10) O4---C7---O3---Zr1 178.19 (10) O3^i^---Zr1---O1---C6 −74.53 (10) C5---C7---O3---Zr1 −1.84 (14) O3---Zr1---O1---C6 −0.71 (12) O5---Zr1---O3---C7 135.01 (9) N2---Zr1---O1---C6 135.95 (10) O5^i^---Zr1---O3---C7 −74.37 (10) N1---Zr1---O1---C6 −2.60 (9) O1^i^---Zr1---O3---C7 −155.43 (10) N1^i^---Zr1---O1---C6 −108.97 (10) O1---Zr1---O3---C7 −1.71 (12) Zr1---O1---C6---O2 −172.23 (10) O3^i^---Zr1---O3---C7 68.68 (9) Zr1---O1---C6---C1 5.94 (15) N2---Zr1---O3---C7 −111.32 (9) N1---C1---C6---O2 171.61 (12) N1---Zr1---O3---C7 0.18 (9) C2---C1---C6---O2 −6.9 (2) N1^i^---Zr1---O3---C7 135.18 (10) N1---C1---C6---O1 −6.64 (15) ----------------------- -------------- -------------------------- -------------- ::: Symmetry codes: (i) −*x*+1, *y*, −*z*+3/2. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3437 .table-wrap} -------------------- ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O7---H7B···O3 0.87 (4) 2.09 (4) 2.938 (2) 164 (3) O7---H7A···O6^ii^ 0.82 (3) 2.14 (3) 2.9568 (19) 173 (3) N4---H4B···O1^i^ 0.86 (2) 2.57 (2) 3.1755 (18) 127.6 (17) N4---H4B···O7 0.86 (2) 2.28 (2) 3.027 (3) 144.1 (18) N4---H4A···O4^iii^ 0.82 (2) 2.05 (2) 2.861 (2) 168 (2) N3---H3A···O2^i^ 0.91 (2) 1.91 (2) 2.8194 (18) 175.1 (18) -------------------- ---------- ---------- ------------- --------------- ::: Symmetry codes: (ii) *x*+1/2, *y*−1/2, *z*; (i) −*x*+1, *y*, −*z*+3/2; (iii) −*x*+3/2, *y*+1/2, −*z*+3/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- ---------- ---------- ------------- ------------- O7---H7*B*⋯O3 0.87 (4) 2.09 (4) 2.938 (2) 164 (3) O7---H7*A*⋯O6^i^ 0.82 (3) 2.14 (3) 2.9568 (19) 173 (3) N4---H4*B*⋯O1^ii^ 0.86 (2) 2.57 (2) 3.1755 (18) 127.6 (17) N4---H4*B*⋯O7 0.86 (2) 2.28 (2) 3.027 (3) 144.1 (18) N4---H4*A*⋯O4^iii^ 0.82 (2) 2.05 (2) 2.861 (2) 168 (2) N3---H3*A*⋯O2^ii^ 0.91 (2) 1.91 (2) 2.8194 (18) 175.1 (18) Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:18.072244
2011-2-02
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052039/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 2; 67(Pt 3):m294", "authors": [ { "first": "Hoda", "last": "Pasdar" }, { "first": "Ali", "last": "Ebdam" }, { "first": "Hossein", "last": "Aghabozorg" }, { "first": "Behrouz", "last": "Notash" } ] }
PMC3052040
Related literature {#sec1} ================== For background to the electronic and photophysical properties of 2,4,5-triaryl­imidazoles, see: Valiyev *et al.* (2007[@bb6]). For the synthetic procedure, see: Liu *et al.* (2006[@bb3]). For related structures, see: Fridman *et al.* (2009[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~27~H~21~N~3~O~2~·2H~2~O*M* *~r~* = 455.50Triclinic,*a* = 8.4976 (16) Å*b* = 9.0263 (17) Å*c* = 16.421 (3) Åα = 83.536 (2)°β = 79.821 (2)°γ = 71.089 (2)°*V* = 1170.7 (4) Å^3^*Z* = 2Mo *K*α radiationμ = 0.09 mm^−1^*T* = 296 K0.30 × 0.28 × 0.24 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 2004[@bb4]) *T* ~min~ = 0.962, *T* ~max~ = 0.9695922 measured reflections4048 independent reflections3010 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.024 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.048*wR*(*F* ^2^) = 0.134*S* = 1.034048 reflections326 parameters9 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.31 e Å^−3^Δρ~min~ = −0.28 e Å^−3^ {#d5e535} Data collection: *APEX2* (Bruker, 2004[@bb1]); cell refinement: *SAINT* (Bruker, 2004[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb5]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811006039/pv2361sup1.cif](http://dx.doi.org/10.1107/S1600536811006039/pv2361sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006039/pv2361Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006039/pv2361Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?pv2361&file=pv2361sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?pv2361sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?pv2361&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [PV2361](http://scripts.iucr.org/cgi-bin/sendsup?pv2361)). We are grateful to the Doctoral Program Foundation of the Natural Science Foundation of Guangdong Province, China (No. 5100430) for financial support. Comment ======= 2,4,5-Triarylimidazoles based on extended organic π systems have received increasing interest due to the intriguing electronic and photophysical properties (Valiyev *et al.*, 2007). As part of our on-going research interest in chemiluminescence compounds, the title compound was synthesized and its crystal structure determined as described herein. The molecular structure of the title compound is presented in Fig. 1. Three benzene rings attached to the heterocyclic imidazole ring are not coplanar with the latter, with dihedral angles of 14.8 (2)°, 31.4 (2)°, and 37.5 (2)°, respectively, between the benzene ring planes in the 2-, 4- and 5-positions of the imidazole ring. In the crystal packing, H~2~O molecules serve as connectors to form the three-dimensional packing *via* hydrogen bonds (Fig. 2, Tab. 1), including N---H···O, O---H···N, C---H···O and O---H···O hydrogen bonds. The crystal structures of several compounds related to the title molecule have been reported (Fridman *et al.*, 2009). Experimental {#experimental} ============ The title compound was prepared as reported earlier (Liu *et al.*, 2006). A mixture of 4-(4,5-diphenyl-1*H*-imidazol-2-yl)benzaldehyde (0.225 g, 0.69 mmol), ethyl 2-cyanoacetate (0.156 g, 2.1 mmol) and pyridine (2 ml) was stirred at room temperature for 10 h. The solution was poured into water (15 ml) and orange precipitate of the title compound formed immediately. The precipitate obtained was filtered, washed with water and dried. Single crystals of the title compound were obtained by slow evaporation from ethyl acetate at room temperature. Refinement {#refinement} ========== The H-atoms bonded to N and water molecules were located from a difference map and were included at restrained distances O---H = 0.82 (2) and N---H = 0.86 (2) Å. The rest of the H atoms were positioned in calculated positions with C---H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene type H-atoms and were refined using a riding model, with *U*~iso~(H) = 1.5 *U*~eq~(C) for methyl H atoms and *U*~iso~ = 1.2*U*~eq~ for others. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing the atom-labelling scheme and 50% probability Displacement ellipsoids. ::: ![](e-67-0o707-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Part view of the crystal structure, showing hydrogen bonds indicated by dashed lines. Hydrogen atoms not involved in H-bonds have been omitted for clarity. ::: ![](e-67-0o707-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e143 .table-wrap} --------------------------- --------------------------------------- C~27~H~21~N~3~O~2~·2H~2~O *Z* = 2 *M~r~* = 455.50 *F*(000) = 480 Triclinic, *P*1 *D*~x~ = 1.292 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.4976 (16) Å Cell parameters from 2029 reflections *b* = 9.0263 (17) Å θ = 2.4--24.2° *c* = 16.421 (3) Å µ = 0.09 mm^−1^ α = 83.536 (2)° *T* = 296 K β = 79.821 (2)° Block, red γ = 71.089 (2)° 0.30 × 0.28 × 0.24 mm *V* = 1170.7 (4) Å^3^ --------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e283 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII CCD diffractometer 4048 independent reflections Radiation source: fine-focus sealed tube 3010 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.024 φ and ω scans θ~max~ = 25.0°, θ~min~ = 2.4° Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) *h* = −10→10 *T*~min~ = 0.962, *T*~max~ = 0.969 *k* = −10→5 5922 measured reflections *l* = −18→19 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e400 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.048 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.134 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.057*P*)^2^ + 0.3479*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.03 (Δ/σ)~max~ \< 0.001 4048 reflections Δρ~max~ = 0.31 e Å^−3^ 326 parameters Δρ~min~ = −0.28 e Å^−3^ 9 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.049 (4) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e581 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e680 .table-wrap} ----- ------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N1 0.1176 (2) 0.5581 (2) 0.34629 (10) 0.0461 (4) N2 0.2308 (2) 0.30220 (19) 0.36163 (10) 0.0458 (4) C13 0.2002 (3) 0.4368 (2) 0.39524 (12) 0.0438 (5) C10 0.2495 (2) 0.4536 (2) 0.47340 (12) 0.0426 (5) C22 0.1701 (3) 0.2091 (2) 0.23943 (12) 0.0454 (5) C4 0.4029 (3) 0.6126 (3) 0.74019 (13) 0.0493 (5) C9 0.1825 (3) 0.5922 (2) 0.51442 (13) 0.0476 (5) H9 0.1019 0.6761 0.4923 0.057\* C8 0.2336 (3) 0.6071 (2) 0.58706 (13) 0.0499 (5) H8 0.1882 0.7013 0.6131 0.060\* C14 0.1657 (3) 0.3376 (2) 0.28845 (12) 0.0445 (5) C7 0.3527 (3) 0.4828 (2) 0.62223 (12) 0.0458 (5) O2 0.4180 (3) 0.7169 (2) 0.86022 (11) 0.0843 (6) C12 0.4155 (3) 0.3427 (2) 0.58202 (14) 0.0535 (6) H12 0.4921 0.2570 0.6055 0.064\* C5 0.3509 (3) 0.7711 (3) 0.70713 (14) 0.0532 (6) C11 0.3671 (3) 0.3284 (2) 0.50880 (14) 0.0528 (6) H11 0.4131 0.2345 0.4825 0.063\* C15 0.0948 (3) 0.4979 (2) 0.27737 (12) 0.0448 (5) C16 0.0128 (3) 0.6002 (2) 0.21090 (13) 0.0473 (5) C23 0.3001 (3) 0.0680 (2) 0.24136 (13) 0.0533 (6) H23 0.3865 0.0572 0.2715 0.064\* C26 0.0437 (3) 0.2198 (3) 0.19410 (15) 0.0570 (6) H26 −0.0445 0.3130 0.1919 0.068\* C17 −0.1236 (3) 0.7339 (2) 0.22837 (14) 0.0524 (6) H17 −0.1645 0.7595 0.2831 0.063\* N3 0.3101 (3) 0.8982 (3) 0.68135 (14) 0.0735 (6) C3 0.4488 (3) 0.5846 (3) 0.82517 (16) 0.0648 (7) C21 0.0700 (3) 0.5658 (3) 0.12820 (14) 0.0595 (6) H21 0.1614 0.4773 0.1152 0.071\* C20 −0.0064 (4) 0.6604 (3) 0.06561 (15) 0.0697 (7) H20 0.0333 0.6353 0.0108 0.084\* C27 0.1752 (3) −0.0438 (3) 0.15516 (15) 0.0655 (7) H27 0.1765 −0.1288 0.1275 0.079\* C18 −0.1989 (3) 0.8292 (3) 0.16464 (16) 0.0651 (7) H18 −0.2891 0.9191 0.1768 0.078\* C25 0.0461 (3) 0.0946 (3) 0.15209 (16) 0.0645 (7) H25 −0.0397 0.1041 0.1218 0.077\* C24 0.3018 (3) −0.0562 (3) 0.19897 (15) 0.0636 (7) H24 0.3902 −0.1494 0.2002 0.076\* O1 0.5041 (3) 0.4573 (3) 0.85780 (13) 0.1021 (8) C19 −0.1412 (4) 0.7919 (3) 0.08367 (17) 0.0717 (7) H19 −0.1932 0.8554 0.0412 0.086\* O1W 0.0015 (3) 0.8867 (2) 0.38559 (12) 0.0792 (6) O2W 0.2110 (3) 0.0132 (3) 0.44859 (16) 0.0886 (7) C1 0.5089 (4) 0.8081 (4) 0.96681 (13) 0.1127 (12) H1A 0.4386 0.9135 0.9565 0.169\* H1B 0.6168 0.7918 0.9330 0.169\* H1C 0.5229 0.7914 1.0242 0.169\* C2 0.4361 (4) 0.7061 (4) 0.94811 (13) 0.1250 (14) H2A 0.3257 0.7256 0.9813 0.150\* H2B 0.5032 0.6002 0.9629 0.150\* H2W 0.071 (4) 0.931 (4) 0.396 (2) 0.144 (17)\* H1W −0.065 (4) 0.952 (4) 0.357 (2) 0.128 (14)\* H3W 0.226 (4) 0.101 (4) 0.423 (2) 0.109 (12)\* H4W 0.168 (5) 0.031 (5) 0.496 (3) 0.145 (18)\* H1 0.088 (3) 0.659 (3) 0.3534 (15) 0.071 (8)\* C6 0.4077 (3) 0.4897 (3) 0.69979 (13) 0.0518 (5) H6 0.4542 0.3924 0.7262 0.062\* ----- ------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1457 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N1 0.0584 (11) 0.0352 (10) 0.0444 (10) −0.0135 (8) −0.0060 (8) −0.0072 (8) N2 0.0525 (10) 0.0375 (9) 0.0467 (10) −0.0127 (8) −0.0049 (8) −0.0077 (8) C13 0.0478 (11) 0.0381 (11) 0.0446 (11) −0.0136 (9) −0.0025 (9) −0.0054 (9) C10 0.0469 (11) 0.0395 (11) 0.0421 (11) −0.0152 (9) −0.0030 (9) −0.0048 (9) C22 0.0540 (12) 0.0395 (11) 0.0432 (11) −0.0165 (10) −0.0012 (9) −0.0078 (9) C4 0.0507 (12) 0.0489 (13) 0.0483 (12) −0.0128 (10) −0.0135 (10) −0.0018 (10) C9 0.0506 (12) 0.0399 (11) 0.0494 (12) −0.0075 (9) −0.0115 (9) −0.0037 (9) C8 0.0575 (13) 0.0401 (12) 0.0510 (13) −0.0090 (10) −0.0125 (10) −0.0102 (10) C14 0.0489 (12) 0.0401 (11) 0.0441 (11) −0.0139 (9) −0.0024 (9) −0.0083 (9) C7 0.0507 (12) 0.0415 (12) 0.0457 (12) −0.0146 (10) −0.0088 (9) −0.0014 (9) O2 0.1337 (17) 0.0820 (13) 0.0525 (10) −0.0434 (12) −0.0331 (11) −0.0062 (9) C12 0.0592 (13) 0.0409 (12) 0.0558 (13) −0.0066 (10) −0.0149 (11) −0.0013 (10) C5 0.0589 (14) 0.0530 (15) 0.0506 (13) −0.0149 (11) −0.0151 (11) −0.0111 (11) C11 0.0632 (14) 0.0361 (12) 0.0539 (13) −0.0069 (10) −0.0080 (11) −0.0087 (10) C15 0.0523 (12) 0.0395 (11) 0.0428 (11) −0.0147 (9) −0.0041 (9) −0.0067 (9) C16 0.0584 (13) 0.0410 (11) 0.0463 (12) −0.0192 (10) −0.0085 (10) −0.0061 (9) C23 0.0652 (14) 0.0421 (12) 0.0506 (12) −0.0120 (11) −0.0081 (10) −0.0089 (10) C26 0.0577 (14) 0.0511 (13) 0.0651 (14) −0.0188 (11) −0.0074 (11) −0.0126 (11) C17 0.0606 (14) 0.0440 (12) 0.0542 (13) −0.0170 (11) −0.0082 (10) −0.0074 (10) N3 0.0945 (17) 0.0497 (13) 0.0759 (15) −0.0122 (12) −0.0292 (12) −0.0064 (11) C3 0.0772 (17) 0.0685 (17) 0.0583 (15) −0.0290 (14) −0.0267 (13) 0.0015 (13) C21 0.0755 (16) 0.0504 (13) 0.0501 (13) −0.0155 (12) −0.0066 (11) −0.0094 (11) C20 0.103 (2) 0.0661 (17) 0.0465 (14) −0.0301 (16) −0.0181 (13) −0.0061 (12) C27 0.0919 (19) 0.0530 (15) 0.0589 (15) −0.0327 (14) −0.0016 (13) −0.0186 (12) C18 0.0670 (15) 0.0528 (14) 0.0757 (17) −0.0120 (12) −0.0241 (13) −0.0028 (12) C25 0.0711 (16) 0.0658 (16) 0.0677 (16) −0.0316 (14) −0.0135 (12) −0.0136 (13) C24 0.0846 (18) 0.0405 (13) 0.0599 (14) −0.0108 (12) −0.0067 (13) −0.0123 (11) O1 0.154 (2) 0.0779 (14) 0.0811 (14) −0.0278 (14) −0.0646 (14) 0.0158 (11) C19 0.0910 (19) 0.0665 (17) 0.0666 (17) −0.0261 (15) −0.0377 (15) 0.0044 (13) O1W 0.1181 (17) 0.0475 (11) 0.0756 (13) −0.0201 (11) −0.0391 (12) 0.0042 (9) O2W 0.136 (2) 0.0639 (13) 0.0736 (15) −0.0457 (13) −0.0134 (14) 0.0031 (11) C1 0.161 (3) 0.132 (3) 0.0659 (19) −0.063 (3) −0.031 (2) −0.017 (2) C2 0.214 (4) 0.151 (3) 0.0583 (18) −0.111 (3) −0.053 (2) 0.0087 (19) C6 0.0549 (13) 0.0468 (12) 0.0518 (13) −0.0113 (10) −0.0141 (10) 0.0015 (10) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2205 .table-wrap} ----------------------- -------------- ----------------------- ------------ N1---C13 1.357 (3) C23---C24 1.379 (3) N1---C15 1.378 (3) C23---H23 0.9300 N1---H1 0.88 (3) C26---C25 1.381 (3) N2---C13 1.321 (2) C26---H26 0.9300 N2---C14 1.373 (3) C17---C18 1.386 (3) C13---C10 1.456 (3) C17---H17 0.9300 C10---C9 1.391 (3) C3---O1 1.195 (3) C10---C11 1.393 (3) C21---C20 1.373 (3) C22---C26 1.385 (3) C21---H21 0.9300 C22---C23 1.391 (3) C20---C19 1.374 (4) C22---C14 1.471 (3) C20---H20 0.9300 C4---C6 1.342 (3) C27---C24 1.366 (4) C4---C5 1.427 (3) C27---C25 1.373 (4) C4---C3 1.487 (3) C27---H27 0.9300 C9---C8 1.373 (3) C18---C19 1.373 (4) C9---H9 0.9300 C18---H18 0.9300 C8---C7 1.393 (3) C25---H25 0.9300 C8---H8 0.9300 C24---H24 0.9300 C14---C15 1.380 (3) C19---H19 0.9300 C7---C12 1.394 (3) O1W---H2W 0.86 (4) C7---C6 1.446 (3) O1W---H1W 0.834 (18) O2---C3 1.314 (3) O2W---H3W 0.89 (4) O2---C2 1.46737 O2W---H4W 0.81 (4) C12---C11 1.369 (3) C1---C2 1.3504 C12---H12 0.9300 C1---H1A 0.9600 C5---N3 1.140 (3) C1---H1B 0.9600 C11---H11 0.9300 C1---H1C 0.9600 C15---C16 1.468 (3) C2---H2A 0.9700 C16---C17 1.392 (3) C2---H2B 0.9700 C16---C21 1.393 (3) C6---H6 0.9300 C13---N1---C15 108.19 (17) C25---C26---H26 119.4 C13---N1---H1 128.2 (16) C22---C26---H26 119.4 C15---N1---H1 123.5 (16) C18---C17---C16 120.3 (2) C13---N2---C14 106.65 (16) C18---C17---H17 119.8 N2---C13---N1 110.47 (18) C16---C17---H17 119.8 N2---C13---C10 124.99 (18) O1---C3---O2 124.4 (2) N1---C13---C10 124.53 (18) O1---C3---C4 124.1 (2) C9---C10---C11 118.36 (19) O2---C3---C4 111.5 (2) C9---C10---C13 121.92 (18) C20---C21---C16 121.1 (2) C11---C10---C13 119.73 (18) C20---C21---H21 119.5 C26---C22---C23 117.82 (19) C16---C21---H21 119.5 C26---C22---C14 122.29 (19) C21---C20---C19 120.3 (2) C23---C22---C14 119.80 (19) C21---C20---H20 119.9 C6---C4---C5 123.56 (19) C19---C20---H20 119.9 C6---C4---C3 118.9 (2) C24---C27---C25 119.6 (2) C5---C4---C3 117.5 (2) C24---C27---H27 120.2 C8---C9---C10 121.08 (19) C25---C27---H27 120.2 C8---C9---H9 119.5 C19---C18---C17 120.5 (2) C10---C9---H9 119.5 C19---C18---H18 119.8 C9---C8---C7 120.76 (19) C17---C18---H18 119.8 C9---C8---H8 119.6 C27---C25---C26 120.0 (2) C7---C8---H8 119.6 C27---C25---H25 120.0 N2---C14---C15 109.59 (17) C26---C25---H25 120.0 N2---C14---C22 119.24 (17) C27---C24---C23 120.8 (2) C15---C14---C22 131.02 (19) C27---C24---H24 119.6 C8---C7---C12 117.82 (19) C23---C24---H24 119.6 C8---C7---C6 123.33 (19) C18---C19---C20 119.8 (2) C12---C7---C6 118.79 (19) C18---C19---H19 120.1 C3---O2---C2 117.12 C20---C19---H19 120.1 C11---C12---C7 121.5 (2) H2W---O1W---H1W 107 (2) C11---C12---H12 119.2 H3W---O2W---H4W 109 (4) C7---C12---H12 119.2 C2---C1---H1A 109.5 N3---C5---C4 179.3 (2) C2---C1---H1B 109.5 C12---C11---C10 120.42 (19) H1A---C1---H1B 109.5 C12---C11---H11 119.8 C2---C1---H1C 109.5 C10---C11---H11 119.8 H1A---C1---H1C 109.5 N1---C15---C14 105.09 (18) H1B---C1---H1C 109.5 N1---C15---C16 121.59 (18) C1---C2---O2 113.40 C14---C15---C16 133.31 (19) C1---C2---H2A 108.9 C17---C16---C21 118.1 (2) O2---C2---H2A 108.9 C17---C16---C15 121.25 (19) C1---C2---H2B 108.9 C21---C16---C15 120.7 (2) O2---C2---H2B 108.9 C24---C23---C22 120.5 (2) H2A---C2---H2B 107.7 C24---C23---H23 119.7 C4---C6---C7 131.0 (2) C22---C23---H23 119.7 C4---C6---H6 114.5 C25---C26---C22 121.2 (2) C7---C6---H6 114.5 C14---N2---C13---N1 0.0 (2) N1---C15---C16---C17 −38.2 (3) C14---N2---C13---C10 −179.44 (19) C14---C15---C16---C17 143.4 (2) C15---N1---C13---N2 −0.3 (2) N1---C15---C16---C21 141.8 (2) C15---N1---C13---C10 179.10 (18) C14---C15---C16---C21 −36.7 (4) N2---C13---C10---C9 −165.5 (2) C26---C22---C23---C24 0.3 (3) N1---C13---C10---C9 15.2 (3) C14---C22---C23---C24 176.9 (2) N2---C13---C10---C11 14.7 (3) C23---C22---C26---C25 0.0 (3) N1---C13---C10---C11 −164.7 (2) C14---C22---C26---C25 −176.5 (2) C11---C10---C9---C8 1.5 (3) C21---C16---C17---C18 −0.1 (3) C13---C10---C9---C8 −178.4 (2) C15---C16---C17---C18 179.8 (2) C10---C9---C8---C7 −0.8 (3) C2---O2---C3---O1 −6.81 C13---N2---C14---C15 0.4 (2) C2---O2---C3---C4 171.99 C13---N2---C14---C22 −175.68 (18) C6---C4---C3---O1 6.8 (4) C26---C22---C14---N2 145.5 (2) C5---C4---C3---O1 −175.1 (3) C23---C22---C14---N2 −30.9 (3) C6---C4---C3---O2 −172.1 (2) C26---C22---C14---C15 −29.5 (3) C5---C4---C3---O2 6.0 (3) C23---C22---C14---C15 154.0 (2) C17---C16---C21---C20 −0.4 (4) C9---C8---C7---C12 −1.1 (3) C15---C16---C21---C20 179.7 (2) C9---C8---C7---C6 −178.1 (2) C16---C21---C20---C19 0.2 (4) C8---C7---C12---C11 2.3 (3) C16---C17---C18---C19 0.8 (4) C6---C7---C12---C11 179.4 (2) C24---C27---C25---C26 −0.8 (4) C6---C4---C5---N3 −166 (25) C22---C26---C25---C27 0.3 (4) C3---C4---C5---N3 16 (25) C25---C27---C24---C23 1.1 (4) C7---C12---C11---C10 −1.6 (3) C22---C23---C24---C27 −0.8 (4) C9---C10---C11---C12 −0.3 (3) C17---C18---C19---C20 −0.9 (4) C13---C10---C11---C12 179.6 (2) C21---C20---C19---C18 0.4 (4) C13---N1---C15---C14 0.5 (2) C3---O2---C2---C1 139.63 C13---N1---C15---C16 −178.30 (18) C5---C4---C6---C7 −5.9 (4) N2---C14---C15---N1 −0.5 (2) C3---C4---C6---C7 172.0 (2) C22---C14---C15---N1 174.9 (2) C8---C7---C6---C4 −21.8 (4) N2---C14---C15---C16 178.1 (2) C12---C7---C6---C4 161.2 (2) C22---C14---C15---C16 −6.5 (4) ----------------------- -------------- ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3271 .table-wrap} ---------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1···O1W 0.88 (3) 2.04 (3) 2.915 (3) 172 (2) O2W---H3W···N2 0.89 (4) 1.98 (4) 2.870 (3) 173 (3) C9---H9···O1W 0.93 2.48 3.338 (3) 154 C6---H6···O1 0.93 2.44 2.813 (3) 104 C2---H2B···O1 0.97 2.27 2.680 (3) 105 O1W---H2W···O2W^i^ 0.86 (4) 1.95 (2) 2.789 (3) 165 (4) O1W---H1W···N3^ii^ 0.83 (2) 2.24 (2) 3.034 (3) 159 (3) O2W---H4W···O1W^iii^ 0.81 (4) 2.25 (4) 3.041 (4) 167 (4) ---------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) *x*, *y*+1, *z*; (ii) −*x*, −*y*+2, −*z*+1; (iii) −*x*, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------------- ---------- ---------- ----------- ------------- N1---H1⋯O1*W* 0.88 (3) 2.04 (3) 2.915 (3) 172 (2) O2*W*---H3*W*⋯N2 0.89 (4) 1.98 (4) 2.870 (3) 173 (3) C9---H9⋯O1*W* 0.93 2.48 3.338 (3) 154 O1*W*---H2*W*⋯O2*W*^i^ 0.86 (4) 1.95 (2) 2.789 (3) 165 (4) O1*W*---H1*W*⋯N3^ii^ 0.83 (2) 2.24 (2) 3.034 (3) 159 (3) O2*W*---H4*W*⋯O1*W*^iii^ 0.81 (4) 2.25 (4) 3.041 (4) 167 (4) Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:18.079427
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052040/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):o707", "authors": [ { "first": "Wei-Xing", "last": "Liao" }, { "first": "Yi-Wen", "last": "Peng" }, { "first": "Li", "last": "Yu" }, { "first": "Xiao-Qing", "last": "Ning" }, { "first": "He-Ping", "last": "Zeng" } ] }
PMC3052041
Related literature {#sec1} ================== For analogous structures, see Koch *et al.* (1994[@bb4]); Porter *et al.* (1985[@bb5]). For the biological activity of naturally ocurring homoisoflavanones that possess a 3-benzyl-substituted chroman ring system, see: Zhang *et al.* (2008[@bb9]). For our work on the synthesis and characterization of natural products from this family of compounds in the search for new medical agents, see: Shaikh *et al.* (2011[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~18~H~20~O~4~*M* *~r~* = 300.34Monoclinic,*a* = 9.870 (5) Å*b* = 11.211 (6) Å*c* = 14.603 (7) Åβ = 107.072 (7)°*V* = 1544.6 (13) Å^3^*Z* = 4Mo *K*α radiationμ = 0.09 mm^−1^*T* = 100 K0.37 × 0.24 × 0.20 mm ### Data collection {#sec2.1.2} Bruker Kappa DUO APEXII diffractometer12055 measured reflections3882 independent reflections3369 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.021 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.037*wR*(*F* ^2^) = 0.100*S* = 1.043882 reflections203 parameters1 restraintH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.38 e Å^−3^Δρ~min~ = −0.21 e Å^−3^ {#d5e387} Data collection: *APEX2* (Bruker, 2006[@bb2]); cell refinement: *SAINT* (Bruker, 2006[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009[@bb3]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811002066/pb2047sup1.cif](http://dx.doi.org/10.1107/S1600536811002066/pb2047sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002066/pb2047Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002066/pb2047Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?pb2047&file=pb2047sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?pb2047sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?pb2047&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [PB2047](http://scripts.iucr.org/cgi-bin/sendsup?pb2047)). The authors would like to thank Dr Hong Su (University of Capetown) for the data collection and structure refinement. Comment ======= Naturally ocurring homoisoflavanones that posses a 3-benzyl-substituted chroman ring system as a common framework have been isolated from a wide range of natural sources and exhibit a variety of biological activities (Zhang *et al.*, 2008). We recently have been involved in the synthesis and characterization of natural products from this family of compounds in the search for new medical agents (Shaikh *et al.*, 2011). The title compound is an intermediate step in the synthesis of 5,7 dimethoxy-3-benzyl-4-chroman-none. There a few analogous structures of chroman alcohols bearing a benzyl ring found in the literature. The two closest have the 5,7 dimethoxy moieties, where one is a biphenyl derivative with an alkylated ketone at the 4 position (Koch *et al.*,1994) the other has a phenyl group at the 2 position but no alcohol functionality (Porter *et al.*, 1985). Here we report the first example where a chroman-ol benzyl derivative (Fig. 1) that demonstrates hydrogen bonding in the solid state. This intermolecular hydrogen bond O2---H---O1 (2.8366 Å) holds the structure in two parallel plains (Fig. 2). The intermolecular distances between the ring centroids are all greater than 6 Å suggesting that there is no π -stacking. Experimental {#experimental} ============ To a solution of 5,7-dimethoxy-3-(benzyl)-4-chromanone (1.0 g, 3.3 mmol) in anhydrous MeOH (15 ml), NaBH~4~ (0.38 g, 10.0 mmol) was added portionwise at a temperature of 0 °C under a nitrogen atmosphere. The mixture was then allowed to reach room temperature and stirred for 1 h. The reaction mixture was quenched with water and extracted with ethyl acetate (3 *x* 30 ml). The organic layer was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure to produce a viscous oil mixture. The residue obtained after evaporation of the solvent was chromatographed over a silica gel column using mixture of ethyl acetate/hexane (30:70) as eluent product to yield of 88% (0.88 g). Off-white solid; m.p. 118--121 °C. The title compound was recrystalized from a solution of ethyl acetate/hexane (30:70) at room temperature. ^1^H NMR (400 MHz, CDCl~3~, δ, p.p.m.): 7.33--7.26 (m, 5H), 6.02 (d, *J*=2.20 Hz, 1H), 6.00 (d, *J*=2.20 Hz, 1H), 4.70 (d, *J*=2.40 Hz, 1H), 4.02 (dd, *J*=3.68, 6.20 Hz, 2H), 3.77 (s, 3H), 3.73 (s, 3H), 2.95 (dd, *J*=8.08, 8.12 Hz, 1H), 2.66 (dd, *J*=7.44, 7.44 Hz, 1H). ^13^C NMR (100 MHz, CDCl~3~, δ, p.p.m.): 161.1, 159.2, 155.9, 139.6, 129.1, 128.4, 126.1, 106.7, 93.0, 91.4, 65.2, 59.6, 55.4, 55.3, 40.0, 32.9. IR: 3501, 2946, 1592, 1453, 1304, 1200, 1052. HRMS (EI): Calcd for C~18~H~20~O~4~Na 323.1254, found 323.1271. Refinement {#refinement} ========== Single-crystal X-ray diffraction data were collected on a Bruker *KAPPA APEX* II DUO diffractometer using graphite-monochromated Mo---Ka radiation (c = 0.71073 Å). Data collection was carried out at 100 (2) K. Temperature was controlled by an Oxford Cryostream cooling system (Oxford Cryostat). Cell refinement and data reduction were performed using the program *SAINT* (Bruker, 2006). The data were scaled and empirical absorption corrections were performed using *SADABS* (Sheldrick, 1997). The structure was solved by direct methods using *SHELXS97* (Sheldrick, 2008) and refined by full-matrix least-squares methods based on F^2^ using *SHELXL97* (Sheldrick, 2008) and using the graphics interface program *X-SEED* (Barbour, 2001). All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except the hydroxyl hydrogen, were positioned geometrically with C---H distances ranging from 0.95 Å to 1.00 Å and refined as riding on their parent atoms, with *U*~iso~ (H) = 1.2 - 1.5 *U*~eq~ (C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structue of the title compound showing the numbering scheme. ::: ![](e-67-0o703-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Projection viewed along \[100\]. All hydrogen have been omitted for clarity. The hydrogen bonds are shown as dotted lines. ::: ![](e-67-0o703-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e202 .table-wrap} ------------------------- ---------------------------------------- C~18~H~20~O~4~ 1544.6(13) *M~r~* = 300.34 *D*~x~ = 1.292 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å *a* = 9.870 (5) Å Cell parameters from 12055 reflections *b* = 11.211 (6) Å θ = 2.2--28.5° *c* = 14.603 (7) Å µ = 0.09 mm^−1^ β = 107.072 (7)° *T* = 100 K *V* = 1544.6 (13) Å^3^ Needle, colourless *Z* = 4 0.37 × 0.24 × 0.20 mm *F*(000) = 640 ------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e329 .table-wrap} ------------------------------------------ -------------------------------------- Bruker Kappa DUO APEXII diffractometer 3369 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.021 graphite θ~max~ = 28.5°, θ~min~ = 2.2° 0.5° φ scans and ω scans *h* = −12→13 12055 measured reflections *k* = −15→14 3882 independent reflections *l* = −19→9 ------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e428 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.037 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.100 H atoms treated by a mixture of independent and constrained refinement *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0499*P*)^2^ + 0.5109*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3882 reflections (Δ/σ)~max~ \< 0.001 203 parameters Δρ~max~ = 0.38 e Å^−3^ 1 restraint Δρ~min~ = −0.21 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e585 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e684 .table-wrap} ------ --------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 −0.00588 (8) −0.11619 (7) 0.23516 (5) 0.01815 (17) O2 0.16950 (8) 0.17225 (7) 0.31067 (5) 0.01963 (17) H2O 0.1135 (16) 0.2376 (12) 0.2790 (11) 0.046 (5)\* O3 −0.32946 (8) 0.01390 (7) −0.06048 (5) 0.02129 (18) O4 0.08477 (8) 0.24224 (7) 0.08733 (5) 0.01719 (16) C1 0.10969 (11) −0.08620 (10) 0.31876 (7) 0.0177 (2) H1A 0.1427 −0.1592 0.3569 0.021\* H1B 0.0757 −0.0295 0.3591 0.021\* C2 0.23245 (10) −0.03074 (9) 0.29118 (7) 0.0150 (2) H2 0.2580 −0.0855 0.2448 0.018\* C3 0.18241 (10) 0.08729 (9) 0.23985 (7) 0.01346 (19) H3 0.2548 0.1163 0.2094 0.016\* C4 0.04340 (10) 0.06766 (9) 0.16310 (7) 0.01331 (19) C5 −0.04198 (10) −0.03082 (9) 0.16389 (7) 0.0144 (2) C6 −0.16888 (11) −0.05346 (9) 0.09140 (7) 0.0165 (2) H6 −0.2252 −0.1213 0.0942 0.020\* C7 −0.20927 (10) 0.02633 (10) 0.01570 (7) 0.0162 (2) C8 −0.12787 (11) 0.12749 (9) 0.01173 (7) 0.0163 (2) H8 −0.1576 0.1821 −0.0400 0.020\* C9 −0.00293 (10) 0.14667 (9) 0.08470 (7) 0.01417 (19) C10 0.36316 (11) −0.01853 (10) 0.37985 (7) 0.0185 (2) H10A 0.3408 0.0374 0.4259 0.022\* H10B 0.3851 −0.0972 0.4116 0.022\* C11 0.49155 (11) 0.02629 (10) 0.35418 (7) 0.0177 (2) C12 0.58336 (12) −0.05326 (11) 0.32883 (8) 0.0232 (2) H12 0.5668 −0.1366 0.3300 0.028\* C13 0.69930 (12) −0.01154 (14) 0.30172 (9) 0.0313 (3) H13 0.7614 −0.0666 0.2851 0.038\* C14 0.72403 (13) 0.11021 (14) 0.29902 (9) 0.0343 (3) H14 0.8024 0.1387 0.2800 0.041\* C15 0.63369 (13) 0.18964 (13) 0.32419 (9) 0.0307 (3) H15 0.6504 0.2730 0.3225 0.037\* C16 0.51859 (12) 0.14850 (11) 0.35193 (8) 0.0221 (2) H16 0.4578 0.2040 0.3695 0.027\* C17 −0.40947 (12) −0.09390 (11) −0.06520 (8) 0.0237 (2) H17A −0.4920 −0.0922 −0.1223 0.036\* H17B −0.4413 −0.1006 −0.0079 0.036\* H17C −0.3497 −0.1626 −0.0687 0.036\* C18 0.05036 (12) 0.31979 (10) 0.00542 (8) 0.0204 (2) H18A 0.1204 0.3841 0.0158 0.031\* H18B −0.0441 0.3540 −0.0037 0.031\* H18C 0.0512 0.2742 −0.0516 0.031\* ------ --------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1309 .table-wrap} ----- ------------ ------------ ------------ ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0173 (3) 0.0177 (4) 0.0169 (4) −0.0036 (3) 0.0012 (3) 0.0048 (3) O2 0.0239 (4) 0.0178 (4) 0.0151 (3) 0.0049 (3) 0.0025 (3) −0.0040 (3) O3 0.0182 (4) 0.0241 (4) 0.0173 (4) −0.0025 (3) −0.0014 (3) −0.0001 (3) O4 0.0204 (4) 0.0153 (4) 0.0148 (3) −0.0021 (3) 0.0037 (3) 0.0037 (3) C1 0.0165 (4) 0.0200 (5) 0.0151 (4) −0.0024 (4) 0.0022 (4) 0.0045 (4) C2 0.0148 (4) 0.0150 (5) 0.0150 (4) 0.0008 (4) 0.0043 (4) 0.0013 (4) C3 0.0149 (4) 0.0139 (5) 0.0116 (4) −0.0004 (3) 0.0039 (3) −0.0005 (3) C4 0.0143 (4) 0.0144 (5) 0.0116 (4) 0.0012 (4) 0.0043 (3) −0.0006 (3) C5 0.0158 (4) 0.0149 (5) 0.0132 (4) 0.0018 (4) 0.0056 (4) 0.0012 (4) C6 0.0154 (4) 0.0171 (5) 0.0172 (5) −0.0016 (4) 0.0053 (4) −0.0005 (4) C7 0.0146 (4) 0.0198 (5) 0.0132 (4) 0.0010 (4) 0.0028 (4) −0.0028 (4) C8 0.0189 (5) 0.0169 (5) 0.0125 (4) 0.0023 (4) 0.0038 (4) 0.0016 (4) C9 0.0169 (4) 0.0132 (4) 0.0136 (4) 0.0008 (4) 0.0062 (4) −0.0006 (4) C10 0.0165 (5) 0.0206 (5) 0.0169 (5) 0.0002 (4) 0.0025 (4) 0.0045 (4) C11 0.0146 (4) 0.0221 (5) 0.0133 (4) −0.0010 (4) −0.0009 (4) 0.0021 (4) C12 0.0199 (5) 0.0253 (6) 0.0217 (5) 0.0031 (4) 0.0020 (4) 0.0013 (4) C13 0.0180 (5) 0.0516 (8) 0.0235 (6) 0.0070 (5) 0.0047 (4) 0.0035 (5) C14 0.0173 (5) 0.0596 (9) 0.0227 (6) −0.0095 (6) 0.0006 (4) 0.0103 (6) C15 0.0269 (6) 0.0346 (7) 0.0238 (6) −0.0143 (5) −0.0033 (5) 0.0066 (5) C16 0.0212 (5) 0.0226 (6) 0.0187 (5) −0.0031 (4) −0.0003 (4) 0.0004 (4) C17 0.0187 (5) 0.0257 (6) 0.0234 (5) −0.0043 (4) 0.0011 (4) −0.0040 (4) C18 0.0269 (5) 0.0175 (5) 0.0169 (5) −0.0009 (4) 0.0066 (4) 0.0051 (4) ----- ------------ ------------ ------------ ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1734 .table-wrap} -------------------- -------------- ----------------------- -------------- O1---C5 1.3815 (13) C8---C9 1.3895 (14) O1---C1 1.4445 (13) C8---H8 0.9500 O2---C3 1.4389 (13) C10---C11 1.5091 (15) O2---H2O 0.952 (9) C10---H10A 0.9900 O3---C7 1.3746 (13) C10---H10B 0.9900 O3---C17 1.4342 (15) C11---C12 1.3966 (16) O4---C9 1.3708 (13) C11---C16 1.3981 (17) O4---C18 1.4365 (13) C12---C13 1.3967 (18) C1---C2 1.5176 (15) C12---H12 0.9500 C1---H1A 0.9900 C13---C14 1.389 (2) C1---H1B 0.9900 C13---H13 0.9500 C2---C3 1.5296 (15) C14---C15 1.384 (2) C2---C10 1.5423 (15) C14---H14 0.9500 C2---H2 1.0000 C15---C16 1.3919 (17) C3---C4 1.5113 (14) C15---H15 0.9500 C3---H3 1.0000 C16---H16 0.9500 C4---C5 1.3911 (15) C17---H17A 0.9800 C4---C9 1.4131 (14) C17---H17B 0.9800 C5---C6 1.4053 (15) C17---H17C 0.9800 C6---C7 1.3864 (15) C18---H18A 0.9800 C6---H6 0.9500 C18---H18B 0.9800 C7---C8 1.4009 (16) C18---H18C 0.9800 C5---O1---C1 116.13 (8) O4---C9---C4 114.56 (9) C3---O2---H2O 108.8 (10) C8---C9---C4 121.84 (9) C7---O3---C17 117.16 (9) C11---C10---C2 112.17 (9) C9---O4---C18 117.17 (8) C11---C10---H10A 109.2 O1---C1---C2 111.41 (9) C2---C10---H10A 109.2 O1---C1---H1A 109.3 C11---C10---H10B 109.2 C2---C1---H1A 109.3 C2---C10---H10B 109.2 O1---C1---H1B 109.3 H10A---C10---H10B 107.9 C2---C1---H1B 109.3 C12---C11---C16 118.44 (11) H1A---C1---H1B 108.0 C12---C11---C10 120.71 (10) C1---C2---C3 108.44 (8) C16---C11---C10 120.81 (10) C1---C2---C10 110.47 (9) C11---C12---C13 120.71 (12) C3---C2---C10 113.88 (9) C11---C12---H12 119.6 C1---C2---H2 108.0 C13---C12---H12 119.6 C3---C2---H2 108.0 C14---C13---C12 120.16 (12) C10---C2---H2 108.0 C14---C13---H13 119.9 O2---C3---C4 112.14 (8) C12---C13---H13 119.9 O2---C3---C2 107.73 (8) C15---C14---C13 119.50 (12) C4---C3---C2 109.25 (8) C15---C14---H14 120.3 O2---C3---H3 109.2 C13---C14---H14 120.3 C4---C3---H3 109.2 C14---C15---C16 120.57 (13) C2---C3---H3 109.2 C14---C15---H15 119.7 C5---C4---C9 116.84 (9) C16---C15---H15 119.7 C5---C4---C3 121.98 (9) C15---C16---C11 120.62 (12) C9---C4---C3 121.13 (9) C15---C16---H16 119.7 O1---C5---C4 122.22 (9) C11---C16---H16 119.7 O1---C5---C6 114.71 (9) O3---C17---H17A 109.5 C4---C5---C6 123.04 (9) O3---C17---H17B 109.5 C7---C6---C5 117.91 (10) H17A---C17---H17B 109.5 C7---C6---H6 121.0 O3---C17---H17C 109.5 C5---C6---H6 121.0 H17A---C17---H17C 109.5 O3---C7---C6 123.90 (10) H17B---C17---H17C 109.5 O3---C7---C8 114.69 (9) O4---C18---H18A 109.5 C6---C7---C8 121.41 (9) O4---C18---H18B 109.5 C9---C8---C7 118.96 (9) H18A---C18---H18B 109.5 C9---C8---H8 120.5 O4---C18---H18C 109.5 C7---C8---H8 120.5 H18A---C18---H18C 109.5 O4---C9---C8 123.60 (9) H18B---C18---H18C 109.5 C5---O1---C1---C2 −44.61 (12) O3---C7---C8---C9 −178.85 (9) O1---C1---C2---C3 63.83 (11) C6---C7---C8---C9 1.05 (15) O1---C1---C2---C10 −170.72 (8) C18---O4---C9---C8 −5.74 (14) C1---C2---C3---O2 73.15 (10) C18---O4---C9---C4 174.43 (8) C10---C2---C3---O2 −50.27 (11) C7---C8---C9---O4 179.55 (9) C1---C2---C3---C4 −48.90 (11) C7---C8---C9---C4 −0.63 (15) C10---C2---C3---C4 −172.32 (8) C5---C4---C9---O4 179.95 (8) O2---C3---C4---C5 −100.13 (11) C3---C4---C9---O4 −2.56 (13) C2---C3---C4---C5 19.23 (12) C5---C4---C9---C8 0.11 (14) O2---C3---C4---C9 82.51 (11) C3---C4---C9---C8 177.60 (9) C2---C3---C4---C9 −158.13 (9) C1---C2---C10---C11 175.01 (9) C1---O1---C5---C4 12.11 (13) C3---C2---C10---C11 −62.68 (12) C1---O1---C5---C6 −169.70 (9) C2---C10---C11---C12 −88.26 (12) C9---C4---C5---O1 178.06 (9) C2---C10---C11---C16 89.45 (12) C3---C4---C5---O1 0.59 (14) C16---C11---C12---C13 −0.11 (16) C9---C4---C5---C6 0.02 (14) C10---C11---C12---C13 177.66 (10) C3---C4---C5---C6 −177.45 (9) C11---C12---C13---C14 −0.46 (17) O1---C5---C6---C7 −177.79 (9) C12---C13---C14---C15 0.56 (18) C4---C5---C6---C7 0.38 (15) C13---C14---C15---C16 −0.10 (18) C17---O3---C7---C6 −5.93 (14) C14---C15---C16---C11 −0.48 (17) C17---O3---C7---C8 173.97 (9) C12---C11---C16---C15 0.57 (16) C5---C6---C7---O3 178.97 (9) C10---C11---C16---C15 −177.19 (10) C5---C6---C7---C8 −0.92 (15) -------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2558 .table-wrap} ------------------ ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O2---H2O···O1^i^ 0.95 (1) 1.93 (1) 2.8366 (15) 158.(2) ------------------ ---------- ---------- ------------- --------------- ::: Symmetry codes: (i) −*x*, *y*+1/2, −*z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ ---------- ---------- ------------- ------------- O2---H2*O*⋯O1^i^ 0.95 (1) 1.93 (1) 2.8366 (15) 158 (2) Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.087213
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052041/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o703", "authors": [ { "first": "Mahidansha M.", "last": "Shaikh" }, { "first": "Glenn E.M.", "last": "Maguire" }, { "first": "Hendrik G.", "last": "Kruger" }, { "first": "Karen", "last": "du Toit" } ] }
PMC3052042
Related literature {#sec1} ================== For the synthesis, luminescent properties and applications in catalysis of complexes bearing anilido--aldimine ligands, see: Liu *et al.* (2005[@bb2], 2006[@bb3]); Ren *et al.* (2007[@bb4]); Su *et al.* (2007[@bb8]); Yao *et al.* (2008[@bb9]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Zn(C~2~H~5~)(C~19~H~24~N~3~)\]*M* *~r~* = 388.84Monoclinic,*a* = 7.3664 (15) Å*b* = 13.849 (3) Å*c* = 20.296 (4) Åβ = 99.26 (3)°*V* = 2043.5 (7) Å^3^*Z* = 4Mo *K*α radiationμ = 1.21 mm^−1^*T* = 293 K0.23 × 0.21 × 0.19 mm ### Data collection {#sec2.1.2} Rigaku R-AXIS RAPID diffractometerAbsorption correction: multi-scan (*ABSCOR*; Higashi, 1995[@bb1]) *T* ~min~ = 0.768, *T* ~max~ = 0.80318874 measured reflections4571 independent reflections2619 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.116 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.071*wR*(*F* ^2^) = 0.189*S* = 0.964571 reflections231 parametersH-atom parameters constrainedΔρ~max~ = 0.98 e Å^−3^Δρ~min~ = −0.63 e Å^−3^ {#d5e401} Data collection: *RAPID-AUTO* (Rigaku, 1998[@bb5]); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002[@bb6]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb7]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005514/bh2336sup1.cif](http://dx.doi.org/10.1107/S1600536811005514/bh2336sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005514/bh2336Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005514/bh2336Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bh2336&file=bh2336sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bh2336sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bh2336&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BH2336](http://scripts.iucr.org/cgi-bin/sendsup?bh2336)). We thank the National Natural Science Foundation of China (grant Nos. 20772044 and 20674024). IMM is also grateful for support from Jilin University. Comment ======= Complexes bearing chelating anilido-aldimine ligands have recently attracted attention because such ligands have similar framework and combine the steric and electronic characteristics of β-diketiminate and salicyaldiminato ligands, which have been extensively researched in coordination chemistry and catalysis. We have recently reported the luminescent properties of a series of Al(III) (Liu *et al.*, 2005, 2006), Zn^II^ (Su *et al.*, 2007) and B(III) (Ren *et al.*, 2007) complexes with chelating anilido-aldimine ligands, and catalytic properties of Al(III) complexes (Yao *et al.*, 2008) for the polymerization of ε-caprolactone. Good results have been obtained. As a part of our study, the preparation and crystal structure of the title ethyl zinc complex bearing *N*,*N\'*,*N\'\'*-tridentate anilido-aldimine ligand is reported. In the complex (Fig. 1), the C7═N1 \[1.292 (6) Å\] bond length is comparable to those found in similar anilido-imine compounds (Su *et al.*, 2007). The bond distances Zn---N1 \[2.009 (3) Å\] and Zn---N3 \[2.004 (4) Å\] are similar to those in other anilido-aldimine zinc complexes. The pendant arm bond length Zn---N2 \[2.487 (4) Å\], in contrast, is longer than equivalent bonds found in other *N*,*N\'*,*O*-tridentate Schiff base Zn complexes. This may be due to the crowded environment in the metal center arising from the aryl group bonded to N3. The dihedral angle between the central benzene ring (C1···C6) and the benzene ring (C12···C17) is 86.05 (16)°. Experimental {#experimental} ============ The complex was synthesized according to the literature method (Su *et al.*, 2007). A solution of ZnEt~2~ (1.0 mol/*L*, 2.0 mmol) was added to a solution of the ligand (0.59 g, 2.0 mmol) in toluene (30 ml) at 273 K. After stirring for 24 h, the solution was evaporated to dryness and the resulting yellow powder was washed with hexane (Yield: 0.65 g, 90%). Anal. Calcd. for C~21~H~29~N~3~Zn (388.87): C 64.86, H 7.52, N 10.81%; Found: C 64.62, H 7.44, N 10.65%. Refinement {#refinement} ========== The C-bound H atoms were positioned geometrically with C---H = 0.93 (aromatic and imine carbon), 0.97 (methylene) and 0.96 Å (methyl), and allowed to ride on their parent atoms with *U*~iso~(H) = 1.2 (1.5 for methyl) *U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of the title complex, with displacement ellipsoids drawn at the 30% probability level. ::: ![](e-67-0m364-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e165 .table-wrap} ---------------------------------- ---------------------------------------- \[Zn(C~2~H~5~)(C~19~H~24~N~3~)\] *F*(000) = 824 *M~r~* = 388.84 *D*~x~ = 1.264 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 10491 reflections *a* = 7.3664 (15) Å θ = 6.2--54.9° *b* = 13.849 (3) Å µ = 1.21 mm^−1^ *c* = 20.296 (4) Å *T* = 293 K β = 99.26 (3)° Block, yellow *V* = 2043.5 (7) Å^3^ 0.23 × 0.21 × 0.19 mm *Z* = 4 ---------------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e299 .table-wrap} ------------------------------------------------------------- -------------------------------------- Rigaku R-AXIS RAPID diffractometer 4571 independent reflections Radiation source: fine-focus sealed tube 2619 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.116 ω scans θ~max~ = 27.5°, θ~min~ = 3.1° Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) *h* = −9→9 *T*~min~ = 0.768, *T*~max~ = 0.803 *k* = −16→17 18874 measured reflections *l* = −24→26 ------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e413 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.071 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.189 H-atom parameters constrained *S* = 0.96 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.097*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4571 reflections (Δ/σ)~max~ = 0.023 231 parameters Δρ~max~ = 0.98 e Å^−3^ 0 restraints Δρ~min~ = −0.63 e Å^−3^ 0 constraints ------------------------------------- ------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e573 .table-wrap} ------ ------------- ------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.7787 (7) 0.8763 (3) 0.8847 (2) 0.0497 (10) C2 0.7141 (7) 0.8858 (3) 0.8154 (2) 0.0558 (11) H2 0.7400 0.8373 0.7866 0.067\* C3 0.6141 (8) 0.9649 (4) 0.7893 (3) 0.0672 (14) H3 0.5740 0.9683 0.7435 0.081\* C4 0.5719 (8) 1.0393 (4) 0.8297 (3) 0.0671 (14) H4 0.5068 1.0931 0.8115 0.080\* C5 0.6275 (7) 1.0321 (3) 0.8964 (3) 0.0580 (12) H5 0.5944 1.0808 0.9237 0.070\* C6 0.7337 (6) 0.9537 (3) 0.9266 (2) 0.0483 (10) C7 0.7748 (7) 0.9542 (3) 0.9974 (2) 0.0512 (11) H7 0.7175 1.0017 1.0190 0.061\* C8 0.8819 (8) 0.8962 (3) 1.1069 (2) 0.0581 (12) H8A 0.8122 0.9508 1.1194 0.070\* H8B 1.0066 0.9005 1.1310 0.070\* C9 0.7926 (8) 0.8012 (3) 1.1237 (2) 0.0594 (12) H9A 0.7967 0.7965 1.1716 0.071\* H9B 0.6646 0.8003 1.1027 0.071\* C10 0.7658 (10) 0.6345 (4) 1.0890 (3) 0.090 (2) H10A 0.8310 0.5805 1.0745 0.135\* H10B 0.6627 0.6499 1.0554 0.135\* H10C 0.7229 0.6183 1.1299 0.135\* C11 1.0496 (9) 0.6923 (4) 1.1502 (3) 0.0737 (16) H11A 1.0089 0.6737 1.1910 0.111\* H11B 1.1306 0.7468 1.1584 0.111\* H11C 1.1138 0.6393 1.1339 0.111\* C12 0.9206 (7) 0.7257 (3) 0.8645 (2) 0.0505 (10) C13 0.8071 (8) 0.6443 (3) 0.8554 (2) 0.0580 (12) C14 0.8532 (8) 0.5707 (3) 0.8151 (2) 0.0662 (14) H14 0.7762 0.5174 0.8068 0.079\* C15 1.0110 (9) 0.5750 (3) 0.7871 (3) 0.0701 (16) H15 1.0435 0.5233 0.7621 0.084\* C16 1.1190 (9) 0.6548 (4) 0.7958 (2) 0.0667 (14) H16 1.2234 0.6577 0.7755 0.080\* C17 1.0774 (8) 0.7330 (3) 0.8347 (2) 0.0579 (12) C18 1.1964 (9) 0.8214 (4) 0.8426 (3) 0.0718 (15) H18A 1.1236 0.8770 0.8275 0.108\* H18B 1.2934 0.8144 0.8165 0.108\* H18C 1.2486 0.8294 0.8887 0.108\* C19 0.6367 (9) 0.6368 (4) 0.8876 (3) 0.0818 (17) H19A 0.5704 0.5792 0.8724 0.123\* H19B 0.5598 0.6921 0.8758 0.123\* H19C 0.6714 0.6342 0.9353 0.123\* C20 1.2613 (7) 0.7185 (3) 1.0170 (3) 0.0611 (12) H20A 1.3406 0.7502 0.9898 0.073\* H20B 1.3175 0.7252 1.0634 0.073\* C21 1.2474 (9) 0.6109 (3) 0.9989 (3) 0.0777 (16) H21A 1.1714 0.5788 1.0263 0.117\* H21B 1.3680 0.5827 1.0062 0.117\* H21C 1.1941 0.6038 0.9528 0.117\* N1 0.8827 (6) 0.8962 (2) 1.03518 (17) 0.0499 (9) N2 0.8894 (6) 0.7183 (2) 1.10019 (19) 0.0564 (10) N3 0.8810 (6) 0.8002 (2) 0.91016 (18) 0.0520 (9) Zn1 1.01743 (8) 0.78379 (3) 1.00320 (2) 0.0531 (2) ------ ------------- ------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1261 .table-wrap} ----- ------------ ------------- ------------ ------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.040 (3) 0.051 (2) 0.058 (3) 0.0013 (17) 0.007 (2) 0.0038 (17) C2 0.052 (3) 0.063 (2) 0.053 (3) 0.007 (2) 0.010 (2) 0.0040 (19) C3 0.055 (4) 0.080 (3) 0.066 (3) 0.017 (3) 0.008 (3) 0.021 (2) C4 0.052 (4) 0.068 (3) 0.083 (4) 0.021 (2) 0.018 (3) 0.023 (2) C5 0.045 (3) 0.052 (2) 0.079 (3) 0.0110 (19) 0.015 (2) 0.009 (2) C6 0.039 (3) 0.043 (2) 0.064 (3) 0.0028 (16) 0.011 (2) 0.0048 (17) C7 0.046 (3) 0.043 (2) 0.066 (3) 0.0022 (17) 0.012 (2) −0.0009 (18) C8 0.060 (4) 0.059 (3) 0.055 (3) 0.003 (2) 0.008 (2) −0.0090 (19) C9 0.060 (4) 0.064 (3) 0.056 (3) 0.006 (2) 0.015 (2) 0.002 (2) C10 0.100 (6) 0.065 (3) 0.106 (5) −0.013 (3) 0.016 (4) −0.008 (3) C11 0.076 (5) 0.084 (3) 0.058 (3) 0.022 (3) −0.001 (3) 0.006 (2) C12 0.051 (3) 0.050 (2) 0.048 (2) 0.0102 (18) 0.002 (2) 0.0017 (17) C13 0.057 (4) 0.057 (2) 0.056 (3) 0.010 (2) −0.001 (2) 0.0015 (19) C14 0.067 (4) 0.055 (3) 0.069 (3) 0.003 (2) −0.011 (3) −0.003 (2) C15 0.093 (5) 0.055 (3) 0.059 (3) 0.020 (3) 0.002 (3) −0.010 (2) C16 0.074 (4) 0.072 (3) 0.056 (3) 0.025 (3) 0.015 (3) 0.002 (2) C17 0.064 (4) 0.058 (3) 0.050 (3) 0.010 (2) 0.004 (2) 0.0031 (18) C18 0.065 (4) 0.073 (3) 0.078 (4) −0.002 (3) 0.016 (3) 0.000 (2) C19 0.065 (5) 0.081 (3) 0.096 (4) −0.004 (3) 0.003 (3) −0.001 (3) C20 0.051 (3) 0.069 (3) 0.061 (3) 0.014 (2) 0.002 (2) −0.004 (2) C21 0.073 (5) 0.066 (3) 0.089 (4) 0.018 (3) −0.001 (3) −0.003 (2) N1 0.050 (3) 0.0491 (18) 0.050 (2) 0.0020 (15) 0.0082 (17) −0.0017 (14) N2 0.056 (3) 0.056 (2) 0.056 (2) 0.0045 (17) 0.0019 (19) −0.0002 (16) N3 0.055 (3) 0.0526 (18) 0.047 (2) 0.0103 (16) 0.0023 (17) −0.0017 (14) Zn1 0.0500 (4) 0.0525 (3) 0.0541 (3) 0.0111 (2) 0.0003 (2) −0.0051 (2) ----- ------------ ------------- ------------ ------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1720 .table-wrap} ------------------- ----------- ------------------- ------------- C1---N3 1.349 (5) C12---C17 1.391 (7) C1---C2 1.417 (6) C12---C13 1.398 (7) C1---C6 1.441 (6) C12---N3 1.447 (5) C2---C3 1.376 (6) C13---C14 1.383 (6) C2---H2 0.9300 C13---C19 1.510 (8) C3---C4 1.384 (8) C14---C15 1.375 (8) C3---H3 0.9300 C14---H14 0.9300 C4---C5 1.353 (7) C15---C16 1.356 (8) C4---H4 0.9300 C15---H15 0.9300 C5---C6 1.418 (6) C16---C17 1.404 (6) C5---H5 0.9300 C16---H16 0.9300 C6---C7 1.419 (6) C17---C18 1.499 (7) C7---N1 1.292 (6) C18---H18A 0.9600 C7---H7 0.9300 C18---H18B 0.9600 C8---N1 1.457 (5) C18---H18C 0.9600 C8---C9 1.533 (6) C19---H19A 0.9600 C8---H8A 0.9700 C19---H19B 0.9600 C8---H8B 0.9700 C19---H19C 0.9600 C9---N2 1.471 (6) C20---C21 1.534 (6) C9---H9A 0.9700 Zn1---C20 1.991 (5) C9---H9B 0.9700 C20---H20A 0.9700 C10---N2 1.470 (7) C20---H20B 0.9700 C10---H10A 0.9600 C21---H21A 0.9600 C10---H10B 0.9600 C21---H21B 0.9600 C10---H10C 0.9600 C21---H21C 0.9600 C11---N2 1.472 (7) Zn1---N1 2.009 (3) C11---H11A 0.9600 Zn1---N2 2.487 (4) C11---H11B 0.9600 Zn1---N3 2.004 (4) C11---H11C 0.9600 N3---C1---C2 122.1 (4) C13---C14---H14 119.4 N3---C1---C6 121.5 (4) C16---C15---C14 119.9 (4) C2---C1---C6 116.4 (4) C16---C15---H15 120.0 C3---C2---C1 122.0 (4) C14---C15---H15 120.0 C3---C2---H2 119.0 C15---C16---C17 121.7 (5) C1---C2---H2 119.0 C15---C16---H16 119.1 C2---C3---C4 121.5 (5) C17---C16---H16 119.1 C2---C3---H3 119.3 C12---C17---C16 117.4 (5) C4---C3---H3 119.3 C12---C17---C18 121.7 (4) C5---C4---C3 118.5 (4) C16---C17---C18 120.9 (5) C5---C4---H4 120.8 C17---C18---H18A 109.5 C3---C4---H4 120.8 C17---C18---H18B 109.5 C4---C5---C6 123.1 (4) H18A---C18---H18B 109.5 C4---C5---H5 118.5 C17---C18---H18C 109.5 C6---C5---H5 118.5 H18A---C18---H18C 109.5 C5---C6---C7 116.6 (4) H18B---C18---H18C 109.5 C5---C6---C1 118.6 (4) C13---C19---H19A 109.5 C7---C6---C1 124.7 (4) C13---C19---H19B 109.5 N1---C7---C6 127.6 (4) H19A---C19---H19B 109.5 N1---C7---H7 116.2 C13---C19---H19C 109.5 C6---C7---H7 116.2 H19A---C19---H19C 109.5 N1---C8---C9 107.1 (4) H19B---C19---H19C 109.5 N1---C8---H8A 110.3 C21---C20---Zn1 112.5 (4) C9---C8---H8A 110.3 C21---C20---H20A 109.1 N1---C8---H8B 110.3 Zn1---C20---H20A 109.1 C9---C8---H8B 110.3 C21---C20---H20B 109.1 H8A---C8---H8B 108.6 Zn1---C20---H20B 109.1 N2---C9---C8 110.5 (4) H20A---C20---H20B 107.8 N2---C9---H9A 109.6 C20---C21---H21A 109.5 C8---C9---H9A 109.6 C20---C21---H21B 109.5 N2---C9---H9B 109.6 H21A---C21---H21B 109.5 C8---C9---H9B 109.6 C20---C21---H21C 109.5 H9A---C9---H9B 108.1 H21A---C21---H21C 109.5 N2---C10---H10A 109.5 H21B---C21---H21C 109.5 N2---C10---H10B 109.5 C7---N1---C8 119.6 (4) H10A---C10---H10B 109.5 C7---N1---Zn1 125.3 (3) N2---C10---H10C 109.5 C8---N1---Zn1 113.8 (3) H10A---C10---H10C 109.5 C10---N2---C9 110.2 (4) H10B---C10---H10C 109.5 C10---N2---C11 108.7 (4) N2---C11---H11A 109.5 C9---N2---C11 110.1 (4) N2---C11---H11B 109.5 C10---N2---Zn1 118.1 (3) H11A---C11---H11B 109.5 C9---N2---Zn1 103.7 (2) N2---C11---H11C 109.5 C11---N2---Zn1 105.7 (3) H11A---C11---H11C 109.5 C1---N3---C12 118.0 (4) H11B---C11---H11C 109.5 C1---N3---Zn1 127.9 (3) C17---C12---C13 121.4 (4) C12---N3---Zn1 113.6 (3) C17---C12---N3 119.6 (4) C20---Zn1---N3 119.23 (18) C13---C12---N3 118.8 (4) C20---Zn1---N1 142.01 (18) C14---C13---C12 118.3 (5) N3---Zn1---N1 91.01 (14) C14---C13---C19 120.3 (5) C20---Zn1---N2 99.88 (18) C12---C13---C19 121.3 (4) N3---Zn1---N2 126.21 (16) C15---C14---C13 121.1 (5) N1---Zn1---N2 75.94 (13) C15---C14---H14 119.4 ------------------- ----------- ------------------- ------------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: ----------- ----------- Zn1---C20 1.991 (5) Zn1---N1 2.009 (3) Zn1---N2 2.487 (4) Zn1---N3 2.004 (4) ----------- ----------- :::
PubMed Central
2024-06-05T04:04:18.093339
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052042/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):m364", "authors": [ { "first": "Mathurin", "last": "Issa-Madongo" }, { "first": "Ying", "last": "Mu" } ] }
PMC3052043
Related literature {#sec1} ================== For a related structure, see: Anilkumar *et al.* (2005[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~14~H~12~ClNO*M* *~r~* = 245.70Triclinic,*a* = 5.6500 (5) Å*b* = 7.3921 (8) Å*c* = 13.9769 (14) Åα = 98.588 (2)°β = 91.095 (1)°γ = 97.590 (1)°*V* = 571.70 (10) Å^3^*Z* = 2Mo *K*α radiationμ = 0.31 mm^−1^*T* = 298 K0.15 × 0.12 × 0.10 mm ### Data collection {#sec2.1.2} Bruker SMART APEX diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2005[@bb2]) *T* ~min~ = 0.954, *T* ~max~ = 0.9692924 measured reflections1971 independent reflections1238 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.032 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.061*wR*(*F* ^2^) = 0.178*S* = 1.031971 reflections154 parametersH-atom parameters constrainedΔρ~max~ = 0.44 e Å^−3^Δρ~min~ = −0.36 e Å^−3^ {#d5e308} Data collection: *APEX2* (Bruker, 2005[@bb2]); cell refinement: *SAINT* (Bruker, 2005[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb3]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811006404/ng5121sup1.cif](http://dx.doi.org/10.1107/S1600536811006404/ng5121sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006404/ng5121Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006404/ng5121Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ng5121&file=ng5121sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ng5121sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ng5121&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NG5121](http://scripts.iucr.org/cgi-bin/sendsup?ng5121)). Comment ======= The title compound, C~14~H~12~ClNO, is often used as catalyst for the polymerization of olefins and as a reactant in organic synthesis. The molecule of (I) is shown in Fig. 1. The bond lengths and angles are normal. The dihedral angle between the two benzene rings is 4.16 (1) °. The molecule is essentially planar, the r.m.s. deviation for all non-H atoms being 0.0372 Å. Experimental {#experimental} ============ The title compound was synthesized by the reaction of 4-chloroaniline (1 mmol, 127.6 mg) with 2-bromo-1-phenylethanone (1 mmol, 199.0 mg) in ethanol (20 ml) under reflux conditions (338 K) for 3 h. The solvent was removed and the solid product recrystallized from ethanol. After six days brown crystals were obtained that were suitable for X-ray diffraction study. Refinement {#refinement} ========== All H atoms were placed in idealized positions (C---H = 0.93--0.97 Å, N---H = 0.86 Å) and refined as riding atoms. For those bound to C, *U*~iso~(H) = 1.2 or 1.5 *U*~eq~(C) whereas for those bound to N, *U*~iso~(H) = 1.5 *U*~eq~(N). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of the title compound showing the atomic labeling and 30% probability displacement ellipsoids. ::: ![](e-67-0o710-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e115 .table-wrap} ------------------------ -------------------------------------- C~14~H~12~ClNO *Z* = 2 *M~r~* = 245.70 *F*(000) = 256 Triclinic, *P*1 *D*~x~ = 1.427 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 5.6500 (5) Å Cell parameters from 945 reflections *b* = 7.3921 (8) Å θ = 2.8--24.4° *c* = 13.9769 (14) Å µ = 0.31 mm^−1^ α = 98.588 (2)° *T* = 298 K β = 91.095 (1)° Block, brown γ = 97.590 (1)° 0.15 × 0.12 × 0.10 mm *V* = 571.70 (10) Å^3^ ------------------------ -------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e246 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEX diffractometer 1971 independent reflections Radiation source: fine-focus sealed tube 1238 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.032 φ and ω scans θ~max~ = 25.1°, θ~min~ = 2.8° Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *h* = −6→6 *T*~min~ = 0.954, *T*~max~ = 0.969 *k* = −7→8 2924 measured reflections *l* = −13→16 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e363 .table-wrap} ------------------------------------- ---------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.061 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.178 H-atom parameters constrained *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.1*P*)^2^ + 0.0005*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1971 reflections (Δ/σ)~max~ \< 0.001 154 parameters Δρ~max~ = 0.44 e Å^−3^ 0 restraints Δρ~min~ = −0.36 e Å^−3^ ------------------------------------- ---------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e520 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.\'s are takeninto account individually in the estimation of e.s.d.\'s in distances, anglesand torsion angles; correlations between e.s.d.\'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e629 .table-wrap} ----- --------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 −0.43122 (17) 0.65041 (13) 0.83483 (7) 0.0650 (4) N1 0.1395 (5) 0.7998 (4) 0.5053 (2) 0.0506 (8) H1 0.2852 0.8498 0.5179 0.061\* O1 0.4464 (4) 0.8715 (3) 0.37523 (18) 0.0598 (7) C1 0.0566 (6) 0.7594 (4) 0.4079 (2) 0.0413 (8) H1A −0.0764 0.8266 0.3988 0.050\* H1B −0.0005 0.6285 0.3920 0.050\* C2 0.2487 (6) 0.8107 (4) 0.3420 (2) 0.0415 (8) C3 0.1916 (5) 0.7858 (4) 0.2383 (2) 0.0405 (8) C4 −0.0282 (6) 0.7083 (4) 0.1998 (2) 0.0533 (9) H4 −0.1467 0.6676 0.2399 0.064\* C5 −0.0752 (7) 0.6900 (5) 0.1028 (3) 0.0706 (12) H5 −0.2255 0.6365 0.0769 0.085\* C6 0.0965 (8) 0.7495 (5) 0.0435 (3) 0.0737 (12) H6 0.0634 0.7377 −0.0228 0.088\* C7 0.3167 (8) 0.8265 (5) 0.0813 (3) 0.0700 (12) H7 0.4348 0.8671 0.0410 0.084\* C8 0.3635 (6) 0.8438 (4) 0.1780 (2) 0.0536 (10) H8 0.5146 0.8959 0.2036 0.064\* C9 0.0012 (5) 0.7637 (4) 0.5807 (2) 0.0363 (7) C10 0.0950 (6) 0.8121 (4) 0.6740 (2) 0.0424 (8) H10 0.2520 0.8695 0.6842 0.051\* C11 −0.0353 (6) 0.7783 (4) 0.7514 (2) 0.0446 (8) H11 0.0313 0.8129 0.8139 0.054\* C12 −0.2643 (6) 0.6932 (4) 0.7368 (2) 0.0412 (8) C13 −0.3618 (6) 0.6439 (4) 0.6462 (3) 0.0449 (8) H13 −0.5185 0.5854 0.6369 0.054\* C14 −0.2313 (6) 0.6795 (4) 0.5679 (2) 0.0445 (8) H14 −0.3004 0.6466 0.5057 0.053\* ----- --------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1043 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0711 (7) 0.0651 (7) 0.0599 (7) 0.0021 (5) 0.0184 (5) 0.0176 (5) N1 0.0441 (17) 0.0607 (19) 0.0426 (18) −0.0048 (14) 0.0015 (13) 0.0045 (14) O1 0.0500 (16) 0.0705 (18) 0.0540 (16) −0.0095 (13) −0.0005 (13) 0.0097 (13) C1 0.0433 (19) 0.0377 (19) 0.042 (2) 0.0048 (15) 0.0009 (16) 0.0047 (15) C2 0.044 (2) 0.0269 (17) 0.053 (2) 0.0003 (15) 0.0030 (17) 0.0074 (14) C3 0.050 (2) 0.0285 (17) 0.043 (2) 0.0070 (15) 0.0045 (16) 0.0044 (14) C4 0.054 (2) 0.060 (2) 0.044 (2) 0.0007 (18) 0.0003 (18) 0.0076 (17) C5 0.069 (3) 0.082 (3) 0.057 (3) 0.003 (2) −0.011 (2) 0.006 (2) C6 0.099 (4) 0.077 (3) 0.045 (2) 0.009 (3) −0.001 (2) 0.015 (2) C7 0.091 (3) 0.062 (3) 0.057 (3) −0.003 (2) 0.020 (2) 0.018 (2) C8 0.063 (2) 0.044 (2) 0.051 (2) −0.0021 (17) 0.0072 (18) 0.0044 (16) C9 0.0419 (18) 0.0278 (17) 0.0393 (19) 0.0074 (14) 0.0003 (15) 0.0032 (13) C10 0.0364 (17) 0.0358 (19) 0.053 (2) −0.0030 (14) −0.0031 (16) 0.0059 (15) C11 0.050 (2) 0.044 (2) 0.0389 (19) 0.0025 (16) −0.0033 (16) 0.0058 (15) C12 0.046 (2) 0.0348 (18) 0.045 (2) 0.0078 (15) 0.0086 (16) 0.0104 (14) C13 0.0369 (18) 0.041 (2) 0.054 (2) −0.0004 (15) 0.0013 (16) 0.0021 (16) C14 0.043 (2) 0.048 (2) 0.0388 (19) 0.0025 (16) −0.0054 (16) −0.0010 (15) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1370 .table-wrap} ------------------- ------------ ----------------------- ------------ Cl1---C12 1.723 (3) C6---C7 1.360 (5) N1---C9 1.361 (4) C6---H6 0.9300 N1---C1 1.407 (4) C7---C8 1.356 (5) N1---H1 0.8600 C7---H7 0.9300 O1---C2 1.204 (4) C8---H8 0.9300 C1---C2 1.485 (4) C9---C14 1.374 (4) C1---H1A 0.9700 C9---C10 1.376 (5) C1---H1B 0.9700 C10---C11 1.355 (4) C2---C3 1.457 (4) C10---H10 0.9300 C3---C4 1.362 (4) C11---C12 1.359 (5) C3---C8 1.367 (4) C11---H11 0.9300 C4---C5 1.360 (4) C12---C13 1.350 (5) C4---H4 0.9300 C13---C14 1.370 (4) C5---C6 1.359 (4) C13---H13 0.9300 C5---H5 0.9300 C14---H14 0.9300 C9---N1---C1 123.4 (3) C8---C7---C6 119.8 (3) C9---N1---H1 118.3 C8---C7---H7 120.1 C1---N1---H1 118.3 C6---C7---H7 120.1 N1---C1---C2 111.2 (3) C7---C8---C3 120.9 (3) N1---C1---H1A 109.4 C7---C8---H8 119.6 C2---C1---H1A 109.4 C3---C8---H8 119.6 N1---C1---H1B 109.4 N1---C9---C14 122.6 (3) C2---C1---H1B 109.4 N1---C9---C10 119.6 (3) H1A---C1---H1B 108.0 C14---C9---C10 117.8 (3) O1---C2---C3 121.9 (3) C11---C10---C9 121.8 (3) O1---C2---C1 119.4 (3) C11---C10---H10 119.1 C3---C2---C1 118.7 (3) C9---C10---H10 119.1 C4---C3---C8 119.0 (3) C10---C11---C12 119.3 (3) C4---C3---C2 122.2 (3) C10---C11---H11 120.3 C8---C3---C2 118.9 (3) C12---C11---H11 120.3 C5---C4---C3 120.3 (3) C13---C12---C11 120.4 (3) C5---C4---H4 119.9 C13---C12---Cl1 120.0 (3) C3---C4---H4 119.9 C11---C12---Cl1 119.6 (3) C6---C5---C4 120.3 (4) C12---C13---C14 120.4 (3) C6---C5---H5 119.9 C12---C13---H13 119.8 C4---C5---H5 119.9 C14---C13---H13 119.8 C5---C6---C7 119.9 (4) C13---C14---C9 120.3 (3) C5---C6---H6 120.1 C13---C14---H14 119.9 C7---C6---H6 120.1 C9---C14---H14 119.9 C9---N1---C1---C2 −178.9 (3) C2---C3---C8---C7 −178.8 (3) N1---C1---C2---O1 2.6 (4) C1---N1---C9---C14 1.8 (5) N1---C1---C2---C3 −177.4 (2) C1---N1---C9---C10 −178.3 (3) O1---C2---C3---C4 176.5 (3) N1---C9---C10---C11 −179.7 (3) C1---C2---C3---C4 −3.5 (4) C14---C9---C10---C11 0.1 (5) O1---C2---C3---C8 −4.2 (4) C9---C10---C11---C12 0.5 (5) C1---C2---C3---C8 175.8 (2) C10---C11---C12---C13 −0.4 (5) C8---C3---C4---C5 −0.3 (2) C10---C11---C12---Cl1 −179.8 (2) C2---C3---C4---C5 179.0 (3) C11---C12---C13---C14 −0.2 (5) C3---C4---C5---C6 −0.2 (2) Cl1---C12---C13---C14 179.2 (2) C4---C5---C6---C7 0.5 (4) C12---C13---C14---C9 0.8 (5) C5---C6---C7---C8 −0.2 (5) N1---C9---C14---C13 179.0 (3) C6---C7---C8---C3 −0.4 (5) C10---C9---C14---C13 −0.8 (5) C4---C3---C8---C7 0.6 (4) ------------------- ------------ ----------------------- ------------ :::
PubMed Central
2024-06-05T04:04:18.098482
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052043/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):o710", "authors": [ { "first": "Xing-Jun", "last": "Yao" }, { "first": "Qian", "last": "Yuan" } ] }
PMC3052044
Related literature {#sec1} ================== For general background to azo compounds, see: Russ & Tappe (1994[@bb8]); Tsuda *et al.* (2000[@bb11]). For bond-length data, see: Allen *et al.* (1987[@bb2]); Deveci *et al.* (2005[@bb3]); Karadayı *et al.*, (2006[@bb7]); El-Ghamry *et al.* (2008[@bb4]); Albayrak *et al.*, 2009[@bb1]; Yazıcı *et al.* (2010[@bb12]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~17~H~18~N~2~O~2~*M* *~r~* = 282.33Monoclinic,*a* = 14.8315 (5) Å*b* = 7.5573 (2) Å*c* = 13.5020 (4) Åβ = 102.578 (3)°*V* = 1477.07 (8) Å^3^*Z* = 4Mo *K*α radiationμ = 0.08 mm^−1^*T* = 150 K0.75 × 0.47 × 0.21 mm ### Data collection {#sec2.1.2} Stoe IPDS II diffractometerAbsorption correction: integration (*X-RED32*; Stoe & Cie, 2002[@bb10]) *T* ~min~ = 0.946, *T* ~max~ = 0.98421625 measured reflections3054 independent reflections2680 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.039 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.035*wR*(*F* ^2^) = 0.097*S* = 1.043054 reflections195 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.21 e Å^−3^Δρ~min~ = −0.16 e Å^−3^ {#d5e444} Data collection: *X-AREA* (Stoe & Cie, 2002[@bb10]); cell refinement: *X-AREA*; data reduction: *X-RED32* (Stoe & Cie, 2002[@bb10]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb5]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004910/bh2335sup1.cif](http://dx.doi.org/10.1107/S1600536811004910/bh2335sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004910/bh2335Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004910/bh2335Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bh2335&file=bh2335sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bh2335sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bh2335&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BH2335](http://scripts.iucr.org/cgi-bin/sendsup?bh2335)). The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund). Comment ======= Azo colorants, which are characterized by one or more azo bonds, are the most versatile class of dyes. They are used in textiles, printing, cosmetics, drugs and other consumer goods (Russ & Tappe, 1994; Tsuda *et al.*, 2000). A view of a molecule of the title compound, together with the atom-numbering scheme, is shown in Fig. 1. The title molecule adopts the *E* configuration with respect to N═N bridge and the C1---N1---N2---C9 torsion angle is -178.33 (8)°. The *A*/*B* and *B*/*C* dihedral angles between the *A* (C1···C6), *B* (C9···14) and *C* (C12/C15/C16/C17) fragments are 10.39 (4) and 76.04 (8)°, respectively. The N1---C1 and N2---C9 bond lengths of 1.4203 (12) and 1.4271 (12) Å, respectively, indicate single-bond character, whereas the N1---N2 bond length of 1.2572 (12) Å indicates double-bond character. In the molecule, all bond lengths are in good agreement with those reported for other azo compounds (Allen *et al.*, 1987; Deveci *et al.*, 2005; El-Ghamry *et al.*, 2008; Albayrak *et al.*, 2009; Yazıcı *et al.*, 2010; Karadayı *et al.*, 2006). There is a strong intra-molecular hydrogen bond of 2.5365 (13) Å between atoms O1 and O2. The crystal packing is controlled by dipole-dipole and van der Waals interactions, and molecules are stacked along crystallographic \[010\] direction. Experimental {#experimental} ============ A mixture of 4-propylaniline (1.05 g, 7.8 mmol), water (20 ml) and concentrated hydrochloric acid (1.97 ml, 23.4 mmol) was stirred until a clear solution was obtained. This solution was cooled down to 0--5 °C and a solution of sodium nitrite (0.75 g 7.8 mmol) in water was added dropwise while the temperature was maintained below 5 °C. The resulting mixture was stirred for 30 min in an ice bath. 2-Hydroxyacetophenone (1.067 g, 7.8 mmol, solution at pH 9) was gradually added to a cooled solution of 4-propylbenzenediazonium chloride, prepared as described above, and the resulting mixture was stirred at 0--5 °C for 2 h in an ice bath. The product was recrystallized from ethanol to obtain solid (*E*)-2-acetyl-4-(4-propylphenyldiazenyl)phenol. Crystals were obtained after one day by slow evaporation from acetic acid (yield 45%, m.p. = 350--352 K). Refinement {#refinement} ========== All C-bonded H atoms were positioned with idealized geometry using a riding model, with C---H = 0.93--0.97 Å. Hydroxyl H atom H1 was found in a difference map and refined freely. All H atoms were refined with *U*~iso~=1.2*U*~eq~(parent atom) or *U*~iso~=1.5*U*~eq~(parent atom) Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### An ORTEP view of the title compound, with the atom-numbering scheme and 30% probability displacement ellipsoids. ::: ![](e-67-0o640-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e169 .table-wrap} ------------------------- ---------------------------------------- C~17~H~18~N~2~O~2~ *F*(000) = 600 *M~r~* = 282.33 *D*~x~ = 1.270 Mg m^−3^ Monoclinic, *P*2~1~/*c* Melting point: 350 K Hall symbol: -P 2ybc Mo *K*α radiation, λ = 0.71073 Å *a* = 14.8315 (5) Å Cell parameters from 29224 reflections *b* = 7.5573 (2) Å θ = 1.5--28.0° *c* = 13.5020 (4) Å µ = 0.08 mm^−1^ β = 102.578 (3)° *T* = 150 K *V* = 1477.07 (8) Å^3^ Prism, brown *Z* = 4 0.75 × 0.47 × 0.21 mm ------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e300 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Stoe IPDS II diffractometer 3054 independent reflections Radiation source: fine-focus sealed tube 2680 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.039 Detector resolution: 6.67 pixels mm^-1^ θ~max~ = 26.5°, θ~min~ = 2.8° ω scans *h* = −18→18 Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) *k* = −9→9 *T*~min~ = 0.946, *T*~max~ = 0.984 *l* = −16→16 21625 measured reflections ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e420 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.035 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.097 H atoms treated by a mixture of independent and constrained refinement *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0487*P*)^2^ + 0.2885*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3054 reflections (Δ/σ)~max~ \< 0.001 195 parameters Δρ~max~ = 0.21 e Å^−3^ 0 restraints Δρ~min~ = −0.16 e Å^−3^ 0 constraints ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e583 .table-wrap} ------ ------------- -------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.47997 (7) 0.68823 (13) 0.36509 (7) 0.0259 (2) C2 0.50206 (7) 0.61432 (14) 0.27782 (8) 0.0288 (2) H2 0.5600 0.5644 0.2815 0.035\* C3 0.43876 (7) 0.61552 (14) 0.18743 (8) 0.0310 (2) H3 0.4540 0.5670 0.1299 0.037\* C4 0.35131 (7) 0.68914 (14) 0.18103 (8) 0.0293 (2) C5 0.32685 (7) 0.76156 (13) 0.26807 (7) 0.0264 (2) C6 0.39293 (7) 0.75846 (13) 0.35970 (7) 0.0260 (2) H6 0.3780 0.8045 0.4180 0.031\* C7 0.23300 (7) 0.83175 (13) 0.26066 (8) 0.0287 (2) C8 0.20412 (7) 0.89985 (15) 0.35252 (8) 0.0319 (2) H8A 0.1425 0.9460 0.3335 0.048\* H8B 0.2455 0.9921 0.3829 0.048\* H8C 0.2058 0.8053 0.4004 0.048\* C9 0.68461 (7) 0.65001 (13) 0.55710 (7) 0.0253 (2) C10 0.65886 (7) 0.69262 (14) 0.64747 (8) 0.0281 (2) H10 0.5984 0.7262 0.6467 0.034\* C11 0.72316 (7) 0.68489 (14) 0.73810 (8) 0.0290 (2) H11 0.7055 0.7149 0.7980 0.035\* C12 0.81431 (7) 0.63289 (13) 0.74182 (8) 0.0277 (2) C13 0.83931 (7) 0.59345 (15) 0.65066 (8) 0.0310 (2) H13 0.8999 0.5611 0.6513 0.037\* C14 0.77553 (7) 0.60153 (14) 0.55917 (8) 0.0298 (2) H14 0.7934 0.5746 0.4991 0.036\* C15 0.88314 (7) 0.61869 (15) 0.84173 (8) 0.0323 (2) H15A 0.9176 0.5094 0.8424 0.039\* H15B 0.8498 0.6120 0.8959 0.039\* C16 0.95106 (7) 0.77208 (15) 0.86325 (8) 0.0332 (2) H16A 0.9171 0.8825 0.8588 0.040\* H16B 0.9881 0.7742 0.8122 0.040\* C17 1.01453 (8) 0.75689 (16) 0.96802 (8) 0.0364 (3) H17A 1.0562 0.8557 0.9791 0.055\* H17B 1.0492 0.6489 0.9722 0.055\* H17C 0.9782 0.7565 1.0188 0.055\* N1 0.54195 (6) 0.69552 (12) 0.46137 (6) 0.0276 (2) N2 0.62283 (6) 0.64756 (12) 0.45996 (6) 0.0276 (2) O1 0.29175 (6) 0.68415 (12) 0.09043 (6) 0.0392 (2) O2 0.17695 (6) 0.83191 (12) 0.17831 (6) 0.0416 (2) H1 0.2391 (13) 0.734 (2) 0.1040 (13) 0.074 (5)\* ------ ------------- -------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1090 .table-wrap} ----- ------------ ------------ ------------ ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0254 (5) 0.0280 (5) 0.0231 (5) −0.0024 (4) 0.0022 (4) 0.0021 (4) C2 0.0267 (5) 0.0311 (5) 0.0286 (5) −0.0007 (4) 0.0062 (4) 0.0006 (4) C3 0.0357 (6) 0.0334 (5) 0.0244 (5) −0.0029 (4) 0.0076 (4) −0.0017 (4) C4 0.0333 (5) 0.0295 (5) 0.0219 (5) −0.0040 (4) −0.0010 (4) 0.0019 (4) C5 0.0271 (5) 0.0260 (5) 0.0240 (5) −0.0016 (4) 0.0012 (4) 0.0025 (4) C6 0.0265 (5) 0.0276 (5) 0.0227 (5) −0.0019 (4) 0.0028 (4) 0.0002 (4) C7 0.0279 (5) 0.0260 (5) 0.0283 (5) −0.0010 (4) −0.0024 (4) 0.0037 (4) C8 0.0261 (5) 0.0347 (6) 0.0330 (6) 0.0025 (4) 0.0023 (4) 0.0038 (4) C9 0.0239 (5) 0.0255 (5) 0.0250 (5) −0.0010 (4) 0.0019 (4) 0.0016 (4) C10 0.0228 (5) 0.0324 (5) 0.0291 (5) 0.0007 (4) 0.0053 (4) 0.0017 (4) C11 0.0282 (5) 0.0331 (5) 0.0253 (5) −0.0022 (4) 0.0050 (4) 0.0013 (4) C12 0.0266 (5) 0.0254 (5) 0.0285 (5) −0.0028 (4) 0.0003 (4) 0.0037 (4) C13 0.0226 (5) 0.0343 (5) 0.0344 (6) 0.0035 (4) 0.0029 (4) 0.0005 (4) C14 0.0268 (5) 0.0343 (5) 0.0281 (5) 0.0024 (4) 0.0057 (4) −0.0016 (4) C15 0.0298 (5) 0.0336 (6) 0.0297 (5) −0.0012 (4) −0.0019 (4) 0.0058 (4) C16 0.0316 (5) 0.0325 (5) 0.0311 (5) −0.0010 (4) −0.0032 (4) 0.0037 (4) C17 0.0321 (6) 0.0419 (6) 0.0311 (6) −0.0022 (5) −0.0019 (4) 0.0017 (5) N1 0.0236 (4) 0.0315 (4) 0.0259 (4) 0.0001 (3) 0.0015 (3) 0.0012 (3) N2 0.0238 (4) 0.0314 (4) 0.0265 (4) 0.0001 (3) 0.0026 (3) 0.0014 (3) O1 0.0409 (5) 0.0493 (5) 0.0220 (4) 0.0021 (4) −0.0050 (3) −0.0028 (3) O2 0.0359 (4) 0.0484 (5) 0.0326 (4) 0.0095 (4) −0.0100 (3) −0.0021 (4) ----- ------------ ------------ ------------ ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1498 .table-wrap} ---------------------- ------------- ----------------------- -------------- C1---C6 1.3830 (14) C10---C11 1.3792 (14) C1---C2 1.4057 (14) C10---H10 0.9300 C1---N1 1.4203 (12) C11---C12 1.3982 (14) C2---C3 1.3682 (14) C11---H11 0.9300 C2---H2 0.9300 C12---C13 1.3930 (15) C3---C4 1.3965 (15) C12---C15 1.5079 (13) C3---H3 0.9300 C13---C14 1.3840 (14) C4---O1 1.3444 (12) C13---H13 0.9300 C4---C5 1.4135 (15) C14---H14 0.9300 C5---C6 1.4013 (13) C15---C16 1.5217 (15) C5---C7 1.4725 (14) C15---H15A 0.9700 C6---H6 0.9300 C15---H15B 0.9700 C7---O2 1.2349 (12) C16---C17 1.5233 (14) C7---C8 1.4893 (15) C16---H16A 0.9700 C8---H8A 0.9600 C16---H16B 0.9700 C8---H8B 0.9600 C17---H17A 0.9600 C8---H8C 0.9600 C17---H17B 0.9600 C9---C14 1.3917 (14) C17---H17C 0.9600 C9---C10 1.3933 (14) N1---N2 1.2572 (12) C9---N2 1.4271 (12) O1---H1 0.919 (19) C6---C1---C2 119.58 (9) C10---C11---C12 121.34 (10) C6---C1---N1 116.35 (9) C10---C11---H11 119.3 C2---C1---N1 124.06 (9) C12---C11---H11 119.3 C3---C2---C1 120.34 (10) C13---C12---C11 118.02 (9) C3---C2---H2 119.8 C13---C12---C15 121.11 (9) C1---C2---H2 119.8 C11---C12---C15 120.87 (9) C2---C3---C4 120.37 (10) C14---C13---C12 121.16 (9) C2---C3---H3 119.8 C14---C13---H13 119.4 C4---C3---H3 119.8 C12---C13---H13 119.4 O1---C4---C3 117.55 (9) C13---C14---C9 120.04 (10) O1---C4---C5 122.04 (10) C13---C14---H14 120.0 C3---C4---C5 120.39 (9) C9---C14---H14 120.0 C6---C5---C4 118.09 (9) C12---C15---C16 114.06 (8) C6---C5---C7 122.34 (9) C12---C15---H15A 108.7 C4---C5---C7 119.54 (9) C16---C15---H15A 108.7 C1---C6---C5 121.21 (9) C12---C15---H15B 108.7 C1---C6---H6 119.4 C16---C15---H15B 108.7 C5---C6---H6 119.4 H15A---C15---H15B 107.6 O2---C7---C5 120.17 (10) C15---C16---C17 111.68 (9) O2---C7---C8 119.36 (9) C15---C16---H16A 109.3 C5---C7---C8 120.46 (9) C17---C16---H16A 109.3 C7---C8---H8A 109.5 C15---C16---H16B 109.3 C7---C8---H8B 109.5 C17---C16---H16B 109.3 H8A---C8---H8B 109.5 H16A---C16---H16B 107.9 C7---C8---H8C 109.5 C16---C17---H17A 109.5 H8A---C8---H8C 109.5 C16---C17---H17B 109.5 H8B---C8---H8C 109.5 H17A---C17---H17B 109.5 C14---C9---C10 119.50 (9) C16---C17---H17C 109.5 C14---C9---N2 116.13 (9) H17A---C17---H17C 109.5 C10---C9---N2 124.35 (9) H17B---C17---H17C 109.5 C11---C10---C9 119.92 (9) N2---N1---C1 113.86 (8) C11---C10---H10 120.0 N1---N2---C9 113.96 (8) C9---C10---H10 120.0 C4---O1---H1 103.0 (11) C6---C1---C2---C3 1.58 (15) N2---C9---C10---C11 177.63 (9) N1---C1---C2---C3 −178.81 (9) C9---C10---C11---C12 −0.73 (15) C1---C2---C3---C4 −0.41 (15) C10---C11---C12---C13 1.73 (15) C2---C3---C4---O1 −179.12 (9) C10---C11---C12---C15 −177.81 (9) C2---C3---C4---C5 −0.68 (16) C11---C12---C13---C14 −1.41 (15) O1---C4---C5---C6 178.96 (9) C15---C12---C13---C14 178.13 (9) C3---C4---C5---C6 0.59 (15) C12---C13---C14---C9 0.11 (16) O1---C4---C5---C7 0.93 (15) C10---C9---C14---C13 0.93 (15) C3---C4---C5---C7 −177.43 (9) N2---C9---C14---C13 −177.46 (9) C2---C1---C6---C5 −1.67 (15) C13---C12---C15---C16 77.33 (13) N1---C1---C6---C5 178.69 (9) C11---C12---C15---C16 −103.14 (12) C4---C5---C6---C1 0.59 (15) C12---C15---C16---C17 176.16 (9) C7---C5---C6---C1 178.56 (9) C6---C1---N1---N2 −172.82 (9) C6---C5---C7---O2 180.00 (10) C2---C1---N1---N2 7.55 (14) C4---C5---C7---O2 −2.06 (15) C1---N1---N2---C9 −178.33 (8) C6---C5---C7---C8 −1.21 (15) C14---C9---N2---N1 −178.69 (9) C4---C5---C7---C8 176.72 (9) C10---C9---N2---N1 3.01 (14) C14---C9---C10---C11 −0.62 (15) ---------------------- ------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2202 .table-wrap} --------------- ------------ ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1···O2 0.921 (19) 1.675 (18) 2.5365 (13) 154.3 (16) --------------- ------------ ------------ ------------- --------------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------- ------------ ------------ ------------- ------------- O1---H1⋯O2 0.921 (19) 1.675 (18) 2.5365 (13) 154.3 (16) :::
PubMed Central
2024-06-05T04:04:18.102860
2011-2-16
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052044/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 16; 67(Pt 3):o640", "authors": [ { "first": "Serap", "last": "Yazıcı" }, { "first": "Çiğdem", "last": "Albayrak" }, { "first": "Ismail", "last": "Gümrükçüoğlu" }, { "first": "Ismet", "last": "Şenel" }, { "first": "Orhan", "last": "Büyükgüngör" } ] }
PMC3052045
Related literature {#sec1} ================== For metal complexes of phosphoryl donor ligands, see: Gholivand *et al.* (2010[@bb4]). For a phospho­ric triamide compound having a C(=O)NHP(=O) skeleton, see: Pourayoubi *et al.* (2010[@bb6]). For hydrogen-bond motifs, see: Etter *et al.* (1990[@bb3]); Bernstein *et al.* (1995[@bb1]). For the synthesis of the starting material, CClF~2~C(O)NHP(O)Cl~2~, see: Iriarte *et al.* (2008[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~8~H~17~ClF~2~N~3~O~2~P*M* *~r~* = 291.67Triclinic,*a* = 8.1993 (7) Å*b* = 9.6735 (9) Å*c* = 9.8331 (9) Åα = 99.784 (2)°β = 105.999 (2)°γ = 110.770 (2)°*V* = 669.18 (10) Å^3^*Z* = 2Mo *K*α radiationμ = 0.42 mm^−1^*T* = 100 K0.26 × 0.19 × 0.16 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2005[@bb2]) *T* ~min~ = 0.602, *T* ~max~ = 0.7509089 measured reflections4218 independent reflections3337 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.024 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.036*wR*(*F* ^2^) = 0.095*S* = 1.044218 reflections158 parametersH-atom parameters constrainedΔρ~max~ = 0.56 e Å^−3^Δρ~min~ = −0.30 e Å^−3^ {#d5e489} Data collection: *APEX2* (Bruker, 2005[@bb2]); cell refinement: *SAINT* (Bruker, 2005[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008[@bb7]); molecular graphics: *Mercury* (Macrae *et al.*, 2008[@bb9]) and *PLATON* (Spek, 2009[@bb8]); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005435/dn2655sup1.cif](http://dx.doi.org/10.1107/S1600536811005435/dn2655sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005435/dn2655Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005435/dn2655Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?dn2655&file=dn2655sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?dn2655sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?dn2655&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [DN2655](http://scripts.iucr.org/cgi-bin/sendsup?dn2655)). Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged. Comment ======= Carbacylamidophosphates with a --C(O)NHP(O)- skeleton have attracted attention because of their roles as the *O*,*O\'*-donor ligands for metal complexation (Gholivand *et al.*, 2010). Following our previous works about phosphorus compounds containing C(O)NHP(O) moiety such as P(O)\[NHC(O)C~6~H~3~(2,6-F~2~)\]\[NHC(CH~3~)~3~\]~2~ (Pourayoubi *et al.*, 2010), we report here on the synthesis and crystal structure of P(O)\[NHC(O)CClF~2~\]\[NH(C~3~H~7~)\]~2~. Single crystals of title compound were obtained from a solution of CH~3~OH and CH~3~CN after a slow evaporation at room temperature. The phosphoryl group and NH unit are *syn* to each other and the phosphorus atom has a slightly distorted tetrahedral configuration (Fig. 1). The bond angles around the P atom are in the range of 103.30 (6)° to 119.69 (6)°. The P---N2 and P---N3 bonds (with bond lengths of 1.6262 (12) Å and 1.6190 (11) Å) are shorter than the P---N1 bond (1.7039 (11) Å). The environment of nitrogen N1 atom is essentially planar. The P═O bond length of 1.4768 (9) Å is standard for phosphoramidate compounds. In the crystal structure, adjacent molecules are linked *via* N---H···O ═P and N---H···O ═C hydrogen bonds, building *R*~2~^2^(8) and *R*~2~^2^(12) rings (Etter *et al.*, 1990; Bernstein *et al.*, 1995) in a linear arrangement parallel to the *ab* plane in the direction of \[110\] axis (Table 1, Fig. 2). Experimental {#experimental} ============ Synthesis of CClF~2~C(O)NHP(O)Cl~2~ CClF~2~C(O)NHP(O)Cl~2~ was prepared according to procedure reported by Iriarte *et al.* (2008) from a reaction between phosphorus pentachloride (16.91 mmol) and CClF~2~C(O)NH~2~ (16.91 mmol) in dry CCl~4~ at 358 K (3 h) and then the treatment of formic acid (16.91 mmol) at ice bath temperature; then removing of solvent in vacuum to yield CClF~2~C(O)NHP(O)Cl~2~. Synthesis of title compound To a solution of CClF~2~C(O)NHP(O)Cl~2~ (2.09 mmol) in dry CHCl~3~, a solution of *N*-*iso*-propylamine (8.36 mmol) in dry CHCl~3~ was added dropwise and stirred at 273 K. After 4 h, the solvent was evaporated at room temperature. The solid was washed with H~2~O. The product was obtained after recrystallization from a methanol/acetonitrile mixture (4:1) after a slow evaporation at room temperature. IR (KBr, cm^-1^): 3400, 3057, 2910, 2890, 2730, 1740 (C═O), 1500, 1260, 1218, 1165, 1118, 1095, 978, 920, 840, 738, 720. Refinement {#refinement} ========== All H atoms attached to C atoms and the planar N1 atom were fixed geometrically and treated as riding with C---H = 0.98 Å (methyl) or 1.0 Å (methine) and N---H = 0.86 Å with U~iso~(H) = 1.2U~eq~(Cmethine or N) or U~iso~(H) = 1.5U~eq~(CH3). H atoms for N2 and N3 were located in difference Fourier maps and included in the subsequent refinement using restraints (N-H= 0.86 (1)Å with U~iso~(H) = 1.5U~eq~(N). In the last cycles of refinement they were treated as riding on their parent N atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### An ORTEP-style plot of title compound with the atom labeling scheme. Ellipsoids are shown at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. ::: ![](e-67-0o665-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Partial packing view showing the formation of the chain through N-H···O hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for the sake of clarity. \[Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+1, -z\] ::: ![](e-67-0o665-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e296 .table-wrap} -------------------------- --------------------------------------- C~8~H~17~ClF~2~N~3~O~2~P *Z* = 2 *M~r~* = 291.67 *F*(000) = 304 Triclinic, *P*1 *D*~x~ = 1.448 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.1993 (7) Å Cell parameters from 2867 reflections *b* = 9.6735 (9) Å θ = 2.3--30.9° *c* = 9.8331 (9) Å µ = 0.42 mm^−1^ α = 99.784 (2)° *T* = 100 K β = 105.999 (2)° Prizm, colorless γ = 110.770 (2)° 0.26 × 0.19 × 0.16 mm *V* = 669.18 (10) Å^3^ -------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e436 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII CCD area-detector diffractometer 4218 independent reflections Radiation source: fine-focus sealed tube 3337 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.024 φ and ω scans θ~max~ = 31.0°, θ~min~ = 2.3° Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *h* = −11→11 *T*~min~ = 0.602, *T*~max~ = 0.750 *k* = −14→14 9089 measured reflections *l* = −14→14 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e553 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.036 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.095 H-atom parameters constrained *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0527*P*)^2^ + 0.0127*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4218 reflections (Δ/σ)~max~ \< 0.001 158 parameters Δρ~max~ = 0.56 e Å^−3^ 0 restraints Δρ~min~ = −0.30 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e710 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e809 .table-wrap} ----- -------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ P1 0.23257 (4) 0.86972 (4) 0.03714 (4) 0.01390 (8) Cl1 0.30477 (6) 0.56630 (4) −0.36890 (4) 0.03081 (10) F1 0.54717 (11) 0.63181 (10) −0.11562 (10) 0.0284 (2) F2 0.31465 (14) 0.40675 (9) −0.19141 (11) 0.0322 (2) O1 0.10801 (14) 0.52987 (10) −0.10574 (11) 0.0238 (2) O2 0.37834 (13) 1.03015 (10) 0.10823 (10) 0.0196 (2) N1 0.33089 (14) 0.77459 (12) −0.05183 (12) 0.0146 (2) H1 0.4368 0.8292 −0.0609 0.018\* N2 0.03816 (15) 0.83557 (13) −0.09290 (12) 0.0182 (2) H2 −0.0483 0.8420 −0.0661 0.022\* N3 0.16459 (15) 0.79008 (12) 0.15566 (12) 0.0155 (2) H3 0.0753 0.6993 0.1225 0.019\* C1 0.25344 (17) 0.61960 (14) −0.10878 (14) 0.0153 (2) C2 0.36184 (19) 0.55503 (15) −0.18656 (15) 0.0192 (3) C3 0.02381 (19) 0.84469 (16) −0.24394 (15) 0.0201 (3) H3A 0.0704 0.7721 −0.2874 0.024\* C4 −0.1816 (2) 0.78961 (18) −0.33779 (16) 0.0259 (3) H4A −0.2525 0.6837 −0.3386 0.039\* H4B −0.1939 0.7916 −0.4394 0.039\* H4C −0.2309 0.8581 −0.2959 0.039\* C5 0.1427 (2) 1.00657 (18) −0.24315 (16) 0.0262 (3) H5A 0.2750 1.0341 −0.1889 0.039\* H5B 0.1051 1.0809 −0.1947 0.039\* H5C 0.1246 1.0090 −0.3453 0.039\* C6 0.29579 (18) 0.82087 (16) 0.30596 (15) 0.0208 (3) H6A 0.3976 0.9277 0.3361 0.025\* C7 0.1941 (2) 0.81568 (18) 0.41385 (16) 0.0268 (3) H7A 0.1366 0.8888 0.4081 0.040\* H7B 0.2834 0.8442 0.5148 0.040\* H7C 0.0965 0.7108 0.3884 0.040\* C8 0.3848 (3) 0.7080 (2) 0.3090 (2) 0.0390 (4) H8A 0.4568 0.7195 0.2437 0.058\* H8B 0.2867 0.6020 0.2749 0.058\* H8C 0.4685 0.7294 0.4105 0.058\* ----- -------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1306 .table-wrap} ----- -------------- -------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ P1 0.01625 (15) 0.00992 (14) 0.01683 (16) 0.00349 (11) 0.01039 (12) 0.00433 (11) Cl1 0.0425 (2) 0.0345 (2) 0.02119 (18) 0.01780 (18) 0.01803 (16) 0.00824 (15) F1 0.0208 (4) 0.0305 (5) 0.0358 (5) 0.0133 (4) 0.0117 (4) 0.0065 (4) F2 0.0469 (6) 0.0162 (4) 0.0489 (6) 0.0186 (4) 0.0300 (5) 0.0147 (4) O1 0.0247 (5) 0.0128 (4) 0.0318 (5) 0.0005 (4) 0.0187 (4) 0.0040 (4) O2 0.0237 (5) 0.0115 (4) 0.0233 (5) 0.0026 (4) 0.0158 (4) 0.0030 (4) N1 0.0148 (5) 0.0108 (5) 0.0195 (5) 0.0034 (4) 0.0109 (4) 0.0043 (4) N2 0.0203 (5) 0.0223 (5) 0.0191 (5) 0.0112 (5) 0.0126 (4) 0.0091 (4) N3 0.0153 (5) 0.0125 (5) 0.0161 (5) 0.0012 (4) 0.0081 (4) 0.0042 (4) C1 0.0178 (6) 0.0119 (5) 0.0171 (6) 0.0054 (5) 0.0089 (5) 0.0047 (4) C2 0.0243 (7) 0.0134 (6) 0.0246 (7) 0.0089 (5) 0.0131 (5) 0.0076 (5) C3 0.0255 (7) 0.0244 (7) 0.0177 (6) 0.0151 (6) 0.0118 (5) 0.0076 (5) C4 0.0262 (7) 0.0281 (7) 0.0222 (7) 0.0131 (6) 0.0066 (6) 0.0045 (6) C5 0.0276 (7) 0.0329 (8) 0.0226 (7) 0.0121 (6) 0.0129 (6) 0.0148 (6) C6 0.0176 (6) 0.0220 (6) 0.0180 (6) 0.0032 (5) 0.0057 (5) 0.0069 (5) C7 0.0352 (8) 0.0334 (8) 0.0180 (6) 0.0181 (7) 0.0124 (6) 0.0099 (6) C8 0.0395 (9) 0.0669 (12) 0.0355 (9) 0.0384 (9) 0.0212 (8) 0.0278 (9) ----- -------------- -------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1607 .table-wrap} ------------------- -------------- -------------------- -------------- P1---O2 1.4768 (9) C3---H3A 1.0000 P1---N3 1.6190 (11) C4---H4A 0.9800 P1---N2 1.6262 (12) C4---H4B 0.9800 P1---N1 1.7039 (11) C4---H4C 0.9800 Cl1---C2 1.7566 (14) C5---H5A 0.9800 F1---C2 1.3366 (16) C5---H5B 0.9800 F2---C2 1.3351 (15) C5---H5C 0.9800 O1---C1 1.2127 (15) C6---C8 1.513 (2) N1---C1 1.3447 (15) C6---C7 1.5164 (19) N1---H1 0.8800 C6---H6A 1.0000 N2---C3 1.4775 (17) C7---H7A 0.9800 N2---H2 0.8390 C7---H7B 0.9800 N3---C6 1.4754 (17) C7---H7C 0.9800 N3---H3 0.8536 C8---H8A 0.9800 C1---C2 1.5399 (17) C8---H8B 0.9800 C3---C5 1.520 (2) C8---H8C 0.9800 C3---C4 1.5207 (19) O2---P1---N3 112.27 (5) C3---C4---H4A 109.5 O2---P1---N2 119.69 (6) C3---C4---H4B 109.5 N3---P1---N2 103.94 (6) H4A---C4---H4B 109.5 O2---P1---N1 105.13 (5) C3---C4---H4C 109.5 N3---P1---N1 112.31 (5) H4A---C4---H4C 109.5 N2---P1---N1 103.30 (6) H4B---C4---H4C 109.5 C1---N1---P1 122.76 (9) C3---C5---H5A 109.5 C1---N1---H1 118.6 C3---C5---H5B 109.5 P1---N1---H1 118.6 H5A---C5---H5B 109.5 C3---N2---P1 123.77 (9) C3---C5---H5C 109.5 C3---N2---H2 116.2 H5A---C5---H5C 109.5 P1---N2---H2 117.0 H5B---C5---H5C 109.5 C6---N3---P1 121.89 (8) N3---C6---C8 111.29 (12) C6---N3---H3 112.7 N3---C6---C7 109.51 (11) P1---N3---H3 117.9 C8---C6---C7 111.49 (12) O1---C1---N1 126.01 (12) N3---C6---H6A 108.1 O1---C1---C2 118.79 (11) C8---C6---H6A 108.1 N1---C1---C2 115.19 (10) C7---C6---H6A 108.1 F2---C2---F1 107.66 (11) C6---C7---H7A 109.5 F2---C2---C1 109.72 (10) C6---C7---H7B 109.5 F1---C2---C1 112.14 (11) H7A---C7---H7B 109.5 F2---C2---Cl1 108.56 (10) C6---C7---H7C 109.5 F1---C2---Cl1 108.94 (9) H7A---C7---H7C 109.5 C1---C2---Cl1 109.74 (9) H7B---C7---H7C 109.5 N2---C3---C5 111.99 (11) C6---C8---H8A 109.5 N2---C3---C4 108.48 (11) C6---C8---H8B 109.5 C5---C3---C4 112.00 (12) H8A---C8---H8B 109.5 N2---C3---H3A 108.1 C6---C8---H8C 109.5 C5---C3---H3A 108.1 H8A---C8---H8C 109.5 C4---C3---H3A 108.1 H8B---C8---H8C 109.5 O2---P1---N1---C1 168.43 (10) O1---C1---C2---F2 −22.92 (17) N3---P1---N1---C1 46.05 (12) N1---C1---C2---F2 158.19 (11) N2---P1---N1---C1 −65.33 (11) O1---C1---C2---F1 −142.50 (13) O2---P1---N2---C3 72.29 (12) N1---C1---C2---F1 38.60 (15) N3---P1---N2---C3 −161.47 (10) O1---C1---C2---Cl1 96.28 (13) N1---P1---N2---C3 −44.04 (11) N1---C1---C2---Cl1 −82.62 (12) O2---P1---N3---C6 −36.29 (12) P1---N2---C3---C5 −61.53 (14) N2---P1---N3---C6 −167.07 (10) P1---N2---C3---C4 174.35 (9) N1---P1---N3---C6 81.94 (11) P1---N3---C6---C8 −89.23 (13) P1---N1---C1---O1 0.56 (19) P1---N3---C6---C7 147.05 (10) P1---N1---C1---C2 179.37 (9) ------------------- -------------- -------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2176 .table-wrap} ------------------ --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1···O2^i^ 0.88 1.87 2.7295 (13) 164 N3---H3···O1^ii^ 0.85 2.14 2.9645 (14) 163 ------------------ --------- --------- ------------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+2, −*z*; (ii) −*x*, −*y*+1, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- --------- ------- ------------- ------------- N1---H1⋯O2^i^ 0.88 1.87 2.7295 (13) 164 N3---H3⋯O1^ii^ 0.85 2.14 2.9645 (14) 163 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.108373
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052045/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o665", "authors": [ { "first": "Mehrdad", "last": "Pourayoubi" }, { "first": "Anahid", "last": "Saneei" } ] }
PMC3052046
Related literature {#sec1} ================== For a review on the applications and structural chemistry of tin dithio­carbamates, see: Tiekink (2008[@bb8]). For additional structural analysis, see: Addison *et al.* (1984[@bb2]); Spek (2009[@bb7]). For a recently reported related structure, see: Abdul Muthalib *et al.* (2010[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Sn(C~4~H~9~)~2~(C~15~H~14~NS~2~)Cl\]*M* *~r~* = 540.76Monoclinic,*a* = 9.0600 (2) Å*b* = 10.9238 (2) Å*c* = 12.7845 (3) Åβ = 102.759 (2)°*V* = 1234.03 (5) Å^3^*Z* = 2Mo *K*α radiationμ = 1.32 mm^−1^*T* = 150 K0.26 × 0.15 × 0.06 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcaliber Eos Gemini diffractometerAbsorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010[@bb5]) *T* ~min~ = 0.820, *T* ~max~ = 0.92415537 measured reflections5443 independent reflections5087 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.046 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.032*wR*(*F* ^2^) = 0.072*S* = 1.055443 reflections259 parameters1 restraintH-atom parameters constrainedΔρ~max~ = 0.78 e Å^−3^Δρ~min~ = −0.66 e Å^−3^Absolute structure: Flack (1983[@bb4]), 2497 Friedel pairsFlack parameter: −0.035 (18) {#d5e444} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010[@bb5]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb3]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb9]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811006866/pk2305sup1.cif](http://dx.doi.org/10.1107/S1600536811006866/pk2305sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006866/pk2305Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006866/pk2305Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?pk2305&file=pk2305sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?pk2305sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?pk2305&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [PK2305](http://scripts.iucr.org/cgi-bin/sendsup?pk2305)). We thank UKM (UKM-GUP-NBT-08--27-111 and UKM-ST-06-FRGS0092--2010), UPM and the University of Malaya for supporting this study. Comment ======= Organotin dithiocarbamates attract attention as they exhibit properties suggesting their potential as anti-cancer agents, anti-microbials and insecticides (Tiekink, 2008). In continuation of structural studies of these systems (Abdul Muthalib *et al.*, 2010), the analysis of the title compound, (I), was undertaken. The Sn^IV^ atom in (I) is five-coordinated, being chelated by an asymmetrically coordinating dithiocarbamate ligand, a Cl and two C atoms of the Sn-bound *tert*-butyl groups, Fig. 1 and Table 1. The disparity in the C1--S1,2 bond distances reflects the asymmetric mode of coordination observed for the dithiocarbamate ligand, Table 1. The coordination geometry is intermediate between square pyramidal and trigonal bi-pyramidal with a very slight leaning towards the former description. This assignment is based on the value calculated for τ of 0.49 for the Sn atom, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Spek, 2009; Addison *et al.*, 1984). The mode of coordination of the dithiocarbamate ligand, the disposition of the ligand donor set, and the intermediate coordination geometry observed for (I) matches with the literature precedents (Tiekink, 2008). No specific intermolecular interactions are noted in the crystal packing. Experimental {#experimental} ============ The title compound was prepared using an *in situ* method by addition of carbon disulfide (0.01 mol) to an ethanolic solution (20 ml) of dibenzylamine (0.01 mol). The mixture was stirred for 1 h at 277 K. The resulting solution was then added drop wise to a solution of di-*tert*-butyltin(IV) dichloride (0.005 mol) in ethanol (20 ml) and stirred again for 1 h. The white precipitate was filtered, washed with cold ethanol and dried in a desiccator. Crystallization was from its ethanol:chloroform (1:2) solution. Yield 71%; *M*.pt. 475--477 K. Elemental analysis. Found (calculated) for C~23~H~32~ClNS~2~Sn: C, 50.94 (51.50); H 5.89 (5.92); N 2.59 (2.93); S 11.59 (11.86); Sn 21.25 (21.90) %. UV (CHCl~3~) λ~max~ 228 (*L*(π) →*L*(π\*)). IR(KBr): ν(C---H) 2939*m*, 2849*m*; ν(C≐N) 1487*m*; ν(N---C) 1154 s; ν(C≐S) 988 s; ν(Sn---S) 351 s cm^-1^. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions (C---H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with *U*~iso~(H) set to 1.2 to 1.5*U*~equiv~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. ::: ![](e-67-0m386-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e201 .table-wrap} ---------------------------------------- ---------------------------------------- \[Sn(C~4~H~9~)~2~(C~15~H~14~NS~2~)Cl\] *F*(000) = 552 *M~r~* = 540.76 *D*~x~ = 1.455 Mg m^−3^ Monoclinic, *P*2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2yb Cell parameters from 10382 reflections *a* = 9.0600 (2) Å θ = 2.0--29.0° *b* = 10.9238 (2) Å µ = 1.32 mm^−1^ *c* = 12.7845 (3) Å *T* = 150 K β = 102.759 (2)° Prism, colourless *V* = 1234.03 (5) Å^3^ 0.26 × 0.15 × 0.06 mm *Z* = 2 ---------------------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e336 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Xcaliber Eos Gemini diffractometer 5443 independent reflections Radiation source: fine-focus sealed tube 5087 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.046 Detector resolution: 16.1952 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 2.3° ω scans *h* = −11→11 Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) *k* = −14→13 *T*~min~ = 0.820, *T*~max~ = 0.924 *l* = −16→16 15537 measured reflections ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e456 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.032 H-atom parameters constrained *wR*(*F*^2^) = 0.072 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0329*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.05 (Δ/σ)~max~ = 0.001 5443 reflections Δρ~max~ = 0.78 e Å^−3^ 259 parameters Δρ~min~ = −0.66 e Å^−3^ 1 restraint Absolute structure: Flack (1983), 2497 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: −0.035 (18) ---------------------------------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e618 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e717 .table-wrap} ------ -------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Sn 0.25541 (2) 0.701510 (17) 0.187046 (15) 0.02052 (7) Cl1 0.25531 (12) 0.53028 (10) 0.31609 (8) 0.0317 (2) S1 0.30831 (12) 0.83033 (9) 0.35137 (8) 0.0254 (2) S2 0.30370 (12) 0.94068 (9) 0.14035 (8) 0.0306 (2) N1 0.3893 (3) 1.0614 (3) 0.3258 (2) 0.0234 (6) C1 0.3381 (4) 0.9583 (3) 0.2768 (3) 0.0238 (8) C2 0.4241 (4) 1.0768 (3) 0.4447 (3) 0.0238 (8) H2A 0.5187 1.1245 0.4670 0.029\* H2B 0.4411 0.9952 0.4791 0.029\* C3 0.2986 (5) 1.1410 (4) 0.4836 (4) 0.0242 (10) C4 0.2986 (6) 1.2679 (4) 0.4919 (4) 0.0280 (11) H4 0.3768 1.3142 0.4720 0.034\* C5 0.1848 (6) 1.3273 (5) 0.5292 (4) 0.0354 (12) H5 0.1847 1.4141 0.5342 0.043\* C6 0.0719 (7) 1.2598 (5) 0.5588 (4) 0.0389 (13) H6 −0.0061 1.3007 0.5841 0.047\* C7 0.0709 (6) 1.1341 (6) 0.5523 (4) 0.0409 (13) H7 −0.0061 1.0881 0.5740 0.049\* C8 0.1841 (6) 1.0751 (5) 0.5135 (4) 0.0325 (11) H8 0.1827 0.9884 0.5074 0.039\* C9 0.4247 (4) 1.1692 (3) 0.2665 (3) 0.0295 (9) H9A 0.3846 1.2436 0.2948 0.035\* H9B 0.3737 1.1610 0.1899 0.035\* C10 0.5930 (4) 1.1841 (4) 0.2756 (3) 0.0268 (9) C11 0.6844 (5) 1.0857 (4) 0.2644 (4) 0.0343 (11) H11 0.6415 1.0061 0.2527 0.041\* C12 0.8369 (6) 1.1017 (5) 0.2698 (4) 0.0401 (12) H12 0.8984 1.0328 0.2634 0.048\* C13 0.9007 (5) 1.2160 (6) 0.2844 (3) 0.0426 (12) H13 1.0054 1.2268 0.2864 0.051\* C14 0.8115 (6) 1.3152 (5) 0.2963 (4) 0.0426 (13) H14 0.8549 1.3947 0.3062 0.051\* C15 0.6585 (6) 1.2997 (4) 0.2939 (4) 0.0347 (11) H15 0.5986 1.3680 0.3047 0.042\* C16 0.4451 (4) 0.6314 (3) 0.1240 (3) 0.0264 (8) C17 0.4057 (5) 0.5006 (4) 0.0873 (4) 0.0399 (11) H17A 0.3221 0.5014 0.0239 0.060\* H17B 0.3754 0.4548 0.1451 0.060\* H17C 0.4943 0.4615 0.0694 0.060\* C18 0.4710 (4) 0.7083 (6) 0.0303 (3) 0.0384 (9) H18A 0.5510 0.6709 0.0003 0.058\* H18B 0.5016 0.7912 0.0553 0.058\* H18C 0.3772 0.7122 −0.0252 0.058\* C19 0.5852 (4) 0.6347 (4) 0.2167 (3) 0.0345 (10) H19A 0.6711 0.5977 0.1934 0.052\* H19B 0.5646 0.5887 0.2778 0.052\* H19C 0.6092 0.7198 0.2381 0.052\* C20 0.0212 (3) 0.6974 (5) 0.0950 (2) 0.0256 (6) C21 −0.0476 (5) 0.5706 (4) 0.1105 (4) 0.0349 (11) H21A −0.0504 0.5597 0.1861 0.052\* H21B 0.0147 0.5061 0.0889 0.052\* H21C −0.1506 0.5657 0.0663 0.052\* C22 0.0276 (4) 0.7156 (5) −0.0218 (3) 0.0379 (10) H22A −0.0755 0.7231 −0.0655 0.057\* H22B 0.0776 0.6451 −0.0464 0.057\* H22C 0.0846 0.7902 −0.0288 0.057\* C23 −0.0699 (5) 0.7973 (4) 0.1328 (4) 0.0368 (11) H23A −0.0221 0.8767 0.1269 0.055\* H23B −0.0737 0.7824 0.2078 0.055\* H23C −0.1729 0.7975 0.0883 0.055\* ------ -------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1508 .table-wrap} ----- -------------- -------------- -------------- --------------- ------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Sn 0.02131 (11) 0.01858 (11) 0.02188 (12) −0.00037 (13) 0.00521 (8) −0.00032 (13) Cl1 0.0404 (6) 0.0249 (5) 0.0314 (6) 0.0007 (4) 0.0112 (5) 0.0098 (4) S1 0.0309 (5) 0.0229 (5) 0.0229 (5) −0.0029 (4) 0.0071 (4) −0.0003 (4) S2 0.0448 (6) 0.0238 (5) 0.0221 (5) −0.0044 (4) 0.0052 (4) 0.0002 (4) N1 0.0296 (16) 0.0181 (14) 0.0230 (16) −0.0007 (13) 0.0071 (13) −0.0008 (12) C1 0.0210 (17) 0.0223 (19) 0.027 (2) 0.0001 (15) 0.0031 (15) 0.0009 (15) C2 0.0272 (19) 0.0202 (18) 0.0226 (19) 0.0006 (15) 0.0026 (16) −0.0022 (15) C3 0.029 (2) 0.020 (2) 0.022 (2) −0.0015 (19) 0.0013 (19) −0.0019 (18) C4 0.031 (3) 0.027 (2) 0.025 (2) −0.004 (2) 0.004 (2) 0.000 (2) C5 0.047 (3) 0.027 (2) 0.031 (3) 0.018 (2) 0.005 (2) −0.0026 (19) C6 0.042 (3) 0.051 (3) 0.026 (3) 0.015 (3) 0.011 (2) −0.004 (2) C7 0.032 (3) 0.059 (4) 0.033 (3) −0.005 (3) 0.010 (2) −0.005 (3) C8 0.039 (3) 0.032 (2) 0.026 (2) 0.000 (2) 0.007 (2) −0.003 (2) C9 0.040 (2) 0.020 (2) 0.027 (2) 0.0029 (14) 0.0044 (17) 0.0019 (13) C10 0.0390 (19) 0.021 (2) 0.0202 (17) −0.0046 (18) 0.0064 (14) 0.0024 (16) C11 0.041 (3) 0.023 (2) 0.040 (3) −0.0027 (19) 0.013 (2) −0.005 (2) C12 0.043 (3) 0.041 (3) 0.038 (3) 0.001 (2) 0.014 (2) −0.008 (2) C13 0.042 (2) 0.059 (3) 0.028 (2) −0.018 (3) 0.0092 (17) −0.001 (3) C14 0.052 (3) 0.031 (2) 0.044 (3) −0.020 (2) 0.010 (2) −0.002 (2) C15 0.046 (3) 0.023 (2) 0.033 (3) −0.005 (2) 0.005 (2) 0.0005 (18) C16 0.0282 (19) 0.0257 (19) 0.028 (2) 0.0031 (16) 0.0110 (17) −0.0038 (16) C17 0.044 (3) 0.028 (2) 0.049 (3) 0.0033 (19) 0.015 (2) −0.0148 (19) C18 0.0387 (19) 0.049 (2) 0.032 (2) 0.008 (3) 0.0173 (16) −0.001 (3) C19 0.025 (2) 0.038 (2) 0.042 (3) 0.0033 (18) 0.0096 (18) 0.000 (2) C20 0.0210 (14) 0.0275 (16) 0.0262 (16) 0.000 (2) 0.0010 (12) −0.001 (2) C21 0.029 (2) 0.030 (2) 0.043 (3) −0.0082 (19) 0.0025 (19) −0.004 (2) C22 0.0338 (19) 0.048 (3) 0.031 (2) −0.001 (2) 0.0042 (15) −0.004 (2) C23 0.028 (2) 0.034 (3) 0.045 (3) 0.0035 (19) 0.000 (2) −0.001 (2) ----- -------------- -------------- -------------- --------------- ------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2043 .table-wrap} --------------------- -------------- ----------------------- ------------ Sn---Cl1 2.4942 (9) C12---C13 1.372 (7) Sn---S1 2.4857 (10) C12---H12 0.9500 Sn---S2 2.7366 (10) C13---C14 1.380 (8) Sn---C16 2.191 (4) C13---H13 0.9500 Sn---C20 2.188 (3) C14---C15 1.389 (8) S1---C1 1.746 (4) C14---H14 0.9500 S2---C1 1.714 (4) C15---H15 0.9500 N1---C1 1.321 (5) C16---C17 1.521 (5) N1---C9 1.474 (5) C16---C18 1.524 (6) N1---C2 1.493 (4) C16---C19 1.533 (6) C2---C3 1.510 (6) C17---H17A 0.9800 C2---H2A 0.9900 C17---H17B 0.9800 C2---H2B 0.9900 C17---H17C 0.9800 C3---C8 1.384 (6) C18---H18A 0.9800 C3---C4 1.390 (4) C18---H18B 0.9800 C4---C5 1.389 (6) C18---H18C 0.9800 C4---H4 0.9500 C19---H19A 0.9800 C5---C6 1.381 (8) C19---H19B 0.9800 C5---H5 0.9500 C19---H19C 0.9800 C6---C7 1.376 (5) C20---C23 1.510 (6) C6---H6 0.9500 C20---C22 1.519 (5) C7---C8 1.392 (7) C20---C21 1.550 (6) C7---H7 0.9500 C21---H21A 0.9800 C8---H8 0.9500 C21---H21B 0.9800 C9---C10 1.512 (5) C21---H21C 0.9800 C9---H9A 0.9900 C22---H22A 0.9800 C9---H9B 0.9900 C22---H22B 0.9800 C10---C11 1.383 (6) C22---H22C 0.9800 C10---C15 1.394 (6) C23---H23A 0.9800 C11---C12 1.380 (7) C23---H23B 0.9800 C11---H11 0.9500 C23---H23C 0.9800 C20---Sn---C16 122.78 (14) C12---C13---C14 119.3 (4) C20---Sn---S1 116.70 (11) C12---C13---H13 120.3 C16---Sn---S1 119.21 (10) C14---C13---H13 120.3 C20---Sn---Cl1 101.46 (13) C13---C14---C15 120.5 (4) C16---Sn---Cl1 95.51 (10) C13---C14---H14 119.7 S1---Sn---Cl1 83.90 (4) C15---C14---H14 119.7 C20---Sn---S2 94.87 (14) C14---C15---C10 120.0 (4) C16---Sn---S2 94.43 (10) C14---C15---H15 120.0 S1---Sn---S2 68.51 (3) C10---C15---H15 120.0 Cl1---Sn---S2 152.09 (3) C17---C16---C18 110.0 (4) C1---S1---Sn 90.91 (13) C17---C16---C19 111.0 (3) C1---S2---Sn 83.51 (12) C18---C16---C19 110.5 (3) C1---N1---C9 122.1 (3) C17---C16---Sn 107.0 (3) C1---N1---C2 123.5 (3) C18---C16---Sn 111.5 (3) C9---N1---C2 114.4 (3) C19---C16---Sn 106.9 (2) N1---C1---S2 122.9 (3) C16---C17---H17A 109.5 N1---C1---S1 120.3 (3) C16---C17---H17B 109.5 S2---C1---S1 116.8 (2) H17A---C17---H17B 109.5 N1---C2---C3 112.5 (3) C16---C17---H17C 109.5 N1---C2---H2A 109.1 H17A---C17---H17C 109.5 C3---C2---H2A 109.1 H17B---C17---H17C 109.5 N1---C2---H2B 109.1 C16---C18---H18A 109.5 C3---C2---H2B 109.1 C16---C18---H18B 109.5 H2A---C2---H2B 107.8 H18A---C18---H18B 109.5 C8---C3---C4 119.0 (5) C16---C18---H18C 109.5 C8---C3---C2 120.9 (4) H18A---C18---H18C 109.5 C4---C3---C2 120.1 (5) H18B---C18---H18C 109.5 C5---C4---C3 120.3 (5) C16---C19---H19A 109.5 C5---C4---H4 119.8 C16---C19---H19B 109.5 C3---C4---H4 119.8 H19A---C19---H19B 109.5 C6---C5---C4 119.7 (5) C16---C19---H19C 109.5 C6---C5---H5 120.1 H19A---C19---H19C 109.5 C4---C5---H5 120.1 H19B---C19---H19C 109.5 C7---C6---C5 120.7 (6) C23---C20---C22 111.2 (4) C7---C6---H6 119.6 C23---C20---C21 109.9 (3) C5---C6---H6 119.6 C22---C20---C21 110.3 (4) C6---C7---C8 119.3 (6) C23---C20---Sn 110.3 (3) C6---C7---H7 120.4 C22---C20---Sn 106.5 (2) C8---C7---H7 120.4 C21---C20---Sn 108.6 (3) C3---C8---C7 120.9 (5) C20---C21---H21A 109.5 C3---C8---H8 119.6 C20---C21---H21B 109.5 C7---C8---H8 119.6 H21A---C21---H21B 109.5 N1---C9---C10 112.1 (3) C20---C21---H21C 109.5 N1---C9---H9A 109.2 H21A---C21---H21C 109.5 C10---C9---H9A 109.2 H21B---C21---H21C 109.5 N1---C9---H9B 109.2 C20---C22---H22A 109.5 C10---C9---H9B 109.2 C20---C22---H22B 109.5 H9A---C9---H9B 107.9 H22A---C22---H22B 109.5 C11---C10---C15 118.6 (4) C20---C22---H22C 109.5 C11---C10---C9 121.7 (4) H22A---C22---H22C 109.5 C15---C10---C9 119.7 (4) H22B---C22---H22C 109.5 C12---C11---C10 120.8 (4) C20---C23---H23A 109.5 C12---C11---H11 119.6 C20---C23---H23B 109.5 C10---C11---H11 119.6 H23A---C23---H23B 109.5 C13---C12---C11 120.6 (5) C20---C23---H23C 109.5 C13---C12---H12 119.7 H23A---C23---H23C 109.5 C11---C12---H12 119.7 H23B---C23---H23C 109.5 C20---Sn---S1---C1 −87.69 (18) C15---C10---C11---C12 −0.7 (6) C16---Sn---S1---C1 79.62 (17) C9---C10---C11---C12 178.1 (4) Cl1---Sn---S1---C1 172.53 (12) C10---C11---C12---C13 −1.3 (7) S2---Sn---S1---C1 −3.20 (12) C11---C12---C13---C14 1.5 (7) C20---Sn---S2---C1 120.10 (15) C12---C13---C14---C15 0.2 (7) C16---Sn---S2---C1 −116.43 (16) C13---C14---C15---C10 −2.3 (7) S1---Sn---S2---C1 3.28 (12) C11---C10---C15---C14 2.5 (6) Cl1---Sn---S2---C1 −5.82 (15) C9---C10---C15---C14 −176.3 (4) C9---N1---C1---S2 −1.6 (5) C20---Sn---C16---C17 −53.6 (3) C2---N1---C1---S2 −178.1 (3) S1---Sn---C16---C17 139.9 (2) C9---N1---C1---S1 176.3 (3) Cl1---Sn---C16---C17 53.8 (3) C2---N1---C1---S1 −0.2 (5) S2---Sn---C16---C17 −152.3 (3) Sn---S2---C1---N1 173.1 (3) C20---Sn---C16---C18 66.6 (3) Sn---S2---C1---S1 −4.87 (18) S1---Sn---C16---C18 −99.9 (3) Sn---S1---C1---N1 −172.7 (3) Cl1---Sn---C16---C18 174.0 (3) Sn---S1---C1---S2 5.3 (2) S2---Sn---C16---C18 −32.1 (3) C1---N1---C2---C3 −99.7 (4) C20---Sn---C16---C19 −172.6 (3) C9---N1---C2---C3 83.5 (4) S1---Sn---C16---C19 20.9 (3) N1---C2---C3---C8 91.7 (5) Cl1---Sn---C16---C19 −65.1 (3) N1---C2---C3---C4 −89.6 (5) S2---Sn---C16---C19 88.7 (3) C8---C3---C4---C5 −0.3 (9) C16---Sn---C20---C23 −154.4 (3) C2---C3---C4---C5 −179.0 (3) S1---Sn---C20---C23 12.4 (3) C3---C4---C5---C6 0.5 (8) Cl1---Sn---C20---C23 101.3 (3) C4---C5---C6---C7 0.2 (9) S2---Sn---C20---C23 −55.9 (3) C5---C6---C7---C8 −1.1 (10) C16---Sn---C20---C22 −33.6 (5) C4---C3---C8---C7 −0.6 (8) S1---Sn---C20---C22 133.2 (3) C2---C3---C8---C7 178.1 (4) Cl1---Sn---C20---C22 −137.9 (4) C6---C7---C8---C3 1.3 (9) S2---Sn---C20---C22 64.9 (4) C1---N1---C9---C10 −102.5 (4) C16---Sn---C20---C21 85.1 (3) C2---N1---C9---C10 74.3 (4) S1---Sn---C20---C21 −108.0 (3) N1---C9---C10---C11 44.6 (5) Cl1---Sn---C20---C21 −19.2 (3) N1---C9---C10---C15 −136.6 (4) S2---Sn---C20---C21 −176.4 (2) --------------------- -------------- ----------------------- ------------ ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: ---------- ------------- Sn---Cl1 2.4942 (9) Sn---S1 2.4857 (10) Sn---S2 2.7366 (10) Sn---C16 2.191 (4) Sn---C20 2.188 (3) ---------- ------------- ::: [^1]: ‡ Additional correspondence author, e-mail: aibi@ukm.my.
PubMed Central
2024-06-05T04:04:18.112824
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052046/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):m386", "authors": [ { "first": "Amirah Faizah", "last": "Abdul Muthalib" }, { "first": "Ibrahim", "last": "Baba" }, { "first": "Mohamed Ibrahim", "last": "Mohamed Tahir" }, { "first": "Edward R. T.", "last": "Tiekink" } ] }
PMC3052047
Related literature {#sec1} ================== For the spectrospic assigment of the structure of the lead derivative, see: Bottei & Schneggenburger (1970[@bb2]). For the structure of the organic ligand, see: Hickmann *et al.* (1979[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Pb~2~(C~6~H~5~N~2~O~2~)~4~\]*M* *~r~* = 962.86Triclinic,*a* = 9.6149 (5) Å*b* = 11.5340 (6) Å*c* = 13.2724 (7) Åα = 82.459 (1)°β = 79.280 (1)°γ = 67.369 (1)°*V* = 1331.95 (12) Å^3^*Z* = 2Mo *K*α radiationμ = 12.69 mm^−1^*T* = 100 K0.30 × 0.15 × 0.15 mm ### Data collection {#sec2.1.2} Bruker SMART APEX diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb5]) *T* ~min~ = 0.115, *T* ~max~ = 0.25216878 measured reflections6094 independent reflections5444 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.036 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.026*wR*(*F* ^2^) = 0.071*S* = 1.066094 reflections379 parametersH-atom parameters constrainedΔρ~max~ = 1.74 e Å^−3^Δρ~min~ = −2.24 e Å^−3^ {#d5e454} Data collection: *APEX2* (Bruker, 2009[@bb3]); cell refinement: *SAINT* (Bruker, 2009[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811006775/bt5480sup1.cif](http://dx.doi.org/10.1107/S1600536811006775/bt5480sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006775/bt5480Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006775/bt5480Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bt5480&file=bt5480sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bt5480sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bt5480&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BT5480](http://scripts.iucr.org/cgi-bin/sendsup?bt5480)). We thank Shahid Beheshti University and the University of Malaya for supporting this study. Comment ======= The cupferronate ion is a common ion used for the complexation of metals; the crystal structure of the chelate has been reported (Hickmann *et al.*, 1979). The synthesis of the lead(II) derivative has been known for a long time (Bottei & Schneggenburger, 1970), and the compound was assumed to exist as a mononuclear compound. The compound is, in fact, a dinuclear compound (Scheme I). The four cupferronate ions in dinuclear \[Pb(C~6~H~5~N~2~O~2~)~2~\]~2~*O*,*O*\'-chelate to the lead(II) atom; two of the four nitroso O atoms are also involved in bridging (Fig. 1). The geometry of both five-coordinate lead atoms is Ψ-octahedral; if another longer intermolecular Pb···O interactions (approx. 3.0 Å) are considered, the geometry is a Ψ-square-antiprism (Fig. 2). Experimental {#experimental} ============ Lead(II) nitrate (0.33 g, 1 mmol) dissolved in ethanol (20 ml) was added to the cupferron ligand (0.31 g, 2 mmol) dissolved in ethanol (20 ml). The mixture was stirred and then set aside for the growth of brown colored crystals. Refinement {#refinement} ========== Hydrogen atoms were placed in calculated positions (C--H 0.95 Å) and were included in the refinement in the riding model approximation, with *U*(H) set to 1.2*U*~eq~(C). Omitted from the refinement were the following reflections owing to bad disagreement between the observed and calculated *F*^2^ values: (0 0 1), (0 1 2), (1 0 1), (0 0 2), (11 4 7), (-9 - 11 5), (11 3 8), (11 5 6), (-4 - 9 10), (-9 -9 2) and (-4 7 0). The final difference Fourier map had a peak in the vicinity of Pb2 and a hole in the vicinty of the same atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Anisotropic displacement ellipsoid plot (Barbour, 2001) of Pb2(C6H5N2O2)4 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. ::: ![](e-67-0m377-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Detail of geometry of the lead atoms when intermolecular longer interactions are considered. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z. ::: ![](e-67-0m377-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e181 .table-wrap} -------------------------------- --------------------------------------- \[Pb~2~(C~6~H~5~N~2~O~2~)~4~\] *Z* = 2 *M~r~* = 962.86 *F*(000) = 896 Triclinic, *P*1 *D*~x~ = 2.401 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 9.6149 (5) Å Cell parameters from 9907 reflections *b* = 11.5340 (6) Å θ = 2.4--28.3° *c* = 13.2724 (7) Å µ = 12.69 mm^−1^ α = 82.459 (1)° *T* = 100 K β = 79.280 (1)° Prism, brown γ = 67.369 (1)° 0.30 × 0.15 × 0.15 mm *V* = 1331.95 (12) Å^3^ -------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e325 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART APEX diffractometer 6094 independent reflections Radiation source: fine-focus sealed tube 5444 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.036 ω scans θ~max~ = 27.5°, θ~min~ = 2.3° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −12→12 *T*~min~ = 0.115, *T*~max~ = 0.252 *k* = −14→14 16878 measured reflections *l* = −17→17 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e439 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.026 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.071 H-atom parameters constrained *S* = 1.06 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0339*P*)^2^ + 2.8506*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 6094 reflections (Δ/σ)~max~ = 0.001 379 parameters Δρ~max~ = 1.74 e Å^−3^ 0 restraints Δρ~min~ = −2.24 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e598 .table-wrap} ----- --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Pb1 0.634932 (18) 0.462439 (15) 0.364998 (12) 0.00867 (6) Pb2 0.819969 (18) 0.523384 (15) 0.612158 (13) 0.01006 (6) O1 0.6060 (4) 0.6161 (3) 0.4843 (2) 0.0123 (7) O2 0.5388 (4) 0.6773 (3) 0.3020 (2) 0.0121 (7) O3 0.8865 (4) 0.4622 (3) 0.3460 (3) 0.0151 (7) O4 0.7942 (4) 0.3974 (3) 0.2021 (3) 0.0120 (7) O5 0.7358 (4) 0.3785 (3) 0.5523 (3) 0.0143 (7) O6 1.0141 (4) 0.3240 (3) 0.5670 (3) 0.0134 (7) O7 0.5918 (4) 0.5665 (3) 0.7423 (3) 0.0163 (7) O8 0.8387 (4) 0.3773 (3) 0.7572 (3) 0.0131 (7) N1 0.5102 (4) 0.7608 (4) 0.3685 (3) 0.0105 (8) N2 0.5430 (5) 0.7366 (4) 0.4610 (3) 0.0135 (8) N3 0.9326 (4) 0.3966 (4) 0.1922 (3) 0.0083 (7) N4 0.9843 (5) 0.4281 (4) 0.2626 (3) 0.0125 (8) N5 0.9547 (5) 0.2375 (4) 0.5810 (3) 0.0113 (8) N6 0.8147 (4) 0.2585 (4) 0.5742 (3) 0.0124 (8) N7 0.7129 (4) 0.3892 (4) 0.8210 (3) 0.0108 (8) N8 0.5862 (5) 0.4818 (4) 0.8174 (3) 0.0160 (9) C1 0.4389 (5) 0.8924 (4) 0.3363 (4) 0.0100 (9) C2 0.3808 (5) 0.9821 (5) 0.4097 (4) 0.0135 (9) H2 0.3868 0.9575 0.4804 0.016\* C3 0.3142 (6) 1.1081 (5) 0.3774 (4) 0.0155 (10) H3 0.2736 1.1703 0.4264 0.019\* C4 0.3064 (6) 1.1439 (5) 0.2730 (4) 0.0160 (10) H4 0.2630 1.2304 0.2509 0.019\* C5 0.3626 (6) 1.0524 (5) 0.2020 (4) 0.0154 (10) H5 0.3563 1.0766 0.1313 0.018\* C6 0.4280 (5) 0.9255 (4) 0.2332 (4) 0.0116 (9) H6 0.4644 0.8630 0.1846 0.014\* C7 1.0322 (5) 0.3611 (4) 0.0962 (3) 0.0093 (9) C8 1.1523 (5) 0.4028 (5) 0.0675 (4) 0.0142 (10) H8 1.1735 0.4506 0.1116 0.017\* C9 1.2405 (6) 0.3726 (5) −0.0276 (4) 0.0208 (11) H9 1.3242 0.3991 −0.0488 0.025\* C10 1.2081 (6) 0.3047 (5) −0.0917 (4) 0.0173 (10) H10 1.2680 0.2866 −0.1573 0.021\* C11 1.0883 (6) 0.2625 (5) −0.0609 (4) 0.0179 (10) H11 1.0678 0.2140 −0.1047 0.021\* C12 0.9989 (5) 0.2915 (4) 0.0341 (4) 0.0130 (9) H12 0.9163 0.2638 0.0558 0.016\* C13 1.0454 (5) 0.1123 (4) 0.6183 (4) 0.0114 (9) C14 0.9955 (6) 0.0140 (5) 0.6234 (4) 0.0156 (10) H14 0.9035 0.0261 0.5994 0.019\* C15 1.0836 (6) −0.1037 (5) 0.6649 (4) 0.0160 (10) H15 1.0517 −0.1728 0.6689 0.019\* C16 1.2180 (6) −0.1200 (5) 0.7002 (4) 0.0164 (10) H16 1.2769 −0.2001 0.7287 0.020\* C17 1.2661 (6) −0.0205 (5) 0.6942 (4) 0.0147 (10) H17 1.3585 −0.0326 0.7179 0.018\* C18 1.1794 (5) 0.0983 (5) 0.6533 (4) 0.0123 (9) H18 1.2110 0.1675 0.6495 0.015\* C19 0.7167 (5) 0.2865 (4) 0.8969 (4) 0.0102 (9) C20 0.6247 (6) 0.3103 (5) 0.9917 (4) 0.0151 (10) H20 0.5615 0.3939 1.0083 0.018\* C21 0.6273 (6) 0.2085 (5) 1.0620 (4) 0.0191 (11) H21 0.5645 0.2225 1.1270 0.023\* C22 0.7215 (6) 0.0868 (5) 1.0372 (4) 0.0217 (11) H22 0.7216 0.0175 1.0847 0.026\* C23 0.8148 (6) 0.0666 (5) 0.9434 (4) 0.0180 (10) H23 0.8806 −0.0166 0.9275 0.022\* C24 0.8139 (6) 0.1657 (5) 0.8724 (4) 0.0151 (10) H24 0.8785 0.1515 0.8081 0.018\* ----- --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1409 .table-wrap} ----- ------------- -------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Pb1 0.00879 (9) 0.01181 (9) 0.00641 (9) −0.00508 (7) −0.00091 (6) −0.00028 (6) Pb2 0.01043 (9) 0.01290 (10) 0.00908 (10) −0.00683 (7) −0.00345 (7) 0.00231 (7) O1 0.0151 (17) 0.0133 (16) 0.0089 (16) −0.0059 (14) −0.0030 (13) 0.0017 (13) O2 0.0169 (17) 0.0132 (16) 0.0069 (15) −0.0060 (13) −0.0007 (13) −0.0032 (13) O3 0.0140 (17) 0.0257 (19) 0.0091 (16) −0.0100 (15) −0.0017 (13) −0.0051 (14) O4 0.0080 (15) 0.0203 (17) 0.0103 (16) −0.0077 (13) −0.0027 (12) −0.0005 (13) O5 0.0142 (17) 0.0167 (17) 0.0143 (17) −0.0077 (14) −0.0058 (14) 0.0022 (14) O6 0.0122 (16) 0.0150 (16) 0.0155 (17) −0.0084 (13) −0.0013 (13) 0.0009 (13) O7 0.0172 (18) 0.0186 (18) 0.0096 (17) −0.0051 (14) 0.0011 (14) 0.0016 (14) O8 0.0081 (15) 0.0190 (17) 0.0104 (16) −0.0053 (13) 0.0017 (12) 0.0015 (13) N1 0.0095 (18) 0.0153 (19) 0.0080 (19) −0.0064 (16) −0.0009 (15) −0.0004 (15) N2 0.013 (2) 0.014 (2) 0.013 (2) −0.0046 (16) −0.0042 (16) 0.0004 (16) N3 0.0049 (17) 0.0130 (18) 0.0070 (18) −0.0045 (15) 0.0010 (14) 0.0004 (15) N4 0.0120 (19) 0.022 (2) 0.0062 (19) −0.0099 (17) −0.0033 (15) 0.0020 (16) N5 0.0138 (19) 0.016 (2) 0.0060 (18) −0.0087 (16) −0.0020 (15) 0.0022 (15) N6 0.0101 (19) 0.015 (2) 0.014 (2) −0.0058 (16) −0.0024 (15) −0.0025 (16) N7 0.0113 (19) 0.0161 (19) 0.0047 (18) −0.0047 (16) −0.0021 (14) 0.0000 (15) N8 0.019 (2) 0.019 (2) 0.0083 (19) −0.0047 (17) −0.0031 (16) 0.0006 (16) C1 0.007 (2) 0.013 (2) 0.011 (2) −0.0056 (17) −0.0005 (17) 0.0002 (17) C2 0.012 (2) 0.019 (2) 0.010 (2) −0.0079 (19) 0.0031 (18) −0.0032 (18) C3 0.014 (2) 0.017 (2) 0.016 (2) −0.0059 (19) −0.0004 (19) −0.006 (2) C4 0.014 (2) 0.015 (2) 0.022 (3) −0.0094 (19) −0.008 (2) 0.006 (2) C5 0.017 (2) 0.022 (3) 0.009 (2) −0.008 (2) −0.0055 (18) 0.0035 (19) C6 0.011 (2) 0.013 (2) 0.012 (2) −0.0057 (18) −0.0021 (18) −0.0023 (18) C7 0.010 (2) 0.008 (2) 0.007 (2) −0.0012 (17) 0.0019 (17) −0.0004 (16) C8 0.010 (2) 0.018 (2) 0.016 (2) −0.0072 (19) −0.0045 (18) 0.0034 (19) C9 0.010 (2) 0.027 (3) 0.024 (3) −0.008 (2) −0.004 (2) 0.008 (2) C10 0.015 (2) 0.018 (2) 0.014 (2) −0.003 (2) 0.0000 (19) 0.001 (2) C11 0.013 (2) 0.022 (3) 0.017 (3) −0.003 (2) −0.0014 (19) −0.004 (2) C12 0.010 (2) 0.016 (2) 0.014 (2) −0.0075 (18) 0.0027 (18) 0.0010 (18) C13 0.011 (2) 0.013 (2) 0.008 (2) −0.0029 (18) 0.0016 (17) −0.0024 (17) C14 0.015 (2) 0.022 (3) 0.012 (2) −0.008 (2) −0.0017 (19) −0.0048 (19) C15 0.019 (2) 0.017 (2) 0.017 (2) −0.011 (2) −0.003 (2) −0.0024 (19) C16 0.014 (2) 0.021 (3) 0.015 (2) −0.008 (2) −0.0030 (19) 0.001 (2) C17 0.013 (2) 0.024 (3) 0.010 (2) −0.010 (2) −0.0018 (18) 0.0005 (19) C18 0.010 (2) 0.019 (2) 0.012 (2) −0.0111 (19) 0.0003 (18) −0.0008 (19) C19 0.011 (2) 0.016 (2) 0.008 (2) −0.0091 (18) −0.0026 (17) −0.0006 (18) C20 0.015 (2) 0.022 (3) 0.009 (2) −0.008 (2) −0.0026 (18) −0.0011 (19) C21 0.013 (2) 0.029 (3) 0.015 (3) −0.010 (2) 0.0030 (19) 0.003 (2) C22 0.028 (3) 0.019 (3) 0.021 (3) −0.015 (2) −0.006 (2) 0.008 (2) C23 0.024 (3) 0.014 (2) 0.017 (3) −0.007 (2) −0.003 (2) −0.0024 (19) C24 0.017 (2) 0.021 (2) 0.010 (2) −0.010 (2) −0.0013 (19) −0.0040 (19) ----- ------------- -------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2272 .table-wrap} --------------------- -------------- ----------------------- ------------ Pb1---O2 2.382 (3) C5---H5 0.9500 Pb1---O3 2.384 (3) C6---H6 0.9500 Pb1---O4 2.427 (3) C7---C12 1.378 (7) Pb1---O1 2.433 (3) C7---C8 1.388 (7) Pb1---O5 2.757 (3) C8---C9 1.387 (7) Pb2---O8 2.371 (3) C8---H8 0.9500 Pb2---O5 2.389 (3) C9---C10 1.376 (8) Pb2---O6 2.403 (3) C9---H9 0.9500 Pb2---O7 2.453 (3) C10---C11 1.392 (7) Pb2---O1 2.718 (3) C10---H10 0.9500 O1---N2 1.305 (5) C11---C12 1.387 (7) O2---N1 1.309 (5) C11---H11 0.9500 O3---N4 1.307 (5) C12---H12 0.9500 O4---N3 1.310 (5) C13---C14 1.380 (7) O5---N6 1.320 (5) C13---C18 1.394 (7) O6---N5 1.307 (5) C14---C15 1.399 (7) O7---N8 1.311 (5) C14---H14 0.9500 O8---N7 1.312 (5) C15---C16 1.393 (7) N1---N2 1.293 (6) C15---H15 0.9500 N1---C1 1.447 (6) C16---C17 1.382 (7) N3---N4 1.286 (6) C16---H16 0.9500 N3---C7 1.445 (6) C17---C18 1.400 (7) N5---N6 1.291 (6) C17---H17 0.9500 N5---C13 1.447 (6) C18---H18 0.9500 N7---N8 1.278 (6) C19---C24 1.387 (7) N7---C19 1.444 (6) C19---C20 1.390 (7) C1---C6 1.383 (7) C20---C21 1.396 (7) C1---C2 1.396 (7) C20---H20 0.9500 C2---C3 1.388 (7) C21---C22 1.390 (8) C2---H2 0.9500 C21---H21 0.9500 C3---C4 1.400 (7) C22---C23 1.382 (8) C3---H3 0.9500 C22---H22 0.9500 C4---C5 1.388 (7) C23---C24 1.381 (7) C4---H4 0.9500 C23---H23 0.9500 C5---C6 1.392 (7) C24---H24 0.9500 O2---Pb1---O3 91.40 (12) C4---C5---C6 120.8 (4) O2---Pb1---O4 92.26 (11) C4---C5---H5 119.6 O3---Pb1---O4 64.06 (11) C6---C5---H5 119.6 O2---Pb1---O1 64.21 (11) C1---C6---C5 118.7 (4) O3---Pb1---O1 77.66 (11) C1---C6---H6 120.6 O4---Pb1---O1 134.66 (11) C5---C6---H6 120.6 O2---Pb1---O5 125.02 (11) C12---C7---C8 122.4 (4) O3---Pb1---O5 72.98 (11) C12---C7---N3 118.0 (4) O4---Pb1---O5 123.21 (10) C8---C7---N3 119.5 (4) O1---Pb1---O5 61.03 (10) C9---C8---C7 117.9 (5) O8---Pb2---O5 79.95 (12) C9---C8---H8 121.0 O8---Pb2---O6 70.65 (11) C7---C8---H8 121.0 O5---Pb2---O6 64.08 (11) C10---C9---C8 120.8 (5) O8---Pb2---O7 63.85 (11) C10---C9---H9 119.6 O5---Pb2---O7 85.48 (12) C8---C9---H9 119.6 O6---Pb2---O7 128.79 (11) C9---C10---C11 120.4 (5) O8---Pb2---O1 130.44 (11) C9---C10---H10 119.8 O5---Pb2---O1 62.13 (11) C11---C10---H10 119.8 O6---Pb2---O1 113.71 (11) C12---C11---C10 119.7 (5) O7---Pb2---O1 81.54 (11) C12---C11---H11 120.1 N2---O1---Pb1 121.0 (3) C10---C11---H11 120.1 N2---O1---Pb2 121.7 (3) C7---C12---C11 118.8 (4) Pb1---O1---Pb2 111.54 (12) C7---C12---H12 120.6 N1---O2---Pb1 116.1 (3) C11---C12---H12 120.6 N4---O3---Pb1 122.2 (3) C14---C13---C18 122.3 (5) N3---O4---Pb1 115.8 (3) C14---C13---N5 120.7 (4) N6---O5---Pb2 115.1 (3) C18---C13---N5 116.9 (4) N6---O5---Pb1 121.7 (3) C13---C14---C15 118.5 (5) Pb2---O5---Pb1 111.59 (12) C13---C14---H14 120.8 N5---O6---Pb2 109.6 (3) C15---C14---H14 120.8 N8---O7---Pb2 119.6 (3) C16---C15---C14 120.2 (5) N7---O8---Pb2 117.1 (3) C16---C15---H15 119.9 N2---N1---O2 125.6 (4) C14---C15---H15 119.9 N2---N1---C1 116.3 (4) C17---C16---C15 120.4 (5) O2---N1---C1 118.0 (4) C17---C16---H16 119.8 N1---N2---O1 112.5 (4) C15---C16---H16 119.8 N4---N3---O4 123.6 (4) C16---C17---C18 120.2 (5) N4---N3---C7 117.9 (4) C16---C17---H17 119.9 O4---N3---C7 118.5 (4) C18---C17---H17 119.9 N3---N4---O3 114.4 (4) C13---C18---C17 118.3 (5) N6---N5---O6 124.4 (4) C13---C18---H18 120.9 N6---N5---C13 116.9 (4) C17---C18---H18 120.9 O6---N5---C13 118.3 (4) C24---C19---C20 121.8 (5) N5---N6---O5 112.6 (4) C24---C19---N7 118.3 (4) N8---N7---O8 124.7 (4) C20---C19---N7 119.9 (4) N8---N7---C19 118.0 (4) C19---C20---C21 118.5 (5) O8---N7---C19 117.1 (4) C19---C20---H20 120.8 N7---N8---O7 113.5 (4) C21---C20---H20 120.8 C6---C1---C2 121.7 (4) C22---C21---C20 120.2 (5) C6---C1---N1 118.8 (4) C22---C21---H21 119.9 C2---C1---N1 119.5 (4) C20---C21---H21 119.9 C3---C2---C1 118.8 (5) C23---C22---C21 119.9 (5) C3---C2---H2 120.6 C23---C22---H22 120.0 C1---C2---H2 120.6 C21---C22---H22 120.0 C2---C3---C4 120.4 (5) C24---C23---C22 121.0 (5) C2---C3---H3 119.8 C24---C23---H23 119.5 C4---C3---H3 119.8 C22---C23---H23 119.5 C5---C4---C3 119.6 (5) C23---C24---C19 118.6 (5) C5---C4---H4 120.2 C23---C24---H24 120.7 C3---C4---H4 120.2 C19---C24---H24 120.7 O2---Pb1---O1---N2 5.5 (3) Pb1---O4---N3---C7 −178.8 (3) O3---Pb1---O1---N2 103.2 (3) O4---N3---N4---O3 −0.4 (6) O4---Pb1---O1---N2 71.0 (4) C7---N3---N4---O3 178.2 (4) O5---Pb1---O1---N2 −179.6 (3) Pb1---O3---N4---N3 0.8 (5) O2---Pb1---O1---Pb2 −148.12 (16) Pb2---O6---N5---N6 28.7 (5) O3---Pb1---O1---Pb2 −50.45 (13) Pb2---O6---N5---C13 −143.8 (3) O4---Pb1---O1---Pb2 −82.70 (17) O6---N5---N6---O5 −0.8 (6) O5---Pb1---O1---Pb2 26.76 (11) C13---N5---N6---O5 171.8 (4) O8---Pb2---O1---N2 130.8 (3) Pb2---O5---N6---N5 −29.0 (4) O5---Pb2---O1---N2 175.6 (3) Pb1---O5---N6---N5 111.0 (4) O6---Pb2---O1---N2 −145.0 (3) Pb2---O8---N7---N8 −8.9 (6) O7---Pb2---O1---N2 86.3 (3) Pb2---O8---N7---C19 167.6 (3) O8---Pb2---O1---Pb1 −75.71 (17) O8---N7---N8---O7 0.3 (7) O5---Pb2---O1---Pb1 −30.95 (12) C19---N7---N8---O7 −176.1 (4) O6---Pb2---O1---Pb1 8.49 (16) Pb2---O7---N8---N7 8.3 (5) O7---Pb2---O1---Pb1 −120.29 (14) N2---N1---C1---C6 167.7 (4) O3---Pb1---O2---N1 −81.4 (3) O2---N1---C1---C6 −11.0 (6) O4---Pb1---O2---N1 −145.5 (3) N2---N1---C1---C2 −13.4 (6) O1---Pb1---O2---N1 −5.8 (3) O2---N1---C1---C2 168.0 (4) O5---Pb1---O2---N1 −11.3 (3) C6---C1---C2---C3 −1.7 (7) O2---Pb1---O3---N4 −92.5 (3) N1---C1---C2---C3 179.3 (4) O4---Pb1---O3---N4 −0.7 (3) C1---C2---C3---C4 −0.4 (7) O1---Pb1---O3---N4 −155.7 (3) C2---C3---C4---C5 1.6 (7) O5---Pb1---O3---N4 141.1 (4) C3---C4---C5---C6 −0.7 (7) O2---Pb1---O4---N3 90.9 (3) C2---C1---C6---C5 2.6 (7) O3---Pb1---O4---N3 0.4 (3) N1---C1---C6---C5 −178.5 (4) O1---Pb1---O4---N3 35.8 (3) C4---C5---C6---C1 −1.3 (7) O5---Pb1---O4---N3 −44.6 (3) N4---N3---C7---C12 160.2 (4) O8---Pb2---O5---N6 −42.0 (3) O4---N3---C7---C12 −21.1 (6) O6---Pb2---O5---N6 31.3 (3) N4---N3---C7---C8 −22.9 (6) O7---Pb2---O5---N6 −106.2 (3) O4---N3---C7---C8 155.8 (4) O1---Pb2---O5---N6 171.0 (3) C12---C7---C8---C9 0.2 (7) O8---Pb2---O5---Pb1 174.02 (15) N3---C7---C8---C9 −176.6 (4) O6---Pb2---O5---Pb1 −112.72 (16) C7---C8---C9---C10 0.8 (7) O7---Pb2---O5---Pb1 109.80 (14) C8---C9---C10---C11 −1.6 (8) O1---Pb2---O5---Pb1 26.99 (11) C9---C10---C11---C12 1.4 (8) O2---Pb1---O5---N6 −166.4 (3) C8---C7---C12---C11 −0.3 (7) O3---Pb1---O5---N6 −87.0 (3) N3---C7---C12---C11 176.5 (4) O4---Pb1---O5---N6 −45.4 (3) C10---C11---C12---C7 −0.5 (7) O1---Pb1---O5---N6 −172.1 (3) N6---N5---C13---C14 14.3 (6) O2---Pb1---O5---Pb2 −25.19 (19) O6---N5---C13---C14 −172.6 (4) O3---Pb1---O5---Pb2 54.25 (14) N6---N5---C13---C18 −162.4 (4) O4---Pb1---O5---Pb2 95.90 (15) O6---N5---C13---C18 10.7 (6) O1---Pb1---O5---Pb2 −30.82 (12) C18---C13---C14---C15 −0.3 (7) O8---Pb2---O6---N5 59.4 (3) N5---C13---C14---C15 −176.8 (4) O5---Pb2---O6---N5 −28.6 (3) C13---C14---C15---C16 0.2 (7) O7---Pb2---O6---N5 31.2 (3) C14---C15---C16---C17 −0.4 (8) O1---Pb2---O6---N5 −67.2 (3) C15---C16---C17---C18 0.6 (7) O8---Pb2---O7---N8 −9.1 (3) C14---C13---C18---C17 0.5 (7) O5---Pb2---O7---N8 71.9 (3) N5---C13---C18---C17 177.1 (4) O6---Pb2---O7---N8 20.7 (4) C16---C17---C18---C13 −0.7 (7) O1---Pb2---O7---N8 134.4 (3) N8---N7---C19---C24 146.6 (5) O5---Pb2---O8---N7 −81.3 (3) O8---N7---C19---C24 −30.1 (6) O6---Pb2---O8---N7 −147.2 (3) N8---N7---C19---C20 −33.5 (6) O7---Pb2---O8---N7 8.6 (3) O8---N7---C19---C20 149.8 (4) O1---Pb2---O8---N7 −42.1 (3) C24---C19---C20---C21 −2.3 (7) Pb1---O2---N1---N2 6.9 (5) N7---C19---C20---C21 177.8 (4) Pb1---O2---N1---C1 −174.5 (3) C19---C20---C21---C22 0.6 (8) O2---N1---N2---O1 −1.9 (6) C20---C21---C22---C23 1.2 (8) C1---N1---N2---O1 179.6 (4) C21---C22---C23---C24 −1.4 (8) Pb1---O1---N2---N1 −4.3 (5) C22---C23---C24---C19 −0.2 (8) Pb2---O1---N2---N1 146.7 (3) C20---C19---C24---C23 2.1 (7) Pb1---O4---N3---N4 −0.2 (5) N7---C19---C24---C23 −178.1 (4) --------------------- -------------- ----------------------- ------------ :::
PubMed Central
2024-06-05T04:04:18.120335
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052047/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):m377", "authors": [ { "first": "Ezzatollah", "last": "Najafi" }, { "first": "Mostafa M.", "last": "Amini" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3052048
Related literature {#sec1} ================== For the structures and properties of lanthanide coordination compounds, see: Chen *et al.* (2008[@bb2]); Lv *et al.* (2010[@bb3]). For bond lengths and angles in other complexes with nine-coordinate Ce^III^, see: Chen *et al.* (2008[@bb2]); Ramya *et al.* (2010[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Ce~2~(C~10~H~8~O~4~)~3~(H~2~O)~2~\]*M* *~r~* = 892.76Triclinic,*a* = 10.5552 (2) Å*b* = 12.0275 (2) Å*c* = 12.4612 (2) Åα = 105.686 (1)°β = 96.748 (1)°γ = 92.949 (1)°*V* = 1506.77 (5) Å^3^*Z* = 2Mo *K*α radiationμ = 3.06 mm^−1^*T* = 296 K0.25 × 0.23 × 0.20 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 1997[@bb1]) *T* ~min~ = 0.516, *T* ~max~ = 0.5808224 measured reflections5545 independent reflections4673 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.018 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.025*wR*(*F* ^2^) = 0.054*S* = 1.015545 reflections431 parameters6 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.53 e Å^−3^Δρ~min~ = −0.38 e Å^−3^ {#d5e581} Data collection: *SMART* (Bruker, 1997[@bb1]); cell refinement: *SAINT* (Bruker, 1997[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb5]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003801/pv2385sup1.cif](http://dx.doi.org/10.1107/S1600536811003801/pv2385sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003801/pv2385Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003801/pv2385Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?pv2385&file=pv2385sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?pv2385sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?pv2385&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [PV2385](http://scripts.iucr.org/cgi-bin/sendsup?pv2385)). Comment ======= The lanthanide coordination polymers have shown not only versatile architectures but also desirable properties, e.g., luminescent, magnetic, catalytic, and gas absorption and separation properties (Chen *et al.*, 2008; Lv *et al.*, 2010). In order to extend the investigation in this field, we have designed and synthesized the title lanthanide coordination polymer by choosing 1,3-phenylendiacetic acid as a functional ligand, and report its crystal structure in this paper. The asymmetric unit of the title complex (Fig. 1) contains two crystallographically unique Ce^III^ ions, three 1,3-phenylenediacetate (pda) ligands, and two coordinated water molecules. Both Ce1 and Ce2 are nine-coordinated with a distorted tricapped trigonal-prismatic geometry; the nine coordination sites are occupied by one oxygen atom from one coordinated water molecule and eight O atoms from six different pda ligands. The Ce---O bond distances in the title complex are in the range 2.445 (2)--2.764 (3) Å, which are comparable to those reported for other Ce---O complexes (Chen *et al.*, 2008; Ramya *et al.*, 2010). The pda ligands adopt two coordination modes of *µ*~4~-hexadentate and *µ*~4~-pentadentate. Eight Ce^III^ ions and twelve pda ligands form a large \[Ce~8~(pda)~12~\] ring, and four Ce^III^ ions and six pda ligands form a small \[Ce~4~(pda)~6~\] ring (Fig. 2). The rings are further connected by the coordination interactions of pda ligands and Ce^III^ to generate a three-dimensional supramolecular framework (Fig. 2). Experimental {#experimental} ============ To a solution of cerium nitrate hexahydrate (0.087 g, 0.2 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.058 g, 0.3 mmol) and a drop of triethylamine. The reactants were sealed in a 25-ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. Upon cooling, the solution yielded single crystals of the title complex in *ca* 70% yield. Refinement {#refinement} ========== The coordinated water H atoms were located from a different Fourier map and refined with distance constraints O--H = 0.83 (3) Å. The carbon-bound H atoms were placed in geometrically idealized positions, with C--H = 0.93 and 0.97 Å for aryl and methylene H-atoms, respectively, and constrained to ride on their respective parent atoms, with *U*~iso~(H) = 1.2*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A drawing of the asymmetric unit of the title complex, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0m310-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Unit cell packing of the title complex showing three dimensional framework formed by a large \[Ce8(pda)12\] and a small \[Ce4(pda)6\] ring. ::: ![](e-67-0m310-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e172 .table-wrap} --------------------------------------- --------------------------------------- \[Ce~2~(C~10~H~8~O~4~)~3~(H~2~O)~2~\] *Z* = 2 *M~r~* = 892.76 *F*(000) = 872 Triclinic, *P*1 *D*~x~ = 1.968 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 10.5552 (2) Å Cell parameters from 3826 reflections *b* = 12.0275 (2) Å θ = 2.8--28.1° *c* = 12.4612 (2) Å µ = 3.06 mm^−1^ α = 105.686 (1)° *T* = 296 K β = 96.748 (1)° Block, colorless γ = 92.949 (1)° 0.25 × 0.23 × 0.20 mm *V* = 1506.77 (5) Å^3^ --------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e319 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART CCD area-detector diffractometer 5545 independent reflections Radiation source: fine-focus sealed tube 4673 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.018 φ and ω scans θ~max~ = 25.5°, θ~min~ = 1.8° Absorption correction: multi-scan (*SADABS*; Bruker, 1997) *h* = −12→10 *T*~min~ = 0.516, *T*~max~ = 0.580 *k* = −12→14 8224 measured reflections *l* = −15→14 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e436 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.025 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.054 H atoms treated by a mixture of independent and constrained refinement *S* = 1.01 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0178*P*)^2^ + 1.4251*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5545 reflections (Δ/σ)~max~ = 0.001 431 parameters Δρ~max~ = 0.53 e Å^−3^ 6 restraints Δρ~min~ = −0.38 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e593 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. Anal. Calcd for C~30~H~28~Ce~2~O~14~: C, 40.36; H, 3.16. Found: C, 40.68; H, 3.45. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e710 .table-wrap} ------ --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Ce1 0.969885 (19) 0.972983 (17) 0.817505 (16) 0.01890 (6) Ce2 0.693423 (19) 0.963262 (18) 0.545875 (17) 0.02092 (6) C1 0.8215 (4) 0.1335 (3) 0.3896 (3) 0.0252 (9) C2 0.7819 (4) 0.2362 (3) 0.3509 (3) 0.0304 (9) H2A 0.7153 0.2093 0.2869 0.036\* H2B 0.8547 0.2688 0.3253 0.036\* C3 0.7333 (4) 0.3315 (3) 0.4388 (3) 0.0252 (9) C4 0.6200 (4) 0.3156 (3) 0.4807 (4) 0.0323 (10) H4 0.5704 0.2452 0.4533 0.039\* C5 0.5802 (4) 0.4039 (4) 0.5630 (4) 0.0382 (11) H5 0.5045 0.3925 0.5915 0.046\* C6 0.6527 (4) 0.5085 (4) 0.6023 (4) 0.0420 (11) H6 0.6257 0.5673 0.6580 0.050\* C7 0.7643 (4) 0.5279 (3) 0.5609 (4) 0.0343 (10) C8 0.8041 (4) 0.4383 (3) 0.4799 (4) 0.0308 (9) H8 0.8803 0.4500 0.4523 0.037\* C9 0.8450 (4) 0.6422 (4) 0.6046 (5) 0.0529 (14) H9A 0.8711 0.6550 0.6846 0.063\* H9B 0.9222 0.6352 0.5689 0.063\* C10 0.7854 (4) 0.7485 (3) 0.5882 (3) 0.0276 (9) C11 0.6407 (4) 0.9107 (4) 0.8043 (3) 0.0297 (9) C12 0.5345 (4) 0.8419 (4) 0.8368 (4) 0.0418 (11) H12A 0.4669 0.8925 0.8557 0.050\* H12B 0.4994 0.7798 0.7706 0.050\* C13 0.5660 (4) 0.7886 (4) 0.9325 (3) 0.0326 (10) C14 0.6567 (5) 0.7105 (4) 0.9286 (4) 0.0480 (13) H14 0.7021 0.6910 0.8675 0.058\* C15 0.6803 (6) 0.6612 (5) 1.0154 (5) 0.0671 (17) H15 0.7429 0.6093 1.0131 0.081\* C16 0.6130 (5) 0.6871 (5) 1.1058 (4) 0.0553 (14) H16 0.6291 0.6509 1.1625 0.066\* C17 0.5223 (4) 0.7657 (4) 1.1136 (3) 0.0310 (9) C18 0.4988 (4) 0.8160 (4) 1.0256 (3) 0.0313 (9) H18 0.4371 0.8688 1.0286 0.038\* C19 0.4520 (4) 0.7942 (4) 1.2146 (3) 0.0329 (10) H19A 0.4176 0.7223 1.2255 0.040\* H19B 0.3802 0.8372 1.1991 0.040\* C20 0.5324 (4) 0.8637 (4) 1.3227 (3) 0.0295 (9) C21 0.9293 (4) 1.1831 (3) 0.7398 (3) 0.0243 (8) C22 0.8979 (4) 1.2973 (3) 0.7189 (4) 0.0355 (10) H22A 0.8243 1.3228 0.7557 0.043\* H22B 0.8735 1.2846 0.6387 0.043\* C23 1.0052 (4) 1.3934 (3) 0.7592 (3) 0.0282 (9) C24 1.1166 (4) 1.3857 (4) 0.7107 (4) 0.0380 (11) H24 1.1258 1.3210 0.6521 0.046\* C25 1.2141 (5) 1.4732 (4) 0.7485 (4) 0.0431 (12) H25 1.2887 1.4673 0.7151 0.052\* C26 1.2020 (4) 1.5698 (4) 0.8358 (4) 0.0380 (11) H26 1.2692 1.6277 0.8615 0.046\* C27 1.0919 (4) 1.5808 (3) 0.8847 (3) 0.0284 (9) C28 0.9938 (4) 1.4923 (3) 0.8464 (3) 0.0307 (9) H28 0.9189 1.4990 0.8793 0.037\* C29 1.0769 (5) 1.6894 (3) 0.9753 (3) 0.0395 (11) H29A 1.1572 1.7125 1.0253 0.047\* H29B 1.0124 1.6723 1.0193 0.047\* C30 1.0393 (4) 1.7894 (3) 0.9306 (3) 0.0260 (9) H1W 1.231 (4) 1.050 (4) 0.9665 (10) 0.056 (16)\* H2W 1.245 (5) 1.061 (5) 0.856 (3) 0.12 (3)\* H3W 0.905 (4) 0.933 (4) 0.408 (3) 0.059 (16)\* H4W 0.965 (3) 0.898 (5) 0.502 (4) 0.11 (3)\* O1 0.9012 (3) 0.0713 (2) 0.3390 (2) 0.0325 (7) O2 0.7753 (3) 0.1133 (2) 0.4708 (3) 0.0439 (8) O3 0.8387 (2) 0.8457 (2) 0.6504 (2) 0.0283 (6) O4 0.6920 (3) 0.7436 (2) 0.5162 (2) 0.0348 (7) O5 0.6106 (3) 0.9377 (2) 0.7151 (2) 0.0345 (7) O6 0.7483 (3) 0.9369 (3) 0.8664 (2) 0.0370 (7) O7 0.6493 (3) 0.8820 (3) 1.3289 (2) 0.0519 (9) O8 0.4748 (2) 0.8997 (2) 1.4094 (2) 0.0289 (6) O9 1.0327 (3) 1.1711 (2) 0.7907 (2) 0.0337 (7) O10 0.8427 (3) 1.0968 (2) 0.7048 (2) 0.0312 (6) O11 1.0126 (3) 1.7751 (2) 0.8285 (2) 0.0411 (8) O12 1.0372 (3) 1.8880 (2) 0.9995 (2) 0.0336 (7) O13 1.2073 (3) 1.0241 (3) 0.8950 (3) 0.0448 (8) O14 0.8946 (3) 0.8976 (3) 0.4580 (3) 0.0353 (7) ------ --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1640 .table-wrap} ----- -------------- -------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ce1 0.02518 (12) 0.01494 (11) 0.01602 (11) 0.00166 (9) 0.00181 (9) 0.00381 (8) Ce2 0.02308 (12) 0.02296 (13) 0.01748 (11) 0.00208 (9) 0.00230 (9) 0.00709 (9) C1 0.027 (2) 0.023 (2) 0.024 (2) −0.0039 (17) 0.0053 (17) 0.0038 (16) C2 0.038 (2) 0.031 (2) 0.025 (2) 0.0049 (19) 0.0041 (18) 0.0119 (18) C3 0.031 (2) 0.020 (2) 0.025 (2) 0.0041 (17) −0.0026 (17) 0.0075 (16) C4 0.033 (2) 0.022 (2) 0.042 (3) 0.0004 (18) 0.0025 (19) 0.0112 (19) C5 0.036 (2) 0.036 (3) 0.046 (3) 0.007 (2) 0.014 (2) 0.014 (2) C6 0.050 (3) 0.031 (3) 0.041 (3) 0.015 (2) 0.005 (2) 0.002 (2) C7 0.034 (2) 0.021 (2) 0.043 (3) 0.0067 (18) −0.010 (2) 0.0059 (19) C8 0.026 (2) 0.023 (2) 0.046 (3) 0.0031 (17) 0.0003 (19) 0.0162 (19) C9 0.044 (3) 0.022 (2) 0.079 (4) 0.003 (2) −0.021 (3) 0.003 (2) C10 0.028 (2) 0.022 (2) 0.030 (2) 0.0006 (17) 0.0058 (18) 0.0021 (17) C11 0.030 (2) 0.034 (2) 0.029 (2) 0.0025 (18) 0.0098 (18) 0.0119 (19) C12 0.035 (2) 0.058 (3) 0.032 (2) −0.012 (2) −0.001 (2) 0.017 (2) C13 0.032 (2) 0.039 (3) 0.025 (2) −0.007 (2) −0.0004 (18) 0.0096 (19) C14 0.061 (3) 0.055 (3) 0.032 (3) 0.018 (3) 0.021 (2) 0.009 (2) C15 0.092 (4) 0.070 (4) 0.061 (4) 0.050 (3) 0.043 (3) 0.032 (3) C16 0.081 (4) 0.062 (4) 0.037 (3) 0.031 (3) 0.023 (3) 0.027 (3) C17 0.037 (2) 0.035 (2) 0.021 (2) 0.0040 (19) 0.0017 (18) 0.0074 (18) C18 0.030 (2) 0.032 (2) 0.031 (2) −0.0026 (18) 0.0007 (18) 0.0094 (18) C19 0.031 (2) 0.041 (3) 0.027 (2) −0.0002 (19) 0.0084 (18) 0.0084 (19) C20 0.032 (2) 0.036 (2) 0.021 (2) 0.0065 (19) 0.0037 (17) 0.0073 (18) C21 0.035 (2) 0.017 (2) 0.020 (2) 0.0015 (17) 0.0055 (17) 0.0031 (16) C22 0.048 (3) 0.018 (2) 0.036 (3) 0.0030 (19) −0.006 (2) 0.0066 (18) C23 0.040 (2) 0.019 (2) 0.027 (2) 0.0046 (18) 0.0004 (18) 0.0106 (17) C24 0.063 (3) 0.021 (2) 0.032 (2) 0.008 (2) 0.016 (2) 0.0064 (18) C25 0.049 (3) 0.034 (3) 0.057 (3) 0.009 (2) 0.022 (2) 0.023 (2) C26 0.043 (3) 0.024 (2) 0.049 (3) −0.0022 (19) −0.001 (2) 0.017 (2) C27 0.049 (3) 0.015 (2) 0.021 (2) 0.0047 (18) −0.0012 (18) 0.0079 (16) C28 0.046 (3) 0.023 (2) 0.027 (2) 0.0088 (19) 0.0104 (19) 0.0114 (17) C29 0.068 (3) 0.025 (2) 0.025 (2) 0.008 (2) 0.001 (2) 0.0085 (18) C30 0.033 (2) 0.018 (2) 0.026 (2) 0.0004 (17) 0.0030 (17) 0.0054 (17) O1 0.0348 (16) 0.0353 (17) 0.0328 (16) 0.0105 (13) 0.0152 (13) 0.0126 (13) O2 0.069 (2) 0.0309 (17) 0.0450 (19) 0.0187 (15) 0.0341 (17) 0.0200 (14) O3 0.0362 (16) 0.0195 (14) 0.0251 (15) −0.0021 (12) −0.0011 (12) 0.0024 (12) O4 0.0334 (16) 0.0261 (16) 0.0386 (17) −0.0045 (13) −0.0105 (14) 0.0061 (13) O5 0.0346 (16) 0.0446 (18) 0.0312 (16) 0.0050 (14) 0.0096 (13) 0.0195 (14) O6 0.0315 (16) 0.0486 (19) 0.0291 (16) −0.0073 (14) 0.0031 (13) 0.0106 (14) O7 0.0293 (18) 0.090 (3) 0.0269 (17) −0.0011 (17) 0.0046 (13) 0.0015 (17) O8 0.0347 (16) 0.0355 (16) 0.0174 (14) 0.0093 (13) 0.0063 (12) 0.0065 (12) O9 0.0329 (16) 0.0245 (15) 0.0441 (18) −0.0023 (13) −0.0017 (14) 0.0139 (13) O10 0.0388 (16) 0.0208 (15) 0.0312 (16) −0.0048 (12) −0.0050 (13) 0.0077 (12) O11 0.077 (2) 0.0238 (16) 0.0200 (16) 0.0086 (15) −0.0031 (15) 0.0050 (12) O12 0.0596 (19) 0.0134 (14) 0.0252 (15) 0.0051 (13) 0.0078 (14) −0.0002 (12) O13 0.0350 (18) 0.056 (2) 0.038 (2) −0.0053 (16) −0.0049 (16) 0.0100 (18) O14 0.0346 (17) 0.0395 (19) 0.0366 (18) 0.0087 (14) 0.0080 (15) 0.0165 (15) ----- -------------- -------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2435 .table-wrap} --------------------------- -------------- ------------------------------ -------------- Ce1---O3 2.445 (2) C14---C15 1.371 (7) Ce1---O12^i^ 2.448 (2) C14---H14 0.9300 Ce1---O1^ii^ 2.465 (3) C15---C16 1.376 (6) Ce1---O11^iii^ 2.482 (3) C15---H15 0.9300 Ce1---O6 2.531 (3) C16---C17 1.372 (6) Ce1---O13 2.558 (3) C16---H16 0.9300 Ce1---O9 2.559 (3) C17---C18 1.393 (5) Ce1---O10 2.624 (3) C17---C19 1.505 (5) Ce1---O12^iii^ 2.764 (3) C18---H18 0.9300 Ce1---C30^iii^ 3.001 (4) C19---C20 1.511 (5) Ce2---O2^iv^ 2.412 (3) C19---H19A 0.9700 Ce2---O5 2.462 (3) C19---H19B 0.9700 Ce2---O8^v^ 2.494 (3) C20---O7 1.232 (5) Ce2---O10 2.504 (3) C20---O8 1.285 (4) Ce2---O4 2.565 (3) C20---Ce2^vii^ 2.989 (4) Ce2---O14 2.566 (3) C21---O9 1.231 (4) Ce2---O7^vi^ 2.590 (3) C21---O10 1.291 (4) Ce2---O3 2.606 (3) C21---C22 1.512 (5) Ce2---O8^vi^ 2.645 (3) C22---C23 1.513 (5) Ce2---C20^vi^ 2.989 (4) C22---H22A 0.9700 C1---O2 1.248 (4) C22---H22B 0.9700 C1---O1 1.264 (4) C23---C24 1.380 (6) C1---C2 1.504 (5) C23---C28 1.398 (5) C2---C3 1.514 (5) C24---C25 1.377 (6) C2---H2A 0.9700 C24---H24 0.9300 C2---H2B 0.9700 C25---C26 1.383 (6) C3---C4 1.384 (5) C25---H25 0.9300 C3---C8 1.388 (5) C26---C27 1.371 (6) C4---C5 1.384 (6) C26---H26 0.9300 C4---H4 0.9300 C27---C28 1.389 (5) C5---C6 1.374 (6) C27---C29 1.507 (5) C5---H5 0.9300 C28---H28 0.9300 C6---C7 1.375 (6) C29---C30 1.507 (5) C6---H6 0.9300 C29---H29A 0.9700 C7---C8 1.383 (6) C29---H29B 0.9700 C7---C9 1.510 (6) C30---O11 1.233 (4) C8---H8 0.9300 C30---O12 1.266 (4) C9---C10 1.505 (6) C30---Ce1^iv^ 3.001 (4) C9---H9A 0.9700 O1---Ce1^ii^ 2.465 (3) C9---H9B 0.9700 O2---Ce2^iii^ 2.412 (3) C10---O4 1.241 (4) O7---Ce2^vii^ 2.590 (3) C10---O3 1.275 (4) O8---Ce2^v^ 2.494 (3) C11---O5 1.252 (5) O8---Ce2^vii^ 2.645 (3) C11---O6 1.269 (5) O11---Ce1^iv^ 2.482 (3) C11---C12 1.516 (5) O12---Ce1^i^ 2.448 (2) C12---C13 1.511 (6) O12---Ce1^iv^ 2.764 (3) C12---H12A 0.9700 O13---H1W 0.864 (10) C12---H12B 0.9700 O13---H2W 0.86 (5) C13---C14 1.372 (6) O14---H3W 0.86 (4) C13---C18 1.403 (6) O14---H4W 0.87 (4) O3---Ce1---O12^i^ 144.20 (9) C7---C8---H8 119.1 O3---Ce1---O1^ii^ 70.91 (9) C3---C8---H8 119.1 O12^i^---Ce1---O1^ii^ 141.62 (10) C10---C9---C7 117.4 (4) O3---Ce1---O11^iii^ 76.19 (9) C10---C9---H9A 107.9 O12^i^---Ce1---O11^iii^ 113.90 (9) C7---C9---H9A 107.9 O1^ii^---Ce1---O11^iii^ 84.02 (9) C10---C9---H9B 107.9 O3---Ce1---O6 71.59 (9) C7---C9---H9B 107.9 O12^i^---Ce1---O6 74.44 (9) H9A---C9---H9B 107.2 O1^ii^---Ce1---O6 142.49 (9) O4---C10---O3 120.9 (4) O11^iii^---Ce1---O6 88.17 (10) O4---C10---C9 122.7 (4) O3---Ce1---O13 138.23 (10) O3---C10---C9 116.3 (4) O12^i^---Ce1---O13 77.54 (11) O5---C11---O6 125.7 (4) O1^ii^---Ce1---O13 70.46 (10) O5---C11---C12 114.0 (4) O11^iii^---Ce1---O13 84.60 (11) O6---C11---C12 120.2 (4) O6---Ce1---O13 145.16 (10) C13---C12---C11 118.5 (4) O3---Ce1---O9 111.91 (9) C13---C12---H12A 107.7 O12^i^---Ce1---O9 74.97 (9) C11---C12---H12A 107.7 O1^ii^---Ce1---O9 75.76 (9) C13---C12---H12B 107.7 O11^iii^---Ce1---O9 153.60 (10) C11---C12---H12B 107.7 O6---Ce1---O9 118.18 (9) H12A---C12---H12B 107.1 O13---Ce1---O9 72.83 (10) C14---C13---C18 118.9 (4) O3---Ce1---O10 69.88 (8) C14---C13---C12 121.2 (4) O12^i^---Ce1---O10 93.84 (9) C18---C13---C12 119.9 (4) O1^ii^---Ce1---O10 85.74 (9) C15---C14---C13 119.7 (4) O11^iii^---Ce1---O10 146.06 (9) C15---C14---H14 120.2 O6---Ce1---O10 80.57 (9) C13---C14---H14 120.2 O13---Ce1---O10 121.88 (10) C14---C15---C16 121.2 (5) O9---Ce1---O10 49.78 (8) C14---C15---H15 119.4 O3---Ce1---O12^iii^ 118.78 (8) C16---C15---H15 119.4 O12^i^---Ce1---O12^iii^ 65.74 (9) C17---C16---C15 121.0 (4) O1^ii^---Ce1---O12^iii^ 118.34 (9) C17---C16---H16 119.5 O11^iii^---Ce1---O12^iii^ 48.57 (8) C15---C16---H16 119.5 O6---Ce1---O12^iii^ 81.25 (9) C16---C17---C18 117.7 (4) O13---Ce1---O12^iii^ 68.50 (10) C16---C17---C19 119.8 (4) O9---Ce1---O12^iii^ 129.26 (8) C18---C17---C19 122.5 (4) O10---Ce1---O12^iii^ 155.72 (8) C17---C18---C13 121.5 (4) O3---Ce1---C30^iii^ 97.22 (9) C17---C18---H18 119.2 O12^i^---Ce1---C30^iii^ 90.49 (10) C13---C18---H18 119.2 O1^ii^---Ce1---C30^iii^ 101.08 (10) C17---C19---C20 114.7 (3) O11^iii^---Ce1---C30^iii^ 23.65 (9) C17---C19---H19A 108.6 O6---Ce1---C30^iii^ 84.57 (10) C20---C19---H19A 108.6 O13---Ce1---C30^iii^ 75.33 (11) C17---C19---H19B 108.6 O9---Ce1---C30^iii^ 147.13 (10) C20---C19---H19B 108.6 O10---Ce1---C30^iii^ 162.79 (9) H19A---C19---H19B 107.6 O12^iii^---Ce1---C30^iii^ 24.93 (8) O7---C20---O8 121.0 (4) O2^iv^---Ce2---O5 140.83 (10) O7---C20---C19 121.5 (4) O2^iv^---Ce2---O8^v^ 81.37 (9) O8---C20---C19 117.4 (3) O5---Ce2---O8^v^ 72.26 (9) O7---C20---Ce2^vii^ 59.5 (2) O2^iv^---Ce2---O10 74.63 (10) O8---C20---Ce2^vii^ 62.15 (19) O5---Ce2---O10 76.26 (9) C19---C20---Ce2^vii^ 170.4 (3) O8^v^---Ce2---O10 88.60 (9) O9---C21---O10 119.7 (3) O2^iv^---Ce2---O4 140.36 (9) O9---C21---C22 122.2 (3) O5---Ce2---O4 77.50 (9) O10---C21---C22 118.0 (3) O8^v^---Ce2---O4 132.08 (9) C21---C22---C23 115.1 (3) O10---Ce2---O4 119.23 (8) C21---C22---H22A 108.5 O2^iv^---Ce2---O14 71.63 (10) C23---C22---H22A 108.5 O5---Ce2---O14 131.71 (10) C21---C22---H22B 108.5 O8^v^---Ce2---O14 152.91 (9) C23---C22---H22B 108.5 O10---Ce2---O14 86.39 (10) H22A---C22---H22B 107.5 O4---Ce2---O14 72.51 (9) C24---C23---C28 118.4 (4) O2^iv^---Ce2---O7^vi^ 73.78 (11) C24---C23---C22 120.8 (4) O5---Ce2---O7^vi^ 139.87 (10) C28---C23---C22 120.8 (4) O8^v^---Ce2---O7^vi^ 103.64 (9) C25---C24---C23 120.4 (4) O10---Ce2---O7^vi^ 143.78 (10) C25---C24---H24 119.8 O4---Ce2---O7^vi^ 77.21 (11) C23---C24---H24 119.8 O14---Ce2---O7^vi^ 67.16 (10) C24---C25---C26 120.5 (4) O2^iv^---Ce2---O3 123.59 (10) C24---C25---H25 119.7 O5---Ce2---O3 67.37 (9) C26---C25---H25 119.7 O8^v^---Ce2---O3 137.36 (8) C27---C26---C25 120.5 (4) O10---Ce2---O3 69.30 (8) C27---C26---H26 119.7 O4---Ce2---O3 50.05 (8) C25---C26---H26 119.7 O14---Ce2---O3 64.34 (9) C26---C27---C28 118.8 (4) O7^vi^---Ce2---O3 115.83 (10) C26---C27---C29 120.0 (4) O2^iv^---Ce2---O8^vi^ 98.83 (10) C28---C27---C29 121.1 (4) O5---Ce2---O8^vi^ 96.30 (8) C27---C28---C23 121.4 (4) O8^v^---Ce2---O8^vi^ 66.00 (10) C27---C28---H28 119.3 O10---Ce2---O8^vi^ 154.56 (8) C23---C28---H28 119.3 O4---Ce2---O8^vi^ 81.72 (8) C27---C29---C30 113.7 (3) O14---Ce2---O8^vi^ 115.35 (9) C27---C29---H29A 108.8 O7^vi^---Ce2---O8^vi^ 49.47 (8) C30---C29---H29A 108.8 O3---Ce2---O8^vi^ 130.76 (8) C27---C29---H29B 108.8 O2^iv^---Ce2---C20^vi^ 87.36 (11) C30---C29---H29B 108.8 O5---Ce2---C20^vi^ 118.44 (10) H29A---C29---H29B 107.7 O8^v^---Ce2---C20^vi^ 86.33 (10) O11---C30---O12 120.8 (4) O10---Ce2---C20^vi^ 161.83 (10) O11---C30---C29 120.3 (3) O4---Ce2---C20^vi^ 76.41 (10) O12---C30---C29 118.9 (3) O14---Ce2---C20^vi^ 90.21 (11) O11---C30---Ce1^iv^ 53.8 (2) O7^vi^---Ce2---C20^vi^ 24.18 (9) O12---C30---Ce1^iv^ 67.0 (2) O3---Ce2---C20^vi^ 124.77 (10) C29---C30---Ce1^iv^ 173.9 (3) O8^vi^---Ce2---C20^vi^ 25.44 (9) C1---O1---Ce1^ii^ 148.5 (3) O2---C1---O1 122.5 (4) C1---O2---Ce2^iii^ 144.9 (3) O2---C1---C2 118.9 (3) C10---O3---Ce1 154.5 (3) O1---C1---C2 118.6 (3) C10---O3---Ce2 93.0 (2) C1---C2---C3 115.1 (3) Ce1---O3---Ce2 111.37 (9) C1---C2---H2A 108.5 C10---O4---Ce2 95.8 (2) C3---C2---H2A 108.5 C11---O5---Ce2 143.3 (3) C1---C2---H2B 108.5 C11---O6---Ce1 130.5 (2) C3---C2---H2B 108.5 C20---O7---Ce2^vii^ 96.4 (2) H2A---C2---H2B 107.5 C20---O8---Ce2^v^ 133.5 (2) C4---C3---C8 118.4 (4) C20---O8---Ce2^vii^ 92.4 (2) C4---C3---C2 122.1 (3) Ce2^v^---O8---Ce2^vii^ 114.00 (10) C8---C3---C2 119.5 (4) C21---O9---Ce1 97.1 (2) C5---C4---C3 120.4 (4) C21---O10---Ce2 149.1 (2) C5---C4---H4 119.8 C21---O10---Ce1 92.4 (2) C3---C4---H4 119.8 Ce2---O10---Ce1 108.93 (9) C6---C5---C4 119.8 (4) C30---O11---Ce1^iv^ 102.5 (2) C6---C5---H5 120.1 C30---O12---Ce1^i^ 156.6 (3) C4---C5---H5 120.1 C30---O12---Ce1^iv^ 88.1 (2) C5---C6---C7 121.2 (4) Ce1^i^---O12---Ce1^iv^ 114.26 (9) C5---C6---H6 119.4 Ce1---O13---H1W 120 (3) C7---C6---H6 119.4 Ce1---O13---H2W 111 (4) C6---C7---C8 118.4 (4) H1W---O13---H2W 114 (3) C6---C7---C9 121.5 (4) Ce2---O14---H3W 109 (3) C8---C7---C9 120.1 (4) Ce2---O14---H4W 119 (4) C7---C8---C3 121.7 (4) H3W---O14---H4W 112 (3) O2---C1---C2---C3 23.6 (5) O3---C10---O4---Ce2 4.4 (4) O1---C1---C2---C3 −156.0 (3) C9---C10---O4---Ce2 −173.2 (4) C1---C2---C3---C4 −66.9 (5) O2^iv^---Ce2---O4---C10 94.5 (3) C1---C2---C3---C8 112.7 (4) O5---Ce2---O4---C10 −73.3 (2) C8---C3---C4---C5 −1.1 (6) O8^v^---Ce2---O4---C10 −124.9 (2) C2---C3---C4---C5 178.5 (4) O10---Ce2---O4---C10 −7.0 (3) C3---C4---C5---C6 0.8 (7) O14---Ce2---O4---C10 68.4 (2) C4---C5---C6---C7 0.5 (7) O7^vi^---Ce2---O4---C10 138.2 (2) C5---C6---C7---C8 −1.5 (7) O3---Ce2---O4---C10 −2.4 (2) C5---C6---C7---C9 −179.4 (4) O8^vi^---Ce2---O4---C10 −171.6 (2) C6---C7---C8---C3 1.2 (6) C20^vi^---Ce2---O4---C10 163.0 (3) C9---C7---C8---C3 179.1 (4) O6---C11---O5---Ce2 37.2 (7) C4---C3---C8---C7 0.1 (6) C12---C11---O5---Ce2 −143.5 (4) C2---C3---C8---C7 −179.5 (4) O2^iv^---Ce2---O5---C11 −99.8 (5) C6---C7---C9---C10 −62.4 (6) O8^v^---Ce2---O5---C11 −149.8 (5) C8---C7---C9---C10 119.7 (5) O10---Ce2---O5---C11 −56.8 (5) C7---C9---C10---O4 −20.7 (7) O4---Ce2---O5---C11 67.8 (5) C7---C9---C10---O3 161.6 (4) O14---Ce2---O5---C11 15.4 (5) O5---C11---C12---C13 170.6 (4) O7^vi^---Ce2---O5---C11 119.9 (4) O6---C11---C12---C13 −10.1 (6) O3---Ce2---O5---C11 16.2 (4) C11---C12---C13---C14 −59.1 (6) O8^vi^---Ce2---O5---C11 147.9 (5) C11---C12---C13---C18 123.2 (4) C20^vi^---Ce2---O5---C11 134.6 (4) C18---C13---C14---C15 −0.3 (7) O5---C11---O6---Ce1 −28.8 (6) C12---C13---C14---C15 −178.1 (5) C12---C11---O6---Ce1 152.0 (3) C13---C14---C15---C16 1.1 (9) O3---Ce1---O6---C11 −25.8 (3) C14---C15---C16---C17 −1.8 (9) O12^i^---Ce1---O6---C11 142.7 (4) C15---C16---C17---C18 1.6 (8) O1^ii^---Ce1---O6---C11 −24.1 (4) C15---C16---C17---C19 −178.8 (5) O11^iii^---Ce1---O6---C11 −101.8 (4) C16---C17---C18---C13 −0.7 (6) O13---Ce1---O6---C11 −179.6 (3) C19---C17---C18---C13 179.7 (4) O9---Ce1---O6---C11 79.8 (4) C14---C13---C18---C17 0.1 (6) O10---Ce1---O6---C11 46.0 (3) C12---C13---C18---C17 177.9 (4) O12^iii^---Ce1---O6---C11 −150.1 (4) C16---C17---C19---C20 70.5 (6) C30^iii^---Ce1---O6---C11 −125.2 (4) C18---C17---C19---C20 −109.9 (5) O8---C20---O7---Ce2^vii^ 8.7 (4) C17---C19---C20---O7 −8.7 (6) C19---C20---O7---Ce2^vii^ −168.8 (3) C17---C19---C20---O8 173.7 (4) O7---C20---O8---Ce2^v^ 118.5 (4) O9---C21---C22---C23 3.2 (6) C19---C20---O8---Ce2^v^ −63.9 (5) O10---C21---C22---C23 −178.3 (3) Ce2^vii^---C20---O8---Ce2^v^ 126.9 (3) C21---C22---C23---C24 65.8 (5) O7---C20---O8---Ce2^vii^ −8.5 (4) C21---C22---C23---C28 −114.4 (4) C19---C20---O8---Ce2^vii^ 169.1 (3) C28---C23---C24---C25 0.7 (6) O10---C21---O9---Ce1 −10.2 (4) C22---C23---C24---C25 −179.5 (4) C22---C21---O9---Ce1 168.2 (3) C23---C24---C25---C26 0.2 (7) O3---Ce1---O9---C21 40.0 (2) C24---C25---C26---C27 −1.1 (7) O12^i^---Ce1---O9---C21 −102.8 (2) C25---C26---C27---C28 1.1 (6) O1^ii^---Ce1---O9---C21 102.3 (2) C25---C26---C27---C29 −176.6 (4) O11^iii^---Ce1---O9---C21 143.4 (2) C26---C27---C28---C23 −0.3 (6) O6---Ce1---O9---C21 −40.1 (2) C29---C27---C28---C23 177.4 (4) O13---Ce1---O9---C21 175.9 (2) C24---C23---C28---C27 −0.6 (6) O10---Ce1---O9---C21 5.7 (2) C22---C23---C28---C27 179.6 (4) O12^iii^---Ce1---O9---C21 −142.6 (2) C26---C27---C29---C30 80.0 (5) C30^iii^---Ce1---O9---C21 −169.3 (2) C28---C27---C29---C30 −97.7 (5) O9---C21---O10---Ce2 −124.7 (4) C27---C29---C30---O11 6.5 (6) C22---C21---O10---Ce2 56.8 (6) C27---C29---C30---O12 −172.7 (4) O9---C21---O10---Ce1 9.9 (4) O2---C1---O1---Ce1^ii^ 174.8 (3) C22---C21---O10---Ce1 −168.6 (3) C2---C1---O1---Ce1^ii^ −5.6 (7) O2^iv^---Ce2---O10---C21 −9.9 (5) O1---C1---O2---Ce2^iii^ −39.5 (7) O5---Ce2---O10---C21 −163.4 (5) C2---C1---O2---Ce2^iii^ 141.0 (4) O8^v^---Ce2---O10---C21 −91.3 (5) O4---C10---O3---Ce1 158.7 (4) O4---Ce2---O10---C21 129.7 (5) C9---C10---O3---Ce1 −23.6 (8) O14---Ce2---O10---C21 62.0 (5) O4---C10---O3---Ce2 −4.4 (4) O7^vi^---Ce2---O10---C21 20.1 (6) C9---C10---O3---Ce2 173.4 (4) O3---Ce2---O10---C21 125.9 (5) O12^i^---Ce1---O3---C10 −100.0 (6) O8^vi^---Ce2---O10---C21 −88.0 (5) O1^ii^---Ce1---O3---C10 100.2 (6) C20^vi^---Ce2---O10---C21 −17.6 (7) O11^iii^---Ce1---O3---C10 11.8 (6) O2^iv^---Ce2---O10---Ce1 −141.20 (12) O6---Ce1---O3---C10 −80.9 (6) O5---Ce2---O10---Ce1 65.30 (10) O13---Ce1---O3---C10 77.0 (6) O8^v^---Ce2---O10---Ce1 137.37 (11) O9---Ce1---O3---C10 165.4 (6) O4---Ce2---O10---Ce1 −1.62 (14) O10---Ce1---O3---C10 −167.3 (6) O14---Ce2---O10---Ce1 −69.27 (11) O12^iii^---Ce1---O3---C10 −12.3 (6) O7^vi^---Ce2---O10---Ce1 −111.17 (16) C30^iii^---Ce1---O3---C10 0.9 (6) O3---Ce2---O10---Ce1 −5.37 (9) O12^i^---Ce1---O3---Ce2 61.73 (18) O8^vi^---Ce2---O10---Ce1 140.76 (15) O1^ii^---Ce1---O3---Ce2 −98.04 (11) C20^vi^---Ce2---O10---Ce1 −148.9 (3) O11^iii^---Ce1---O3---Ce2 173.59 (13) O3---Ce1---O10---C21 −151.6 (2) O6---Ce1---O3---Ce2 80.89 (11) O12^i^---Ce1---O10---C21 61.2 (2) O13---Ce1---O3---Ce2 −121.29 (15) O1^ii^---Ce1---O10---C21 −80.3 (2) O9---Ce1---O3---Ce2 −32.85 (13) O11^iii^---Ce1---O10---C21 −153.0 (2) O10---Ce1---O3---Ce2 −5.56 (9) O6---Ce1---O10---C21 134.7 (2) O12^iii^---Ce1---O3---Ce2 149.44 (9) O13---Ce1---O10---C21 −16.5 (2) C30^iii^---Ce1---O3---Ce2 162.69 (11) O9---Ce1---O10---C21 −5.4 (2) O2^iv^---Ce2---O3---C10 −128.2 (2) O12^iii^---Ce1---O10---C21 92.7 (3) O5---Ce2---O3---C10 94.8 (2) C30^iii^---Ce1---O10---C21 165.4 (3) O8^v^---Ce2---O3---C10 114.8 (2) O3---Ce1---O10---Ce2 5.70 (9) O10---Ce2---O3---C10 178.1 (2) O12^i^---Ce1---O10---Ce2 −141.55 (11) O4---Ce2---O3---C10 2.4 (2) O1^ii^---Ce1---O10---Ce2 76.92 (11) O14---Ce2---O3---C10 −85.8 (2) O11^iii^---Ce1---O10---Ce2 4.2 (2) O7^vi^---Ce2---O3---C10 −41.1 (2) O6---Ce1---O10---Ce2 −68.03 (11) O8^vi^---Ce2---O3---C10 16.5 (3) O13---Ce1---O10---Ce2 140.74 (11) C20^vi^---Ce2---O3---C10 −15.0 (3) O9---Ce1---O10---Ce2 151.85 (16) O2^iv^---Ce2---O3---Ce1 59.62 (14) O12^iii^---Ce1---O10---Ce2 −110.06 (18) O5---Ce2---O3---Ce1 −77.39 (11) C30^iii^---Ce1---O10---Ce2 −37.3 (4) O8^v^---Ce2---O3---Ce1 −57.48 (16) O12---C30---O11---Ce1^iv^ 1.3 (4) O10---Ce2---O3---Ce1 5.85 (9) C29---C30---O11---Ce1^iv^ −177.9 (3) O4---Ce2---O3---Ce1 −169.87 (16) O11---C30---O12---Ce1^i^ 162.1 (5) O14---Ce2---O3---Ce1 101.99 (12) C29---C30---O12---Ce1^i^ −18.7 (9) O7^vi^---Ce2---O3---Ce1 146.68 (10) Ce1^iv^---C30---O12---Ce1^i^ 163.2 (7) O8^vi^---Ce2---O3---Ce1 −155.72 (8) O11---C30---O12---Ce1^iv^ −1.1 (4) C20^vi^---Ce2---O3---Ce1 172.81 (11) C29---C30---O12---Ce1^iv^ 178.0 (4) --------------------------- -------------- ------------------------------ -------------- ::: Symmetry codes: (i) −*x*+2, −*y*+3, −*z*+2; (ii) −*x*+2, −*y*+1, −*z*+1; (iii) *x*, *y*−1, *z*; (iv) *x*, *y*+1, *z*; (v) −*x*+1, −*y*+2, −*z*+2; (vi) *x*, *y*, *z*−1; (vii) *x*, *y*, *z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e5636 .table-wrap} ---------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O13---H1W···O6^viii^ 0.86 (1) 2.03 (2) 2.860 (4) 161 (4) O14---H4W···O1^ii^ 0.87 (4) 2.23 (2) 3.051 (4) 159 (5) O14---H3W···O9^ix^ 0.86 (4) 2.62 (4) 3.180 (4) 123 (4) O14---H3W···O1^iv^ 0.86 (4) 2.07 (5) 2.873 (4) 155 (5) O13---H2W···O9 0.86 (5) 2.81 (7) 3.037 (4) 97 (5) O13---H2W···O1^ii^ 0.86 (5) 2.75 (5) 2.898 (4) 91 (3) ---------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (viii) −*x*+2, −*y*+2, −*z*+2; (ii) −*x*+2, −*y*+1, −*z*+1; (ix) −*x*+2, −*y*+2, −*z*+1; (iv) *x*, *y*+1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- ---------- ---------- ----------- ------------- O13---H1*W*⋯O6^i^ 0.86 (1) 2.03 (2) 2.860 (4) 161 (4) O14---H4*W*⋯O1^ii^ 0.87 (4) 2.23 (2) 3.051 (4) 159 (5) O14---H3*W*⋯O9^iii^ 0.86 (4) 2.62 (4) 3.180 (4) 123 (4) O14---H3*W*⋯O1^iv^ 0.86 (4) 2.07 (5) 2.873 (4) 155 (5) O13---H2*W*⋯O9 0.86 (5) 2.81 (7) 3.037 (4) 97 (5) O13---H2*W*⋯O1^ii^ 0.86 (5) 2.75 (5) 2.898 (4) 91 (3) Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:18.127372
2011-2-09
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052048/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 9; 67(Pt 3):m310", "authors": [ { "first": "Zhu-Qing", "last": "Gao" }, { "first": "Hong-Jin", "last": "Li" }, { "first": "Jin-Zhong", "last": "Gu" } ] }
PMC3052049
Related literature {#sec1} ================== For the synthesis of the ligand, see: Chakka *et al.* (2009[@bb2]). For the Henry reaction, see: Kawthekar *et al.* (2010[@bb5]). For similar structures, see: Naicker *et al.* (2009[@bb8], 2010*a* [@bb6],*b* [@bb7]); Chakka *et al.* (2010[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~18~H~21~NO~3~·2.33H~2~O*M* *~r~* = 341.39Trigonal,*a* = 27.950 (2) Å*c* = 5.8035 (5) Å*V* = 3926 (2) Å^3^*Z* = 9Mo *K*α radiationμ = 0.10 mm^−1^*T* = 173 K0.13 × 0.12 × 0.09 mm ### Data collection {#sec2.1.2} Bruker Kappa DUO APEXII CCD diffractometer10224 measured reflections4340 independent reflections3707 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.022 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.056*wR*(*F* ^2^) = 0.162*S* = 1.064340 reflections226 parameters3 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.60 e Å^−3^Δρ~min~ = −0.30 e Å^−3^ {#d5e419} Data collection: *APEX2* (Bruker, 2006[@bb1]); cell refinement: *SAINT* (Bruker, 2006[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009[@bb4]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811006052/bg2388sup1.cif](http://dx.doi.org/10.1107/S1600536811006052/bg2388sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006052/bg2388Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006052/bg2388Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bg2388&file=bg2388sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bg2388sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bg2388&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BG2388](http://scripts.iucr.org/cgi-bin/sendsup?bg2388)). The authors would like to thank Dr Hong Su (University of Capetown) for the data collection and structure refinement. Comment ======= Heterocyclic rings play key roles in a number of areas of organic and inorganic chemistry. As part of an ongoing study employing (1*R*,3*S*)-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline based metal complexes as catalysts in asymmetric hydride transfer reactions (Chakka *et al.*, 2009) and the Henry reaction (Kawthekar *et al.*, 2010) we synthesized the title compound. The absolute sterochemistry of the diastereomer was confirmed by NMR studies as *R,S* at C1 and C9. The primary alcohol group displays hydrogen bonding (O3---H3O···O1W)(2.917 (6) A) (Fig 1.). The first (1*R*,3*S*)-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline structure we reported (Naicker *et al.*, 2009) had an ester functionality at the C9 position and its *N-*heterocycle revealed a half boat conformation. For the title compound the *N-*heterocycle adopts a half chair conformation, as it does in the remaining two related structures that we have communicated (Naicker *et al.*, 2010*a*; Naicker *et al.*, 2010*b*). There are in the structure of the title compound a number of short O···O contacts involving the crystal water molecules (one of them, O1W, rotationally disordered on a three fold axis), probably due to hydrogen bonding but which could not be considered in detail because of the impossibility to find the water H atoms. Experimental {#experimental} ============ A solution of amino ester (0.5 g, 1.5 mmol) in dry THF (20 ml) (Chakka *et al.*, 2009) was added dropwise to a suspension of LiAlH~4~ (0.18, 4.5 mmol) in dry THF (20 ml) under N~2~ atmosphere at 0 °C. The mixture was stirred at 0 °C for 2 h, and the reaction was monitored with TLC in hexane/ethyl acetate (50/50, *R*~f~ = 1/2). Excess lithium aluminium hydride was quenched with saturated sodium sulfate solution at 0 °C. The reaction mixture was filtered and the solid was washed with THF (20 ml). The solvent was evaporated to dryness, ethyl acetate (20 ml) was added, washed with water (2 × 5 ml), the organic layer was separated and dried over anhydrous MgSO~4~ to afford the crude amino alcohol. This was purified by gradient column chromatography; solvent A: 10:90 saturated ammonia in MeOH:DCM and solvent B: 2:98 MeOH:DCM to yield 0.33 g (70% yield) of the pale yellow target compound. m.p.= 388--390 K Crystals apt for x-ray diffraction were grown in methanol, at room temperature. The water molecules in the crystal were probably due to contamination of the solvent. Refinement {#refinement} ========== There is one main molecule and two and one-third water molecules in the asymmetric unit. Water molecule O1W is disordered on a site of higher rotational (threefold) symmetry than its own (twofold). It has accordingly a high temperature factor (*U*~iso~ = 0.0959), for what it was refined isotropically. All hydrogen atoms attached to carbon were positioned geometrically with C---H = 0.95 - 1.00 Å and refined as riding on their parent atoms. The hydrogen atoms H3O and H1N were located in a difference electron density map and refined with simple bond length constraints. In all cases *U*~iso~ (H) = 1.2 - 1.5 *U*~eq~ (Host). In spite of the low temperature data, the hydrogen atoms on the three water molecules could not be found and therefore were excluded from the final model. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structure of (I) showing numbering scheme. All non-hydrogen atoms except O1W are shown as ellipsoids with probability level of 30%. ::: ![](e-67-0o700-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e170 .table-wrap} --------------------------- ---------------------------------------- C~18~H~21~NO~3~·2.33H~2~O *D*~x~ = 1.299 Mg m^−3^ *M~r~* = 341.39 Mo *K*α radiation, λ = 0.71073 Å Trigonal, *R*3 Cell parameters from 10224 reflections Hall symbol: R 3 θ = 2.5--28.3° *a* = 27.950 (2) Å µ = 0.10 mm^−1^ *c* = 5.8035 (5) Å *T* = 173 K *V* = 3926 (2) Å^3^ Needle, colourless *Z* = 9 0.13 × 0.12 × 0.09 mm *F*(000) = 1650 --------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e287 .table-wrap} -------------------------------------------- -------------------------------------- Bruker Kappa DUO APEXII CCD diffractometer 3707 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.022 graphite θ~max~ = 28.3°, θ~min~ = 2.5° 0.5° φ scans and ω *h* = −37→37 10224 measured reflections *k* = −31→37 4340 independent reflections *l* = −7→7 -------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e385 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.056 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.162 H atoms treated by a mixture of independent and constrained refinement *S* = 1.06 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0985*P*)^2^ + 2.1271*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4340 reflections (Δ/σ)~max~ \< 0.001 226 parameters Δρ~max~ = 0.60 e Å^−3^ 3 restraints Δρ~min~ = −0.30 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e542 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. Half sphere of data collected using *SAINT* strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of φ and ω scans of 0.5°, 60 s per °, 2 iterations. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e656 .table-wrap} ------ -------------- -------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.91196 (8) 0.15356 (9) 0.2897 (4) 0.0468 (5) O2 0.95248 (8) 0.22297 (9) 0.6202 (3) 0.0484 (5) O3 0.67745 (12) 0.27007 (15) 0.4378 (6) 0.0809 (9) H3O 0.675 (2) 0.287 (2) 0.291 (5) 0.097\* O1W 0.6667 0.3333 0.0620 (11) 0.0959 (17)\* O2W 0.82161 (9) 0.36012 (8) 0.0053 (3) 0.0477 (5) O3W 0.76609 (13) 0.41438 (12) −0.0962 (6) 0.0806 (8) N1 0.75539 (10) 0.24710 (8) 0.1792 (4) 0.0370 (5) H1N 0.7216 (8) 0.2411 (13) 0.108 (5) 0.043\* C1 0.76741 (9) 0.20211 (9) 0.1292 (4) 0.0285 (4) H1 0.7785 0.2059 −0.0366 0.034\* C2 0.81654 (9) 0.20906 (9) 0.2690 (4) 0.0299 (4) C3 0.84111 (9) 0.17779 (10) 0.2090 (4) 0.0327 (5) H3 0.8270 0.1529 0.0825 0.039\* C4 0.88544 (10) 0.18267 (10) 0.3311 (4) 0.0348 (5) C5 0.90748 (11) 0.22030 (11) 0.5167 (4) 0.0369 (5) C6 0.88280 (12) 0.25024 (10) 0.5776 (4) 0.0375 (5) H6 0.8969 0.2749 0.7045 0.045\* C7 0.83662 (10) 0.24501 (9) 0.4548 (4) 0.0314 (5) C8 0.81126 (12) 0.27861 (10) 0.5265 (4) 0.0399 (6) H8A 0.8346 0.3171 0.4722 0.048\* H8B 0.8096 0.2793 0.6968 0.048\* C9 0.75403 (13) 0.25544 (11) 0.4300 (4) 0.0411 (6) H9 0.7287 0.2193 0.5058 0.049\* C10 0.73288 (16) 0.29565 (15) 0.4714 (7) 0.0594 (8) H10A 0.7417 0.3100 0.6310 0.071\* H10B 0.7516 0.3274 0.3646 0.071\* C11 0.71644 (9) 0.14513 (9) 0.1564 (4) 0.0280 (4) C12 0.70780 (10) 0.11199 (10) 0.3506 (4) 0.0337 (5) H12 0.7343 0.1252 0.4715 0.040\* C13 0.66148 (12) 0.06060 (11) 0.3683 (5) 0.0433 (6) H13 0.6562 0.0387 0.5013 0.052\* C14 0.62243 (11) 0.04056 (11) 0.1934 (6) 0.0463 (7) H14 0.5909 0.0047 0.2051 0.056\* C15 0.62937 (11) 0.07295 (11) 0.0015 (5) 0.0451 (6) H15 0.6024 0.0597 −0.1175 0.054\* C16 0.67646 (10) 0.12540 (10) −0.0156 (4) 0.0374 (5) H16 0.6811 0.1478 −0.1464 0.045\* C17 0.88839 (12) 0.11055 (14) 0.1231 (6) 0.0509 (7) H17A 0.9112 0.0931 0.1098 0.076\* H17B 0.8868 0.1260 −0.0264 0.076\* H17C 0.8510 0.0829 0.1711 0.076\* C18 0.97424 (13) 0.25805 (14) 0.8174 (5) 0.0533 (8) H18A 1.0064 0.2566 0.8759 0.080\* H18B 0.9458 0.2455 0.9375 0.080\* H18C 0.9854 0.2961 0.7738 0.080\* ------ -------------- -------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1260 .table-wrap} ----- ------------- ------------- ------------- ------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0351 (10) 0.0572 (12) 0.0562 (11) 0.0292 (9) −0.0095 (8) −0.0163 (9) O2 0.0420 (10) 0.0542 (12) 0.0480 (11) 0.0233 (9) −0.0183 (8) −0.0117 (9) O3 0.0626 (17) 0.092 (2) 0.095 (2) 0.0430 (15) −0.0005 (15) −0.0043 (17) O2W 0.0541 (12) 0.0409 (10) 0.0489 (11) 0.0243 (9) 0.0054 (9) 0.0036 (8) O3W 0.0695 (17) 0.0625 (16) 0.115 (2) 0.0372 (14) −0.0191 (16) −0.0032 (15) N1 0.0478 (12) 0.0286 (10) 0.0405 (11) 0.0235 (9) −0.0004 (9) 0.0020 (8) C1 0.0311 (11) 0.0278 (10) 0.0258 (9) 0.0141 (9) 0.0038 (8) 0.0054 (8) C2 0.0331 (11) 0.0253 (10) 0.0273 (10) 0.0117 (9) 0.0072 (8) 0.0055 (8) C3 0.0296 (11) 0.0341 (11) 0.0305 (11) 0.0130 (9) 0.0028 (8) −0.0035 (8) C4 0.0294 (11) 0.0373 (12) 0.0332 (11) 0.0131 (10) 0.0024 (9) −0.0009 (9) C5 0.0372 (12) 0.0357 (12) 0.0328 (11) 0.0143 (10) −0.0036 (9) 0.0022 (9) C6 0.0500 (14) 0.0312 (11) 0.0271 (10) 0.0170 (11) −0.0019 (10) −0.0004 (9) C7 0.0410 (12) 0.0218 (10) 0.0298 (10) 0.0145 (9) 0.0017 (9) 0.0031 (8) C8 0.0631 (17) 0.0325 (12) 0.0303 (11) 0.0284 (12) −0.0007 (11) −0.0016 (9) C9 0.0557 (16) 0.0351 (12) 0.0414 (13) 0.0295 (12) 0.0118 (11) 0.0061 (10) C10 0.063 (2) 0.0548 (18) 0.072 (2) 0.0387 (17) 0.0177 (16) 0.0012 (15) C11 0.0309 (11) 0.0252 (10) 0.0307 (10) 0.0162 (9) 0.0070 (8) 0.0024 (8) C12 0.0377 (12) 0.0328 (11) 0.0374 (12) 0.0227 (10) 0.0091 (9) 0.0091 (9) C13 0.0474 (14) 0.0320 (12) 0.0557 (15) 0.0237 (11) 0.0239 (12) 0.0150 (11) C14 0.0347 (13) 0.0298 (12) 0.0675 (18) 0.0108 (10) 0.0190 (13) −0.0014 (11) C15 0.0336 (12) 0.0370 (13) 0.0546 (16) 0.0101 (11) 0.0033 (11) −0.0077 (11) C16 0.0375 (12) 0.0350 (12) 0.0374 (12) 0.0165 (10) 0.0038 (10) 0.0016 (10) C17 0.0382 (14) 0.0600 (17) 0.0640 (19) 0.0317 (14) −0.0060 (12) −0.0230 (14) C18 0.0462 (16) 0.0548 (17) 0.0419 (14) 0.0126 (13) −0.0158 (12) −0.0037 (12) ----- ------------- ------------- ------------- ------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1711 .table-wrap} -------------------- -------------- ----------------------- ------------- O1---C4 1.368 (3) C8---H8B 0.9900 O1---C17 1.422 (3) C9---C10 1.528 (4) O2---C5 1.362 (3) C9---H9 1.0000 O2---C18 1.430 (3) C10---H10A 0.9900 O3---C10 1.357 (5) C10---H10B 0.9900 O3---H3O 0.99 (4) C11---C16 1.390 (3) N1---C9 1.477 (3) C11---C12 1.401 (3) N1---C1 1.484 (3) C12---C13 1.375 (4) N1---H1N 0.97 (3) C12---H12 0.9500 C1---C2 1.521 (3) C13---C14 1.387 (5) C1---C11 1.524 (3) C13---H13 0.9500 C1---H1 1.0000 C14---C15 1.386 (4) C2---C7 1.387 (3) C14---H14 0.9500 C2---C3 1.399 (3) C15---C16 1.401 (4) C3---C4 1.374 (3) C15---H15 0.9500 C3---H3 0.9500 C16---H16 0.9500 C4---C5 1.414 (3) C17---H17A 0.9800 C5---C6 1.370 (4) C17---H17B 0.9800 C6---C7 1.417 (4) C17---H17C 0.9800 C6---H6 0.9500 C18---H18A 0.9800 C7---C8 1.491 (3) C18---H18B 0.9800 C8---C9 1.502 (4) C18---H18C 0.9800 C8---H8A 0.9900 C4---O1---C17 117.5 (2) N1---C9---H9 109.6 C5---O2---C18 117.1 (2) C8---C9---H9 109.6 C10---O3---H3O 102 (3) C10---C9---H9 109.6 C9---N1---C1 111.16 (18) O3---C10---C9 110.5 (3) C9---N1---H1N 110 (2) O3---C10---H10A 109.6 C1---N1---H1N 112.6 (19) C9---C10---H10A 109.6 N1---C1---C2 111.10 (19) O3---C10---H10B 109.6 N1---C1---C11 112.09 (18) C9---C10---H10B 109.6 C2---C1---C11 113.00 (17) H10A---C10---H10B 108.1 N1---C1---H1 106.7 C16---C11---C12 118.5 (2) C2---C1---H1 106.7 C16---C11---C1 119.09 (19) C11---C1---H1 106.7 C12---C11---C1 122.4 (2) C7---C2---C3 119.9 (2) C13---C12---C11 120.8 (3) C7---C2---C1 121.3 (2) C13---C12---H12 119.6 C3---C2---C1 118.74 (19) C11---C12---H12 119.6 C4---C3---C2 120.6 (2) C12---C13---C14 120.5 (2) C4---C3---H3 119.7 C12---C13---H13 119.8 C2---C3---H3 119.7 C14---C13---H13 119.8 O1---C4---C3 125.5 (2) C15---C14---C13 120.0 (2) O1---C4---C5 114.3 (2) C15---C14---H14 120.0 C3---C4---C5 120.2 (2) C13---C14---H14 120.0 O2---C5---C6 125.9 (2) C14---C15---C16 119.5 (3) O2---C5---C4 115.1 (2) C14---C15---H15 120.3 C6---C5---C4 119.1 (2) C16---C15---H15 120.3 C5---C6---C7 121.2 (2) C11---C16---C15 120.8 (2) C5---C6---H6 119.4 C11---C16---H16 119.6 C7---C6---H6 119.4 C15---C16---H16 119.6 C2---C7---C6 118.9 (2) O1---C17---H17A 109.5 C2---C7---C8 121.7 (2) O1---C17---H17B 109.5 C6---C7---C8 119.4 (2) H17A---C17---H17B 109.5 C7---C8---C9 111.3 (2) O1---C17---H17C 109.5 C7---C8---H8A 109.4 H17A---C17---H17C 109.5 C9---C8---H8A 109.4 H17B---C17---H17C 109.5 C7---C8---H8B 109.4 O2---C18---H18A 109.5 C9---C8---H8B 109.4 O2---C18---H18B 109.5 H8A---C8---H8B 108.0 H18A---C18---H18B 109.5 N1---C9---C8 109.2 (2) O2---C18---H18C 109.5 N1---C9---C10 108.7 (2) H18A---C18---H18C 109.5 C8---C9---C10 110.2 (2) H18B---C18---H18C 109.5 C9---N1---C1---C2 −48.0 (3) C1---C2---C7---C8 −0.1 (3) C9---N1---C1---C11 79.5 (3) C5---C6---C7---C2 −0.4 (3) N1---C1---C2---C7 14.4 (3) C5---C6---C7---C8 −179.7 (2) C11---C1---C2---C7 −112.6 (2) C2---C7---C8---C9 18.5 (3) N1---C1---C2---C3 −166.43 (19) C6---C7---C8---C9 −162.2 (2) C11---C1---C2---C3 66.6 (3) C1---N1---C9---C8 68.4 (2) C7---C2---C3---C4 −0.6 (3) C1---N1---C9---C10 −171.4 (2) C1---C2---C3---C4 −179.8 (2) C7---C8---C9---N1 −51.1 (3) C17---O1---C4---C3 −7.1 (4) C7---C8---C9---C10 −170.5 (2) C17---O1---C4---C5 173.1 (3) N1---C9---C10---O3 75.4 (3) C2---C3---C4---O1 178.9 (2) C8---C9---C10---O3 −165.0 (3) C2---C3---C4---C5 −1.2 (4) N1---C1---C11---C16 76.9 (3) C18---O2---C5---C6 3.4 (4) C2---C1---C11---C16 −156.7 (2) C18---O2---C5---C4 −176.4 (2) N1---C1---C11---C12 −102.1 (2) O1---C4---C5---O2 2.0 (3) C2---C1---C11---C12 24.3 (3) C3---C4---C5---O2 −177.9 (2) C16---C11---C12---C13 1.5 (3) O1---C4---C5---C6 −177.9 (2) C1---C11---C12---C13 −179.5 (2) C3---C4---C5---C6 2.3 (4) C11---C12---C13---C14 0.1 (4) O2---C5---C6---C7 178.7 (2) C12---C13---C14---C15 −1.5 (4) C4---C5---C6---C7 −1.5 (4) C13---C14---C15---C16 1.2 (4) C3---C2---C7---C6 1.4 (3) C12---C11---C16---C15 −1.8 (4) C1---C2---C7---C6 −179.4 (2) C1---C11---C16---C15 179.2 (2) C3---C2---C7---C8 −179.2 (2) C14---C15---C16---C11 0.5 (4) -------------------- -------------- ----------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2559 .table-wrap} ---------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O3---H3O···O1W 0.99 (4) 1.95 (4) 2.917 (6) 164 (5) ---------------- ---------- ---------- ----------- --------------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ ---------- ---------- ----------- ------------- O3---H3*O*⋯O1*W* 0.99 (4) 1.95 (4) 2.917 (6) 164 (5) :::
PubMed Central
2024-06-05T04:04:18.139554
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052049/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o700", "authors": [ { "first": "Sai Kumar", "last": "Chakka" }, { "first": "Michael G.", "last": "McKay" }, { "first": "Thavendran", "last": "Govender" }, { "first": "Hendrik G.", "last": "Kruger" }, { "first": "Glenn E. M.", "last": "Maguire" } ] }
PMC3052050
Related literature {#sec1} ================== For the biological activity of 1,3,4-triazole derivatives, see: Nakagawa *et al.* (1996[@bb1]); Wang *et al.* (1999[@bb4]). For the crystal structure of bis­(5-phenyl-1,3,4-thia­diazol-2-ylsulfan­yl)meth­ane, see: Wang *et al.* (2010[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~20~H~18~N~4~S~4~*M* *~r~* = 442.62Monoclinic,*a* = 5.7976 (7) Å*b* = 13.4393 (14) Å*c* = 12.9784 (12) Åβ = 99.120 (7)°*V* = 998.44 (18) Å^3^*Z* = 2Mo *K*α radiationμ = 0.49 mm^−1^*T* = 113 K0.20 × 0.18 × 0.10 mm ### Data collection {#sec2.1.2} Rigaku Saturn CCD area-detector diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005[@bb2]) *T* ~min~ = 0.908, *T* ~max~ = 0.9539992 measured reflections2384 independent reflections1870 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.038 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.031*wR*(*F* ^2^) = 0.088*S* = 1.062384 reflections127 parametersH-atom parameters constrainedΔρ~max~ = 0.49 e Å^−3^Δρ~min~ = −0.22 e Å^−3^ {#d5e431} Data collection: *CrystalClear* (Rigaku/MSC, 2005[@bb2]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb3]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb3]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb3]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811006064/cv5053sup1.cif](http://dx.doi.org/10.1107/S1600536811006064/cv5053sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006064/cv5053Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006064/cv5053Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?cv5053&file=cv5053sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?cv5053sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?cv5053&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [CV5053](http://scripts.iucr.org/cgi-bin/sendsup?cv5053)). We gratefully acknowledge the support of the Key Laboratory Project of Liaoning Province (grant No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (grant No. 20071103). Comment ======= 1,3,4-Thiadiazole derivatives exhibit a wide spectrum of biological activities (Nakagawa *et al.*, 1996; Wang *et al.*, 1999). Recently, we have published the crystal structure of bis(5-phenyl-1,3,4-thiadiazol-2-ylsulfanyl)methane (Wang *et al.*, 2010). Herewith we report the crystal structure of the title compound, (I). In (I) (Fig. 1), the molecule is situated on a twofold rotational axis so asymmetric unit contains a half of the molecule. The dihedral angle between the thiadiazole and the attached benzene rings is 7.2 (3)° indicating that two rings are almost parallel. As a result of π-π conjugation, the C*~sp~*^2^-S bond \[S2---C8 = 1.742 (2) Å\] is significantly shorter than the C*~sp~*^3^-S bond \[S2---C9 = 1.813 (2) Å\]. In the crystal structure, weak intermolecular C---H···π interactions (Table 1) link molecules into layers parallel to (103) plane. Experimental {#experimental} ============ A suspension of 5-diphenyl-1,3,4-thiadiazol-2-thiol (2.0 mmol) and 1,1-dibromobutane (1.0 mmol) in ethanol (10 ml) was stirred at room temperature. The reaction progress was monitored *via* TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light yellow solid in 85% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1). Refinement {#refinement} ========== All H atoms were positioned geometrically (C---H = 0.95--0.99 Å) and refined as riding, with *U*~iso~(H) = 1.2*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of the molecule of (I) showing the atom-labelling scheme \[symmetry code: (A)-x + 1, -y + 1, -z\]. Displacement ellipsoids are drawn at the 85% probability level. ::: ![](e-67-0o681-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e144 .table-wrap} ------------------------- --------------------------------------- C~20~H~18~N~4~S~4~ *F*(000) = 460 *M~r~* = 442.62 *D*~x~ = 1.472 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 3630 reflections *a* = 5.7976 (7) Å θ = 1.5--27.9° *b* = 13.4393 (14) Å µ = 0.49 mm^−1^ *c* = 12.9784 (12) Å *T* = 113 K β = 99.120 (7)° Prism, colorless *V* = 998.44 (18) Å^3^ 0.20 × 0.18 × 0.10 mm *Z* = 2 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e274 .table-wrap} ---------------------------------------------------------------------- -------------------------------------- Rigaku Saturn CCD area-detector diffractometer 2384 independent reflections Radiation source: rotating anode 1870 reflections with *I* \> 2σ(*I*) multilayer *R*~int~ = 0.038 Detector resolution: 14.63 pixels mm^-1^ θ~max~ = 27.9°, θ~min~ = 2.2° φ and ω scans *h* = −7→7 Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) *k* = −17→17 *T*~min~ = 0.908, *T*~max~ = 0.953 *l* = −15→16 9992 measured reflections ---------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e397 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.031 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.088 H-atom parameters constrained *S* = 1.06 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0495*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2384 reflections (Δ/σ)~max~ = 0.001 127 parameters Δρ~max~ = 0.49 e Å^−3^ 0 restraints Δρ~min~ = −0.22 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e551 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e650 .table-wrap} ------ ------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 1.18924 (6) 0.48167 (3) 0.35236 (3) 0.01929 (12) S2 0.94277 (7) 0.60479 (3) 0.17655 (3) 0.02206 (13) N1 0.8027 (2) 0.39565 (9) 0.36814 (10) 0.0221 (3) N2 0.7508 (2) 0.46308 (10) 0.28684 (10) 0.0206 (3) C1 1.3577 (3) 0.34573 (11) 0.54385 (12) 0.0210 (3) H1 1.4506 0.3955 0.5185 0.025\* C2 1.4532 (3) 0.28628 (12) 0.62747 (12) 0.0213 (3) H2 1.6099 0.2969 0.6601 0.026\* C3 1.3224 (3) 0.21206 (12) 0.66341 (12) 0.0237 (4) H3 1.3889 0.1710 0.7199 0.028\* C4 1.0921 (3) 0.19787 (12) 0.61620 (13) 0.0259 (4) H4 1.0013 0.1469 0.6409 0.031\* C5 0.9936 (3) 0.25738 (12) 0.53341 (12) 0.0216 (3) H5 0.8363 0.2469 0.5015 0.026\* C6 1.1262 (3) 0.33270 (11) 0.49711 (11) 0.0173 (3) C7 1.0225 (3) 0.39663 (11) 0.40992 (12) 0.0171 (3) C8 0.9342 (3) 0.51325 (11) 0.27088 (12) 0.0175 (3) C9 0.6507 (3) 0.59299 (11) 0.10328 (12) 0.0211 (3) H9A 0.5373 0.5895 0.1527 0.025\* H9B 0.6143 0.6531 0.0597 0.025\* C10 0.6215 (2) 0.50122 (11) 0.03322 (12) 0.0205 (3) H10A 0.6445 0.4405 0.0769 0.025\* H10B 0.7419 0.5018 −0.0130 0.025\* ------ ------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e966 .table-wrap} ----- -------------- ------------ ------------ --------------- --------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.01581 (19) 0.0215 (2) 0.0199 (2) −0.00349 (15) 0.00081 (16) 0.00081 (15) S2 0.0213 (2) 0.0229 (2) 0.0209 (2) −0.00350 (16) −0.00005 (17) 0.00217 (16) N1 0.0185 (7) 0.0276 (7) 0.0199 (7) −0.0024 (6) 0.0025 (6) 0.0024 (6) N2 0.0171 (6) 0.0260 (7) 0.0185 (7) −0.0008 (6) 0.0021 (5) 0.0017 (5) C1 0.0198 (8) 0.0196 (8) 0.0232 (9) −0.0048 (6) 0.0025 (7) −0.0012 (6) C2 0.0160 (7) 0.0247 (8) 0.0224 (9) −0.0007 (6) −0.0003 (6) −0.0022 (7) C3 0.0249 (8) 0.0251 (9) 0.0208 (8) 0.0021 (7) 0.0027 (7) 0.0039 (7) C4 0.0235 (8) 0.0267 (9) 0.0286 (9) −0.0040 (7) 0.0072 (7) 0.0057 (7) C5 0.0155 (7) 0.0267 (8) 0.0223 (9) −0.0040 (6) 0.0025 (6) −0.0008 (7) C6 0.0189 (7) 0.0175 (7) 0.0159 (8) −0.0003 (6) 0.0041 (6) −0.0036 (6) C7 0.0168 (7) 0.0184 (7) 0.0169 (8) −0.0024 (6) 0.0052 (6) −0.0038 (6) C8 0.0172 (7) 0.0208 (8) 0.0140 (8) 0.0004 (6) 0.0010 (6) −0.0040 (6) C9 0.0194 (8) 0.0221 (8) 0.0207 (9) 0.0017 (6) −0.0008 (7) 0.0015 (6) C10 0.0184 (8) 0.0224 (8) 0.0194 (8) 0.0023 (6) −0.0007 (6) 0.0003 (6) ----- -------------- ------------ ------------ --------------- --------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1262 .table-wrap} ------------------- -------------- ------------------------ -------------- S1---C8 1.7289 (15) C3---H3 0.9500 S1---C7 1.7400 (15) C4---C5 1.388 (2) S2---C8 1.7417 (16) C4---H4 0.9500 S2---C9 1.8126 (15) C5---C6 1.397 (2) N1---C7 1.303 (2) C5---H5 0.9500 N1---N2 1.3872 (17) C6---C7 1.471 (2) N2---C8 1.303 (2) C9---C10 1.526 (2) C1---C2 1.390 (2) C9---H9A 0.9900 C1---C6 1.393 (2) C9---H9B 0.9900 C1---H1 0.9500 C10---C10^i^ 1.531 (3) C2---C3 1.379 (2) C10---H10A 0.9900 C2---H2 0.9500 C10---H10B 0.9900 C3---C4 1.391 (2) C8---S1---C7 86.82 (7) C1---C6---C7 120.63 (14) C8---S2---C9 100.29 (7) C5---C6---C7 120.18 (13) C7---N1---N2 112.95 (13) N1---C7---C6 124.58 (14) C8---N2---N1 112.01 (12) N1---C7---S1 113.64 (12) C2---C1---C6 120.32 (15) C6---C7---S1 121.78 (11) C2---C1---H1 119.8 N2---C8---S1 114.58 (12) C6---C1---H1 119.8 N2---C8---S2 126.30 (12) C3---C2---C1 120.49 (14) S1---C8---S2 119.11 (9) C3---C2---H2 119.8 C10---C9---S2 112.94 (11) C1---C2---H2 119.8 C10---C9---H9A 109.0 C2---C3---C4 119.44 (15) S2---C9---H9A 109.0 C2---C3---H3 120.3 C10---C9---H9B 109.0 C4---C3---H3 120.3 S2---C9---H9B 109.0 C5---C4---C3 120.70 (15) H9A---C9---H9B 107.8 C5---C4---H4 119.6 C9---C10---C10^i^ 111.00 (16) C3---C4---H4 119.6 C9---C10---H10A 109.4 C4---C5---C6 119.84 (15) C10^i^---C10---H10A 109.4 C4---C5---H5 120.1 C9---C10---H10B 109.4 C6---C5---H5 120.1 C10^i^---C10---H10B 109.4 C1---C6---C5 119.19 (14) H10A---C10---H10B 108.0 C7---N1---N2---C8 −0.54 (19) C1---C6---C7---S1 6.9 (2) C6---C1---C2---C3 1.7 (2) C5---C6---C7---S1 −172.53 (12) C1---C2---C3---C4 −0.9 (2) C8---S1---C7---N1 0.48 (12) C2---C3---C4---C5 0.2 (3) C8---S1---C7---C6 −179.80 (13) C3---C4---C5---C6 −0.2 (3) N1---N2---C8---S1 0.93 (17) C2---C1---C6---C5 −1.8 (2) N1---N2---C8---S2 −179.93 (11) C2---C1---C6---C7 178.80 (14) C7---S1---C8---N2 −0.81 (13) C4---C5---C6---C1 1.1 (2) C7---S1---C8---S2 179.98 (10) C4---C5---C6---C7 −179.52 (15) C9---S2---C8---N2 −7.85 (16) N2---N1---C7---C6 −179.79 (13) C9---S2---C8---S1 171.26 (9) N2---N1---C7---S1 −0.08 (17) C8---S2---C9---C10 −75.00 (13) C1---C6---C7---N1 −173.44 (15) S2---C9---C10---C10^i^ −175.61 (14) C5---C6---C7---N1 7.2 (2) ------------------- -------------- ------------------------ -------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1757 .table-wrap} ---------------------------------------- Cg is the centroid of the C1--C6 ring. ---------------------------------------- ::: ::: {#d1e1761 .table-wrap} ------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C9---H9B···Cg^ii^ 0.99 2.70 3.540 (2) 144 ------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (ii) −*x*+1, *y*+1/2, −*z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg* is the centroid of the C1--C6 ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- C9---H9*B*⋯*Cg*^i^ 0.99 2.70 3.540 (2) 144 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.146033
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052050/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o681", "authors": [ { "first": "Shao-feng", "last": "Li" }, { "first": "Jing-jing", "last": "Zhang" }, { "first": "Xiao-yu", "last": "Jia" }, { "first": "Yan", "last": "Gao" }, { "first": "Wei", "last": "Wang" } ] }
PMC3052051
Related literature {#sec1} ================== For background to ways of decreasing of bitterness in foods and medicines, see: Suzuki *et al.* (2002[@bb13], 2004[@bb14]); Hofmann (1999[@bb5]); Shaw *et al.* (1984[@bb10]). For bond-length data, see: Allen *et al.* (1987[@bb1]). For related structures, see: Saminathan & Sivakumar (2007*a* [@bb8],*b* [@bb9]); Näther *et al.* (1997[@bb7]); In *et al.* (1997[@bb6]); Harrison *et al.* (2007[@bb4]); Soriano-García *et al.* (1990[@bb12]); You *et al.* (2007[@bb15]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~6~H~9~N~2~ ^+^·C~7~H~4~NO~4~ ^−^*M* *~r~* = 275.26Monoclinic,*a* = 8.0487 (11) Å*b* = 6.7247 (9) Å*c* = 12.7467 (17) Åβ = 101.802 (7)°*V* = 675.33 (16) Å^3^*Z* = 2Mo *K*α radiationμ = 0.10 mm^−1^*T* = 298 K0.20 × 0.20 × 0.18 mm ### Data collection {#sec2.1.2} Bruker SMART 1000 CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2001[@bb2]) *T* ~min~ = 0.980, *T* ~max~ = 0.9824175 measured reflections1591 independent reflections1265 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.026 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.039*wR*(*F* ^2^) = 0.105*S* = 1.041591 reflections191 parameters5 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.12 e Å^−3^Δρ~min~ = −0.17 e Å^−3^ {#d5e512} Data collection: *SMART* (Bruker, 2007[@bb3]); cell refinement: *SAINT* (Bruker, 2007[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb11]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb11]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003539/rz2548sup1.cif](http://dx.doi.org/10.1107/S1600536811003539/rz2548sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003539/rz2548Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003539/rz2548Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rz2548&file=rz2548sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rz2548sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rz2548&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RZ2548](http://scripts.iucr.org/cgi-bin/sendsup?rz2548)). We acknowledge the Natural Science Foundation of China (grant No. 30973651/H3008) for financial support. Comment ======= Considerable attention has been recently paid to the decrease the bitterness of foods and medicines (Suzuki *et al.*, 2002; Suzuki *et al.*, 2004; Hofmann, 1999; Shaw *et al.*, 1984). 4-Nitrobenzoic acid is a bitter compound so, in order to investigate the influence of hydrogen bonds on its bitterness, the title compound was synthesized and its crystal structure is reported herein. The asymmetric unit of the title salt consists of a 4-nitrobenzoate anion and a protonated 6-methyl-2-aminopyridinium cation (Fig. 1). The H atom of 4-nitrobenzoic acid is transferred to the N1 atom of 6-methyl-2-aminopyridine. All the bond lengths are within normal ranges (Allen *et al.*, 1987) and comparable with the values observed in similar compounds (Saminathan & Sivakumar, 2007*a*,*b*; Näther *et al.*, 1997; In *et al.*, 1997; Harrison *et al.*, 2007; Soriano-García *et al.*, 1990; You *et al.*, 2007). The C1---C6 benzene ring forms dihedral angles of 2.7 (2) and 0.2 (2)° with O1/N3/O2 and O3/C7/O4 planes, respectively. In the crystal structure (Fig. 2), intermolecular N---H···O hydrogen bonds (Table 1) link cations and anions into X-chains parallel to the *b* axis. Experimental {#experimental} ============ All the reagents used were of commercially grade and without further purification. 4-Nitrobenzoic acid (0.1 mmol, 16.7 mg) and 6-methyl-2-aminopyridine (0.1 mmol, 10.8 mg) were dissolved in MeOH/H~2~O (10 ml, 1:1 *v*/*v*). The mixture was stirred at room temperature for 30 min to give a clear colourless solution. After keeping the solution in air for 20 days, colorless block-shaped crystals were formed on slow evaporation of the solvents. Refinement {#refinement} ========== The amino H atoms were located in a difference Fourier map and refined isotropically, with the N---H and H···H distances restrained to 0.90 (1) and 1.45 (2) Å, respectively, and with *U*~iso~(H) set to 0.08 Å^2^. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C---H distances of 0.93--0.96 Å, and with *U*~iso~(H) = 1.2*U*~eq~(C) or 1.5*U*~eq~(C) for methyl H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. ::: ![](e-67-0o578-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Crystal packing of the title compound, viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o578-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e170 .table-wrap} ---------------------------------- --------------------------------------- C~6~H~9~N~2~^+^·C~7~H~4~NO~4~^−^ *F*(000) = 288 *M~r~* = 275.26 *D*~x~ = 1.354 Mg m^−3^ Monoclinic, *P*2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2yb Cell parameters from 1260 reflections *a* = 8.0487 (11) Å θ = 2.5--24.5° *b* = 6.7247 (9) Å µ = 0.10 mm^−1^ *c* = 12.7467 (17) Å *T* = 298 K β = 101.802 (7)° Block, colourless *V* = 675.33 (16) Å^3^ 0.20 × 0.20 × 0.18 mm *Z* = 2 ---------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e309 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART 1000 CCD area-detector diffractometer 1591 independent reflections Radiation source: fine-focus sealed tube 1265 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.026 ω scans θ~max~ = 27.0°, θ~min~ = 1.6° Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *h* = −10→9 *T*~min~ = 0.980, *T*~max~ = 0.982 *k* = −8→8 4175 measured reflections *l* = −16→14 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e423 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.039 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.105 H atoms treated by a mixture of independent and constrained refinement *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0566*P*)^2^ + 0.0371*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1591 reflections (Δ/σ)~max~ = 0.001 191 parameters Δρ~max~ = 0.12 e Å^−3^ 5 restraints Δρ~min~ = −0.17 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e580 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e679 .table-wrap} ------ ------------ ------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N1 0.6188 (2) 0.2067 (4) 0.26835 (16) 0.0512 (5) N2 0.5065 (3) 0.1703 (4) 0.08960 (18) 0.0686 (7) N3 1.1646 (3) 0.0460 (4) 0.2380 (2) 0.0627 (6) O1 1.1579 (3) −0.0626 (4) 0.16070 (19) 0.0851 (7) O2 1.2502 (3) 0.0106 (4) 0.32683 (18) 0.0880 (7) O3 0.7086 (2) 0.8232 (3) 0.09467 (14) 0.0688 (5) O4 0.8038 (2) 0.8810 (3) 0.26794 (14) 0.0657 (5) C1 1.0666 (3) 0.2328 (4) 0.2239 (2) 0.0516 (6) C2 0.9742 (3) 0.2807 (4) 0.1239 (2) 0.0561 (6) H2 0.9713 0.1955 0.0661 0.067\* C3 0.8860 (3) 0.4578 (4) 0.11130 (19) 0.0533 (6) H3 0.8237 0.4927 0.0441 0.064\* C4 0.8890 (3) 0.5844 (4) 0.19746 (17) 0.0466 (5) C5 0.9823 (3) 0.5302 (4) 0.29720 (19) 0.0582 (7) H5 0.9845 0.6137 0.3556 0.070\* C6 1.0720 (3) 0.3536 (4) 0.3108 (2) 0.0583 (7) H6 1.1348 0.3177 0.3777 0.070\* C7 0.7922 (3) 0.7779 (4) 0.1853 (2) 0.0514 (6) C8 0.6412 (3) 0.3019 (5) 0.3640 (2) 0.0608 (7) C9 0.5624 (4) 0.4787 (5) 0.3702 (3) 0.0767 (9) H9 0.5770 0.5468 0.4350 0.092\* C10 0.4597 (4) 0.5562 (5) 0.2784 (3) 0.0770 (9) H10 0.4059 0.6775 0.2823 0.092\* C11 0.4361 (3) 0.4599 (5) 0.1837 (3) 0.0656 (8) H11 0.3662 0.5135 0.1231 0.079\* C12 0.5192 (3) 0.2767 (4) 0.1779 (2) 0.0542 (6) C13 0.7530 (4) 0.2001 (7) 0.4557 (2) 0.0845 (10) H13A 0.7053 0.0731 0.4672 0.127\* H13B 0.7622 0.2801 0.5190 0.127\* H13C 0.8636 0.1816 0.4399 0.127\* H1 0.676 (4) 0.092 (3) 0.264 (2) 0.080\* H2A 0.440 (3) 0.204 (5) 0.0282 (13) 0.080\* H2B 0.571 (3) 0.064 (3) 0.088 (2) 0.080\* ------ ------------ ------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1116 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N1 0.0508 (11) 0.0513 (13) 0.0501 (10) 0.0044 (10) 0.0069 (8) 0.0074 (10) N2 0.0733 (15) 0.0610 (16) 0.0586 (13) 0.0073 (13) −0.0163 (11) 0.0064 (13) N3 0.0631 (13) 0.0528 (15) 0.0738 (15) 0.0060 (11) 0.0178 (11) 0.0139 (13) O1 0.1048 (16) 0.0672 (14) 0.0887 (15) 0.0245 (13) 0.0325 (13) 0.0011 (13) O2 0.0926 (15) 0.0715 (16) 0.0917 (14) 0.0277 (13) −0.0003 (12) 0.0160 (13) O3 0.0837 (12) 0.0484 (11) 0.0595 (10) 0.0035 (10) −0.0198 (8) 0.0002 (9) O4 0.0827 (12) 0.0477 (11) 0.0568 (10) 0.0119 (10) −0.0088 (9) −0.0042 (9) C1 0.0492 (12) 0.0439 (14) 0.0621 (14) −0.0003 (10) 0.0125 (10) 0.0091 (12) C2 0.0641 (14) 0.0527 (16) 0.0516 (13) 0.0013 (13) 0.0118 (11) −0.0010 (12) C3 0.0603 (14) 0.0508 (15) 0.0449 (12) −0.0013 (12) 0.0019 (11) 0.0042 (12) C4 0.0483 (12) 0.0389 (12) 0.0485 (12) −0.0047 (10) 0.0001 (9) 0.0038 (10) C5 0.0675 (16) 0.0501 (15) 0.0502 (13) 0.0024 (13) −0.0042 (11) −0.0028 (13) C6 0.0625 (15) 0.0531 (17) 0.0531 (13) 0.0044 (12) −0.0027 (11) 0.0072 (12) C7 0.0535 (12) 0.0394 (13) 0.0539 (13) −0.0048 (11) −0.0062 (10) 0.0004 (12) C8 0.0603 (14) 0.0689 (17) 0.0555 (14) 0.0064 (14) 0.0173 (11) 0.0015 (14) C9 0.079 (2) 0.078 (2) 0.0775 (19) 0.0153 (18) 0.0268 (16) −0.0056 (18) C10 0.0680 (17) 0.066 (2) 0.102 (2) 0.0169 (16) 0.0304 (16) 0.004 (2) C11 0.0519 (14) 0.0621 (18) 0.0810 (19) 0.0102 (13) 0.0097 (13) 0.0150 (16) C12 0.0457 (12) 0.0548 (16) 0.0589 (14) −0.0025 (11) 0.0033 (10) 0.0115 (13) C13 0.099 (2) 0.102 (3) 0.0512 (15) 0.022 (2) 0.0107 (14) 0.0011 (18) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1494 .table-wrap} ---------------- ------------ ------------------- ----------- N1---C12 1.348 (3) C4---C5 1.386 (3) N1---C8 1.356 (3) C4---C7 1.508 (3) N1---H1 0.908 (10) C5---C6 1.382 (4) N2---C12 1.320 (4) C5---H5 0.9300 N2---H2A 0.883 (10) C6---H6 0.9300 N2---H2B 0.889 (10) C8---C9 1.357 (4) N3---O1 1.218 (3) C8---C13 1.488 (4) N3---O2 1.223 (3) C9---C10 1.389 (4) N3---C1 1.475 (3) C9---H9 0.9300 O3---C7 1.250 (3) C10---C11 1.349 (4) O4---C7 1.249 (3) C10---H10 0.9300 C1---C6 1.368 (4) C11---C12 1.411 (4) C1---C2 1.376 (3) C11---H11 0.9300 C2---C3 1.379 (4) C13---H13A 0.9600 C2---H2 0.9300 C13---H13B 0.9600 C3---C4 1.386 (3) C13---H13C 0.9600 C3---H3 0.9300 C12---N1---C8 123.4 (2) C5---C6---H6 120.7 C12---N1---H1 117.8 (19) O4---C7---O3 125.3 (2) C8---N1---H1 118.7 (19) O4---C7---C4 116.4 (2) C12---N2---H2A 122.9 (19) O3---C7---C4 118.3 (2) C12---N2---H2B 121.1 (18) N1---C8---C9 119.2 (3) H2A---N2---H2B 116 (2) N1---C8---C13 115.9 (3) O1---N3---O2 123.8 (2) C9---C8---C13 124.9 (3) O1---N3---C1 118.5 (2) C8---C9---C10 118.9 (3) O2---N3---C1 117.7 (2) C8---C9---H9 120.5 C6---C1---C2 122.2 (2) C10---C9---H9 120.5 C6---C1---N3 118.7 (2) C11---C10---C9 121.7 (3) C2---C1---N3 119.1 (2) C11---C10---H10 119.2 C1---C2---C3 118.5 (2) C9---C10---H10 119.2 C1---C2---H2 120.7 C10---C11---C12 119.0 (3) C3---C2---H2 120.7 C10---C11---H11 120.5 C2---C3---C4 120.9 (2) C12---C11---H11 120.5 C2---C3---H3 119.6 N2---C12---N1 118.0 (2) C4---C3---H3 119.6 N2---C12---C11 124.3 (2) C3---C4---C5 118.9 (2) N1---C12---C11 117.7 (3) C3---C4---C7 121.6 (2) C8---C13---H13A 109.5 C5---C4---C7 119.5 (2) C8---C13---H13B 109.5 C6---C5---C4 120.8 (2) H13A---C13---H13B 109.5 C6---C5---H5 119.6 C8---C13---H13C 109.5 C4---C5---H5 119.6 H13A---C13---H13C 109.5 C1---C6---C5 118.6 (2) H13B---C13---H13C 109.5 C1---C6---H6 120.7 ---------------- ------------ ------------------- ----------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1902 .table-wrap} ------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1···O4^i^ 0.91 (2) 1.75 (3) 2.649 (3) 173 (2) N2---H2A···O3^ii^ 0.89 (2) 1.94 (2) 2.812 (3) 170.(2) N2---H2B···O3^i^ 0.89 (2) 1.95 (2) 2.838 (3) 176 (2) ------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) *x*, *y*−1, *z*; (ii) −*x*+1, *y*−1/2, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- ---------- ---------- ----------- ------------- N1---H1⋯O4^i^ 0.91 (2) 1.75 (3) 2.649 (3) 173 (2) N2---H2*A*⋯O3^ii^ 0.89 (2) 1.94 (2) 2.812 (3) 170 (2) N2---H2*B*⋯O3^i^ 0.89 (2) 1.95 (2) 2.838 (3) 176 (2) Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.149771
2011-2-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052051/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 5; 67(Pt 3):o578", "authors": [ { "first": "Wei-Min", "last": "Dai" }, { "first": "He", "last": "Zhou" }, { "first": "Yi-Qiao", "last": "Hu" } ] }
PMC3052052
Related literature {#sec1} ================== For standard bond lengths, see: Allen *et al.* (1987[@bb1]). For hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb2]). For the structures of some tetra­dentate Schiff base ligands, see: Kargar *et al.* (2009[@bb4], 2010*a* [@bb5],*b* [@bb6]); Kia *et al.* (2010[@bb8], 2011[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~24~H~24~N~2~O~4~*M* *~r~* = 404.45Triclinic,*a* = 8.0311 (2) Å*b* = 12.5836 (3) Å*c* = 20.6174 (5) Åα = 86.900 (1)°β = 82.549 (1)°γ = 81.806 (1)°*V* = 2043.57 (9) Å^3^*Z* = 4Mo *K*α radiationμ = 0.09 mm^−1^*T* = 296 K0.32 × 0.15 × 0.11 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2005[@bb3]) *T* ~min~ = 0.972, *T* ~max~ = 0.99036786 measured reflections10103 independent reflections5848 reflections with *I* \> 2*I*)*R* ~int~ = 0.044 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.053*wR*(*F* ^2^) = 0.149*S* = 1.0110103 reflections553 parametersH-atom parameters constrainedΔρ~max~ = 0.30 e Å^−3^Δρ~min~ = −0.20 e Å^−3^ {#d5e502} Data collection: *APEX2* (Bruker, 2005[@bb3]); cell refinement: *SAINT* (Bruker, 2005[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb10]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S160053681100506X/jh2267sup1.cif](http://dx.doi.org/10.1107/S160053681100506X/jh2267sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100506X/jh2267Isup2.hkl](http://dx.doi.org/10.1107/S160053681100506X/jh2267Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?jh2267&file=jh2267sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?jh2267sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?jh2267&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [JH2267](http://scripts.iucr.org/cgi-bin/sendsup?jh2267)). AS and HK thank the PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University, Tehran. IUK thanks the University of Lahore, Pakistan for research facilities. Comment ======= Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of tetradenate Schiff bases (Kargar *et al.,* 2009; Kargar *et al.* 2010**a*,b*; Kia *et al.* 2010; Kia *et al.,* 2011), we have determined the crystal structure of the title compound. The asymmetric unit of the title compound, Fig. 1, comprises two crystallographically independent molecules A and B. The bond lengths (Allen *et al.,* 1987) and angles are within the normal ranges The dihedral angles between the central dimethyl-substituted phenyl ring with the two outer phenyl rings are 49.5 (1) and 5.06 (11)° in molecule A and 5.77 (9) and 42.55 (8)° in molecule B, respectively. Four strong intramolecular O---H···N hydrogen bonds (Table 1) generate four *S(6)* ring motifs (Bernstein *et al.,* 1995). The crystal structure is further stabilized by the intermolecular π-π interactions \[*Cg*1··· *Cg*1^i^ = 3.7608 (13)Å, (i) 1 - x, 1 - y, 2 - z; *Cg*2··· *Cg*3^ii^ = 3.8765 (12)Å, (ii) 1 - x, -y, 2 - z; *Cg*4··· *Cg*4^iii^ = 3.5913 (10)Å, (ii) -x, -y, 1 - z, *Cg*1, *Cg*2, *Cg*3, and *Cg*4 are the centroids of C(1A)--C(6A), C(8A)--C(13A), C(15A)--C(20A), and C(39B)--C(44B) rings. Experimental {#experimental} ============ The title compound was synthesized by adding 6-methoxy-salicylaldehyde (4 mmol) to a solution of 4,5-dimethyl-1,2-phenylenediamine (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Yellow single crystals of the title compound suitable for *X*-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days. Refinement {#refinement} ========== H atoms of the hydroxy groups were positioned by a constraied rotating model with U~iso~(H) = 1.5 U~eq~(O), see Table 1. The remaining H atoms were positioned geometrically with C---H = 0.93--0.96Å and included in a riding model approximation with U~iso~ (H) = 1.2 or 1.5 U~eq~ (C). A rotating group model was used for the methyl groups. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines. ::: ![](e-67-0o636-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A part of the crystal packing of the title compound viewed down the b-axis. ::: ![](e-67-0o636-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e189 .table-wrap} ------------------------ --------------------------------------- C~24~H~24~N~2~O~4~ *Z* = 4 *M~r~* = 404.45 *F*(000) = 856 Triclinic, *P*1 *D*~x~ = 1.315 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.0311 (2) Å Cell parameters from 7158 reflections *b* = 12.5836 (3) Å θ = 2.5--24.0° *c* = 20.6174 (5) Å µ = 0.09 mm^−1^ α = 86.900 (1)° *T* = 296 K β = 82.549 (1)° Block, yellow γ = 81.806 (1)° 0.32 × 0.15 × 0.11 mm *V* = 2043.57 (9) Å^3^ ------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e325 .table-wrap} ------------------------------------------------------------ ------------------------------------- Bruker SMART APEXII CCD area-detector diffractometer 10103 independent reflections Radiation source: fine-focus sealed tube 5848 reflections with *I* \> 2˘*I*) graphite *R*~int~ = 0.044 φ and ω scans θ~max~ = 28.4°, θ~min~ = 1.6° Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *h* = −7→10 *T*~min~ = 0.972, *T*~max~ = 0.990 *k* = −16→16 36786 measured reflections *l* = −27→27 ------------------------------------------------------------ ------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e439 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.053 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.149 H-atom parameters constrained *S* = 1.01 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0638*P*)^2^ + 0.3683*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 10103 reflections (Δ/σ)~max~ = 0.001 553 parameters Δρ~max~ = 0.30 e Å^−3^ 0 restraints Δρ~min~ = −0.20 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e596 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e641 .table-wrap} ------ --------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1A 0.1615 (2) 0.40459 (12) 0.92569 (7) 0.0655 (4) H1 0.1569 0.3464 0.9453 0.098\* O2A 0.4672 (2) 0.20064 (12) 0.87533 (8) 0.0766 (5) H2 0.4102 0.1825 0.9090 0.115\* O3A 0.3431 (2) 0.48135 (11) 1.12519 (7) 0.0643 (4) O4A 0.4790 (2) −0.16724 (11) 0.83813 (7) 0.0676 (4) O5B 0.3083 (2) 0.27459 (10) 0.54537 (7) 0.0582 (4) H5 0.2627 0.3012 0.5138 0.087\* O6B 0.36319 (17) 0.09296 (10) 0.44648 (8) 0.0538 (4) H6 0.3277 0.1533 0.4330 0.081\* O7B 0.33691 (17) 0.64232 (9) 0.57086 (6) 0.0472 (3) O8B −0.15187 (15) 0.02857 (9) 0.37853 (6) 0.0441 (3) N1A 0.1970 (2) 0.26121 (12) 1.02084 (7) 0.0459 (4) N2A 0.3208 (2) 0.07623 (12) 0.95799 (7) 0.0480 (4) N3B 0.20177 (18) 0.41821 (11) 0.46432 (7) 0.0368 (3) N4B 0.15172 (18) 0.24553 (11) 0.39805 (7) 0.0374 (3) C1A 0.2120 (3) 0.47308 (15) 0.96424 (10) 0.0488 (5) C2A 0.2250 (3) 0.57696 (17) 0.94043 (11) 0.0616 (6) H2A 0.1960 0.5983 0.8990 0.074\* C3A 0.2801 (3) 0.64792 (17) 0.97760 (12) 0.0663 (6) H3A 0.2897 0.7171 0.9606 0.080\* C4A 0.3220 (3) 0.62050 (16) 1.03942 (11) 0.0593 (6) H4A 0.3601 0.6700 1.0639 0.071\* C5A 0.3064 (2) 0.51812 (16) 1.06433 (10) 0.0480 (5) C6A 0.2518 (2) 0.44164 (15) 1.02743 (9) 0.0434 (4) C7A 0.2365 (2) 0.33490 (15) 1.05401 (9) 0.0452 (5) H7A 0.2562 0.3188 1.0971 0.054\* C8A 0.1648 (2) 0.16144 (15) 1.05199 (9) 0.0421 (4) C9A 0.0701 (3) 0.15609 (17) 1.11315 (9) 0.0509 (5) H9A 0.0333 0.2193 1.1353 0.061\* C10A 0.0286 (3) 0.06034 (18) 1.14232 (10) 0.0518 (5) C11A 0.0802 (3) −0.03431 (16) 1.10848 (10) 0.0518 (5) C12A 0.1752 (3) −0.02903 (16) 1.04781 (10) 0.0525 (5) H12A 0.2106 −0.0921 1.0254 0.063\* C13A 0.2203 (2) 0.06715 (15) 1.01883 (9) 0.0427 (4) C14A 0.3726 (2) −0.00173 (15) 0.91988 (9) 0.0456 (5) H14A 0.3472 −0.0701 0.9328 0.055\* C15A 0.4693 (2) 0.01451 (15) 0.85743 (9) 0.0439 (4) C16A 0.5221 (3) −0.07042 (16) 0.81420 (9) 0.0490 (5) C17A 0.6084 (3) −0.05346 (19) 0.75346 (10) 0.0594 (6) H17A 0.6423 −0.1100 0.7253 0.071\* C18A 0.6442 (3) 0.0486 (2) 0.73471 (10) 0.0639 (6) H18A 0.7017 0.0601 0.6934 0.077\* C19A 0.5979 (3) 0.13263 (19) 0.77483 (11) 0.0650 (6) H19A 0.6245 0.2004 0.7610 0.078\* C20A 0.5104 (3) 0.11693 (16) 0.83664 (10) 0.0522 (5) C21A 0.4026 (4) 0.5531 (2) 1.16515 (12) 0.0794 (8) H21A 0.4231 0.5176 1.2063 0.119\* H21B 0.3188 0.6151 1.1726 0.119\* H21C 0.5060 0.5751 1.1435 0.119\* C22A 0.5095 (4) −0.25444 (19) 0.79537 (13) 0.0937 (9) H22A 0.4697 −0.3166 0.8179 0.141\* H22B 0.6289 −0.2700 0.7815 0.141\* H22C 0.4505 −0.2357 0.7578 0.141\* C23A −0.0699 (3) 0.0594 (2) 1.20956 (11) 0.0736 (7) H23A −0.1038 0.1319 1.2232 0.110\* H23B 0.0001 0.0208 1.2399 0.110\* H23C −0.1687 0.0250 1.2086 0.110\* C24A 0.0333 (3) −0.14094 (18) 1.13633 (12) 0.0742 (7) H24A −0.0874 −0.1353 1.1472 0.111\* H24B 0.0871 −0.1604 1.1750 0.111\* H24C 0.0705 −0.1949 1.1045 0.111\* C25B 0.3553 (2) 0.35234 (14) 0.57787 (9) 0.0398 (4) C26B 0.4361 (3) 0.32414 (15) 0.63297 (10) 0.0504 (5) H26A 0.4591 0.2524 0.6463 0.060\* C27B 0.4814 (3) 0.40265 (16) 0.66741 (10) 0.0533 (5) H27A 0.5354 0.3833 0.7044 0.064\* C28B 0.4495 (2) 0.51037 (15) 0.64902 (9) 0.0460 (5) H28A 0.4800 0.5625 0.6737 0.055\* C29B 0.3723 (2) 0.53911 (13) 0.59388 (8) 0.0361 (4) C30B 0.3236 (2) 0.46071 (13) 0.55645 (8) 0.0327 (4) C31B 0.2480 (2) 0.48966 (13) 0.49754 (8) 0.0347 (4) H31A 0.2322 0.5613 0.4832 0.042\* C32B 0.1357 (2) 0.43933 (13) 0.40431 (8) 0.0327 (4) C33B 0.0981 (2) 0.54115 (13) 0.37580 (9) 0.0385 (4) H33A 0.1166 0.6004 0.3976 0.046\* C34B 0.0344 (2) 0.55820 (14) 0.31619 (9) 0.0407 (4) C35B 0.0057 (2) 0.46919 (15) 0.28374 (9) 0.0428 (4) C36B 0.0440 (2) 0.36764 (14) 0.31152 (9) 0.0416 (4) H36A 0.0268 0.3085 0.2893 0.050\* C37B 0.1071 (2) 0.35046 (13) 0.37140 (8) 0.0345 (4) C38B 0.0596 (2) 0.17277 (13) 0.39149 (8) 0.0349 (4) H38A −0.0401 0.1925 0.3728 0.042\* C39B 0.1025 (2) 0.06190 (12) 0.41158 (8) 0.0327 (4) C40B −0.0085 (2) −0.01310 (13) 0.40432 (8) 0.0340 (4) C41B 0.0316 (2) −0.11995 (14) 0.42275 (9) 0.0421 (4) H41A −0.0420 −0.1692 0.4185 0.051\* C42B 0.1835 (2) −0.15232 (14) 0.44774 (9) 0.0449 (5) H42A 0.2108 −0.2243 0.4599 0.054\* C43B 0.2948 (2) −0.08251 (14) 0.45517 (9) 0.0421 (4) H43A 0.3964 −0.1068 0.4717 0.050\* C44B 0.2538 (2) 0.02470 (13) 0.43775 (8) 0.0368 (4) C45B 0.3907 (3) 0.72410 (15) 0.60485 (11) 0.0535 (5) H45A 0.3635 0.7924 0.5829 0.080\* H45B 0.5110 0.7094 0.6058 0.080\* H45C 0.3340 0.7258 0.6488 0.080\* C46B −0.2703 (3) −0.04164 (16) 0.36976 (11) 0.0553 (5) H46A −0.3665 −0.0014 0.3524 0.083\* H46B −0.3067 −0.0751 0.4111 0.083\* H46C −0.2177 −0.0959 0.3398 0.083\* C47B −0.0004 (3) 0.67051 (16) 0.28798 (11) 0.0607 (6) H47A 0.0333 0.7199 0.3160 0.091\* H47B −0.1193 0.6881 0.2846 0.091\* H47C 0.0626 0.6753 0.2453 0.091\* C48B −0.0648 (3) 0.48102 (19) 0.21901 (10) 0.0668 (6) H48A −0.0799 0.4116 0.2054 0.100\* H48B 0.0127 0.5126 0.1868 0.100\* H48C −0.1720 0.5264 0.2236 0.100\* ------ --------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e2072 .table-wrap} ------ ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1A 0.0961 (12) 0.0544 (9) 0.0514 (9) −0.0130 (9) −0.0264 (8) −0.0013 (7) O2A 0.1169 (15) 0.0480 (9) 0.0621 (10) −0.0258 (9) 0.0182 (9) −0.0091 (7) O3A 0.0927 (12) 0.0568 (9) 0.0498 (9) −0.0199 (8) −0.0179 (8) −0.0117 (7) O4A 0.0996 (12) 0.0452 (8) 0.0569 (9) −0.0060 (8) −0.0045 (8) −0.0139 (7) O5B 0.0943 (11) 0.0323 (7) 0.0568 (9) −0.0174 (7) −0.0350 (8) 0.0052 (6) O6B 0.0497 (8) 0.0384 (7) 0.0792 (10) −0.0080 (6) −0.0283 (7) −0.0013 (7) O7B 0.0640 (9) 0.0312 (7) 0.0513 (8) −0.0108 (6) −0.0200 (6) −0.0029 (6) O8B 0.0419 (7) 0.0368 (7) 0.0583 (8) −0.0125 (6) −0.0168 (6) 0.0010 (6) N1A 0.0574 (10) 0.0401 (9) 0.0409 (9) −0.0062 (7) −0.0066 (7) −0.0058 (7) N2A 0.0629 (11) 0.0422 (9) 0.0382 (9) −0.0084 (8) −0.0013 (8) −0.0045 (7) N3B 0.0435 (8) 0.0329 (8) 0.0370 (8) −0.0093 (6) −0.0122 (6) 0.0010 (6) N4B 0.0414 (8) 0.0302 (8) 0.0431 (8) −0.0068 (6) −0.0121 (7) −0.0032 (6) C1A 0.0529 (12) 0.0432 (11) 0.0506 (12) −0.0028 (9) −0.0102 (9) −0.0057 (9) C2A 0.0744 (15) 0.0502 (13) 0.0601 (14) −0.0037 (11) −0.0160 (11) 0.0041 (10) C3A 0.0789 (16) 0.0409 (12) 0.0784 (17) −0.0068 (11) −0.0107 (13) 0.0035 (11) C4A 0.0658 (14) 0.0436 (12) 0.0699 (15) −0.0088 (10) −0.0073 (11) −0.0120 (11) C5A 0.0475 (11) 0.0480 (11) 0.0480 (12) −0.0033 (9) −0.0035 (9) −0.0110 (9) C6A 0.0447 (11) 0.0401 (10) 0.0445 (11) −0.0018 (8) −0.0043 (8) −0.0074 (8) C7A 0.0500 (11) 0.0469 (11) 0.0382 (10) −0.0033 (9) −0.0057 (8) −0.0069 (8) C8A 0.0489 (11) 0.0426 (10) 0.0358 (10) −0.0060 (9) −0.0092 (8) −0.0019 (8) C9A 0.0561 (12) 0.0537 (12) 0.0420 (11) −0.0050 (10) −0.0031 (9) −0.0081 (9) C10A 0.0477 (12) 0.0672 (14) 0.0399 (11) −0.0081 (10) −0.0050 (9) 0.0029 (10) C11A 0.0521 (12) 0.0536 (12) 0.0488 (12) −0.0080 (10) −0.0091 (9) 0.0131 (10) C12A 0.0635 (13) 0.0428 (11) 0.0499 (12) −0.0062 (10) −0.0045 (10) −0.0003 (9) C13A 0.0507 (11) 0.0426 (10) 0.0352 (10) −0.0068 (9) −0.0061 (8) −0.0016 (8) C14A 0.0584 (12) 0.0378 (10) 0.0413 (11) −0.0073 (9) −0.0076 (9) −0.0030 (8) C15A 0.0495 (11) 0.0462 (11) 0.0361 (10) −0.0040 (9) −0.0079 (8) −0.0043 (8) C16A 0.0549 (12) 0.0478 (12) 0.0441 (11) 0.0010 (9) −0.0121 (9) −0.0065 (9) C17A 0.0634 (14) 0.0699 (15) 0.0415 (12) 0.0064 (11) −0.0061 (10) −0.0152 (10) C18A 0.0659 (15) 0.0836 (17) 0.0381 (11) −0.0038 (13) 0.0001 (10) 0.0010 (11) C19A 0.0784 (16) 0.0643 (14) 0.0503 (13) −0.0159 (12) 0.0017 (11) 0.0072 (11) C20A 0.0632 (13) 0.0493 (12) 0.0441 (11) −0.0094 (10) −0.0033 (10) −0.0043 (9) C21A 0.108 (2) 0.0736 (17) 0.0654 (16) −0.0224 (15) −0.0234 (14) −0.0259 (13) C22A 0.146 (3) 0.0554 (15) 0.0787 (19) −0.0001 (16) −0.0140 (18) −0.0263 (13) C23A 0.0689 (16) 0.0964 (19) 0.0526 (14) −0.0146 (14) 0.0040 (11) 0.0031 (13) C24A 0.0825 (17) 0.0614 (15) 0.0742 (16) −0.0118 (13) −0.0012 (13) 0.0222 (12) C25B 0.0483 (11) 0.0331 (9) 0.0408 (10) −0.0099 (8) −0.0112 (8) 0.0003 (7) C26B 0.0649 (13) 0.0380 (10) 0.0508 (12) −0.0052 (9) −0.0217 (10) 0.0060 (9) C27B 0.0640 (13) 0.0536 (12) 0.0468 (11) −0.0065 (10) −0.0266 (10) 0.0017 (9) C28B 0.0538 (12) 0.0436 (11) 0.0453 (11) −0.0118 (9) −0.0164 (9) −0.0069 (8) C29B 0.0355 (9) 0.0341 (9) 0.0396 (10) −0.0075 (7) −0.0044 (7) −0.0028 (7) C30B 0.0331 (9) 0.0323 (9) 0.0337 (9) −0.0077 (7) −0.0044 (7) −0.0013 (7) C31B 0.0380 (10) 0.0287 (9) 0.0380 (9) −0.0065 (7) −0.0059 (7) 0.0010 (7) C32B 0.0328 (9) 0.0333 (9) 0.0324 (9) −0.0054 (7) −0.0058 (7) 0.0006 (7) C33B 0.0443 (10) 0.0299 (9) 0.0419 (10) −0.0062 (8) −0.0058 (8) −0.0022 (7) C34B 0.0424 (10) 0.0382 (10) 0.0389 (10) −0.0023 (8) −0.0024 (8) 0.0078 (8) C35B 0.0461 (11) 0.0478 (11) 0.0352 (10) −0.0075 (9) −0.0089 (8) 0.0054 (8) C36B 0.0468 (11) 0.0410 (10) 0.0399 (10) −0.0106 (8) −0.0107 (8) −0.0038 (8) C37B 0.0342 (9) 0.0307 (9) 0.0395 (10) −0.0052 (7) −0.0077 (7) 0.0010 (7) C38B 0.0356 (9) 0.0329 (9) 0.0368 (9) −0.0038 (7) −0.0073 (7) −0.0028 (7) C39B 0.0374 (9) 0.0296 (9) 0.0316 (9) −0.0055 (7) −0.0036 (7) −0.0044 (7) C40B 0.0374 (9) 0.0332 (9) 0.0316 (9) −0.0051 (7) −0.0032 (7) −0.0029 (7) C41B 0.0483 (11) 0.0342 (10) 0.0454 (11) −0.0118 (8) −0.0041 (9) −0.0027 (8) C42B 0.0559 (12) 0.0290 (9) 0.0481 (11) −0.0021 (9) −0.0056 (9) 0.0023 (8) C43B 0.0430 (10) 0.0381 (10) 0.0441 (10) 0.0017 (8) −0.0100 (8) 0.0003 (8) C44B 0.0403 (10) 0.0332 (9) 0.0387 (10) −0.0065 (8) −0.0083 (8) −0.0046 (7) C45B 0.0562 (13) 0.0355 (10) 0.0734 (14) −0.0096 (9) −0.0175 (11) −0.0115 (9) C46B 0.0483 (12) 0.0474 (12) 0.0765 (15) −0.0180 (10) −0.0198 (10) 0.0012 (10) C47B 0.0795 (16) 0.0448 (12) 0.0546 (13) 0.0001 (11) −0.0120 (11) 0.0138 (10) C48B 0.0860 (17) 0.0725 (15) 0.0456 (12) −0.0111 (13) −0.0266 (12) 0.0077 (11) ------ ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e3318 .table-wrap} --------------------------- -------------- --------------------------- -------------- O1A---C1A 1.340 (2) C21A---H21A 0.9600 O1A---H1 0.8200 C21A---H21B 0.9600 O2A---C20A 1.335 (2) C21A---H21C 0.9600 O2A---H2 0.8200 C22A---H22A 0.9600 O3A---C5A 1.367 (2) C22A---H22B 0.9600 O3A---C21A 1.424 (2) C22A---H22C 0.9600 O4A---C16A 1.363 (2) C23A---H23A 0.9600 O4A---C22A 1.419 (2) C23A---H23B 0.9600 O5B---C25B 1.338 (2) C23A---H23C 0.9600 O5B---H5 0.8200 C24A---H24A 0.9600 O6B---C44B 1.347 (2) C24A---H24B 0.9600 O6B---H6 0.8200 C24A---H24C 0.9600 O7B---C29B 1.362 (2) C25B---C26B 1.385 (3) O7B---C45B 1.421 (2) C25B---C30B 1.409 (2) O8B---C40B 1.356 (2) C26B---C27B 1.363 (3) O8B---C46B 1.421 (2) C26B---H26A 0.9300 N1A---C7A 1.279 (2) C27B---C28B 1.385 (3) N1A---C8A 1.420 (2) C27B---H27A 0.9300 N2A---C14A 1.279 (2) C28B---C29B 1.372 (2) N2A---C13A 1.409 (2) C28B---H28A 0.9300 N3B---C31B 1.282 (2) C29B---C30B 1.411 (2) N3B---C32B 1.406 (2) C30B---C31B 1.434 (2) N4B---C38B 1.279 (2) C31B---H31A 0.9300 N4B---C37B 1.418 (2) C32B---C33B 1.390 (2) C1A---C2A 1.384 (3) C32B---C37B 1.400 (2) C1A---C6A 1.404 (3) C33B---C34B 1.386 (2) C2A---C3A 1.362 (3) C33B---H33A 0.9300 C2A---H2A 0.9300 C34B---C35B 1.396 (2) C3A---C4A 1.374 (3) C34B---C47B 1.501 (2) C3A---H3A 0.9300 C35B---C36B 1.382 (2) C4A---C5A 1.377 (3) C35B---C48B 1.508 (3) C4A---H4A 0.9300 C36B---C37B 1.389 (2) C5A---C6A 1.408 (2) C36B---H36A 0.9300 C6A---C7A 1.439 (3) C38B---C39B 1.440 (2) C7A---H7A 0.9300 C38B---H38A 0.9300 C8A---C9A 1.389 (3) C39B---C44B 1.403 (2) C8A---C13A 1.390 (2) C39B---C40B 1.414 (2) C9A---C10A 1.382 (3) C40B---C41B 1.382 (2) C9A---H9A 0.9300 C41B---C42B 1.385 (3) C10A---C11A 1.397 (3) C41B---H41A 0.9300 C10A---C23A 1.505 (3) C42B---C43B 1.367 (3) C11A---C12A 1.382 (3) C42B---H42A 0.9300 C11A---C24A 1.509 (3) C43B---C44B 1.382 (2) C12A---C13A 1.394 (3) C43B---H43A 0.9300 C12A---H12A 0.9300 C45B---H45A 0.9600 C14A---C15A 1.435 (3) C45B---H45B 0.9600 C14A---H14A 0.9300 C45B---H45C 0.9600 C15A---C20A 1.407 (3) C46B---H46A 0.9600 C15A---C16A 1.411 (3) C46B---H46B 0.9600 C16A---C17A 1.372 (3) C46B---H46C 0.9600 C17A---C18A 1.379 (3) C47B---H47A 0.9600 C17A---H17A 0.9300 C47B---H47B 0.9600 C18A---C19A 1.358 (3) C47B---H47C 0.9600 C18A---H18A 0.9300 C48B---H48A 0.9600 C19A---C20A 1.392 (3) C48B---H48B 0.9600 C19A---H19A 0.9300 C48B---H48C 0.9600 C1A---O1A---H1 109.5 C11A---C24A---H24A 109.5 C20A---O2A---H2 109.5 C11A---C24A---H24B 109.5 C5A---O3A---C21A 117.95 (17) H24A---C24A---H24B 109.5 C16A---O4A---C22A 118.15 (18) C11A---C24A---H24C 109.5 C25B---O5B---H5 109.5 H24A---C24A---H24C 109.5 C44B---O6B---H6 109.5 H24B---C24A---H24C 109.5 C29B---O7B---C45B 117.36 (14) O5B---C25B---C26B 118.66 (16) C40B---O8B---C46B 118.32 (14) O5B---C25B---C30B 120.71 (15) C7A---N1A---C8A 119.99 (16) C26B---C25B---C30B 120.62 (16) C14A---N2A---C13A 124.29 (16) C27B---C26B---C25B 119.35 (17) C31B---N3B---C32B 124.33 (14) C27B---C26B---H26A 120.3 C38B---N4B---C37B 119.21 (14) C25B---C26B---H26A 120.3 O1A---C1A---C2A 118.50 (18) C26B---C27B---C28B 122.03 (17) O1A---C1A---C6A 121.57 (18) C26B---C27B---H27A 119.0 C2A---C1A---C6A 119.93 (18) C28B---C27B---H27A 119.0 C3A---C2A---C1A 120.1 (2) C29B---C28B---C27B 119.13 (17) C3A---C2A---H2A 120.0 C29B---C28B---H28A 120.4 C1A---C2A---H2A 120.0 C27B---C28B---H28A 120.4 C2A---C3A---C4A 122.0 (2) O7B---C29B---C28B 124.06 (15) C2A---C3A---H3A 119.0 O7B---C29B---C30B 115.01 (14) C4A---C3A---H3A 119.0 C28B---C29B---C30B 120.93 (16) C3A---C4A---C5A 118.6 (2) C25B---C30B---C29B 117.91 (15) C3A---C4A---H4A 120.7 C25B---C30B---C31B 120.75 (14) C5A---C4A---H4A 120.7 C29B---C30B---C31B 121.33 (15) O3A---C5A---C4A 124.14 (18) N3B---C31B---C30B 120.99 (15) O3A---C5A---C6A 114.44 (17) N3B---C31B---H31A 119.5 C4A---C5A---C6A 121.42 (19) C30B---C31B---H31A 119.5 C1A---C6A---C5A 117.95 (18) C33B---C32B---C37B 118.43 (15) C1A---C6A---C7A 121.23 (17) C33B---C32B---N3B 124.74 (15) C5A---C6A---C7A 120.82 (17) C37B---C32B---N3B 116.83 (14) N1A---C7A---C6A 122.80 (17) C34B---C33B---C32B 122.80 (16) N1A---C7A---H7A 118.6 C34B---C33B---H33A 118.6 C6A---C7A---H7A 118.6 C32B---C33B---H33A 118.6 C9A---C8A---C13A 118.96 (17) C33B---C34B---C35B 118.45 (16) C9A---C8A---N1A 121.67 (17) C33B---C34B---C47B 119.72 (17) C13A---C8A---N1A 119.25 (16) C35B---C34B---C47B 121.83 (17) C10A---C9A---C8A 122.42 (18) C36B---C35B---C34B 119.09 (16) C10A---C9A---H9A 118.8 C36B---C35B---C48B 119.22 (17) C8A---C9A---H9A 118.8 C34B---C35B---C48B 121.70 (17) C9A---C10A---C11A 118.86 (18) C35B---C36B---C37B 122.52 (16) C9A---C10A---C23A 119.9 (2) C35B---C36B---H36A 118.7 C11A---C10A---C23A 121.3 (2) C37B---C36B---H36A 118.7 C12A---C11A---C10A 118.68 (18) C36B---C37B---C32B 118.70 (15) C12A---C11A---C24A 119.7 (2) C36B---C37B---N4B 121.79 (15) C10A---C11A---C24A 121.60 (19) C32B---C37B---N4B 119.42 (14) C11A---C12A---C13A 122.57 (19) N4B---C38B---C39B 123.34 (16) C11A---C12A---H12A 118.7 N4B---C38B---H38A 118.3 C13A---C12A---H12A 118.7 C39B---C38B---H38A 118.3 C8A---C13A---C12A 118.48 (17) C44B---C39B---C40B 118.17 (15) C8A---C13A---N2A 116.84 (16) C44B---C39B---C38B 121.95 (15) C12A---C13A---N2A 124.67 (17) C40B---C39B---C38B 119.87 (15) N2A---C14A---C15A 121.13 (18) O8B---C40B---C41B 124.56 (15) N2A---C14A---H14A 119.4 O8B---C40B---C39B 114.87 (14) C15A---C14A---H14A 119.4 C41B---C40B---C39B 120.57 (16) C20A---C15A---C16A 117.82 (18) C40B---C41B---C42B 118.74 (16) C20A---C15A---C14A 120.72 (17) C40B---C41B---H41A 120.6 C16A---C15A---C14A 121.43 (18) C42B---C41B---H41A 120.6 O4A---C16A---C17A 124.52 (18) C43B---C42B---C41B 122.51 (16) O4A---C16A---C15A 114.31 (17) C43B---C42B---H42A 118.7 C17A---C16A---C15A 121.2 (2) C41B---C42B---H42A 118.7 C16A---C17A---C18A 119.1 (2) C42B---C43B---C44B 118.90 (17) C16A---C17A---H17A 120.5 C42B---C43B---H43A 120.6 C18A---C17A---H17A 120.5 C44B---C43B---H43A 120.6 C19A---C18A---C17A 122.0 (2) O6B---C44B---C43B 118.27 (16) C19A---C18A---H18A 119.0 O6B---C44B---C39B 120.63 (15) C17A---C18A---H18A 119.0 C43B---C44B---C39B 121.10 (16) C18A---C19A---C20A 119.8 (2) O7B---C45B---H45A 109.5 C18A---C19A---H19A 120.1 O7B---C45B---H45B 109.5 C20A---C19A---H19A 120.1 H45A---C45B---H45B 109.5 O2A---C20A---C19A 118.66 (19) O7B---C45B---H45C 109.5 O2A---C20A---C15A 121.15 (18) H45A---C45B---H45C 109.5 C19A---C20A---C15A 120.19 (19) H45B---C45B---H45C 109.5 O3A---C21A---H21A 109.5 O8B---C46B---H46A 109.5 O3A---C21A---H21B 109.5 O8B---C46B---H46B 109.5 H21A---C21A---H21B 109.5 H46A---C46B---H46B 109.5 O3A---C21A---H21C 109.5 O8B---C46B---H46C 109.5 H21A---C21A---H21C 109.5 H46A---C46B---H46C 109.5 H21B---C21A---H21C 109.5 H46B---C46B---H46C 109.5 O4A---C22A---H22A 109.5 C34B---C47B---H47A 109.5 O4A---C22A---H22B 109.5 C34B---C47B---H47B 109.5 H22A---C22A---H22B 109.5 H47A---C47B---H47B 109.5 O4A---C22A---H22C 109.5 C34B---C47B---H47C 109.5 H22A---C22A---H22C 109.5 H47A---C47B---H47C 109.5 H22B---C22A---H22C 109.5 H47B---C47B---H47C 109.5 C10A---C23A---H23A 109.5 C35B---C48B---H48A 109.5 C10A---C23A---H23B 109.5 C35B---C48B---H48B 109.5 H23A---C23A---H23B 109.5 H48A---C48B---H48B 109.5 C10A---C23A---H23C 109.5 C35B---C48B---H48C 109.5 H23A---C23A---H23C 109.5 H48A---C48B---H48C 109.5 H23B---C23A---H23C 109.5 H48B---C48B---H48C 109.5 O1A---C1A---C2A---C3A −178.3 (2) O5B---C25B---C26B---C27B −178.60 (19) C6A---C1A---C2A---C3A 1.6 (3) C30B---C25B---C26B---C27B 1.6 (3) C1A---C2A---C3A---C4A −1.0 (4) C25B---C26B---C27B---C28B −0.1 (3) C2A---C3A---C4A---C5A −0.4 (4) C26B---C27B---C28B---C29B −1.0 (3) C21A---O3A---C5A---C4A −0.6 (3) C45B---O7B---C29B---C28B 2.9 (3) C21A---O3A---C5A---C6A 178.73 (19) C45B---O7B---C29B---C30B −176.97 (15) C3A---C4A---C5A---O3A −179.6 (2) C27B---C28B---C29B---O7B −179.11 (18) C3A---C4A---C5A---C6A 1.1 (3) C27B---C28B---C29B---C30B 0.7 (3) O1A---C1A---C6A---C5A 179.01 (18) O5B---C25B---C30B---C29B 178.35 (16) C2A---C1A---C6A---C5A −0.9 (3) C26B---C25B---C30B---C29B −1.8 (3) O1A---C1A---C6A---C7A −1.3 (3) O5B---C25B---C30B---C31B −3.1 (3) C2A---C1A---C6A---C7A 178.80 (19) C26B---C25B---C30B---C31B 176.74 (18) O3A---C5A---C6A---C1A −179.84 (17) O7B---C29B---C30B---C25B −179.49 (15) C4A---C5A---C6A---C1A −0.5 (3) C28B---C29B---C30B---C25B 0.6 (3) O3A---C5A---C6A---C7A 0.5 (3) O7B---C29B---C30B---C31B 2.0 (2) C4A---C5A---C6A---C7A 179.84 (18) C28B---C29B---C30B---C31B −177.89 (17) C8A---N1A---C7A---C6A −172.74 (17) C32B---N3B---C31B---C30B −176.26 (15) C1A---C6A---C7A---N1A 4.6 (3) C25B---C30B---C31B---N3B 2.6 (3) C5A---C6A---C7A---N1A −175.78 (18) C29B---C30B---C31B---N3B −178.94 (16) C7A---N1A---C8A---C9A 42.5 (3) C31B---N3B---C32B---C33B −5.8 (3) C7A---N1A---C8A---C13A −141.64 (18) C31B---N3B---C32B---C37B 173.94 (16) C13A---C8A---C9A---C10A −0.1 (3) C37B---C32B---C33B---C34B −0.2 (3) N1A---C8A---C9A---C10A 175.80 (18) N3B---C32B---C33B---C34B 179.44 (17) C8A---C9A---C10A---C11A −1.5 (3) C32B---C33B---C34B---C35B 0.4 (3) C8A---C9A---C10A---C23A 178.14 (19) C32B---C33B---C34B---C47B −179.00 (18) C9A---C10A---C11A---C12A 1.8 (3) C33B---C34B---C35B---C36B −0.9 (3) C23A---C10A---C11A---C12A −177.8 (2) C47B---C34B---C35B---C36B 178.50 (18) C9A---C10A---C11A---C24A −177.59 (19) C33B---C34B---C35B---C48B 179.47 (19) C23A---C10A---C11A---C24A 2.7 (3) C47B---C34B---C35B---C48B −1.1 (3) C10A---C11A---C12A---C13A −0.6 (3) C34B---C35B---C36B---C37B 1.3 (3) C24A---C11A---C12A---C13A 178.85 (19) C48B---C35B---C36B---C37B −179.09 (19) C9A---C8A---C13A---C12A 1.4 (3) C35B---C36B---C37B---C32B −1.1 (3) N1A---C8A---C13A---C12A −174.64 (17) C35B---C36B---C37B---N4B −177.56 (17) C9A---C8A---C13A---N2A −177.88 (17) C33B---C32B---C37B---C36B 0.6 (2) N1A---C8A---C13A---N2A 6.1 (3) N3B---C32B---C37B---C36B −179.15 (16) C11A---C12A---C13A---C8A −1.0 (3) C33B---C32B---C37B---N4B 177.10 (15) C11A---C12A---C13A---N2A 178.15 (19) N3B---C32B---C37B---N4B −2.6 (2) C14A---N2A---C13A---C8A −175.51 (18) C38B---N4B---C37B---C36B −38.6 (2) C14A---N2A---C13A---C12A 5.3 (3) C38B---N4B---C37B---C32B 145.00 (16) C13A---N2A---C14A---C15A 177.59 (17) C37B---N4B---C38B---C39B 174.28 (15) N2A---C14A---C15A---C20A 0.3 (3) N4B---C38B---C39B---C44B −2.6 (3) N2A---C14A---C15A---C16A −177.86 (18) N4B---C38B---C39B---C40B 178.22 (16) C22A---O4A---C16A---C17A −6.7 (3) C46B---O8B---C40B---C41B 0.2 (2) C22A---O4A---C16A---C15A 172.9 (2) C46B---O8B---C40B---C39B −179.90 (16) C20A---C15A---C16A---O4A 179.36 (17) C44B---C39B---C40B---O8B −179.79 (14) C14A---C15A---C16A---O4A −2.4 (3) C38B---C39B---C40B---O8B −0.6 (2) C20A---C15A---C16A---C17A −1.0 (3) C44B---C39B---C40B---C41B 0.1 (2) C14A---C15A---C16A---C17A 177.26 (18) C38B---C39B---C40B---C41B 179.35 (15) O4A---C16A---C17A---C18A 179.79 (19) O8B---C40B---C41B---C42B 179.19 (16) C15A---C16A---C17A---C18A 0.2 (3) C39B---C40B---C41B---C42B −0.7 (3) C16A---C17A---C18A---C19A 0.6 (3) C40B---C41B---C42B---C43B 0.3 (3) C17A---C18A---C19A---C20A −0.5 (4) C41B---C42B---C43B---C44B 0.7 (3) C18A---C19A---C20A---O2A 179.6 (2) C42B---C43B---C44B---O6B 178.77 (17) C18A---C19A---C20A---C15A −0.3 (3) C42B---C43B---C44B---C39B −1.3 (3) C16A---C15A---C20A---O2A −178.89 (19) C40B---C39B---C44B---O6B −179.17 (16) C14A---C15A---C20A---O2A 2.9 (3) C38B---C39B---C44B---O6B 1.6 (3) C16A---C15A---C20A---C19A 1.1 (3) C40B---C39B---C44B---C43B 0.9 (2) C14A---C15A---C20A---C19A −177.19 (19) C38B---C39B---C44B---C43B −178.31 (16) --------------------------- -------------- --------------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e5316 .table-wrap} ---------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1A---H1···N1A 0.82 1.88 2.608 (2) 147 O2A---H2···N2A 0.82 1.81 2.541 (2) 148 O5B---H5···N3B 0.82 1.79 2.529 (2) 149 O6B---H6···N4B 0.82 1.89 2.621 (2) 148 ---------------- --------- --------- ----------- --------------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- O1*A*---H1⋯N1*A* 0.82 1.88 2.608 (2) 147 O2*A*---H2⋯N2*A* 0.82 1.81 2.541 (2) 148 O5*B*---H5⋯N3*B* 0.82 1.79 2.529 (2) 149 O6*B*---H6⋯N4*B* 0.82 1.89 2.621 (2) 148 :::
PubMed Central
2024-06-05T04:04:18.153767
2011-2-16
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052052/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 16; 67(Pt 3):o636", "authors": [ { "first": "Atefeh", "last": "Sahraei" }, { "first": "Hadi", "last": "Kargar" }, { "first": "Reza", "last": "Kia" }, { "first": "Islam Ullah", "last": "Khan" } ] }
PMC3052053
Related literature {#sec1} ================== For the supra­molecular synthon approach in crystal engineering, see: Desiraju (1995[@bb4]); Nangia & Desiraju (1998[@bb8]). For background to co-crystallization, see: Aakeröy & Salmon (2005[@bb1]); Sharma & Zaworotko (1996[@bb11]); Schultheiss & Newman (2009[@bb9]). For co-crystals with a carbox­yl--pyridyl heterosynthon, see: Etter (1990[@bb6]); Shan *et al.* (2002[@bb10]); Du *et al.* (2005[@bb5]). For co-crystals of halogen-substituted dicarb­oxy­lic acids, see: He *et al.* (2009[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~8~H~5~FO~4~·C~10~H~8~N~2~*M* *~r~* = 340.30Monoclinic,*a* = 7.1711 (13) Å*b* = 20.106 (4) Å*c* = 11.272 (2) Åβ = 106.781 (2)°*V* = 1556.0 (5) Å^3^*Z* = 4Mo *K*α radiationμ = 0.11 mm^−1^*T* = 296 K0.34 × 0.32 × 0.32 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 2003[@bb12]) *T* ~min~ = 0.963, *T* ~max~ = 0.96711109 measured reflections2742 independent reflections1956 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.042 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.059*wR*(*F* ^2^) = 0.166*S* = 1.092742 reflections228 parameters1 restraintH-atom parameters constrainedΔρ~max~ = 0.72 e Å^−3^Δρ~min~ = −0.33 e Å^−3^ {#d5e484} Data collection: *APEX2* (Bruker, 2007[@bb3]); cell refinement: *APEX2* and *SAINT* (Bruker, 2007[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb13]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 2005[@bb2]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004016/vm2069sup1.cif](http://dx.doi.org/10.1107/S1600536811004016/vm2069sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004016/vm2069Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004016/vm2069Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?vm2069&file=vm2069sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?vm2069sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?vm2069&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [VM2069](http://scripts.iucr.org/cgi-bin/sendsup?vm2069)). Comment ======= In light of the importance of hydrogen bonds in crystal engineering, the supramolecular synthon approach has been widely applied to adapt desired supramolecules by using identified robust intermolecular interactions (Desiraju, 1995; Nangia & Desiraju, 1998). Co-crystallization is a current theme in several research groups to study hydrogen bonding through X-ray diffraction technique (Aakeröy & Salmon, 2005), for the synthesis of interpenetrated networks (Sharma & Zaworotko, 1996), and especially in pharmaceutical developments (Schultheiss & Newman, 2009). At this stage, strong hydrogen bonds, such as O---H···N or charge-assisted N---H···O, are always essential in the co-crystallization of carboxylic acids with pyridyl bases, usually combining the auxiliary weak C---H···O interactions, lead to the familiar carboxyl/pyridyl heterosynthon \[*R*~2~^2^(7)\] (Shan *et al.*, 2002). Although aromatic dicarboxylic acids have been verified to be excellent building blocks in binary co-crystal assemblies with bipyridine-type components (Du *et al.*, 2005), halogen substituented dicarboxylic acids have been seldom studied in this aspect (He, *et al.*, 2009). Doubtless, substituents will profoundly influence the structural assemblies by demonstrating distinct hydrogen-bonding capability and potential steric/electronic effect. To further investigate the hydrogen-bonding networks involving halogen substituents, 5-fluoroisophthalic acid (H~2~fip) was chosen to construct binary cocrystal with familiar 4,4\'-bipyridine (bipy) component as a hydrogen-bonding participant for the first time. In this work, the reaction of 5-fluoroisophthalic acid (H~2~fip) with 4,4\'-bipyridine (bipy) under ambient conditions and evaporation from the mixed CH~3~OH/H~2~O (2:1) solution of the reactants yields the crystalline binary adduct \[(H~2~fip)(bipy)\] (I). Single crystal X-ray diffraction reveals that compound (I) contains one-dimensional supramolecular tape via the connection of predictable carboxylate-bipyridine O---H···N/C---H···O interactions of *R*~2~^2^(7) heterosynthon. Then, further C---H···F interactions extend the adjacent tape moieties into a two-dimensional (2-D) corrugated layer. The molecular structure contains one H~2~fip and one bipy molecule (Fig. 1). The two pyridyl rings within the basic unit form a dihedral angle of 30.9 (2) °. The heterosynthon *R*~2~^2^(7) ring pattern of O---H···N/C---H···O bonds (synthon I in Fig. 2, Table 1), connecting the base and acid moieties, is responsible for the formation of a 1-D wavelike tape structure. Analysis of the crystal packing of (I) suggests that a further C---H···F interaction (Table 1) expands the 1-D motif into a 2-D hydrogen-bonding network (Figu. 2). Within the 2-D layer, a new hydrogen-bonding pattern denoted as *R*~2~^4^(14) (synthon II in Fig. 2, Etter, 1990) is found to link two pairs of centrosymmetry related carboxyl-bipyridine motifs from adjacent tape structures. By comparison, a closely related 1:1 binary cocrystal of isophthalic acid and bipy exhibits similar tapes of acid:base components formed via *R*~2~^2^(7) synthons. But these tapes extend to form supramolecular sheets via additional C---H···O interactions (Shan *et al.*, 2002). In conclusion, this work demonstrates the first example for H~2~fip as a good participant in co-crystallization with basic modules. When co-crystallizing with rod-like 4,4\'-bipyridine building block, the H~2~fip subunits fulfill the reliable carboxylic-pyridine synthon *R*~2~^2^(7). Although the associated C---H···O bonds are not present between adjoining tape motifs, the introduction of fluorine substituents leads to a new hydrogen-bonding synthon *R*~2~^4^(14). This result presents a new challenge in the exploration of crystalline products based on such halogen substituted benzene dicarboxylic acids. Experimental {#experimental} ============ All the reagents and solvents for synthesis were commercially available and used as received. For the preparation of compound (I), to a CH~3~OH/H~2~O (2:1) solution (6 ml) of H~2~fip (18.4 mg, 0.1 mmol) was added a solution of bipy (15.8 mg, 0.1 mmol) in CH~3~OH (5 ml). After stirring for *ca.* 30 minutes, the reaction mixture was filtered and left to stand at ambient temperature. Colorless block crystals of (I) suitable for X-ray diffraction were gained through one week evaporation of the filtrate with a yield of 75 % (25.5 mg, based on bipy). Anal. Calcd for C~18~H~13~FN~2~O~4~: C, 63.53; H, 3.85; N, 8.23 %. Found: C, 63.50; H, 3.85; N, 8.29 %. Refinement {#refinement} ========== One restraint was applied to bonded N1 and C5 atoms to equalize each anisotropic vector component parallel to the bond (DELU command). H atoms bonded to C atoms were positioned geometrically (C---H = 0.93 Å for pyridyl and phenyl H atoms) and included in the refinement in the riding-model approximation, with *U*~iso~(H) = 1.2 *U*~eq~(C). O-bound H atoms were refined as rigid groups, allowed to rotate but not tip. Isotropic displacement parameters were derived from the parent atoms with *U*~iso~(H) = 1.5 *U*~eq~(O) and O---H distance of 0.82 Å. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of compound (I) drawn with 30% probability ellipsoids. ::: ![](e-67-0o589-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Two-dimensional hydrogen-bonded layer of (I). Hydrogen bonds are indicated as dashed lines. I and II indicate the synthons R22(7) and R24(14), respectively. ::: ![](e-67-0o589-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e251 .table-wrap} ----------------------------- --------------------------------------- C~8~H~5~FO~4~·C~10~H~8~N~2~ *F*(000) = 704 *M~r~* = 340.30 *D*~x~ = 1.453 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 2260 reflections *a* = 7.1711 (13) Å θ = 2.1--21.8° *b* = 20.106 (4) Å µ = 0.11 mm^−1^ *c* = 11.272 (2) Å *T* = 296 K β = 106.781 (2)° Block, colorless *V* = 1556.0 (5) Å^3^ 0.34 × 0.32 × 0.32 mm *Z* = 4 ----------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e388 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII CCD area-detector diffractometer 2742 independent reflections Radiation source: fine-focus sealed tube 1956 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.042 φ and ω scans θ~max~ = 25.0°, θ~min~ = 2.0° Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) *h* = −8→8 *T*~min~ = 0.963, *T*~max~ = 0.967 *k* = −23→22 11109 measured reflections *l* = −13→13 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e505 .table-wrap} ------------------------------------- ----------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.059 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.166 H-atom parameters constrained *S* = 1.09 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.067*P*)^2^ + 1.097*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2742 reflections (Δ/σ)~max~ \< 0.001 228 parameters Δρ~max~ = 0.72 e Å^−3^ 1 restraint Δρ~min~ = −0.33 e Å^−3^ ------------------------------------- ----------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e662 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e707 .table-wrap} ----- ------------ --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.2245 (5) 0.3051 (2) −0.1085 (3) 0.0680 (10) H1 0.2529 0.2771 −0.1667 0.082\* C2 0.2595 (5) 0.28299 (18) 0.0108 (3) 0.0578 (9) H2 0.3103 0.2406 0.0319 0.069\* C3 0.2198 (4) 0.32356 (15) 0.1013 (3) 0.0463 (7) C4 0.1530 (5) 0.38653 (18) 0.0671 (3) 0.0618 (9) H4 0.1293 0.4163 0.1242 0.074\* C5 0.1208 (5) 0.40493 (18) −0.0617 (4) 0.0681 (9) H5 0.0760 0.4475 −0.0870 0.082\* C6 0.2374 (4) 0.29661 (14) 0.2275 (2) 0.0390 (6) C7 0.2065 (4) 0.22960 (14) 0.2432 (3) 0.0472 (7) H7 0.1809 0.2009 0.1758 0.057\* C8 0.2138 (5) 0.20553 (15) 0.3592 (3) 0.0484 (7) H8 0.1927 0.1603 0.3672 0.058\* C9 0.2766 (5) 0.33605 (15) 0.3328 (3) 0.0512 (8) H9 0.2999 0.3813 0.3279 0.061\* C10 0.2807 (5) 0.30759 (15) 0.4452 (3) 0.0522 (8) H10 0.3070 0.3350 0.5146 0.063\* C11 0.1900 (4) 0.11407 (14) 0.6366 (3) 0.0420 (7) C12 0.1879 (4) 0.07233 (13) 0.7462 (2) 0.0374 (6) C13 0.2825 (4) 0.09158 (14) 0.8674 (2) 0.0401 (7) H13 0.3453 0.1325 0.8829 0.048\* C14 0.2827 (4) 0.04932 (14) 0.9653 (2) 0.0431 (7) C15 0.1878 (5) −0.01089 (15) 0.9423 (3) 0.0498 (8) H15 0.1868 −0.0393 1.0072 0.060\* C16 0.0951 (5) −0.02820 (14) 0.8225 (3) 0.0482 (7) C17 0.0933 (4) 0.01109 (14) 0.7225 (3) 0.0424 (7) H17 0.0313 −0.0027 0.6420 0.051\* C18 0.3876 (5) 0.06363 (18) 1.0980 (3) 0.0558 (9) F1 0.0045 (3) −0.08851 (9) 0.80111 (18) 0.0751 (7) N1 0.1528 (4) 0.36369 (18) −0.1434 (3) 0.0707 (8) N2 0.2493 (4) 0.24332 (12) 0.4599 (2) 0.0453 (6) O1 0.2483 (3) 0.17584 (10) 0.66511 (18) 0.0521 (6) H1A 0.2473 0.1961 0.6018 0.078\* O2 0.1424 (4) 0.09213 (11) 0.53240 (18) 0.0615 (7) O3 0.4816 (4) 0.12082 (13) 1.11386 (19) 0.0662 (7) H3 0.5535 0.1231 1.1850 0.099\* O4 0.3880 (4) 0.02582 (13) 1.1812 (2) 0.0745 (8) ----- ------------ --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1222 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.065 (2) 0.091 (3) 0.046 (2) −0.003 (2) 0.0142 (17) 0.0128 (19) C2 0.061 (2) 0.075 (2) 0.0364 (17) −0.0063 (17) 0.0124 (15) 0.0050 (16) C3 0.0388 (15) 0.0540 (18) 0.0413 (17) −0.0042 (13) 0.0037 (13) 0.0110 (14) C4 0.062 (2) 0.060 (2) 0.061 (2) 0.0019 (16) 0.0123 (17) 0.0205 (17) C5 0.068 (2) 0.052 (2) 0.078 (2) 0.0076 (17) 0.0099 (19) 0.0185 (15) C6 0.0388 (15) 0.0420 (16) 0.0348 (15) −0.0001 (12) 0.0081 (12) 0.0051 (12) C7 0.0608 (19) 0.0430 (17) 0.0358 (16) −0.0047 (14) 0.0110 (14) −0.0032 (13) C8 0.0643 (19) 0.0401 (17) 0.0395 (17) −0.0050 (14) 0.0130 (14) 0.0029 (13) C9 0.072 (2) 0.0363 (16) 0.0461 (18) −0.0036 (15) 0.0182 (16) 0.0005 (13) C10 0.074 (2) 0.0449 (18) 0.0371 (17) −0.0070 (15) 0.0158 (15) −0.0064 (13) C11 0.0455 (16) 0.0424 (17) 0.0364 (16) −0.0014 (13) 0.0090 (13) −0.0012 (13) C12 0.0407 (15) 0.0392 (15) 0.0317 (14) 0.0026 (12) 0.0095 (12) 0.0003 (11) C13 0.0442 (16) 0.0368 (15) 0.0377 (15) 0.0009 (12) 0.0092 (12) −0.0053 (12) C14 0.0488 (16) 0.0508 (18) 0.0285 (14) 0.0109 (13) 0.0091 (12) 0.0004 (12) C15 0.067 (2) 0.0463 (18) 0.0365 (16) 0.0066 (15) 0.0154 (15) 0.0074 (13) C16 0.0629 (19) 0.0372 (16) 0.0444 (17) −0.0057 (14) 0.0156 (15) 0.0032 (13) C17 0.0491 (17) 0.0424 (16) 0.0325 (15) −0.0023 (13) 0.0066 (13) −0.0017 (12) C18 0.059 (2) 0.067 (2) 0.0395 (18) 0.0141 (17) 0.0113 (15) −0.0101 (17) F1 0.1104 (17) 0.0482 (11) 0.0623 (12) −0.0268 (11) 0.0179 (11) 0.0032 (9) N1 0.0663 (19) 0.091 (2) 0.0517 (18) −0.0038 (17) 0.0114 (14) 0.0132 (14) N2 0.0574 (15) 0.0436 (14) 0.0347 (13) −0.0042 (11) 0.0131 (11) 0.0021 (11) O1 0.0731 (14) 0.0454 (12) 0.0361 (11) −0.0108 (10) 0.0129 (10) 0.0004 (9) O2 0.0936 (18) 0.0562 (14) 0.0324 (12) −0.0184 (12) 0.0147 (11) −0.0025 (10) O3 0.0738 (16) 0.0816 (18) 0.0352 (12) 0.0014 (13) 0.0030 (11) −0.0124 (11) O4 0.101 (2) 0.0853 (18) 0.0302 (12) 0.0180 (15) 0.0084 (12) 0.0083 (12) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1692 .table-wrap} ---------------------- ------------ ----------------------- ------------ C1---N1 1.301 (5) C10---H10 0.9300 C1---C2 1.368 (4) C11---O2 1.208 (3) C1---H1 0.9300 C11---O1 1.320 (3) C2---C3 1.398 (4) C11---C12 1.497 (4) C2---H2 0.9300 C12---C13 1.393 (4) C3---C4 1.369 (4) C12---C17 1.394 (4) C3---C6 1.493 (4) C13---C14 1.392 (4) C4---C5 1.451 (5) C13---H13 0.9300 C4---H4 0.9300 C14---C15 1.376 (4) C5---N1 1.308 (5) C14---C18 1.496 (4) C5---H5 0.9300 C15---C16 1.367 (4) C6---C7 1.385 (4) C15---H15 0.9300 C6---C9 1.387 (4) C16---F1 1.364 (3) C7---C8 1.381 (4) C16---C17 1.373 (4) C7---H7 0.9300 C17---H17 0.9300 C8---N2 1.328 (4) C18---O4 1.207 (4) C8---H8 0.9300 C18---O3 1.319 (4) C9---C10 1.382 (4) O1---H1A 0.8200 C9---H9 0.9300 O3---H3 0.8200 C10---N2 1.330 (4) N1---C1---C2 122.4 (4) C9---C10---H10 118.1 N1---C1---H1 118.8 O2---C11---O1 124.1 (3) C2---C1---H1 118.8 O2---C11---C12 122.0 (3) C1---C2---C3 120.6 (4) O1---C11---C12 113.9 (2) C1---C2---H2 119.7 C13---C12---C17 120.4 (2) C3---C2---H2 119.7 C13---C12---C11 122.4 (2) C4---C3---C2 117.6 (3) C17---C12---C11 117.2 (2) C4---C3---C6 122.0 (3) C14---C13---C12 119.7 (3) C2---C3---C6 120.3 (3) C14---C13---H13 120.1 C3---C4---C5 117.3 (3) C12---C13---H13 120.1 C3---C4---H4 121.3 C15---C14---C13 120.0 (3) C5---C4---H4 121.3 C15---C14---C18 115.9 (3) N1---C5---C4 122.3 (3) C13---C14---C18 124.1 (3) N1---C5---H5 118.9 C16---C15---C14 118.9 (3) C4---C5---H5 118.9 C16---C15---H15 120.6 C7---C6---C9 116.6 (2) C14---C15---H15 120.6 C7---C6---C3 120.1 (3) F1---C16---C15 118.2 (3) C9---C6---C3 123.3 (3) F1---C16---C17 118.4 (3) C8---C7---C6 119.9 (3) C15---C16---C17 123.4 (3) C8---C7---H7 120.1 C16---C17---C12 117.5 (3) C6---C7---H7 120.1 C16---C17---H17 121.2 N2---C8---C7 123.7 (3) C12---C17---H17 121.2 N2---C8---H8 118.2 O4---C18---O3 123.9 (3) C7---C8---H8 118.2 O4---C18---C14 122.9 (3) C10---C9---C6 119.5 (3) O3---C18---C14 113.2 (3) C10---C9---H9 120.2 C1---N1---C5 119.7 (3) C6---C9---H9 120.2 C8---N2---C10 116.5 (2) N2---C10---C9 123.8 (3) C11---O1---H1A 109.5 N2---C10---H10 118.1 C18---O3---H3 109.5 N1---C1---C2---C3 −0.3 (5) C17---C12---C13---C14 0.1 (4) C1---C2---C3---C4 −2.7 (5) C11---C12---C13---C14 −177.2 (2) C1---C2---C3---C6 173.2 (3) C12---C13---C14---C15 −0.7 (4) C2---C3---C4---C5 2.7 (5) C12---C13---C14---C18 176.9 (3) C6---C3---C4---C5 −173.2 (3) C13---C14---C15---C16 0.3 (4) C3---C4---C5---N1 0.2 (5) C18---C14---C15---C16 −177.6 (3) C4---C3---C6---C7 146.8 (3) C14---C15---C16---F1 178.9 (3) C2---C3---C6---C7 −29.0 (4) C14---C15---C16---C17 0.9 (5) C4---C3---C6---C9 −30.5 (4) F1---C16---C17---C12 −179.6 (3) C2---C3---C6---C9 153.8 (3) C15---C16---C17---C12 −1.5 (5) C9---C6---C7---C8 0.6 (4) C13---C12---C17---C16 1.0 (4) C3---C6---C7---C8 −176.9 (3) C11---C12---C17---C16 178.4 (3) C6---C7---C8---N2 0.1 (5) C15---C14---C18---O4 −1.2 (4) C7---C6---C9---C10 −0.7 (4) C13---C14---C18---O4 −179.0 (3) C3---C6---C9---C10 176.7 (3) C15---C14---C18---O3 177.7 (3) C6---C9---C10---N2 0.1 (5) C13---C14---C18---O3 −0.1 (4) O2---C11---C12---C13 165.0 (3) C2---C1---N1---C5 3.4 (5) O1---C11---C12---C13 −14.8 (4) C4---C5---N1---C1 −3.3 (5) O2---C11---C12---C17 −12.3 (4) C7---C8---N2---C10 −0.7 (5) O1---C11---C12---C17 167.9 (2) C9---C10---N2---C8 0.6 (5) ---------------------- ------------ ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2381 .table-wrap} ------------------ --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1A···N2 0.82 1.86 2.684 (3) 179 O3---H3···N1^i^ 0.82 1.88 2.674 (4) 164 C8---H8···O2 0.93 2.42 3.138 (4) 134 C8---H8···F1^ii^ 0.93 2.48 3.101 (4) 125 ------------------ --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*+1/2, −*y*+1/2, *z*+3/2; (ii) −*x*, −*y*, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- --------- ------- ----------- ------------- O1---H1*A*⋯N2 0.82 1.86 2.684 (3) 179 O3---H3⋯N1^i^ 0.82 1.88 2.674 (4) 164 C8---H8⋯O2 0.93 2.42 3.138 (4) 134 C8---H8⋯F1^ii^ 0.93 2.48 3.101 (4) 125 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.163134
2011-2-09
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052053/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 9; 67(Pt 3):o589", "authors": [ { "first": "Jin-Lai", "last": "Qin" } ] }
PMC3052054
Related literature {#sec1} ================== For a previous crystallographic study of AgPO~3~, see: Jost (1961[@bb10]). For the isotypic *A*-form of the Kurrol salt NaPO~3~, see: McAdam *et al.* (1968[@bb11]). Properties of glassy silver phosphates have been reported by Portier *et al.* (1990[@bb15]) and Novita *et al.* (2009[@bb13]). For long-chain polyphosphates Ag*M* ^III^(PO~3~)~4~ (*M* ^III^ = La, Gd, Eu), see: El Masloumi *et al.* (2005[@bb8]); Naıli *et al.* (2006[@bb12]); Ayadi *et al.* (2009[@bb3]). For Ag*M* ^II^ (PO~3~)~3~ (*M* ^II^ = Mg, Zn, Ba), see: Belharouak *et al.* (1999[@bb4]); for Ag*M* ^I^(PO~3~)~2~ (*M* ^I^ = K, Rb, Cs, Tl), see: Averbuch-Pouchot (1993[@bb2]). For background to the bond-valence method, see: Brown & Altermatt (1985[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} AgPO~3~*M* *~r~* = 186.84Monoclinic,*a* = 11.9335 (3) Å*b* = 6.0667 (1) Å*c* = 7.3278 (2) Åβ = 93.491 (2)°*V* = 529.53 (2) Å^3^*Z* = 8Mo *K*α radiationμ = 7.96 mm^−1^*T* = 293 K0.10 × 0.08 × 0.04 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur-3 CCD diffractometerAbsorption correction: multi-scan (Blessing, 1995[@bb5]) *T* ~min~ = 0.465, *T* ~max~ = 0.73322720 measured reflections2333 independent reflections2208 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.042 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.024*wR*(*F* ^2^) = 0.058*S* = 1.082333 reflections92 parametersΔρ~max~ = 1.43 e Å^−3^Δρ~min~ = −1.86 e Å^−3^ {#d5e678} Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006[@bb14]); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2006[@bb14]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb16]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb16]); molecular graphics: *DIAMOND* (Brandenburg, 1999[@bb6]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb9]) and *enCIFer* (Allen *et al.*, 2004[@bb1]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003977/wm2454sup1.cif](http://dx.doi.org/10.1107/S1600536811003977/wm2454sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003977/wm2454Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003977/wm2454Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?wm2454&file=wm2454sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?wm2454sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?wm2454&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [WM2454](http://scripts.iucr.org/cgi-bin/sendsup?wm2454)). Comment ======= Glassy silver polyphosphates as a part of complex oxide-chalcogenide systems have various applications in the field of solid electrolytes (Portier *et al.*, 1990; Novita *et al.*, 2009). Much attention has therefore been paid to phase equilibrium studies within AgPO~3~--*M*(PO~3~)~n~ systems, where *M* is a rare earth (Ayadi *et al.*, 2009; Naili *et al.*, 2006, El Masloumi *et al.*, 2005), a divalent (Belharouak *et al.*, 1999) or a monovalent metal (Averbuch-Pouchot, 1993). The title compound is isotypic with the *A*-form of the Kurrol salt NaPO~3~ (McAdam *et al.*, 1968). AgPO~3~ has been previously structurally studied based on single crystal Weissenberg photographs (Jost, 1961). The current study mainly confirms the previous results, but with significantly higher precision and with anisotropic displacement parameters refined for all atoms. The structure of AgPO~3~ features two types of penta-coordinated Ag^I^ ions: Ag1 is located in a distorted trigonal bipyramid and Ag2 in a irregular tetragonal pyramid of oxygen atoms (Fig. 1). Calculated values of bond valence sums (BVS; Brown & Altermatt, 1985) were found to be quite different: 0.96 valence units (v.u.) for Ag2 and 0.87 v.u. for Ag1. The observed deviation of the BVS of the latter atom from its chemical valence (expected 1) is due to a high polyhedral distortion caused by the presence of rigid (PO~3~)*~n~* chains. In this case the BVS values may be seen as a degree of silver \"underbonding\" and have a concomitant effect on physical properties of the title compound or glassy materials containing silver polyphosphate. The next-nearest coordination spheres of Ag1 include six adjacent silver atoms, resulting in edge-sharing Ag1 and Ag2 polyhedra and other four polyhedra connected through corners. As a result of this linkage, two polyhedral ribbons appear. One spreads parallel to the *a*-axis through interconnected \[Ag1O~5~\] polyhedra by sharing a common edge and vertex alternatively, and another spreads parallel to the *b*-axis and consist of corner-sharing \[Ag1O~5~\] polyhedra. Ag2 is remotely surrounded by one Ag1 and two Ag2, resulting in a ribbon of edge-sharing \[Ag2O~5~\] polyhedra that run parallel to the *c*-axis. Intersecting these ribbons leads to a three-dimensional network penetrated with tunnels having eight-sided windows. Helical chains (PO~3~)*~n~* with a repeating unit of four phosphate tetrahedra are located within the tunnels and spiral along the 2~1~ axes parallel to the *b*-axis. Due to the centrosymmetric nature of the structure, adjacent chains are left- and right-helices. As is characteristic for *catena*-polyphosphates (Averbuch-Pouchot, 1993), each of the two PO~4~ tetrahedra displays two types of P---O bond lengths: P---O terminal ranging from 1.479 (2) to 1.4952 (19) Å and P---O bridging from 1.5889 (17) to 1.6074 (18) Å. The corresponding BVS are 4.92 v.u. and 4.95 v.u. for P1 and P2, respectively. The BVS per doubled formula (corresponds to the crystallographically independent atoms in a cell) of positively charged atoms equals to 11.72 v.u., while the chemical charge of the remaining O atoms is equal to -12 valences. This difference is an additional indication of the strain in the structure caused by the presence of rigid phosphate chains. Experimental {#experimental} ============ AgPO~3~ was prepared by crystallizing a solution of Ag~3~PO~4~ in H~3~PO~4~ (84 %~wt~) at a molar ratio Ag/P = 0.01. The thermal treatment included heating the mixture in a graphite crucible at 473 K for 6 h and then cooling to room temperature. After leaching with water, the product consisted of colorless prismatic crystals. Refinement {#refinement} ========== The highest peak and the deepest hole in the final difference map are located at 0.56 Å from Ag1 (1.432 e/Å^3^) and 0.56 Å from Ag1 (-1.858 e/Å^3^), respectively Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The connectivity of the Ag and P atoms in the structure of AgPO3 with displacement ellipsoids disolayed at the 50% probability level. \[Symmetry codes: (i) 0.5 - x, 1/2 + y, 0.5 - z; (ii) -x, -1 + y, z; (iii) 0.5 - x,1/2 + y, 1.5 - z; (iv) -x, 1 - y, 1 - z; (v) x, y, 1 + z; (vi) -x, 2 - y, 1 - z;\]. ::: ![](e-67-00i22-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view of the crystal structure of AgPO3 down the b-axis, emphasizing the tunnels with eight-sided windows where the helical polyphosphate chains reside. ::: ![](e-67-00i22-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e288 .table-wrap} ------------------------- ---------------------------------------- AgPO~3~ *F*(000) = 688 *M~r~* = 186.84 *D*~x~ = 4.687 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 22720 reflections *a* = 11.9335 (3) Å θ = 3.2--35.0° *b* = 6.0667 (1) Å µ = 7.96 mm^−1^ *c* = 7.3278 (2) Å *T* = 293 K β = 93.491 (2)° Prism, colorless *V* = 529.53 (2) Å^3^ 0.10 × 0.08 × 0.04 mm *Z* = 8 ------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e409 .table-wrap} ---------------------------------------------------- -------------------------------------- Oxford Diffraction Xcalibur-3 CCD diffractometer 2333 independent reflections Radiation source: fine-focus sealed tube 2208 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.042 φ and ω scans θ~max~ = 35°, θ~min~ = 3.2° Absorption correction: multi-scan (Blessing, 1995) *h* = −19→19 *T*~min~ = 0.465, *T*~max~ = 0.733 *k* = −9→9 22720 measured reflections *l* = −11→11 ---------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e523 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.024 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0212*P*)^2^ + 1.7313*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *wR*(*F*^2^) = 0.058 (Δ/σ)~max~ = 0.001 *S* = 1.08 Δρ~max~ = 1.43 e Å^−3^ 2333 reflections Δρ~min~ = −1.86 e Å^−3^ 92 parameters Extinction correction: *SHELXL97* (Sheldrick, 2008) 0 restraints Extinction coefficient: 0.0034 (3) ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e683 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e782 .table-wrap} ----- --------------- -------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Ag1 0.127313 (18) 0.33468 (3) 0.61230 (3) 0.02461 (6) Ag2 0.03023 (2) 0.89757 (4) 0.77035 (3) 0.02748 (6) P1 0.22766 (5) 0.81768 (10) 0.48624 (7) 0.01372 (10) P2 0.11152 (5) 0.61417 (10) 0.18002 (8) 0.01331 (10) O1 0.25346 (18) 0.6554 (3) 0.6355 (3) 0.0241 (4) O2 0.22388 (14) 0.6980 (3) 0.2909 (2) 0.0179 (3) O3 0.12509 (15) 0.9578 (3) 0.4956 (3) 0.0218 (3) O4 0.16402 (14) 0.4679 (3) 0.0265 (2) 0.0169 (3) O5 0.05294 (17) 0.7997 (3) 0.0843 (3) 0.0234 (3) O6 0.04724 (16) 0.4744 (3) 0.3047 (3) 0.0220 (3) ----- --------------- -------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e938 .table-wrap} ----- -------------- -------------- -------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ag1 0.02707 (10) 0.02043 (10) 0.02611 (10) 0.00056 (7) −0.00023 (7) 0.00252 (7) Ag2 0.03883 (12) 0.02340 (11) 0.02121 (9) 0.00423 (8) 0.01011 (8) 0.00068 (7) P1 0.0138 (2) 0.0153 (2) 0.0121 (2) −0.00206 (17) 0.00169 (16) 0.00000 (17) P2 0.0124 (2) 0.0141 (2) 0.0134 (2) 0.00133 (17) 0.00096 (16) −0.00069 (17) O1 0.0312 (9) 0.0223 (9) 0.0183 (7) −0.0081 (7) −0.0021 (7) 0.0064 (6) O2 0.0155 (6) 0.0225 (8) 0.0157 (6) −0.0010 (6) 0.0008 (5) −0.0059 (6) O3 0.0169 (7) 0.0268 (9) 0.0220 (8) 0.0031 (6) 0.0041 (6) −0.0047 (7) O4 0.0161 (6) 0.0200 (8) 0.0145 (6) 0.0058 (6) 0.0000 (5) −0.0042 (5) O5 0.0278 (9) 0.0208 (8) 0.0211 (8) 0.0108 (7) −0.0020 (6) 0.0000 (6) O6 0.0218 (8) 0.0243 (9) 0.0204 (7) −0.0050 (7) 0.0061 (6) 0.0000 (7) ----- -------------- -------------- -------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1155 .table-wrap} ------------------------ ------------- ------------------------ ------------- Ag1---O3^i^ 2.441 (2) P1---O4^vii^ 1.5889 (17) Ag1---O1 2.460 (2) P1---O2 1.6033 (17) Ag1---O6^ii^ 2.491 (2) P2---O5 1.479 (2) Ag1---O1^iii^ 2.511 (2) P2---O6 1.4924 (19) Ag1---O6 2.540 (2) P2---O4 1.5909 (17) Ag1---Ag2^i^ 3.1431 (3) P2---O2 1.6074 (18) Ag2---O5^iv^ 2.3708 (19) O1---Ag1^viii^ 2.511 (2) Ag2---O5^v^ 2.3756 (19) O3---Ag1^vi^ 2.441 (2) Ag2---O3 2.3968 (19) O4---P1^ix^ 1.5889 (17) Ag2---O6^ii^ 2.487 (2) O5---Ag2^iv^ 2.3708 (19) Ag2---O3^iv^ 2.750 (2) O5---Ag2^x^ 2.3756 (19) Ag2---Ag1^vi^ 3.1431 (3) O6---Ag2^ii^ 2.487 (2) P1---O1 1.490 (2) O6---Ag1^ii^ 2.491 (2) P1---O3 1.4952 (19) O3^i^---Ag1---O1 139.36 (7) O3---P1---O4^vii^ 110.36 (11) O3^i^---Ag1---O6^ii^ 121.99 (6) O1---P1---O2 110.46 (11) O1---Ag1---O6^ii^ 97.63 (7) O3---P1---O2 108.66 (10) O3^i^---Ag1---O1^iii^ 81.11 (6) O4^vii^---P1---O2 100.72 (9) O1---Ag1---O1^iii^ 88.56 (4) O5---P2---O6 118.48 (12) O6^ii^---Ag1---O1^iii^ 117.80 (6) O5---P2---O4 106.52 (10) O3^i^---Ag1---O6 90.36 (7) O6---P2---O4 110.79 (11) O1---Ag1---O6 89.59 (6) O5---P2---O2 110.76 (12) O6^ii^---Ag1---O6 77.68 (6) O6---P2---O2 108.33 (10) O1^iii^---Ag1---O6 164.51 (6) O4---P2---O2 100.46 (9) O3^i^---Ag1---Ag2^i^ 48.87 (5) P1---O1---Ag1 111.96 (11) O1---Ag1---Ag2^i^ 151.61 (4) P1---O1---Ag1^viii^ 109.67 (10) O6^ii^---Ag1---Ag2^i^ 88.27 (5) Ag1---O1---Ag1^viii^ 135.28 (8) O1^iii^---Ag1---Ag2^i^ 64.42 (5) P1---O2---P2 124.88 (11) O6---Ag1---Ag2^i^ 118.78 (4) P1---O3---Ag2 112.45 (11) O5^iv^---Ag2---O5^v^ 77.57 (7) P1---O3---Ag1^vi^ 123.86 (11) O5^iv^---Ag2---O3 119.43 (7) Ag2---O3---Ag1^vi^ 81.04 (6) O5^v^---Ag2---O3 145.04 (7) P1^ix^---O4---P2 135.91 (11) O5^iv^---Ag2---O6^ii^ 129.94 (7) P2---O5---Ag2^iv^ 125.12 (11) O5^v^---Ag2---O6^ii^ 90.36 (7) P2---O5---Ag2^x^ 132.23 (11) O3---Ag2---O6^ii^ 98.10 (6) Ag2^iv^---O5---Ag2^x^ 102.43 (7) O5^iv^---Ag2---Ag1^vi^ 71.68 (5) P2---O6---Ag2^ii^ 125.33 (11) O5^v^---Ag2---Ag1^vi^ 123.01 (5) P2---O6---Ag1^ii^ 110.73 (11) O3---Ag2---Ag1^vi^ 50.09 (5) Ag2^ii^---O6---Ag1^ii^ 99.83 (6) O6^ii^---Ag2---Ag1^vi^ 145.52 (4) P2---O6---Ag1 123.59 (11) O1---P1---O3 118.36 (12) Ag2^ii^---O6---Ag1 90.46 (7) O1---P1---O4^vii^ 106.84 (10) Ag1^ii^---O6---Ag1 102.32 (6) ------------------------ ------------- ------------------------ ------------- ::: Symmetry codes: (i) *x*, *y*−1, *z*; (ii) −*x*, −*y*+1, −*z*+1; (iii) −*x*+1/2, *y*−1/2, −*z*+3/2; (iv) −*x*, −*y*+2, −*z*+1; (v) *x*, *y*, *z*+1; (vi) *x*, *y*+1, *z*; (vii) −*x*+1/2, *y*+1/2, −*z*+1/2; (viii) −*x*+1/2, *y*+1/2, −*z*+3/2; (ix) −*x*+1/2, *y*−1/2, −*z*+1/2; (x) *x*, *y*, *z*−1. Table 1 ::: {.caption} ###### Selected geometric parameters (Å, °) ::: ::: {#d32e612 .table-wrap} --------------- ------------- Ag1---O3^i^ 2.441 (2) Ag1---O1 2.460 (2) Ag1---O6^ii^ 2.491 (2) Ag1---O1^iii^ 2.511 (2) Ag1---O6 2.540 (2) Ag2---O5^iv^ 2.3708 (19) Ag2---O5^v^ 2.3756 (19) Ag2---O3 2.3968 (19) Ag2---O6^ii^ 2.487 (2) Ag2---O3^iv^ 2.750 (2) P1---O1 1.490 (2) P1---O3 1.4952 (19) P1---O4^vi^ 1.5889 (17) P1---O2 1.6033 (17) P2---O5 1.479 (2) P2---O6 1.4924 (19) P2---O4 1.5909 (17) P2---O2 1.6074 (18) --------------- ------------- ::: ::: {#d32e722 .table-wrap} ------------------- ------------- P1---O2---P2 124.88 (11) P1^vii^---O4---P2 135.91 (11) ------------------- ------------- Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) ; (vi) ; (vii) . :::
PubMed Central
2024-06-05T04:04:18.169415
2011-2-09
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052054/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 9; 67(Pt 3):i22", "authors": [ { "first": "Katherina V.", "last": "Terebilenko" }, { "first": "Igor V.", "last": "Zatovsky" }, { "first": "Ivan V.", "last": "Ogorodnyk" }, { "first": "Vyacheslav N.", "last": "Baumer" }, { "first": "Nikolay S.", "last": "Slobodyanik" } ] }
PMC3052055
Related literature {#sec1} ================== For general background to the use of quinolones in the treatment of infections, see: Mizuki *et al.* (1996[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Cu(C~14~H~17~N~5~O~3~)~2~(H~2~O)~2~\](C~14~H~9~O~5~)~2~*M* *~r~* = 1220.66Triclinic,*a* = 8.611 (8) Å*b* = 12.555 (12) Å*c* = 13.436 (12) Åα = 76.222 (10)°β = 73.299 (10)°γ = 81.015 (10)°*V* = 1345 (2) Å^3^*Z* = 1Mo *K*α radiationμ = 0.49 mm^−1^*T* = 295 K0.47 × 0.41 × 0.33 mm ### Data collection {#sec2.1.2} Bruker SMART CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb3]) *T* ~min~ = 0.801, *T* ~max~ = 0.85411977 measured reflections5790 independent reflections4801 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.086 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.049*wR*(*F* ^2^) = 0.140*S* = 1.045790 reflections397 parameters3 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.56 e Å^−3^Δρ~min~ = −1.01 e Å^−3^ {#d5e577} Data collection: *SMART* (Bruker, 2001[@bb1]); cell refinement: *SAINT* (Bruker, 2001[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb4]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811006672/rk2260sup1.cif](http://dx.doi.org/10.1107/S1600536811006672/rk2260sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006672/rk2260Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006672/rk2260Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rk2260&file=rk2260sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rk2260sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rk2260&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RK2260](http://scripts.iucr.org/cgi-bin/sendsup?rk2260)). This work was supported by the Science and Technology Foundation of Southwest University (SWUB2007035). Comment ======= Pipemidic acid (H*ppa*, C~14~H~17~N~5~O~3~, 8-ethyl-5,8-dihydro-5- oxo-2-(1-piperazinyl)-pyrido(2,3-*d*)-pyrimidine-6-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki *et al.*, 1996). H~2~*oba* (4,4\'-oxybisbenzoic acid) acts a anion in this complex. The metal complexes of the H*ppa* and H~2~*oba* have not been reported till; the title copper(II) complex, I, is presented here (Fig. 1). The Cu atom exhibits an approximate square environment with atoms O2, O3, O2^i^, O3^i^ (see Fig. 1 for symmetry code) of two H*ppa* ligands (two O, O-bidentate). The Cu---O bond distances arising from the two carbonyl oxygen atoms O3 are longer (1.9605 (19)Å) than those arising from the carboxylate oxygen atoms O2 (1.932 (2)Å). The bond angles O2---Cu1---O3^i^ and O2---Cu1---O3 open up slightly from 88.51 (9)° to 91.49 (9)°. The Cu^II^ atom at each short edge of the rectangle are bridged by an water molecule, which also interacts weakly (Cu1···OW1 = 2.642 (10)Å) with the central metal, resulting in a distortion octahedral geometry. Classical N---H···O and O---H···O hydrogen bonds are present in the crystal structure (Table 1). Experimental {#experimental} ============ A mixture of CuI (0.095 g, 0.5 mmol), H*ppa* (0.089 g, 0.25 mmol), H~2~*oba* (0.0645 g, 0.25 mmol) and water (8 ml) was stirred for 30 min in air. The mixture was then transferred to a 18 ml teflon-lined hydrothermal bomb. The bomb was kept at 393 K for 120 h under autogenous pressure. Upon cooling, blue block of I were obtained from the reaction mixture. Refinement {#refinement} ========== The H atoms bonded to C atoms were positioned geometrically and refined using a riding model approximation \[aromatic C---H = 0.93Å, aliphatic C---H = 0.96Å--0.97Å\], with *U*~iso~(H) = 1.2--1.5*U*~eq~(C). The H atoms based on N atoms were located in a difference Fourier map and were refined with a distance restraint of N---H = 0.90Å and with *U*~iso~(H) = 1.2*U*~eq~(N). The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O---H distance restraints of 0.81 (3)Å and with *U*~iso~(H) = 1.3*U*~eq~(O). The H atoms bonded to OW atoms were located in a difference Fourier maps and refined with OW---H = 0.845Å--0.855Å and *U*~iso~(H) = 1--1.2*U*~eq~(OW). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Asymmetric unit of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x, -y, -z. ::: ![](e-67-0m388-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e206 .table-wrap} ----------------------------------------------------------- ---------------------------------------- \[Cu(C~14~H~17~N~5~O~3~)~2~(H~2~O)~2~\](C~14~H~9~O~5~)~2~ *Z* = 1 *M~r~* = 1220.66 *F*(000) = 635 Triclinic, *P*1 *D*~x~ = 1.507 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.611 (8) Å Cell parameters from 11977 reflections *b* = 12.555 (12) Å θ = 2.5--27.0° *c* = 13.436 (12) Å µ = 0.49 mm^−1^ α = 76.222 (10)° *T* = 295 K β = 73.299 (10)° Block, blue γ = 81.015 (10)° 0.47 × 0.41 × 0.33 mm *V* = 1345 (2) Å^3^ ----------------------------------------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e364 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART CCD diffractometer 5790 independent reflections Radiation source: fine-focus sealed tube 4801 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.086 φ and ω scans θ~max~ = 27.0°, θ~min~ = 2.5° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −10→10 *T*~min~ = 0.801, *T*~max~ = 0.854 *k* = −15→16 11977 measured reflections *l* = −17→17 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e481 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.049 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.140 H atoms treated by a mixture of independent and constrained refinement *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.080*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5790 reflections (Δ/σ)~max~ \< 0.001 397 parameters Δρ~max~ = 0.56 e Å^−3^ 3 restraints Δρ~min~ = −1.01 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e635 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e734 .table-wrap} ------ --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cu1 0.0000 0.0000 0.0000 0.03389 (14) O1 −0.47101 (18) 0.10445 (10) 0.11352 (13) 0.0351 (3) OW1 −0.0750 (3) −0.05617 (16) 0.20934 (15) 0.0526 (5) HW1A −0.118 (3) −0.0156 (16) 0.2544 (16) 0.049 (8)\* HW1B −0.129 (3) −0.1115 (15) 0.229 (2) 0.064 (10)\* O2 −0.21239 (17) 0.08163 (10) 0.02336 (13) 0.0348 (3) O3 −0.09237 (18) −0.13240 (11) −0.00203 (13) 0.0379 (4) O4 0.2629 (2) −0.06638 (13) 0.62834 (14) 0.0541 (5) O5 0.3377 (2) −0.15031 (13) 0.49121 (16) 0.0545 (5) O6 −0.4437 (2) 0.68639 (12) 0.46026 (13) 0.0425 (4) H6A −0.494 (4) 0.745 (2) 0.470 (2) 0.056 (8)\* O7 −0.3132 (2) 0.78539 (12) 0.30621 (13) 0.0491 (4) O8 0.05881 (19) 0.31270 (11) 0.26786 (11) 0.0360 (4) N1 −0.3807 (2) −0.77991 (12) 0.23764 (13) 0.0296 (4) H1A −0.4293 −0.8192 0.2091 0.036\* H1B −0.3499 −0.8254 0.2928 0.036\* N2 −0.4064 (2) −0.57091 (12) 0.10300 (14) 0.0302 (4) N3 −0.2207 (2) −0.44274 (12) 0.01642 (13) 0.0286 (4) N4 −0.48747 (19) −0.39169 (12) 0.12450 (13) 0.0245 (3) N5 −0.56161 (19) −0.21098 (12) 0.14742 (13) 0.0244 (3) C1 −0.3500 (2) 0.04524 (15) 0.07391 (16) 0.0277 (4) C2 −0.3694 (2) −0.07372 (14) 0.08278 (15) 0.0248 (4) C3 −0.2405 (2) −0.15063 (14) 0.04021 (15) 0.0252 (4) C4 −0.2879 (2) −0.25929 (14) 0.05000 (14) 0.0236 (4) C5 −0.1829 (2) −0.34213 (15) 0.00345 (16) 0.0284 (4) H5A −0.0805 −0.3245 −0.0391 0.034\* C6 −0.3712 (2) −0.46483 (14) 0.08216 (15) 0.0240 (4) C7 −0.4444 (2) −0.28933 (14) 0.10703 (14) 0.0224 (4) C8 −0.5211 (2) −0.10795 (14) 0.13354 (15) 0.0255 (4) H8A −0.6022 −0.0562 0.1604 0.031\* C9 −0.7306 (2) −0.23875 (16) 0.20318 (16) 0.0302 (4) H9A −0.7622 −0.2865 0.1668 0.036\* H9B −0.8038 −0.1717 0.1998 0.036\* C10 −0.7491 (3) −0.2952 (2) 0.31814 (18) 0.0485 (6) H10A −0.8601 −0.3112 0.3504 0.073\* H10B −0.7202 −0.2477 0.3550 0.073\* H10C −0.6789 −0.3626 0.3220 0.073\* C11 −0.2860 (3) −0.65883 (14) 0.06486 (16) 0.0295 (4) H11A −0.1919 −0.6267 0.0138 0.035\* H11B −0.3332 −0.6995 0.0296 0.035\* C12 −0.2338 (2) −0.73607 (15) 0.15641 (16) 0.0301 (4) H12A −0.1598 −0.7964 0.1314 0.036\* H12B −0.1773 −0.6972 0.1877 0.036\* C13 −0.4992 (3) −0.68931 (16) 0.27633 (16) 0.0324 (4) H13A −0.4496 −0.6494 0.3109 0.039\* H13B −0.5941 −0.7199 0.3278 0.039\* C14 −0.5504 (2) −0.61120 (15) 0.18377 (18) 0.0332 (5) H14A −0.6098 −0.6492 0.1536 0.040\* H14B −0.6218 −0.5496 0.2083 0.040\* C15 0.1449 (3) 0.12351 (18) 0.30272 (19) 0.0443 (6) H15A 0.1362 0.1210 0.2359 0.053\* C16 0.2015 (3) 0.03110 (18) 0.36527 (19) 0.0476 (6) H16A 0.2319 −0.0340 0.3400 0.057\* C17 0.2144 (3) 0.03297 (15) 0.46562 (16) 0.0312 (4) C18 0.1694 (3) 0.13108 (16) 0.50118 (17) 0.0350 (5) H18A 0.1772 0.1336 0.5682 0.042\* C19 0.1130 (3) 0.22545 (16) 0.43918 (16) 0.0328 (5) H19A 0.0838 0.2909 0.4638 0.039\* C20 0.1008 (2) 0.22064 (15) 0.34007 (16) 0.0283 (4) C21 −0.0382 (2) 0.40359 (15) 0.30085 (16) 0.0284 (4) C22 −0.0043 (3) 0.50373 (17) 0.23318 (17) 0.0351 (5) H22A 0.0823 0.5074 0.1726 0.042\* C23 −0.1005 (3) 0.59877 (16) 0.25639 (17) 0.0333 (5) H23A −0.0785 0.6662 0.2107 0.040\* C24 −0.2295 (2) 0.59424 (15) 0.34728 (16) 0.0288 (4) C25 −0.2633 (3) 0.49235 (17) 0.41362 (17) 0.0365 (5) H25A −0.3501 0.4883 0.4741 0.044\* C26 −0.1687 (3) 0.39667 (16) 0.39035 (18) 0.0354 (5) H26A −0.1928 0.3287 0.4344 0.043\* C27 0.2781 (3) −0.06920 (16) 0.53302 (19) 0.0375 (5) C28 −0.3324 (3) 0.69794 (16) 0.36871 (17) 0.0318 (4) ------ --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1828 .table-wrap} ----- ------------- -------------- ------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cu1 0.0228 (2) 0.02319 (19) 0.0572 (3) −0.00498 (13) −0.00532 (17) −0.01570 (16) O1 0.0281 (8) 0.0259 (7) 0.0542 (10) 0.0003 (5) −0.0070 (7) −0.0204 (6) OW1 0.0558 (12) 0.0515 (11) 0.0439 (10) −0.0037 (9) −0.0031 (9) −0.0101 (8) O2 0.0277 (8) 0.0232 (7) 0.0524 (9) −0.0036 (5) −0.0055 (7) −0.0109 (6) O3 0.0254 (8) 0.0276 (7) 0.0602 (10) −0.0082 (6) 0.0024 (7) −0.0212 (6) O4 0.0749 (14) 0.0403 (9) 0.0428 (10) 0.0150 (8) −0.0237 (9) −0.0033 (7) O5 0.0603 (12) 0.0321 (8) 0.0657 (12) 0.0172 (8) −0.0160 (9) −0.0140 (8) O6 0.0433 (10) 0.0307 (8) 0.0410 (9) 0.0085 (7) 0.0017 (7) −0.0068 (6) O7 0.0612 (12) 0.0294 (8) 0.0451 (10) 0.0032 (7) −0.0046 (8) −0.0017 (7) O8 0.0431 (9) 0.0331 (7) 0.0270 (7) 0.0107 (6) −0.0080 (6) −0.0073 (6) N1 0.0354 (10) 0.0264 (8) 0.0285 (9) −0.0012 (7) −0.0120 (7) −0.0049 (6) N2 0.0260 (9) 0.0195 (7) 0.0405 (10) −0.0045 (6) −0.0013 (7) −0.0052 (7) N3 0.0262 (9) 0.0249 (8) 0.0325 (9) −0.0048 (6) 0.0014 (7) −0.0111 (6) N4 0.0223 (8) 0.0214 (7) 0.0305 (8) −0.0047 (6) −0.0057 (7) −0.0064 (6) N5 0.0206 (8) 0.0229 (7) 0.0284 (8) −0.0028 (6) −0.0022 (6) −0.0075 (6) C1 0.0299 (11) 0.0244 (9) 0.0333 (10) −0.0025 (7) −0.0125 (8) −0.0094 (7) C2 0.0261 (10) 0.0206 (8) 0.0286 (10) −0.0028 (7) −0.0065 (8) −0.0073 (7) C3 0.0222 (10) 0.0242 (9) 0.0305 (10) −0.0056 (7) −0.0038 (8) −0.0095 (7) C4 0.0217 (9) 0.0233 (8) 0.0268 (10) −0.0038 (7) −0.0046 (7) −0.0081 (7) C5 0.0231 (10) 0.0275 (9) 0.0336 (10) −0.0059 (7) −0.0013 (8) −0.0099 (8) C6 0.0258 (10) 0.0223 (8) 0.0254 (9) −0.0024 (7) −0.0084 (8) −0.0054 (7) C7 0.0226 (10) 0.0224 (8) 0.0236 (9) −0.0028 (7) −0.0071 (7) −0.0057 (7) C8 0.0246 (10) 0.0232 (8) 0.0288 (10) −0.0004 (7) −0.0043 (8) −0.0103 (7) C9 0.0194 (10) 0.0322 (10) 0.0376 (11) −0.0053 (7) 0.0010 (8) −0.0128 (8) C10 0.0492 (15) 0.0577 (14) 0.0351 (13) −0.0167 (11) 0.0006 (11) −0.0099 (11) C11 0.0342 (11) 0.0226 (9) 0.0317 (10) −0.0034 (8) −0.0045 (8) −0.0100 (7) C12 0.0269 (11) 0.0298 (9) 0.0366 (11) 0.0013 (7) −0.0079 (9) −0.0156 (8) C13 0.0292 (11) 0.0329 (10) 0.0332 (11) −0.0052 (8) −0.0018 (9) −0.0099 (8) C14 0.0221 (10) 0.0242 (9) 0.0490 (13) −0.0046 (7) −0.0026 (9) −0.0060 (8) C15 0.0632 (17) 0.0390 (12) 0.0325 (12) 0.0083 (11) −0.0155 (11) −0.0156 (9) C16 0.0695 (18) 0.0336 (11) 0.0399 (13) 0.0162 (11) −0.0149 (12) −0.0205 (10) C17 0.0306 (11) 0.0259 (9) 0.0324 (11) 0.0042 (8) −0.0044 (8) −0.0062 (8) C18 0.0450 (13) 0.0317 (10) 0.0303 (11) 0.0020 (9) −0.0133 (9) −0.0093 (8) C19 0.0404 (12) 0.0262 (9) 0.0315 (11) 0.0047 (8) −0.0084 (9) −0.0116 (8) C20 0.0242 (10) 0.0294 (9) 0.0289 (10) 0.0016 (7) −0.0052 (8) −0.0061 (7) C21 0.0275 (11) 0.0298 (9) 0.0292 (10) 0.0026 (8) −0.0108 (8) −0.0077 (8) C22 0.0331 (12) 0.0378 (11) 0.0262 (10) 0.0014 (9) −0.0009 (9) −0.0023 (8) C23 0.0351 (12) 0.0288 (10) 0.0304 (11) −0.0028 (8) −0.0052 (9) 0.0004 (8) C24 0.0291 (11) 0.0296 (9) 0.0286 (10) −0.0003 (8) −0.0092 (8) −0.0072 (8) C25 0.0306 (12) 0.0339 (10) 0.0348 (12) 0.0008 (8) 0.0018 (9) −0.0027 (9) C26 0.0335 (12) 0.0270 (10) 0.0370 (12) −0.0007 (8) −0.0024 (9) 0.0004 (8) C27 0.0362 (12) 0.0276 (10) 0.0445 (13) 0.0034 (8) −0.0104 (10) −0.0036 (9) C28 0.0333 (12) 0.0303 (10) 0.0327 (11) 0.0004 (8) −0.0106 (9) −0.0081 (8) ----- ------------- -------------- ------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2727 .table-wrap} ----------------------- -------------- ----------------------- -------------- Cu1---O2 1.932 (2) C9---C10 1.512 (3) Cu1---O2^i^ 1.932 (2) C9---H9A 0.9700 Cu1---O3^i^ 1.9605 (19) C9---H9B 0.9700 Cu1---O3 1.9605 (19) C10---H10A 0.9600 O1---C1 1.245 (3) C10---H10B 0.9600 OW1---HW1A 0.850 (10) C10---H10C 0.9600 OW1---HW1B 0.845 (10) C11---C12 1.506 (3) O2---C1 1.278 (3) C11---H11A 0.9700 O3---C3 1.271 (2) C11---H11B 0.9700 O4---C27 1.258 (3) C12---H12A 0.9700 O5---C27 1.249 (3) C12---H12B 0.9700 O6---C28 1.317 (3) C13---C14 1.517 (3) O6---H6A 0.81 (3) C13---H13A 0.9700 O7---C28 1.215 (3) C13---H13B 0.9700 O8---C21 1.388 (2) C14---H14A 0.9700 O8---C20 1.395 (2) C14---H14B 0.9700 N1---C13 1.490 (3) C15---C16 1.373 (3) N1---C12 1.494 (3) C15---C20 1.386 (3) N1---H1A 0.9000 C15---H15A 0.9300 N1---H1B 0.9000 C16---C17 1.390 (3) N2---C6 1.358 (3) C16---H16A 0.9300 N2---C14 1.461 (3) C17---C18 1.386 (3) N2---C11 1.470 (3) C17---C27 1.510 (3) N3---C5 1.312 (3) C18---C19 1.384 (3) N3---C6 1.370 (3) C18---H18A 0.9300 N4---C7 1.341 (3) C19---C20 1.381 (3) N4---C6 1.343 (2) C19---H19A 0.9300 N5---C8 1.348 (3) C21---C22 1.382 (3) N5---C7 1.382 (2) C21---C26 1.386 (3) N5---C9 1.486 (3) C22---C23 1.388 (3) C1---C2 1.501 (3) C22---H22A 0.9300 C2---C8 1.371 (3) C23---C24 1.391 (3) C2---C3 1.434 (3) C23---H23A 0.9300 C3---C4 1.450 (3) C24---C25 1.393 (3) C4---C7 1.405 (3) C24---C28 1.495 (3) C4---C5 1.408 (3) C25---C26 1.390 (3) C5---H5A 0.9300 C25---H25A 0.9300 C8---H8A 0.9300 C26---H26A 0.9300 O2---Cu1---O2^i^ 180.00 (9) N2---C11---H11B 109.6 O2---Cu1---O3^i^ 88.51 (9) C12---C11---H11B 109.6 O2^i^---Cu1---O3^i^ 91.49 (9) H11A---C11---H11B 108.1 O2---Cu1---O3 91.49 (9) N1---C12---C11 109.21 (17) O2^i^---Cu1---O3 88.51 (9) N1---C12---H12A 109.8 O3^i^---Cu1---O3 180.00 (9) C11---C12---H12A 109.8 HW1A---OW1---HW1B 106.0 (15) N1---C12---H12B 109.8 C1---O2---Cu1 128.03 (13) C11---C12---H12B 109.8 C3---O3---Cu1 124.09 (12) H12A---C12---H12B 108.3 C28---O6---H6A 111 (2) N1---C13---C14 109.85 (18) C21---O8---C20 121.82 (16) N1---C13---H13A 109.7 C13---N1---C12 111.43 (15) C14---C13---H13A 109.7 C13---N1---H1A 109.3 N1---C13---H13B 109.7 C12---N1---H1A 109.3 C14---C13---H13B 109.7 C13---N1---H1B 109.3 H13A---C13---H13B 108.2 C12---N1---H1B 109.3 N2---C14---C13 109.62 (17) H1A---N1---H1B 108.0 N2---C14---H14A 109.7 C6---N2---C14 122.40 (16) C13---C14---H14A 109.7 C6---N2---C11 122.31 (17) N2---C14---H14B 109.7 C14---N2---C11 113.87 (15) C13---C14---H14B 109.7 C5---N3---C6 115.40 (16) H14A---C14---H14B 108.2 C7---N4---C6 115.62 (17) C16---C15---C20 119.3 (2) C8---N5---C7 118.91 (17) C16---C15---H15A 120.3 C8---N5---C9 120.33 (15) C20---C15---H15A 120.3 C7---N5---C9 120.74 (15) C15---C16---C17 121.2 (2) O1---C1---O2 123.21 (17) C15---C16---H16A 119.4 O1---C1---C2 118.03 (19) C17---C16---H16A 119.4 O2---C1---C2 118.72 (17) C18---C17---C16 118.30 (18) C8---C2---C3 119.53 (17) C18---C17---C27 121.2 (2) C8---C2---C1 116.70 (16) C16---C17---C27 120.53 (19) C3---C2---C1 123.76 (18) C19---C18---C17 121.5 (2) O3---C3---C2 126.19 (17) C19---C18---H18A 119.3 O3---C3---C4 118.81 (16) C17---C18---H18A 119.3 C2---C3---C4 114.99 (17) C20---C19---C18 118.79 (18) C7---C4---C5 114.89 (17) C20---C19---H19A 120.6 C7---C4---C3 121.86 (16) C18---C19---H19A 120.6 C5---C4---C3 123.25 (18) C19---C20---C15 120.88 (18) N3---C5---C4 124.03 (19) C19---C20---O8 123.37 (18) N3---C5---H5A 118.0 C15---C20---O8 115.51 (19) C4---C5---H5A 118.0 C22---C21---C26 120.83 (18) N4---C6---N2 117.63 (18) C22---C21---O8 115.21 (19) N4---C6---N3 126.45 (16) C26---C21---O8 123.78 (18) N2---C6---N3 115.89 (16) C21---C22---C23 119.5 (2) N4---C7---N5 117.44 (18) C21---C22---H22A 120.3 N4---C7---C4 123.08 (16) C23---C22---H22A 120.3 N5---C7---C4 119.48 (16) C22---C23---C24 120.70 (19) N5---C8---C2 124.93 (16) C22---C23---H23A 119.6 N5---C8---H8A 117.5 C24---C23---H23A 119.6 C2---C8---H8A 117.5 C25---C24---C23 118.96 (18) N5---C9---C10 112.82 (17) C25---C24---C28 121.8 (2) N5---C9---H9A 109.0 C23---C24---C28 119.23 (18) C10---C9---H9A 109.0 C26---C25---C24 120.7 (2) N5---C9---H9B 109.0 C26---C25---H25A 119.7 C10---C9---H9B 109.0 C24---C25---H25A 119.7 H9A---C9---H9B 107.8 C21---C26---C25 119.30 (19) C9---C10---H10A 109.5 C21---C26---H26A 120.4 C9---C10---H10B 109.5 C25---C26---H26A 120.4 H10A---C10---H10B 109.5 O5---C27---O4 125.2 (2) C9---C10---H10C 109.5 O5---C27---C17 118.0 (2) H10A---C10---H10C 109.5 O4---C27---C17 116.79 (19) H10B---C10---H10C 109.5 O7---C28---O6 123.32 (19) N2---C11---C12 110.25 (17) O7---C28---C24 122.1 (2) N2---C11---H11A 109.6 O6---C28---C24 114.58 (17) C12---C11---H11A 109.6 O3^i^---Cu1---O2---C1 −148.18 (18) C1---C2---C8---N5 178.93 (17) O3---Cu1---O2---C1 31.82 (18) C8---N5---C9---C10 −99.3 (2) O2---Cu1---O3---C3 −22.22 (17) C7---N5---C9---C10 82.1 (2) O2^i^---Cu1---O3---C3 157.78 (17) C6---N2---C11---C12 109.8 (2) Cu1---O2---C1---O1 156.75 (15) C14---N2---C11---C12 −56.9 (2) Cu1---O2---C1---C2 −25.6 (3) C13---N1---C12---C11 −58.2 (2) O1---C1---C2---C8 0.6 (3) N2---C11---C12---N1 55.9 (2) O2---C1---C2---C8 −177.16 (17) C12---N1---C13---C14 58.3 (2) O1---C1---C2---C3 179.61 (18) C6---N2---C14---C13 −110.5 (2) O2---C1---C2---C3 1.9 (3) C11---N2---C14---C13 56.2 (2) Cu1---O3---C3---C2 9.3 (3) N1---C13---C14---N2 −55.5 (2) Cu1---O3---C3---C4 −169.20 (13) C20---C15---C16---C17 0.5 (4) C8---C2---C3---O3 −174.87 (19) C15---C16---C17---C18 −0.4 (4) C1---C2---C3---O3 6.1 (3) C15---C16---C17---C27 −179.5 (2) C8---C2---C3---C4 3.7 (3) C16---C17---C18---C19 0.0 (4) C1---C2---C3---C4 −175.33 (17) C27---C17---C18---C19 179.1 (2) O3---C3---C4---C7 172.18 (17) C17---C18---C19---C20 0.4 (3) C2---C3---C4---C7 −6.5 (3) C18---C19---C20---C15 −0.3 (3) O3---C3---C4---C5 −8.1 (3) C18---C19---C20---O8 −174.38 (19) C2---C3---C4---C5 173.23 (18) C16---C15---C20---C19 −0.1 (4) C6---N3---C5---C4 −1.7 (3) C16---C15---C20---O8 174.4 (2) C7---C4---C5---N3 −4.3 (3) C21---O8---C20---C19 −28.0 (3) C3---C4---C5---N3 176.01 (19) C21---O8---C20---C15 157.6 (2) C7---N4---C6---N2 176.26 (17) C20---O8---C21---C22 147.58 (19) C7---N4---C6---N3 −6.0 (3) C20---O8---C21---C26 −37.3 (3) C14---N2---C6---N4 −11.6 (3) C26---C21---C22---C23 1.3 (3) C11---N2---C6---N4 −177.18 (17) O8---C21---C22---C23 176.50 (19) C14---N2---C6---N3 170.41 (17) C21---C22---C23---C24 0.5 (3) C11---N2---C6---N3 4.9 (3) C22---C23---C24---C25 −1.5 (3) C5---N3---C6---N4 7.4 (3) C22---C23---C24---C28 −178.9 (2) C5---N3---C6---N2 −174.85 (18) C23---C24---C25---C26 0.7 (3) C6---N4---C7---N5 178.69 (15) C28---C24---C25---C26 178.1 (2) C6---N4---C7---C4 −1.1 (3) C22---C21---C26---C25 −2.0 (3) C8---N5---C7---N4 178.36 (17) O8---C21---C26---C25 −176.78 (19) C9---N5---C7---N4 −3.0 (2) C24---C25---C26---C21 0.9 (3) C8---N5---C7---C4 −1.9 (3) C18---C17---C27---O5 −170.2 (2) C9---N5---C7---C4 176.77 (16) C16---C17---C27---O5 8.9 (3) C5---C4---C7---N4 5.8 (3) C18---C17---C27---O4 11.6 (3) C3---C4---C7---N4 −174.52 (17) C16---C17---C27---O4 −169.3 (2) C5---C4---C7---N5 −173.98 (16) C25---C24---C28---O7 −173.0 (2) C3---C4---C7---N5 5.7 (3) C23---C24---C28---O7 4.4 (3) C7---N5---C8---C2 −0.9 (3) C25---C24---C28---O6 7.3 (3) C9---N5---C8---C2 −179.57 (18) C23---C24---C28---O6 −175.3 (2) C3---C2---C8---N5 −0.1 (3) ----------------------- -------------- ----------------------- -------------- ::: Symmetry codes: (i) −*x*, −*y*, −*z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4200 .table-wrap} ---------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* OW1---HW1A···O4^ii^ 0.85 (1) 2.08 (1) 2.921 (3) 169 (2) OW1---HW1B···O7^iii^ 0.85 (1) 2.08 (3) 2.892 (3) 161 (2) O6---H6A···O5^iv^ 0.81 (3) 1.81 (3) 2.582 (3) 160 (3) N1---H1A···O1^iii^ 0.90 1.91 2.783 (3) 162 N1---H1B···O4^v^ 0.90 1.73 2.604 (3) 164 ---------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (ii) −*x*, −*y*, −*z*+1; (iii) *x*, *y*−1, *z*; (iv) *x*−1, *y*+1, *z*; (v) −*x*, −*y*−1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------- ---------- ---------- ----------- ------------- O*W*1---H*W*1*A*⋯O4^i^ 0.85 (1) 2.08 (1) 2.921 (3) 169 (2) O*W*1---H*W*1*B*⋯O7^ii^ 0.85 (1) 2.08 (3) 2.892 (3) 161 (2) O6---H6*A*⋯O5^iii^ 0.81 (3) 1.81 (3) 2.582 (3) 160 (3) N1---H1*A*⋯O1^ii^ 0.90 1.91 2.783 (3) 162 N1---H1*B*⋯O4^iv^ 0.90 1.73 2.604 (3) 164 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:18.172340
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052055/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):m388", "authors": [ { "first": "Dian-Zhen", "last": "Sun" }, { "first": "Guang-Ju", "last": "Zhang" }, { "first": "Hai-Yan", "last": "Chen" }, { "first": "Jiang-Hong", "last": "He" }, { "first": "Shi-Wei", "last": "Yan" } ] }
PMC3052056
Related literature {#sec1} ================== For related structures, see: Bowes *et al.* (2003[@bb1]); Ferguson *et al.* (1999[@bb3]); Shen & Lush (2010[@bb7]). For hydrogen-bond motifs, see: Etter *et al.* (1990[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~12~H~12~N~2~·C~8~H~9~NO~2~*M* *~r~* = 335.40Monoclinic,*a* = 8.0695 (3) Å*b* = 13.0677 (5) Å*c* = 17.6138 (10) Åβ = 99.501 (5)°*V* = 1831.89 (15) Å^3^*Z* = 4Mo *K*α radiationμ = 0.08 mm^−1^*T* = 297 K0.60 × 0.18 × 0.12 mm ### Data collection {#sec2.1.2} Oxford Diffraction Gemini-S CCD diffractometerAbsorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009[@bb5]) *T* ~min~ = 0.919, *T* ~max~ = 1.0008821 measured reflections4277 independent reflections1870 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.025 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.044*wR*(*F* ^2^) = 0.082*S* = 1.034277 reflections232 parameters3 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.15 e Å^−3^Δρ~min~ = −0.22 e Å^−3^ {#d5e502} Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008[@bb4]); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008[@bb4]); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *PLATON* (Spek, 2009[@bb8]); software used to prepare material for publication: *PLATON*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005381/xu5156sup1.cif](http://dx.doi.org/10.1107/S1600536811005381/xu5156sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005381/xu5156Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005381/xu5156Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5156&file=xu5156sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5156sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5156&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5156](http://scripts.iucr.org/cgi-bin/sendsup?xu5156)). This work was supported financially by Yuanpei University, Taiwan. Comment ======= The 1,2-bis(4-pyridyl)ethane is a versatile building block for the purposes of crystal engineering. Each of the pyridyl N atoms acts as a hydrogen bond acceptor, forming linear hydrogen associations (Ferguson *et al.*, 1999). Other structures related with 1,2-bis(4-pyridyl)ethane and Lewis acid were reported by Bowes *et al.* (2003) and Shen & Lush (2010). We present here the crystal structure of the 4-amino-3-methybenzoic acid and 1,2-bis(4-pyridyl)ethane 1:1 adduct. The structure of the title compound comprises 4-amino-3-methybenzoic acid molecule and 1,2-bis(4-pyridyl)ethane molecule, with no proton transfer. In the structure, the molecules associate 4-amino-3-methybenzoic acid and 1,2-bis(4-pyridyl)ethane *via* carboxylic and pyridine group O---H···N \[O···N 2.640 (18) Å\] C^2^~2~(19) (Etter *et al.*, 1990), forming linear hydrogen bonding parallel to \[0 0 1\], further connect a two dimensional network *via* amine and carboxylic N---H···O and N---H···N \[2.951 (2) and 3.084 (2) Å\], respectively. Furthermore, C---H···π ring stacking interaction is present in the structure. The distance between C12---H(12 A)···*Cg*3 ^iii^(C2---C7) is 3.540 (2) Å \[symmetry code: (iii) = 1-*X*,-1/2+*Y*,3/2-*Z*\]. Experimental {#experimental} ============ The 4-amino-3-methybenzoic acid (151 mg, 1 mmol) and 1,2-bis(4-pyridyl)ethane (184 mg, 1 mmol) were dissolved in 20 ml methanol, the solution was refluxed for 30 min. The filtered solution was transferred to a 25 ml tube, at room temperature colorless crystals were formed after several days (yield 59.12%). Refinement {#refinement} ========== Amino H atoms were located in a difference Fourier map and were refined with the distance constraints of N---H = 0.860±0.001 Å. Other H atoms were positioned geometrically with C---H = 0.93-0.97 Å, and refined using a riding model, U~iso~(H) = 1.5U~eq~(C) for methyl H atoms and 1.2U~eq~(C) for the others. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. ::: ![](e-67-0o652-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The molecular packing for the title compound. Hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o652-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e145 .table-wrap} ------------------------------ --------------------------------------- C~12~H~12~N~2~·C~8~H~9~NO~2~ *F*(000) = 712 *M~r~* = 335.40 *D*~x~ = 1.216 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 2506 reflections *a* = 8.0695 (3) Å θ = 3.0--29.0° *b* = 13.0677 (5) Å µ = 0.08 mm^−1^ *c* = 17.6138 (10) Å *T* = 297 K β = 99.501 (5)° Parallelepiped, colorless *V* = 1831.89 (15) Å^3^ 0.60 × 0.18 × 0.12 mm *Z* = 4 ------------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e282 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Gemini-S CCD diffractometer 4277 independent reflections Radiation source: fine-focus sealed tube 1870 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.025 ω scans θ~max~ = 29.1°, θ~min~ = 3.0° Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) *h* = −10→10 *T*~min~ = 0.919, *T*~max~ = 1.000 *k* = −17→16 8821 measured reflections *l* = −24→20 ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e396 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.044 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.082 H atoms treated by a mixture of independent and constrained refinement *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.025*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4277 reflections (Δ/σ)~max~ \< 0.001 232 parameters Δρ~max~ = 0.15 e Å^−3^ 3 restraints Δρ~min~ = −0.22 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e550 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su\'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.\'s are taken into account in the estimation of distances, angles and torsion angles Refinement. Refinement on *F*^2^ for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The observed criterion of *F*^2^ \> σ(*F*^2^) is used only for calculating -*R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e652 .table-wrap} ------ --------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N2 0.63037 (17) 0.47008 (10) 0.62737 (9) 0.0552 (6) N3 1.58754 (19) 0.08351 (11) 0.60868 (10) 0.0692 (7) C9 0.7078 (2) 0.47692 (12) 0.56699 (11) 0.0553 (7) C10 0.8385 (2) 0.41502 (12) 0.55562 (10) 0.0521 (7) C11 0.8957 (2) 0.34059 (12) 0.60903 (11) 0.0482 (7) C12 0.8172 (2) 0.33448 (13) 0.67191 (11) 0.0650 (8) C13 0.6872 (2) 0.39953 (15) 0.67901 (11) 0.0683 (8) C14 1.0359 (2) 0.26912 (12) 0.59857 (12) 0.0705 (8) C15 1.2064 (2) 0.30811 (12) 0.62896 (11) 0.0660 (7) C16 1.3425 (2) 0.23093 (12) 0.62204 (11) 0.0506 (7) C17 1.4071 (2) 0.16866 (14) 0.68217 (11) 0.0639 (8) C18 1.5274 (2) 0.09729 (14) 0.67281 (12) 0.0710 (8) C19 1.5251 (2) 0.14425 (15) 0.55151 (12) 0.0808 (9) C20 1.4039 (2) 0.21762 (13) 0.55528 (11) 0.0686 (8) O1 0.34436 (14) 0.56570 (8) 0.63298 (7) 0.0542 (5) O2 0.47629 (14) 0.71109 (8) 0.61635 (7) 0.0664 (5) N1 −0.25914 (19) 0.86901 (13) 0.64324 (10) 0.0628 (7) C1 0.34970 (19) 0.66628 (12) 0.62564 (9) 0.0399 (4) C2 0.18870 (19) 0.71739 (11) 0.63001 (9) 0.0399 (4) C3 0.04752 (18) 0.66405 (11) 0.64278 (9) 0.0427 (6) C4 −0.09994 (19) 0.71458 (11) 0.64585 (9) 0.0451 (6) C5 −0.11212 (19) 0.82069 (12) 0.63671 (9) 0.0421 (6) C6 0.0301 (2) 0.87564 (11) 0.62414 (9) 0.0465 (6) C7 0.17592 (19) 0.82300 (11) 0.62061 (9) 0.0461 (6) C8 0.0217 (2) 0.99081 (11) 0.61582 (12) 0.0818 (9) H9A 0.67140 0.52660 0.53020 0.0660\* H10A 0.88840 0.42320 0.51200 0.0620\* H12A 0.85190 0.28610 0.71000 0.0780\* H13A 0.63640 0.39370 0.72250 0.0820\* H14A 1.01960 0.20490 0.62390 0.0850\* H14B 1.02920 0.25500 0.54410 0.0850\* H15A 1.21180 0.32640 0.68270 0.0790\* H15B 1.22680 0.36960 0.60110 0.0790\* H17A 1.36980 0.17460 0.72920 0.0770\* H18A 1.56900 0.05610 0.71470 0.0850\* H19A 1.56560 0.13720 0.50530 0.0970\* H20A 1.36450 0.25770 0.51250 0.0820\* H1A 0.4380 (9) 0.5416 (12) 0.6323 (10) 0.082 (7)\* H1B −0.3449 (12) 0.8295 (10) 0.6418 (10) 0.075 (7)\* H1C −0.2717 (19) 0.9312 (4) 0.6273 (8) 0.055 (6)\* H3A 0.05290 0.59340 0.64930 0.0510\* H4A −0.19370 0.67760 0.65420 0.0540\* H7A 0.26980 0.85930 0.61160 0.0550\* H8A 0.12810 1.01620 0.60650 0.1230\* H8B −0.00420 1.02060 0.66230 0.1230\* H8C −0.06420 1.00870 0.57340 0.1230\* ------ --------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1260 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N2 0.0437 (9) 0.0556 (9) 0.0657 (11) 0.0178 (7) 0.0069 (9) 0.0008 (8) N3 0.0678 (11) 0.0797 (11) 0.0613 (12) 0.0363 (9) 0.0146 (9) 0.0079 (10) C9 0.0509 (12) 0.0498 (10) 0.0631 (14) 0.0097 (9) 0.0032 (10) 0.0069 (10) C10 0.0460 (11) 0.0559 (11) 0.0560 (13) 0.0066 (9) 0.0135 (9) −0.0026 (10) C11 0.0385 (10) 0.0426 (11) 0.0617 (13) 0.0093 (8) 0.0030 (10) −0.0118 (10) C12 0.0609 (13) 0.0670 (12) 0.0668 (14) 0.0282 (10) 0.0097 (11) 0.0173 (11) C13 0.0588 (13) 0.0887 (14) 0.0608 (14) 0.0230 (11) 0.0196 (10) 0.0105 (12) C14 0.0474 (12) 0.0566 (11) 0.1053 (17) 0.0179 (10) 0.0062 (11) −0.0171 (11) C15 0.0442 (11) 0.0605 (11) 0.0922 (16) 0.0139 (10) 0.0082 (11) −0.0143 (11) C16 0.0388 (11) 0.0516 (11) 0.0611 (14) 0.0114 (9) 0.0077 (10) −0.0091 (10) C17 0.0597 (13) 0.0812 (13) 0.0535 (14) 0.0216 (11) 0.0173 (10) −0.0002 (11) C18 0.0713 (14) 0.0834 (15) 0.0572 (15) 0.0318 (11) 0.0071 (12) 0.0163 (11) C19 0.0877 (16) 0.1022 (16) 0.0580 (15) 0.0442 (14) 0.0285 (12) 0.0109 (13) C20 0.0699 (14) 0.0747 (13) 0.0617 (15) 0.0361 (11) 0.0127 (11) 0.0150 (11) O1 0.0387 (8) 0.0491 (7) 0.0761 (9) 0.0153 (6) 0.0130 (7) −0.0007 (6) O2 0.0306 (7) 0.0689 (8) 0.1025 (10) −0.0004 (6) 0.0192 (7) 0.0135 (7) N1 0.0418 (10) 0.0476 (10) 0.1012 (14) 0.0112 (9) 0.0184 (10) −0.0012 (10) C1 0.0324 (7) 0.0430 (7) 0.0442 (7) 0.0040 (5) 0.0058 (5) −0.0032 (6) C2 0.0324 (7) 0.0430 (7) 0.0442 (7) 0.0040 (5) 0.0058 (5) −0.0032 (6) C3 0.0354 (10) 0.0332 (8) 0.0604 (12) 0.0031 (8) 0.0109 (8) −0.0035 (8) C4 0.0313 (10) 0.0403 (10) 0.0651 (13) −0.0011 (8) 0.0123 (8) −0.0038 (8) C5 0.0316 (9) 0.0430 (10) 0.0519 (12) 0.0085 (8) 0.0072 (8) −0.0072 (9) C6 0.0411 (11) 0.0378 (9) 0.0606 (13) 0.0039 (9) 0.0088 (9) −0.0002 (9) C7 0.0354 (10) 0.0444 (10) 0.0594 (12) −0.0042 (8) 0.0109 (9) 0.0003 (9) C8 0.0647 (14) 0.0445 (11) 0.138 (2) 0.0047 (9) 0.0217 (13) 0.0091 (11) ----- ------------- ------------- ------------- ------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1716 .table-wrap} ----------------------- -------------- ---------------------- -------------- O1---C1 1.3221 (19) C13---H13A 0.9300 O2---C1 1.2118 (19) C14---H14A 0.9700 O1---H1A 0.821 (9) C14---H14B 0.9700 N2---C13 1.323 (2) C15---H15B 0.9700 N2---C9 1.322 (2) C15---H15A 0.9700 N3---C18 1.313 (3) C17---H17A 0.9300 N3---C19 1.315 (3) C18---H18A 0.9300 N1---C5 1.366 (2) C19---H19A 0.9300 N1---H1C 0.860 (7) C20---H20A 0.9300 N1---H1B 0.860 (11) C1---C2 1.474 (2) C9---C10 1.370 (2) C2---C3 1.385 (2) C10---C11 1.379 (2) C2---C7 1.392 (2) C11---C12 1.366 (3) C3---C4 1.370 (2) C11---C14 1.502 (2) C4---C5 1.398 (2) C12---C13 1.372 (2) C5---C6 1.402 (2) C14---C15 1.482 (2) C6---C7 1.373 (2) C15---C16 1.511 (2) C6---C8 1.513 (2) C16---C17 1.369 (3) C3---H3A 0.9300 C16---C20 1.360 (3) C4---H4A 0.9300 C17---C18 1.376 (2) C7---H7A 0.9300 C19---C20 1.379 (2) C8---H8A 0.9600 C9---H9A 0.9300 C8---H8B 0.9600 C10---H10A 0.9300 C8---H8C 0.9600 C12---H12A 0.9300 C1---O1---H1A 109.6 (10) H15A---C15---H15B 108.00 C9---N2---C13 116.35 (14) C14---C15---H15A 109.00 C18---N3---C19 115.24 (16) C16---C17---H17A 120.00 H1B---N1---H1C 120.4 (14) C18---C17---H17A 120.00 C5---N1---H1B 115.2 (8) N3---C18---H18A 118.00 C5---N1---H1C 117.8 (10) C17---C18---H18A 118.00 N2---C9---C10 123.71 (16) C20---C19---H19A 118.00 C9---C10---C11 119.73 (16) N3---C19---H19A 118.00 C10---C11---C12 116.53 (15) C16---C20---H20A 120.00 C10---C11---C14 121.95 (16) C19---C20---H20A 120.00 C12---C11---C14 121.52 (16) O2---C1---C2 123.92 (14) C11---C12---C13 120.11 (17) O1---C1---O2 122.37 (14) N2---C13---C12 123.55 (17) O1---C1---C2 113.71 (13) C11---C14---C15 114.53 (14) C1---C2---C7 119.45 (14) C14---C15---C16 112.66 (14) C3---C2---C7 118.13 (14) C15---C16---C17 121.57 (16) C1---C2---C3 122.42 (13) C15---C16---C20 121.90 (16) C2---C3---C4 120.46 (14) C17---C16---C20 116.51 (16) C3---C4---C5 121.25 (14) C16---C17---C18 119.77 (17) N1---C5---C4 119.65 (15) N3---C18---C17 124.36 (18) N1---C5---C6 121.45 (15) N3---C19---C20 124.59 (18) C4---C5---C6 118.85 (14) C16---C20---C19 119.53 (17) C5---C6---C8 120.01 (14) C10---C9---H9A 118.00 C7---C6---C8 121.27 (14) N2---C9---H9A 118.00 C5---C6---C7 118.72 (14) C9---C10---H10A 120.00 C2---C7---C6 122.58 (14) C11---C10---H10A 120.00 C2---C3---H3A 120.00 C11---C12---H12A 120.00 C4---C3---H3A 120.00 C13---C12---H12A 120.00 C3---C4---H4A 119.00 C12---C13---H13A 118.00 C5---C4---H4A 119.00 N2---C13---H13A 118.00 C2---C7---H7A 119.00 C11---C14---H14A 109.00 C6---C7---H7A 119.00 C11---C14---H14B 109.00 C6---C8---H8A 109.00 H14A---C14---H14B 108.00 C6---C8---H8B 109.00 C15---C14---H14A 109.00 C6---C8---H8C 109.00 C15---C14---H14B 109.00 H8A---C8---H8B 109.00 C16---C15---H15A 109.00 H8A---C8---H8C 110.00 C14---C15---H15B 109.00 H8B---C8---H8C 110.00 C16---C15---H15B 109.00 C13---N2---C9---C10 0.9 (3) C16---C17---C18---N3 0.0 (3) C9---N2---C13---C12 −1.0 (3) N3---C19---C20---C16 0.6 (3) C19---N3---C18---C17 0.4 (3) O1---C1---C2---C3 1.7 (2) C18---N3---C19---C20 −0.7 (3) O1---C1---C2---C7 −177.92 (14) N2---C9---C10---C11 0.0 (3) O2---C1---C2---C3 −178.20 (16) C9---C10---C11---C12 −0.9 (2) O2---C1---C2---C7 2.2 (2) C9---C10---C11---C14 178.60 (16) C1---C2---C3---C4 −179.52 (15) C10---C11---C12---C13 0.8 (3) C7---C2---C3---C4 0.1 (2) C14---C11---C12---C13 −178.66 (16) C1---C2---C7---C6 −179.85 (15) C10---C11---C14---C15 87.8 (2) C3---C2---C7---C6 0.5 (2) C12---C11---C14---C15 −92.8 (2) C2---C3---C4---C5 −0.4 (2) C11---C12---C13---N2 0.1 (3) C3---C4---C5---N1 −177.34 (16) C11---C14---C15---C16 176.12 (16) C3---C4---C5---C6 0.0 (2) C14---C15---C16---C17 −96.3 (2) N1---C5---C6---C7 177.88 (16) C14---C15---C16---C20 81.9 (2) N1---C5---C6---C8 −1.3 (2) C15---C16---C17---C18 178.08 (16) C4---C5---C6---C7 0.6 (2) C20---C16---C17---C18 −0.1 (2) C4---C5---C6---C8 −178.64 (15) C15---C16---C20---C19 −178.34 (16) C5---C6---C7---C2 −0.9 (2) C17---C16---C20---C19 −0.1 (2) C8---C6---C7---C2 178.32 (16) ----------------------- -------------- ---------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2510 .table-wrap} ---------------------------------------- Cg is the centroid of the C2--C7 ring. ---------------------------------------- ::: ::: {#d1e2514 .table-wrap} ---------------------- ------------ ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1A···N2 0.821 (9) 1.826 (11) 2.6407 (18) 171.6 (15) N1---H1B···O2^i^ 0.860 (11) 2.113 (12) 2.951 (2) 164.5 (14) N1---H1C···N3^ii^ 0.860 (7) 2.288 (9) 3.084 (2) 153.8 (14) C12---H12A···Cg^iii^ 0.93 2.76 3.540 (2) 141 ---------------------- ------------ ------------ ------------- --------------- ::: Symmetry codes: (i) *x*−1, *y*, *z*; (ii) *x*−2, *y*+1, *z*; (iii) −*x*+1, *y*−1/2, −*z*+3/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg* is the centroid of the C2--C7 ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------ ------------ ------------ ------------- ------------- O1---H1*A*⋯N2 0.821 (9) 1.826 (11) 2.6407 (18) 171.6 (15) N1---H1*B*⋯O2^i^ 0.860 (11) 2.113 (12) 2.951 (2) 164.5 (14) N1---H1*C*⋯N3^ii^ 0.860 (7) 2.288 (9) 3.084 (2) 153.8 (14) C12---H12*A*⋯*Cg*^iii^ 0.93 2.76 3.540 (2) 141 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:18.181148
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052056/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o652", "authors": [ { "first": "Shie Fu", "last": "Lush" }, { "first": "Chong Wei", "last": "Chen" }, { "first": "Chieh", "last": "Yang" }, { "first": "Fwu Ming", "last": "Shen" } ] }
PMC3052057
Related literature {#sec1} ================== For applications of compounds containing a chiral oxazoline ring in asymmetric catalysis, see: Lindsey & Layton (2004[@bb8]); Desimoni *et al.* (2006[@bb4]); Hargaden & Guiry (2009[@bb7]). For related structures, see: Castro *et al.* (2001[@bb2]); Coeffard *et al.* (2009[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~28~H~27~N~5~O*M* *~r~* = 449.55Orthorhombic,*a* = 6.3306 (2) Å*b* = 16.9244 (6) Å*c* = 22.5787 (8) Å*V* = 2419.12 (14) Å^3^*Z* = 4Cu *K*α radiationμ = 0.61 mm^−1^*T* = 293 K0.54 × 0.02 × 0.02 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2005[@bb1]) *T* ~min~ = 0.882, *T* ~max~ = 1.00028527 measured reflections2625 independent reflections1648 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.090 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.050*wR*(*F* ^2^) = 0.134*S* = 1.052625 reflections311 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.15 e Å^−3^Δρ~min~ = −0.17 e Å^−3^ {#d5e440} Data collection: *APEX2* (Bruker, 2005[@bb1]); cell refinement: *SAINT* (Bruker, 2005[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb5]); software used to prepare material for publication: *SHELXL97* and *WinGX* (Farrugia, 1999[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811005411/xu5158sup1.cif](http://dx.doi.org/10.1107/S1600536811005411/xu5158sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005411/xu5158Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005411/xu5158Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5158&file=xu5158sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5158sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5158&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5158](http://scripts.iucr.org/cgi-bin/sendsup?xu5158)). Comment ======= Compounds containing a chiral oxazoline ring have proven to be one of the most successful ligand classes for asymmetric catalysis. A diverse range of di-, tri- and tetradentate oxazoline ligands incorporating various heteroatoms and specific structural features have been synthesized and used in a wide range of metal catalyzed asymmetric processes (Desimoni *et al.*, 2006; Hargaden *et al.*, 2009). Introduction of 1,2,4-triazine ring into ligand structure can significantly increase ligand binding properties, since 1,2,4-triazine is known as a good metal chelator (Lindsey *et al.*, 2004). Due to our interest in developing new oxazoline-based ligands the titled compound was synthesized and its application in asymmetric catalysis is currently under investigation. The central secondary N7-amine group is planar with the sum of the angles around N atom of 359.1°. The unusually large C3---N7---C8 angle of 131.1 (3)° is constrained by the strong N7---H7···N15 intramolecular hydrogen bond (Table 1), which forced a *cis*-*cis* conformation of the amine spacer between 1,2,4-triazine ring and the (oxazolyl)phenyl group with the torsion angles N2---C3---N7---C8 and C3---N7---C8---C13 of 3.9 (6) and --12.4 (6)°, respectively. The similar geometry and conformation of the \[(oxazolyl)phenyl\]amine subunit have been reported in closely related structures (Castro *et al.*, 2001; Coeffard *et al.*, 2009). The 5- and 6-phenyl substituents of the 1,2,4-triazine ring are inclined to its mean plane with the dihedral angle of 29.0 (1) and 54.6 (1)°, respectively. In the crystal structure, Fig. 2, the screw-related molecules are linked into chains along the \[010\] direction by C53---H53···O18 intermolecular hydrogen bond (Table 1). Additionally, the *π*-electron systems of the oxazoline and triazine rings belonging to the translation-related molecules overlap each other, with centroid-to-centroid separation of 3.749 (2) Å between the oxazoline ring at (*x*, *y*, *z*) and triazine ring at (1+*x*, *y*, *z*), and triazine ring at (*x*, *y*, *z*) and oxazoline ring at (--1+*x*, *y*, *z*). The *π*···*π* distances are 3.2389 (16) and 3.4927 (13) Å, respectively. Experimental {#experimental} ============ The titled compound was synthesized using palladium cross-coupling amination of 5,6-diphenyl-3-bromo-1,2,4-triazine with readily available 2-\[(4*S*)-4-*tert*-butyl-4,5-dihydro-1,3-oxazol-2-yl\]aniline as the key step. An oven dried three-necked flask was washed with argon and charged with Pd~2~dba~3~ (45.7 mg, 0.05 mmol), Xantphos (57.8 mg, 0.1 mmol), 2-\[(4*S*)-4-*tert*-butyl-4,5-dihydro-1,3-oxazol-2-yl\]aniline (0.131 g, 0.6 mmol), 3-bromo-5,6-diphenyl-1,2,4-triazine (155 mg, 0.5 mmol) and K~2~CO~3~ (1.38g, 10 mmol). Then, the flask was evacuated and backfilled with argon. Dioxane (10 ml) was added trough the septum. The mixture was refluxed for 24 hours. After cooling, the solid material was filtered off and washed with CH~2~Cl~2~. The solvent was evaporated, and the resulting crude product was purified by column chromatography using hexanes/ethyl acetate (10:1) as eluent. Product was recrystalized from ethanol to give 5,6-diphenyl-3-{2-\[(4*S*)-4-*tert*-butyl-4,5-dihydro-1,3-oxazol-2-yl\]phenyl}amino-1,2,4-triazine as a yellow crystals; yield: 0.095 g, 42%; mp 489-490 K; \[*α*\]~D~^20^of --15.69°. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a methanol solution. Refinement {#refinement} ========== In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the absolute configuration of started 2-\[(4*S*)-4-*tert*-butyl-4,5-dihydro-1,3-oxazol-2-yl\]aniline. All H atom were located by difference Fourier synthesis. N-bound H atom was refined freely. The remaining H atoms were treated as riding on their C atoms, with C---H distances of 0.93 (aromatic) and 0.96 Å (CH~3~). All H atoms were assigned *U*~iso~(H) values of 1.5*U*~eq~(N,C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. ::: ![](e-67-0o651-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view of the molecular packing in (I). Dashed lines indicate weak C---H···O intermolecular interaction \[symmetry code: (i) --x+1, y--1/2, --z+3/2\]. ::: ![](e-67-0o651-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e246 .table-wrap} ------------------------------- --------------------------------------- C~28~H~27~N~5~O *D*~x~ = 1.234 Mg m^−3^ *M~r~* = 449.55 Melting point = 489--490 K Orthorhombic, *P*2~1~2~1~2~1~ Cu *K*α radiation, λ = 1.54178 Å Hall symbol: P 2ac 2ab Cell parameters from 1210 reflections *a* = 6.3306 (2) Å θ = 4.6--30.0° *b* = 16.9244 (6) Å µ = 0.61 mm^−1^ *c* = 22.5787 (8) Å *T* = 293 K *V* = 2419.12 (14) Å^3^ Needle, yellow *Z* = 4 0.54 × 0.02 × 0.02 mm *F*(000) = 952 ------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e375 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII CCD diffractometer 2625 independent reflections Radiation source: fine-focus sealed tube 1648 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.090 ω scans θ~max~ = 70.2°, θ~min~ = 3.3° Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *h* = −7→6 *T*~min~ = 0.882, *T*~max~ = 1.000 *k* = −20→20 28527 measured reflections *l* = −27→27 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e489 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.050 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.134 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0683*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.05 (Δ/σ)~max~ \< 0.001 2625 reflections Δρ~max~ = 0.15 e Å^−3^ 311 parameters Δρ~min~ = −0.17 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0053 (5) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e667 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Experimental. ^1^H NMR (400 MHz, CDCl3) *δ*: 1.05 (*s*, 9H, (CH~3~)~3~C), 4.25--4.35 (*m*, 2H, (CH~2~O and CHN), 4.45--4.50 (*m*, 1H, CH~2~O), 7.11 (*t*, 1H, *J* = 7.6 Hz, Ph), 7.31--7.37 (*m*, 5H, Ph), 7.42--7.44 (*m*, 1H, Ph), 7.50--7.52 (*m*, 2H, Ph), 7.56--7.60 (*m*, 3H, Ph), 7.91 (*d*, 1H, *J* = 7.6 Hz, Ph), 8.89 (*d*, 1H, *J* = 8.4 Hz, Ph), 12.98 (*s*, 1H, NH); ^13^C NMR (50 MHz, CDCl~3~) *δ*: 25.9, 34.0, 67.5, 76.1, 112.8, 118.9, 120.7, 128.2, 128.3, 128.6, 129.2, 129.3, 129.8, 130.4, 132.3, 136.0, 136.1, 140.8, 150.8, 156.0, 158.8, 163.4; Analysis calculated for C~28~H~27~N~5~O: C 74.81; H 6.05; N 15.58; found: C 74.79; H 6.03; N 15.51. Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e802 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O18 0.9330 (4) 0.61773 (16) 0.78505 (12) 0.0793 (8) N1 −0.0592 (5) 0.54476 (19) 0.97426 (12) 0.0735 (9) N2 0.0979 (5) 0.58502 (18) 0.94731 (14) 0.0728 (9) N4 0.1210 (5) 0.48257 (17) 0.87487 (12) 0.0640 (8) N7 0.3575 (5) 0.58275 (18) 0.87252 (13) 0.0697 (9) H7 0.411 (8) 0.548 (2) 0.8420 (18) 0.105\* N15 0.6459 (5) 0.54077 (19) 0.79214 (13) 0.0716 (9) C3 0.1856 (6) 0.5505 (2) 0.90057 (16) 0.0611 (9) C5 −0.0365 (6) 0.4448 (2) 0.90072 (15) 0.0578 (9) C6 −0.1237 (6) 0.4751 (2) 0.95379 (15) 0.0613 (9) C8 0.4787 (6) 0.6496 (2) 0.88589 (15) 0.0647 (10) C9 0.6707 (6) 0.6585 (2) 0.85444 (16) 0.0637 (10) C10 0.7987 (7) 0.7239 (2) 0.86881 (17) 0.0784 (11) H10 0.9268 0.7306 0.8493 0.118\* C11 0.7389 (8) 0.7781 (3) 0.91095 (19) 0.0894 (14) H11 0.8266 0.8205 0.9200 0.134\* C12 0.5491 (8) 0.7693 (2) 0.93957 (18) 0.0828 (12) H12 0.5080 0.8064 0.9677 0.124\* C13 0.4183 (8) 0.7061 (2) 0.92720 (16) 0.0780 (12) H13 0.2893 0.7014 0.9466 0.117\* C14 0.7399 (6) 0.6022 (2) 0.80992 (16) 0.0647 (10) C16 0.7797 (6) 0.5003 (2) 0.74766 (16) 0.0668 (10) H16 0.8305 0.4509 0.7653 0.100\* C17 0.9690 (7) 0.5565 (3) 0.74209 (19) 0.0855 (12) H171 1.0999 0.5289 0.7504 0.128\* H172 0.9764 0.5786 0.7025 0.128\* C19 0.6617 (6) 0.4794 (2) 0.69076 (17) 0.0741 (11) C20 0.4820 (8) 0.4227 (3) 0.7063 (2) 0.1036 (15) H201 0.3925 0.4466 0.7357 0.155\* H202 0.5398 0.3744 0.7217 0.155\* H203 0.4007 0.4115 0.6714 0.155\* C21 0.8171 (9) 0.4373 (3) 0.64968 (19) 0.1075 (16) H211 0.8815 0.3940 0.6704 0.161\* H212 0.9243 0.4737 0.6371 0.161\* H213 0.7429 0.4176 0.6157 0.161\* C22 0.5743 (10) 0.5535 (3) 0.6608 (2) 0.1179 (18) H221 0.6884 0.5888 0.6516 0.177\* H222 0.4769 0.5793 0.6870 0.177\* H223 0.5026 0.5389 0.6250 0.177\* C51 −0.1113 (6) 0.3731 (2) 0.86873 (14) 0.0588 (9) C52 0.0351 (7) 0.3342 (2) 0.83248 (16) 0.0694 (11) H52 0.1747 0.3513 0.8317 0.104\* C53 −0.0247 (7) 0.2709 (2) 0.7979 (2) 0.0833 (12) H53 0.0742 0.2456 0.7741 0.125\* C54 −0.2320 (7) 0.2451 (2) 0.7986 (2) 0.0828 (12) H54 −0.2729 0.2026 0.7751 0.124\* C55 −0.3780 (7) 0.2826 (2) 0.83435 (18) 0.0802 (12) H55 −0.5171 0.2650 0.8351 0.120\* C56 −0.3186 (6) 0.3463 (2) 0.86901 (16) 0.0684 (10) H56 −0.4184 0.3713 0.8927 0.103\* C61 −0.2858 (6) 0.4352 (2) 0.99015 (15) 0.0676 (10) C62 −0.2523 (8) 0.3591 (2) 1.01024 (18) 0.0882 (13) H62 −0.1272 0.3328 1.0013 0.132\* C63 −0.4080 (12) 0.3219 (4) 1.0441 (2) 0.119 (2) H63 −0.3863 0.2707 1.0579 0.179\* C64 −0.5935 (11) 0.3607 (5) 1.0572 (2) 0.133 (3) H64 −0.6972 0.3355 1.0794 0.200\* C65 −0.6258 (9) 0.4369 (4) 1.0375 (2) 0.1133 (19) H65 −0.7513 0.4631 1.0460 0.170\* C66 −0.4700 (6) 0.4739 (3) 1.00486 (17) 0.0838 (13) H66 −0.4897 0.5258 0.9926 0.126\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1619 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O18 0.0671 (17) 0.0869 (18) 0.0839 (17) −0.0114 (14) 0.0118 (14) 0.0045 (16) N1 0.079 (2) 0.074 (2) 0.068 (2) −0.0071 (18) 0.0151 (17) −0.0099 (17) N2 0.078 (2) 0.072 (2) 0.0678 (19) −0.0101 (17) 0.0166 (17) −0.0130 (17) N4 0.0636 (19) 0.0691 (19) 0.0592 (17) −0.0067 (16) 0.0089 (15) −0.0032 (15) N7 0.072 (2) 0.070 (2) 0.067 (2) −0.0153 (17) 0.0156 (17) −0.0113 (16) N15 0.074 (2) 0.073 (2) 0.0673 (19) −0.0073 (18) 0.0152 (17) −0.0071 (17) C3 0.062 (2) 0.063 (2) 0.058 (2) −0.0057 (19) 0.0050 (18) −0.0041 (19) C5 0.059 (2) 0.060 (2) 0.054 (2) 0.0002 (18) 0.0035 (17) 0.0006 (17) C6 0.066 (2) 0.067 (2) 0.051 (2) −0.0009 (19) 0.0042 (18) −0.0020 (18) C8 0.072 (2) 0.064 (2) 0.058 (2) −0.007 (2) 0.0023 (19) 0.0023 (19) C9 0.066 (2) 0.065 (2) 0.059 (2) −0.0057 (19) −0.0018 (18) 0.0071 (19) C10 0.080 (3) 0.078 (3) 0.076 (3) −0.022 (2) −0.002 (2) 0.009 (2) C11 0.110 (4) 0.078 (3) 0.080 (3) −0.026 (3) −0.009 (3) −0.005 (2) C12 0.103 (3) 0.074 (3) 0.071 (3) −0.013 (3) 0.001 (3) −0.012 (2) C13 0.093 (3) 0.075 (3) 0.066 (2) −0.013 (2) 0.003 (2) −0.014 (2) C14 0.059 (2) 0.073 (2) 0.061 (2) −0.007 (2) 0.0077 (19) 0.009 (2) C16 0.066 (2) 0.074 (2) 0.061 (2) 0.0077 (19) 0.0127 (19) 0.0087 (19) C17 0.075 (3) 0.101 (3) 0.080 (3) −0.005 (3) 0.014 (2) −0.003 (3) C19 0.078 (3) 0.079 (3) 0.065 (2) 0.008 (2) 0.003 (2) 0.001 (2) C20 0.095 (3) 0.108 (4) 0.108 (3) −0.017 (3) 0.008 (3) −0.024 (3) C21 0.109 (4) 0.136 (4) 0.077 (3) 0.014 (3) 0.023 (3) −0.016 (3) C22 0.123 (4) 0.128 (4) 0.103 (4) 0.032 (4) −0.023 (3) 0.025 (3) C51 0.065 (2) 0.056 (2) 0.056 (2) −0.0021 (18) −0.0004 (18) −0.0003 (17) C52 0.071 (3) 0.063 (2) 0.075 (3) 0.002 (2) 0.006 (2) −0.008 (2) C53 0.086 (3) 0.070 (3) 0.094 (3) 0.003 (2) 0.010 (3) −0.018 (2) C54 0.088 (3) 0.072 (3) 0.088 (3) −0.004 (2) −0.008 (3) −0.017 (2) C55 0.076 (3) 0.073 (3) 0.092 (3) −0.006 (2) −0.008 (2) −0.014 (2) C56 0.064 (2) 0.073 (2) 0.068 (2) −0.004 (2) 0.0008 (19) −0.002 (2) C61 0.072 (3) 0.080 (3) 0.051 (2) −0.015 (2) 0.0057 (18) 0.000 (2) C62 0.110 (4) 0.088 (3) 0.067 (2) −0.022 (3) 0.003 (2) 0.008 (2) C63 0.159 (6) 0.117 (4) 0.081 (3) −0.054 (4) −0.001 (4) 0.020 (3) C64 0.126 (5) 0.199 (7) 0.075 (3) −0.074 (6) 0.013 (4) 0.007 (4) C65 0.086 (4) 0.180 (6) 0.074 (3) −0.032 (4) 0.015 (3) −0.001 (4) C66 0.065 (3) 0.125 (4) 0.062 (2) −0.011 (3) 0.009 (2) −0.005 (2) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2289 .table-wrap} ----------------------- ------------ ----------------------- ------------ O18---C14 1.370 (4) C19---C21 1.529 (6) O18---C17 1.437 (5) C20---H201 0.9600 N1---C6 1.330 (4) C20---H202 0.9600 N1---N2 1.351 (4) C20---H203 0.9600 N2---C3 1.328 (4) C21---H211 0.9600 N4---C5 1.320 (4) C21---H212 0.9600 N4---C3 1.351 (4) C21---H213 0.9600 N7---C3 1.372 (4) C22---H221 0.9600 N7---C8 1.399 (4) C22---H222 0.9600 N7---H7 0.97 (4) C22---H223 0.9600 N15---C14 1.264 (5) C51---C56 1.389 (5) N15---C16 1.482 (5) C51---C52 1.401 (5) C5---C6 1.415 (5) C52---C53 1.379 (5) C5---C51 1.490 (5) C52---H52 0.9300 C6---C61 1.478 (5) C53---C54 1.383 (6) C8---C13 1.390 (5) C53---H53 0.9300 C8---C9 1.416 (5) C54---C55 1.382 (6) C9---C10 1.410 (5) C54---H54 0.9300 C9---C14 1.452 (5) C55---C56 1.383 (5) C10---C11 1.375 (6) C55---H55 0.9300 C10---H10 0.9300 C56---H56 0.9300 C11---C12 1.372 (6) C61---C66 1.377 (5) C11---H11 0.9300 C61---C62 1.382 (5) C12---C13 1.381 (6) C62---C63 1.397 (7) C12---H12 0.9300 C62---H62 0.9300 C13---H13 0.9300 C63---C64 1.378 (9) C16---C19 1.527 (5) C63---H63 0.9300 C16---C17 1.536 (6) C64---C65 1.380 (8) C16---H16 0.9800 C64---H64 0.9300 C17---H171 0.9700 C65---C66 1.381 (6) C17---H172 0.9700 C65---H65 0.9300 C19---C22 1.528 (5) C66---H66 0.9300 C19---C20 1.530 (6) C14---O18---C17 106.3 (3) C20---C19---C21 109.0 (3) C6---N1---N2 121.1 (3) C19---C20---H201 109.5 C3---N2---N1 116.3 (3) C19---C20---H202 109.5 C5---N4---C3 116.8 (3) H201---C20---H202 109.5 C3---N7---C8 131.1 (3) C19---C20---H203 109.5 C3---N7---H7 111 (3) H201---C20---H203 109.5 C8---N7---H7 117 (3) H202---C20---H203 109.5 C14---N15---C16 109.1 (3) C19---C21---H211 109.5 N2---C3---N4 126.1 (3) C19---C21---H212 109.5 N2---C3---N7 121.5 (3) H211---C21---H212 109.5 N4---C3---N7 112.4 (3) C19---C21---H213 109.5 N4---C5---C6 119.6 (3) H211---C21---H213 109.5 N4---C5---C51 114.8 (3) H212---C21---H213 109.5 C6---C5---C51 125.6 (3) C19---C22---H221 109.5 N1---C6---C5 119.7 (3) C19---C22---H222 109.5 N1---C6---C61 115.2 (3) H221---C22---H222 109.5 C5---C6---C61 125.1 (3) C19---C22---H223 109.5 C13---C8---N7 123.4 (3) H221---C22---H223 109.5 C13---C8---C9 119.9 (3) H222---C22---H223 109.5 N7---C8---C9 116.7 (3) C56---C51---C52 118.3 (3) C10---C9---C8 117.5 (4) C56---C51---C5 124.4 (3) C10---C9---C14 120.0 (4) C52---C51---C5 117.1 (3) C8---C9---C14 122.4 (3) C53---C52---C51 120.9 (4) C11---C10---C9 121.7 (4) C53---C52---H52 119.5 C11---C10---H10 119.2 C51---C52---H52 119.5 C9---C10---H10 119.2 C52---C53---C54 120.0 (4) C10---C11---C12 119.6 (4) C52---C53---H53 120.0 C10---C11---H11 120.2 C54---C53---H53 120.0 C12---C11---H11 120.2 C53---C54---C55 119.7 (4) C11---C12---C13 121.0 (4) C53---C54---H54 120.1 C11---C12---H12 119.5 C55---C54---H54 120.1 C13---C12---H12 119.5 C54---C55---C56 120.4 (4) C12---C13---C8 120.3 (4) C54---C55---H55 119.8 C12---C13---H13 119.9 C56---C55---H55 119.8 C8---C13---H13 119.9 C55---C56---C51 120.6 (4) N15---C14---O18 116.6 (4) C55---C56---H56 119.7 N15---C14---C9 128.1 (3) C51---C56---H56 119.7 O18---C14---C9 115.3 (3) C66---C61---C62 119.6 (4) N15---C16---C19 113.4 (3) C66---C61---C6 120.3 (4) N15---C16---C17 102.4 (3) C62---C61---C6 120.1 (4) C19---C16---C17 117.1 (3) C61---C62---C63 119.4 (5) N15---C16---H16 107.8 C61---C62---H62 120.3 C19---C16---H16 107.8 C63---C62---H62 120.3 C17---C16---H16 107.8 C64---C63---C62 120.2 (6) O18---C17---C16 105.5 (3) C64---C63---H63 119.9 O18---C17---H171 110.6 C62---C63---H63 119.9 C16---C17---H171 110.6 C65---C64---C63 120.2 (6) O18---C17---H172 110.6 C65---C64---H64 119.9 C16---C17---H172 110.6 C63---C64---H64 119.9 H171---C17---H172 108.8 C64---C65---C66 119.3 (6) C16---C19---C22 111.1 (3) C64---C65---H65 120.3 C16---C19---C20 108.4 (3) C66---C65---H65 120.3 C22---C19---C20 110.3 (4) C61---C66---C65 121.2 (5) C16---C19---C21 107.7 (3) C61---C66---H66 119.4 C22---C19---C21 110.3 (4) C65---C66---H66 119.4 C6---N1---N2---C3 −1.4 (5) C14---N15---C16---C19 −130.0 (4) N1---N2---C3---N4 5.9 (6) C14---N15---C16---C17 −2.9 (4) N1---N2---C3---N7 −174.7 (3) C14---O18---C17---C16 −3.5 (4) C5---N4---C3---N2 −4.1 (5) N15---C16---C17---O18 3.8 (4) C5---N4---C3---N7 176.4 (3) C19---C16---C17---O18 128.6 (4) C8---N7---C3---N2 3.9 (6) N15---C16---C19---C22 59.9 (5) C8---N7---C3---N4 −176.7 (3) C17---C16---C19---C22 −59.1 (5) C3---N4---C5---C6 −1.9 (5) N15---C16---C19---C20 −61.5 (4) C3---N4---C5---C51 176.3 (3) C17---C16---C19---C20 179.5 (3) N2---N1---C6---C5 −4.2 (5) N15---C16---C19---C21 −179.2 (3) N2---N1---C6---C61 175.7 (3) C17---C16---C19---C21 61.8 (5) N4---C5---C6---N1 6.0 (5) N4---C5---C51---C56 −148.3 (4) C51---C5---C6---N1 −172.0 (3) C6---C5---C51---C56 29.8 (6) N4---C5---C6---C61 −174.0 (3) N4---C5---C51---C52 26.6 (4) C51---C5---C6---C61 8.0 (6) C6---C5---C51---C52 −155.3 (3) C3---N7---C8---C13 −12.4 (6) C56---C51---C52---C53 0.0 (5) C3---N7---C8---C9 168.3 (4) C5---C51---C52---C53 −175.1 (3) C13---C8---C9---C10 2.8 (5) C51---C52---C53---C54 0.1 (6) N7---C8---C9---C10 −177.8 (3) C52---C53---C54---C55 −0.4 (7) C13---C8---C9---C14 −178.7 (3) C53---C54---C55---C56 0.5 (7) N7---C8---C9---C14 0.7 (5) C54---C55---C56---C51 −0.4 (6) C8---C9---C10---C11 −1.1 (6) C52---C51---C56---C55 0.1 (5) C14---C9---C10---C11 −179.6 (4) C5---C51---C56---C55 174.9 (3) C9---C10---C11---C12 −0.7 (6) N1---C6---C61---C66 54.0 (5) C10---C11---C12---C13 0.8 (7) C5---C6---C61---C66 −126.1 (4) C11---C12---C13---C8 0.9 (6) N1---C6---C61---C62 −125.2 (4) N7---C8---C13---C12 177.9 (4) C5---C6---C61---C62 54.7 (5) C9---C8---C13---C12 −2.8 (6) C66---C61---C62---C63 1.4 (6) C16---N15---C14---O18 0.8 (5) C6---C61---C62---C63 −179.4 (4) C16---N15---C14---C9 −178.1 (3) C61---C62---C63---C64 0.2 (8) C17---O18---C14---N15 1.9 (4) C62---C63---C64---C65 −0.7 (9) C17---O18---C14---C9 −179.1 (3) C63---C64---C65---C66 −0.4 (8) C10---C9---C14---N15 179.6 (4) C62---C61---C66---C65 −2.5 (6) C8---C9---C14---N15 1.2 (6) C6---C61---C66---C65 178.3 (4) C10---C9---C14---O18 0.7 (5) C64---C65---C66---C61 2.0 (7) C8---C9---C14---O18 −177.7 (3) ----------------------- ------------ ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3508 .table-wrap} -------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N7---H7···N15 0.97 (4) 1.87 (5) 2.671 (4) 138 (4) C13---H13···N2 0.93 2.31 2.919 (5) 122 C53---H53···O18^i^ 0.93 2.54 3.250 (5) 133 -------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, *y*−1/2, −*z*+3/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ ---------- ---------- ----------- ------------- N7---H7⋯N15 0.97 (4) 1.87 (5) 2.671 (4) 138 (4) C13---H13⋯N2 0.93 2.31 2.919 (5) 122 C53---H53⋯O18^i^ 0.93 2.54 3.250 (5) 133 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.187433
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052057/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o651", "authors": [ { "first": "Zbigniew", "last": "Karczmarzyk" }, { "first": "Ewa", "last": "Wolińska" }, { "first": "Andrzej", "last": "Fruziński" } ] }
PMC3052058
Related literature {#sec1} ================== For a related structure and applications of piperidone derivatives, see: Rajeswari *et al.* (2009[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~22~H~19~NOS~2~*M* *~r~* = 377.52Triclinic,*a* = 6.1809 (3) Å*b* = 12.7391 (9) Å*c* = 12.9251 (7) Åα = 112.657 (6)°β = 95.845 (5)°γ = 98.512 (5)°*V* = 914.65 (11) Å^3^*Z* = 2Cu *K*α radiationμ = 2.71 mm^−1^*T* = 123 K0.44 × 0.31 × 0.23 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur Ruby Gemini diffractometerAbsorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010[@bb2]) *T* ~min~ = 0.587, *T* ~max~ = 1.0006091 measured reflections3615 independent reflections3114 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.026 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.040*wR*(*F* ^2^) = 0.110*S* = 1.033615 reflections276 parameters72 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.37 e Å^−3^Δρ~min~ = −0.27 e Å^−3^ {#d5e450} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010[@bb2]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2010[@bb2]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb1]) and *PLATON* (Spek, 2009[@bb5]); software used to prepare material for publication: *PLATON*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003758/jj2073sup1.cif](http://dx.doi.org/10.1107/S1600536811003758/jj2073sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003758/jj2073Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003758/jj2073Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?jj2073&file=jj2073sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?jj2073sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?jj2073&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [JJ2073](http://scripts.iucr.org/cgi-bin/sendsup?jj2073)). RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer. Comment ======= As part of our research (Rajeswari *et al.*, 2009), we have synthesized the title compound (I) and report its crystal structure here. The molecular structure of the title compound (I) is shown in Fig. 1. The piperidine ring adopts an envelope conformation with the benzyl substituent in an equatorial position. The sum of the bond angles around N1 \[328.38 (13)°\] indicates a pyramidal geometry. The N1 atom deviates by 0.715 (2) Å from the least-squares plane passing through atoms C1---C5. Each of the olefinic double bonds has an E configuration. The dihedral angle between the two thiophene rings is 1.55 (18)°. The thiophene rings form angles of 72.21 (14) and 73.43 (14)° with the phenyl ring. Both thiophene rings are disordered over two orientations \[occupancies of 0.799 (1)/0.201 (1)\] at 180° from one another. In the crystal, weak intermolecular C13A---H13A···O1 hydrogen bonds and C16---H16A···π interactions involving the phenyl ring (C17---C22) help to stabilize the packing (Table 1, Fig. 2). Experimental {#experimental} ============ The mixture of 1-benzylpiperidin-4-one (1.9 ml, 0.01 mol) and thiophene-3-aldehyde (1.8 ml, 0.02 mol) in ethanol (95%, 10 ml), was added with 5 ml of 20% sodium hydroxide followed by the heating on a waterbath for 30 minutes. The solid separated was filtered and recrystallized by slow evaporation from 95% ethanol. The yield was (3.0 g, 80%). Refinement {#refinement} ========== H6 at C6 and H11 at C11 atoms were located in a difference Fourier map and refined freely: C6---H6 = 0.943 (19) Å, C11---H11 = 0.92 (2) Å. Remaining H atoms were positioned geomentrically and allowed to ride on their parent atoms, with C---H = 0.95 - 0.99 Å and *U*~iso~(H) = 1.2 times *U*~eq~(C). Both thiophene rings were found disordered with occupancies 0.799 (1)/0.201 (1). The disordered thiophene moieties were restricted to have C---S distances of 1.718 (2) to 1.718 (15) Å. A damping factor (damp 100 15 in the final refinement cycles) was applied to avoid large displacements of the hydrogen atoms of the less occupied thiophene rings. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. Both thiophene rings are disordered over two orientations (0.799 (1)/0.201 (1)). ::: ![](e-67-0o571-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The packing of the title compound, viewed down the a axis. Dashed lines indicate weak hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. ::: ![](e-67-0o571-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e116 .table-wrap} ------------------------ --------------------------------------- C~22~H~19~NOS~2~ *Z* = 2 *M~r~* = 377.52 *F*(000) = 396 Triclinic, *P*1 *D*~x~ = 1.371 Mg m^−3^ Hall symbol: -P 1 Melting point: 429 K *a* = 6.1809 (3) Å Cu *K*α radiation, λ = 1.54184 Å *b* = 12.7391 (9) Å Cell parameters from 3996 reflections *c* = 12.9251 (7) Å θ = 6.4--74.0° α = 112.657 (6)° µ = 2.71 mm^−1^ β = 95.845 (5)° *T* = 123 K γ = 98.512 (5)° Chunk, colourless *V* = 914.65 (11) Å^3^ 0.44 × 0.31 × 0.23 mm ------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e250 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Xcalibur Ruby Gemini diffractometer 3615 independent reflections Radiation source: Enhance (Cu) X-ray Source 3114 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.026 Detector resolution: 10.5081 pixels mm^-1^ θ~max~ = 74.2°, θ~min~ = 6.4° ω scans *h* = −6→7 Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) *k* = −14→15 *T*~min~ = 0.587, *T*~max~ = 1.000 *l* = −16→12 6091 measured reflections ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e370 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.040 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.110 H atoms treated by a mixture of independent and constrained refinement *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0635*P*)^2^ + 0.4312*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3615 reflections (Δ/σ)~max~ = 0.001 276 parameters Δρ~max~ = 0.37 e Å^−3^ 72 restraints Δρ~min~ = −0.27 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e527 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su\'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.\'s are taken into account in the estimation of distances, angles and torsion angles Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e629 .table-wrap} ------ -------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) S1A 0.18315 (9) 1.03620 (4) 0.61944 (5) 0.0240 (2) 0.799 (1) S2A 0.73267 (10) 0.08626 (5) 0.16709 (6) 0.0279 (2) 0.799 (1) O1 0.8340 (2) 0.63874 (10) 0.50798 (10) 0.0306 (3) N1 0.3176 (2) 0.57437 (11) 0.26094 (11) 0.0217 (4) C1 0.3584 (3) 0.46955 (14) 0.27383 (14) 0.0246 (4) C2 0.5717 (3) 0.49305 (13) 0.35403 (13) 0.0214 (4) C3 0.6540 (3) 0.61272 (14) 0.44395 (13) 0.0220 (4) C4 0.5080 (3) 0.69853 (13) 0.45572 (13) 0.0201 (4) C5 0.2948 (3) 0.66158 (13) 0.37148 (13) 0.0212 (4) C6 0.5750 (3) 0.80356 (12) 0.54314 (13) 0.0210 (4) C7A 0.4685 (3) 0.90348 (14) 0.5796 (3) 0.0183 (5) 0.799 (1) C8A 0.2461 (4) 0.90208 (14) 0.5516 (3) 0.0207 (6) 0.799 (1) C9A 0.4535 (3) 1.0966 (3) 0.6871 (4) 0.0329 (4) 0.799 (1) C10A 0.5831 (4) 1.0177 (2) 0.6602 (3) 0.0234 (6) 0.799 (1) C11 0.6925 (3) 0.41222 (11) 0.34934 (12) 0.0223 (4) C12A 0.6495 (7) 0.28977 (15) 0.2719 (3) 0.0228 (5) 0.799 (1) C13A 0.8188 (6) 0.22914 (15) 0.2613 (3) 0.0238 (7) 0.799 (1) C14A 0.4666 (3) 0.1060 (3) 0.1415 (4) 0.0310 (5) 0.799 (1) C15A 0.4455 (6) 0.2152 (2) 0.2014 (4) 0.0263 (6) 0.799 (1) C16 0.1124 (3) 0.54282 (14) 0.17762 (14) 0.0250 (4) C17 0.0842 (3) 0.63387 (14) 0.13266 (13) 0.0231 (4) C18 0.2395 (3) 0.66337 (15) 0.07197 (14) 0.0276 (5) C19 0.2113 (3) 0.74264 (16) 0.02500 (15) 0.0310 (5) C20 0.0256 (3) 0.79278 (16) 0.03671 (15) 0.0320 (5) C21 −0.1304 (3) 0.76399 (16) 0.09586 (15) 0.0325 (5) C22 −0.1007 (3) 0.68515 (15) 0.14398 (14) 0.0278 (5) C8B 0.5804 (14) 1.0004 (7) 0.6512 (15) 0.0207 (6) 0.201 (1) C9B 0.1915 (10) 1.0076 (7) 0.6059 (10) 0.0240 (2) 0.201 (1) S1B 0.4253 (4) 1.1062 (3) 0.6913 (4) 0.0329 (4) 0.201 (1) S2B 0.4472 (4) 0.0861 (3) 0.1254 (4) 0.0310 (5) 0.201 (1) C13B 0.438 (2) 0.2290 (5) 0.2021 (17) 0.0238 (7) 0.201 (1) C14B 0.7253 (7) 0.1115 (10) 0.1784 (12) 0.0279 (2) 0.201 (1) C7B 0.4467 (8) 0.8937 (4) 0.5864 (15) 0.0183 (5) 0.201 (1) C12B 0.640 (3) 0.2900 (3) 0.2707 (10) 0.0228 (5) 0.201 (1) C10B 0.221 (2) 0.9007 (8) 0.5623 (14) 0.0234 (6) 0.201 (1) C15B 0.800 (3) 0.2159 (10) 0.2558 (16) 0.0263 (6) 0.201 (1) H1B 0.36535 0.40961 0.19840 0.0296\* H5A 0.25596 0.73017 0.36152 0.0255\* H5B 0.17305 0.62863 0.40123 0.0255\* H1A 0.23312 0.43872 0.30305 0.0296\* H16A 0.11277 0.46894 0.11292 0.0300\* H16B −0.01661 0.52956 0.21384 0.0300\* H18 0.36607 0.62866 0.06278 0.0331\* H19 0.31915 0.76265 −0.01525 0.0372\* H20 0.00581 0.84676 0.00415 0.0383\* H21 −0.25789 0.79798 0.10372 0.0390\* H22 −0.20800 0.66618 0.18501 0.0333\* H6 0.713 (3) 0.8169 (16) 0.5895 (17) 0.026 (5)\* H8A 0.14054 0.83497 0.50085 0.0249\* 0.799 (1) H9A 0.50486 1.17598 0.73726 0.0395\* 0.799 (1) H10A 0.73660 1.03548 0.69141 0.0281\* 0.799 (1) H11 0.823 (3) 0.4373 (16) 0.4015 (17) 0.026 (5)\* H13A 0.96646 0.26254 0.30162 0.0286\* 0.799 (1) H14A 0.34781 0.04620 0.09052 0.0372\* 0.799 (1) H15A 0.30930 0.24073 0.19759 0.0316\* 0.799 (1) H8B 0.73734 1.01388 0.67126 0.0249\* 0.201 (1) H9B 0.05409 1.02885 0.59182 0.0288\* 0.201 (1) H10B 0.10440 0.83526 0.51955 0.0281\* 0.201 (1) H13B 0.31035 0.26169 0.19782 0.0286\* 0.201 (1) H14B 0.81485 0.05504 0.15365 0.0335\* 0.201 (1) H15B 0.94614 0.24115 0.29862 0.0316\* 0.201 (1) ------ -------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1447 .table-wrap} ------ ------------- ------------- ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1A 0.0245 (2) 0.0238 (3) 0.0207 (3) 0.0093 (2) 0.0021 (2) 0.0046 (2) S2A 0.0394 (3) 0.0223 (3) 0.0221 (3) 0.0103 (2) 0.0069 (2) 0.0073 (2) O1 0.0245 (6) 0.0280 (6) 0.0298 (6) 0.0071 (5) −0.0056 (5) 0.0036 (5) N1 0.0241 (7) 0.0213 (6) 0.0165 (6) 0.0037 (5) −0.0021 (5) 0.0060 (5) C1 0.0267 (8) 0.0213 (7) 0.0214 (8) 0.0028 (6) −0.0019 (6) 0.0061 (6) C2 0.0223 (7) 0.0236 (8) 0.0174 (7) 0.0032 (6) 0.0026 (6) 0.0081 (6) C3 0.0215 (8) 0.0249 (8) 0.0182 (7) 0.0035 (6) 0.0017 (6) 0.0083 (6) C4 0.0206 (7) 0.0233 (7) 0.0170 (7) 0.0039 (6) 0.0028 (6) 0.0092 (6) C5 0.0208 (7) 0.0231 (7) 0.0182 (7) 0.0044 (6) 0.0010 (6) 0.0074 (6) C6 0.0193 (7) 0.0258 (8) 0.0178 (7) 0.0036 (6) 0.0016 (6) 0.0094 (6) C7A 0.0202 (8) 0.0218 (8) 0.0143 (8) 0.0006 (6) 0.0049 (7) 0.0098 (7) C8A 0.0215 (11) 0.0253 (10) 0.0147 (11) 0.0062 (8) 0.0045 (8) 0.0066 (8) C9A 0.0376 (8) 0.0298 (7) 0.0286 (6) 0.0031 (6) 0.0043 (7) 0.0106 (5) C10A 0.0225 (10) 0.0219 (11) 0.0185 (12) −0.0006 (9) 0.0023 (8) 0.0025 (10) C11 0.0221 (8) 0.0246 (8) 0.0185 (7) 0.0025 (6) 0.0017 (6) 0.0081 (6) C12A 0.0290 (9) 0.0229 (8) 0.0173 (7) 0.0048 (6) 0.0044 (6) 0.0090 (6) C13A 0.0308 (13) 0.0199 (11) 0.0208 (10) 0.0054 (10) 0.0040 (9) 0.0083 (9) C14A 0.0412 (7) 0.0237 (9) 0.0216 (10) 0.0030 (6) 0.0020 (5) 0.0046 (7) C15A 0.0285 (11) 0.0264 (11) 0.0248 (10) 0.0041 (10) 0.0016 (9) 0.0125 (11) C16 0.0254 (8) 0.0253 (8) 0.0193 (7) 0.0011 (6) −0.0047 (6) 0.0072 (6) C17 0.0258 (8) 0.0224 (7) 0.0147 (7) 0.0009 (6) −0.0047 (6) 0.0043 (6) C18 0.0234 (8) 0.0327 (9) 0.0225 (8) 0.0031 (7) −0.0017 (6) 0.0091 (7) C19 0.0292 (9) 0.0368 (9) 0.0244 (8) −0.0019 (7) −0.0007 (7) 0.0141 (7) C20 0.0406 (10) 0.0284 (8) 0.0251 (8) 0.0025 (7) −0.0032 (7) 0.0127 (7) C21 0.0360 (10) 0.0328 (9) 0.0286 (9) 0.0132 (8) 0.0037 (7) 0.0106 (7) C22 0.0295 (9) 0.0327 (9) 0.0219 (8) 0.0076 (7) 0.0054 (7) 0.0113 (7) C8B 0.0215 (11) 0.0253 (10) 0.0147 (11) 0.0062 (8) 0.0045 (8) 0.0066 (8) C9B 0.0245 (2) 0.0238 (3) 0.0207 (3) 0.0093 (2) 0.0021 (2) 0.0046 (2) S1B 0.0376 (8) 0.0298 (7) 0.0286 (6) 0.0031 (6) 0.0043 (7) 0.0106 (5) S2B 0.0412 (7) 0.0237 (9) 0.0216 (10) 0.0030 (6) 0.0020 (5) 0.0046 (7) C13B 0.0308 (13) 0.0199 (11) 0.0208 (10) 0.0054 (10) 0.0040 (9) 0.0083 (9) C14B 0.0394 (3) 0.0223 (3) 0.0221 (3) 0.0103 (2) 0.0069 (2) 0.0073 (2) C7B 0.0202 (8) 0.0218 (8) 0.0143 (8) 0.0006 (6) 0.0049 (7) 0.0098 (7) C12B 0.0290 (9) 0.0229 (8) 0.0173 (7) 0.0048 (6) 0.0044 (6) 0.0090 (6) C10B 0.0225 (10) 0.0219 (11) 0.0185 (12) −0.0006 (9) 0.0023 (8) 0.0025 (10) C15B 0.0285 (11) 0.0264 (11) 0.0248 (10) 0.0041 (10) 0.0016 (9) 0.0125 (11) ------ ------------- ------------- ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2057 .table-wrap} -------------------------- -------------- --------------------------- -------------- S1A---C8A 1.718 (3) C14B---C15B 1.30 (2) S1A---C9A 1.718 (3) C16---C17 1.507 (3) S1B---C9B 1.719 (10) C17---C18 1.397 (3) S1B---C8B 1.718 (12) C17---C22 1.391 (3) S2A---C13A 1.718 (3) C18---C19 1.386 (3) S2A---C14A 1.718 (2) C19---C20 1.388 (3) S2B---C13B 1.718 (15) C20---C21 1.382 (3) S2B---C14B 1.719 (8) C21---C22 1.394 (3) O1---C3 1.235 (2) C1---H1A 0.9900 N1---C5 1.470 (2) C1---H1B 0.9900 N1---C16 1.472 (2) C5---H5A 0.9900 N1---C1 1.462 (2) C5---H5B 0.9900 C1---C2 1.506 (3) C6---H6 0.943 (19) C2---C3 1.490 (2) C8A---H8A 0.9500 C2---C11 1.345 (2) C8B---H8B 0.9500 C3---C4 1.491 (3) C9A---H9A 0.9500 C4---C6 1.347 (2) C9B---H9B 0.9500 C4---C5 1.508 (2) C10A---H10A 0.9500 C6---C7A 1.458 (3) C10B---H10B 0.9500 C6---C7B 1.458 (9) C11---H11 0.92 (2) C7A---C8A 1.381 (3) C13A---H13A 0.9500 C7A---C10A 1.443 (4) C13B---H13B 0.9500 C7B---C8B 1.372 (18) C14A---H14A 0.9500 C7B---C10B 1.422 (14) C14B---H14B 0.9500 C9A---C10A 1.341 (4) C15A---H15A 0.9500 C9B---C10B 1.307 (17) C15B---H15B 0.9500 C11---C12A 1.458 (3) C16---H16A 0.9900 C11---C12B 1.458 (9) C16---H16B 0.9900 C12A---C15A 1.438 (6) C18---H18 0.9500 C12A---C13A 1.377 (5) C19---H19 0.9500 C12B---C13B 1.38 (2) C20---H20 0.9500 C12B---C15B 1.44 (2) C21---H21 0.9500 C14A---C15A 1.340 (6) C22---H22 0.9500 S1A···C8A^i^ 3.648 (3) C9A···H5A^iii^ 2.9400 S1A···S1A^i^ 3.3576 (9) C9A···H21^i^ 2.9900 S1A···S2A^ii^ 3.6853 (9) C9B···H9B^i^ 2.6700 S1A···C21^i^ 3.6606 (19) C9B···H8B^v^ 3.0200 S1B···C21^i^ 3.469 (4) C10B···H9B^i^ 2.9700 S1B···C6^iii^ 3.631 (5) C10B···H5A 2.7200 S1B···C18^iii^ 3.502 (5) C12A···H1B 2.8100 S1B···C5^iii^ 3.609 (5) C12B···H1B 2.7600 S1B···C4^iii^ 3.670 (5) C13B···H19^vi^ 3.0000 S2A···C9A^ii^ 3.651 (4) C13B···H1B 2.4300 S2A···S1A^ii^ 3.6853 (9) C13B···H1A 3.0200 S2A···C10A^ii^ 3.598 (3) C14A···H19^vi^ 3.0200 S2A···C8A^ii^ 3.569 (3) C15A···H1B 2.6100 S2A···C7A^ii^ 3.582 (3) C15A···H19^vi^ 3.0200 S2B···C14B^iv^ 3.692 (15) C17···H5A 2.7500 S2B···C8B^ii^ 3.475 (16) C17···H16A^ix^ 2.9700 S2B···S2B^iv^ 3.335 (6) C17···H9A^iii^ 3.0500 S2B···C7B^ii^ 3.618 (17) C18···H16A^ix^ 2.8400 S1A···H10A^v^ 3.0000 C18···H9A^iii^ 2.6700 S1B···H21^i^ 2.8300 C19···H16A^ix^ 2.9000 S1B···H5A^iii^ 2.9700 C19···H9A^iii^ 3.0800 S2A···H20^vi^ 3.1600 C20···H16A^ix^ 3.0700 S2A···H14A^iv^ 3.0400 H1A···H13A^v^ 2.5700 S2B···H19^vi^ 3.0900 H1A···H16B 2.5000 O1···C15B^vii^ 3.296 (19) H1A···C13B 3.0200 O1···C13A^vii^ 3.177 (4) H1A···H5B 2.3700 O1···H10B^viii^ 2.7400 H1A···H15A 2.5000 O1···H11^vii^ 2.79 (2) H1A···H13B 2.2900 O1···H13A^vii^ 2.3900 H1B···C15A 2.6100 O1···H6 2.38 (2) H1B···H15A 2.1200 O1···H11 2.39 (2) H1B···C13B 2.4300 O1···H5B^viii^ 2.6200 H1B···H13B 1.8600 O1···H15B^vii^ 2.4900 H1B···C12A 2.8100 N1···H18 2.9300 H1B···C12B 2.7600 C1···C15A 3.154 (4) H1B···H16A 2.2100 C1···C13B 2.974 (12) H5A···C10B 2.7200 C4···C11^ii^ 3.568 (2) H5A···C7B 2.8400 C4···S1B^iii^ 3.670 (5) H5A···C7A 2.8500 C5···C10B 3.228 (15) H5A···C8A 2.6000 C5···S1B^iii^ 3.609 (5) H5A···C17 2.7500 C5···C8A 3.133 (3) H5A···H8A 2.0600 C6···C15A^ii^ 3.415 (5) H5A···C9A^iii^ 2.9400 C6···C12B^ii^ 3.372 (12) H5A···S1B^iii^ 2.9700 C6···S1B^iii^ 3.631 (5) H5A···H10B 2.3400 C6···C13B^ii^ 3.481 (18) H5A···H9A^iii^ 2.5100 C6···C12A^ii^ 3.381 (4) H5B···H1A 2.3700 C7A···C13A^ii^ 3.573 (4) H5B···H8A 2.4900 C7A···C9A^iii^ 3.529 (6) H5B···O1^v^ 2.6200 C7A···S2A^ii^ 3.582 (3) H5B···H16B 2.3400 C7B···S2B^ii^ 3.618 (17) H6···O1 2.38 (2) C7B···C15B^ii^ 3.26 (2) H6···H10A 2.5500 C7B···C14B^ii^ 3.34 (2) H6···H8B 2.2900 C7B···C12B^ii^ 3.512 (14) H8A···H5B 2.4900 C8A···S2A^ii^ 3.569 (3) H8A···H5A 2.0600 C8A···C5 3.133 (3) H8A···C4 3.0300 C8A···C13A^ii^ 3.452 (4) H8A···C5 2.5900 C8A···C10A^iii^ 3.475 (4) H8B···C9B^viii^ 3.0200 C8A···S1A^i^ 3.648 (3) H8B···H6 2.2900 C8B···S2B^ii^ 3.475 (16) H8B···H9B^viii^ 2.3200 C8B···C14B^ii^ 3.595 (18) H9A···C17^iii^ 3.0500 C9A···C18^iii^ 3.520 (5) H9A···H5A^iii^ 2.5100 C9A···S2A^ii^ 3.651 (4) H9A···C19^iii^ 3.0800 C9A···C7A^iii^ 3.529 (6) H9A···C18^iii^ 2.6700 C9B···C9B^i^ 3.357 (14) H9B···H9B^i^ 2.1900 C10A···C14A^ii^ 3.504 (6) H9B···H8B^v^ 2.3200 C10A···C8A^iii^ 3.475 (4) H9B···C10B^i^ 2.9700 C10A···S2A^ii^ 3.598 (3) H9B···C9B^i^ 2.6700 C10B···C15B^ii^ 3.23 (2) H10A···H6 2.5500 C10B···C14B^ii^ 3.40 (2) H10A···S1A^viii^ 3.0000 C10B···C5 3.228 (15) H10B···H5A 2.3400 C11···C4^ii^ 3.568 (2) H10B···C5 2.8100 C12A···C6^ii^ 3.381 (4) H10B···O1^v^ 2.7400 C12B···C6^ii^ 3.372 (12) H11···O1^vii^ 2.79 (2) C12B···C7B^ii^ 3.512 (14) H11···O1 2.39 (2) C13A···C8A^ii^ 3.452 (4) H11···H13A 2.4500 C13A···O1^vii^ 3.177 (4) H13A···O1^vii^ 2.3900 C13A···C7A^ii^ 3.573 (4) H13A···H1A^viii^ 2.5700 C13B···C6^ii^ 3.481 (18) H13A···H11 2.4500 C13B···C1 2.974 (12) H13B···H1B 1.8600 C14A···C10A^ii^ 3.504 (6) H13B···C2 2.9500 C14B···C7B^ii^ 3.34 (2) H13B···H1A 2.2900 C14B···C10B^ii^ 3.40 (2) H13B···C1 2.4000 C14B···C8B^ii^ 3.595 (18) H14A···S2A^iv^ 3.0400 C14B···S2B^iv^ 3.692 (15) H15A···C1 2.6500 C15A···C6^ii^ 3.415 (5) H15A···H1B 2.1200 C15A···C1 3.154 (4) H15A···H1A 2.5000 C15B···C10B^ii^ 3.23 (2) H15B···O1^vii^ 2.4900 C15B···O1^vii^ 3.296 (19) H16A···C17^ix^ 2.9700 C15B···C7B^ii^ 3.26 (2) H16A···H1B 2.2100 C16···C18^ix^ 3.520 (2) H16A···C20^ix^ 3.0700 C18···C16^ix^ 3.520 (2) H16A···C18^ix^ 2.8400 C18···S1B^iii^ 3.502 (5) H16A···C19^ix^ 2.9000 C18···C9A^iii^ 3.520 (5) H16B···H22 2.3600 C21···S1B^i^ 3.469 (4) H16B···H1A 2.5000 C21···S1A^i^ 3.6606 (19) H16B···H5B 2.3400 C1···H13B 2.4000 H18···N1 2.9300 C1···H15A 2.6500 H19···S2B^vi^ 3.0900 C2···H13B 2.9500 H19···C14A^vi^ 3.0200 C4···H8A 3.0300 H19···C15A^vi^ 3.0200 C5···H10B 2.8100 H19···C13B^vi^ 3.0000 C5···H8A 2.5900 H20···S2A^vi^ 3.1600 C7A···H5A 2.8500 H21···S1B^i^ 2.8300 C7B···H5A 2.8400 H21···C9A^i^ 2.9900 C8A···H5A 2.6000 H22···H16B 2.3600 C8A---S1A---C9A 92.00 (17) N1---C1---H1A 109.00 C8B---S1B---C9B 90.4 (6) N1---C1---H1B 109.00 C13A---S2A---C14A 91.2 (2) C2---C1---H1A 109.00 C13B---S2B---C14B 91.2 (7) C2---C1---H1B 109.00 C1---N1---C5 109.61 (13) H1A---C1---H1B 108.00 C5---N1---C16 110.43 (13) N1---C5---H5A 109.00 C1---N1---C16 108.34 (14) N1---C5---H5B 109.00 N1---C1---C2 111.86 (15) C4---C5---H5A 109.00 C1---C2---C3 118.18 (16) C4---C5---H5B 109.00 C1---C2---C11 123.85 (15) H5A---C5---H5B 108.00 C3---C2---C11 117.97 (15) C4---C6---H6 116.8 (13) O1---C3---C2 121.03 (17) C7A---C6---H6 112.8 (13) C2---C3---C4 117.50 (15) C7B---C6---H6 114.6 (14) O1---C3---C4 121.44 (16) S1A---C8A---H8A 124.00 C5---C4---C6 124.57 (17) C7A---C8A---H8A 124.00 C3---C4---C6 117.12 (16) C7B---C8B---H8B 125.00 C3---C4---C5 118.29 (14) S1B---C8B---H8B 125.00 N1---C5---C4 110.75 (14) C10A---C9A---H9A 124.00 C4---C6---C7A 130.47 (19) S1A---C9A---H9A 124.00 C4---C6---C7B 127.9 (5) C10B---C9B---H9B 123.00 C6---C7A---C8A 126.3 (2) S1B---C9B---H9B 123.00 C8A---C7A---C10A 110.5 (2) C9A---C10A---H10A 123.00 C6---C7A---C10A 123.0 (2) C7A---C10A---H10A 123.00 C6---C7B---C10B 134.6 (12) C9B---C10B---H10B 124.00 C6---C7B---C8B 112.0 (6) C7B---C10B---H10B 124.00 C8B---C7B---C10B 112.4 (9) C12A---C11---H11 114.6 (13) S1A---C8A---C7A 111.9 (2) C2---C11---H11 116.2 (13) S1B---C8B---C7B 110.7 (7) C12B---C11---H11 116.8 (15) S1A---C9A---C10A 111.6 (3) C12A---C13A---H13A 124.00 S1B---C9B---C10B 113.6 (8) S2A---C13A---H13A 124.00 C7A---C10A---C9A 114.0 (3) S2B---C13B---H13B 124.00 C7B---C10B---C9B 112.2 (11) C12B---C13B---H13B 125.00 C2---C11---C12A 129.3 (2) S2A---C14A---H14A 124.00 C2---C11---C12B 127.0 (7) C15A---C14A---H14A 124.00 C11---C12A---C13A 119.8 (3) S2B---C14B---H14B 124.00 C11---C12A---C15A 129.5 (3) C15B---C14B---H14B 124.00 C13A---C12A---C15A 110.7 (3) C12A---C15A---H15A 123.00 C13B---C12B---C15B 110.8 (11) C14A---C15A---H15A 123.00 C11---C12B---C13B 126.5 (13) C12B---C15B---H15B 123.00 C11---C12B---C15B 122.8 (14) C14B---C15B---H15B 123.00 S2A---C13A---C12A 112.4 (3) H16A---C16---H16B 108.00 S2B---C13B---C12B 111.1 (9) N1---C16---H16B 109.00 S2A---C14A---C15A 112.4 (3) C17---C16---H16A 109.00 S2B---C14B---C15B 112.9 (10) N1---C16---H16A 109.00 C12A---C15A---C14A 113.3 (3) C17---C16---H16B 109.00 C12B---C15B---C14B 113.7 (14) C17---C18---H18 120.00 N1---C16---C17 113.51 (15) C19---C18---H18 120.00 C18---C17---C22 118.42 (17) C18---C19---H19 120.00 C16---C17---C18 119.81 (17) C20---C19---H19 120.00 C16---C17---C22 121.66 (16) C19---C20---H20 120.00 C17---C18---C19 120.85 (17) C21---C20---H20 120.00 C18---C19---C20 120.05 (18) C20---C21---H21 120.00 C19---C20---C21 119.84 (19) C22---C21---H21 120.00 C20---C21---C22 120.03 (18) C21---C22---H22 120.00 C17---C22---C21 120.80 (17) C17---C22---H22 120.00 C9A---S1A---C8A---C7A −0.2 (3) C6---C4---C5---N1 151.56 (17) C8A---S1A---C9A---C10A −0.9 (3) C4---C6---C7A---C8A 19.5 (4) C14A---S2A---C13A---C12A −0.4 (3) C4---C6---C7A---C10A −166.4 (3) C13A---S2A---C14A---C15A 0.0 (4) C10A---C7A---C8A---S1A 1.2 (3) C5---N1---C1---C2 −62.00 (18) C6---C7A---C8A---S1A 175.9 (2) C16---N1---C1---C2 177.45 (13) C6---C7A---C10A---C9A −176.8 (3) C16---N1---C5---C4 −177.33 (14) C8A---C7A---C10A---C9A −1.9 (4) C1---N1---C16---C17 −164.29 (14) S1A---C9A---C10A---C7A 1.7 (4) C5---N1---C16---C17 75.66 (18) C2---C11---C12A---C15A −18.5 (5) C1---N1---C5---C4 63.39 (18) C2---C11---C12A---C13A 163.1 (2) N1---C1---C2---C11 −153.36 (16) C15A---C12A---C13A---S2A 0.7 (4) N1---C1---C2---C3 26.7 (2) C11---C12A---C13A---S2A 179.4 (2) C11---C2---C3---C4 −174.12 (16) C11---C12A---C15A---C14A −179.2 (3) C3---C2---C11---C12A 179.2 (2) C13A---C12A---C15A---C14A −0.7 (5) C11---C2---C3---O1 4.2 (3) S2A---C14A---C15A---C12A 0.4 (5) C1---C2---C11---C12A −0.8 (3) N1---C16---C17---C18 62.1 (2) C1---C2---C3---C4 5.8 (2) N1---C16---C17---C22 −121.80 (17) C1---C2---C3---O1 −175.89 (16) C16---C17---C18---C19 176.81 (16) O1---C3---C4---C5 177.70 (16) C22---C17---C18---C19 0.6 (3) O1---C3---C4---C6 −3.6 (3) C16---C17---C22---C21 −176.10 (16) C2---C3---C4---C5 −4.0 (2) C18---C17---C22---C21 0.1 (3) C2---C3---C4---C6 174.63 (16) C17---C18---C19---C20 −0.8 (3) C3---C4---C5---N1 −29.9 (2) C18---C19---C20---C21 0.4 (3) C3---C4---C6---C7A −177.8 (2) C19---C20---C21---C22 0.3 (3) C5---C4---C6---C7A 0.7 (3) C20---C21---C22---C17 −0.5 (3) -------------------------- -------------- --------------------------- -------------- ::: Symmetry codes: (i) −*x*, −*y*+2, −*z*+1; (ii) −*x*+1, −*y*+1, −*z*+1; (iii) −*x*+1, −*y*+2, −*z*+1; (iv) −*x*+1, −*y*, −*z*; (v) *x*−1, *y*, *z*; (vi) −*x*+1, −*y*+1, −*z*; (vii) −*x*+2, −*y*+1, −*z*+1; (viii) *x*+1, *y*, *z*; (ix) −*x*, −*y*+1, −*z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4462 .table-wrap} ------------------------------------------- Cg6 is the centroid of the C17--C22 ring. ------------------------------------------- ::: ::: {#d1e4466 .table-wrap} ----------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C13A---H13A···O1^vii^ 0.95 2.39 3.177 (4) 140 C16---H16A···Cg6^ix^ 0.99 2.68 3.6017 (19) 156 ----------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (vii) −*x*+2, −*y*+1, −*z*+1; (ix) −*x*, −*y*+1, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*6 is the centroid of the C17--C22 ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------ --------- ------- ------------- ------------- C13*A*---H13*A*⋯O1^i^ 0.95 2.39 3.177 (4) 140 C16---H16*A*⋯*Cg*6^ii^ 0.99 2.68 3.6017 (19) 156 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.195483
2011-2-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052058/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 5; 67(Pt 3):o571", "authors": [ { "first": "P.", "last": "Gayathri" }, { "first": "A.", "last": "Thiruvalluvar" }, { "first": "K.", "last": "Rajeswari" }, { "first": "K.", "last": "Pandiarajan" }, { "first": "R. J.", "last": "Butcher" } ] }
PMC3052059
Related literature {#sec1} ================== For general background to the chemistry and biological properties of vicinal diamines, see: Bennani & Hanessian (1997[@bb6]); Lucet *et al.* (1998[@bb10]); Fache *et al.* (2000[@bb8]); Saibabu Kotti*et al.* (2006)[@bb22] Alexakis & Andrey (2002[@bb2]); Andrey *et al.* (2003[@bb4]); Ma *et al.* (2003[@bb11]); Notz *et al.* (2004[@bb16]); Bassindale *et al.* (2004[@bb5]); Mealy *et al.* (2004[@bb13]). For a related structure, see: Mikata *et al.* (2009[@bb14]). For coordination geom­etries, see: Addison *et al.* (1984[@bb1]). For hydrogen bonds, see: Steiner (2002[@bb20]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[ZnCl~2~(C~26~H~26~N~4~)\]*M* *~r~* = 530.78Monoclinic,*a* = 9.1716 (14) Å*b* = 28.888 (2) Å*c* = 10.4304 (12) Åβ = 109.541 (8)°*V* = 2604.3 (5) Å^3^*Z* = 4Mo *K*α radiationμ = 1.17 mm^−1^*T* = 293 K0.46 × 0.43 × 0.26 mm ### Data collection {#sec2.1.2} Enraf--Nonius CAD-4 diffractometerAbsorption correction: ψ scan \[*PLATON* (Spek, 2009[@bb19]); North *et al.* (1968[@bb15])\] *T* ~min~ = 0.615, *T* ~max~ = 0.7514899 measured reflections4632 independent reflections2892 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.0483 standard reflections every 200 reflections intensity decay: 1% ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.056*wR*(*F* ^2^) = 0.169*S* = 1.054632 reflections298 parametersH-atom parameters constrainedΔρ~max~ = 0.74 e Å^−3^Δρ~min~ = −0.39 e Å^−3^ {#d5e505} Data collection: *CAD-4 Software* (Enraf--Nonius, 1989[@bb7]); cell refinement: *SET4* in *CAD-4 Software*; data reduction: *HELENA* (Spek, 1996[@bb18]); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb3]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb17]); molecular graphics: *PLATON* (Spek, 2009[@bb19]) and *Mercury* (Macrae *et al.*, 2006[@bb12]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004314/zj2001sup1.cif](http://dx.doi.org/10.1107/S1600536811004314/zj2001sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004314/zj2001Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004314/zj2001Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?zj2001&file=zj2001sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?zj2001sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?zj2001&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [ZJ2001](http://scripts.iucr.org/cgi-bin/sendsup?zj2001)). The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support. Comment ======= There has been much interest in developing methods for making vicinal diamines and their derivatives since they are important in medicinal chemistry, natural products, coordination chemistry and asymmetric catalysis (Bennani & Hanessian, 1997; Lucet *et al.*, 1998; Fache *et al.*, 2000; Saibabu Kotti *et al.*, 2006). They have been extensively used as ligands and catalysts in synthesis with impressive results (Alexakis & Andrey, 2002; Andrey *et al.*, 2003; Ma *et al.*, 2003; Notz *et al.*, 2004; Bassindale *et al.*, 2004; Mealy *et al.*, 2004). We report here the crystal structure of the title new zinc complex with the chelating diamine (1*R*\*, 2S\*)-N1-benzyl-2-phenyl-1-(pyridin-2-yl)-N2-\[(pyridin-2-yl) methyl\] ethane-1, 2-diamine (Fig. 1). In our study of vicinal diamines, we isolated the title complex from a mixture of stereo isomeric diamines in the presence of anhydrous zinc chloride in methanol. Fig. 2 shows the molecular structure of thr title compound. It is a neutral mononuclear zinc complex, where Zn^II^ ion is surrounded by three nitrogen atoms from BPPPEN ligand and two chloro terminal ligands, resulting in a highly distorted environment around the metal center. The calculated τ parameter of 0.42 indicate the coordination geometry has lightly square pyramidal character (Addison *et al.*, 1984). Centrosymmetric hydrogen bonds form dimmeric structures through N4---H4··· Cl2 interactions (Fig. 3). The geometric parameters of these interactions are in agreement with those postulated by Steiner (2002). The packing analysis shows that the molecules are stacked along a and b crystallographic axes. Experimental {#experimental} ============ To a solution of BPPPEN (0,5 g; 1,24 mmol) in methanol (25 mL) was added anhydrous ZnCl2 (0,173 g; 1,27 mmol) and the mixture was heated at reflux until all zinc chloride dissolved. The solution was allowed to cool slowly at room temperature and a white crystalline solid, suitable for X-ray crystallographic analysis, was collected after one week (0,177 g; 26%). Refinement {#refinement} ========== H atoms were placed at their idealized positions with distances of 0.93, 0.98 and 0.97 Å and *U*~eq~ fixed at 1.2 times *U*~iso~ of the preceding atom for CH~Ar~, CH and CH~2~, respectively. Hydrogen atoms of the amine groups were found from Fourier difference map and treated with riding model. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### (1R\*, 2S\*)-N1-benzyl-2-phenyl-1-(pyridin-2-yl)-N2-\[(pyridin-2-yl) methyl\] ethane-1, 2-diamine ::: ![](e-67-0m337-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The molecular structure of complex (I) showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms were omitted for clarity. ::: ![](e-67-0m337-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### Packing of the title compound with hydrogen bonding. ::: ![](e-67-0m337-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e162 .table-wrap} ----------------------------- ------------------------------------- \[ZnCl~2~(C~26~H~26~N~4~)\] *F*(000) = 1096 *M~r~* = 530.78 *D*~x~ = 1.354 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71069 Å Hall symbol: -P 2ybc Cell parameters from 25 reflections *a* = 9.1716 (14) Å θ = 8.4--13.9° *b* = 28.888 (2) Å µ = 1.17 mm^−1^ *c* = 10.4304 (12) Å *T* = 293 K β = 109.541 (8)° Disc, colorless *V* = 2604.3 (5) Å^3^ 0.46 × 0.43 × 0.26 mm *Z* = 4 ----------------------------- ------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e293 .table-wrap} -------------------------------------------------------------------------------- ---------------------------------------------- Enraf--Nonius CAD-4 diffractometer 2892 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.048 graphite θ~max~ = 25.1°, θ~min~ = 1.4° ω--2θ scans *h* = −10→10 Absorption correction: ψ scan \[*PLATON* (Spek, 2009); North *et al.* (1968)\] *k* = −34→0 *T*~min~ = 0.615, *T*~max~ = 0.751 *l* = −12→0 4899 measured reflections 3 standard reflections every 200 reflections 4632 independent reflections intensity decay: 1% -------------------------------------------------------------------------------- ---------------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e421 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.056 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.169 H-atom parameters constrained *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0767*P*)^2^ + 4.3127*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4632 reflections (Δ/σ)~max~ \< 0.001 298 parameters Δρ~max~ = 0.74 e Å^−3^ 0 restraints Δρ~min~ = −0.39 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e580 .table-wrap} ------ -------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Zn1 0.46704 (7) 0.07907 (2) −0.11615 (6) 0.0407 (2) Cl1 0.4754 (2) 0.13915 (6) −0.24916 (18) 0.0689 (5) Cl2 0.26694 (16) 0.02852 (5) −0.17505 (17) 0.0541 (4) N1 0.4102 (5) 0.12227 (17) 0.0387 (4) 0.0422 (11) H1 0.4033 0.1480 −0.0152 0.051\* C2 0.5396 (6) 0.1186 (2) 0.1695 (5) 0.0423 (13) H2 0.5278 0.0898 0.2146 0.051\* C3 0.6918 (6) 0.11640 (18) 0.1384 (5) 0.0376 (12) H3 0.6986 0.1447 0.0888 0.045\* N4 0.6810 (5) 0.07700 (17) 0.0455 (4) 0.0412 (10) H4 0.6723 0.0492 0.0841 0.049\* C10 0.2536 (7) 0.1176 (2) 0.0553 (6) 0.0527 (16) H10A 0.2160 0.0863 0.0328 0.063\* H10B 0.2636 0.1233 0.1496 0.063\* C11 0.1394 (7) 0.1508 (2) −0.0336 (7) 0.0578 (17) C12 0.0595 (8) 0.1409 (3) −0.1672 (8) 0.073 (2) H12 0.0785 0.1129 −0.2027 0.088\* C13 −0.0465 (11) 0.1704 (4) −0.2503 (10) 0.107 (3) H13 −0.1007 0.1622 −0.3398 0.128\* C14 −0.0720 (13) 0.2124 (4) −0.1994 (14) 0.126 (4) H14 −0.1410 0.2332 −0.2562 0.151\* C15 0.0021 (14) 0.2238 (4) −0.0674 (14) 0.131 (4) H15 −0.0167 0.2521 −0.0332 0.158\* C16 0.1102 (10) 0.1915 (3) 0.0184 (10) 0.097 (3) H16 0.1604 0.1985 0.1097 0.116\* C21 0.5408 (6) 0.1586 (2) 0.2628 (5) 0.0439 (14) N22 0.5383 (8) 0.1999 (2) 0.2084 (6) 0.0710 (17) C23 0.5386 (11) 0.2370 (3) 0.2849 (8) 0.089 (3) H23 0.5390 0.2661 0.2473 0.106\* C24 0.5384 (11) 0.2342 (3) 0.4158 (8) 0.085 (2) H24 0.5347 0.2607 0.4655 0.102\* C25 0.5437 (11) 0.1911 (3) 0.4705 (8) 0.086 (2) H25 0.5468 0.1876 0.5600 0.103\* C26 0.5446 (9) 0.1531 (3) 0.3938 (6) 0.0666 (19) H26 0.5478 0.1236 0.4303 0.080\* C31 0.8333 (6) 0.1148 (2) 0.2652 (6) 0.0462 (14) C32 0.9515 (8) 0.1457 (3) 0.2857 (8) 0.081 (2) H32 0.9441 0.1686 0.2211 0.097\* C33 1.0832 (10) 0.1437 (4) 0.4016 (10) 0.103 (3) H33 1.1622 0.1652 0.4146 0.124\* C34 1.0948 (10) 0.1104 (4) 0.4943 (9) 0.094 (3) H34 1.1827 0.1093 0.5715 0.112\* C35 0.9809 (9) 0.0781 (3) 0.4783 (7) 0.082 (2) H35 0.9905 0.0553 0.5436 0.099\* C36 0.8510 (7) 0.0802 (2) 0.3625 (6) 0.0588 (16) H36 0.7738 0.0581 0.3493 0.071\* C40 0.8042 (6) 0.0759 (2) −0.0161 (6) 0.0516 (15) H40A 0.9018 0.0676 0.0525 0.062\* H40B 0.8154 0.1063 −0.0511 0.062\* C41 0.7654 (6) 0.0413 (2) −0.1293 (6) 0.0451 (14) N42 0.6161 (5) 0.03297 (17) −0.1926 (5) 0.0456 (12) C43 0.5756 (8) 0.0035 (2) −0.2951 (6) 0.0565 (16) H43 0.4708 −0.0019 −0.3392 0.068\* C44 0.6810 (9) −0.0196 (3) −0.3402 (7) 0.068 (2) H44 0.6488 −0.0404 −0.4124 0.082\* C45 0.8357 (9) −0.0108 (3) −0.2740 (7) 0.070 (2) H45 0.9104 −0.0257 −0.3011 0.084\* C46 0.8785 (7) 0.0199 (2) −0.1688 (7) 0.0590 (17) H46 0.9825 0.0263 −0.1241 0.071\* ------ -------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1399 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Zn1 0.0376 (3) 0.0438 (4) 0.0395 (3) −0.0025 (3) 0.0115 (2) 0.0016 (3) Cl1 0.0804 (12) 0.0628 (11) 0.0625 (10) −0.0105 (9) 0.0225 (9) 0.0193 (9) Cl2 0.0394 (8) 0.0452 (9) 0.0764 (11) −0.0050 (6) 0.0176 (7) −0.0015 (8) N1 0.038 (3) 0.051 (3) 0.041 (2) 0.004 (2) 0.017 (2) 0.001 (2) C2 0.049 (3) 0.042 (3) 0.038 (3) 0.001 (3) 0.017 (3) 0.004 (2) C3 0.039 (3) 0.034 (3) 0.043 (3) −0.003 (2) 0.019 (2) 0.000 (2) N4 0.037 (2) 0.050 (3) 0.038 (2) 0.001 (2) 0.0144 (19) −0.002 (2) C10 0.046 (3) 0.071 (4) 0.047 (3) −0.001 (3) 0.023 (3) −0.003 (3) C11 0.048 (4) 0.061 (4) 0.072 (4) 0.008 (3) 0.029 (3) 0.006 (4) C12 0.068 (5) 0.074 (5) 0.073 (5) 0.018 (4) 0.017 (4) 0.006 (4) C13 0.091 (7) 0.120 (9) 0.097 (7) 0.040 (6) 0.014 (5) 0.010 (6) C14 0.107 (8) 0.129 (10) 0.133 (10) 0.062 (7) 0.028 (7) 0.021 (8) C15 0.131 (10) 0.107 (9) 0.165 (12) 0.057 (8) 0.062 (9) −0.009 (8) C16 0.091 (6) 0.099 (7) 0.105 (7) 0.026 (5) 0.040 (5) −0.012 (6) C21 0.049 (3) 0.048 (4) 0.039 (3) 0.003 (3) 0.020 (3) 0.008 (3) N22 0.121 (5) 0.050 (4) 0.055 (3) 0.002 (3) 0.047 (4) −0.001 (3) C23 0.162 (9) 0.037 (4) 0.087 (6) 0.003 (5) 0.068 (6) −0.005 (4) C24 0.135 (7) 0.067 (5) 0.070 (5) 0.004 (5) 0.057 (5) −0.026 (4) C25 0.137 (7) 0.083 (6) 0.056 (4) −0.012 (5) 0.059 (5) −0.007 (4) C26 0.106 (6) 0.055 (4) 0.048 (4) −0.002 (4) 0.037 (4) 0.000 (3) C31 0.043 (3) 0.048 (4) 0.048 (3) 0.000 (3) 0.015 (3) −0.014 (3) C32 0.063 (5) 0.092 (6) 0.078 (5) −0.020 (4) 0.013 (4) −0.011 (4) C33 0.069 (6) 0.134 (9) 0.092 (7) −0.028 (6) 0.008 (5) −0.036 (7) C34 0.067 (6) 0.133 (9) 0.063 (5) 0.011 (6) −0.002 (4) −0.032 (6) C35 0.076 (5) 0.108 (7) 0.050 (4) 0.023 (5) 0.004 (4) −0.017 (4) C36 0.054 (4) 0.067 (4) 0.048 (3) 0.011 (3) 0.006 (3) −0.008 (4) C40 0.037 (3) 0.065 (4) 0.053 (3) 0.000 (3) 0.017 (3) −0.006 (3) C41 0.042 (3) 0.054 (4) 0.042 (3) 0.002 (3) 0.017 (3) −0.004 (3) N42 0.039 (3) 0.056 (3) 0.043 (3) 0.000 (2) 0.015 (2) −0.006 (2) C43 0.055 (4) 0.065 (4) 0.047 (3) −0.007 (3) 0.015 (3) −0.006 (3) C44 0.082 (5) 0.073 (5) 0.055 (4) 0.002 (4) 0.030 (4) −0.013 (4) C45 0.067 (5) 0.088 (6) 0.063 (4) 0.014 (4) 0.031 (4) −0.010 (4) C46 0.043 (3) 0.081 (5) 0.056 (4) 0.007 (3) 0.022 (3) −0.006 (4) ----- ------------- ------------- ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2007 .table-wrap} ----------------------- ------------- ----------------------- ------------ Zn1---N4 2.118 (4) N22---C23 1.334 (9) Zn1---N1 2.236 (4) C23---C24 1.369 (10) Zn1---N42 2.238 (5) C23---H23 0.9300 Zn1---Cl1 2.2393 (17) C24---C25 1.366 (11) Zn1---Cl2 2.2635 (16) C24---H24 0.9300 N1---C2 1.482 (7) C25---C26 1.359 (10) N1---C10 1.509 (7) C25---H25 0.9300 N1---H1 0.9223 C26---H26 0.9300 C2---C21 1.509 (8) C31---C32 1.364 (9) C2---C3 1.537 (7) C31---C36 1.395 (9) C2---H2 0.9800 C32---C33 1.396 (11) C3---N4 1.476 (7) C32---H32 0.9300 C3---C31 1.513 (8) C33---C34 1.342 (13) C3---H3 0.9800 C33---H33 0.9300 N4---C40 1.476 (7) C34---C35 1.369 (12) N4---H4 0.9146 C34---H34 0.9300 C10---C11 1.492 (9) C35---C36 1.386 (9) C10---H10A 0.9700 C35---H35 0.9300 C10---H10B 0.9700 C36---H36 0.9300 C11---C16 1.358 (10) C40---C41 1.496 (8) C11---C12 1.371 (10) C40---H40A 0.9700 C12---C13 1.362 (11) C40---H40B 0.9700 C12---H12 0.9300 C41---N42 1.328 (7) C13---C14 1.375 (14) C41---C46 1.384 (8) C13---H13 0.9300 N42---C43 1.318 (8) C14---C15 1.356 (15) C43---C44 1.381 (9) C14---H14 0.9300 C43---H43 0.9300 C15---C16 1.436 (13) C44---C45 1.378 (10) C15---H15 0.9300 C44---H44 0.9300 C16---H16 0.9300 C45---C46 1.362 (9) C21---N22 1.318 (8) C45---H45 0.9300 C21---C26 1.365 (8) C46---H46 0.9300 N4---Zn1---N1 79.54 (16) N22---C21---C26 121.9 (6) N4---Zn1---N42 75.71 (17) N22---C21---C2 114.8 (5) N1---Zn1---N42 155.13 (16) C26---C21---C2 123.3 (5) N4---Zn1---Cl1 107.49 (14) C21---N22---C23 118.2 (6) N1---Zn1---Cl1 94.56 (14) N22---C23---C24 123.4 (7) N42---Zn1---Cl1 95.09 (14) N22---C23---H23 118.3 N4---Zn1---Cl2 130.48 (14) C24---C23---H23 118.3 N1---Zn1---Cl2 101.09 (12) C25---C24---C23 117.2 (7) N42---Zn1---Cl2 93.20 (13) C25---C24---H24 121.4 Cl1---Zn1---Cl2 121.64 (7) C23---C24---H24 121.4 C2---N1---C10 112.8 (4) C26---C25---C24 119.8 (7) C2---N1---Zn1 108.5 (3) C26---C25---H25 120.1 C10---N1---Zn1 119.6 (3) C24---C25---H25 120.1 C2---N1---H1 119.3 C25---C26---C21 119.5 (7) C10---N1---H1 105.6 C25---C26---H26 120.3 Zn1---N1---H1 89.7 C21---C26---H26 120.3 N1---C2---C21 111.7 (4) C32---C31---C36 117.5 (6) N1---C2---C3 108.2 (4) C32---C31---C3 121.5 (6) C21---C2---C3 110.9 (5) C36---C31---C3 121.0 (5) N1---C2---H2 108.6 C31---C32---C33 121.4 (9) C21---C2---H2 108.6 C31---C32---H32 119.3 C3---C2---H2 108.6 C33---C32---H32 119.3 N4---C3---C31 113.6 (4) C34---C33---C32 119.4 (9) N4---C3---C2 107.7 (4) C34---C33---H33 120.3 C31---C3---C2 113.0 (4) C32---C33---H33 120.3 N4---C3---H3 107.4 C33---C34---C35 121.9 (8) C31---C3---H3 107.4 C33---C34---H34 119.1 C2---C3---H3 107.4 C35---C34---H34 119.1 C3---N4---C40 114.2 (4) C34---C35---C36 118.3 (8) C3---N4---Zn1 110.0 (3) C34---C35---H35 120.9 C40---N4---Zn1 107.1 (3) C36---C35---H35 120.9 C3---N4---H4 112.7 C35---C36---C31 121.5 (7) C40---N4---H4 111.4 C35---C36---H36 119.2 Zn1---N4---H4 100.4 C31---C36---H36 119.2 C11---C10---N1 111.7 (5) N4---C40---C41 110.1 (5) C11---C10---H10A 109.3 N4---C40---H40A 109.6 N1---C10---H10A 109.3 C41---C40---H40A 109.6 C11---C10---H10B 109.3 N4---C40---H40B 109.6 N1---C10---H10B 109.3 C41---C40---H40B 109.6 H10A---C10---H10B 108.0 H40A---C40---H40B 108.2 C16---C11---C12 118.5 (7) N42---C41---C46 121.5 (6) C16---C11---C10 119.9 (7) N42---C41---C40 116.5 (5) C12---C11---C10 121.6 (6) C46---C41---C40 122.0 (5) C13---C12---C11 122.8 (8) C43---N42---C41 118.9 (5) C13---C12---H12 118.6 C43---N42---Zn1 129.3 (4) C11---C12---H12 118.6 C41---N42---Zn1 111.5 (4) C12---C13---C14 118.9 (10) N42---C43---C44 123.3 (6) C12---C13---H13 120.6 N42---C43---H43 118.3 C14---C13---H13 120.6 C44---C43---H43 118.3 C15---C14---C13 121.0 (10) C45---C44---C43 117.4 (6) C15---C14---H14 119.5 C45---C44---H44 121.3 C13---C14---H14 119.5 C43---C44---H44 121.3 C14---C15---C16 118.8 (10) C46---C45---C44 119.7 (6) C14---C15---H15 120.6 C46---C45---H45 120.2 C16---C15---H15 120.6 C44---C45---H45 120.2 C11---C16---C15 120.0 (9) C45---C46---C41 119.2 (6) C11---C16---H16 120.0 C45---C46---H46 120.4 C15---C16---H16 120.0 C41---C46---H46 120.4 N4---Zn1---N1---C2 −9.2 (3) C26---C21---N22---C23 −0.4 (11) N42---Zn1---N1---C2 −3.6 (6) C2---C21---N22---C23 179.7 (7) Cl1---Zn1---N1---C2 −116.2 (3) C21---N22---C23---C24 −1.3 (14) Cl2---Zn1---N1---C2 120.3 (3) N22---C23---C24---C25 2.4 (15) N4---Zn1---N1---C10 −140.5 (4) C23---C24---C25---C26 −1.9 (14) N42---Zn1---N1---C10 −134.9 (4) C24---C25---C26---C21 0.3 (13) Cl1---Zn1---N1---C10 112.5 (4) N22---C21---C26---C25 0.9 (11) Cl2---Zn1---N1---C10 −11.0 (4) C2---C21---C26---C25 −179.3 (7) C10---N1---C2---C21 −66.1 (6) N4---C3---C31---C32 110.5 (7) Zn1---N1---C2---C21 159.1 (4) C2---C3---C31---C32 −126.4 (6) C10---N1---C2---C3 171.6 (5) N4---C3---C31---C36 −66.3 (7) Zn1---N1---C2---C3 36.7 (5) C2---C3---C31---C36 56.8 (7) N1---C2---C3---N4 −56.4 (5) C36---C31---C32---C33 −1.9 (11) C21---C2---C3---N4 −179.2 (4) C3---C31---C32---C33 −178.8 (7) N1---C2---C3---C31 177.3 (4) C31---C32---C33---C34 0.7 (14) C21---C2---C3---C31 54.5 (6) C32---C33---C34---C35 0.2 (14) C31---C3---N4---C40 −65.8 (6) C33---C34---C35---C36 0.2 (13) C2---C3---N4---C40 168.2 (4) C34---C35---C36---C31 −1.5 (10) C31---C3---N4---Zn1 173.7 (4) C32---C31---C36---C35 2.3 (9) C2---C3---N4---Zn1 47.7 (5) C3---C31---C36---C35 179.2 (6) N1---Zn1---N4---C3 −21.3 (3) C3---N4---C40---C41 −168.0 (5) N42---Zn1---N4---C3 161.2 (4) Zn1---N4---C40---C41 −46.0 (6) Cl1---Zn1---N4---C3 70.3 (3) N4---C40---C41---N42 27.5 (8) Cl2---Zn1---N4---C3 −117.0 (3) N4---C40---C41---C46 −154.3 (6) N1---Zn1---N4---C40 −145.9 (4) C46---C41---N42---C43 0.2 (9) N42---Zn1---N4---C40 36.5 (4) C40---C41---N42---C43 178.5 (6) Cl1---Zn1---N4---C40 −54.4 (4) C46---C41---N42---Zn1 −173.9 (5) Cl2---Zn1---N4---C40 118.4 (4) C40---C41---N42---Zn1 4.4 (7) C2---N1---C10---C11 139.8 (5) N4---Zn1---N42---C43 163.2 (6) Zn1---N1---C10---C11 −90.9 (6) N1---Zn1---N42---C43 157.5 (5) N1---C10---C11---C16 −97.6 (7) Cl1---Zn1---N42---C43 −90.0 (5) N1---C10---C11---C12 83.7 (8) Cl2---Zn1---N42---C43 32.2 (5) C16---C11---C12---C13 0.7 (13) N4---Zn1---N42---C41 −23.4 (4) C10---C11---C12---C13 179.3 (8) N1---Zn1---N42---C41 −29.1 (7) C11---C12---C13---C14 1.7 (15) Cl1---Zn1---N42---C41 83.3 (4) C12---C13---C14---C15 −2.6 (18) Cl2---Zn1---N42---C41 −154.5 (4) C13---C14---C15---C16 1(2) C41---N42---C43---C44 0.4 (10) C12---C11---C16---C15 −2.3 (13) Zn1---N42---C43---C44 173.3 (5) C10---C11---C16---C15 179.0 (8) N42---C43---C44---C45 −0.5 (11) C14---C15---C16---C11 1.5 (17) C43---C44---C45---C46 −0.1 (11) N1---C2---C21---N22 −52.8 (7) C44---C45---C46---C41 0.7 (11) C3---C2---C21---N22 68.1 (7) N42---C41---C46---C45 −0.8 (10) N1---C2---C21---C26 127.3 (6) C40---C41---C46---C45 −179.0 (6) C3---C2---C21---C26 −111.8 (7) ----------------------- ------------- ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3332 .table-wrap} ------------------ --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N4---H4···Cl2^i^ 0.91 2.43 3.304 (5) 160 ------------------ --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- --------- ------- ----------- ------------- N4---H4⋯Cl2^i^ 0.91 2.43 3.304 (5) 160 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.204063
2011-2-16
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052059/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 16; 67(Pt 3):m337-m338", "authors": [ { "first": "Adailton J.", "last": "Bortoluzzi" }, { "first": "Sandro L.", "last": "Mireski" }, { "first": "Antonio C.", "last": "Joussef" } ] }
PMC3052060
Related literature {#sec1} ================== For the coordination properties of aroylhydrazones, see: Egli *et al.* (2006[@bb4]); Ge (2006[@bb6]); Chopra *et al.* (2006[@bb3]). For related structures, see: Seebacher *et al.* (2003[@bb8]); Ge (2006[@bb6]); Jian & Wang (2006[@bb7]); Fun *et al.* (2010[@bb5]). For bond-length data, see: Allen *et al.* (1987[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~22~H~18~N~2~O*M* *~r~* = 326.38Orthorhombic,*a* = 20.276 (6) Å*b* = 5.7859 (17) Å*c* = 14.786 (4) Å*V* = 1734.5 (9) Å^3^*Z* = 4Mo *K*α radiationμ = 0.08 mm^−1^*T* = 298 K0.18 × 0.16 × 0.12 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 2006)[@bb9] *T* ~min~ = 0.986, *T* ~max~ = 0.9918497 measured reflections1601 independent reflections1100 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.050 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.035*wR*(*F* ^2^) = 0.081*S* = 1.091601 reflections227 parametersH-atom parameters constrainedΔρ~max~ = 0.13 e Å^−3^Δρ~min~ = −0.10 e Å^−3^ {#d5e432} Data collection: *SMART* (Bruker, 1996[@bb2]); cell refinement: *SAINT* (Bruker, 1996[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb10]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb10]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb10]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003631/zq2084sup1.cif](http://dx.doi.org/10.1107/S1600536811003631/zq2084sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003631/zq2084Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003631/zq2084Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?zq2084&file=zq2084sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?zq2084sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?zq2084&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [ZQ2084](http://scripts.iucr.org/cgi-bin/sendsup?zq2084)). The authors thank the National Natural Science Foundation of Shaanxi Province, China (2009JM2012) for financial support. Comment ======= The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Egli *et al.*, 2006; Ge, 2006) and their biological activity (Egli *et al.*, 2006; Chopra *et al.*, 2006). As an extension of work on the structural characterization of aroylhydrazone derivatives, the title compound,*C*~22~H~18~N~2~O, was successfully synthesized and its crystal structure is reported here. In the title complex, C~22~H~18~N~2~O, all bond lengths and angles are normal (Allen *et al.*, 1987). The pyrazole ring is planar (rms deviation = 0.0098 Å) and its mean plane makes dihedral angles of 62.2 (1), 87.2 (1) and 8.0 (2)° with the benzene rings C2-C7, C9-C14 and C17-C22, respectively (Fig. 1). The crystal packing is stabilized by π-π stacking interactions between the pyrazole ring and one benzene ring with a centroid-centroid separation of 3.658 (2) Å and by weak intermolecular C---H···O hydrogen bonds (Fig.2; Table 1). Experimental {#experimental} ============ A methanol solution (10 ml) of *N*\'-(*E*)-(benzylidene acetophenone phenmethyl acylhydrazone) (0.25 mmol,0.082 g) was mixed with a DMF solution (5 ml). The mixture was stirred at 298 K for 2 h. and then filtered. A colorless precipitate was produced after about 20 days. A DMF amount (5 ml) was used to dissolve the precipitate at 330 K. Colorless block-shaped crystals of the title complex were obtained after one month (yield 30%). Refinement {#refinement} ========== H atoms were placed in calculated positions and refined as riding with the following constraints: C-H = 0.93 Å and *U*~iso~(H) = 1.2*U*~eq~(C) for aromatic H atoms, C-H = 0.97 Å and *U*~iso~(H) = 1.2*U*~eq~(C) for methylene H atoms, and C-H = 0.98 Å and *U*~iso~(H) = 1.2*U*~eq~(C) for methine H atoms. As the structure has no anomalous scatterer, the Friedel-pair reflections were merged. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. ::: ![](e-67-0o556-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of the title compound. ::: ![](e-67-0o556-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e174 .table-wrap} ------------------------- --------------------------------------- C~22~H~18~N~2~O *F*(000) = 688 *M~r~* = 326.38 *D*~x~ = 1.250 Mg m^−3^ Orthorhombic, *Pca*2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2c -2ac Cell parameters from 1072 reflections *a* = 20.276 (6) Å θ = 2.4--17.6° *b* = 5.7859 (17) Å µ = 0.08 mm^−1^ *c* = 14.786 (4) Å *T* = 298 K *V* = 1734.5 (9) Å^3^ Block, colorless *Z* = 4 0.18 × 0.16 × 0.12 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e297 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART CCD area-detector diffractometer 1601 independent reflections Radiation source: fine-focus sealed tube 1100 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.050 φ and ω scans θ~max~ = 25.1°, θ~min~ = 2.0° Absorption correction: multi-scan (*SADABS*; Sheldrick, 2006) *h* = −24→23 *T*~min~ = 0.986, *T*~max~ = 0.991 *k* = −6→6 8497 measured reflections *l* = −17→13 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e414 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.035 H-atom parameters constrained *wR*(*F*^2^) = 0.081 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0335*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.09 (Δ/σ)~max~ \< 0.001 1601 reflections Δρ~max~ = 0.13 e Å^−3^ 227 parameters Δρ~min~ = −0.10 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008) Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0113 (15) ---------------------------------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e576 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e675 .table-wrap} ------ -------------- ------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.27196 (11) 0.5466 (4) 0.77340 (17) 0.0769 (7) N1 0.28823 (12) 0.8795 (5) 0.84788 (17) 0.0617 (7) N2 0.33000 (12) 1.0610 (4) 0.87296 (18) 0.0587 (7) C1 0.30374 (16) 0.7269 (6) 0.7810 (2) 0.0607 (8) C2 0.35797 (16) 0.7877 (6) 0.7181 (2) 0.0602 (8) C3 0.36177 (18) 0.9982 (7) 0.6747 (3) 0.0742 (10) H3 0.3325 1.1160 0.6895 0.089\* C4 0.4093 (2) 1.0336 (9) 0.6092 (3) 0.0904 (12) H4 0.4105 1.1731 0.5780 0.109\* C5 0.4545 (2) 0.8659 (11) 0.5897 (3) 0.1057 (16) H5 0.4870 0.8929 0.5465 0.127\* C6 0.4521 (2) 0.6593 (10) 0.6336 (3) 0.1046 (16) H6 0.4833 0.5458 0.6209 0.125\* C7 0.40374 (18) 0.6183 (7) 0.6965 (3) 0.0840 (11) H7 0.4016 0.4752 0.7250 0.101\* C8 0.23482 (15) 0.8362 (6) 0.9137 (2) 0.0630 (9) H8 0.2392 0.6799 0.9386 0.076\* C9 0.16756 (15) 0.8651 (6) 0.8719 (2) 0.0566 (8) C10 0.15150 (17) 1.0621 (6) 0.8242 (3) 0.0719 (10) H10 0.1833 1.1755 0.8150 0.086\* C11 0.0887 (2) 1.0930 (7) 0.7897 (3) 0.0838 (11) H11 0.0788 1.2254 0.7568 0.101\* C12 0.04134 (19) 0.9293 (9) 0.8040 (3) 0.0874 (12) H12 −0.0014 0.9531 0.7830 0.105\* C13 0.05668 (19) 0.7314 (8) 0.8490 (3) 0.0860 (12) H13 0.0248 0.6176 0.8568 0.103\* C14 0.11969 (17) 0.6987 (6) 0.8833 (3) 0.0726 (10) H14 0.1297 0.5632 0.9142 0.087\* C15 0.25078 (16) 1.0154 (6) 0.9873 (2) 0.0690 (9) H15A 0.2141 1.1206 0.9964 0.083\* H15B 0.2612 0.9407 1.0443 0.083\* C16 0.30982 (15) 1.1402 (5) 0.9498 (2) 0.0572 (8) C17 0.34201 (15) 1.3367 (6) 0.9937 (2) 0.0578 (8) C18 0.39084 (15) 1.4622 (6) 0.9502 (3) 0.0655 (9) H18 0.4046 1.4170 0.8929 0.079\* C19 0.41933 (17) 1.6525 (6) 0.9903 (3) 0.0745 (10) H19 0.4518 1.7353 0.9598 0.089\* C20 0.39988 (19) 1.7206 (7) 1.0755 (3) 0.0785 (11) H20 0.4191 1.8490 1.1027 0.094\* C21 0.3520 (2) 1.5976 (7) 1.1199 (3) 0.0802 (11) H21 0.3391 1.6421 1.1777 0.096\* C22 0.32291 (17) 1.4088 (6) 1.0798 (2) 0.0718 (10) H22 0.2901 1.3283 1.1104 0.086\* ------ -------------- ------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1232 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0671 (16) 0.0745 (15) 0.0890 (18) −0.0040 (13) −0.0021 (13) −0.0112 (14) N1 0.0474 (15) 0.0756 (18) 0.0622 (18) 0.0008 (14) 0.0018 (13) −0.0107 (15) N2 0.0485 (14) 0.0682 (18) 0.0594 (17) 0.0074 (14) −0.0021 (13) −0.0077 (15) C1 0.049 (2) 0.070 (2) 0.062 (2) 0.0125 (18) −0.0095 (17) −0.008 (2) C2 0.056 (2) 0.074 (2) 0.051 (2) 0.0028 (18) −0.0054 (16) −0.0150 (19) C3 0.066 (2) 0.094 (3) 0.063 (2) −0.002 (2) −0.0115 (19) −0.007 (2) C4 0.094 (3) 0.116 (3) 0.062 (2) −0.027 (3) −0.002 (2) −0.010 (2) C5 0.090 (3) 0.149 (4) 0.077 (3) −0.039 (4) 0.024 (3) −0.051 (3) C6 0.084 (3) 0.121 (4) 0.109 (4) −0.002 (3) 0.027 (3) −0.055 (3) C7 0.073 (3) 0.095 (3) 0.083 (3) 0.004 (2) 0.012 (2) −0.024 (2) C8 0.052 (2) 0.073 (2) 0.064 (2) 0.0006 (17) 0.0000 (16) 0.0051 (18) C9 0.0491 (17) 0.064 (2) 0.057 (2) −0.0009 (16) 0.0016 (15) −0.0036 (18) C10 0.062 (2) 0.075 (2) 0.079 (2) −0.0017 (19) −0.0084 (18) 0.001 (2) C11 0.078 (3) 0.091 (3) 0.083 (3) 0.015 (2) −0.020 (2) −0.002 (2) C12 0.053 (2) 0.123 (3) 0.086 (3) 0.012 (3) −0.007 (2) −0.015 (3) C13 0.057 (2) 0.116 (4) 0.085 (3) −0.022 (2) 0.006 (2) −0.013 (3) C14 0.063 (2) 0.078 (3) 0.077 (2) −0.007 (2) 0.0091 (19) −0.002 (2) C15 0.0513 (18) 0.100 (2) 0.056 (2) −0.0009 (19) 0.0007 (16) −0.003 (2) C16 0.0480 (18) 0.075 (2) 0.0483 (19) 0.0102 (16) −0.0053 (15) −0.0023 (18) C17 0.0468 (18) 0.078 (2) 0.0482 (19) 0.0109 (17) −0.0077 (16) −0.0046 (17) C18 0.052 (2) 0.089 (2) 0.0554 (19) 0.0029 (18) −0.0022 (18) −0.008 (2) C19 0.063 (2) 0.091 (3) 0.070 (3) −0.0057 (19) −0.0032 (19) −0.007 (2) C20 0.071 (3) 0.090 (3) 0.075 (3) 0.008 (2) −0.018 (2) −0.020 (2) C21 0.077 (3) 0.103 (3) 0.060 (2) 0.004 (2) −0.005 (2) −0.019 (2) C22 0.068 (2) 0.098 (3) 0.049 (2) 0.0001 (19) −0.0013 (17) −0.006 (2) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1754 .table-wrap} --------------------- ------------ ----------------------- ------------ O1---C1 1.231 (4) C10---H10 0.9300 N1---C1 1.362 (4) C11---C12 1.365 (5) N1---N2 1.399 (3) C11---H11 0.9300 N1---C8 1.478 (4) C12---C13 1.360 (5) N2---C16 1.292 (4) C12---H12 0.9300 C1---C2 1.482 (4) C13---C14 1.387 (5) C2---C3 1.379 (5) C13---H13 0.9300 C2---C7 1.387 (4) C14---H14 0.9300 C3---C4 1.381 (5) C15---C16 1.504 (5) C3---H3 0.9300 C15---H15A 0.9700 C4---C5 1.366 (6) C15---H15B 0.9700 C4---H4 0.9300 C16---C17 1.463 (4) C5---C6 1.361 (6) C17---C18 1.386 (4) C5---H5 0.9300 C17---C22 1.394 (4) C6---C7 1.373 (6) C18---C19 1.378 (5) C6---H6 0.9300 C18---H18 0.9300 C7---H7 0.9300 C19---C20 1.378 (5) C8---C9 1.507 (4) C19---H19 0.9300 C8---C15 1.537 (4) C20---C21 1.371 (5) C8---H8 0.9800 C20---H20 0.9300 C9---C14 1.377 (4) C21---C22 1.377 (5) C9---C10 1.380 (4) C21---H21 0.9300 C10---C11 1.383 (5) C22---H22 0.9300 C1---N1---N2 122.6 (3) C12---C11---H11 120.0 C1---N1---C8 122.5 (3) C10---C11---H11 120.0 N2---N1---C8 113.3 (3) C13---C12---C11 119.9 (4) C16---N2---N1 107.9 (3) C13---C12---H12 120.0 O1---C1---N1 119.6 (3) C11---C12---H12 120.0 O1---C1---C2 122.1 (3) C12---C13---C14 120.3 (4) N1---C1---C2 118.2 (3) C12---C13---H13 119.9 C3---C2---C7 118.7 (3) C14---C13---H13 119.9 C3---C2---C1 122.9 (3) C9---C14---C13 120.6 (4) C7---C2---C1 118.2 (3) C9---C14---H14 119.7 C2---C3---C4 119.7 (4) C13---C14---H14 119.7 C2---C3---H3 120.1 C16---C15---C8 103.3 (3) C4---C3---H3 120.1 C16---C15---H15A 111.1 C5---C4---C3 120.7 (4) C8---C15---H15A 111.1 C5---C4---H4 119.6 C16---C15---H15B 111.1 C3---C4---H4 119.6 C8---C15---H15B 111.1 C6---C5---C4 120.0 (4) H15A---C15---H15B 109.1 C6---C5---H5 120.0 N2---C16---C17 121.6 (3) C4---C5---H5 120.0 N2---C16---C15 114.0 (3) C5---C6---C7 120.0 (4) C17---C16---C15 124.4 (3) C5---C6---H6 120.0 C18---C17---C22 117.7 (3) C7---C6---H6 120.0 C18---C17---C16 121.4 (3) C6---C7---C2 120.8 (4) C22---C17---C16 120.9 (3) C6---C7---H7 119.6 C19---C18---C17 121.3 (3) C2---C7---H7 119.6 C19---C18---H18 119.4 N1---C8---C9 112.0 (2) C17---C18---H18 119.4 N1---C8---C15 101.4 (3) C18---C19---C20 120.1 (4) C9---C8---C15 114.0 (3) C18---C19---H19 119.9 N1---C8---H8 109.7 C20---C19---H19 119.9 C9---C8---H8 109.7 C21---C20---C19 119.5 (4) C15---C8---H8 109.7 C21---C20---H20 120.2 C14---C9---C10 118.2 (3) C19---C20---H20 120.2 C14---C9---C8 120.7 (3) C20---C21---C22 120.6 (4) C10---C9---C8 121.0 (3) C20---C21---H21 119.7 C9---C10---C11 120.8 (4) C22---C21---H21 119.7 C9---C10---H10 119.6 C21---C22---C17 120.8 (4) C11---C10---H10 119.6 C21---C22---H22 119.6 C12---C11---C10 120.1 (4) C17---C22---H22 119.6 C1---N1---N2---C16 −165.4 (3) C14---C9---C10---C11 0.9 (5) C8---N1---N2---C16 0.8 (3) C8---C9---C10---C11 −176.8 (3) N2---N1---C1---O1 166.0 (3) C9---C10---C11---C12 1.1 (6) C8---N1---C1---O1 1.0 (4) C10---C11---C12---C13 −2.7 (6) N2---N1---C1---C2 −15.4 (4) C11---C12---C13---C14 2.3 (6) C8---N1---C1---C2 179.6 (3) C10---C9---C14---C13 −1.3 (5) O1---C1---C2---C3 128.9 (3) C8---C9---C14---C13 176.4 (3) N1---C1---C2---C3 −49.7 (4) C12---C13---C14---C9 −0.3 (6) O1---C1---C2---C7 −45.7 (4) N1---C8---C15---C16 2.1 (3) N1---C1---C2---C7 135.7 (3) C9---C8---C15---C16 −118.4 (3) C7---C2---C3---C4 2.0 (5) N1---N2---C16---C17 −178.2 (2) C1---C2---C3---C4 −172.5 (3) N1---N2---C16---C15 0.8 (3) C2---C3---C4---C5 −3.0 (5) C8---C15---C16---N2 −1.9 (4) C3---C4---C5---C6 1.5 (6) C8---C15---C16---C17 177.0 (3) C4---C5---C6---C7 0.8 (7) N2---C16---C17---C18 7.1 (4) C5---C6---C7---C2 −1.8 (6) C15---C16---C17---C18 −171.7 (3) C3---C2---C7---C6 0.3 (5) N2---C16---C17---C22 −175.0 (3) C1---C2---C7---C6 175.2 (3) C15---C16---C17---C22 6.2 (4) C1---N1---C8---C9 −73.8 (4) C22---C17---C18---C19 −0.4 (5) N2---N1---C8---C9 120.0 (3) C16---C17---C18---C19 177.5 (3) C1---N1---C8---C15 164.3 (3) C17---C18---C19---C20 0.6 (5) N2---N1---C8---C15 −1.9 (3) C18---C19---C20---C21 0.0 (5) N1---C8---C9---C14 131.1 (3) C19---C20---C21---C22 −0.7 (5) C15---C8---C9---C14 −114.5 (3) C20---C21---C22---C17 0.9 (5) N1---C8---C9---C10 −51.3 (4) C18---C17---C22---C21 −0.3 (5) C15---C8---C9---C10 63.1 (4) C16---C17---C22---C21 −178.2 (3) --------------------- ------------ ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2619 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C21---H21···O1^i^ 0.93 2.72 3.399 (5) 131 C22---H22···O1^i^ 0.93 3.00 3.540 (4) 119 C10---H10···O1^ii^ 0.93 2.87 3.793 (5) 174 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1/2, *y*+1, *z*+1/2; (ii) *x*, *y*+1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- C21---H21⋯O1^i^ 0.93 2.72 3.399 (5) 131 C22---H22⋯O1^i^ 0.93 3.00 3.540 (4) 119 C10---H10⋯O1^ii^ 0.93 2.87 3.793 (5) 174 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.212248
2011-2-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052060/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 5; 67(Pt 3):o556", "authors": [ { "first": "Chang-Zheng", "last": "Zheng" }, { "first": "Liang", "last": "Wang" }, { "first": "Juan", "last": "Liu" } ] }
PMC3052061
Related literature {#sec1} ================== For the synthesis, see: Barrero *et al.* (2009[@bb3]). For the medicinal inter­est in *Inula Viscosa­* (L) Aiton \[or *Dittrichia Viscosa­* (L) Greuter\], see: Shtacher & Kasshman, (1970[@bb12]); Bohlmann *et al.* (1977[@bb4]); Chiappini *et al.* (1982[@bb6]) and for the pharmacological inter­est, see: Azoulay *et al.* (1986[@bb2]); Bohlmann *et al.* (1977[@bb4]); Ceccherelli *et al.* (1988[@bb5]). For background to phytochemical studies of plants, see: Geissman & Toribio (1967[@bb10]). For conformational analysis, see: Cremer & Pople (1975[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~14~H~24~O~2~*M* *~r~* = 224.33Monoclinic,*a* = 6.4919 (7) Å*b* = 9.4057 (9) Å*c* = 10.3638 (11) Åβ = 97.286 (10)°*V* = 627.71 (11) Å^3^*Z* = 2Mo *K*α radiationμ = 0.08 mm^−1^*T* = 180 K0.6 × 0.25 × 0.15 mm ### Data collection {#sec2.1.2} Agilent Eos Gemini Ultra diffractometer6571 measured reflections1362 independent reflections1262 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.047 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.043*wR*(*F* ^2^) = 0.119*S* = 1.091362 reflections152 parameters1 restraintH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.28 e Å^−3^Δρ~min~ = −0.24 e Å^−3^ {#d5e462} Data collection: *CrysAlis PRO* (Agilent, 2010[@bb1]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXL97* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb11]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb8]) and *PLATON* (Spek, 2009[@bb13]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb9]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004454/fj2393sup1.cif](http://dx.doi.org/10.1107/S1600536811004454/fj2393sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004454/fj2393Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004454/fj2393Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?fj2393&file=fj2393sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?fj2393sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?fj2393&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [FJ2393](http://scripts.iucr.org/cgi-bin/sendsup?fj2393)). The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements. Comment ======= The ilicic acid is one of the main components of the extracts of the aerial parts Inula viscose. This natural acid is a major constituent of the dichloromethane extract of the Inula Viscosa (*L*) Aiton \[or Dittrichia Viscosa (*L*) Greuter\]. This plant is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970; Chiappini *et al.*, 1982) and has some pharmacological activities (Azoulay *et al.*, 1986). the Inula Viscosa (*L*) Aiton has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlmann *et al.*, 1977), sesquiterpene acids (Ceccherelli *et al.*, 1988; Geissman *et al.*1967). The literature report one article on the transformation of the ilicic acid (Barrero *et al.*, 2009). In order to prepare products with high added value, used in the industry pharmacological or cosmetic, we have studied the reactivity of this acid. Thus, with the reaction Curtius, we synthesized the title compound(1*R*, 2*R*, 6*R*, 9*R*)-9-acethyl-2,6-dimethylbicyclo \[4.4.0\]decan-2-ol) with à yield 50%. The structure of this new derivative of ilicic acid was determined by NMR spectral analysis of 1H, 13 C and mass spectroscopy and confirmed by its single-crystal X-ray structure. The molecule is built up from two fused six-membered rings. The molecular structure of (I),Fig.1, shows the two rings to adopt a perfect chair conformation as indicated by Cremer & Pople (1975) puckering parameters Q(T)= 0.554 (2)Å and spherical polar angle θ = 178.1 (2)° with φ = 36 (7)° for the first ring (C1,C2··· C6) and Q(T)= 0.597 (2)Å with a spherical polar angle θ = 178.71 (19)° and φ = 108 (5)° for the second ring (C1, C6···C10)(Cremer and Pople,1975). In the crystal structure, molecules are linked into chains (Fig. 2) running along the *b* axis by intermolecular O---H···O hydrogen bonds (Table 1) involving the O1 and O2 atoms. Experimental {#experimental} ============ A solution containing the ilicic acid 1 g (3.96 mmol) and Et3N 0.82 ml (5.895 mmol) in dry THF (100 ml) was cooled at -10 °C. Ethyl chloroformate 0,56 ml (5.95 mm l) was added dropwise and the reaction mixture was stirred at this temperature for 1 h. A solution of NaN3 0.43 g (6.74 mmol) in H2O (10 ml) was then added in one portion. After 1.5 h at 0 °C, the resulting heterogeous mixture was filttered, the organic solvent was removed under reduced pressure and the aqueous phase was extracted tree time with ether (3 × 50 ml). The combined organic layers were dried over MgSO4, and concentrated *in vacuo*. The crude acyl-azide was then dissolved in toluene (50 ml) and the resulting solution was refluxed for 1 h. Then a solution of hydrochloric acid at 10% was added to the reaction mixture which is remized at reflux for 2 h. After extraction, the organic phase is washed with water and brine, dried over anhydrous Na2SO4, filtered and concentrated under vacuum. The product was purified by column chromatography over silica gel (hexane/ethyl acetate 95/5). The title compound was recrystallized in dichloromethane. Refinement {#refinement} ========== Except H2, all H atoms were fixed geometrically and treated as riding with C---H = 0.96 Å (methyl),0.97 Å (methylene), 0.98Å (methine) with *U*~iso~(H) = 1.2Ueq(methylene, methine and OH) or *U*~iso~(H) = 1.5Ueq(methyl). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1167 Friedel pairs were merged and any references to the Flack parameter were removed. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. ::: ![](e-67-0o601-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Partial packing view showing the O---H···O interactions (dashed lines)and the formation of a chain parallel to the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity. \[Symmetry code: (i)1 - x,-1/2 + y,-z + 2\] ::: ![](e-67-0o601-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e177 .table-wrap} ------------------------ --------------------------------------- C~14~H~24~O~2~ *F*(000) = 248 *M~r~* = 224.33 *D*~x~ = 1.187 Mg m^−3^ Monoclinic, *P*2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2yb Cell parameters from 6571 reflections *a* = 6.4919 (7) Å θ = 2.9--26.4° *b* = 9.4057 (9) Å µ = 0.08 mm^−1^ *c* = 10.3638 (11) Å *T* = 180 K β = 97.286 (10)° Prism, colourless *V* = 627.71 (11) Å^3^ 0.6 × 0.25 × 0.15 mm *Z* = 2 ------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e301 .table-wrap} -------------------------------------------- -------------------------------------- Agilent Eos Gemini Ultra diffractometer 1262 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.047 graphite θ~max~ = 26.4°, θ~min~ = 2.9° Detector resolution: 16.1978 pixels mm^-1^ *h* = −8→8 φ and ω scans *k* = −11→11 6571 measured reflections *l* = −12→12 1362 independent reflections -------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e405 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.043 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.119 H atoms treated by a mixture of independent and constrained refinement *S* = 1.09 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0935*P*)^2^ + 0.0033*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1362 reflections (Δ/σ)~max~ \< 0.001 152 parameters Δρ~max~ = 0.28 e Å^−3^ 1 restraint Δρ~min~ = −0.24 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e562 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e661 .table-wrap} ------ ------------ -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ H2 0.822 (5) 0.709 (4) 0.829 (3) 0.039 (8)\* C1 0.8653 (3) 0.9919 (2) 0.80775 (19) 0.0185 (4) H1 0.9924 0.9851 0.8695 0.022\* C2 0.8777 (3) 0.8642 (2) 0.7154 (2) 0.0214 (4) C3 1.0704 (3) 0.8816 (2) 0.6454 (2) 0.0261 (5) H3A 1.1934 0.8693 0.7081 0.031\* H3B 1.0705 0.8072 0.5806 0.031\* C4 1.0826 (3) 1.0251 (3) 0.5791 (2) 0.0296 (5) H4A 0.9684 1.0339 0.5095 0.036\* H4B 1.2114 1.0311 0.5411 0.036\* C5 1.0729 (3) 1.1462 (2) 0.6757 (2) 0.0269 (5) H5A 1.0766 1.2360 0.6300 0.032\* H5B 1.1947 1.1420 0.7403 0.032\* C6 0.8776 (3) 1.1420 (2) 0.7452 (2) 0.0220 (5) C7 0.9014 (4) 1.2512 (2) 0.8558 (2) 0.0262 (5) H7A 1.0348 1.2372 0.9079 0.031\* H7B 0.9008 1.3459 0.8186 0.031\* C8 0.7305 (4) 1.2420 (2) 0.9442 (2) 0.0267 (5) H8A 0.5973 1.2638 0.8945 0.032\* H8B 0.7565 1.3112 1.0137 0.032\* C9 0.7245 (3) 1.0926 (2) 1.0020 (2) 0.0225 (4) H9 0.8596 1.0737 1.0527 0.027\* C10 0.6895 (3) 0.9817 (2) 0.89272 (19) 0.0208 (4) H10A 0.6867 0.8871 0.9298 0.025\* H10B 0.5572 0.9987 0.8402 0.025\* C11 0.6816 (3) 0.8367 (3) 0.6205 (2) 0.0281 (5) H11A 0.5633 0.8342 0.6674 0.042\* H11B 0.6942 0.7472 0.5776 0.042\* H11C 0.6643 0.9114 0.5570 0.042\* C12 0.6859 (4) 1.1824 (3) 0.6488 (2) 0.0291 (5) H12A 0.6890 1.1314 0.5688 0.044\* H12B 0.6873 1.2827 0.6321 0.044\* H12C 0.5619 1.1581 0.6854 0.044\* C13 0.5607 (4) 1.0824 (2) 1.0919 (2) 0.0254 (5) C14 0.6262 (4) 1.0246 (3) 1.2248 (2) 0.0365 (6) H14A 0.5094 1.0239 1.2732 0.055\* H14B 0.7341 1.0832 1.2688 0.055\* H14C 0.6770 0.9293 1.2181 0.055\* O1 0.9229 (2) 0.73764 (16) 0.79125 (15) 0.0258 (4) O2 0.3823 (3) 1.1216 (2) 1.05879 (17) 0.0368 (4) ------ ------------ -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1180 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0181 (9) 0.0150 (9) 0.0221 (10) 0.0001 (7) 0.0013 (7) 0.0000 (7) C2 0.0234 (11) 0.0173 (9) 0.0236 (10) 0.0027 (8) 0.0035 (8) 0.0001 (8) C3 0.0265 (11) 0.0247 (11) 0.0283 (11) 0.0026 (8) 0.0079 (8) −0.0005 (9) C4 0.0300 (11) 0.0311 (12) 0.0299 (11) −0.0018 (9) 0.0119 (9) 0.0033 (9) C5 0.0256 (11) 0.0237 (11) 0.0322 (11) −0.0027 (8) 0.0065 (8) 0.0053 (9) C6 0.0200 (10) 0.0188 (10) 0.0269 (10) −0.0005 (7) 0.0017 (7) 0.0025 (8) C7 0.0299 (11) 0.0163 (10) 0.0319 (11) −0.0033 (8) 0.0016 (9) −0.0003 (8) C8 0.0308 (11) 0.0180 (10) 0.0309 (11) 0.0017 (9) 0.0024 (9) −0.0025 (8) C9 0.0258 (10) 0.0185 (10) 0.0229 (10) 0.0003 (8) 0.0026 (8) −0.0020 (7) C10 0.0236 (10) 0.0149 (9) 0.0241 (10) 0.0001 (8) 0.0040 (7) −0.0014 (7) C11 0.0253 (11) 0.0266 (11) 0.0321 (11) −0.0011 (8) 0.0024 (9) −0.0068 (9) C12 0.0298 (12) 0.0263 (11) 0.0304 (11) 0.0037 (9) 0.0003 (9) 0.0055 (9) C13 0.0325 (12) 0.0149 (9) 0.0296 (11) 0.0006 (8) 0.0070 (8) −0.0058 (8) C14 0.0463 (14) 0.0321 (13) 0.0324 (12) −0.0030 (11) 0.0097 (10) 0.0025 (10) O1 0.0279 (8) 0.0172 (7) 0.0341 (8) 0.0036 (6) 0.0103 (6) 0.0028 (6) O2 0.0336 (9) 0.0360 (10) 0.0429 (9) 0.0095 (7) 0.0132 (7) 0.0005 (8) ----- ------------- ------------- ------------- -------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1492 .table-wrap} ---------------- ------------- ------------------- ------------- C1---C10 1.530 (3) C8---C9 1.530 (3) C1---C2 1.545 (3) C8---H8A 0.9700 C1---C6 1.560 (3) C8---H8B 0.9700 C1---H1 0.9800 C9---C13 1.503 (3) C2---O1 1.436 (3) C9---C10 1.535 (3) C2---C11 1.529 (3) C9---H9 0.9800 C2---C3 1.532 (3) C10---H10A 0.9700 C3---C4 1.521 (3) C10---H10B 0.9700 C3---H3A 0.9700 C11---H11A 0.9600 C3---H3B 0.9700 C11---H11B 0.9600 C4---C5 1.524 (3) C11---H11C 0.9600 C4---H4A 0.9700 C12---H12A 0.9600 C4---H4B 0.9700 C12---H12B 0.9600 C5---C6 1.536 (3) C12---H12C 0.9600 C5---H5A 0.9700 C13---O2 1.222 (3) C5---H5B 0.9700 C13---C14 1.493 (3) C6---C7 1.533 (3) C14---H14A 0.9600 C6---C12 1.541 (3) C14---H14B 0.9600 C7---C8 1.528 (3) C14---H14C 0.9600 C7---H7A 0.9700 O1---H2 0.85 (3) C7---H7B 0.9700 C10---C1---C2 114.14 (16) H7A---C7---H7B 107.7 C10---C1---C6 112.18 (15) C7---C8---C9 110.07 (17) C2---C1---C6 115.90 (15) C7---C8---H8A 109.6 C10---C1---H1 104.3 C9---C8---H8A 109.6 C2---C1---H1 104.3 C7---C8---H8B 109.6 C6---C1---H1 104.3 C9---C8---H8B 109.6 O1---C2---C11 107.93 (18) H8A---C8---H8B 108.2 O1---C2---C3 103.02 (16) C13---C9---C8 110.87 (17) C11---C2---C3 112.14 (17) C13---C9---C10 111.32 (17) O1---C2---C1 109.18 (15) C8---C9---C10 110.12 (16) C11---C2---C1 115.19 (16) C13---C9---H9 108.1 C3---C2---C1 108.64 (17) C8---C9---H9 108.1 C4---C3---C2 113.69 (17) C10---C9---H9 108.1 C4---C3---H3A 108.8 C1---C10---C9 109.28 (15) C2---C3---H3A 108.8 C1---C10---H10A 109.8 C4---C3---H3B 108.8 C9---C10---H10A 109.8 C2---C3---H3B 108.8 C1---C10---H10B 109.8 H3A---C3---H3B 107.7 C9---C10---H10B 109.8 C3---C4---C5 110.96 (17) H10A---C10---H10B 108.3 C3---C4---H4A 109.4 C2---C11---H11A 109.5 C5---C4---H4A 109.4 C2---C11---H11B 109.5 C3---C4---H4B 109.4 H11A---C11---H11B 109.5 C5---C4---H4B 109.4 C2---C11---H11C 109.5 H4A---C4---H4B 108.0 H11A---C11---H11C 109.5 C4---C5---C6 113.21 (17) H11B---C11---H11C 109.5 C4---C5---H5A 108.9 C6---C12---H12A 109.5 C6---C5---H5A 108.9 C6---C12---H12B 109.5 C4---C5---H5B 108.9 H12A---C12---H12B 109.5 C6---C5---H5B 108.9 C6---C12---H12C 109.5 H5A---C5---H5B 107.7 H12A---C12---H12C 109.5 C7---C6---C5 108.80 (16) H12B---C12---H12C 109.5 C7---C6---C12 108.44 (18) O2---C13---C14 121.2 (2) C5---C6---C12 109.67 (17) O2---C13---C9 121.8 (2) C7---C6---C1 107.52 (17) C14---C13---C9 117.03 (19) C5---C6---C1 107.90 (16) C13---C14---H14A 109.5 C12---C6---C1 114.38 (18) C13---C14---H14B 109.5 C8---C7---C6 113.48 (17) H14A---C14---H14B 109.5 C8---C7---H7A 108.9 C13---C14---H14C 109.5 C6---C7---H7A 108.9 H14A---C14---H14C 109.5 C8---C7---H7B 108.9 H14B---C14---H14C 109.5 C6---C7---H7B 108.9 C2---O1---H2 113 (2) ---------------- ------------- ------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2074 .table-wrap} ----------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H2···O2^i^ 0.84 (3) 2.05 (3) 2.883 (2) 169 (3) ----------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, *y*−1/2, −*z*+2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- ---------- ---------- ----------- ------------- O1---H2⋯O2^i^ 0.84 (3) 2.05 (3) 2.883 (2) 169 (3) Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.218075
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052061/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o601", "authors": [ { "first": "Mohamed", "last": "Tebbaa" }, { "first": "Ahmed", "last": "Benharref" }, { "first": "Moha", "last": "Berraho" }, { "first": "Jean-Claude", "last": "Daran" }, { "first": "Mohamed", "last": "Akssira" }, { "first": "Ahmed", "last": "Elhakmaoui" } ] }
PMC3052062
Related literature {#sec1} ================== For the first examples of polynuclear transition metal complexes of Schiff base macrocyclic ligands, see: Pilkington & Robson (1970[@bb6]). For complexes comprising of macrocyclic ligands derived from 2-hy­droxy-benzene-1,3-dicarbaldehyde and diamines or triamines, see: Vigato *et al.* (1990[@bb10], 2007[@bb9]); Huang *et al.* (2006[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Zn~4~(C~28~H~18~N~4~O~2~)~2~(CH~3~O)~2~\](ClO~4~)~2~·2C~3~H~7~NO*M* *~r~* = 1553.57Monoclinic,*a* = 30.9454 (4) Å*b* = 10.4512 (2) Å*c* = 20.5774 (4) Åβ = 112.019 (1)°*V* = 6169.65 (19) Å^3^*Z* = 4Mo *K*α radiationμ = 1.70 mm^−1^*T* = 123 K0.20 × 0.20 × 0.13 mm ### Data collection {#sec2.1.2} Nonius KappaCCD diffractometerAbsorption correction: multi-scan (*SORTAV*; Blessing, 1997[@bb2]) *T* ~min~ = 0.92, *T* ~max~ = 1.032276 measured reflections6063 independent reflections4245 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.074 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.045*wR*(*F* ^2^) = 0.123*S* = 1.036063 reflections453 parameters17 restraintsH-atom parameters constrainedΔρ~max~ = 0.86 e Å^−3^Δρ~min~ = −0.47 e Å^−3^ {#d5e473} Data collection: *COLLECT* (Nonius, 2004[@bb4]); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997)[@bb5]; data reduction: *DENZO-SMN* [@bb5]; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *CIFTAB* (Sheldrick, 1997[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005873/im2265sup1.cif](http://dx.doi.org/10.1107/S1600536811005873/im2265sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005873/im2265Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005873/im2265Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?im2265&file=im2265sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?im2265sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?im2265&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [IM2265](http://scripts.iucr.org/cgi-bin/sendsup?im2265)). We acknowledge support from Monash University and the Australian Research Council Comment ======= The molecular structure of \[Zn~4~*L*~2~(CH~3~O)~2~\](ClO~4~)~2~ × 2 DMF (1) (Figure 1) features two Schiff base ligands, each of which coordinates a pair of zinc(II) centres. The dinuclear subunits are then bridged by two exogenous methoxo ligands. The two independent zinc(II) atoms have similar square-pyramidal coordination environments. The basal plane consists of nitrogen and oxygen atoms of the Schiff base ligand (mean deviation Zn1 0.004 (3) Å, Zn2 0.019 (3) Å); Zn1 and Zn2 lie out of these basal planes by 0.644 (1) and 0.654 (1) Å, respectively. The oxygen atoms, O3 and O3^i^ (symmetry code: i 1 - *x*, *y*, 0.5 - *z*), of the bridging methoxo ligands occupy the apical positions. The two zinc(II) centres within each macrocyclic cavity are separated by 3.0136 (6) Å, whilst those bridged by the methoxo ligand are situated 3.4458 (5) Å apart. Within the cation, there is an aromatic π-π interaction between the phenolic ring (C8---C13) from each of the Schiff base ligands. The centroid-centroid separation between them is 3.491 (5) Å and there is a distinct bending of the Schiff base ligand with the C8---C13 ring forming an angle of 27.44 (9) ° to the N1, N2, N3, N4 plane (*cf* 4.1 (1) ° for the other phenolic ring C15---C20). Overall, the cation adopts a \'cleft-shaped\' structure with the associated ClO~4~^-^ anions and DMF molecules located near the periphery of the cleft opening. Experimental {#experimental} ============ A solution of 2-hydroxy-benzene-1,3-dicarbaldehyde (2 mmol) in ethanol (10 ml) was added dropwise to a stirred solution of Zn(ClO~4~)~2~ × 6 H~2~O (2 mmol) and 1,2-diaminobenzene (2 mmol) in ethanol (20 ml). Triethylamine (2 mmol) was then added and the reaction mixture was stirred for 3 h at room temperature. The solvent was removed *in vacuo* and the resulting solid was recrystallized by slow diffusion of methanol into an *N,N*-dimethylformamide solution to give the title compound as yellow blocks in 64% yield. IR (cm^-1^): 622 (ClO~4~), 1090 (ClO~4~), 1540 (C=C), 1615 (C=N). CAUTION: Although no problems were encountered in this work transition metal perchlorates are potentially explosive. They should be prepared in small quantities and handled with care. Refinement {#refinement} ========== All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C---H distances in the range 0.95--1.00 Å and *U*~iso~(H) = 1.2--1.5 *U*~eq~(C). The methyl groups of the solvent DMF molecule, C31 and C32, were modeled as disordered over two positions 0.8 Å apart (refinined occupancies 0.60:0.40) and were refined with constrained N---C distances and anisotropic thermal parameters. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A view of the complex cation of (I) showing labeling of selected non-hydrogen atoms. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted for clarity. Atoms denoted \'i\' are generated by the symmetry operator: 1 - x, y, 0.5 - z. ::: ![](e-67-0m368-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e191 .table-wrap} -------------------------------------------------------------------- --------------------------------------- \[Zn~4~(C~28~H~18~N~4~O~2~)~2~(CH~3~O)~2~\](ClO~4~)~2~·2C~3~H~7~NO *F*(000) = 3168 *M~r~* = 1553.57 *D*~x~ = 1.673 Mg m^−3^ Monoclinic, *C*2/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -C 2yc Cell parameters from 3613 reflections *a* = 30.9454 (4) Å θ = 2.1--26.0° *b* = 10.4512 (2) Å µ = 1.70 mm^−1^ *c* = 20.5774 (4) Å *T* = 123 K β = 112.019 (1)° Block, yellow *V* = 6169.65 (19) Å^3^ 0.20 × 0.20 × 0.13 mm *Z* = 4 -------------------------------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e345 .table-wrap} -------------------------------------------------------------- -------------------------------------- Nonius KappaCCD diffractometer 6063 independent reflections Radiation source: fine-focus sealed tube 4245 reflections with *I* \> 2σ(*I*) horizonally mounted graphite crystal *R*~int~ = 0.074 Detector resolution: 9 pixels mm^-1^ θ~max~ = 26.0°, θ~min~ = 2.1° Thin--slice φ and ω scans *h* = −38→38 Absorption correction: multi-scan (*SORTAV*; Blessing, 1997) *k* = −12→12 *T*~min~ = 0.92, *T*~max~ = 1.0 *l* = −25→25 32276 measured reflections -------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e469 .table-wrap} ------------------------------------- -------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.045 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.123 H-atom parameters constrained *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0611*P*)^2^ + 14.7497*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 6063 reflections (Δ/σ)~max~ = 0.001 453 parameters Δρ~max~ = 0.86 e Å^−3^ 17 restraints Δρ~min~ = −0.47 e Å^−3^ ------------------------------------- -------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e626 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.The methyl groups of the solvent DMF molecule, C31 and C32, were modeled as disordered over two positions 0.8 Å apart (refined occupancies 0.60:0.40) and were refined with constrained N---C distances and anisotropic thermal parameters. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e727 .table-wrap} ------- --------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Zn1 0.544502 (14) 0.56311 (4) 0.36676 (2) 0.01940 (13) Zn2 0.440196 (15) 0.56125 (4) 0.29071 (2) 0.01988 (13) Cl3 0.84640 (4) 0.42735 (11) 0.41666 (5) 0.0349 (3) O1 0.49269 (8) 0.6907 (2) 0.31948 (12) 0.0221 (6) O2 0.48877 (9) 0.4672 (2) 0.37215 (13) 0.0246 (6) O3 0.56028 (9) 0.4799 (2) 0.29429 (12) 0.0211 (6) O4 0.66347 (13) −0.0167 (4) 0.36447 (19) 0.0604 (10) O5 0.80381 (13) 0.4340 (5) 0.4259 (2) 0.0914 (17) O6 0.84744 (12) 0.5253 (4) 0.3665 (2) 0.0599 (10) O7 0.88417 (12) 0.4450 (4) 0.48234 (17) 0.0586 (10) O8 0.85150 (17) 0.3080 (4) 0.38887 (19) 0.0873 (15) N1 0.58342 (11) 0.4818 (3) 0.46159 (16) 0.0232 (7) N2 0.58800 (11) 0.7109 (3) 0.40917 (16) 0.0240 (7) N3 0.39402 (11) 0.7064 (3) 0.27061 (16) 0.0239 (7) N4 0.39069 (11) 0.4756 (3) 0.32117 (16) 0.0236 (7) N5 0.68833 (17) 0.1882 (4) 0.3794 (3) 0.0628 (13) C1 0.62745 (13) 0.5440 (4) 0.48975 (19) 0.0245 (9) C2 0.63005 (13) 0.6653 (4) 0.46105 (19) 0.0256 (9) C3 0.67245 (15) 0.7315 (5) 0.4850 (2) 0.0376 (11) H3 0.6747 0.8128 0.4658 0.045\* C4 0.71091 (15) 0.6788 (5) 0.5362 (2) 0.0424 (12) H4 0.7395 0.7245 0.5524 0.051\* C5 0.70858 (15) 0.5603 (5) 0.5645 (2) 0.0374 (11) H5 0.7355 0.5256 0.5999 0.045\* C6 0.66721 (14) 0.4916 (4) 0.5414 (2) 0.0319 (10) H6 0.6658 0.4096 0.5605 0.038\* C7 0.57915 (14) 0.8310 (4) 0.3979 (2) 0.0266 (9) H7 0.6043 0.8888 0.4185 0.032\* C8 0.53386 (14) 0.8859 (4) 0.35607 (19) 0.0230 (8) C9 0.49187 (13) 0.8162 (4) 0.32477 (18) 0.0214 (8) C10 0.44868 (14) 0.8847 (4) 0.30100 (18) 0.0243 (9) C11 0.44939 (15) 1.0188 (4) 0.3043 (2) 0.0306 (10) H11 0.4207 1.0642 0.2884 0.037\* C12 0.49064 (15) 1.0866 (4) 0.3302 (2) 0.0322 (10) H12 0.4904 1.1774 0.3295 0.039\* C13 0.53222 (16) 1.0211 (4) 0.3570 (2) 0.0304 (10) H13 0.5605 1.0679 0.3765 0.037\* C14 0.40247 (14) 0.8270 (4) 0.27734 (19) 0.0270 (9) H14 0.3765 0.8832 0.2660 0.032\* C15 0.34817 (13) 0.6556 (4) 0.2554 (2) 0.0270 (9) C16 0.34680 (13) 0.5339 (4) 0.2840 (2) 0.0260 (9) C17 0.30367 (14) 0.4767 (5) 0.2720 (2) 0.0348 (10) H17 0.3022 0.3953 0.2916 0.042\* C18 0.26309 (16) 0.5393 (5) 0.2314 (2) 0.0390 (11) H18 0.2337 0.5008 0.2235 0.047\* C19 0.26487 (15) 0.6566 (5) 0.2025 (2) 0.0409 (12) H19 0.2367 0.6974 0.1739 0.049\* C20 0.30707 (15) 0.7164 (4) 0.2143 (2) 0.0356 (10) H20 0.3079 0.7981 0.1945 0.043\* C21 0.39648 (14) 0.3803 (4) 0.36304 (19) 0.0256 (9) H21 0.3692 0.3429 0.3658 0.031\* C22 0.44099 (13) 0.3244 (4) 0.40659 (19) 0.0239 (9) C23 0.48531 (13) 0.3777 (4) 0.41457 (19) 0.0228 (8) C24 0.52560 (14) 0.3311 (4) 0.46991 (19) 0.0256 (9) C25 0.52120 (15) 0.2229 (4) 0.5082 (2) 0.0285 (9) H25 0.5482 0.1902 0.5444 0.034\* C26 0.47916 (15) 0.1639 (4) 0.4945 (2) 0.0310 (10) H26 0.4775 0.0872 0.5182 0.037\* C27 0.43931 (15) 0.2168 (4) 0.4462 (2) 0.0281 (9) H27 0.4100 0.1794 0.4395 0.034\* C28 0.57110 (14) 0.3906 (4) 0.49350 (19) 0.0262 (9) H28 0.5939 0.3601 0.5361 0.031\* C29 0.5691 (2) 0.3485 (4) 0.3017 (2) 0.0519 (14) H29A 0.5406 0.3016 0.2747 0.078\* H29B 0.5793 0.3250 0.3513 0.078\* H29C 0.5936 0.3269 0.2842 0.078\* C30 0.67208 (19) 0.0813 (6) 0.3976 (3) 0.0556 (15) H30 0.6669 0.0828 0.4403 0.067\* C31 0.7049 (6) 0.2897 (15) 0.4349 (9) 0.084 (4) 0.60 (2) H31A 0.7168 0.3629 0.4169 0.126\* 0.60 (2) H31B 0.7299 0.2550 0.4763 0.126\* 0.60 (2) H31C 0.6789 0.3174 0.4478 0.126\* 0.60 (2) C32 0.6894 (5) 0.1867 (13) 0.3083 (6) 0.056 (3) 0.60 (2) H32A 0.7017 0.2683 0.2992 0.084\* 0.60 (2) H32B 0.6577 0.1740 0.2737 0.084\* 0.60 (2) H32C 0.7094 0.1167 0.3047 0.084\* 0.60 (2) C31\' 0.6860 (5) 0.3255 (11) 0.4007 (12) 0.055 (5) 0.40 (2) H31D 0.7025 0.3803 0.3789 0.082\* 0.40 (2) H31E 0.7007 0.3329 0.4518 0.082\* 0.40 (2) H31F 0.6533 0.3523 0.3852 0.082\* 0.40 (2) C32\' 0.7093 (8) 0.1998 (19) 0.3261 (9) 0.053 (5) 0.40 (2) H32D 0.7171 0.2896 0.3220 0.080\* 0.40 (2) H32E 0.6871 0.1696 0.2808 0.080\* 0.40 (2) H32F 0.7377 0.1479 0.3400 0.080\* 0.40 (2) ------- --------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1797 .table-wrap} ------- ------------- ------------- ------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Zn1 0.0232 (2) 0.0180 (2) 0.0188 (2) −0.00098 (19) 0.00989 (18) −0.00027 (17) Zn2 0.0236 (2) 0.0188 (2) 0.0191 (2) 0.00050 (19) 0.01015 (18) −0.00067 (17) Cl3 0.0274 (5) 0.0398 (6) 0.0327 (5) −0.0016 (5) 0.0057 (4) −0.0034 (5) O1 0.0236 (14) 0.0164 (14) 0.0265 (14) −0.0006 (11) 0.0095 (11) −0.0011 (11) O2 0.0236 (14) 0.0262 (15) 0.0252 (14) −0.0023 (12) 0.0104 (12) 0.0083 (11) O3 0.0287 (15) 0.0167 (13) 0.0220 (13) 0.0045 (11) 0.0143 (12) 0.0041 (10) O4 0.070 (3) 0.049 (2) 0.060 (2) −0.018 (2) 0.022 (2) −0.0024 (19) O5 0.034 (2) 0.174 (5) 0.064 (3) 0.005 (3) 0.0168 (19) 0.042 (3) O6 0.044 (2) 0.063 (3) 0.065 (2) −0.0124 (18) 0.0112 (18) 0.0204 (19) O7 0.041 (2) 0.085 (3) 0.0386 (19) 0.0051 (19) 0.0016 (16) −0.0150 (18) O8 0.148 (4) 0.048 (2) 0.045 (2) 0.012 (3) 0.012 (2) −0.0124 (19) N1 0.0244 (18) 0.0235 (18) 0.0214 (16) 0.0011 (14) 0.0083 (14) −0.0013 (13) N2 0.0283 (18) 0.0236 (19) 0.0238 (16) −0.0044 (15) 0.0141 (14) −0.0020 (13) N3 0.0260 (18) 0.0233 (19) 0.0216 (16) 0.0037 (15) 0.0079 (14) 0.0001 (13) N4 0.0251 (18) 0.0249 (18) 0.0237 (17) −0.0037 (14) 0.0123 (14) −0.0042 (14) N5 0.080 (3) 0.049 (3) 0.087 (3) −0.022 (3) 0.063 (3) −0.023 (2) C1 0.024 (2) 0.033 (2) 0.0184 (18) −0.0023 (17) 0.0112 (16) −0.0079 (16) C2 0.026 (2) 0.032 (2) 0.0217 (19) −0.0006 (18) 0.0121 (17) −0.0037 (17) C3 0.036 (3) 0.043 (3) 0.033 (2) −0.012 (2) 0.012 (2) −0.003 (2) C4 0.028 (2) 0.064 (3) 0.034 (2) −0.015 (2) 0.011 (2) −0.006 (2) C5 0.027 (2) 0.057 (3) 0.028 (2) 0.001 (2) 0.0106 (19) −0.001 (2) C6 0.033 (2) 0.039 (3) 0.023 (2) 0.007 (2) 0.0098 (18) −0.0001 (19) C7 0.031 (2) 0.026 (2) 0.028 (2) −0.0110 (18) 0.0171 (18) −0.0076 (17) C8 0.036 (2) 0.019 (2) 0.0206 (19) −0.0018 (18) 0.0183 (17) 0.0006 (15) C9 0.033 (2) 0.0176 (19) 0.0182 (18) 0.0005 (17) 0.0147 (16) 0.0007 (15) C10 0.039 (2) 0.017 (2) 0.0196 (19) 0.0014 (18) 0.0147 (18) 0.0024 (15) C11 0.044 (3) 0.023 (2) 0.029 (2) 0.010 (2) 0.018 (2) 0.0056 (17) C12 0.052 (3) 0.019 (2) 0.034 (2) 0.001 (2) 0.026 (2) 0.0038 (18) C13 0.047 (3) 0.024 (2) 0.029 (2) −0.006 (2) 0.023 (2) −0.0013 (17) C14 0.034 (2) 0.026 (2) 0.023 (2) 0.0091 (19) 0.0133 (17) 0.0036 (17) C15 0.024 (2) 0.031 (2) 0.025 (2) 0.0039 (18) 0.0075 (17) −0.0062 (17) C16 0.025 (2) 0.033 (2) 0.022 (2) 0.0021 (18) 0.0106 (17) −0.0069 (16) C17 0.031 (2) 0.043 (3) 0.031 (2) −0.003 (2) 0.0134 (19) −0.0067 (19) C18 0.028 (2) 0.054 (3) 0.034 (2) −0.002 (2) 0.010 (2) −0.009 (2) C19 0.028 (2) 0.054 (3) 0.035 (2) 0.012 (2) 0.006 (2) −0.005 (2) C20 0.037 (3) 0.038 (3) 0.028 (2) 0.009 (2) 0.0090 (19) −0.0039 (19) C21 0.029 (2) 0.027 (2) 0.026 (2) −0.0064 (18) 0.0163 (18) −0.0072 (17) C22 0.031 (2) 0.020 (2) 0.026 (2) −0.0016 (17) 0.0168 (17) −0.0017 (16) C23 0.034 (2) 0.017 (2) 0.0239 (19) −0.0004 (17) 0.0187 (17) −0.0009 (16) C24 0.034 (2) 0.024 (2) 0.0229 (19) −0.0008 (18) 0.0150 (18) −0.0003 (16) C25 0.036 (2) 0.028 (2) 0.027 (2) 0.0057 (19) 0.0163 (18) 0.0030 (17) C26 0.045 (3) 0.023 (2) 0.035 (2) 0.000 (2) 0.028 (2) 0.0049 (18) C27 0.037 (2) 0.023 (2) 0.034 (2) −0.0046 (19) 0.025 (2) −0.0035 (17) C28 0.031 (2) 0.029 (2) 0.0173 (18) 0.0051 (18) 0.0074 (17) 0.0031 (16) C29 0.104 (4) 0.024 (2) 0.048 (3) 0.011 (3) 0.051 (3) 0.005 (2) C30 0.060 (4) 0.064 (4) 0.054 (3) −0.027 (3) 0.034 (3) −0.012 (3) C31 0.089 (6) 0.071 (6) 0.087 (6) −0.005 (4) 0.027 (4) −0.019 (4) C32 0.036 (7) 0.077 (8) 0.069 (7) −0.008 (6) 0.035 (6) 0.023 (6) C31\' 0.042 (9) 0.045 (9) 0.070 (12) −0.022 (7) 0.013 (8) −0.018 (8) C32\' 0.057 (7) 0.047 (6) 0.059 (6) 0.004 (5) 0.026 (5) 0.006 (4) ------- ------------- ------------- ------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2716 .table-wrap} -------------------- ------------- --------------------- ----------- Zn1---O3 1.940 (2) C10---C11 1.404 (6) Zn1---N2 2.019 (3) C10---C14 1.457 (6) Zn1---O1 2.031 (2) C11---C12 1.380 (6) Zn1---O2 2.034 (3) C11---H11 0.9500 Zn1---N1 2.054 (3) C12---C13 1.377 (6) Zn1---Zn2 3.0134 (6) C12---H12 0.9500 Zn2---O3^i^ 1.940 (2) C13---H13 0.9500 Zn2---N3 2.018 (3) C14---H14 0.9500 Zn2---O1 2.025 (2) C15---C20 1.390 (5) Zn2---O2 2.036 (3) C15---C16 1.408 (6) Zn2---N4 2.064 (3) C16---C17 1.398 (6) Cl3---O5 1.403 (4) C17---C18 1.384 (6) Cl3---O8 1.405 (4) C17---H17 0.9500 Cl3---O7 1.429 (3) C18---C19 1.373 (7) Cl3---O6 1.462 (4) C18---H18 0.9500 O1---C9 1.316 (4) C19---C20 1.384 (6) O2---C23 1.310 (4) C19---H19 0.9500 O3---C29 1.396 (5) C20---H20 0.9500 O3---Zn2^i^ 1.940 (2) C21---C22 1.455 (5) O4---C30 1.204 (6) C21---H21 0.9500 N1---C28 1.293 (5) C22---C27 1.401 (5) N1---C1 1.422 (5) C22---C23 1.432 (5) N2---C7 1.287 (5) C23---C24 1.423 (5) N2---C2 1.421 (5) C24---C25 1.413 (5) N3---C14 1.285 (5) C24---C28 1.447 (5) N3---C15 1.435 (5) C25---C26 1.370 (6) N4---C21 1.285 (5) C25---H25 0.9500 N4---C16 1.422 (5) C26---C27 1.377 (6) N5---C30 1.335 (6) C26---H26 0.9500 N5---C32\' 1.475 (9) C27---H27 0.9500 N5---C32 1.477 (11) C28---H28 0.9500 N5---C31 1.501 (12) C29---H29A 0.9800 N5---C31\' 1.510 (9) C29---H29B 0.9800 C1---C6 1.402 (5) C29---H29C 0.9800 C1---C2 1.413 (6) C30---H30 0.9500 C2---C3 1.399 (6) C31---H31A 0.9800 C3---C4 1.375 (6) C31---H31B 0.9800 C3---H3 0.9500 C31---H31C 0.9800 C4---C5 1.381 (7) C32---H32A 0.9800 C4---H4 0.9500 C32---H32B 0.9800 C5---C6 1.387 (6) C32---H32C 0.9800 C5---H5 0.9500 C31\'---H31D 0.9800 C6---H6 0.9500 C31\'---H31E 0.9800 C7---C8 1.459 (5) C31\'---H31F 0.9800 C7---H7 0.9500 C32\'---H32D 0.9800 C8---C13 1.415 (6) C32\'---H32E 0.9800 C8---C9 1.417 (5) C32\'---H32F 0.9800 C9---C10 1.431 (5) O3---Zn1---N2 110.85 (12) C8---C9---C10 118.6 (3) O3---Zn1---O1 107.89 (10) C11---C10---C9 119.2 (4) N2---Zn1---O1 89.05 (12) C11---C10---C14 115.1 (4) O3---Zn1---O2 106.49 (11) C9---C10---C14 125.6 (4) N2---Zn1---O2 142.66 (12) C12---C11---C10 121.8 (4) O1---Zn1---O2 79.43 (10) C12---C11---H11 119.1 O3---Zn1---N1 108.52 (11) C10---C11---H11 119.1 N2---Zn1---N1 81.23 (13) C13---C12---C11 119.4 (4) O1---Zn1---N1 143.43 (11) C13---C12---H12 120.3 O2---Zn1---N1 87.22 (11) C11---C12---H12 120.3 O3---Zn1---Zn2 97.31 (8) C12---C13---C8 121.6 (4) N2---Zn1---Zn2 129.80 (9) C12---C13---H13 119.2 O1---Zn1---Zn2 41.93 (7) C8---C13---H13 119.2 O2---Zn1---Zn2 42.26 (7) N3---C14---C10 125.2 (4) N1---Zn1---Zn2 128.55 (9) N3---C14---H14 117.4 O3^i^---Zn2---N3 112.30 (11) C10---C14---H14 117.4 O3^i^---Zn2---O1 106.91 (10) C20---C15---C16 120.2 (4) N3---Zn2---O1 89.22 (12) C20---C15---N3 124.6 (4) O3^i^---Zn2---O2 106.50 (11) C16---C15---N3 115.2 (3) N3---Zn2---O2 141.19 (11) C17---C16---C15 119.3 (4) O1---Zn2---O2 79.53 (10) C17---C16---N4 124.6 (4) O3^i^---Zn2---N4 109.14 (11) C15---C16---N4 116.1 (3) N3---Zn2---N4 80.73 (13) C18---C17---C16 119.6 (4) O1---Zn2---N4 143.75 (11) C18---C17---H17 120.2 O2---Zn2---N4 86.77 (11) C16---C17---H17 120.2 O3^i^---Zn2---Zn1 96.64 (8) C19---C18---C17 120.6 (4) N3---Zn2---Zn1 129.79 (9) C19---C18---H18 119.7 O1---Zn2---Zn1 42.11 (7) C17---C18---H18 119.7 O2---Zn2---Zn1 42.20 (7) C18---C19---C20 121.0 (4) N4---Zn2---Zn1 128.13 (9) C18---C19---H19 119.5 O5---Cl3---O8 110.8 (3) C20---C19---H19 119.5 O5---Cl3---O7 110.0 (2) C19---C20---C15 119.2 (4) O8---Cl3---O7 108.8 (2) C19---C20---H20 120.4 O5---Cl3---O6 109.4 (2) C15---C20---H20 120.4 O8---Cl3---O6 107.4 (2) N4---C21---C22 125.9 (4) O7---Cl3---O6 110.5 (2) N4---C21---H21 117.1 C9---O1---Zn2 130.6 (2) C22---C21---H21 117.1 C9---O1---Zn1 130.6 (2) C27---C22---C23 119.2 (4) Zn2---O1---Zn1 95.96 (11) C27---C22---C21 116.6 (3) C23---O2---Zn1 132.1 (2) C23---C22---C21 124.0 (3) C23---O2---Zn2 132.3 (2) O2---C23---C24 120.8 (3) Zn1---O2---Zn2 95.54 (10) O2---C23---C22 121.0 (3) C29---O3---Zn2^i^ 117.7 (2) C24---C23---C22 118.2 (3) C29---O3---Zn1 116.9 (2) C25---C24---C23 118.8 (4) Zn2^i^---O3---Zn1 125.25 (13) C25---C24---C28 116.2 (4) C28---N1---C1 123.4 (3) C23---C24---C28 124.9 (3) C28---N1---Zn1 127.4 (3) C26---C25---C24 121.9 (4) C1---N1---Zn1 109.2 (2) C26---C25---H25 119.1 C7---N2---C2 122.4 (3) C24---C25---H25 119.1 C7---N2---Zn1 127.3 (3) C25---C26---C27 119.4 (4) C2---N2---Zn1 110.1 (2) C25---C26---H26 120.3 C14---N3---C15 122.1 (3) C27---C26---H26 120.3 C14---N3---Zn2 128.0 (3) C26---C27---C22 121.6 (4) C15---N3---Zn2 109.4 (2) C26---C27---H27 119.2 C21---N4---C16 123.9 (3) C22---C27---H27 119.2 C21---N4---Zn2 127.4 (3) N1---C28---C24 125.6 (3) C16---N4---Zn2 108.6 (2) N1---C28---H28 117.2 C30---N5---C32\' 126.5 (9) C24---C28---H28 117.2 C30---N5---C32 114.8 (7) O3---C29---H29A 109.5 C30---N5---C31 115.8 (7) O3---C29---H29B 109.5 C32\'---N5---C31 112.8 (11) H29A---C29---H29B 109.5 C32---N5---C31 129.3 (10) O3---C29---H29C 109.5 C30---N5---C31\' 130.5 (7) H29A---C29---H29C 109.5 C32\'---N5---C31\' 102.7 (11) H29B---C29---H29C 109.5 C32---N5---C31\' 108.6 (11) O4---C30---N5 125.5 (5) C6---C1---C2 119.8 (4) O4---C30---H30 117.3 C6---C1---N1 124.4 (4) N5---C30---H30 117.3 C2---C1---N1 115.9 (3) N5---C31---H31A 109.5 C3---C2---C1 119.3 (4) N5---C31---H31B 109.5 C3---C2---N2 124.9 (4) H31A---C31---H31B 109.5 C1---C2---N2 115.8 (3) N5---C31---H31C 109.5 C4---C3---C2 120.0 (4) H31A---C31---H31C 109.5 C4---C3---H3 120.0 H31B---C31---H31C 109.5 C2---C3---H3 120.0 N5---C32---H32A 109.5 C3---C4---C5 121.0 (4) N5---C32---H32B 109.5 C3---C4---H4 119.5 H32A---C32---H32B 109.5 C5---C4---H4 119.5 N5---C32---H32C 109.5 C4---C5---C6 120.5 (4) H32A---C32---H32C 109.5 C4---C5---H5 119.8 H32B---C32---H32C 109.5 C6---C5---H5 119.8 N5---C31\'---H31D 109.5 C5---C6---C1 119.5 (4) N5---C31\'---H31E 109.5 C5---C6---H6 120.3 H31D---C31\'---H31E 109.5 C1---C6---H6 120.3 N5---C31\'---H31F 109.5 N2---C7---C8 125.6 (4) H31D---C31\'---H31F 109.5 N2---C7---H7 117.2 H31E---C31\'---H31F 109.5 C8---C7---H7 117.2 N5---C32\'---H32D 109.5 C13---C8---C9 119.2 (4) N5---C32\'---H32E 109.5 C13---C8---C7 114.6 (4) H32D---C32\'---H32E 109.5 C9---C8---C7 125.5 (3) N5---C32\'---H32F 109.5 O1---C9---C8 120.5 (3) H32D---C32\'---H32F 109.5 O1---C9---C10 121.0 (3) H32E---C32\'---H32F 109.5 -------------------- ------------- --------------------- ----------- ::: Symmetry codes: (i) −*x*+1, *y*, −*z*+1/2.
PubMed Central
2024-06-05T04:04:18.222919
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052062/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):m368", "authors": [ { "first": "Zelong", "last": "Lim" }, { "first": "Craig M.", "last": "Forsyth" }, { "first": "Bim", "last": "Graham" } ] }
PMC3052063
Related literature {#sec1} ================== For related structures, see: Muthamizhchelvan *et al.* (2005*a* [@bb5],*b* [@bb6],*c* [@bb7]); Subashini *et al.* (2006[@bb12]); Narayana *et al.* (2008[@bb8]). For standard bond lengths, see: Allen *et al.* (1987[@bb1]). For picrates of biologically important molecules, see: Harrison *et al.* (2007[@bb3]); Swamy *et al.* (2007[@bb13]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~2~H~10~N~2~ ^2+^·2C~6~H~2~N~3~O~7~ ^−^·2H~2~O*M* *~r~* = 554.36Orthorhombic,*a* = 13.4795 (4) Å*b* = 20.4372 (7) Å*c* = 8.0410 (3) Å*V* = 2215.16 (13) Å^3^*Z* = 4Mo *K*α radiationμ = 0.15 mm^−1^*T* = 295 K0.52 × 0.42 × 0.27 mm ### Data collection {#sec2.1.2} Oxford Diffraction Gemini R diffractometerAbsorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007[@bb9]) *T* ~min~ = 0.837, *T* ~max~ = 0.96016775 measured reflections3846 independent reflections2322 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.026 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.063*wR*(*F* ^2^) = 0.196*S* = 1.033846 reflections207 parameters10 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.37 e Å^−3^Δρ~min~ = −0.27 e Å^−3^ {#d5e749} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007[@bb9]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb10]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb10]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb10]) and *Mercury* (Macrae *et al.*, 2006[@bb4]); software used to prepare material for publication: *SHELXTL*, *enCIFer* (Allen *et al.*, 2004[@bb2]) and *PLATON* (Spek, 2009[@bb11]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004855/om2399sup1.cif](http://dx.doi.org/10.1107/S1600536811004855/om2399sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004855/om2399Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004855/om2399Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?om2399&file=om2399sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?om2399sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?om2399&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [OM2399](http://scripts.iucr.org/cgi-bin/sendsup?om2399)). QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer. Comment ======= The crystal structures of compounds similar to ethylenediammonium picrate, 3-(dimethylammonio)propanaminium dipicrate and triethylaminium picrate (Muthamizhchelvan *et al.*, 2005*a*, 2005*b*, 2005*c*), 2-amino-4,6-dimethylpyrimidinium picrate (Subashini *et al.*, 2006) and 2-aminopyrimidinium picrate (Narayana *et al.*, 2008) have been reported. In continuation of our work on picrates of biologically important molecules (Harrison *et al.*, 2007; Swamy *et al.*, 2007), we have prepared a new picrate of ethylenediammonium hydrate, \[C~7~H~8~N~4~O~8~\] and its crystal structure is reported. The title compound, 0.5(C~2~H~10~N~2~^2+^), C~6~H~2~N~3~O~7~^-^, H~2~O, crystallizes with a complete picrate anion and a half-ethylenediammonium group on a mirror plane thus producing a 0.5 di-cation (*i.e.* protonated at both ends), and two half-water molecules (both on a mirror plane) in the asymmetric unit (Fig. 1). Bond distances and angles are in normal ranges (Allen *et al.*, 1998). In the picrate anion the depronated phenolate oxygen atom is slightly deviated from the plane of the benzene ring (torsion angle O1/C1/C2/C3 = 177.84 (17) Å). The twist angles between the mean plane of the benzene ring and the two *o*-NO~2~ groups are 20.3 (0)° (N1) and 39.6 (7)° (N3). The *p*-NO~2~group is twisted by 3.3 (4)° and most likely influenced by a weak hydrogen bond interaction (O2W---H2W2···O5). The deviation of the *p*-NO~2~ groups from the plane of the benzene ring is due to a network of hydrogen bond interactions with the half-ethylenediammonium di-cation involving both nitrogen atoms (N4 and N5 lying across a morror plane). The position of N4 and N5 from separate half-ethylenediammonium di-cations, in near proximity to a phenolate oxygen atom and two *o*-NO~2~ groups from the picrate anion, along with the water molecule form N---H···O, O---H···O hydrogen bonds and weak C---H···O intermolecular interactions (Table 1) that create cyclic patterns with graph-set descriptors *R*~2~^4^(8), *R*~4~^4^(12) and *R*~4~^4^(16). These intermolecular interactions of symmetry-related molecules link the cations and anions through a half-water molecule (on a mirror plane), the half-ethylenediammonium di-cation and the picrate anion forming a 3-D supermolecular structure (Fig. 2). Experimental {#experimental} ============ Ethylenediamine dihydrochloride (1.33 g, 0.01 mol) was dissolved in 25 ml of water. Picric acid (2.29 g, 0.01 mol) was dissolved in 50 ml of water. Both the solutions were mixed and stirred for few minutes. The formed complex was filtered and dried. Good quality crystals were grown from ethanol solution by slow evaporation (m. p.: 476--478 K). Composition: Found (Calculated): C: 30.44 (30.40); H: 2.92 (2.96); N: 20.29% (20.36%). Refinement {#refinement} ========== The H atoms on the water O atoms and N atoms were located by difference Fourier maps, fixed at 0.84Å (O-H) and 1.36° (O^···^O), or 0.86Å (N-H) and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom---H lengths of 0.93 or 0.95Å (CH). Isotropic displacement parameters for these atoms were set to 1.19--1.20 (CH) times *U*~eq~ of the parent atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structure of the title compound, 0.5(C2H10N22+), C6H2N3O7-, H2O, showing the atom labeling scheme and 30% probability displacement ellipsoids. The asymmetric unit consists of a complete picrate anion, a half-ethylenediammonium group on a mirror plane thus producing a 0.5 di-cation (i.e. protonated at both ends), and two half-water molecules (both on a mirror plane). Dashed lines indicate O---H···O hydrogen bond interactions with a disordered water molecule.. ::: ![](e-67-0o637-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram of the title compound viewed down the c axis. Dashed lines indicate intermolecular N---H···O and O---H···O hydrogen bonds and weak C---H···O intermolecular interactions which produces a 3-D superstructure. Disordered water molecules are displayed. ::: ![](e-67-0o637-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e261 .table-wrap} ----------------------------------------------- --------------------------------------- C~2~H~10~N~2~^2+^·2C~6~H~2~N~3~O~7~^−^·2H~2~O *F*(000) = 1144 *M~r~* = 554.36 *D*~x~ = 1.662 Mg m^−3^ Orthorhombic, *Pnma* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ac 2n Cell parameters from 5241 reflections *a* = 13.4795 (4) Å θ = 4.6--32.5° *b* = 20.4372 (7) Å µ = 0.15 mm^−1^ *c* = 8.0410 (3) Å *T* = 295 K *V* = 2215.16 (13) Å^3^ Chunk, pale orange *Z* = 4 0.52 × 0.42 × 0.27 mm ----------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e404 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Gemini R diffractometer 3846 independent reflections Radiation source: fine-focus sealed tube 2322 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.026 Detector resolution: 10.50 pixels mm^-1^ θ~max~ = 32.5°, θ~min~ = 5.0° φ and ω scans *h* = −19→14 Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007) *k* = −29→23 *T*~min~ = 0.837, *T*~max~ = 0.960 *l* = −11→9 16775 measured reflections ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e527 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.063 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.196 H atoms treated by a mixture of independent and constrained refinement *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.110*P*)^2^ + 0.1282*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3846 reflections (Δ/σ)~max~ \< 0.001 207 parameters Δρ~max~ = 0.37 e Å^−3^ 10 restraints Δρ~min~ = −0.27 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e684 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e783 .table-wrap} ------ --------------- ------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) O1 0.17845 (10) 0.65746 (6) 0.24678 (18) 0.0483 (4) O2 0.27913 (16) 0.67547 (9) 0.5303 (2) 0.0816 (6) O3 0.22821 (17) 0.62252 (9) 0.7372 (2) 0.0797 (6) O4 0.11929 (14) 0.40318 (8) 0.6662 (2) 0.0745 (5) O5 0.05313 (14) 0.37346 (7) 0.4353 (3) 0.0707 (5) O6 0.10573 (12) 0.51165 (8) −0.0500 (2) 0.0590 (4) O7 0.05455 (14) 0.60949 (7) 0.0004 (2) 0.0663 (5) N1 0.23259 (12) 0.63071 (7) 0.5874 (2) 0.0435 (4) N2 0.09604 (12) 0.41363 (7) 0.5211 (3) 0.0472 (4) N3 0.09158 (12) 0.55764 (8) 0.0443 (2) 0.0452 (4) C1 0.16145 (11) 0.60249 (8) 0.3089 (2) 0.0350 (4) C2 0.18375 (12) 0.58407 (8) 0.4784 (2) 0.0343 (4) C3 0.16198 (12) 0.52426 (8) 0.5472 (2) 0.0374 (4) H3 0.1760 0.5160 0.6584 0.045\* C4 0.11908 (12) 0.47672 (8) 0.4495 (2) 0.0373 (4) C5 0.09762 (12) 0.48793 (8) 0.2839 (3) 0.0378 (4) H5 0.0705 0.4550 0.2182 0.045\* C6 0.11716 (12) 0.54860 (8) 0.2185 (2) 0.0365 (4) N4 0.08177 (14) 0.7500 0.0444 (3) 0.0373 (5) H41 0.092 (2) 0.7500 −0.0622 (14) 0.049 (9)\* H42 0.1081 (14) 0.7162 (8) 0.092 (3) 0.052 (6)\* N5 −0.15992 (16) 0.7500 0.2772 (3) 0.0368 (5) H51 −0.171 (2) 0.7500 0.3843 (14) 0.039 (7)\* H52 −0.1861 (13) 0.7149 (7) 0.237 (2) 0.041 (5)\* C7 −0.02674 (18) 0.7500 0.0673 (3) 0.0439 (6) H7 −0.0549 0.7881 0.0158 0.053\* C8 −0.05052 (18) 0.7500 0.2490 (3) 0.0383 (6) H8 −0.0219 0.7880 0.3001 0.046\* O1W 0.2964 (2) 0.7500 0.8852 (3) 0.0739 (7) H1W1 0.349 (3) 0.764 (3) 0.845 (7) 0.111\* 0.50 H1W2 0.274 (4) 0.721 (2) 0.821 (6) 0.111\* 0.50 O2W −0.0548 (2) 0.2500 0.3099 (4) 0.0840 (8) H2W1 −0.007 (3) 0.234 (3) 0.254 (8) 0.126\* 0.50 H2W2 −0.031 (4) 0.282 (3) 0.364 (8) 0.126\* 0.50 ------ --------------- ------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1259 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0535 (8) 0.0364 (7) 0.0551 (9) −0.0132 (6) −0.0188 (6) 0.0128 (6) O2 0.1095 (14) 0.0797 (11) 0.0556 (11) −0.0613 (11) −0.0105 (10) 0.0031 (9) O3 0.1239 (16) 0.0683 (11) 0.0470 (10) −0.0350 (11) −0.0241 (10) 0.0044 (9) O4 0.1063 (13) 0.0433 (9) 0.0739 (13) −0.0095 (8) −0.0225 (10) 0.0227 (8) O5 0.0867 (12) 0.0409 (8) 0.0846 (14) −0.0227 (8) −0.0085 (10) 0.0033 (8) O6 0.0713 (10) 0.0602 (9) 0.0454 (9) −0.0108 (7) −0.0001 (7) −0.0100 (7) O7 0.0900 (13) 0.0520 (9) 0.0568 (10) −0.0035 (8) −0.0298 (8) 0.0076 (8) N1 0.0470 (8) 0.0382 (8) 0.0453 (10) −0.0081 (6) −0.0098 (7) 0.0002 (7) N2 0.0442 (8) 0.0300 (7) 0.0674 (13) −0.0006 (6) −0.0024 (8) 0.0078 (8) N3 0.0483 (9) 0.0453 (9) 0.0419 (9) −0.0102 (7) −0.0065 (7) 0.0009 (8) C1 0.0308 (7) 0.0314 (8) 0.0430 (10) −0.0024 (6) −0.0051 (7) 0.0021 (7) C2 0.0321 (7) 0.0297 (7) 0.0411 (10) −0.0021 (6) −0.0050 (7) −0.0012 (7) C3 0.0358 (8) 0.0339 (8) 0.0427 (10) 0.0013 (6) −0.0045 (7) 0.0054 (7) C4 0.0343 (8) 0.0274 (7) 0.0501 (11) −0.0014 (6) −0.0004 (7) 0.0038 (7) C5 0.0340 (8) 0.0320 (8) 0.0475 (10) −0.0034 (6) −0.0041 (7) −0.0033 (8) C6 0.0366 (8) 0.0337 (8) 0.0392 (10) −0.0020 (6) −0.0047 (7) 0.0008 (7) N4 0.0278 (9) 0.0434 (12) 0.0407 (13) 0.000 −0.0018 (9) 0.000 N5 0.0405 (11) 0.0317 (10) 0.0383 (12) 0.000 0.0094 (9) 0.000 C7 0.0315 (11) 0.0627 (17) 0.0377 (14) 0.000 −0.0010 (10) 0.000 C8 0.0399 (12) 0.0387 (12) 0.0363 (14) 0.000 0.0001 (10) 0.000 O1W 0.110 (2) 0.0650 (16) 0.0466 (14) 0.000 −0.0253 (14) 0.000 O2W 0.099 (2) 0.094 (2) 0.0583 (18) 0.000 −0.0144 (15) 0.000 ----- ------------- ------------- ------------- -------------- -------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1712 .table-wrap} ------------------- -------------- ------------------- -------------- O1---C1 1.251 (2) C5---C6 1.373 (2) O2---N1 1.201 (2) C5---H5 0.9300 O3---N1 1.218 (2) N4---C7 1.474 (3) O4---N2 1.227 (3) N4---H41 0.869 (10) O5---N2 1.218 (2) N4---H42 0.864 (9) O6---N3 1.222 (2) N5---C8 1.492 (3) O7---N3 1.223 (2) N5---H51 0.874 (10) N1---C2 1.452 (2) N5---H52 0.863 (9) N2---C4 1.446 (2) C7---C8 1.496 (4) N3---C6 1.454 (2) C7---H7 0.9599 C1---C2 1.445 (2) C8---H8 0.9598 C1---C6 1.449 (2) O1W---H1W1 0.833 (10) C2---C3 1.373 (2) O1W---H1W2 0.842 (10) C3---C4 1.377 (3) O2W---H2W1 0.847 (10) C3---H3 0.9300 O2W---H2W2 0.846 (10) C4---C5 1.382 (3) O2---N1---O3 120.56 (17) C6---C5---C4 118.62 (16) O2---N1---C2 120.41 (17) C6---C5---H5 120.7 O3---N1---C2 118.99 (15) C4---C5---H5 120.7 O5---N2---O4 122.85 (18) C5---C6---C1 124.98 (17) O5---N2---C4 118.51 (19) C5---C6---N3 116.01 (16) O4---N2---C4 118.63 (17) C1---C6---N3 119.00 (15) O6---N3---O7 123.42 (18) C7---N4---H41 107 (2) O6---N3---C6 117.55 (16) C7---N4---H42 110.7 (14) O7---N3---C6 118.99 (17) H41---N4---H42 111 (2) O1---C1---C2 124.93 (16) C8---N5---H51 108.3 (19) O1---C1---C6 123.89 (17) C8---N5---H52 110.3 (13) C2---C1---C6 111.18 (14) H51---N5---H52 107.7 (17) C3---C2---C1 124.54 (15) N4---C7---C8 109.5 (2) C3---C2---N1 115.98 (16) N4---C7---H7 109.8 C1---C2---N1 119.48 (14) C8---C7---H7 109.7 C2---C3---C4 119.21 (17) N5---C8---C7 111.1 (2) C2---C3---H3 120.4 N5---C8---H8 109.4 C4---C3---H3 120.4 C7---C8---H8 109.4 C3---C4---C5 121.40 (15) H1W1---O1W---H1W2 108.3 (18) C3---C4---N2 119.49 (18) H2W1---O2W---H2W2 106.5 (17) C5---C4---N2 119.12 (16) O1---C1---C2---C3 177.84 (17) O4---N2---C4---C5 176.88 (18) C6---C1---C2---C3 −2.6 (2) C3---C4---C5---C6 −2.0 (3) O1---C1---C2---N1 −2.2 (3) N2---C4---C5---C6 178.14 (15) C6---C1---C2---N1 177.34 (15) C4---C5---C6---C1 1.6 (3) O2---N1---C2---C3 158.7 (2) C4---C5---C6---N3 −179.11 (16) O3---N1---C2---C3 −19.0 (3) O1---C1---C6---C5 −179.87 (17) O2---N1---C2---C1 −21.3 (3) C2---C1---C6---C5 0.6 (2) O3---N1---C2---C1 161.01 (18) O1---C1---C6---N3 0.9 (3) C1---C2---C3---C4 2.4 (3) C2---C1---C6---N3 −178.70 (15) N1---C2---C3---C4 −177.56 (15) O6---N3---C6---C5 −37.8 (2) C2---C3---C4---C5 0.1 (3) O7---N3---C6---C5 140.02 (18) C2---C3---C4---N2 179.96 (16) O6---N3---C6---C1 141.56 (16) O5---N2---C4---C3 175.99 (18) O7---N3---C6---C1 −40.6 (2) O4---N2---C4---C3 −3.0 (3) N4---C7---C8---N5 180.0 O5---N2---C4---C5 −4.1 (3) ------------------- -------------- ------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2230 .table-wrap} -------------------- ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N4---H41···O2W^i^ 0.87 (1) 2.06 (2) 2.872 (4) 156 (3) N4---H42···O1 0.86 (1) 1.98 (1) 2.815 (2) 164 (2) N4---H42···O7 0.86 (1) 2.41 (2) 2.9166 (16) 118.(2) N5---H51···O1W^ii^ 0.87 (1) 1.91 (1) 2.778 (3) 176 (3) N5---H52···O1^iii^ 0.86 (1) 2.18 (2) 2.892 (2) 140.(2) N5---H52···O2^iii^ 0.86 (1) 2.34 (2) 3.018 (3) 136.(2) C3---H3···O6^iv^ 0.93 2.53 3.337 (3) 145 C7---H7···O2^v^ 0.96 2.39 3.128 (3) 134 C7---H7···O7^vi^ 0.96 2.56 3.1203 (19) 117 O1W---H1W2···O3 0.84 (1) 2.21 (3) 3.008 (2) 159 (6) O1W---H1W2···O2 0.84 (1) 2.52 (4) 3.243 (3) 145 (5) O2W---H2W2···O5 0.85 (1) 2.26 (2) 3.082 (2) 163 (7) -------------------- ---------- ---------- ------------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*; (ii) *x*−1/2, *y*, −*z*+3/2; (iii) *x*−1/2, *y*, −*z*+1/2; (iv) *x*, *y*, *z*+1; (v) *x*−1/2, −*y*+3/2, −*z*+1/2; (vi) *x*, −*y*+3/2, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- ---------- ---------- ------------- ------------- N4---H41⋯O2*W*^i^ 0.87 (1) 2.06 (2) 2.872 (4) 156 (3) N4---H42⋯O1 0.86 (1) 1.98 (1) 2.815 (2) 164 (2) N4---H42⋯O7 0.86 (1) 2.41 (2) 2.9166 (16) 118 (2) N5---H51⋯O1*W*^ii^ 0.87 (1) 1.91 (1) 2.778 (3) 176 (3) N5---H52⋯O1^iii^ 0.86 (1) 2.18 (2) 2.892 (2) 140 (2) N5---H52⋯O2^iii^ 0.86 (1) 2.34 (2) 3.018 (3) 136 (2) C3---H3⋯O6^iv^ 0.93 2.53 3.337 (3) 145 C7---H7⋯O2^v^ 0.96 2.39 3.128 (3) 134 C7---H7⋯O7^vi^ 0.96 2.56 3.1203 (19) 117 O1*W*---H1*W*2⋯O3 0.84 (1) 2.21 (3) 3.008 (2) 159 (6) O1*W*---H1*W*2⋯O2 0.84 (1) 2.52 (4) 3.243 (3) 145 (5) O2*W*---H2*W*2⋯O5 0.85 (1) 2.26 (2) 3.082 (2) 163 (7) Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) ; (vi) . :::
PubMed Central
2024-06-05T04:04:18.231977
2011-2-16
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052063/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 16; 67(Pt 3):o637-o638", "authors": [ { "first": "Jerry P.", "last": "Jasinski" }, { "first": "Ray J.", "last": "Butcher" }, { "first": "Q. N. M.", "last": "Hakim Al-arique" }, { "first": "H. S.", "last": "Yathirajan" }, { "first": "B.", "last": "Narayana" } ] }
PMC3052064
Related literature {#sec1} ================== For the preparation and structure of the equivalent bromide salt, see: Rohovec *et al.* (1999[@bb12]). For the structure of the perchlorate salt, see: Bi *et al.* (2008[@bb2]). For structures of representative transition metal complexes, see: Bieńko *et al.* (2007[@bb3]); Yang (2005[@bb16]); Ballester *et al.* (2000[@bb1]); Endicott *et al.* (1981[@bb5]); Wester *et al.* (1977[@bb15]); Goedken *et al.* (1973[@bb7]). Macrocyclic metal complexes have been studied extensively owing to their similarity to metallobiomolecules, and in order to further understanding of biological mechanisms, see: Merrell *et al.* (1977[@bb10]). The packing analysis was performed with *Mercury* (Macrae *et al.*, 2008[@bb9]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~16~H~34~N~4~ ^2+^·2I^−^·2H~2~O*M* *~r~* = 572.30Triclinic,*a* = 8.4098 (3) Å*b* = 8.7252 (2) Å*c* = 8.7724 (3) Åα = 74.673 (2)°β = 66.267 (1)°γ = 75.809 (2)°*V* = 561.24 (3) Å^3^*Z* = 1Mo *K*α radiationμ = 2.82 mm^−1^*T* = 120 K0.20 × 0.14 × 0.10 mm ### Data collection {#sec2.1.2} Bruker--Nonius Roper CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 2007[@bb13]) *T* ~min~ = 0.673, *T* ~max~ = 0.74612010 measured reflections2563 independent reflections2478 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.030 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.019*wR*(*F* ^2^) = 0.046*S* = 1.182563 reflections127 parameters3 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.99 e Å^−3^Δρ~min~ = −0.75 e Å^−3^ {#d5e569} Data collection: *COLLECT* (Hooft, 1988[@bb8]); cell refinement: *DENZO* (Otwinowski & Minor, 1997[@bb11]) and *COLLECT* ; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005)[@bb4]; program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb14]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb6]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005848/rk2263sup1.cif](http://dx.doi.org/10.1107/S1600536811005848/rk2263sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005848/rk2263Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005848/rk2263Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rk2263&file=rk2263sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rk2263sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rk2263&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RK2263](http://scripts.iucr.org/cgi-bin/sendsup?rk2263)). We are grateful to the National Crystallography Service, University of Southampton, for the data collection. MOO thanks the Commonwealth Scholarship Commission and the British Council for funding and Moi University for sabbatical leave. Comment ======= Macrocyclic metal complexes have been studied extensively owing to their similarity to metallobiomolecules, and in order to further understanding of biological mechanisms (Merril *et al.*, 1977). The title molecule, 5,7,7,12,14, 14--hexamethyl--4,8--diaza--1,11--diazoniocyclo--4,11--tetradecadiene diiodide dihydrate, I, is the hydroiodide salt of an imine based ligand that has been used extensively to form complexes with the later first row transition metals. These are typically cobalt, nickel and copper complexes (see, for example, Endicott *et al.*, 1981; Ballester *et al.*, 2000; Bieńko *et al.*, 2007) but structural examples with iron, zinc and even chromium are also known (Goedken *et al.*, 1973; Yang, 2005; Wester *et al.*, 1977). The structures of the free base and of the bromide and perchlorate salts have also been reported (Rohovec *et al.*, 1999; Bi *et al.*, 2008). The macrocyclic dication has crystallographically imposed centrosymetric symmetry, *Z*\' = 1/2, with protonation at the amine N--atoms rather than at the imine groups (Fig. 1). The unit--cell parameters are somewhat similar to those of the bromide analogue (Rohovec *et al.*, 1999) measured at room temperature. However, there is a difference in that the most acute angle subtends the longest and shortest cell axes in I, but subtends the shortest and middle length cell axes in the iodide salt. To check if this was a structurally significant variation the \"crystal packing similarity\" module of Mercury CSD 2.3 was used (Macrae *et al.*, 2008). This analysis of the largest molecular component in the array (here the macrocyclic cation) showed that a molecular cluster of fifteen cations from each salt matched to within distance and torsion angle variations of 20%. Thus the two structures are isostructural, see overlay in Fig. 2. Classical intramolecular N---H···N hydrogen--bonding joins the amine and imine N--atoms across the macrocycle. There are also four independent intermolecular hydrogen--bonds. All involve iodide as the acceptor with both water H--atoms acting as donors and atom H2N acting as a donor in two seperate interactions, see Table 1. Eight membered \[H---O---H···I\]~2~ and \[H---N---H···I\]~2~ rings support a two dimensional sheet structure propagated largely through N---H···I interactions. This is again similar to the bromide structure and so their isostructural nature is confirmed. Experimental {#experimental} ============ A 0.2 mol (13.2 mL) sample of ethylenediamine (*ED*) was put into 10 ml absolute ethanol and cooled in an ice bath for about 10 minutes. A 0.2 mol (36.2 ml of 55%) sample of hydroiodic acid was slowly added to the cool *ED* solution. Care was taken not to let the solution to boil over. After the addition of HI, 30 mL of acetone was added (an excess of 0.4 mL was required) and the solution allowed to cool in an ice bath overnight. The colourless crystalline material was filtered from solution. It was washed in absolute *Et*OH and dried in air for 30 minutes (yield 6.221 g). Refinement {#refinement} ========== The position of the nitrogen--bound H atoms were refined freely, but the positions of the water H atoms were restrained such that O---H and H···H distances approximated 0.88Å and 1.33Å respectively with *U*~iso~(H) set to 1.5 *U*~eq~(O). All other H atoms were placed in calculated positions and refined in riding modes with C---H = 0.98Å or 0.99Å for the CH~3~ and CH~2~ groups respectively. The *U*~iso~(H) values were set to 1.5 or 1.2 times *U*~eq~ of their parent C atoms for the CH~3~ and CH~2~ groups respectively. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the macrocyclic dication with atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level H atoms are presented as a small sphertes of arbitrary radius. Symmetry code: (i) 1-x, 1-y, -z. ::: ![](e-67-0o682-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Overlaid packing diagram, showing cations from the iodide structure in green and those from the bromide structure in blue. ::: ![](e-67-0o682-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e196 .table-wrap} --------------------------------- ---------------------------------------- C~16~H~34~N~4~^2+^·2I^−^·2H~2~O *Z* = 1 *M~r~* = 572.30 *F*(000) = 284 Triclinic, *P*1 *D*~x~ = 1.693 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.4098 (3) Å Cell parameters from 10421 reflections *b* = 8.7252 (2) Å θ = 2.9--27.5° *c* = 8.7724 (3) Å µ = 2.82 mm^−1^ α = 74.673 (2)° *T* = 120 K β = 66.267 (1)° Block, colourless γ = 75.809 (2)° 0.20 × 0.14 × 0.10 mm *V* = 561.24 (3) Å^3^ --------------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e339 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker--Nonius Roper CCD diffractometer 2563 independent reflections Radiation source: Bruker--Nonius FR591 rotating anode 2478 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.030 Detector resolution: 9.091 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 3.2° φ and ω scans *h* = −10→10 Absorption correction: multi-scan (*SADABS*; Sheldrick, 2007) *k* = −11→11 *T*~min~ = 0.673, *T*~max~ = 0.746 *l* = −11→11 12010 measured reflections --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e462 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.019 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.046 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0124*P*)^2^ + 0.33*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.18 (Δ/σ)~max~ = 0.001 2563 reflections Δρ~max~ = 0.99 e Å^−3^ 127 parameters Δρ~min~ = −0.75 e Å^−3^ 3 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0243 (13) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e643 .table-wrap} --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. Southampton NCS collection 2010src0073 Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*--factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*--factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*--factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*--factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*--factors based on ALL data will be even larger. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e748 .table-wrap} ----- --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ I1 0.214555 (16) 0.460869 (15) 0.757490 (15) 0.02330 (8) O1W 0.6274 (2) 0.21795 (19) 0.5780 (2) 0.0336 (4) H1W 0.525 (3) 0.270 (3) 0.633 (3) 0.050\* H2W 0.671 (3) 0.295 (3) 0.496 (3) 0.050\* N1 0.7414 (2) 0.60362 (18) −0.1726 (2) 0.0139 (3) N2 0.6077 (2) 0.29338 (18) 0.0038 (2) 0.0165 (3) C1 0.7419 (3) 0.4771 (2) −0.2576 (2) 0.0185 (4) H1A 0.8389 0.4822 −0.3694 0.022\* H1B 0.6296 0.4954 −0.2762 0.022\* C2 0.7653 (3) 0.3134 (2) −0.1486 (3) 0.0209 (4) H2A 0.7880 0.2286 −0.2140 0.025\* H2B 0.8680 0.3019 −0.1159 0.025\* C3 0.6167 (3) 0.1933 (2) 0.1357 (3) 0.0174 (4) C4 0.4514 (3) 0.1743 (2) 0.2906 (2) 0.0182 (4) H4A 0.4494 0.2381 0.3696 0.022\* H4B 0.4604 0.0599 0.3474 0.022\* C5 0.2753 (3) 0.2226 (2) 0.2659 (2) 0.0158 (4) C6 0.7788 (3) 0.0876 (3) 0.1592 (3) 0.0275 (5) H6A 0.7804 −0.0226 0.1507 0.041\* H6B 0.7780 0.0881 0.2711 0.041\* H6C 0.8836 0.1283 0.0712 0.041\* C7 0.2617 (3) 0.1223 (2) 0.1546 (3) 0.0214 (4) H7A 0.1452 0.1527 0.1456 0.032\* H7B 0.2788 0.0079 0.2052 0.032\* H7C 0.3523 0.1417 0.0414 0.032\* C8 0.1260 (3) 0.2045 (2) 0.4379 (3) 0.0235 (4) H8A 0.1421 0.2616 0.5118 0.035\* H8B 0.1266 0.0902 0.4895 0.035\* H8C 0.0134 0.2502 0.4230 0.035\* H1N 0.649 (3) 0.599 (3) −0.076 (3) 0.020 (6)\* H2N 0.829 (4) 0.584 (3) −0.149 (3) 0.029 (7)\* ----- --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1178 .table-wrap} ----- -------------- -------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ I1 0.01952 (10) 0.03155 (11) 0.01896 (10) −0.00480 (6) −0.00879 (7) −0.00124 (6) O1W 0.0384 (10) 0.0238 (8) 0.0371 (10) −0.0029 (7) −0.0157 (8) −0.0017 (7) N1 0.0139 (8) 0.0133 (7) 0.0155 (8) −0.0038 (6) −0.0075 (7) 0.0007 (6) N2 0.0160 (8) 0.0143 (7) 0.0190 (8) −0.0048 (6) −0.0052 (7) −0.0025 (6) C1 0.0213 (10) 0.0168 (9) 0.0173 (10) −0.0052 (7) −0.0053 (8) −0.0036 (7) C2 0.0180 (10) 0.0141 (9) 0.0256 (11) −0.0041 (7) −0.0017 (8) −0.0040 (8) C3 0.0173 (9) 0.0153 (9) 0.0240 (10) −0.0027 (7) −0.0105 (8) −0.0055 (7) C4 0.0197 (10) 0.0172 (9) 0.0185 (9) −0.0036 (7) −0.0101 (8) 0.0011 (7) C5 0.0190 (10) 0.0118 (8) 0.0171 (9) −0.0053 (7) −0.0092 (8) 0.0031 (7) C6 0.0221 (11) 0.0293 (11) 0.0303 (12) 0.0028 (8) −0.0137 (9) −0.0038 (9) C7 0.0261 (11) 0.0155 (9) 0.0284 (11) −0.0071 (8) −0.0154 (9) −0.0012 (8) C8 0.0212 (11) 0.0219 (10) 0.0218 (11) −0.0070 (8) −0.0055 (8) 0.0044 (8) ----- -------------- -------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1466 .table-wrap} ---------------------- -------------- ---------------------- -------------- O1W---H1W 0.877 (17) C4---C5 1.524 (3) O1W---H2W 0.873 (17) C4---H4A 0.9900 N1---C1 1.485 (2) C4---H4B 0.9900 N1---C5^i^ 1.524 (2) C5---N1^i^ 1.524 (2) N1---H1N 0.89 (3) C5---C8 1.524 (3) N1---H2N 0.81 (3) C5---C7 1.524 (3) N2---C3 1.269 (3) C6---H6A 0.9800 N2---C2 1.462 (2) C6---H6B 0.9800 C1---C2 1.512 (3) C6---H6C 0.9800 C1---H1A 0.9900 C7---H7A 0.9800 C1---H1B 0.9900 C7---H7B 0.9800 C2---H2A 0.9900 C7---H7C 0.9800 C2---H2B 0.9900 C8---H8A 0.9800 C3---C6 1.504 (3) C8---H8B 0.9800 C3---C4 1.510 (3) C8---H8C 0.9800 H1W---O1W---H2W 101 (2) C5---C4---H4B 107.8 C1---N1---C5^i^ 117.45 (15) H4A---C4---H4B 107.1 C1---N1---H1N 107.0 (15) N1^i^---C5---C4 109.64 (15) C5^i^---N1---H1N 105.9 (15) N1^i^---C5---C8 109.95 (16) C1---N1---H2N 109.8 (18) C4---C5---C8 109.65 (16) C5^i^---N1---H2N 108.5 (18) N1^i^---C5---C7 105.81 (15) H1N---N1---H2N 108 (2) C4---C5---C7 111.51 (16) C3---N2---C2 120.48 (17) C8---C5---C7 110.21 (16) N1---C1---C2 109.64 (16) C3---C6---H6A 109.5 N1---C1---H1A 109.7 C3---C6---H6B 109.5 C2---C1---H1A 109.7 H6A---C6---H6B 109.5 N1---C1---H1B 109.7 C3---C6---H6C 109.5 C2---C1---H1B 109.7 H6A---C6---H6C 109.5 H1A---C1---H1B 108.2 H6B---C6---H6C 109.5 N2---C2---C1 110.39 (16) C5---C7---H7A 109.5 N2---C2---H2A 109.6 C5---C7---H7B 109.5 C1---C2---H2A 109.6 H7A---C7---H7B 109.5 N2---C2---H2B 109.6 C5---C7---H7C 109.5 C1---C2---H2B 109.6 H7A---C7---H7C 109.5 H2A---C2---H2B 108.1 H7B---C7---H7C 109.5 N2---C3---C6 127.05 (19) C5---C8---H8A 109.5 N2---C3---C4 119.23 (17) C5---C8---H8B 109.5 C6---C3---C4 113.71 (17) H8A---C8---H8B 109.5 C3---C4---C5 118.10 (16) C5---C8---H8C 109.5 C3---C4---H4A 107.8 H8A---C8---H8C 109.5 C5---C4---H4A 107.8 H8B---C8---H8C 109.5 C3---C4---H4B 107.8 C5^i^---N1---C1---C2 178.16 (16) N2---C3---C4---C5 23.3 (3) C3---N2---C2---C1 −156.80 (17) C6---C3---C4---C5 −157.41 (17) N1---C1---C2---N2 69.8 (2) C3---C4---C5---N1^i^ −55.5 (2) C2---N2---C3---C6 1.3 (3) C3---C4---C5---C8 −176.29 (16) C2---N2---C3---C4 −179.47 (16) C3---C4---C5---C7 61.4 (2) ---------------------- -------------- ---------------------- -------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1966 .table-wrap} -------------------- ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1N···N2^i^ 0.89 (3) 2.04 (3) 2.744 (2) 136 (2) O1W---H1W···I1 0.88 (2) 2.71 (2) 3.5753 (18) 171 (3) O1W---H2W···I1^ii^ 0.87 (2) 2.68 (2) 3.5494 (17) 176 (3) N1---H2N···I1^ii^ 0.81 (3) 3.23 (3) 3.6895 (17) 119 (2) N1---H2N···I1^iii^ 0.81 (3) 2.99 (3) 3.7110 (18) 149 (2) -------------------- ---------- ---------- ------------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*; (ii) −*x*+1, −*y*+1, −*z*+1; (iii) *x*+1, *y*, *z*−1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------------- ---------- ---------- ------------- ------------- N1---H1*N*⋯N2^i^ 0.89 (3) 2.04 (3) 2.744 (2) 136 (2) O1*W*---H1*W*⋯I1 0.88 (2) 2.71 (2) 3.5753 (18) 171 (3) O1*W*---H2*W*⋯I1^ii^ 0.87 (2) 2.68 (2) 3.5494 (17) 176 (3) N1---H2*N*⋯I1^ii^ 0.81 (3) 3.23 (3) 3.6895 (17) 119 (2) N1---H2*N*⋯I1^iii^ 0.81 (3) 2.99 (3) 3.7110 (18) 149 (2) Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:18.237406
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052064/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o682-o683", "authors": [ { "first": "Alan R.", "last": "Kennedy" }, { "first": "Samwel T.", "last": "Lutta" }, { "first": "Catriona A.", "last": "Morrison" }, { "first": "Maurice O.", "last": "Okoth" }, { "first": "Daniel M.", "last": "Orang’o" } ] }
PMC3052065
Related literature {#sec1} ================== For the synthetic procedure, see: Lee *et al.* (2009[@bb4]). For bond-length data, see: Allen *et al.* (1987[@bb1]). ?show \[softreturn\]\> Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~9~H~11~NO*M* *~r~* = 149.19Monoclinic,*a* = 6.7670 (14) Å*b* = 9.946 (2) Å*c* = 12.229 (2) Åβ = 92.63 (3)°*V* = 822.2 (3) Å^3^*Z* = 4Mo *K*α radiationμ = 0.08 mm^−1^*T* = 293 K0.30 × 0.20 × 0.10 mm ### Data collection {#sec2.1.2} Enraf--Nonius CAD-4 diffractometerAbsorption correction: ψ scan (North *et al.*, 1968[@bb5]) *T* ~min~ = 0.977, *T* ~max~ = 0.9923362 measured reflections1510 independent reflections1062 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.0333 standard reflections every 200 reflections intensity decay: 1% ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.050*wR*(*F* ^2^) = 0.166*S* = 1.011510 reflections103 parametersH-atom parameters constrainedΔρ~max~ = 0.20 e Å^−3^Δρ~min~ = −0.15 e Å^−3^ {#d5e383} Data collection: *CAD-4 Software* (Enraf--Nonius, 1985[@bb2]); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo,1995[@bb3]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003527/vm2076sup1.cif](http://dx.doi.org/10.1107/S1600536811003527/vm2076sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003527/vm2076Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003527/vm2076Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?vm2076&file=vm2076sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?vm2076sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?vm2076&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [VM2076](http://scripts.iucr.org/cgi-bin/sendsup?vm2076)). The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection. Comment ======= Benzamide derivatives exhibit interesting biological activities such as antibacterial and antifungal effects (Lee *et al.*, 2009) We report here the crystal structure of the title compound *N*,4-dimethylbenzamide (I), an important organic intermediate (Fig. 1). Bond lengths and angles are within normal ranges (Allen *et al.*, 1987). In the crystal packing of (I) the molecules are connected together *via* N---H···O intermolecular hydrogen bonds to form a one-dimensional network in the *b* direction (Table 1, graph set C1,1(4)), which seems to be very effective in the stabilization of the crystal structure. Experimental {#experimental} ============ The title compound, (I) was prepared by a method reported in literature (Lee *et al.* (2009)). Crystals were obtained by dissolving (I) (0.2 g, 1.34 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 7 d. Refinement {#refinement} ========== All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C---H = 0.93 Å for aromatic H, 0.96 Å for methyl H and 0.86 Å for N---H, respectively. The *U*~iso~(H) = *xU*~eq~(C), where *x* = 1.2 for aromatic H and N---H, and *x* = 1.5 for methyl H. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o557-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram for (I) showing the N---H···O hydrogen bonds as dashed lines. ::: ![](e-67-0o557-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e131 .table-wrap} ------------------------- ------------------------------------- C~9~H~11~NO *F*(000) = 320 *M~r~* = 149.19 *D*~x~ = 1.205 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 25 reflections *a* = 6.7670 (14) Å θ = 9--13° *b* = 9.946 (2) Å µ = 0.08 mm^−1^ *c* = 12.229 (2) Å *T* = 293 K β = 92.63 (3)° Block, colourless *V* = 822.2 (3) Å^3^ 0.30 × 0.20 × 0.10 mm *Z* = 4 ------------------------- ------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e256 .table-wrap} ------------------------------------------------------ ---------------------------------------------- Enraf--Nonius CAD-4 diffractometer 1062 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.033 graphite θ~max~ = 25.4°, θ~min~ = 2.6° ω/2θ scans *h* = 0→8 Absorption correction: ψ scan (North *et al.*, 1968) *k* = −11→11 *T*~min~ = 0.977, *T*~max~ = 0.992 *l* = −14→14 3362 measured reflections 3 standard reflections every 200 reflections 1510 independent reflections intensity decay: 1% ------------------------------------------------------ ---------------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e378 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.050 H-atom parameters constrained *wR*(*F*^2^) = 0.166 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.1*P*)^2^ + 0.080*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.01 (Δ/σ)~max~ \< 0.001 1510 reflections Δρ~max~ = 0.20 e Å^−3^ 103 parameters Δρ~min~ = −0.15 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.028 (8) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e559 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e658 .table-wrap} ----- ------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O 0.2041 (3) 0.99892 (14) 0.23558 (16) 0.0773 (6) N 0.2849 (2) 0.78998 (15) 0.28900 (14) 0.0514 (5) H0A 0.2554 0.7059 0.2868 0.062\* C1 −0.5644 (4) 0.6995 (3) 0.0146 (2) 0.0766 (8) H1A −0.6295 0.6353 0.0592 0.115\* H1B −0.5367 0.6591 −0.0543 0.115\* H1C −0.6485 0.7763 0.0023 0.115\* C2 −0.3742 (3) 0.7431 (2) 0.07191 (17) 0.0550 (6) C3 −0.2949 (4) 0.8698 (2) 0.05499 (19) 0.0652 (7) H3A −0.3599 0.9283 0.0062 0.078\* C4 −0.1226 (3) 0.9106 (2) 0.10867 (18) 0.0591 (6) H4A −0.0750 0.9968 0.0969 0.071\* C5 −0.0184 (3) 0.82556 (17) 0.18015 (15) 0.0440 (5) C6 −0.0961 (3) 0.69834 (18) 0.19627 (17) 0.0530 (6) H6A −0.0291 0.6387 0.2434 0.064\* C7 −0.2701 (3) 0.6593 (2) 0.14374 (18) 0.0581 (6) H7A −0.3195 0.5738 0.1569 0.070\* C8 0.1657 (3) 0.87739 (18) 0.23661 (16) 0.0479 (5) C9 0.4623 (3) 0.8321 (2) 0.3494 (2) 0.0613 (6) H9A 0.5168 0.7575 0.3904 0.092\* H9B 0.4309 0.9034 0.3987 0.092\* H9C 0.5571 0.8637 0.2993 0.092\* ----- ------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e990 .table-wrap} ---- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O 0.0747 (11) 0.0273 (8) 0.1272 (15) −0.0054 (7) −0.0245 (10) 0.0023 (8) N 0.0498 (10) 0.0296 (8) 0.0737 (12) −0.0025 (7) −0.0084 (8) −0.0006 (7) C1 0.0590 (15) 0.0951 (19) 0.0743 (16) −0.0004 (13) −0.0132 (12) −0.0086 (14) C2 0.0481 (12) 0.0610 (13) 0.0555 (12) 0.0047 (10) −0.0017 (10) −0.0086 (10) C3 0.0654 (15) 0.0563 (13) 0.0721 (15) 0.0125 (11) −0.0159 (12) 0.0065 (11) C4 0.0631 (14) 0.0396 (11) 0.0739 (14) 0.0040 (10) −0.0038 (12) 0.0083 (10) C5 0.0446 (11) 0.0321 (9) 0.0552 (11) 0.0050 (8) 0.0007 (9) −0.0030 (8) C6 0.0531 (12) 0.0351 (10) 0.0695 (13) 0.0000 (9) −0.0108 (10) 0.0047 (9) C7 0.0547 (13) 0.0463 (12) 0.0724 (14) −0.0055 (9) −0.0068 (11) −0.0010 (10) C8 0.0503 (12) 0.0288 (9) 0.0647 (12) 0.0016 (8) 0.0017 (9) −0.0024 (8) C9 0.0537 (13) 0.0506 (12) 0.0783 (15) −0.0037 (10) −0.0122 (11) −0.0019 (11) ---- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1243 .table-wrap} ------------------- -------------- ------------------- -------------- O---C8 1.237 (2) C3---H3A 0.9300 N---C8 1.330 (2) C4---C5 1.386 (3) N---C9 1.442 (3) C4---H4A 0.9300 N---H0A 0.8600 C5---C6 1.388 (3) C1---C2 1.501 (3) C5---C8 1.489 (3) C1---H1A 0.9600 C6---C7 1.372 (3) C1---H1B 0.9600 C6---H6A 0.9300 C1---H1C 0.9600 C7---H7A 0.9300 C2---C7 1.381 (3) C9---H9A 0.9600 C2---C3 1.389 (3) C9---H9B 0.9600 C3---C4 1.373 (3) C9---H9C 0.9600 C8---N---C9 121.90 (17) C4---C5---C6 117.46 (19) C8---N---H0A 119.0 C4---C5---C8 118.17 (17) C9---N---H0A 119.0 C6---C5---C8 124.35 (17) C2---C1---H1A 109.5 C7---C6---C5 120.96 (19) C2---C1---H1B 109.5 C7---C6---H6A 119.5 H1A---C1---H1B 109.5 C5---C6---H6A 119.5 C2---C1---H1C 109.5 C6---C7---C2 121.9 (2) H1A---C1---H1C 109.5 C6---C7---H7A 119.0 H1B---C1---H1C 109.5 C2---C7---H7A 119.0 C7---C2---C3 117.0 (2) O---C8---N 121.39 (19) C7---C2---C1 121.6 (2) O---C8---C5 120.36 (18) C3---C2---C1 121.4 (2) N---C8---C5 118.24 (16) C4---C3---C2 121.5 (2) N---C9---H9A 109.5 C4---C3---H3A 119.2 N---C9---H9B 109.5 C2---C3---H3A 119.2 H9A---C9---H9B 109.5 C3---C4---C5 121.2 (2) N---C9---H9C 109.5 C3---C4---H4A 119.4 H9A---C9---H9C 109.5 C5---C4---H4A 119.4 H9B---C9---H9C 109.5 C7---C2---C3---C4 −1.1 (3) C3---C2---C7---C6 −0.1 (3) C1---C2---C3---C4 178.9 (2) C1---C2---C7---C6 179.9 (2) C2---C3---C4---C5 1.5 (4) C9---N---C8---O 1.5 (3) C3---C4---C5---C6 −0.7 (3) C9---N---C8---C5 −177.53 (18) C3---C4---C5---C8 −179.17 (19) C4---C5---C8---O 13.1 (3) C4---C5---C6---C7 −0.4 (3) C6---C5---C8---O −165.2 (2) C8---C5---C6---C7 177.91 (18) C4---C5---C8---N −167.81 (18) C5---C6---C7---C2 0.8 (3) C6---C5---C8---N 13.8 (3) ------------------- -------------- ------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1621 .table-wrap} ---------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N---H0A···O^i^ 0.86 2.10 2.912 (2) 158 ---------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1/2, *y*−1/2, −*z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- --------- ------- ----------- ------------- N---H0*A*⋯O^i^ 0.86 2.10 2.912 (2) 158 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.242044
2011-2-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052065/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 5; 67(Pt 3):o557", "authors": [ { "first": "Jia-Ying", "last": "Xu" }, { "first": "Wei-Hua", "last": "Cheng" } ] }
PMC3052066
Related literature {#sec1} ================== For the anti­convulsant properties of enamino­nes, see: Alexander *et al.* (2010[@bb1], 2011[@bb2]); Edafiogho *et al.* (1992[@bb3]); Eddington *et al.* (2003[@bb4]); North *et al.* (2011[@bb5]); Scott *et al.* (1993[@bb9], 1995[@bb10]). For related structures see: Alexander *et al.* (2010[@bb1], 2011[@bb2]); North *et al.* (2011[@bb5]); Scott *et al.* (2006*a* [@bb7],*b* [@bb8]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~15~H~16~F~3~NO~2~*M* *~r~* = 299.29Monoclinic,*a* = 6.10302 (11) Å*b* = 8.39246 (16) Å*c* = 28.2487 (5) Åβ = 93.6941 (16)°*V* = 1443.88 (5) Å^3^*Z* = 4Cu *K*α radiationμ = 1.01 mm^−1^*T* = 123 K0.52 × 0.36 × 0.12 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur Ruby Gemini diffractometerAbsorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009[@bb6]) *T* ~min~ = 0.697, *T* ~max~ = 1.0005270 measured reflections2843 independent reflections2624 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.016 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.052*wR*(*F* ^2^) = 0.138*S* = 1.052843 reflections219 parameters48 restraintsH-atom parameters constrainedΔρ~max~ = 0.65 e Å^−3^Δρ~min~ = −0.50 e Å^−3^ {#d5e517} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009[@bb6]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb11]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb11]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004338/lh5206sup1.cif](http://dx.doi.org/10.1107/S1600536811004338/lh5206sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004338/lh5206Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004338/lh5206Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?lh5206&file=lh5206sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?lh5206sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?lh5206&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [LH5206](http://scripts.iucr.org/cgi-bin/sendsup?lh5206)). The authors are indebted to Mr James P. Stables, Epilepsy Branch, Division of Convulsive, Developmental and Neuromuscular Disorders, National Institute of Neurological Disorders and Stroke, for helpful discussions and initial data. The authors wish to acknowledge E. Jeannette Andrews, EdD., Deputy Director of the Center of Excellence at Howard University College of Pharmacy, Nursing and Allied Health Sciences, for her generous assistance in completing this project. RJB wishes to acknowledge the NSF--MRI program (grant CHE-0619278) for funds to purchase the diffractometer. Comment ======= The study of enaminones has led to several compounds possessing anticonvulsant properties (Edafiogho *et al.*, 1992; Eddington *et al.*, 2003; Scott *et al.*, 1993, 1995, 2006*a*,*b*; Alexander *et al.*, 2010, 2011; North *et al.*, 2011). Our group has extensively studied the effects of modification of the enaminone with substitutions at the methyl ester, ethyl ester, and without the ester group. We recently synthesized a series of methyl-substituted enaminones. The title compound, 3-(4-(trifluoromethoxy)phenylamino)-2,5-dimethylcyclohex-2-enone was exclusively active in the maximal electroshock seizure evaluation (MES) in mice, indicative of protection against tonic-clonic convulsions in humans. The MES test with mice revealed no activity at the 30 mg kg^-1^ dose, however in the 100 mg kg^-1^ dose, 1/3 of the animals were protected at 30 minutes and 3/3 of the animals were protected at 4 h. At a dose of 300 mg kg^-1^, 1/1 animals were protected at 30 min and 4 h. In the rat (po) MES study, at a dose of 30 mg kg^-1^, 2/4 of the animals were protected at 4 h with no toxicity. In the 6 Hz seizure study in mice, at a dose of 75 mg kg^-1^, 1/4 animals were protected at 30 min, 1 h, and 2 h. Since the shape of the molecule is important in determining binding to the receptor sites it is of interest to note that the dihedral angle between the phenyl ring and the conjugated part of the cyclohexene ring is 60.00 (8)°. The backbone of the cyclohexene and the trifluoromethyl groups are disordered over two conformations with occupancies of 0.835 (2) and 0.165 (2), respectively. The geometry of the trifluoromethyl groups are idealized. The molecules are linked into chains along \[010\] by intermolecular N---H···O hydrogen bonds (see Fig. 2). In addition there are weak intermolecular C---H···O interactions. Experimental {#experimental} ============ Iodomethane (11.2 ml, 0.18 mol, 1.5 equiv) was added to a solution of 5-methyl-1,3-cyclohexanedione (15.0 g, 0.119 mol) in 4 N aqueous sodium hydroxide (30 mL, 1.0 equiv of NaOH) in a two-neck 250 ml round bottom flask fitted with a magnetic stirrer and condenser. The solution was refluxed for 20 h and cooled to room temperature, then refrigerated at 273K overnight. Vacuum filtration of the reaction mixture gave a crystalline mass dried to yield 9.24 g (54%). The crystalline mass, 2,5-dimethyl-1,3-cyclohexadione (2.10 g, 15 mmol), mp 443-445K (lit. mp 403-404.5K), 4-trifluromethoxyaniline (2.412 g, 18 mmol), and toluene (60 ml) was added to a 150 ml single neck round bottom flask containing a stir bar. The solution was refluxed and stirred for 6 h with azeotropic removal of water by Dean-Stark trap. After standing overnight, crystals appeared. Evaporation under reduced pressure yielded crystals that were recrystallized from EtOAc, 23.6% yield (mp 446-448K). Refinement {#refinement} ========== H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C---H distance of 0.93 and 0.98 Å *U*~iso~(H) = 1.2*U*~eq~(C) and 0.96 Å for CH~3~ \[*U*~iso~(H) = 1.5*U*~eq~(C)\]. The H atoms attached to N were idealized with an N--H distance of 0.86 Å. The backbone of the cyclohexene and the trifluoromethyl groups were disordered over two conformations with occupancies of 0.835 (2) and 0.165 (2), respectively. The trifluoromethyl groups were idealized. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound. Thermal ellipsoids drawn at the 30% probability level. The disorder is not shown. ::: ![](e-67-0o603-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing for 3-(4-Chlorophenylamino)-2,5-dimethylcyclohex-2-enone viewed approximately along the a axis. Hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o603-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e162 .table-wrap} ------------------------- --------------------------------------- C~15~H~16~F~3~NO~2~ *F*(000) = 624 *M~r~* = 299.29 *D*~x~ = 1.377 Mg m^−3^ Monoclinic, *P*2~1~/*n* Cu *K*α radiation, λ = 1.54184 Å Hall symbol: -P 2yn Cell parameters from 4019 reflections *a* = 6.10302 (11) Å θ = 4.7--74.0° *b* = 8.39246 (16) Å µ = 1.01 mm^−1^ *c* = 28.2487 (5) Å *T* = 123 K β = 93.6941 (16)° Plate, colorless *V* = 1443.88 (5) Å^3^ 0.52 × 0.36 × 0.12 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e292 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Xcalibur Ruby Gemini diffractometer 2843 independent reflections Radiation source: Enhance (Cu) X-ray Source 2624 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.016 Detector resolution: 10.5081 pixels mm^-1^ θ~max~ = 74.2°, θ~min~ = 5.5° ω scans *h* = −4→7 Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) *k* = −9→10 *T*~min~ = 0.697, *T*~max~ = 1.000 *l* = −34→34 5270 measured reflections ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e412 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.052 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.138 H-atom parameters constrained *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0709*P*)^2^ + 0.9652*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2843 reflections (Δ/σ)~max~ \< 0.001 219 parameters Δρ~max~ = 0.65 e Å^−3^ 48 restraints Δρ~min~ = −0.50 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e569 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e668 .table-wrap} ------ -------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) C7A 0.7405 (3) 1.2972 (3) 0.48394 (6) 0.0462 (7) 0.835 (2) F1A 0.7047 (3) 1.3585 (5) 0.52573 (7) 0.0656 (5) 0.835 (2) F2A 0.6311 (4) 1.3805 (3) 0.45056 (7) 0.0799 (8) 0.835 (2) F3A 0.9521 (3) 1.3054 (2) 0.47731 (6) 0.0656 (6) 0.835 (2) C7B 0.6407 (12) 1.2885 (12) 0.4867 (3) 0.0462 (7) 0.165 (2) F1B 0.4247 (12) 1.2958 (11) 0.4830 (3) 0.0656 (5) 0.165 (2) F2B 0.7200 (17) 1.3625 (17) 0.4504 (4) 0.0799 (8) 0.165 (2) F3B 0.7146 (16) 1.358 (3) 0.5264 (3) 0.0656 (6) 0.165 (2) O1 0.6742 (2) 1.14194 (17) 0.48572 (4) 0.0373 (3) O2 0.41421 (19) 0.38222 (15) 0.21250 (4) 0.0293 (3) N1 0.6984 (2) 0.75651 (17) 0.32496 (5) 0.0257 (3) H1 0.8076 0.7746 0.3068 0.031\* C1 0.6876 (3) 0.85474 (19) 0.36566 (6) 0.0240 (4) C2 0.4982 (3) 0.9395 (2) 0.37426 (6) 0.0266 (4) H2A 0.3718 0.9309 0.3530 0.032\* C3 0.4944 (3) 1.0364 (2) 0.41394 (6) 0.0284 (4) H3A 0.3641 1.0916 0.4207 0.034\* C4 0.6822 (3) 1.0518 (2) 0.44349 (6) 0.0275 (4) C5 0.8737 (3) 0.9724 (2) 0.43486 (6) 0.0319 (4) H5A 1.0020 0.9859 0.4553 0.038\* C6 0.8753 (3) 0.8729 (2) 0.39589 (6) 0.0300 (4) H6A 1.0054 0.8164 0.3897 0.036\* C8 0.5578 (3) 0.63770 (19) 0.31118 (6) 0.0223 (3) C9A 0.3906 (7) 0.5897 (3) 0.34518 (15) 0.0240 (7) 0.835 (2) H9AA 0.2592 0.6584 0.3402 0.029\* 0.835 (2) H9AB 0.4523 0.6060 0.3781 0.029\* 0.835 (2) C10A 0.3226 (3) 0.4141 (2) 0.33854 (7) 0.0262 (4) 0.835 (2) H10A 0.4519 0.3455 0.3481 0.031\* 0.835 (2) C11A 0.1365 (5) 0.3730 (3) 0.37008 (10) 0.0351 (6) 0.835 (2) H11A 0.0979 0.2603 0.3661 0.053\* 0.835 (2) H11B 0.0081 0.4390 0.3611 0.053\* 0.835 (2) H11C 0.1842 0.3934 0.4033 0.053\* 0.835 (2) C12A 0.2560 (7) 0.3828 (6) 0.28575 (9) 0.0241 (7) 0.835 (2) H12A 0.2367 0.2667 0.2809 0.029\* 0.835 (2) H12B 0.1126 0.4345 0.2776 0.029\* 0.835 (2) C9B 0.412 (5) 0.555 (3) 0.3486 (10) 0.0240 (7) 0.165 (2) H9BA 0.4955 0.4648 0.3638 0.029\* 0.165 (2) H9BB 0.3813 0.6322 0.3737 0.029\* 0.165 (2) C10B 0.2094 (17) 0.4962 (13) 0.3272 (4) 0.0262 (4) 0.165 (2) H10B 0.1285 0.5830 0.3091 0.031\* 0.165 (2) C11B 0.065 (3) 0.4229 (19) 0.3647 (6) 0.0351 (6) 0.165 (2) H11D −0.0731 0.3842 0.3490 0.053\* 0.165 (2) H11E 0.0327 0.5043 0.3881 0.053\* 0.165 (2) H11F 0.1430 0.3340 0.3806 0.053\* 0.165 (2) C12B 0.275 (5) 0.380 (3) 0.2968 (7) 0.0241 (7) 0.165 (2) H12C 0.1424 0.3247 0.2831 0.029\* 0.165 (2) H12D 0.3638 0.3009 0.3156 0.029\* 0.165 (2) C13 0.4186 (3) 0.4425 (2) 0.25288 (6) 0.0234 (3) C14 0.5677 (3) 0.56830 (19) 0.26727 (5) 0.0221 (3) C15 0.7221 (3) 0.6296 (2) 0.23177 (6) 0.0266 (4) H15A 0.7160 0.7463 0.2309 0.040\* H15B 0.6782 0.5871 0.2003 0.040\* H15C 0.8722 0.5953 0.2411 0.040\* ------ -------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1379 .table-wrap} ------ ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C7A 0.067 (2) 0.0396 (13) 0.0315 (11) 0.0034 (14) −0.0007 (13) −0.0097 (10) F1A 0.0878 (13) 0.0630 (11) 0.0457 (9) 0.0048 (10) 0.0030 (9) −0.0356 (8) F2A 0.133 (2) 0.0381 (10) 0.0634 (10) 0.0262 (13) −0.0302 (13) −0.0070 (8) F3A 0.0776 (12) 0.0588 (11) 0.0630 (11) −0.0308 (9) 0.0239 (9) −0.0170 (9) C7B 0.067 (2) 0.0396 (13) 0.0315 (11) 0.0034 (14) −0.0007 (13) −0.0097 (10) F1B 0.0878 (13) 0.0630 (11) 0.0457 (9) 0.0048 (10) 0.0030 (9) −0.0356 (8) F2B 0.133 (2) 0.0381 (10) 0.0634 (10) 0.0262 (13) −0.0302 (13) −0.0070 (8) F3B 0.0776 (12) 0.0588 (11) 0.0630 (11) −0.0308 (9) 0.0239 (9) −0.0170 (9) O1 0.0491 (8) 0.0401 (8) 0.0232 (6) −0.0027 (6) 0.0052 (5) −0.0094 (5) O2 0.0263 (6) 0.0351 (7) 0.0261 (6) 0.0009 (5) −0.0013 (5) −0.0081 (5) N1 0.0273 (7) 0.0290 (7) 0.0215 (7) −0.0044 (6) 0.0060 (5) −0.0033 (6) C1 0.0286 (8) 0.0242 (8) 0.0195 (7) −0.0043 (6) 0.0033 (6) 0.0003 (6) C2 0.0276 (8) 0.0274 (8) 0.0243 (8) −0.0016 (7) −0.0018 (6) 0.0003 (6) C3 0.0291 (8) 0.0280 (8) 0.0286 (8) 0.0027 (7) 0.0039 (7) −0.0010 (7) C4 0.0350 (9) 0.0301 (9) 0.0177 (7) −0.0026 (7) 0.0047 (6) −0.0028 (6) C5 0.0295 (9) 0.0416 (10) 0.0239 (8) −0.0011 (8) −0.0025 (6) −0.0037 (7) C6 0.0263 (8) 0.0366 (10) 0.0272 (9) 0.0019 (7) 0.0026 (6) −0.0034 (7) C8 0.0229 (7) 0.0214 (8) 0.0222 (8) 0.0019 (6) −0.0002 (6) 0.0024 (6) C9A 0.0312 (14) 0.0200 (19) 0.0214 (11) −0.0004 (13) 0.0053 (10) 0.0006 (14) C10A 0.0271 (10) 0.0247 (10) 0.0267 (10) −0.0009 (7) 0.0015 (8) 0.0021 (8) C11A 0.0386 (15) 0.0365 (15) 0.0309 (11) −0.0095 (10) 0.0069 (11) 0.0020 (10) C12A 0.0236 (12) 0.0291 (9) 0.0190 (18) −0.0039 (8) −0.0029 (13) −0.0022 (15) C9B 0.0312 (14) 0.0200 (19) 0.0214 (11) −0.0004 (13) 0.0053 (10) 0.0006 (14) C10B 0.0271 (10) 0.0247 (10) 0.0267 (10) −0.0009 (7) 0.0015 (8) 0.0021 (8) C11B 0.0386 (15) 0.0365 (15) 0.0309 (11) −0.0095 (10) 0.0069 (11) 0.0020 (10) C12B 0.0236 (12) 0.0291 (9) 0.0190 (18) −0.0039 (8) −0.0029 (13) −0.0022 (15) C13 0.0211 (7) 0.0247 (8) 0.0239 (8) 0.0058 (6) −0.0020 (6) −0.0013 (6) C14 0.0222 (7) 0.0229 (8) 0.0210 (7) 0.0032 (6) 0.0003 (6) 0.0024 (6) C15 0.0297 (8) 0.0272 (8) 0.0231 (8) 0.0004 (7) 0.0050 (6) −0.0016 (6) ------ ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1953 .table-wrap} ---------------------- -------------- -------------------------- ------------- C7A---F3A 1.3189 (15) C9A---H9AB 0.9900 C7A---F1A 1.3189 (14) C10A---C11A 1.527 (3) C7A---F2A 1.3195 (15) C10A---C12A 1.543 (3) C7A---O1 1.366 (3) C10A---H10A 1.0000 C7B---O1 1.248 (10) C11A---H11A 0.9800 C7B---F2B 1.3169 (16) C11A---H11B 0.9800 C7B---F1B 1.3170 (16) C11A---H11C 0.9800 C7B---F3B 1.3171 (16) C12A---C13 1.489 (4) O1---C4 1.416 (2) C12A---H12A 0.9900 O2---C13 1.246 (2) C12A---H12B 0.9900 N1---C8 1.356 (2) C9B---C10B 1.43 (3) N1---C1 1.420 (2) C9B---H9BA 0.9900 N1---H1 0.8800 C9B---H9BB 0.9900 C1---C2 1.392 (2) C10B---C12B 1.37 (3) C1---C6 1.392 (2) C10B---C11B 1.550 (18) C2---C3 1.386 (2) C10B---H10B 1.0000 C2---H2A 0.9500 C11B---H11D 0.9800 C3---C4 1.380 (2) C11B---H11E 0.9800 C3---H3A 0.9500 C11B---H11F 0.9800 C4---C5 1.381 (3) C12B---C13 1.65 (3) C5---C6 1.382 (2) C12B---H12C 0.9900 C5---H5A 0.9500 C12B---H12D 0.9900 C6---H6A 0.9500 C13---C14 1.436 (2) C8---C14 1.375 (2) C14---C15 1.510 (2) C8---C9A 1.501 (5) C15---H15A 0.9800 C8---C9B 1.59 (3) C15---H15B 0.9800 C9A---C10A 1.539 (4) C15---H15C 0.9800 C9A---H9AA 0.9900 F3A---C7A---F1A 109.09 (11) C9A---C10A---C12A 109.5 (3) F3A---C7A---F2A 109.02 (11) C11A---C10A---H10A 108.4 F1A---C7A---F2A 109.13 (11) C9A---C10A---H10A 108.4 F3A---C7A---O1 110.47 (16) C12A---C10A---H10A 108.4 F1A---C7A---O1 105.8 (2) C13---C12A---C10A 113.6 (3) F2A---C7A---O1 113.21 (16) C13---C12A---H12A 108.8 O1---C7B---F2B 112.3 (8) C10A---C12A---H12A 108.8 O1---C7B---F1B 102.0 (7) C13---C12A---H12B 108.8 F2B---C7B---F1B 109.45 (12) C10A---C12A---H12B 108.8 O1---C7B---F3B 113.9 (10) H12A---C12A---H12B 107.7 F2B---C7B---F3B 109.41 (13) C10B---C9B---C8 112.0 (18) F1B---C7B---F3B 109.45 (12) C10B---C9B---H9BA 109.2 C7B---O1---C4 124.0 (4) C8---C9B---H9BA 109.2 C7A---O1---C4 116.88 (13) C10B---C9B---H9BB 109.2 C8---N1---C1 126.71 (14) C8---C9B---H9BB 109.2 C8---N1---H1 116.6 H9BA---C9B---H9BB 107.9 C1---N1---H1 116.6 C12B---C10B---C9B 103.2 (17) C2---C1---C6 119.79 (15) C12B---C10B---C11B 110.3 (15) C2---C1---N1 121.37 (15) C9B---C10B---C11B 111.2 (14) C6---C1---N1 118.73 (15) C12B---C10B---H10B 110.6 C3---C2---C1 119.91 (15) C9B---C10B---H10B 110.6 C3---C2---H2A 120.0 C11B---C10B---H10B 110.6 C1---C2---H2A 120.0 C10B---C11B---H11D 109.5 C4---C3---C2 119.17 (16) C10B---C11B---H11E 109.5 C4---C3---H3A 120.4 H11D---C11B---H11E 109.5 C2---C3---H3A 120.4 C10B---C11B---H11F 109.5 C3---C4---C5 121.83 (16) H11D---C11B---H11F 109.5 C3---C4---O1 119.18 (15) H11E---C11B---H11F 109.5 C5---C4---O1 118.82 (16) C10B---C12B---C13 116 (2) C4---C5---C6 118.81 (16) C10B---C12B---H12C 108.3 C4---C5---H5A 120.6 C13---C12B---H12C 108.3 C6---C5---H5A 120.6 C10B---C12B---H12D 108.3 C5---C6---C1 120.43 (16) C13---C12B---H12D 108.3 C5---C6---H6A 119.8 H12C---C12B---H12D 107.4 C1---C6---H6A 119.8 O2---C13---C14 122.25 (15) N1---C8---C14 120.43 (15) O2---C13---C12A 117.27 (19) N1---C8---C9A 117.2 (2) C14---C13---C12A 120.44 (18) C14---C8---C9A 122.3 (2) O2---C13---C12B 125.3 (9) N1---C8---C9B 120.2 (10) C14---C13---C12B 112.2 (9) C14---C8---C9B 118.3 (10) C8---C14---C13 120.20 (15) C8---C9A---C10A 111.6 (3) C8---C14---C15 121.35 (15) C8---C9A---H9AA 109.3 C13---C14---C15 118.29 (14) C10A---C9A---H9AA 109.3 C14---C15---H15A 109.5 C8---C9A---H9AB 109.3 C14---C15---H15B 109.5 C10A---C9A---H9AB 109.3 H15A---C15---H15B 109.5 H9AA---C9A---H9AB 108.0 C14---C15---H15C 109.5 C11A---C10A---C9A 110.5 (2) H15A---C15---H15C 109.5 C11A---C10A---C12A 111.5 (2) H15B---C15---H15C 109.5 F2B---C7B---O1---C7A 51.0 (9) C14---C8---C9A---C10A 29.3 (3) F1B---C7B---O1---C7A 168.1 (11) C9B---C8---C9A---C10A −45 (6) F3B---C7B---O1---C7A −74.1 (10) C8---C9A---C10A---C11A −174.4 (2) F2B---C7B---O1---C4 −32.0 (7) C8---C9A---C10A---C12A −51.3 (3) F1B---C7B---O1---C4 85.1 (5) C11A---C10A---C12A---C13 171.7 (3) F3B---C7B---O1---C4 −157.1 (4) C9A---C10A---C12A---C13 49.2 (4) F3A---C7A---O1---C7B −178.9 (9) N1---C8---C9B---C10B 150.8 (11) F1A---C7A---O1---C7B 63.1 (9) C14---C8---C9B---C10B −40.8 (17) F2A---C7A---O1---C7B −56.3 (9) C9A---C8---C9B---C10B 72 (5) F3A---C7A---O1---C4 −66.21 (18) C8---C9B---C10B---C12B 64.6 (18) F1A---C7A---O1---C4 175.85 (15) C8---C9B---C10B---C11B −177.2 (12) F2A---C7A---O1---C4 56.4 (2) C9B---C10B---C12B---C13 −64.6 (19) C8---N1---C1---C2 −54.0 (2) C11B---C10B---C12B---C13 176.6 (13) C8---N1---C1---C6 129.73 (18) C10A---C12A---C13---O2 158.8 (2) C6---C1---C2---C3 −2.7 (3) C10A---C12A---C13---C14 −23.4 (4) N1---C1---C2---C3 −178.93 (15) C10A---C12A---C13---C12B 16 (6) C1---C2---C3---C4 2.4 (3) C10B---C12B---C13---O2 −147.1 (11) C2---C3---C4---C5 −0.5 (3) C10B---C12B---C13---C14 37.9 (19) C2---C3---C4---O1 −175.70 (15) C10B---C12B---C13---C12A −106 (7) C7B---O1---C4---C3 −65.7 (5) N1---C8---C14---C13 179.94 (14) C7A---O1---C4---C3 −96.11 (19) C9A---C8---C14---C13 −1.6 (3) C7B---O1---C4---C5 119.0 (5) C9B---C8---C14---C13 11.6 (10) C7A---O1---C4---C5 88.5 (2) N1---C8---C14---C15 −4.7 (2) C3---C4---C5---C6 −1.1 (3) C9A---C8---C14---C15 173.77 (17) O1---C4---C5---C6 174.17 (16) C9B---C8---C14---C15 −173.0 (10) C4---C5---C6---C1 0.7 (3) O2---C13---C14---C8 176.07 (15) C2---C1---C6---C5 1.1 (3) C12A---C13---C14---C8 −1.7 (3) N1---C1---C6---C5 177.47 (16) C12B---C13---C14---C8 −8.8 (10) C1---N1---C8---C14 169.97 (15) O2---C13---C14---C15 0.6 (2) C1---N1---C8---C9A −8.6 (3) C12A---C13---C14---C15 −177.2 (2) C1---N1---C8---C9B −21.9 (10) C12B---C13---C14---C15 175.7 (10) N1---C8---C9A---C10A −152.2 (2) ---------------------- -------------- -------------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3021 .table-wrap} ---------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1···O2^i^ 0.88 2.03 2.8538 (18) 156 C9A---H9AA···O2^ii^ 0.99 2.58 3.428 (3) 144 C10B---H10B···O2^ii^ 1.00 2.59 3.494 (11) 150 ---------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (i) −*x*+3/2, *y*+1/2, −*z*+1/2; (ii) −*x*+1/2, *y*+1/2, −*z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------ --------- ------- ------------- ------------- N1---H1⋯O2^i^ 0.88 2.03 2.8538 (18) 156 C9*A*---H9*AA*⋯O2^ii^ 0.99 2.58 3.428 (3) 144 C10*B*---H10*B*⋯O2^ii^ 1.00 2.59 3.494 (11) 150 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.245525
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052066/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o603-o604", "authors": [ { "first": "Henry", "last": "North" }, { "first": "Kwame", "last": "Wutoh" }, { "first": "M’egya K.", "last": "Odoom" }, { "first": "Pradeep", "last": "Karla" }, { "first": "Kenneth R.", "last": "Scott" }, { "first": "Ray J.", "last": "Butcher" } ] }
PMC3052067
Related literature {#sec1} ================== For the synthesis, see: Kim & Lee (1994[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~13~H~11~ClN~2~O~3~*M* *~r~* = 278.69Monoclinic,*a* = 32.748 (2) Å*b* = 8.8501 (5) Å*c* = 8.6366 (5) Åβ = 90.478 (2)°*V* = 2503.0 (3) Å^3^*Z* = 8Mo *K*α radiationμ = 0.31 mm^−1^*T* = 293 K0.8 × 0.6 × 0.4 mm ### Data collection {#sec2.1.2} Rigaku R-AXIS RAPID II-S diffractometerAbsorption correction: multi-scan (*RAPID-AUTO*; Rigaku, 2008[@bb3]) *T* ~min~ = 0.800, *T* ~max~ = 0.83311943 measured reflections2860 independent reflections2467 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.050 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.038*wR*(*F* ^2^) = 0.101*S* = 1.042860 reflections172 parametersH-atom parameters constrainedΔρ~max~ = 0.38 e Å^−3^Δρ~min~ = −0.25 e Å^−3^ {#d5e411} Data collection: *RAPID-AUTO* (Rigaku, 2008[@bb3]); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb1]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811005575/ng5111sup1.cif](http://dx.doi.org/10.1107/S1600536811005575/ng5111sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005575/ng5111Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005575/ng5111Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ng5111&file=ng5111sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ng5111sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ng5111&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NG5111](http://scripts.iucr.org/cgi-bin/sendsup?ng5111)). This study was supported financially by Chonnam National University. CHK thanks the RIC, Sunchon National University, for financial support. Comment ======= Fused bicyclic isoxazoles, such as dihydrofuro- and dihydropyrano\[3,4-*c*\]isoxazole,particularly have fungicidal activities against some plant pathogens. To find a new lead compound as plant fungicide and to study the structure-activity relationship (SAR), we are interested in the solid-state structures of the fused bicyclic isoxazoles.The title compound, C~13~H~11~ClN~2~O~3~, forms bicycle adjointed 5-membered isoxazole ring and 6-membered oxane ring in C8 and C9 position and it adopts *E* conformation (Fig.1). Isoxazole ring is a plane with the largest deviation of 0.0081 (8)Å from the least suare plane.The C7 and C10 atoms lie in the isoxazole ring plane with the largest deviation of 0.00157 (7)Å (C7) from the least-squares plane of the isoxazole ring. The dihedral angle between isoxazole and 4-chlorophenyl ring is 75.60 (5)°.The compound displays intermolecular hydrogen boning between oxyen(O3) of oxime and nitrogen(symmetric code:O3 and H3 = x,y,z+1,N3 = -x+1/2, y+1/2, -z+/2)isoxazole with a distance between O3 and N1 of 2.79 (2)Å )(Fig. 2 and Table 1). This intermolecular hydrogen bonding forms 1-D zig-zag chain of of titled compound in crystalline solid. Experimental {#experimental} ============ A mixture of 7-(4-chlorophenyl)-5,7-dihydro-4*H*-pyrano\[3,4-*c*\]isoxazole-3-carbaldehyde (1.50 g, 5.69 mmol), HONH~2~.HCl (593 mg, 8.53 mmol) and NaOAc (700 mg, 8.53 mmol) in EtOH (30 ml) was stirred for 3 h at 25 °C. After filtration of the reaction mixture, the filtrate was concentrated under vacuum to give crude product, which was chromatographed on SiO~2~ eluting with *n*-hexane/EtOAc (2:1) solution to afford an isomeric mixture mixture (*E*:*Z* = 9:2). Single crystals of the (*E*)-isomer suitable for X-ray analysis were obtained by slow evaporation from an *n*-hexane/EtOAc solution at room temperature. Refinement {#refinement} ========== H atoms were positioned geometrically and allowed to ride on their respective parent atoms \[C---H = 0.93 (CH, *sp*^2^), 0.98 (CH, *sp*^3^) or 0.97 Å (CH~2~) and *O*---*H*(hydroxyl) =0.82, and *U*~iso~(H) = 1.2*U*~eq~(C),*U*~iso~(H) = 1.2*U*~eq~(O)\]. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of the title compound with displacement ellipsoids drawn at the 50% probability level for non-H atoms. ::: ![](e-67-0o671-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A packing diagram of the title compound. Dashed bonds represent hydrogen bonds. ::: ![](e-67-0o671-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e183 .table-wrap} ----------------------- ---------------------------------------- C~13~H~11~ClN~2~O~3~ Z = 8 *M~r~* = 278.69 *D*~x~ = 1.479 Mg m^−3^ Monoclinic, *C*2/*c* Mo *K*α radiation, λ = 0.71073 Å *a* = 32.748 (2) Å Cell parameters from 12348 reflections *b* = 8.8501 (5) Å θ = 27.5--3.4° *c* = 8.6366 (5) Å µ = 0.31 mm^−1^ β = 90.478 (2)° *T* = 293 K *V* = 2503.0 (3) Å^3^ Block, colorless *Z* = 8 0.8 × 0.6 × 0.4 mm *F*(000) = 1152 ----------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e310 .table-wrap} ---------------------------------------------------------------- -------------------------------------- Rigaku R-AXIS RAPID II-S diffractometer 2860 independent reflections Radiation source: fine-focus sealed tube 2467 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.050 ω scans θ~max~ = 27.5°, θ~min~ = 3.4° Absorption correction: multi-scan (*RAPID-AUTO*; Rigaku, 2008) *h* = −42→42 *T*~min~ = 0.800, *T*~max~ = 0.833 *k* = −10→11 11943 measured reflections *l* = −11→11 ---------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e424 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.038 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.101 H-atom parameters constrained *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0482*P*)^2^ + 1.5098*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2860 reflections (Δ/σ)~max~ \< 0.001 172 parameters Δρ~max~ = 0.38 e Å^−3^ 0 restraints Δρ~min~ = −0.25 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e581 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e680 .table-wrap} ------ --------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.011720 (14) 0.77709 (6) 0.05872 (5) 0.05107 (15) O3 0.30644 (3) 1.11893 (12) −0.46915 (11) 0.0345 (2) H3 0.3206 1.1478 −0.3961 0.052\* O2 0.21571 (3) 0.83333 (11) −0.33603 (10) 0.0274 (2) C13 0.25192 (4) 0.98089 (15) −0.52385 (14) 0.0257 (3) H13 0.2577 1.0035 −0.6265 0.031\* O1 0.10481 (3) 0.75465 (11) −0.63146 (11) 0.0305 (2) N2 0.27422 (3) 1.03185 (13) −0.41410 (12) 0.0281 (3) C7 0.12022 (4) 0.68615 (15) −0.49215 (15) 0.0261 (3) H7 0.1238 0.5776 −0.5095 0.031\* N1 0.17910 (3) 0.75114 (13) −0.31966 (13) 0.0277 (3) C1 0.04117 (4) 0.75176 (18) −0.10681 (16) 0.0330 (3) C4 0.09035 (4) 0.70947 (15) −0.36207 (15) 0.0257 (3) C12 0.21739 (4) 0.88671 (15) −0.48414 (14) 0.0246 (3) C8 0.16124 (4) 0.75648 (14) −0.45511 (15) 0.0241 (3) C9 0.18390 (4) 0.83945 (15) −0.56547 (14) 0.0248 (3) C3 0.08107 (4) 0.85489 (16) −0.31074 (17) 0.0328 (3) H3A 0.0915 0.9380 −0.3630 0.039\* C5 0.07352 (4) 0.58664 (15) −0.28589 (16) 0.0288 (3) H5 0.0788 0.4894 −0.3212 0.035\* C6 0.04879 (4) 0.60687 (17) −0.15740 (17) 0.0331 (3) H6 0.0376 0.5242 −0.1066 0.040\* C10 0.16899 (4) 0.85873 (17) −0.72871 (15) 0.0317 (3) H10A 0.1909 0.8387 −0.8007 0.038\* H10B 0.1595 0.9613 −0.7450 0.038\* C11 0.13411 (5) 0.74717 (18) −0.75476 (16) 0.0336 (3) H11A 0.1206 0.7696 −0.8524 0.040\* H11B 0.1451 0.6455 −0.7609 0.040\* C2 0.05646 (4) 0.87708 (17) −0.18291 (18) 0.0353 (3) H2 0.0503 0.9741 −0.1490 0.042\* ------ --------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1136 .table-wrap} ----- ------------ ------------ ------------ ------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0505 (3) 0.0642 (3) 0.0388 (2) 0.0056 (2) 0.01860 (18) −0.00215 (17) O3 0.0336 (5) 0.0442 (6) 0.0257 (5) −0.0137 (4) 0.0038 (4) −0.0043 (4) O2 0.0245 (4) 0.0339 (5) 0.0239 (5) 0.0006 (4) 0.0016 (3) 0.0031 (4) C13 0.0275 (6) 0.0295 (7) 0.0201 (6) 0.0010 (5) 0.0023 (5) −0.0011 (5) O1 0.0294 (5) 0.0361 (5) 0.0260 (5) −0.0023 (4) −0.0017 (4) 0.0030 (4) N2 0.0280 (5) 0.0322 (6) 0.0241 (5) −0.0040 (5) 0.0045 (4) −0.0013 (4) C7 0.0275 (6) 0.0241 (6) 0.0268 (6) −0.0003 (5) 0.0020 (5) 0.0010 (5) N1 0.0245 (5) 0.0311 (6) 0.0277 (6) 0.0011 (4) 0.0031 (4) 0.0041 (4) C1 0.0253 (6) 0.0453 (9) 0.0283 (7) 0.0026 (6) 0.0029 (5) −0.0005 (6) C4 0.0228 (6) 0.0265 (7) 0.0277 (7) 0.0003 (5) 0.0002 (5) 0.0010 (5) C12 0.0276 (6) 0.0255 (6) 0.0207 (6) 0.0033 (5) 0.0025 (5) −0.0009 (4) C8 0.0253 (6) 0.0232 (6) 0.0238 (6) 0.0038 (5) 0.0022 (5) 0.0003 (4) C9 0.0271 (6) 0.0235 (6) 0.0240 (6) 0.0006 (5) 0.0035 (5) −0.0002 (5) C3 0.0336 (7) 0.0261 (7) 0.0387 (8) −0.0009 (6) 0.0061 (6) 0.0016 (5) C5 0.0285 (6) 0.0251 (7) 0.0329 (7) 0.0009 (5) 0.0007 (5) 0.0027 (5) C6 0.0313 (7) 0.0352 (8) 0.0327 (7) −0.0025 (6) 0.0024 (5) 0.0081 (6) C10 0.0363 (7) 0.0370 (8) 0.0219 (6) −0.0085 (6) −0.0013 (5) 0.0026 (5) C11 0.0381 (8) 0.0406 (8) 0.0221 (7) −0.0093 (6) 0.0007 (6) −0.0014 (5) C2 0.0344 (7) 0.0313 (8) 0.0401 (8) 0.0033 (6) 0.0040 (6) −0.0053 (6) ----- ------------ ------------ ------------ ------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1505 .table-wrap} --------------------- -------------- ---------------------- -------------- Cl1---C1 1.7456 (14) C4---C5 1.3872 (18) O3---N2 1.3934 (14) C4---C3 1.3955 (19) O3---H3 0.8200 C12---C9 1.3633 (18) O2---C12 1.3651 (15) C8---C9 1.4178 (17) O2---N1 1.4105 (14) C9---C10 1.4978 (18) C13---N2 1.2742 (17) C3---C2 1.386 (2) C13---C12 1.4482 (18) C3---H3A 0.9300 C13---H13 0.9300 C5---C6 1.3907 (19) O1---C7 1.4351 (16) C5---H5 0.9300 O1---C11 1.4409 (17) C6---H6 0.9300 C7---C4 1.5099 (17) C10---C11 1.525 (2) C7---C8 1.5123 (18) C10---H10A 0.9700 C7---H7 0.9800 C10---H10B 0.9700 N1---C8 1.3043 (18) C11---H11A 0.9700 C1---C6 1.378 (2) C11---H11B 0.9700 C1---C2 1.385 (2) C2---H2 0.9300 N2---O3---H3 109.5 C12---C9---C10 134.78 (12) C12---O2---N1 108.26 (9) C8---C9---C10 121.57 (12) N2---C13---C12 118.12 (11) C2---C3---C4 120.87 (13) N2---C13---H13 120.9 C2---C3---H3A 119.6 C12---C13---H13 120.9 C4---C3---H3A 119.6 C7---O1---C11 111.63 (10) C4---C5---C6 120.92 (13) C13---N2---O3 111.89 (10) C4---C5---H5 119.5 O1---C7---C4 109.92 (11) C6---C5---H5 119.5 O1---C7---C8 107.99 (10) C1---C6---C5 118.75 (13) C4---C7---C8 111.48 (11) C1---C6---H6 120.6 O1---C7---H7 109.1 C5---C6---H6 120.6 C4---C7---H7 109.1 C9---C10---C11 107.63 (11) C8---C7---H7 109.1 C9---C10---H10A 110.2 C8---N1---O2 105.46 (10) C11---C10---H10A 110.2 C6---C1---C2 121.84 (13) C9---C10---H10B 110.2 C6---C1---Cl1 118.81 (11) C11---C10---H10B 110.2 C2---C1---Cl1 119.35 (12) H10A---C10---H10B 108.5 C5---C4---C3 118.92 (12) O1---C11---C10 111.33 (11) C5---C4---C7 120.54 (12) O1---C11---H11A 109.4 C3---C4---C7 120.44 (12) C10---C11---H11A 109.4 C9---C12---O2 109.75 (11) O1---C11---H11B 109.4 C9---C12---C13 132.92 (12) C10---C11---H11B 109.4 O2---C12---C13 117.31 (11) H11A---C11---H11B 108.0 N1---C8---C9 112.85 (12) C1---C2---C3 118.65 (13) N1---C8---C7 124.45 (11) C1---C2---H2 120.7 C9---C8---C7 122.68 (12) C3---C2---H2 120.7 C12---C9---C8 103.65 (11) C12---C13---N2---O3 179.32 (11) O2---C12---C9---C10 −179.11 (14) C11---O1---C7---C4 174.62 (11) C13---C12---C9---C10 2.5 (3) C11---O1---C7---C8 52.81 (13) N1---C8---C9---C12 −0.76 (15) C12---O2---N1---C8 0.96 (13) C7---C8---C9---C12 177.73 (11) O1---C7---C4---C5 121.01 (13) N1---C8---C9---C10 179.62 (12) C8---C7---C4---C5 −119.28 (13) C7---C8---C9---C10 −1.90 (19) O1---C7---C4---C3 −62.69 (16) C5---C4---C3---C2 1.9 (2) C8---C7---C4---C3 57.02 (16) C7---C4---C3---C2 −174.40 (13) N1---O2---C12---C9 −1.48 (14) C3---C4---C5---C6 −2.0 (2) N1---O2---C12---C13 177.20 (10) C7---C4---C5---C6 174.35 (12) N2---C13---C12---C9 165.24 (14) C2---C1---C6---C5 1.9 (2) N2---C13---C12---O2 −13.06 (18) Cl1---C1---C6---C5 −177.63 (11) O2---N1---C8---C9 −0.11 (14) C4---C5---C6---C1 0.1 (2) O2---N1---C8---C7 −178.57 (11) C12---C9---C10---C11 167.22 (15) O1---C7---C8---N1 161.63 (12) C8---C9---C10---C11 −13.29 (18) C4---C7---C8---N1 40.79 (17) C7---O1---C11---C10 −73.78 (15) O1---C7---C8---C9 −16.68 (16) C9---C10---C11---O1 48.62 (16) C4---C7---C8---C9 −137.52 (12) C6---C1---C2---C3 −1.9 (2) O2---C12---C9---C8 1.34 (14) Cl1---C1---C2---C3 177.59 (11) C13---C12---C9---C8 −177.05 (13) C4---C3---C2---C1 0.0 (2) --------------------- -------------- ---------------------- -------------- ::: Hydrogen-bond geometry (°) {#tablewraphbondslong} ========================== ::: {#d1e2137 .table-wrap} --------------- *D*---H···*A* ---··· --------------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- --------- ------- ------------- ------------- O3---H3⋯N1^i^ 0.82 2.07 2.7920 (15) 147 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.252542
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052067/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o671", "authors": [ { "first": "Hyun Sub", "last": "Lim" }, { "first": "Hyung Jin", "last": "Kim" }, { "first": "Enkhzul", "last": "Otgonbaatar" }, { "first": "Chee-Hun", "last": "Kwak" } ] }
PMC3052068
Related literature {#sec1} ================== For the bioactivity of pyrazole derivatives, see: Hagiwara & Suzuki (1996[@bb2]); Ranatunge *et al.* (2004[@bb4]). For related structures, see: Fu *et al.* (2008[@bb1]); Li *et al.* (2006[@bb3]). For the biological activity of compounds containing an oxime ester fragment, see: Vonhoff *et al.* (1999[@bb7]); Wood *et al.* (1997[@bb8]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~15~H~13~ClF~3~N~3~O~3~*M* *~r~* = 375.73Orthorhombic,*a* = 11.951 (2) Å*b* = 19.549 (4) Å*c* = 13.726 (3) Å*V* = 3206.8 (11) Å^3^*Z* = 8Mo *K*α radiationμ = 0.29 mm^−1^*T* = 113 K0.16 × 0.12 × 0.08 mm ### Data collection {#sec2.1.2} Rigaku Saturn diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku, 2008[@bb5]) *T* ~min~ = 0.955, *T* ~max~ = 0.97721575 measured reflections3686 independent reflections3208 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.061 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.046*wR*(*F* ^2^) = 0.115*S* = 1.103686 reflections229 parametersH-atom parameters constrainedΔρ~max~ = 0.29 e Å^−3^Δρ~min~ = −0.33 e Å^−3^ {#d5e448} Data collection: *CrystalClear* (Rigaku, 2008[@bb5]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811006696/cv5055sup1.cif](http://dx.doi.org/10.1107/S1600536811006696/cv5055sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006696/cv5055Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006696/cv5055Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?cv5055&file=cv5055sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?cv5055sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?cv5055&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [CV5055](http://scripts.iucr.org/cgi-bin/sendsup?cv5055)). This work was supported by the Science and Technology Projects Fund of Nantong City (grant Nos. K2010016, AS2010005), the Science Foundation of Nantong University (grant Nos. 09Z010, 09 C001) and the Scientific Research Foundation for Talent Introduction of Nantong University. Comment ======= Pyrazole derivatives have been paid much attention due to their diverse biological activities. Some of them are used as fungicide, insecticide, and antitumor agents (Hagiwara & Suzuki, 1996; Ranatunge *et al.*, 2004). Several studies have recently reported the crystal structures of related pyrazole compounds (Li *et al.*, 2006; Fu *et al.*, 2008). On the other hand, oxime ester group as an efficient pharmacophore was widely used in the field of agricultural and medicinal chemistry (Wood *et al.* , 1997; Vonhoff *et al.*, 1999). Motivated by the above observations and in continuation of research on the bioactivities of pyrazole derivatives, we synthesized the title compound (I). In (I) (Fig. 1), the dihedral angle between the planes of the phenyl ring and the pyrazoe ring is 77.6 (3)°. In the crystal structure, the molecules related by translation along axis *a* are linked into chains *via* C---H···O hydrogen bonds (Table 2; Fig. 2). The crystal packing is stabilized further by the weak π---π and dipole-dipole interactions (Table 1). Experimental {#experimental} ============ To a stirred solution of 1-methyl-3-(trifluoromethyl)-5-phenoxy-1*H*- pyrazole-4-carbaldehyde oxime (8 mmol),and sodium bicarbonate (20 mmol) in 80 ml of chloroform, was added dropwise acetyl chloride(10 mmol) at room temperature. The reaction mixture was heated to reflux for 8 h. After cooling to room temperature, the mixture was washed with water (3 \* 10 ml) and then with saturated brine (3 \* 20 ml), and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was recrystallized from petroleum ether/ethyl acetate (8:1 *v*/*v*) to obtain colourless crystals. Refinement {#refinement} ========== All H atoms were placed in calculated positions, with C--H = 0.93 - 0.96 Å, and included in the final cycles of refinement using a riding model, with *U*~iso~(H) = 1.2-1.5 *U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of (I) showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level. ::: ![](e-67-0o726-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A portion of the crystal packing of (I). Hydrogen bonds drawn as dashed lines. ::: ![](e-67-0o726-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e143 .table-wrap} -------------------------- --------------------------------------- C~15~H~13~ClF~3~N~3~O~3~ *F*(000) = 1536 *M~r~* = 375.73 *D*~x~ = 1.557 Mg m^−3^ Orthorhombic, *Pbcn* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2n 2ab Cell parameters from 7040 reflections *a* = 11.951 (2) Å θ = 2.0--27.5° *b* = 19.549 (4) Å µ = 0.29 mm^−1^ *c* = 13.726 (3) Å *T* = 113 K *V* = 3206.8 (11) Å^3^ Orthorhombic, colourless *Z* = 8 0.16 × 0.12 × 0.08 mm -------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e270 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Rigaku Saturn diffractometer 3686 independent reflections Radiation source: rotating anode 3208 reflections with *I* \> 2σ(*I*) confocal *R*~int~ = 0.061 ω scans θ~max~ = 27.5°, θ~min~ = 2.0° Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2008) *h* = −12→15 *T*~min~ = 0.955, *T*~max~ = 0.977 *k* = −25→24 21575 measured reflections *l* = −14→17 ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e384 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.046 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.115 H-atom parameters constrained *S* = 1.10 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0516*P*)^2^ + 1.0705*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3686 reflections (Δ/σ)~max~ = 0.005 229 parameters Δρ~max~ = 0.29 e Å^−3^ 0 restraints Δρ~min~ = −0.33 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e541 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e640 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.78669 (4) 1.02584 (3) 1.15028 (4) 0.03467 (15) F1 1.04265 (9) 0.54780 (6) 0.90733 (11) 0.0422 (3) F2 0.89699 (11) 0.56763 (6) 0.82078 (10) 0.0429 (3) F3 0.88936 (10) 0.57911 (6) 0.97538 (10) 0.0415 (3) O1 0.97587 (11) 0.84054 (6) 0.85735 (9) 0.0258 (3) O2 0.62455 (10) 0.75817 (7) 0.87263 (9) 0.0254 (3) O3 0.45722 (10) 0.80203 (7) 0.86552 (10) 0.0311 (3) N1 1.09611 (12) 0.67936 (8) 0.88946 (11) 0.0254 (3) N2 1.09519 (12) 0.74822 (8) 0.88089 (11) 0.0236 (3) N3 0.74122 (12) 0.77434 (8) 0.87076 (11) 0.0233 (3) C1 0.95593 (15) 0.58904 (10) 0.89804 (14) 0.0282 (4) C2 0.98845 (14) 0.66220 (9) 0.88872 (13) 0.0221 (4) C3 0.91641 (14) 0.71893 (9) 0.87938 (12) 0.0216 (4) C4 0.99049 (14) 0.77333 (9) 0.87439 (12) 0.0214 (4) C5 1.19918 (15) 0.78688 (11) 0.87754 (15) 0.0302 (4) H5A 1.2122 0.8025 0.8122 0.045\* H5B 1.2600 0.7581 0.8978 0.045\* H5C 1.1939 0.8255 0.9204 0.045\* C6 0.93017 (13) 0.88174 (9) 0.93094 (12) 0.0204 (3) C7 0.89984 (14) 0.94648 (9) 0.90188 (13) 0.0240 (4) H7 0.9087 0.9602 0.8375 0.029\* C8 0.85584 (14) 0.99074 (9) 0.97051 (14) 0.0252 (4) H8 0.8353 1.0349 0.9529 0.030\* C9 0.84251 (14) 0.96877 (9) 1.06574 (13) 0.0231 (4) C10 0.87284 (13) 0.90360 (9) 1.09597 (13) 0.0217 (4) C11 0.91814 (13) 0.85973 (9) 1.02608 (13) 0.0215 (4) H11 0.9402 0.8158 1.0435 0.026\* C12 0.85611 (16) 0.87976 (10) 1.19861 (14) 0.0293 (4) H12A 0.8918 0.9111 1.2426 0.044\* H12B 0.8882 0.8351 1.2063 0.044\* H12C 0.7775 0.8778 1.2128 0.044\* C13 0.79576 (14) 0.71860 (9) 0.87804 (13) 0.0227 (4) H13 0.7574 0.6773 0.8825 0.027\* C14 0.55571 (14) 0.81436 (10) 0.86479 (13) 0.0246 (4) C15 0.60736 (15) 0.88311 (10) 0.85610 (16) 0.0309 (4) H15A 0.5496 0.9172 0.8527 0.046\* H15B 0.6522 0.8850 0.7981 0.046\* H15C 0.6537 0.8916 0.9119 0.046\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1135 .table-wrap} ----- ------------ ------------- ------------- -------------- --------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0395 (3) 0.0301 (3) 0.0343 (3) 0.00681 (19) −0.00035 (19) −0.0103 (2) F1 0.0363 (6) 0.0256 (6) 0.0646 (9) 0.0072 (5) −0.0057 (6) 0.0028 (6) F2 0.0556 (8) 0.0291 (7) 0.0440 (7) −0.0061 (5) −0.0190 (6) −0.0062 (6) F3 0.0475 (7) 0.0326 (7) 0.0446 (8) −0.0076 (5) 0.0115 (6) 0.0049 (6) O1 0.0355 (7) 0.0212 (7) 0.0206 (6) 0.0024 (5) 0.0072 (5) 0.0023 (5) O2 0.0190 (6) 0.0244 (7) 0.0328 (7) −0.0022 (5) 0.0000 (5) 0.0013 (6) O3 0.0209 (6) 0.0340 (8) 0.0382 (8) −0.0022 (5) 0.0028 (5) 0.0006 (6) N1 0.0260 (8) 0.0245 (8) 0.0259 (8) 0.0014 (6) −0.0005 (6) −0.0024 (6) N2 0.0237 (7) 0.0239 (8) 0.0232 (8) −0.0007 (6) 0.0008 (6) −0.0026 (6) N3 0.0172 (7) 0.0284 (8) 0.0243 (8) −0.0022 (6) −0.0002 (6) 0.0002 (6) C1 0.0285 (9) 0.0261 (10) 0.0300 (10) 0.0009 (7) −0.0038 (8) −0.0008 (8) C2 0.0228 (8) 0.0224 (9) 0.0211 (9) 0.0010 (7) −0.0004 (7) −0.0019 (7) C3 0.0230 (8) 0.0234 (9) 0.0183 (8) 0.0011 (7) −0.0002 (6) −0.0025 (7) C4 0.0255 (8) 0.0230 (9) 0.0158 (8) 0.0026 (7) 0.0017 (6) −0.0015 (7) C5 0.0261 (9) 0.0350 (11) 0.0295 (10) −0.0078 (8) 0.0024 (7) −0.0038 (8) C6 0.0194 (7) 0.0210 (9) 0.0208 (8) −0.0014 (6) 0.0006 (6) −0.0018 (7) C7 0.0242 (8) 0.0247 (9) 0.0231 (9) −0.0015 (7) −0.0013 (7) 0.0052 (7) C8 0.0240 (8) 0.0195 (9) 0.0321 (10) 0.0019 (7) −0.0046 (7) 0.0011 (8) C9 0.0207 (8) 0.0228 (9) 0.0258 (9) −0.0004 (6) −0.0006 (7) −0.0054 (7) C10 0.0183 (7) 0.0249 (9) 0.0219 (9) −0.0030 (6) −0.0015 (6) −0.0003 (7) C11 0.0216 (8) 0.0198 (8) 0.0230 (9) −0.0002 (7) −0.0004 (7) 0.0007 (7) C12 0.0318 (9) 0.0332 (11) 0.0230 (9) 0.0005 (8) 0.0019 (7) −0.0009 (8) C13 0.0244 (8) 0.0231 (9) 0.0206 (8) −0.0027 (7) −0.0002 (6) 0.0000 (7) C14 0.0237 (9) 0.0285 (10) 0.0216 (9) 0.0012 (7) 0.0019 (7) −0.0009 (7) C15 0.0253 (9) 0.0240 (10) 0.0436 (12) 0.0007 (7) 0.0045 (8) −0.0007 (9) ----- ------------ ------------- ------------- -------------- --------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1641 .table-wrap} --------------------- -------------- ---------------------- -------------- Cl1---C9 1.7425 (18) C5---H5C 0.9600 F1---C1 1.319 (2) C6---C7 1.376 (2) F2---C1 1.340 (2) C6---C11 1.382 (2) F3---C1 1.341 (2) C7---C8 1.383 (3) O1---C4 1.346 (2) C7---H7 0.9300 O1---C6 1.403 (2) C8---C9 1.385 (3) O2---C14 1.377 (2) C8---H8 0.9300 O2---N3 1.4299 (18) C9---C10 1.388 (3) O3---C14 1.201 (2) C10---C11 1.396 (2) N1---C2 1.330 (2) C10---C12 1.497 (2) N1---N2 1.351 (2) C11---H11 0.9300 N2---C4 1.347 (2) C12---H12A 0.9600 N2---C5 1.455 (2) C12---H12B 0.9600 N3---C13 1.274 (2) C12---H12C 0.9600 C1---C2 1.488 (3) C13---H13 0.9300 C2---C3 1.410 (2) C14---C15 1.484 (3) C3---C4 1.385 (3) C15---H15A 0.9600 C3---C13 1.442 (2) C15---H15B 0.9600 C5---H5A 0.9600 C15---H15C 0.9600 C5---H5B 0.9600 C14···O3^i^ 3.174 (2) Cg···Cg^ii^ 3.734 (6) C4---O1---C6 119.07 (13) C6---C7---H7 120.7 C14---O2---N3 113.89 (13) C8---C7---H7 120.7 C2---N1---N2 104.05 (14) C7---C8---C9 119.51 (17) C4---N2---N1 112.11 (14) C7---C8---H8 120.2 C4---N2---C5 127.00 (16) C9---C8---H8 120.2 N1---N2---C5 120.88 (15) C8---C9---C10 122.46 (17) C13---N3---O2 107.97 (14) C8---C9---Cl1 118.29 (14) F1---C1---F2 107.37 (16) C10---C9---Cl1 119.25 (14) F1---C1---F3 107.53 (16) C9---C10---C11 117.37 (16) F2---C1---F3 105.63 (15) C9---C10---C12 122.14 (16) F1---C1---C2 112.99 (15) C11---C10---C12 120.48 (16) F2---C1---C2 111.69 (16) C6---C11---C10 119.89 (16) F3---C1---C2 111.24 (16) C6---C11---H11 120.1 N1---C2---C3 113.16 (16) C10---C11---H11 120.1 N1---C2---C1 119.65 (15) C10---C12---H12A 109.5 C3---C2---C1 127.19 (16) C10---C12---H12B 109.5 C4---C3---C2 102.59 (15) H12A---C12---H12B 109.5 C4---C3---C13 129.93 (17) C10---C12---H12C 109.5 C2---C3---C13 127.47 (17) H12A---C12---H12C 109.5 O1---C4---N2 119.20 (16) H12B---C12---H12C 109.5 O1---C4---C3 132.45 (16) N3---C13---C3 120.59 (17) N2---C4---C3 108.10 (16) N3---C13---H13 119.7 N2---C5---H5A 109.5 C3---C13---H13 119.7 N2---C5---H5B 109.5 O3---C14---O2 115.13 (17) H5A---C5---H5B 109.5 O3---C14---C15 126.16 (18) N2---C5---H5C 109.5 O2---C14---C15 118.71 (15) H5A---C5---H5C 109.5 C14---C15---H15A 109.5 H5B---C5---H5C 109.5 C14---C15---H15B 109.5 C7---C6---C11 122.19 (16) H15A---C15---H15B 109.5 C7---C6---O1 114.96 (15) C14---C15---H15C 109.5 C11---C6---O1 122.83 (15) H15A---C15---H15C 109.5 C6---C7---C8 118.57 (17) H15B---C15---H15C 109.5 C2---N1---N2---C4 −0.38 (19) C2---C3---C4---N2 −0.22 (18) C2---N1---N2---C5 −179.17 (16) C13---C3---C4---N2 178.40 (17) C14---O2---N3---C13 −179.70 (14) C4---O1---C6---C7 −168.95 (15) N2---N1---C2---C3 0.2 (2) C4---O1---C6---C11 12.2 (2) N2---N1---C2---C1 −179.32 (16) C11---C6---C7---C8 0.0 (3) F1---C1---C2---N1 0.6 (2) O1---C6---C7---C8 −178.92 (15) F2---C1---C2---N1 −120.56 (18) C6---C7---C8---C9 −0.6 (3) F3---C1---C2---N1 121.68 (18) C7---C8---C9---C10 0.7 (3) F1---C1---C2---C3 −178.87 (17) C7---C8---C9---Cl1 −179.94 (13) F2---C1---C2---C3 60.0 (2) C8---C9---C10---C11 −0.1 (3) F3---C1---C2---C3 −57.8 (2) Cl1---C9---C10---C11 −179.43 (12) N1---C2---C3---C4 0.0 (2) C8---C9---C10---C12 −178.78 (16) C1---C2---C3---C4 179.51 (17) Cl1---C9---C10---C12 1.8 (2) N1---C2---C3---C13 −178.68 (17) C7---C6---C11---C10 0.7 (3) C1---C2---C3---C13 0.8 (3) O1---C6---C11---C10 179.45 (15) C6---O1---C4---N2 −112.02 (17) C9---C10---C11---C6 −0.6 (2) C6---O1---C4---C3 74.6 (2) C12---C10---C11---C6 178.15 (16) N1---N2---C4---O1 −174.50 (14) O2---N3---C13---C3 −179.26 (15) C5---N2---C4---O1 4.2 (3) C4---C3---C13---N3 0.5 (3) N1---N2---C4---C3 0.4 (2) C2---C3---C13---N3 178.78 (17) C5---N2---C4---C3 179.09 (17) N3---O2---C14---O3 179.52 (15) C2---C3---C4---O1 173.74 (18) N3---O2---C14---C15 −0.3 (2) C13---C3---C4---O1 −7.6 (3) --------------------- -------------- ---------------------- -------------- ::: Symmetry codes: (i) −*x*+1, *y*, −*z*+3/2; (ii) −*x*+2, *y*, −*z*+3/2. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2430 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C5---H5B···O3^iii^ 0.96 2.55 3.102 (2) 117 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (iii) *x*+1, *y*, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- C5---H5*B*⋯O3^i^ 0.96 2.55 3.102 (2) 117 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.257684
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052068/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):o726", "authors": [ { "first": "Hong", "last": "Dai" }, { "first": "Yan-Fei", "last": "Shen" }, { "first": "Jiao", "last": "Chen" }, { "first": "Hong-Lian", "last": "Chen" }, { "first": "Yong-Jun", "last": "Shen" } ] }
PMC3052069
Related literature {#sec1} ================== For common applications of organic--inorganic hybrid materials, see: Kobel & Hanack (1986[@bb8]); Pierpont & Jung (1994[@bb10]). For a related structure, see: Coomer *et al.* (2007[@bb5]). For π--π inter­actions between pyridinium cations, see: Albrecht *et al.* (2003[@bb1]). For aminium--iminium tautomerism, see: Jin *et al.* (2001[@bb6]). For a discussion of C---N---C pyridinium angles, see: Jin *et al.* (2005[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} (C~5~H~6~ClN~2~)~2~\[ZnCl~4~\]*M* *~r~* = 466.33Monoclinic,*a* = 13.317 (1) Å*b* = 14.817 (2) Å*c* = 8.571 (1) Åβ = 92.923 (9)°*V* = 1689.0 (3) Å^3^*Z* = 4Mo *K*α radiationμ = 2.40 mm^−1^*T* = 110 K0.23 × 0.15 × 0.10 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometerAbsorption correction: analytical *CrysAlis PRO* (Oxford Diffraction, 2009[@bb9]; Clark & Reid, 1995[@bb4]) *T* ~min~ = 0.711, *T* ~max~ = 0.83522410 measured reflections4360 independent reflections3553 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.061 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.051*wR*(*F* ^2^) = 0.108*S* = 1.024356 reflections190 parametersH-atom parameters constrainedΔρ~max~ = 1.27 e Å^−3^Δρ~min~ = −1.03 e Å^−3^ {#d5e537} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009[@bb9]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb2]); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003[@bb3]); molecular graphics: *CAMERON* (Watkin *et al.*, 1996[@bb11]); software used to prepare material for publication: *CRYSTALS*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005691/cv5049sup1.cif](http://dx.doi.org/10.1107/S1600536811005691/cv5049sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005691/cv5049Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005691/cv5049Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?cv5049&file=cv5049sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?cv5049sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?cv5049&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [CV5049](http://scripts.iucr.org/cgi-bin/sendsup?cv5049)). We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia. Comment ======= Organic-inorganic hybrid materials have been extensively studied in recent years due to their potential applications in various field (Kobel & Hanack, 1986; Pierpont & Jung, 1994). Herewith we report the crystal structure of the title compound, (I), formed in the reaction of 2-amino-5-chloropyridine with zinc chloride. The crystal structure of hydrated form of (I) (CCDC refcode JIPHAS) was reported recently by Coomer *et al.* (2007) . In (I) (Fig.1), only the nitrogen atom of the aromatic ring of the title compound is protonated but not the amino group. Thus, to ensure charge equilibrium, the structure associates one tetrachlorozincate dianion with two 2-amino-5-chloropyridinium cations. The atomic arrangement of the title hybrid material can be described as inorganic \[ZnCl~4~\]^2-^ units separated by the organic cations. The different entities are held together by columbic attraction and multiple hydrogen bonds to form a three dimensional network. The organic cations and inorganic dianion sare form N---H···Cl and C---H···Cl hydrogen bonds (Table 1). Intermolecular π-π interaction is present between identical antiparallel 2-amino-5-chloropyridinium cations with the centroid-to-centrpoid separation of 3.712 (7) Å. This π-stacking between pyridinium cations is weaker than that in bis(2-amino-5-methylpyridinium) tetrachlorozincate where the longest distance between the centroids is 3.54 Å (Albrecht *et al.*, 2003). In the organic entity, the N11---C10 bond \[1.332 (6) Å\] is shorter than the N9---C10 \[1.347 (6) Å\] and N9---C8 \[1.357 (6) Å\] bonds, consistent with the iminuim tautomer (Jin *et al.*, 2001). Moreover, the existence of the iminuim tautomer is supported by the fact that the C10---C12 \[1.408 (6) Å\] and C7---C13 \[1.408 (7) Å\] bonds are longer than the C12---C13 \[1.372 (7) Å\] and C7---C8 \[1.344 (6) Å\] bonds. Similar features are also observed in the other organic cations. However, previous study show that a pyridinium cation always possesses an expanded angle of C---N---C in comparison with the parent pyridine (Jin *et al.*, 2005). Experimental {#experimental} ============ A mixture of aqueous solution of 2-amino-5-chloropyridine (3 mmol, 0.385 g), zinc chloride (1.5 mmol, 0.297 g) and HCl (10 ml, 0.3 *M*) in a Petri dish was slowly evaporated at room temperature. Colourless single crystals of the title compound were isolated after several days (yield 54%). Refinement {#refinement} ========== All H atoms were initially located in a difference map, but placed in idealized positions (C---H 0.93--0.98 Å, N---H 0.86--0.89 Å) and refined as riding, with *U*~iso~(H) = 1.2--1.5 *U*~eq~ of the parent atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. Dashed lines denote hydrogen bonds. ::: ![](e-67-0m355-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e131 .table-wrap} -------------------------------- --------------------------------------- (C~5~H~6~ClN~2~)~2~\[ZnCl~4~\] *F*(000) = 928 *M~r~* = 466.33 *D*~x~ = 1.834 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.7107 Å Hall symbol: -P 2ybc Cell parameters from 8999 reflections *a* = 13.317 (1) Å θ = 3.4--29.5° *b* = 14.817 (2) Å µ = 2.40 mm^−1^ *c* = 8.571 (1) Å *T* = 110 K β = 92.923 (9)° Block, colourless *V* = 1689.0 (3) Å^3^ 0.23 × 0.15 × 0.10 mm *Z* = 4 -------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e265 .table-wrap} ------------------------------------------------------------------------------------------------- -------------------------------------- Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer 4360 independent reflections Radiation source: Enhance (Mo) X-ray Source 3553 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.061 Detector resolution: 10.4685 pixels mm^-1^ θ~max~ = 29.6°, θ~min~ = 3.4° ω scans *h* = −18→18 Absorption correction: analytical *CrysAlis PRO* (Oxford Diffraction, 2009; Clark & Reid, 1995) *k* = −20→18 *T*~min~ = 0.711, *T*~max~ = 0.835 *l* = −11→11 22410 measured reflections ------------------------------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e384 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.051 H-atom parameters constrained *wR*(*F*^2^) = 0.108 Method, part 1, Chebychev polynomial \[Watkin, D. J. (1994). *Acta Cryst.* A50, 411--437; *P*rince, E. (1982). Mathematical Techniques in Crystallography and Materials Science Springer-Verlag, Ne*w* York.\] \[*w*eight\] = 1.0/\[A~0~\*T~0~(x) + A~1~\*T~1~(x) ··· + A~n-1~\]\*T~n-1~(x)\] where A~i~ are the Chebychev coefficients listed belo*w* and x = *F* /*F*max Method = Robust Weighting (*P*rince, 1982) W = \[*w*eight\] \* \[1-(delta*F*/6\*sigma*F*)^2^\]^2^ A~i~ are: 425. 613. 311. 83.3 *S* = 1.02 (Δ/σ)~max~ = 0.001 4356 reflections Δρ~max~ = 1.27 e Å^−3^ 190 parameters Δρ~min~ = −1.03 e Å^−3^ 0 restraints ------------------------------------- ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e569 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Zn1 0.25192 (4) 0.48608 (3) 1.01057 (6) 0.0183 Cl2 0.15870 (8) 0.47893 (8) 0.78203 (13) 0.0220 Cl3 0.13940 (9) 0.48449 (8) 1.19926 (13) 0.0255 Cl4 0.34397 (10) 0.35524 (8) 1.02302 (17) 0.0298 Cl5 0.35902 (9) 0.60259 (8) 1.04980 (15) 0.0249 Cl6 0.33629 (9) 0.37113 (8) 0.53253 (15) 0.0266 C7 0.3767 (3) 0.4786 (3) 0.5834 (6) 0.0213 C8 0.4484 (3) 0.4888 (3) 0.6981 (5) 0.0204 N9 0.4826 (3) 0.5725 (3) 0.7372 (5) 0.0201 C10 0.4457 (3) 0.6486 (3) 0.6703 (6) 0.0194 N11 0.4816 (3) 0.7281 (3) 0.7197 (5) 0.0263 C12 0.3706 (3) 0.6396 (3) 0.5495 (6) 0.0218 C13 0.3361 (4) 0.5555 (3) 0.5071 (6) 0.0242 H131 0.2865 0.5492 0.4259 0.0299\* H121 0.3449 0.6907 0.4991 0.0261\* H91 0.5254 0.5774 0.8160 0.0238\* H81 0.4748 0.4393 0.7511 0.0250\* Cl14 0.18546 (9) 0.74583 (10) 0.78663 (15) 0.0313 C15 0.0852 (3) 0.7508 (3) 0.9057 (5) 0.0221 C16 0.0460 (4) 0.8350 (3) 0.9491 (6) 0.0253 C17 −0.0331 (4) 0.8381 (3) 1.0446 (6) 0.0247 C18 −0.0742 (3) 0.7580 (3) 1.1000 (5) 0.0201 N19 −0.1504 (3) 0.7566 (3) 1.1978 (5) 0.0249 N20 −0.0342 (3) 0.6791 (3) 1.0543 (5) 0.0211 C21 0.0433 (4) 0.6741 (3) 0.9572 (5) 0.0211 H211 0.0658 0.6181 0.9267 0.0262\* H201 −0.0611 0.6300 1.0824 0.0252\* H171 −0.0594 0.8932 1.0719 0.0302\* H161 0.0734 0.8879 0.9135 0.0311\* H191 −0.1768 0.7063 1.2220 0.0299\* H192 −0.1759 0.8065 1.2265 0.0297\* H111 0.4608 0.7769 0.6733 0.0310\* H112 0.5310 0.7303 0.7899 0.0310\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1020 .table-wrap} ------ ------------- ------------- ------------ --------------- --------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Zn1 0.0174 (2) 0.0137 (2) 0.0236 (3) −0.00055 (19) −0.00135 (19) −0.0007 (2) Cl2 0.0220 (5) 0.0207 (5) 0.0231 (5) 0.0011 (4) −0.0009 (4) −0.0009 (4) Cl3 0.0301 (6) 0.0239 (5) 0.0229 (5) −0.0059 (5) 0.0040 (4) −0.0019 (4) Cl4 0.0291 (6) 0.0153 (5) 0.0433 (7) 0.0046 (4) −0.0137 (5) −0.0039 (5) Cl5 0.0241 (5) 0.0182 (5) 0.0322 (6) −0.0055 (4) −0.0004 (4) −0.0025 (4) Cl6 0.0257 (6) 0.0180 (5) 0.0363 (6) −0.0038 (4) 0.0033 (5) −0.0068 (5) C7 0.021 (2) 0.0142 (19) 0.030 (2) 0.0002 (17) 0.0046 (18) −0.0035 (18) C8 0.026 (2) 0.0135 (19) 0.022 (2) 0.0044 (17) −0.0003 (17) 0.0009 (16) N9 0.0188 (18) 0.0164 (18) 0.025 (2) 0.0020 (14) −0.0030 (15) −0.0001 (15) C10 0.019 (2) 0.0136 (19) 0.026 (2) 0.0032 (16) 0.0013 (17) 0.0001 (17) N11 0.032 (2) 0.0140 (18) 0.032 (2) 0.0001 (16) −0.0068 (18) 0.0007 (16) C12 0.021 (2) 0.018 (2) 0.026 (2) 0.0048 (17) −0.0008 (18) 0.0017 (18) C13 0.023 (2) 0.023 (2) 0.025 (2) 0.0020 (18) −0.0043 (18) −0.0022 (19) Cl14 0.0248 (6) 0.0439 (7) 0.0252 (6) −0.0010 (5) 0.0001 (4) −0.0005 (5) C15 0.022 (2) 0.026 (2) 0.018 (2) −0.0015 (18) −0.0036 (17) −0.0035 (18) C16 0.033 (3) 0.019 (2) 0.024 (2) −0.0047 (19) −0.001 (2) 0.0014 (18) C17 0.037 (3) 0.013 (2) 0.024 (2) 0.0019 (18) −0.003 (2) −0.0020 (17) C18 0.019 (2) 0.019 (2) 0.022 (2) 0.0006 (17) −0.0038 (17) −0.0028 (17) N19 0.025 (2) 0.023 (2) 0.027 (2) 0.0019 (16) −0.0022 (16) −0.0040 (17) N20 0.024 (2) 0.0138 (17) 0.025 (2) −0.0028 (15) 0.0017 (16) −0.0010 (15) C21 0.025 (2) 0.0147 (19) 0.023 (2) 0.0030 (17) −0.0068 (18) −0.0013 (17) ------ ------------- ------------- ------------ --------------- --------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1458 .table-wrap} ------------------- ------------- ------------------- ----------- Zn1---Cl2 2.2674 (12) C12---H121 0.928 Zn1---Cl3 2.2602 (13) C13---H131 0.939 Zn1---Cl4 2.2934 (13) Cl14---C15 1.723 (5) Zn1---Cl5 2.2535 (12) C15---C16 1.410 (7) Cl6---C7 1.730 (5) C15---C21 1.351 (7) C7---C8 1.344 (6) C16---C17 1.367 (7) C7---C13 1.408 (7) C16---H161 0.923 C8---N9 1.357 (6) C17---C18 1.400 (7) C8---H81 0.922 C17---H171 0.923 N9---C10 1.347 (6) C18---N19 1.349 (6) N9---H91 0.864 C18---N20 1.351 (6) C10---N11 1.332 (6) N19---H191 0.854 C10---C12 1.408 (6) N19---H192 0.855 N11---H111 0.863 N20---C21 1.361 (6) N11---H112 0.869 N20---H201 0.852 C12---C13 1.372 (7) C21---H211 0.924 Cl2---Zn1---Cl3 105.30 (5) C7---C13---C12 119.8 (4) Cl2---Zn1---Cl4 105.57 (5) C7---C13---H131 120.1 Cl3---Zn1---Cl4 109.28 (5) C12---C13---H131 120.1 Cl2---Zn1---Cl5 118.63 (5) Cl14---C15---C16 120.2 (4) Cl3---Zn1---Cl5 109.81 (5) Cl14---C15---C21 120.2 (4) Cl4---Zn1---Cl5 107.93 (5) C16---C15---C21 119.5 (4) Cl6---C7---C8 119.2 (4) C15---C16---C17 119.7 (4) Cl6---C7---C13 121.4 (4) C15---C16---H161 120.4 C8---C7---C13 119.4 (4) C17---C16---H161 119.9 C7---C8---N9 120.0 (4) C16---C17---C18 120.1 (4) C7---C8---H81 120.7 C16---C17---H171 119.7 N9---C8---H81 119.3 C18---C17---H171 120.3 C8---N9---C10 123.4 (4) C17---C18---N19 122.9 (4) C8---N9---H91 118.0 C17---C18---N20 117.9 (4) C10---N9---H91 118.3 N19---C18---N20 119.1 (4) N9---C10---N11 119.2 (4) C18---N19---H191 119.7 N9---C10---C12 117.6 (4) C18---N19---H192 119.2 N11---C10---C12 123.1 (4) H191---N19---H192 120.7 C10---N11---H111 119.5 C18---N20---C21 123.2 (4) C10---N11---H112 120.0 C18---N20---H201 118.8 H111---N11---H112 120.1 C21---N20---H201 117.9 C10---C12---C13 119.8 (4) N20---C21---C15 119.6 (4) C10---C12---H121 119.8 N20---C21---H211 119.3 C13---C12---H121 120.4 C15---C21---H211 121.1 ------------------- ------------- ------------------- ----------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1843 .table-wrap} ----------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N19---H191···Cl2^i^ 0.85 2.76 3.496 (5) 146 N20---H201···Cl2^i^ 0.85 2.41 3.231 (6) 163 C21---H211···Cl2 0.92 2.73 3.635 (6) 165 N19---H192···Cl3^ii^ 0.85 2.75 3.491 (5) 146 C13---H131···Cl3^iii^ 0.94 2.85 3.772 (5) 166 C16---H161···Cl3^iv^ 0.92 2.81 3.682 (7) 158 C17---H171···Cl3^ii^ 0.92 2.65 3.442 (8) 144 N9---H91···Cl4^v^ 0.86 2.38 3.197 (4) 157 N11---H112···Cl4^v^ 0.87 2.58 3.356 (4) 148 N11---H111···Cl5^iv^ 0.86 2.45 3.291 (6) 165 C8---H81···Cl5^v^ 0.92 2.79 3.538 (4) 138 ----------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*+2; (ii) −*x*, *y*+1/2, −*z*+5/2; (iii) *x*, *y*, *z*−1; (iv) *x*, −*y*+3/2, *z*−1/2; (v) −*x*+1, −*y*+1, −*z*+2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- --------- ------- ----------- ------------- N19---H191⋯Cl2^i^ 0.85 2.76 3.496 (5) 146 N20---H201⋯Cl2^i^ 0.85 2.41 3.231 (6) 163 N19---H192⋯Cl3^ii^ 0.85 2.75 3.491 (5) 146 C17---H171⋯Cl3^ii^ 0.92 2.65 3.442 (8) 144 N9---H91⋯Cl4^iii^ 0.86 2.38 3.197 (4) 157 N11---H112⋯Cl4^iii^ 0.87 2.58 3.356 (4) 148 N11---H111⋯Cl5^iv^ 0.86 2.45 3.291 (6) 165 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:18.262690
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052069/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):m355-m356", "authors": [ { "first": "Riadh", "last": "Kefi" }, { "first": "Erwann", "last": "Jeanneau" }, { "first": "Frederic", "last": "Lefebvre" }, { "first": "Cherif", "last": "Ben Nasr" } ] }
PMC3052070
Related literature {#sec1} ================== For background to the biological properties of aryl-substituted pyrazoles, see: Abdel-Aziz *et al.* (2010[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~14~H~15~N~3~O~4~S*M* *~r~* = 321.35Orthorhombic,*a* = 8.3716 (3) Å*b* = 21.7722 (8) Å*c* = 7.8915 (3) Å*V* = 1438.37 (9) Å^3^*Z* = 4Mo *K*α radiationμ = 0.25 mm^−1^*T* = 100 K0.20 × 0.15 × 0.05 mm ### Data collection {#sec2.1.2} Agilent SuperNova Dual diffractometer with an Atlas detectorAbsorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010[@bb2]) *T* ~min~ = 0.952, *T* ~max~ = 0.98810477 measured reflections3087 independent reflections2634 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.056 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.042*wR*(*F* ^2^) = 0.095*S* = 1.053087 reflections210 parameters3 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.31 e Å^−3^Δρ~min~ = −0.39 e Å^−3^Absolute structure: Flack (1983[@bb4]), 1337 Friedel pairsFlack parameter: 0.08 (8) {#d5e476} Data collection: *CrysAlis PRO* (Agilent, 2010[@bb2]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *X-SEED* (Barbour, 2001[@bb3]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005733/xu5161sup1.cif](http://dx.doi.org/10.1107/S1600536811005733/xu5161sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005733/xu5161Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005733/xu5161Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5161&file=xu5161sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5161sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5161&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5161](http://scripts.iucr.org/cgi-bin/sendsup?xu5161)). We thank King Saud University and the University of Malaya for supporting this study. Comment ======= We have reported the antitumor activity of aryl-pyrazoles against CaCo-2 and HEP-2 cell lines (Abdel-Aziz *et al.*, 2010). These compounds were synthesized by a cycloaddition under microwave conditions. The present study involves the synthesis of an aryl-pyrazole having a sulfonamide --SO~2~NH~2~ substituent (Scheme I) that is expected to improve aqueous solubility. The C~14~H~15~N~3~O~4~ molecule has two acetyl substitutents on the pyrazolyl ring along with a benzenesulfanomide group. The sulfonamido unit interacts with an adjacent acetyl and sulfonamido O-atoms to generate a three-dimensional network (Table 1). Experimental {#experimental} ============ 1-Phenyl-2-(phenylsulfonyl)ethanone (0.26 g, 10 mmol) was dissolved in a sodium ethoxide solution (prepared by dissolving 0.23 g sodium metal in 50 ml absolute ethanol). To the solution was added (*Z*)-2-oxo-*N*\'-(4-sulfamoylphenyl)propanehydrazonoyl chloride (0.28 g, 10 mmol). The mixture was stirred for 12 h. The mixuture was then poured into cold water; the solid product was collected and recrystallized from an ethanol-water (4:1) mixture. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions (C--H 0.95--0.98 Å) and were included in the refinement in the riding model approximation, with *U*~iso~(H) set to 1.2--1.5 times *U*~eq~(C). The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N--H 0.88±0.01 Å; their temperature factors were refined. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of C14H15N3O4S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. ::: ![](e-67-0o693-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e140 .table-wrap} ------------------------- --------------------------------------- C~14~H~15~N~3~O~4~S *F*(000) = 672 *M~r~* = 321.35 *D*~x~ = 1.484 Mg m^−3^ Orthorhombic, *Pna*2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2c -2n Cell parameters from 3291 reflections *a* = 8.3716 (3) Å θ = 2.4--29.2° *b* = 21.7722 (8) Å µ = 0.25 mm^−1^ *c* = 7.8915 (3) Å *T* = 100 K *V* = 1438.37 (9) Å^3^ Prism, colorless *Z* = 4 0.20 × 0.15 × 0.05 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e266 .table-wrap} ------------------------------------------------------------------- -------------------------------------- Agilent SuperNova Dual diffractometer with an Atlas detector 3087 independent reflections Radiation source: SuperNova (Mo) X-ray Source 2634 reflections with *I* \> 2σ(*I*) Mirror *R*~int~ = 0.056 Detector resolution: 10.4041 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 2.6° ω scans *h* = −10→10 Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) *k* = −28→27 *T*~min~ = 0.952, *T*~max~ = 0.988 *l* = −10→9 10477 measured reflections ------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e386 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.042 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.095 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0422*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.05 (Δ/σ)~max~ = 0.001 3087 reflections Δρ~max~ = 0.31 e Å^−3^ 210 parameters Δρ~min~ = −0.39 e Å^−3^ 3 restraints Absolute structure: Flack (1983), 1337 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: 0.08 (8) ---------------------------------------------------------------- ------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e547 .table-wrap} ----- ------------- -------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 0.69022 (7) 0.29885 (3) 0.49994 (9) 0.01726 (16) O1 1.5767 (2) 0.55022 (9) 0.1918 (3) 0.0278 (5) O2 1.3205 (2) 0.68881 (8) 0.5594 (3) 0.0229 (5) O3 0.7216 (2) 0.27511 (9) 0.6664 (3) 0.0234 (5) O4 0.5323 (2) 0.31899 (7) 0.4576 (3) 0.0226 (5) N1 1.0863 (2) 0.56565 (9) 0.4491 (3) 0.0164 (5) N2 1.1261 (2) 0.50985 (9) 0.3847 (3) 0.0160 (5) N3 0.7369 (3) 0.24582 (10) 0.3684 (3) 0.0182 (5) H31 0.726 (3) 0.2569 (13) 0.2624 (17) 0.017 (8)\* H32 0.8310 (18) 0.2289 (11) 0.385 (4) 0.021 (8)\* C1 1.5821 (3) 0.64151 (12) 0.3508 (4) 0.0235 (7) H1A 1.6916 0.6438 0.3072 0.035\* H1B 1.5845 0.6411 0.4750 0.035\* H1C 1.5215 0.6773 0.3115 0.035\* C2 1.5041 (3) 0.58395 (12) 0.2877 (4) 0.0196 (6) C3 1.3404 (3) 0.56637 (11) 0.3441 (3) 0.0149 (6) C4 1.2165 (3) 0.60007 (11) 0.4274 (3) 0.0157 (6) C5 1.2032 (3) 0.66253 (11) 0.5028 (4) 0.0179 (5) C6 1.0404 (3) 0.68993 (11) 0.5136 (5) 0.0252 (6) H6A 1.0466 0.7299 0.5704 0.038\* H6B 0.9704 0.6625 0.5783 0.038\* H6C 0.9972 0.6954 0.3992 0.038\* C7 1.2751 (3) 0.50868 (12) 0.3166 (3) 0.0170 (6) C8 1.3336 (3) 0.45309 (12) 0.2257 (4) 0.0236 (7) H8A 1.2448 0.4339 0.1646 0.035\* H8B 1.3777 0.4238 0.3077 0.035\* H8C 1.4170 0.4650 0.1449 0.035\* C9 1.0197 (3) 0.45957 (11) 0.4118 (4) 0.0160 (6) C10 0.8629 (3) 0.46375 (12) 0.3568 (3) 0.0176 (6) H10 0.8261 0.4996 0.3002 0.021\* C11 0.7607 (3) 0.41477 (12) 0.3856 (4) 0.0196 (6) H11 0.6525 0.4168 0.3498 0.024\* C12 0.8176 (3) 0.36269 (11) 0.4670 (3) 0.0172 (6) C13 0.9744 (3) 0.35924 (11) 0.5236 (4) 0.0178 (6) H13 1.0112 0.3236 0.5810 0.021\* C14 1.0763 (3) 0.40801 (11) 0.4958 (4) 0.0190 (6) H14 1.1839 0.4063 0.5338 0.023\* ----- ------------- -------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1030 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0148 (3) 0.0163 (3) 0.0207 (4) −0.0022 (2) 0.0012 (3) 0.0006 (3) O1 0.0200 (10) 0.0241 (10) 0.0392 (13) 0.0012 (8) 0.0106 (10) −0.0016 (10) O2 0.0238 (11) 0.0223 (10) 0.0226 (12) −0.0058 (8) 0.0029 (8) −0.0047 (9) O3 0.0263 (10) 0.0229 (10) 0.0211 (12) −0.0025 (9) 0.0023 (9) 0.0001 (9) O4 0.0157 (9) 0.0188 (9) 0.0334 (14) −0.0020 (7) 0.0016 (8) 0.0017 (9) N1 0.0164 (11) 0.0135 (10) 0.0192 (13) 0.0009 (8) 0.0006 (9) −0.0009 (9) N2 0.0147 (11) 0.0159 (10) 0.0175 (12) 0.0008 (9) −0.0015 (9) −0.0025 (10) N3 0.0192 (12) 0.0160 (11) 0.0192 (14) −0.0004 (9) −0.0017 (10) 0.0022 (11) C1 0.0171 (13) 0.0244 (14) 0.0289 (18) −0.0047 (11) 0.0023 (12) −0.0023 (14) C2 0.0170 (13) 0.0203 (14) 0.0215 (16) 0.0011 (11) −0.0017 (12) 0.0043 (14) C3 0.0143 (12) 0.0174 (13) 0.0132 (15) −0.0004 (10) −0.0010 (10) 0.0031 (11) C4 0.0165 (12) 0.0173 (12) 0.0134 (14) −0.0015 (10) −0.0011 (11) 0.0011 (12) C5 0.0242 (13) 0.0162 (12) 0.0134 (13) −0.0016 (10) 0.0032 (13) 0.0016 (14) C6 0.0255 (14) 0.0191 (13) 0.0312 (18) 0.0020 (11) 0.0024 (15) −0.0052 (14) C7 0.0155 (13) 0.0180 (13) 0.0176 (15) −0.0002 (10) −0.0017 (11) 0.0026 (12) C8 0.0190 (13) 0.0197 (14) 0.0321 (19) −0.0007 (11) 0.0051 (12) −0.0050 (13) C9 0.0163 (12) 0.0147 (12) 0.0170 (15) −0.0027 (10) 0.0032 (11) −0.0048 (11) C10 0.0173 (13) 0.0151 (12) 0.0204 (16) 0.0021 (10) 0.0002 (11) −0.0003 (12) C11 0.0118 (12) 0.0241 (13) 0.0229 (16) 0.0013 (11) −0.0031 (11) −0.0012 (14) C12 0.0165 (12) 0.0158 (12) 0.0193 (17) 0.0001 (10) 0.0031 (11) −0.0017 (12) C13 0.0179 (12) 0.0150 (12) 0.0207 (16) 0.0032 (10) −0.0021 (11) 0.0007 (12) C14 0.0157 (12) 0.0189 (12) 0.0224 (15) 0.0016 (10) −0.0001 (13) −0.0040 (13) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1472 .table-wrap} ------------------- ------------- ----------------------- ------------- S1---O4 1.4325 (18) C4---C5 1.489 (3) S1---O3 1.436 (2) C5---C6 1.490 (3) S1---N3 1.601 (3) C6---H6A 0.9800 S1---C12 1.771 (2) C6---H6B 0.9800 O1---C2 1.218 (3) C6---H6C 0.9800 O2---C5 1.221 (3) C7---C8 1.490 (4) N1---C4 1.334 (3) C8---H8A 0.9800 N1---N2 1.358 (3) C8---H8B 0.9800 N2---C7 1.358 (3) C8---H8C 0.9800 N2---C9 1.427 (3) C9---C10 1.385 (3) N3---H31 0.875 (10) C9---C14 1.387 (4) N3---H32 0.879 (10) C10---C11 1.386 (4) C1---C2 1.498 (4) C10---H10 0.9500 C1---H1A 0.9800 C11---C12 1.388 (4) C1---H1B 0.9800 C11---H11 0.9500 C1---H1C 0.9800 C12---C13 1.388 (3) C2---C3 1.491 (4) C13---C14 1.380 (3) C3---C7 1.387 (3) C13---H13 0.9500 C3---C4 1.430 (4) C14---H14 0.9500 O4---S1---O3 119.48 (11) C5---C6---H6B 109.5 O4---S1---N3 107.16 (12) H6A---C6---H6B 109.5 O3---S1---N3 106.79 (13) C5---C6---H6C 109.5 O4---S1---C12 106.35 (11) H6A---C6---H6C 109.5 O3---S1---C12 107.84 (12) H6B---C6---H6C 109.5 N3---S1---C12 108.90 (12) N2---C7---C3 106.5 (2) C4---N1---N2 104.7 (2) N2---C7---C8 120.5 (2) N1---N2---C7 112.94 (19) C3---C7---C8 132.9 (2) N1---N2---C9 118.5 (2) C7---C8---H8A 109.5 C7---N2---C9 128.2 (2) C7---C8---H8B 109.5 S1---N3---H31 113 (2) H8A---C8---H8B 109.5 S1---N3---H32 115.2 (19) C7---C8---H8C 109.5 H31---N3---H32 110 (3) H8A---C8---H8C 109.5 C2---C1---H1A 109.5 H8B---C8---H8C 109.5 C2---C1---H1B 109.5 C10---C9---C14 121.8 (2) H1A---C1---H1B 109.5 C10---C9---N2 119.6 (2) C2---C1---H1C 109.5 C14---C9---N2 118.6 (2) H1A---C1---H1C 109.5 C9---C10---C11 118.9 (2) H1B---C1---H1C 109.5 C9---C10---H10 120.6 O1---C2---C3 119.3 (2) C11---C10---H10 120.6 O1---C2---C1 119.6 (2) C10---C11---C12 119.5 (2) C3---C2---C1 121.1 (2) C10---C11---H11 120.2 C7---C3---C4 104.5 (2) C12---C11---H11 120.2 C7---C3---C2 123.3 (2) C11---C12---C13 121.2 (2) C4---C3---C2 132.2 (2) C11---C12---S1 120.17 (19) N1---C4---C3 111.3 (2) C13---C12---S1 118.66 (19) N1---C4---C5 113.6 (2) C14---C13---C12 119.5 (2) C3---C4---C5 135.0 (2) C14---C13---H13 120.3 O2---C5---C4 120.9 (2) C12---C13---H13 120.3 O2---C5---C6 121.8 (2) C13---C14---C9 119.2 (2) C4---C5---C6 117.2 (2) C13---C14---H14 120.4 C5---C6---H6A 109.5 C9---C14---H14 120.4 C4---N1---N2---C7 −2.5 (3) C4---C3---C7---C8 174.8 (3) C4---N1---N2---C9 170.7 (2) C2---C3---C7---C8 −3.5 (5) O1---C2---C3---C7 11.2 (4) N1---N2---C9---C10 57.7 (3) C1---C2---C3---C7 −167.1 (3) C7---N2---C9---C10 −130.3 (3) O1---C2---C3---C4 −166.6 (3) N1---N2---C9---C14 −121.2 (3) C1---C2---C3---C4 15.0 (5) C7---N2---C9---C14 50.9 (4) N2---N1---C4---C3 1.4 (3) C14---C9---C10---C11 −0.5 (4) N2---N1---C4---C5 −175.3 (2) N2---C9---C10---C11 −179.4 (2) C7---C3---C4---N1 0.1 (3) C9---C10---C11---C12 −0.6 (4) C2---C3---C4---N1 178.3 (3) C10---C11---C12---C13 1.4 (4) C7---C3---C4---C5 175.9 (3) C10---C11---C12---S1 −178.3 (2) C2---C3---C4---C5 −6.0 (5) O4---S1---C12---C11 −10.3 (3) N1---C4---C5---O2 148.1 (3) O3---S1---C12---C11 −139.6 (2) C3---C4---C5---O2 −27.6 (5) N3---S1---C12---C11 104.9 (2) N1---C4---C5---C6 −29.0 (4) O4---S1---C12---C13 169.9 (2) C3---C4---C5---C6 155.3 (3) O3---S1---C12---C13 40.7 (3) N1---N2---C7---C3 2.7 (3) N3---S1---C12---C13 −74.9 (2) C9---N2---C7---C3 −169.8 (2) C11---C12---C13---C14 −1.1 (4) N1---N2---C7---C8 −174.3 (2) S1---C12---C13---C14 178.6 (2) C9---N2---C7---C8 13.2 (4) C12---C13---C14---C9 0.0 (4) C4---C3---C7---N2 −1.6 (3) C10---C9---C14---C13 0.8 (4) C2---C3---C7---N2 −179.9 (2) N2---C9---C14---C13 179.7 (2) ------------------- ------------- ----------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2206 .table-wrap} --------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N3---H31···O2^i^ 0.88 (1) 2.03 (1) 2.864 (3) 159 (3) N3---H32···O4^ii^ 0.88 (1) 2.06 (1) 2.933 (3) 170 (3) C1---H1C···O3^i^ 0.98 2.55 3.446 (3) 151 C10---H10···O1^iii^ 0.95 2.51 3.314 (3) 142 C14---H14···O1^iv^ 0.95 2.54 3.414 (3) 153 --------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+2, −*y*+1, *z*−1/2; (ii) *x*+1/2, −*y*+1/2, *z*; (iii) *x*−1, *y*, *z*; (iv) −*x*+3, −*y*+1, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- ---------- ---------- ----------- ------------- N3---H31⋯O2^i^ 0.88 (1) 2.03 (1) 2.864 (3) 159 (3) N3---H32⋯O4^ii^ 0.88 (1) 2.06 (1) 2.933 (3) 170 (3) C1---H1*C*⋯O3^i^ 0.98 2.55 3.446 (3) 151 C10---H10⋯O1^iii^ 0.95 2.51 3.314 (3) 142 C14---H14⋯O1^iv^ 0.95 2.54 3.414 (3) 153 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:18.267508
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052070/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o693", "authors": [ { "first": "Hatem A.", "last": "Abdel-Aziz" }, { "first": "Ahmed", "last": "Bari" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3052071
Related literature {#sec1} ================== For the general synthetic procedure, see: Matiychuk *et al.* (2010[@bb5]). For the biologial activity of aryl­thio­phenes, see: Reddy *et al.* (2005[@bb8]); Anderson *et al.* (1963[@bb1]); Bohlmann *et al.* (1984[@bb2]); Michaelides *et al.* (1997[@bb6]); Tanaka *et al.* (1998[@bb13]) and for their applications, see Masui *et al.* (2004[@bb4]); Roncali (1992[@bb9], 1997[@bb10]). For methods of obtaining aryl­thio­phenes *via* cross-coupling reactions, see: Stanforth (1998[@bb12]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~13~H~8~ClF~3~OS*M* *~r~* = 304.70Monoclinic,*a* = 15.330 (6) Å*b* = 10.809 (4) Å*c* = 7.676 (3) Åβ = 93.72 (3)°*V* = 1269.3 (8) Å^3^*Z* = 4Mo *K*α radiationμ = 0.49 mm^−1^*T* = 100 K0.20 × 0.15 × 0.08 mm ### Data collection {#sec2.1.2} Kuma KM-4-CCD diffractometerAbsorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2006[@bb7]) *T* ~min~ = 0.86, *T* ~max~ = 0.9316021 measured reflections4377 independent reflections3093 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.034 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.039*wR*(*F* ^2^) = 0.097*S* = 1.004377 reflections201 parametersH-atom parameters constrainedΔρ~max~ = 0.49 e Å^−3^Δρ~min~ = −0.25 e Å^−3^ {#d5e506} Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006[@bb7]); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006[@bb7]); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb11]); molecular graphics: *DIAMOND* (Brandenburg, 2006)[@bb3]; software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb14]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003965/ds2088sup1.cif](http://dx.doi.org/10.1107/S1600536811003965/ds2088sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003965/ds2088Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003965/ds2088Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ds2088&file=ds2088sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ds2088sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ds2088&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [DS2088](http://scripts.iucr.org/cgi-bin/sendsup?ds2088)). The authors acknowledge Professor T. Lis (University of Wroclaw) for providing the X-ray data collection faciltities. Comment ======= Arylthiophenes and their homologues are an important class of organic compounds. The arylthiophenes units are represented in several types of compounds of current interest including polymers (Roncali, 1992; Roncali, 1997), liquid crystals (Masui *et al.*, 2004), ligands and molecules of medicinal interest (Michaelides *et al.*, 1997; Tanaka *et al.*, 1998; Reddy *et al.*, 2005; Anderson *et al.*, 1963). In view of the arylthiophenes importance a number of catalytic methods of these compounds formation from precursors in a cross-coupling reactions have been developed over the last two decades (Stanforth, 1998). However, these methods proceed in two steps *via* an organometallic intermediate and their stability is often limited. The molecule of the title compound is not plannar (see Fig. 1). The dihedral angle between the mean planes of 2-chloro-5-(trifluoromethyl)phenyl and tiophene rings is equal to 54.37 (5)°. The acethyl group is twisted with respect to the tiophene ring by 8.1 (2)°. The CF~3~ group is disordered with almoust equal occupations of two positions, which are realised by the rotation around C1--C55 bond. The crystal structure packing is governed by the hydrogen bonds of C--H···F and C--H···O types and C--Cl···π interactions. The centrosymmetric dimers are formed by the pairs of C22--H22C···F1A*^i^* and C56--H56···O1*^i^* hydrogen bonds. The dimers are connected into the chains that propagate along *z* axis direction by means of C22--H22A···O1*^iii^* hydrogen bonds and C52--Cl1···*C~g~^iv^* interactions (symmetry code: (*iv*) *x*, 1/2 - *y*, *z* + 1/2). The geometrical parameters of C52--Cl1···*C~g~^iv^* interaction are as follows: Cl1···*C~g~^iv^* distance is equal to 3.415 (1) Å and the C52--Cl1···*C~g~^iv^* angle 151.56 (5)°. The vast layers perpendicular to *x* axis direction are formed of above mentioned chains connected with each other by C22--H22B···O1*^ii^* hydrogen bonds (see Fig. 2). Experimental {#experimental} ============ Water solution of 7 g of NaNO~2~ (25 ml) was added dropwise to a cooled stirred mixture of 2-chloro-5-trifluoromethylaniline (19.5 g, 0.1 mol, Fluka) and 60 ml of 20% HCl. After completion of reaction the solution was filtered and added dropwise to well stirred mixture of 2-acetylthiophene (12.6 g, 0.1 mol, Fluka), acetone (40 ml) and CuCl~2~^.^2H~2~O (1.5 g, 8.7 mmol) during 20 min. After 3 h the reaction mixture was diluted with 250 ml of water and 50 ml of CHCl~3~, organic layer was separated and dried over Na~2~SO~4~, and concentrated under reduced pressure. Residue was distilled at 400 Pa (453--458 K) and gave 11.6 g (38% yield) of 1-{5-\[2-chloro-5-(trifluoromethyl)phenyl\]-2-thienyl}ethanone. Yellow crystals suitable for X-ray analysis were obtained by recrystallization from *n*-hexane. Refinement {#refinement} ========== All H atoms were found in difference-Fourier maps. In the final refinement cycles, all H atoms were positioned geometrically and treated as riding atoms, with C--H distance of 0.95 Å and with *U*~iso~(H) values of 1.2*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Asymmetric unit of the crystal alnog with atom labeling scheme. The thermal ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o585-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The packing of the title compound along with intermolecular hydrogen bonds. ::: ![](e-67-0o585-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e220 .table-wrap} ------------------------- ---------------------------------------- C~13~H~8~ClF~3~OS *F*(000) = 616 *M~r~* = 304.70 *D*~x~ = 1.594 Mg m^−3^ Monoclinic, *P*2~1~/*c* Melting point: 347 K Hall symbol: -P 2ybc Mo *K*α radiation, λ = 0.71073 Å *a* = 15.330 (6) Å Cell parameters from 11592 reflections *b* = 10.809 (4) Å θ = 2.3--33.9° *c* = 7.676 (3) Å µ = 0.49 mm^−1^ β = 93.72 (3)° *T* = 100 K *V* = 1269.3 (8) Å^3^ Block, colourless *Z* = 4 0.20 × 0.15 × 0.08 mm ------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e349 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Kuma KM-4-CCD diffractometer 4377 independent reflections Radiation source: fine-focus sealed tube 3093 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.034 ω scans θ~max~ = 33.8°, θ~min~ = 3.3° Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2006) *h* = −19→23 *T*~min~ = 0.86, *T*~max~ = 0.93 *k* = −12→16 16021 measured reflections *l* = −11→9 ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e463 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.039 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.097 H-atom parameters constrained *S* = 1.00 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.054*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4377 reflections (Δ/σ)~max~ = 0.001 201 parameters Δρ~max~ = 0.49 e Å^−3^ 0 restraints Δρ~min~ = −0.25 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e617 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e716 .table-wrap} ------ -------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Cl1 0.09807 (2) 0.28619 (3) 1.05277 (5) 0.02440 (10) S1 0.37102 (2) 0.42596 (3) 1.04508 (5) 0.01971 (9) O1 0.54239 (7) 0.39388 (9) 1.24469 (14) 0.0261 (2) C2 0.42729 (9) 0.29067 (12) 1.08963 (19) 0.0181 (3) C21 0.51398 (9) 0.29623 (12) 1.18365 (19) 0.0208 (3) C22 0.56531 (10) 0.17781 (14) 1.1983 (2) 0.0276 (3) H22A 0.5812 0.1521 1.0821 0.041\* H22B 0.5297 0.1133 1.2485 0.041\* H22C 0.6185 0.1909 1.2738 0.041\* C3 0.37969 (9) 0.18899 (12) 1.02942 (19) 0.0194 (3) H3 0.4000 0.1062 1.0413 0.023\* C4 0.29753 (9) 0.22147 (12) 0.94833 (19) 0.0192 (3) H4 0.2562 0.1630 0.9010 0.023\* C5 0.28396 (9) 0.34750 (11) 0.94559 (18) 0.0160 (3) C51 0.20972 (9) 0.41760 (11) 0.86157 (18) 0.0164 (3) C52 0.12277 (9) 0.39514 (12) 0.89694 (18) 0.0179 (3) C53 0.05343 (9) 0.45875 (12) 0.81028 (19) 0.0192 (3) H53 −0.0051 0.4413 0.8357 0.023\* C54 0.07070 (9) 0.54733 (12) 0.68726 (19) 0.0198 (3) H54 0.0241 0.5907 0.6270 0.024\* C55 0.15699 (9) 0.57247 (12) 0.65236 (18) 0.0192 (3) C1 0.17567 (10) 0.66394 (15) 0.5124 (2) 0.0289 (4) F1 0.2540 (6) 0.7124 (13) 0.528 (2) 0.049 (3) 0.49 (3) F2 0.1209 (7) 0.7645 (7) 0.5195 (13) 0.0485 (17) 0.49 (3) F3 0.1634 (9) 0.6244 (10) 0.3552 (8) 0.059 (2) 0.49 (3) F1A 0.2471 (7) 0.7292 (12) 0.549 (2) 0.052 (2) 0.51 (3) F2A 0.1125 (5) 0.7352 (16) 0.465 (2) 0.070 (3) 0.51 (3) F3A 0.1942 (11) 0.5975 (8) 0.3643 (11) 0.079 (2) 0.51 (3) C56 0.22588 (9) 0.50955 (12) 0.73913 (18) 0.0189 (3) H56 0.2843 0.5290 0.7153 0.023\* ------ -------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1123 .table-wrap} ----- -------------- -------------- ------------- --------------- --------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.01931 (18) 0.02759 (17) 0.0267 (2) −0.00030 (13) 0.00436 (14) 0.00743 (14) S1 0.01739 (17) 0.01659 (14) 0.0246 (2) −0.00050 (12) −0.00288 (13) 0.00172 (13) O1 0.0217 (5) 0.0253 (5) 0.0307 (6) −0.0040 (4) −0.0041 (5) 0.0034 (4) C2 0.0151 (6) 0.0200 (6) 0.0193 (7) 0.0012 (5) 0.0017 (5) 0.0023 (5) C21 0.0178 (7) 0.0234 (6) 0.0214 (8) −0.0002 (5) 0.0024 (6) 0.0072 (5) C22 0.0194 (7) 0.0266 (7) 0.0362 (10) 0.0026 (6) −0.0034 (7) 0.0065 (6) C3 0.0184 (7) 0.0194 (6) 0.0208 (7) 0.0027 (5) 0.0033 (6) 0.0005 (5) C4 0.0201 (7) 0.0185 (6) 0.0189 (7) −0.0012 (5) 0.0009 (6) −0.0014 (5) C5 0.0154 (6) 0.0177 (5) 0.0149 (7) −0.0002 (5) 0.0009 (5) −0.0005 (5) C51 0.0164 (6) 0.0170 (5) 0.0158 (7) 0.0011 (5) 0.0002 (5) −0.0031 (5) C52 0.0185 (7) 0.0190 (5) 0.0163 (7) 0.0000 (5) 0.0009 (5) −0.0009 (5) C53 0.0138 (6) 0.0234 (6) 0.0203 (7) 0.0012 (5) 0.0007 (5) −0.0041 (5) C54 0.0182 (7) 0.0217 (6) 0.0190 (7) 0.0028 (5) −0.0027 (6) −0.0021 (5) C55 0.0200 (7) 0.0200 (6) 0.0174 (7) 0.0005 (5) 0.0005 (5) 0.0003 (5) C1 0.0219 (8) 0.0343 (8) 0.0300 (9) 0.0007 (6) −0.0013 (7) 0.0102 (7) F1 0.015 (2) 0.068 (5) 0.062 (5) 0.000 (3) −0.003 (2) 0.043 (4) F2 0.050 (3) 0.038 (2) 0.059 (4) 0.0255 (18) 0.020 (2) 0.0291 (19) F3 0.115 (6) 0.043 (3) 0.0173 (15) −0.024 (3) −0.005 (2) 0.0037 (17) F1A 0.053 (5) 0.049 (3) 0.053 (3) −0.029 (3) −0.008 (3) 0.022 (2) F2A 0.0206 (16) 0.093 (6) 0.099 (7) 0.016 (3) 0.010 (3) 0.074 (5) F3A 0.160 (6) 0.051 (2) 0.029 (2) 0.010 (4) 0.037 (3) 0.0148 (18) C56 0.0169 (7) 0.0211 (6) 0.0189 (7) −0.0004 (5) 0.0018 (5) −0.0017 (5) ----- -------------- -------------- ------------- --------------- --------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1548 .table-wrap} ------------------- ------------- ----------------- ------------- Cl1---C52 1.738 (2) C51---C56 1.401 (2) S1---C5 1.718 (2) C52---C53 1.398 (2) S1---C2 1.721 (2) C53---C54 1.382 (2) O1---C21 1.224 (2) C53---H53 0.9500 C2---C3 1.382 (2) C54---C55 1.393 (2) C2---C21 1.472 (2) C54---H54 0.9500 C21---C22 1.503 (2) C55---C56 1.389 (2) C22---H22A 0.9800 C55---C1 1.501 (2) C22---H22B 0.9800 C1---F2A 1.272 (8) C22---H22C 0.9800 C1---F3 1.282 (8) C3---C4 1.413 (2) C1---F1 1.309 (10) C3---H3 0.9500 C1---F1A 1.317 (11) C4---C5 1.378 (2) C1---F2 1.377 (7) C4---H4 0.9500 C1---F3A 1.389 (8) C5---C51 1.480 (2) C56---H56 0.9500 C51---C52 1.399 (2) C5---S1---C2 91.94 (7) C53---C52---Cl1 117.91 (11) C3---C2---C21 129.54 (12) C51---C52---Cl1 120.28 (11) C3---C2---S1 111.25 (11) C54---C53---C52 119.50 (13) C21---C2---S1 119.20 (10) C54---C53---H53 120.3 O1---C21---C2 120.70 (13) C52---C53---H53 120.3 O1---C21---C22 122.31 (14) C53---C54---C55 119.52 (13) C2---C21---C22 116.98 (12) C53---C54---H54 120.2 C21---C22---H22A 109.5 C55---C54---H54 120.2 C21---C22---H22B 109.5 C56---C55---C54 120.92 (13) H22A---C22---H22B 109.5 C56---C55---C1 119.42 (13) C21---C22---H22C 109.5 C54---C55---C1 119.58 (13) H22A---C22---H22C 109.5 F3---C1---F1 107.4 (8) H22B---C22---H22C 109.5 F2A---C1---F1A 110.1 (7) C2---C3---C4 112.70 (12) F3---C1---F2 104.4 (6) C2---C3---H3 123.7 F1---C1---F2 103.8 (7) C4---C3---H3 123.7 F2A---C1---F3A 105.6 (6) C5---C4---C3 112.45 (12) F1A---C1---F3A 103.8 (8) C5---C4---H4 123.8 F2A---C1---C55 115.3 (4) C3---C4---H4 123.8 F3---C1---C55 115.5 (4) C4---C5---C51 128.60 (12) F1---C1---C55 114.4 (6) C4---C5---S1 111.66 (10) F1A---C1---C55 113.4 (6) C51---C5---S1 119.62 (10) F2---C1---C55 110.3 (4) C52---C51---C56 117.75 (12) F3A---C1---C55 107.7 (4) C52---C51---C5 122.83 (12) C55---C56---C51 120.46 (13) C56---C51---C5 119.41 (12) C55---C56---H56 119.8 C53---C52---C51 121.81 (13) C51---C56---H56 119.8 ------------------- ------------- ----------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1948 .table-wrap} ---------------------- --------- --------- ------------ --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C22---H22C···F1A^i^ 0.98 2.55 3.520 (13) 168 C22---H22B···O1^ii^ 0.98 2.62 3.526 (2) 154 C22---H22A···O1^iii^ 0.98 2.67 3.562 (3) 152 C56---H56···O1^i^ 0.95 2.78 3.697 (2) 162 ---------------------- --------- --------- ------------ --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+2; (ii) −*x*+1, *y*−1/2, −*z*+5/2; (iii) *x*, −*y*+1/2, *z*−1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ----------------------- --------- ------- ------------ ------------- C22---H22*C*⋯F1*A*^i^ 0.98 2.55 3.520 (13) 168 C22---H22*B*⋯O1^ii^ 0.98 2.62 3.526 (2) 154 C22---H22*A*⋯O1^iii^ 0.98 2.67 3.562 (3) 152 C56---H56⋯O1^i^ 0.95 2.78 3.697 (2) 162 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:18.273001
2011-2-09
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052071/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 9; 67(Pt 3):o585", "authors": [ { "first": "Roman", "last": "Lytvyn" }, { "first": "Yuri", "last": "Horak" }, { "first": "Vasyl", "last": "Matiychuk" }, { "first": "Mykola", "last": "Obushak" }, { "first": "Vasyl", "last": "Kinzhybalo" } ] }
PMC3052072
Related literature {#sec1} ================== For standard bond lengths, see Allen *et al.* (1987[@bb1]). For related structures, see: Merz (2002[@bb8]); Jones *et al.* (2002[@bb6]); Pagola & Stephens (2009[@bb10]); Boese *et al.* (1999[@bb4]). For related experiments on the hydrolysis of nitrites, see: Gallardo & Begnini (1995[@bb5]); Pala Wilgus *et al.* (1995[@bb11]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~13~H~19~NO~2~*M* *~r~* = 221.30Monoclinic,*a* = 12.5507 (2) Å*b* = 5.16441 (9) Å*c* = 18.9322 (3) Åβ = 91.4702 (16)°*V* = 1226.72 (4) Å^3^*Z* = 4Cu *K*α radiationμ = 0.64 mm^−1^*T* = 150 K0.31 × 0.08 × 0.05 mm ### Data collection {#sec2.1.2} Oxford Diffraction Gemini E diffractometerAbsorption correction: multi-scan (*CrysAlis PRO*: Oxford Diffraction, 2006[@bb9]) *T* ~min~ = 0.894, *T* ~max~ = 1.00013258 measured reflections2355 independent reflections2165 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.018 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.037*wR*(*F* ^2^) = 0.095*S* = 1.012101 reflections145 parametersH-atom parameters constrainedΔρ~max~ = 0.18 e Å^−3^Δρ~min~ = −0.18 e Å^−3^ {#d5e431} Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006[@bb9]); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006[@bb9]); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994[@bb2]); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003[@bb3]); molecular graphics: *Mercury* (Macrae *et al.*, 2006[@bb7]); software used to prepare material for publication: *CRYSTALS*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003096/kp2300sup1.cif](http://dx.doi.org/10.1107/S1600536811003096/kp2300sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003096/kp2300Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003096/kp2300Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?kp2300&file=kp2300sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?kp2300sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?kp2300&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [KP2300](http://scripts.iucr.org/cgi-bin/sendsup?kp2300)). The author would like to acknowledge the Ministry of Science, Technology and Innovation (MOSTI) Malaysia for funding (Research Grant No. 04--01--04-SF0144 and 05--02-10--0934RU). Comment ======= Bond distance and angles in the titled compound (I), 4-(hexyloxy)benzamide (Fig.1) are in normal range (Allen *et al.* 1987) and are comparable with those in closely related structure which was determined by single-crystal X-ray diffraction method (Merz, 2002; Jones *et al.*, 2002). On the other hand, bond distances at ether and amide group differ from those in the structure of 2-ethoxybenzamide (Pagola & Stephens, 2009). The benzene ring with O1 and C8 is nearly planar (r.m.s deviation of 0.0004 Å), whereas C7 is 0.019Å out of this plane. The dihedral angle between the benzene ring and the amide group plane is 29.3° \[20.1° in *p*-nitrobenzamide (Jones *et al.*, 2002)\].In the molecular structure of (I) alkane carbon skeleton is not coplanar with the aromatic ring; the dihedral angle between the benzene ring and the alkane carbon skeleton is 5.40 (1)°. The torsion angles along the alkane carbon skeleton increase (torsion angle of C11---C14=174.1°, C12---C15=175.9°, and C13---C16=178.2°). The arrangement observed here is slightly different from n-alkanes which contain a planar zigzag carbon skeleton. However, the mean C(H3)---C(H2) and C(H2)---C(H2) distance, and C(H3)---C(H2)---C and C(H2)---C(H2)---C angles, are in agreement with those determined for n-alkanes \[1.521 (1)Å and 112.8 (1)° and 113.5 (1)°, respectively; Boese *et al.*, 1999\]. In the crystal structure, the amide groups are oriented head-to-head forming N10---H102···O9 hydrogen bond at (-*x*, -*y* + 1, -*z* + 1) \[the N···O distance is 1.941 Å\] to generate a hydrogen bond dimer. These dimers are further linked together by N10---H101···O9 hydrogen bonding at (*x*,*y* + 1, *z*) \[N···O distance is 3.106 Å\] generating a ladder-like motif along the *b* axis (Table 1, Figs. 2 and 3) (Pagola & Stephens, 2009). Experimental {#experimental} ============ Attempts to crystallize 1,2-bis(4-heptylbenzylidene)hydrazine by liquid diffusion method from n-buthanol and water led to crystals of the title compound, presumably due to slow hydrolysis by supervenient of water (Gallardo & Begnini, 1995; Pala Wilgus *et al.*, 1995). Refinement {#refinement} ========== The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C---H in the range 0.93--0.98, N---H in the range 0.86--0.90 Å) and *U*~iso~(H) (in the range 1.2--1.5 times *U*~eq~ of the parent atom), after which the positions were refined with riding constraints. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structure of (I) with arom numbering and displacement ellipsoids at the 50% probablity level. ::: ![](e-67-0o612-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The hydrogen-bonded ladder-like motif (dashed lines) extends along b-axis. ::: ![](e-67-0o612-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### Packing diagram of the title compound viewed along the a axis; hydrogen bond are shown as dashed lines. ::: ![](e-67-0o612-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e159 .table-wrap} ------------------------- --------------------------------------- C~13~H~19~NO~2~ *F*(000) = 480 *M~r~* = 221.30 *D*~x~ = 1.198 Mg m^−3^ Monoclinic, *P*2~1~/*n* Cu *K*α radiation, λ = 1.54184 Å Hall symbol: -P 2yn Cell parameters from 8720 reflections *a* = 12.5507 (2) Å θ = 3.5--70.8° *b* = 5.16441 (9) Å µ = 0.64 mm^−1^ *c* = 18.9322 (3) Å *T* = 150 K β = 91.4702 (16)° Needle-like, colourless *V* = 1226.72 (4) Å^3^ 0.31 × 0.08 × 0.05 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e286 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Gemini E diffractometer 2355 independent reflections Radiation source: sealed x-ray tube 2165 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.018 ω/2θ scans θ~max~ = 71.0°, θ~min~ = 4.2° Absorption correction: multi-scan (*CrysAlis PRO*: Oxford Diffraction, 2006) *h* = −15→13 *T*~min~ = 0.894, *T*~max~ = 1.000 *k* = −6→6 13258 measured reflections *l* = −21→23 ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e403 .table-wrap} ------------------------------------- -------------------------------------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.037 H-atom parameters constrained *wR*(*F*^2^) = 0.095 Method = Modified Sheldrick *w* = 1/\[σ^2^(*F*^2^) + (0.05*P*)^2^ + 0.41*P*\], where *P* = \[max(*F*~o~^2^,0) + 2*F*~c~^2^\]/3 *S* = 1.01 (Δ/σ)~max~ = 0.0002608 2101 reflections Δρ~max~ = 0.18 e Å^−3^ 145 parameters Δρ~min~ = −0.18 e Å^−3^ 0 restraints ------------------------------------- -------------------------------------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e558 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Refinement. For this compound, 13258 reflections were measured and collected during the refinement. However after merging the symmetry equivalent reflections, there were only 2355 independent reflections. Further 254 more reflections were filtered, as sigma cutoff was set at 3.0 and (sin theta x 2)set to \>0.01 (to eliminate reflection measured near the vicinity of beam stop) therefore reduced the number of reflection to 2101 which were used in the Refinement. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e578 .table-wrap} ------ -------------- -------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.50007 (7) 0.75339 (18) 0.27977 (5) 0.0339 C2 0.40797 (9) 0.7236 (2) 0.31525 (6) 0.0276 C3 0.40594 (10) 0.5166 (2) 0.36254 (7) 0.0327 C4 0.31610 (10) 0.4686 (2) 0.40089 (6) 0.0302 C5 0.22742 (9) 0.6304 (2) 0.39492 (6) 0.0258 C6 0.23026 (10) 0.8374 (2) 0.34797 (6) 0.0283 C7 0.31893 (10) 0.8824 (2) 0.30718 (6) 0.0292 C8 0.13215 (9) 0.5718 (2) 0.43773 (6) 0.0265 O9 0.11152 (7) 0.34604 (16) 0.45547 (5) 0.0322 N10 0.07033 (9) 0.7708 (2) 0.45501 (6) 0.0326 C11 0.50247 (10) 0.9496 (3) 0.22591 (7) 0.0334 C12 0.61157 (10) 0.9498 (2) 0.19414 (7) 0.0337 C13 0.64375 (10) 0.6928 (2) 0.16146 (7) 0.0321 C14 0.74928 (10) 0.7091 (2) 0.12345 (7) 0.0314 C15 0.78664 (10) 0.4500 (3) 0.09497 (7) 0.0339 C16 0.89010 (11) 0.4699 (3) 0.05528 (7) 0.0392 H31 0.4688 0.4087 0.3672 0.0424\* H41 0.3139 0.3171 0.4318 0.0397\* H61 0.1691 0.9533 0.3429 0.0368\* H71 0.3177 1.0309 0.2744 0.0385\* H112 0.4882 1.1252 0.2475 0.0433\* H111 0.4461 0.9082 0.1885 0.0424\* H122 0.6652 1.0029 0.2319 0.0438\* H121 0.6111 1.0874 0.1576 0.0426\* H131 0.6479 0.5555 0.1986 0.0402\* H132 0.5859 0.6413 0.1263 0.0417\* H141 0.8049 0.7782 0.1575 0.0417\* H142 0.7433 0.8391 0.0847 0.0407\* H151 0.7949 0.3232 0.1343 0.0435\* H152 0.7299 0.3781 0.0628 0.0445\* H162 0.9124 0.2983 0.0389 0.0627\* H163 0.9472 0.5385 0.0870 0.0619\* H161 0.8823 0.5875 0.0142 0.0630\* H101 0.0938 0.9339 0.4498 0.0433\* H102 0.0124 0.7437 0.4808 0.0432\* ------ -------------- -------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1037 .table-wrap} ----- ------------ ------------ ------------ ------------- ------------ ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0292 (4) 0.0377 (5) 0.0350 (5) 0.0032 (4) 0.0051 (4) 0.0078 (4) C2 0.0281 (6) 0.0268 (6) 0.0279 (6) −0.0015 (5) 0.0011 (4) −0.0021 (5) C3 0.0319 (6) 0.0296 (6) 0.0365 (7) 0.0059 (5) 0.0000 (5) 0.0042 (5) C4 0.0367 (7) 0.0238 (6) 0.0300 (6) 0.0010 (5) 0.0007 (5) 0.0046 (5) C5 0.0312 (6) 0.0199 (5) 0.0264 (5) −0.0024 (4) 0.0004 (4) −0.0026 (4) C6 0.0317 (6) 0.0209 (6) 0.0325 (6) 0.0024 (5) 0.0019 (5) 0.0006 (5) C7 0.0346 (6) 0.0220 (6) 0.0311 (6) −0.0002 (5) 0.0029 (5) 0.0039 (5) C8 0.0331 (6) 0.0216 (6) 0.0248 (5) −0.0019 (5) 0.0001 (5) −0.0006 (4) O9 0.0390 (5) 0.0201 (4) 0.0378 (5) −0.0009 (3) 0.0095 (4) 0.0028 (3) N10 0.0382 (6) 0.0204 (5) 0.0399 (6) −0.0006 (4) 0.0136 (5) 0.0011 (4) C11 0.0356 (7) 0.0278 (6) 0.0373 (7) 0.0011 (5) 0.0070 (5) 0.0042 (5) C12 0.0353 (7) 0.0279 (6) 0.0382 (7) −0.0037 (5) 0.0071 (5) 0.0001 (5) C13 0.0316 (6) 0.0277 (6) 0.0370 (7) −0.0031 (5) 0.0030 (5) −0.0013 (5) C14 0.0335 (6) 0.0271 (6) 0.0335 (6) −0.0027 (5) 0.0024 (5) −0.0002 (5) C15 0.0335 (7) 0.0292 (7) 0.0391 (7) −0.0018 (5) 0.0013 (5) −0.0039 (5) C16 0.0368 (7) 0.0393 (8) 0.0415 (7) 0.0014 (6) 0.0031 (6) −0.0071 (6) ----- ------------ ------------ ------------ ------------- ------------ ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1357 .table-wrap} ------------------- ------------- ------------------- ------------- O1---C2 1.3605 (14) C11---H112 1.013 O1---C11 1.4384 (15) C11---H111 1.011 C2---C3 1.3954 (17) C12---C13 1.5233 (17) C2---C7 1.3915 (17) C12---H122 1.007 C3---C4 1.3792 (17) C12---H121 0.992 C3---H31 0.968 C13---C14 1.5258 (17) C4---C5 1.3943 (17) C13---H131 0.998 C4---H41 0.978 C13---H132 1.007 C5---C6 1.3912 (16) C14---C15 1.5216 (17) C5---C8 1.4926 (16) C14---H141 1.003 C6---C7 1.3904 (17) C14---H142 0.996 C6---H61 0.976 C15---C16 1.5203 (18) C7---H71 0.986 C15---H151 0.995 C8---O9 1.2423 (14) C15---H152 0.997 C8---N10 1.3338 (15) C16---H162 0.982 N10---H101 0.898 C16---H163 0.989 N10---H102 0.898 C16---H161 0.990 C11---C12 1.5096 (17) C2---O1---C11 117.58 (9) C11---C12---C13 114.45 (10) O1---C2---C3 115.66 (11) C11---C12---H122 108.3 O1---C2---C7 124.71 (11) C13---C12---H122 110.2 C3---C2---C7 119.63 (11) C11---C12---H121 106.8 C2---C3---C4 120.28 (11) C13---C12---H121 109.7 C2---C3---H31 118.1 H122---C12---H121 106.9 C4---C3---H31 121.6 C12---C13---C14 112.69 (10) C3---C4---C5 120.75 (11) C12---C13---H131 110.0 C3---C4---H41 119.7 C14---C13---H131 110.0 C5---C4---H41 119.5 C12---C13---H132 107.7 C4---C5---C6 118.62 (11) C14---C13---H132 108.8 C4---C5---C8 118.89 (10) H131---C13---H132 107.5 C6---C5---C8 122.47 (11) C13---C14---C15 113.43 (10) C5---C6---C7 121.16 (11) C13---C14---H141 108.4 C5---C6---H61 120.1 C15---C14---H141 109.0 C7---C6---H61 118.8 C13---C14---H142 109.6 C2---C7---C6 119.50 (11) C15---C14---H142 110.5 C2---C7---H71 121.8 H141---C14---H142 105.7 C6---C7---H71 118.6 C14---C15---C16 112.97 (11) C5---C8---O9 120.85 (10) C14---C15---H151 109.9 C5---C8---N10 117.12 (10) C16---C15---H151 109.9 O9---C8---N10 122.03 (11) C14---C15---H152 108.8 C8---N10---H101 120.1 C16---C15---H152 109.2 C8---N10---H102 119.9 H151---C15---H152 105.8 H101---N10---H102 118.5 C15---C16---H162 110.4 O1---C11---C12 108.58 (10) C15---C16---H163 109.8 O1---C11---H112 109.7 H162---C16---H163 107.9 C12---C11---H112 109.4 C15---C16---H161 111.2 O1---C11---H111 108.7 H162---C16---H161 109.2 C12---C11---H111 110.3 H163---C16---H161 108.3 H112---C11---H111 110.1 ------------------- ------------- ------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1819 .table-wrap} --------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N10---H101···O9^i^ 0.90 2.14 3.0153 (18) 164 N10---H102···O9^ii^ 0.90 2.04 2.9401 (18) 174 --------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (i) *x*, *y*+1, *z*; (ii) −*x*, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- --------- ------- ------------- ------------- N10---H101⋯O9^i^ 0.90 2.14 3.0153 (18) 164 N10---H102⋯O9^ii^ 0.90 2.04 2.9401 (18) 174 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.277169
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052072/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o612", "authors": [ { "first": "Huey Chong", "last": "Kwong" }, { "first": "Mohamad Zaki Ab.", "last": "Rahman" }, { "first": "Mohamed Ibrahim", "last": "Mohamed Tahir" }, { "first": "Sidik", "last": "Silong" } ] }
PMC3052073
Related literature {#sec1} ================== For palladium-catalysed amination reactions of aryl halides with anilines, see: Jensen *et al.* (2004[@bb5]). For p38 MAP kinase inhibitors based on dibenzo\[*b*,*e*\]oxepin-11(6*H*)-one, see: Laufer *et al.* (2006[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~20~H~12~F~2~N~2~O~4~*M* *~r~* = 382.32Orthorhombic,*a* = 27.0813 (15) Å*b* = 13.0411 (8) Å*c* = 4.5998 (2) Å*V* = 1624.51 (15) Å^3^*Z* = 4Cu *K*α radiationμ = 1.08 mm^−1^*T* = 193 K0.47 × 0.24 × 0.12 mm ### Data collection {#sec2.1.2} Enraf--Nonius CAD-4 diffractometerAbsorption correction: numerical (*CORINC*; Dräger & Gattow, 1971[@bb2]) *T* ~min~ = 0.721, *T* ~max~ = 0.8823417 measured reflections3010 independent reflections2924 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.0513 standard reflections every 60 min intensity decay: 3% ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.047*wR*(*F* ^2^) = 0.127*S* = 1.033010 reflections253 parameters1 restraintH-atom parameters constrainedΔρ~max~ = 0.17 e Å^−3^Δρ~min~ = −0.20 e Å^−3^Absolute structure: Flack, (1983[@bb4]), 1270 Friedel pairsFlack parameter: −0.22 (18) {#d5e444} Data collection: *CAD-4 Software* (Enraf--Nonius, 1989[@bb3]); cell refinement: *CAD-4 Software*; data reduction: *CORINC* (Dräger & Gattow, 1971[@bb2]); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb1]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *PLATON* (Spek, 2009[@bb8]); software used to prepare material for publication: *PLATON*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811002881/im2261sup1.cif](http://dx.doi.org/10.1107/S1600536811002881/im2261sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002881/im2261Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002881/im2261Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?im2261&file=im2261sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?im2261sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?im2261&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [IM2261](http://scripts.iucr.org/cgi-bin/sendsup?im2261)). Comment ======= Based on dibenzo\[b,e\]oxepin-11(6*H*)-one (Laufer *et al.* 2006) as p38 MAP kinase inhibitors, our intent was to synthesize disubstituted oxepin derivatives. The title compound was synthesized in the course of an ongoing study to increase the solubility of the molecules. The structure of the title compound, at 193 K shows orthorhombic symmetry. The two phenyl rings of the tricyclic unit are oriented at a dihedral angle of 30.6 (1°). The 2,4-difluoroanilino residue is oriented at a dihedral angel of 68.2 (1°) towards the phenoxy ring. The crystal stucture is characterized by an intermolecular hydrogen bond N16--H···O25 (2.32 Å). Experimental {#experimental} ============ For the preperation of the title compound a mixture of 200 mg (0.69 mmol) 3-chloro-9-nitrodibenzo\[b,e\]oxepin-11(6*H*)-one, 100 mg (0.77 mmol) 2--4-difluoroaniline, 1.00 g (3.07 mmol) Cs~2~CO~3~, 45 mg (0.10 mmol) 2-(dicyclohexylphosphino)-2\`-4\`-6\`-triisopropylbiphenyl and 20 mg (0.09 mmol) Pd(OAc)~2~ in 2 ml absolute *tert*-butanol and 10 ml absolute 2.4-dioxane was stirred for 1 h at 284 K under an argon atmosphere. The mixture was then filtered and evaporated under reduced pressure. The residue was purified by flash chromatography (SiO~2~ n-hexane/ethyl acetate 2:1) to get 103 mg (0,27 mmol) of the product as a yellow solid (yield 39 %). Crystals of the title compound were obtained by slow evaporation of diethyl ether and hexane (1:1) at room temperature. Refinement {#refinement} ========== Hydrogen atoms attached to carbons were placed at calculated positions with C---H = 0.95 Å (aromatic) or 0.98--0.99 Å (*sp*^3^ C-atom). Hydrogen atom attached to nitrogen was located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2--1.5 times of the *U*~eq~ of the parent atom). The absolute structure was determined on the basis of 1270 Friedel pairs. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of compound I. Displacement ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o555-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e126 .table-wrap} ------------------------- ------------------------------------- C~20~H~12~F~2~N~2~O~4~ *F*(000) = 784 *M~r~* = 382.32 *D*~x~ = 1.563 Mg m^−3^ Orthorhombic, *Pna*2~1~ Cu *K*α radiation, λ = 1.54178 Å Hall symbol: P 2c -2n Cell parameters from 25 reflections *a* = 27.0813 (15) Å θ = 65--69° *b* = 13.0411 (8) Å µ = 1.08 mm^−1^ *c* = 4.5998 (2) Å *T* = 193 K *V* = 1624.51 (15) Å^3^ Needle, yellow *Z* = 4 0.47 × 0.24 × 0.12 mm ------------------------- ------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e254 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Enraf--Nonius CAD-4 diffractometer 2924 reflections with *I* \> 2σ(*I*) Radiation source: rotating anode *R*~int~ = 0.051 graphite θ~max~ = 69.8°, θ~min~ = 3.3° ω/2θ scans *h* = −33→33 Absorption correction: numerical (CORINC; Dräger & Gattow, 1971) *k* = −15→15 *T*~min~ = 0.721, *T*~max~ = 0.882 *l* = −5→5 3417 measured reflections 3 standard reflections every 60 min 3010 independent reflections intensity decay: 3% ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e373 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.047 H-atom parameters constrained *wR*(*F*^2^) = 0.127 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0989*P*)^2^ + 0.3414*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.03 (Δ/σ)~max~ = 0.023 3010 reflections Δρ~max~ = 0.17 e Å^−3^ 253 parameters Δρ~min~ = −0.20 e Å^−3^ 1 restraint Absolute structure: Flack, (1983), 1270 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: −0.22 (18) ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e538 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. ^1^H NMR (200 MHz, DMSO-d\~6\~) δ in p.p.m. 5.32 (s, 2 H), 6.26 (m, 1 H), 6.65 (dd, *J*=8.65, 1.96 Hz, 1 H), 7.11 (m, 1 H), 7.39 (m, 2 H), 7.82 (m, 1 H), 8.02 (d, *J*=8.97 Hz, 1 H), 8.41 (dd, *J*=8.21, 2.53 Hz, 1 H), 8.52 (d, *J*=2.40 Hz, 1 H), 8.85 (s, NH,1 H).^13^C NMR (50 MHz, DMSO-d\~6\~) δ in p.p.m. 72.5, 102.1, 110.5, 116.5, 124.3, 127.0, 130.4, 134.1, 141.1, 142.9, 148.3, 152.9, 163.4, 185.1, C---F not detected.GC/MS, *m/z* (%) 382 (100, *M*^+^), 308 (12), 152 (9), 98 (7), 63 (1). Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e679 .table-wrap} ------ -------------- --------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.58864 (5) 0.24963 (11) 0.3890 (3) 0.0240 (3) C2 0.56177 (7) 0.30020 (15) 0.5965 (4) 0.0215 (4) C3 0.51656 (8) 0.25513 (16) 0.6587 (5) 0.0242 (4) H3 0.5068 0.1947 0.5587 0.029\* C4 0.48548 (8) 0.29789 (17) 0.8665 (5) 0.0245 (4) C5 0.50161 (8) 0.38484 (16) 1.0212 (5) 0.0242 (4) H5 0.4818 0.4123 1.1728 0.029\* C6 0.54556 (8) 0.42947 (15) 0.9536 (5) 0.0234 (4) H6 0.5556 0.4882 1.0605 0.028\* C7 0.57698 (7) 0.39218 (15) 0.7306 (4) 0.0216 (4) C8 0.61655 (7) 0.46277 (15) 0.6377 (4) 0.0222 (4) C9 0.65513 (7) 0.43587 (15) 0.4150 (5) 0.0215 (4) C10 0.68194 (8) 0.51865 (17) 0.3032 (5) 0.0248 (4) H10 0.6752 0.5865 0.3670 0.030\* C11 0.71823 (7) 0.50081 (16) 0.0997 (5) 0.0262 (5) C12 0.73012 (8) 0.40368 (18) 0.0000 (5) 0.0275 (5) H12 0.7551 0.3936 −0.1423 0.033\* C13 0.70420 (7) 0.32175 (17) 0.1161 (5) 0.0253 (5) H13 0.7120 0.2541 0.0550 0.030\* C14 0.66696 (7) 0.33663 (16) 0.3204 (5) 0.0223 (4) C15 0.64067 (7) 0.24498 (15) 0.4420 (5) 0.0253 (5) H15A 0.6542 0.1820 0.3525 0.030\* H15B 0.6466 0.2412 0.6541 0.030\* N16 0.43947 (7) 0.25975 (16) 0.9317 (5) 0.0341 (5) H16 0.4191 0.3040 1.0435 0.041\* C17 0.41597 (8) 0.18098 (18) 0.7713 (5) 0.0287 (5) C18 0.37502 (8) 0.20134 (19) 0.5998 (6) 0.0352 (5) H18 0.3631 0.2697 0.5860 0.042\* C19 0.35112 (10) 0.1240 (2) 0.4481 (7) 0.0434 (6) H19 0.3226 0.1381 0.3345 0.052\* C20 0.36991 (10) 0.0266 (2) 0.4670 (6) 0.0407 (6) C21 0.41046 (10) 0.00166 (19) 0.6308 (7) 0.0409 (6) H21 0.4229 −0.0664 0.6384 0.049\* C22 0.43238 (9) 0.0805 (2) 0.7842 (6) 0.0355 (6) F23 0.34769 (7) −0.04940 (15) 0.3148 (5) 0.0629 (6) F24 0.47133 (6) 0.05902 (13) 0.9539 (5) 0.0558 (5) O25 0.61751 (6) 0.55042 (11) 0.7364 (4) 0.0302 (4) N26 0.74461 (7) 0.58919 (15) −0.0221 (5) 0.0315 (4) O27 0.73855 (7) 0.67347 (14) 0.0898 (5) 0.0476 (5) O28 0.77170 (7) 0.57374 (15) −0.2321 (5) 0.0434 (5) ------ -------------- --------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1208 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0251 (7) 0.0263 (7) 0.0205 (8) −0.0019 (5) 0.0021 (6) −0.0047 (6) C2 0.0275 (9) 0.0227 (10) 0.0143 (9) 0.0030 (7) −0.0011 (8) 0.0020 (8) C3 0.0306 (10) 0.0249 (10) 0.0171 (10) −0.0024 (8) −0.0015 (9) −0.0011 (8) C4 0.0270 (10) 0.0287 (10) 0.0179 (11) −0.0006 (8) 0.0009 (8) 0.0029 (8) C5 0.0303 (10) 0.0286 (11) 0.0137 (10) 0.0044 (8) 0.0011 (8) 0.0012 (8) C6 0.0327 (10) 0.0243 (9) 0.0132 (10) 0.0013 (8) −0.0043 (8) 0.0005 (8) C7 0.0253 (9) 0.0251 (10) 0.0142 (10) 0.0013 (8) −0.0036 (8) 0.0021 (8) C8 0.0271 (9) 0.0210 (9) 0.0184 (10) 0.0019 (7) −0.0060 (8) 0.0015 (8) C9 0.0230 (9) 0.0245 (9) 0.0170 (10) −0.0001 (8) −0.0063 (8) 0.0033 (8) C10 0.0283 (10) 0.0227 (9) 0.0234 (11) −0.0015 (8) −0.0083 (9) 0.0037 (8) C11 0.0246 (9) 0.0300 (11) 0.0239 (11) −0.0059 (8) −0.0052 (8) 0.0067 (9) C12 0.0252 (9) 0.0333 (11) 0.0239 (11) −0.0003 (8) −0.0023 (9) 0.0038 (9) C13 0.0256 (9) 0.0261 (10) 0.0241 (11) 0.0017 (8) −0.0032 (9) 0.0014 (8) C14 0.0218 (9) 0.0249 (10) 0.0201 (10) 0.0013 (7) −0.0055 (8) 0.0019 (8) C15 0.0266 (10) 0.0220 (10) 0.0275 (11) 0.0005 (7) 0.0022 (9) 0.0028 (9) N16 0.0318 (9) 0.0404 (11) 0.0301 (11) −0.0050 (8) 0.0088 (9) −0.0101 (9) C17 0.0274 (10) 0.0336 (11) 0.0250 (12) −0.0039 (8) 0.0078 (9) −0.0015 (9) C18 0.0338 (11) 0.0355 (13) 0.0363 (14) 0.0036 (9) 0.0046 (10) −0.0016 (11) C19 0.0371 (12) 0.0532 (15) 0.0400 (16) −0.0028 (11) −0.0025 (12) −0.0075 (13) C20 0.0447 (14) 0.0424 (13) 0.0349 (15) −0.0147 (11) 0.0132 (11) −0.0110 (11) C21 0.0444 (12) 0.0287 (12) 0.0495 (16) −0.0035 (10) 0.0142 (12) 0.0015 (12) C22 0.0309 (11) 0.0381 (12) 0.0373 (14) −0.0009 (9) 0.0052 (11) 0.0077 (11) F23 0.0677 (11) 0.0604 (11) 0.0606 (12) −0.0257 (9) 0.0120 (10) −0.0305 (10) F24 0.0483 (9) 0.0541 (10) 0.0649 (12) 0.0051 (7) −0.0134 (9) 0.0171 (9) O25 0.0352 (8) 0.0244 (8) 0.0311 (9) −0.0034 (6) 0.0017 (7) −0.0047 (7) N26 0.0312 (9) 0.0318 (10) 0.0314 (11) −0.0070 (8) −0.0010 (9) 0.0060 (9) O27 0.0584 (11) 0.0300 (9) 0.0545 (13) −0.0103 (8) 0.0147 (10) 0.0022 (8) O28 0.0460 (9) 0.0441 (10) 0.0402 (11) −0.0120 (8) 0.0137 (9) 0.0031 (9) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1757 .table-wrap} ----------------------- -------------- ----------------------- -------------- O1---C2 1.370 (2) C12---H12 0.9500 O1---C15 1.431 (3) C13---C14 1.392 (3) C2---C3 1.388 (3) C13---H13 0.9500 C2---C7 1.410 (3) C14---C15 1.499 (3) C3---C4 1.390 (3) C15---H15A 0.9900 C3---H3 0.9500 C15---H15B 0.9900 C4---N16 1.375 (3) N16---C17 1.416 (3) C4---C5 1.408 (3) N16---H16 0.9504 C5---C6 1.361 (3) C17---C18 1.387 (3) C5---H5 0.9500 C17---C22 1.385 (3) C6---C7 1.419 (3) C18---C19 1.387 (4) C6---H6 0.9500 C18---H18 0.9500 C7---C8 1.476 (3) C19---C20 1.371 (4) C8---O25 1.230 (3) C19---H19 0.9500 C8---C9 1.504 (3) C20---F23 1.355 (3) C9---C10 1.399 (3) C20---C21 1.371 (4) C9---C14 1.403 (3) C21---C22 1.381 (4) C10---C11 1.377 (3) C21---H21 0.9500 C10---H10 0.9500 C22---F24 1.341 (3) C11---C12 1.385 (3) N26---O27 1.225 (3) C11---N26 1.467 (3) N26---O28 1.230 (3) C12---C13 1.385 (3) C2---O1---C15 115.13 (16) C12---C13---H13 119.3 O1---C2---C3 114.11 (19) C14---C13---H13 119.3 O1---C2---C7 123.99 (18) C13---C14---C9 120.24 (19) C3---C2---C7 121.85 (19) C13---C14---C15 119.00 (19) C2---C3---C4 120.4 (2) C9---C14---C15 120.75 (19) C2---C3---H3 119.8 O1---C15---C14 111.72 (16) C4---C3---H3 119.8 O1---C15---H15A 109.3 N16---C4---C3 123.6 (2) C14---C15---H15A 109.3 N16---C4---C5 117.53 (19) O1---C15---H15B 109.3 C3---C4---C5 118.85 (19) C14---C15---H15B 109.3 C6---C5---C4 120.02 (19) H15A---C15---H15B 107.9 C6---C5---H5 120.0 C4---N16---C17 123.8 (2) C4---C5---H5 120.0 C4---N16---H16 115.2 C5---C6---C7 122.89 (19) C17---N16---H16 117.5 C5---C6---H6 118.6 C18---C17---C22 117.5 (2) C7---C6---H6 118.6 C18---C17---N16 121.1 (2) C2---C7---C6 115.63 (18) C22---C17---N16 121.3 (2) C2---C7---C8 128.01 (18) C17---C18---C19 121.4 (2) C6---C7---C8 115.54 (18) C17---C18---H18 119.3 O25---C8---C7 119.20 (19) C19---C18---H18 119.3 O25---C8---C9 116.95 (18) C20---C19---C18 117.9 (2) C7---C8---C9 123.78 (18) C20---C19---H19 121.0 C10---C9---C14 118.6 (2) C18---C19---H19 121.0 C10---C9---C8 115.52 (18) F23---C20---C19 118.7 (3) C14---C9---C8 125.81 (18) F23---C20---C21 117.8 (3) C11---C10---C9 119.3 (2) C19---C20---C21 123.5 (2) C11---C10---H10 120.3 C20---C21---C22 116.6 (2) C9---C10---H10 120.3 C20---C21---H21 121.7 C10---C11---C12 123.1 (2) C22---C21---H21 121.7 C10---C11---N26 118.3 (2) F24---C22---C21 118.7 (2) C12---C11---N26 118.6 (2) F24---C22---C17 118.3 (2) C11---C12---C13 117.4 (2) C21---C22---C17 123.0 (2) C11---C12---H12 121.3 O27---N26---O28 123.8 (2) C13---C12---H12 121.3 O27---N26---C11 118.7 (2) C12---C13---C14 121.3 (2) O28---N26---C11 117.5 (2) C15---O1---C2---C3 −140.97 (18) C12---C13---C14---C9 −0.5 (3) C15---O1---C2---C7 41.3 (3) C12---C13---C14---C15 −179.1 (2) O1---C2---C3---C4 179.62 (18) C10---C9---C14---C13 −0.9 (3) C7---C2---C3---C4 −2.6 (3) C8---C9---C14---C13 −178.83 (19) C2---C3---C4---N16 177.5 (2) C10---C9---C14---C15 177.64 (19) C2---C3---C4---C5 −2.8 (3) C8---C9---C14---C15 −0.3 (3) N16---C4---C5---C6 −176.1 (2) C2---O1---C15---C14 −88.1 (2) C3---C4---C5---C6 4.2 (3) C13---C14---C15---O1 −121.5 (2) C4---C5---C6---C7 −0.2 (3) C9---C14---C15---O1 59.9 (3) O1---C2---C7---C6 −176.19 (18) C3---C4---N16---C17 −8.2 (4) C3---C2---C7---C6 6.3 (3) C5---C4---N16---C17 172.1 (2) O1---C2---C7---C8 14.7 (3) C4---N16---C17---C18 −110.1 (3) C3---C2---C7---C8 −162.8 (2) C4---N16---C17---C22 71.2 (3) C5---C6---C7---C2 −4.9 (3) C22---C17---C18---C19 0.4 (4) C5---C6---C7---C8 165.57 (19) N16---C17---C18---C19 −178.4 (2) C2---C7---C8---O25 162.9 (2) C17---C18---C19---C20 −1.5 (4) C6---C7---C8---O25 −6.2 (3) C18---C19---C20---F23 −178.5 (2) C2---C7---C8---C9 −14.0 (3) C18---C19---C20---C21 1.0 (4) C6---C7---C8---C9 176.95 (17) F23---C20---C21---C22 −179.9 (2) O25---C8---C9---C10 −11.8 (3) C19---C20---C21---C22 0.6 (4) C7---C8---C9---C10 165.16 (18) C20---C21---C22---F24 178.1 (2) O25---C8---C9---C14 166.2 (2) C20---C21---C22---C17 −1.8 (4) C7---C8---C9---C14 −16.9 (3) C18---C17---C22---F24 −178.6 (2) C14---C9---C10---C11 1.4 (3) N16---C17---C22---F24 0.1 (3) C8---C9---C10---C11 179.54 (17) C18---C17---C22---C21 1.3 (4) C9---C10---C11---C12 −0.6 (3) N16---C17---C22---C21 −179.9 (2) C9---C10---C11---N26 177.82 (18) C10---C11---N26---O27 10.3 (3) C10---C11---C12---C13 −0.8 (3) C12---C11---N26---O27 −171.3 (2) N26---C11---C12---C13 −179.2 (2) C10---C11---N26---O28 −169.8 (2) C11---C12---C13---C14 1.3 (3) C12---C11---N26---O28 8.7 (3) ----------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2638 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N16---H16···O25^i^ 0.95 2.32 3.236 (3) 162 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- N16---H16⋯O25^i^ 0.95 2.32 3.236 (3) 162 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.281804
2011-2-02
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052073/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 2; 67(Pt 3):o555", "authors": [ { "first": "Benjamin", "last": "Baur" }, { "first": "Dieter", "last": "Schollmeyer" }, { "first": "Stefan", "last": "Laufer" } ] }
PMC3052074
Related literature {#sec1} ================== For general background to the chemistry, biological activity and applications of purine derivatives, see: Scozzafava *et al.* (2001[@bb5]); Bakkestuen *et al.* (2005[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~11~H~6~ClN~5~O~4~S*M* *~r~* = 339.72Triclinic,*a* = 10.0055 (3) Å*b* = 10.6931 (5) Å*c* = 12.5378 (5) Åα = 93.692 (3)°β = 97.136 (3)°γ = 93.995 (3)°*V* = 1324.16 (9) Å^3^*Z* = 4Mo *K*α radiationμ = 0.47 mm^−1^*T* = 293 K0.42 × 0.40 × 0.35 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur Eos diffractometerAbsorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2006[@bb4]) *T* ~min~ = 0.992, *T* ~max~ = 1.010984 measured reflections5403 independent reflections4389 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.018 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.037*wR*(*F* ^2^) = 0.092*S* = 1.025403 reflections397 parametersH-atom parameters constrainedΔρ~max~ = 0.29 e Å^−3^Δρ~min~ = −0.38 e Å^−3^ {#d5e450} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2006[@bb4]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009[@bb2]) and *Mercury* (Macrae *et al.*, 2006[@bb3]); software used to prepare material for publication: *OLEX2*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003102/su2246sup1.cif](http://dx.doi.org/10.1107/S1600536811003102/su2246sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003102/su2246Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003102/su2246Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?su2246&file=su2246sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?su2246sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?su2246&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SU2246](http://scripts.iucr.org/cgi-bin/sendsup?su2246)). We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements. Comment ======= Purine derivatives are of great importance owing to their wide-ranging biological properties (Scozzafava *et al.*, 2001; Bakkestuen *et al.*, 2005). As there are several kinds of tautomers in purine derivatives, it is difficult to determine their structures by NMR, MS or IR sepctroscopy. The title compound is one of the key intermediates in our synthetic investigations of antimicrobial agents. Here we determined the accurate structure of the title compound by X-ray analysis. As shown in Fig. 1, the title compound crystallized with two independent molecules (A and B) in the asymmetric unit. The conformation of the molecules is different. The benzene ring makes a dihedral angle of 66.46 (8)° with the mean plane of the purine ring in molecule A, while in molecule B this same angle is 85.77 (9)°. In the crystal, the two molecules and symmetry related molecules, are linked into a three-dimensional network by intermolecular π···π stacking interactions involving ring (C10-C15) and a symmetry related ring (code: 1-x, 2-x, 1-z)\], with a centroid-to-centroid distance of 3.8968 (12) Å, and nonclassical C---H···O and C---H···N hydrogen bonds (Table 1 and Fig. 2). There are also C-Cl···π interactions involving chlorine Cl2 and ring (C10-C15 = Cg), with a Cl···centroid distance of 3.2505 (10) Å, angle C17-Cl2···Cg^i^ being 161.56 (18)° \[symmetry code: (i) -x, -y+1, -z+1\] - see Fig. 1. Experimental {#experimental} ============ A mixture of 6-chloropurine (0.463 g, 3 mmol), 2-nitrobenzenesulfonyl chloride (1.33 g, 6 mmol), Triethylamine (0.607 g, 6 mmol), DMAP (0.037 g, 0.3 mmol), THF (10 ml) and DCM (10 ml) was stirred for 12 h at room temperiture. The solvent was removed under vacuum. The residue was extracted with ethyl acetate (50 ml) and water (50 ml). The organic layer was washed three times with 30 ml ammonia solution (5 N) and 30 ml brine, and then dried with anhydrous sodium sulfate. The product was isolated by column chromatography on silica gel. Yield 0.712 g (69.8%). Crystals, suitable for X-ray analysis, were obtained by slow evaporation from a solution of ethyl acetate. Refinement {#refinement} ========== All H atoms were positioned geometrically and refined using a riding model, with C---H = 0.93 Å and *U*~iso~(H) = 1.2*U*~eq~(C). As the centroid of the benzene ring holds partial positive charge and the chlorine atom at the purine ring holds partial negative charge, the chlorine atom in one molecular is likely to be close to the benzene ring of another molecular (see Comment section), leading to the nitro groups of two neighbouring molecules approaching one another. Hence, a short O3···O3^i^ distances \[2.835 (2) Å\] was observed in the crystal \[symmetry code: (i) = -x, -y+2, -z+1)\]. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the two independent molecules of the title compound, with displacement ellipsoids drawn at the 50% probability level. ::: ![](e-67-0o687-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view of the crystal packing of the title compound, with the C-Cl···π, C-H···O and C-H···N interactions shown as dotted red lines \[the centroid of ring (C10-C15) is shown as a red dot\]. ::: ![](e-67-0o687-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e133 .table-wrap} ------------------------ --------------------------------------- C~11~H~6~ClN~5~O~4~S *Z* = 4 *M~r~* = 339.72 *F*(000) = 688 Triclinic, *P*1 *D*~x~ = 1.704 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.7107 Å *a* = 10.0055 (3) Å Cell parameters from 5646 reflections *b* = 10.6931 (5) Å θ = 3.1--29.1° *c* = 12.5378 (5) Å µ = 0.47 mm^−1^ α = 93.692 (3)° *T* = 293 K β = 97.136 (3)° Block, colourless γ = 93.995 (3)° 0.42 × 0.40 × 0.35 mm *V* = 1324.16 (9) Å^3^ ------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e270 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Xcalibur Eos diffractometer 5403 independent reflections Radiation source: fine-focus sealed tube 4389 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.018 Detector resolution: 16.0874 pixels mm^-1^ θ~max~ = 26.4°, θ~min~ = 3.1° ω scans *h* = −12→12 Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2006) *k* = −13→13 *T*~min~ = 0.992, *T*~max~ = 1.0 *l* = −15→12 10984 measured reflections ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e390 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.037 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.092 H-atom parameters constrained *S* = 1.02 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0398*P*)^2^ + 0.4744*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5403 reflections (Δ/σ)~max~ = 0.001 397 parameters Δρ~max~ = 0.29 e Å^−3^ 0 restraints Δρ~min~ = −0.38 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e547 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. CrysAlisPro, Oxford Diffraction Ltd., Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e652 .table-wrap} ----- --------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 −0.28373 (6) 1.01998 (7) 0.86805 (5) 0.05386 (18) Cl2 −0.10359 (6) 0.30928 (6) 0.45966 (6) 0.05239 (17) S1 0.31769 (5) 1.10135 (5) 0.71476 (4) 0.02990 (13) S2 0.29292 (5) 0.60128 (5) 0.16093 (4) 0.03061 (13) O1 0.33387 (14) 1.21495 (14) 0.66297 (12) 0.0373 (3) O2 0.39441 (14) 1.08250 (15) 0.81453 (11) 0.0403 (4) O3 0.11604 (15) 1.08355 (17) 0.49868 (14) 0.0495 (4) O4 0.25354 (19) 1.11017 (18) 0.38100 (14) 0.0578 (5) O5 0.22219 (15) 0.63512 (15) 0.06322 (11) 0.0405 (4) O6 0.37133 (15) 0.69221 (15) 0.23407 (12) 0.0446 (4) O7 0.13521 (15) 0.38259 (17) 0.02911 (13) 0.0468 (4) O8 0.2366 (2) 0.3163 (2) −0.10209 (14) 0.0737 (6) N2 −0.0813 (2) 0.8795 (2) 0.90380 (17) 0.0505 (5) N4 0.13616 (18) 0.90598 (18) 0.84106 (15) 0.0419 (5) N7 −0.05280 (17) 1.15618 (18) 0.74289 (14) 0.0375 (4) N9 0.15488 (16) 1.08978 (16) 0.73571 (13) 0.0308 (4) N16 0.21920 (18) 1.06359 (17) 0.46067 (14) 0.0369 (4) N18 0.15591 (18) 0.36990 (18) 0.50525 (15) 0.0402 (4) N20 0.30089 (16) 0.47424 (17) 0.39320 (13) 0.0335 (4) N23 −0.03515 (17) 0.4610 (2) 0.25421 (15) 0.0409 (5) N25 0.17329 (15) 0.53615 (17) 0.22797 (13) 0.0303 (4) N32 0.23641 (18) 0.35675 (18) −0.00913 (14) 0.0387 (4) C1 −0.1216 (2) 0.9794 (2) 0.85674 (18) 0.0391 (5) C3 0.0440 (2) 0.8481 (2) 0.8933 (2) 0.0517 (6) H3 0.0702 0.7769 0.9267 0.062\* C5 0.0901 (2) 1.0062 (2) 0.79701 (16) 0.0315 (4) C6 −0.0380 (2) 1.0496 (2) 0.79999 (16) 0.0331 (5) C8 0.0617 (2) 1.1767 (2) 0.70684 (17) 0.0358 (5) H8 0.0802 1.2434 0.6654 0.043\* C10 0.33847 (18) 0.97337 (19) 0.62325 (15) 0.0287 (4) C11 0.30456 (19) 0.9715 (2) 0.51123 (16) 0.0310 (4) C12 0.3430 (2) 0.8782 (2) 0.44359 (17) 0.0372 (5) H12 0.3214 0.8790 0.3693 0.045\* C13 0.4141 (2) 0.7834 (2) 0.48677 (19) 0.0406 (5) H13 0.4398 0.7196 0.4414 0.049\* C14 0.4473 (2) 0.7827 (2) 0.59658 (19) 0.0413 (5) H14 0.4940 0.7177 0.6251 0.050\* C15 0.4114 (2) 0.8783 (2) 0.66493 (18) 0.0361 (5) H15 0.4364 0.8785 0.7389 0.043\* C17 0.0491 (2) 0.3758 (2) 0.43304 (18) 0.0356 (5) C19 0.2746 (2) 0.4186 (2) 0.48183 (18) 0.0396 (5) H19 0.3484 0.4132 0.5338 0.047\* C21 0.18924 (19) 0.48116 (19) 0.32559 (15) 0.0282 (4) C22 0.05870 (19) 0.4349 (2) 0.33929 (17) 0.0326 (5) C24 0.0355 (2) 0.5197 (2) 0.19095 (17) 0.0393 (5) H24 −0.0021 0.5484 0.1263 0.047\* C26 0.39753 (18) 0.4774 (2) 0.13725 (15) 0.0290 (4) C27 0.3671 (2) 0.3761 (2) 0.05959 (16) 0.0322 (5) C28 0.4589 (2) 0.2887 (2) 0.04330 (18) 0.0429 (5) H28 0.4371 0.2224 −0.0090 0.051\* C29 0.5839 (2) 0.3008 (3) 0.1056 (2) 0.0478 (6) H29 0.6455 0.2410 0.0965 0.057\* C30 0.6173 (2) 0.4008 (3) 0.1809 (2) 0.0495 (6) H30 0.7022 0.4093 0.2215 0.059\* C31 0.5248 (2) 0.4892 (2) 0.19642 (17) 0.0398 (5) H31 0.5486 0.5570 0.2471 0.048\* ----- --------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1387 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0334 (3) 0.0680 (4) 0.0641 (4) 0.0061 (3) 0.0164 (3) 0.0127 (3) Cl2 0.0409 (3) 0.0498 (4) 0.0706 (4) −0.0040 (3) 0.0228 (3) 0.0140 (3) S1 0.0250 (2) 0.0325 (3) 0.0309 (3) 0.0005 (2) 0.00197 (19) −0.0021 (2) S2 0.0309 (3) 0.0314 (3) 0.0304 (3) 0.0021 (2) 0.0060 (2) 0.0050 (2) O1 0.0349 (8) 0.0312 (8) 0.0451 (9) −0.0042 (6) 0.0067 (6) 0.0009 (7) O2 0.0343 (8) 0.0509 (10) 0.0332 (8) 0.0074 (7) −0.0038 (6) −0.0041 (7) O3 0.0367 (8) 0.0559 (11) 0.0569 (10) 0.0116 (8) 0.0042 (8) 0.0077 (9) O4 0.0723 (12) 0.0616 (12) 0.0418 (10) 0.0071 (10) 0.0082 (9) 0.0178 (9) O5 0.0444 (8) 0.0444 (9) 0.0360 (8) 0.0108 (7) 0.0079 (7) 0.0159 (7) O6 0.0454 (9) 0.0379 (9) 0.0480 (9) −0.0064 (7) 0.0069 (7) −0.0073 (7) O7 0.0319 (8) 0.0582 (11) 0.0482 (9) 0.0036 (8) −0.0018 (7) 0.0009 (8) O8 0.0699 (13) 0.1006 (17) 0.0438 (11) 0.0237 (12) −0.0109 (9) −0.0293 (11) N2 0.0436 (11) 0.0514 (13) 0.0603 (13) 0.0045 (10) 0.0126 (10) 0.0212 (11) N4 0.0382 (10) 0.0404 (11) 0.0492 (11) 0.0080 (9) 0.0064 (8) 0.0125 (9) N7 0.0316 (9) 0.0404 (11) 0.0415 (10) 0.0076 (8) 0.0038 (8) 0.0086 (8) N9 0.0275 (8) 0.0324 (10) 0.0333 (9) 0.0040 (7) 0.0050 (7) 0.0040 (7) N16 0.0384 (10) 0.0354 (10) 0.0334 (10) −0.0020 (8) −0.0039 (8) −0.0018 (8) N18 0.0408 (10) 0.0407 (11) 0.0416 (11) 0.0053 (9) 0.0089 (8) 0.0131 (9) N20 0.0270 (8) 0.0409 (11) 0.0328 (9) 0.0050 (8) 0.0018 (7) 0.0070 (8) N23 0.0255 (9) 0.0576 (13) 0.0402 (11) 0.0048 (8) 0.0030 (8) 0.0080 (9) N25 0.0247 (8) 0.0407 (10) 0.0267 (8) 0.0062 (7) 0.0036 (7) 0.0072 (7) N32 0.0416 (10) 0.0380 (11) 0.0344 (10) 0.0059 (9) −0.0034 (8) −0.0013 (8) C1 0.0314 (11) 0.0464 (14) 0.0392 (12) 0.0017 (10) 0.0040 (9) 0.0042 (10) C3 0.0484 (14) 0.0478 (15) 0.0629 (17) 0.0086 (12) 0.0090 (12) 0.0244 (13) C5 0.0313 (10) 0.0326 (11) 0.0300 (11) 0.0010 (9) 0.0025 (8) 0.0017 (9) C6 0.0290 (10) 0.0370 (12) 0.0328 (11) 0.0028 (9) 0.0018 (8) 0.0038 (9) C8 0.0333 (11) 0.0370 (12) 0.0380 (12) 0.0063 (9) 0.0034 (9) 0.0087 (10) C10 0.0252 (9) 0.0301 (11) 0.0303 (10) −0.0019 (8) 0.0056 (8) −0.0009 (8) C11 0.0254 (10) 0.0315 (11) 0.0349 (11) −0.0024 (8) 0.0016 (8) 0.0019 (9) C12 0.0353 (11) 0.0427 (13) 0.0323 (11) −0.0029 (10) 0.0060 (9) −0.0043 (10) C13 0.0382 (11) 0.0382 (13) 0.0465 (13) 0.0031 (10) 0.0136 (10) −0.0057 (10) C14 0.0368 (11) 0.0366 (13) 0.0531 (14) 0.0093 (10) 0.0109 (10) 0.0058 (11) C15 0.0347 (11) 0.0385 (12) 0.0360 (12) 0.0053 (9) 0.0056 (9) 0.0051 (10) C17 0.0337 (11) 0.0309 (12) 0.0449 (13) 0.0022 (9) 0.0140 (10) 0.0067 (10) C19 0.0353 (11) 0.0474 (14) 0.0367 (12) 0.0079 (10) 0.0009 (9) 0.0114 (10) C21 0.0276 (10) 0.0286 (11) 0.0292 (10) 0.0050 (8) 0.0061 (8) 0.0012 (8) C22 0.0266 (10) 0.0347 (12) 0.0374 (11) 0.0025 (9) 0.0068 (8) 0.0040 (9) C24 0.0275 (10) 0.0553 (15) 0.0357 (12) 0.0113 (10) −0.0001 (9) 0.0076 (11) C26 0.0259 (9) 0.0358 (11) 0.0268 (10) 0.0029 (8) 0.0062 (8) 0.0083 (9) C27 0.0313 (10) 0.0375 (12) 0.0288 (10) 0.0054 (9) 0.0034 (8) 0.0084 (9) C28 0.0493 (13) 0.0434 (14) 0.0397 (13) 0.0146 (11) 0.0122 (10) 0.0063 (10) C29 0.0393 (12) 0.0632 (17) 0.0484 (14) 0.0233 (12) 0.0163 (11) 0.0208 (13) C30 0.0276 (11) 0.0752 (19) 0.0481 (14) 0.0081 (12) 0.0040 (10) 0.0210 (14) C31 0.0281 (10) 0.0561 (15) 0.0346 (12) −0.0015 (10) 0.0026 (9) 0.0070 (11) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2142 .table-wrap} ----------------- ------------- ----------------- ------------- Cl1---C1 1.728 (2) N25---C24 1.394 (3) Cl2---C17 1.720 (2) N32---C27 1.468 (3) S1---O1 1.4226 (15) C1---C6 1.378 (3) S1---O2 1.4178 (15) C3---H3 0.9300 S1---N9 1.6794 (16) C5---C6 1.397 (3) S1---C10 1.769 (2) C8---H8 0.9300 S2---O5 1.4177 (15) C10---C11 1.402 (3) S2---O6 1.4150 (16) C10---C15 1.385 (3) S2---N25 1.6833 (16) C11---C12 1.374 (3) S2---C26 1.777 (2) C12---H12 0.9300 O3---N16 1.216 (2) C12---C13 1.379 (3) O4---N16 1.221 (2) C13---H13 0.9300 O7---N32 1.214 (2) C13---C14 1.376 (3) O8---N32 1.217 (2) C14---H14 0.9300 N2---C1 1.317 (3) C14---C15 1.387 (3) N2---C3 1.340 (3) C15---H15 0.9300 N4---C3 1.336 (3) C17---C22 1.380 (3) N4---C5 1.322 (3) C19---H19 0.9300 N7---C6 1.391 (3) C21---C22 1.399 (3) N7---C8 1.293 (3) C24---H24 0.9300 N9---C5 1.393 (3) C26---C27 1.400 (3) N9---C8 1.395 (3) C26---C31 1.385 (3) N16---C11 1.471 (3) C27---C28 1.379 (3) N18---C17 1.320 (3) C28---H28 0.9300 N18---C19 1.337 (3) C28---C29 1.382 (3) N20---C19 1.339 (3) C29---H29 0.9300 N20---C21 1.325 (2) C29---C30 1.374 (4) N23---C22 1.387 (3) C30---H30 0.9300 N23---C24 1.290 (3) C30---C31 1.390 (3) N25---C21 1.388 (2) C31---H31 0.9300 O1---S1---N9 104.73 (9) C6---C1---Cl1 120.78 (17) O1---S1---C10 108.86 (9) C8---N7---C6 104.56 (17) O2---S1---O1 121.88 (10) C8---N9---S1 125.05 (14) O2---S1---N9 106.39 (9) C10---C11---N16 122.06 (18) O2---S1---C10 107.43 (9) C10---C15---C14 120.1 (2) O3---N16---O4 124.65 (19) C10---C15---H15 119.9 O3---N16---C11 117.33 (18) C11---C10---S1 124.35 (16) O4---N16---C11 117.93 (18) C11---C12---H12 120.3 O5---S2---N25 105.10 (8) C11---C12---C13 119.4 (2) O5---S2---C26 111.24 (9) C12---C11---N16 116.63 (19) O6---S2---O5 121.33 (10) C12---C11---C10 121.2 (2) O6---S2---N25 106.67 (9) C12---C13---H13 119.8 O6---S2---C26 106.90 (10) C13---C12---H12 120.3 O7---N32---O8 123.88 (19) C13---C14---H14 119.8 O7---N32---C27 118.70 (17) C13---C14---C15 120.4 (2) O8---N32---C27 117.42 (18) C14---C13---C12 120.3 (2) N2---C1---Cl1 117.83 (17) C14---C13---H13 119.8 N2---C1---C6 121.4 (2) C14---C15---H15 119.9 N2---C3---H3 115.9 C15---C10---S1 116.41 (15) N4---C3---N2 128.3 (2) C15---C10---C11 118.50 (19) N4---C3---H3 115.9 C15---C14---H14 119.8 N4---C5---N9 128.60 (18) C17---N18---C19 117.34 (18) N4---C5---C6 126.78 (19) C17---C22---N23 133.58 (18) N7---C6---C5 111.24 (17) C17---C22---C21 115.02 (18) N7---C8---N9 113.85 (19) C21---N20---C19 111.42 (17) N7---C8---H8 123.1 C21---N25---S2 128.61 (13) N9---S1---C10 106.61 (9) C21---N25---C24 105.71 (16) N9---C5---C6 104.60 (17) C22---C17---Cl2 120.68 (17) N9---C8---H8 123.1 C24---N23---C22 104.34 (17) N18---C17---Cl2 118.10 (16) C24---N25---S2 125.56 (14) N18---C17---C22 121.22 (18) C26---C27---N32 122.17 (18) N18---C19---N20 128.4 (2) C26---C31---C30 120.7 (2) N18---C19---H19 115.8 C26---C31---H31 119.7 N20---C19---H19 115.8 C27---C26---S2 126.17 (15) N20---C21---N25 128.98 (17) C27---C28---H28 120.3 N20---C21---C22 126.52 (18) C27---C28---C29 119.3 (2) N23---C22---C21 111.38 (17) C28---C27---N32 116.2 (2) N23---C24---N25 114.08 (18) C28---C27---C26 121.6 (2) N23---C24---H24 123.0 C28---C29---H29 119.9 N25---S2---C26 104.22 (9) C29---C28---H28 120.3 N25---C21---C22 104.48 (16) C29---C30---H30 119.9 N25---C24---H24 123.0 C29---C30---C31 120.3 (2) C1---N2---C3 117.3 (2) C30---C29---C28 120.2 (2) C1---C6---N7 133.91 (19) C30---C29---H29 119.9 C1---C6---C5 114.85 (19) C30---C31---H31 119.7 C5---N4---C3 111.40 (19) C31---C26---S2 115.78 (17) C5---N9---S1 128.59 (14) C31---C26---C27 117.84 (19) C5---N9---C8 105.75 (16) C31---C30---H30 119.9 ----------------- ------------- ----------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2872 .table-wrap} ---------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C13---H13···O6 0.93 2.60 3.222 (3) 125 C15---H15···O2 0.93 2.41 2.814 (3) 106 C24---H24···O7^i^ 0.93 2.41 3.327 (3) 170 C28---H28···O2^ii^ 0.93 2.56 3.469 (3) 165 C30---H30···N23^iii^ 0.93 2.62 3.489 (3) 155 C31---H31···O6 0.93 2.36 2.794 (3) 108 ---------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*; (ii) *x*, *y*−1, *z*−1; (iii) *x*+1, *y*, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- C13---H13⋯O6 0.93 2.60 3.222 (3) 125 C24---H24⋯O7^i^ 0.93 2.41 3.327 (3) 170 C28---H28⋯O2^ii^ 0.93 2.56 3.469 (3) 165 C30---H30⋯N23^iii^ 0.93 2.62 3.489 (3) 155 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:18.287513
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052074/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o687", "authors": [ { "first": "Ning-Yu", "last": "Wang" }, { "first": "Mei", "last": "Deng" }, { "first": "Yong", "last": "Xia" }, { "first": "Luo-Ting", "last": "Yu" } ] }
PMC3052075
Related literature {#sec1} ================== For standard bond lengths, see: Allen *et al.* (1987[@bb1]). For hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb2]). For van der Waals radii, see: Bondi (1964[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~13~H~9~BrClNO*M* *~r~* = 310.57Monoclinic,*a* = 27.652 (11) Å*b* = 7.011 (3) Å*c* = 6.219 (3) Åβ = 96.38 (2)°*V* = 1198.2 (8) Å^3^*Z* = 4Mo *K*α radiationμ = 3.63 mm^−1^*T* = 296 K0.35 × 0.25 × 0.22 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2005[@bb4]) *T* ~min~ = 0.363, *T* ~max~ = 0.5025719 measured reflections2170 independent reflections1718 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.026 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.031*wR*(*F* ^2^) = 0.078*S* = 1.022170 reflections155 parametersH-atom parameters constrainedΔρ~max~ = 0.39 e Å^−3^Δρ~min~ = −0.35 e Å^−3^ {#d5e460} Data collection: *APEX2* (Bruker, 2005[@bb4]); cell refinement: *SAINT* (Bruker, 2005[@bb4]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004417/jh2265sup1.cif](http://dx.doi.org/10.1107/S1600536811004417/jh2265sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004417/jh2265Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004417/jh2265Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?jh2265&file=jh2265sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?jh2265sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?jh2265&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [JH2265](http://scripts.iucr.org/cgi-bin/sendsup?jh2265)). AAA thanks the Islamic Azad University, Ardakan Branch, for the research facilities (this paper was extracted from a research project). HK thanks the PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University, Tehran. MNT thanks Sargodha University for the research facilities. Comment ======= Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of Schiff bases, we have determined the crystal structure of the title compound. The asymmetric unit of the title compound, Fig. 1, comprises a potentially bidentate Schiff base ligand. The bond lengths (Allen *et al.,* 1987) and angles are within the normal ranges. The dihedral angle between the substituted benzene rings is 43.90 (11)Å. Strong intramolecular O---H···N hydrogen bonds generate *S(6)* ring motifs (Bernstein *et al.*, 1995). The remarkable features of the crystal structure is the intemolecular Br···Br \[3.554 (2)Å\] and Cl···Cl \[3.412 (2)Å\] contacts which are shorter than the sum of the van der Waals radii of these atoms (Bondi 1964). The crystal packing is further stabilized by the intermolecular C---H···O hydrogen bond (Table 1) and C---H···π interaction \[C10---H10···*Cg*1^ii^ = 3.474 (3)Å, (ii) X, 3/2 - Y, -1/2 + Z; C13---H13···*Cg*1^iii^ = 3.501 (3)Å, (iii) X, 1/2 - Y, 1/2 + Z, *Cg*1 is the centroid of the C1--C6 benzene ring\]. Experimental {#experimental} ============ The title compound was synthesized by adding 5-bromo-salicylaldehyde (2 mmol) to a solution of *p*-chloroaniline (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resulting light-yellow solution was filtered. Light-yellow single crystals suitable for *X*-ray diffraction were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days. Refinement {#refinement} ========== H atoms of the hydroxy groups were located by a rotating model and constrained to refine with the parent atoms with U~iso~(H) = 1.5 U~eq~(O), see Table 1. The remaining H atoms were positioned geometrically with C---H = 0.93 Å and included in a riding model approximation with U~iso~ (H) = 1.2 U~eq~ (C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines. ::: ![](e-67-0o597-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The packing diagram of the title compound, viewed down the b-axis forming sheets through the intermolecular Br···Br and C---H···O interactions. The intermolecular interactions are shown as dashed lines. ::: ![](e-67-0o597-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e146 .table-wrap} ------------------------- --------------------------------------- C~13~H~9~BrClNO *F*(000) = 616 *M~r~* = 310.57 *D*~x~ = 1.722 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 2520 reflections *a* = 27.652 (11) Å θ = 2.5--27.5° *b* = 7.011 (3) Å µ = 3.63 mm^−1^ *c* = 6.219 (3) Å *T* = 296 K β = 96.38 (2)° Prism, light-yellow *V* = 1198.2 (8) Å^3^ 0.35 × 0.25 × 0.22 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e271 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII CCD area-detector diffractometer 2170 independent reflections Radiation source: fine-focus sealed tube 1718 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.026 φ and ω scans θ~max~ = 25.3°, θ~min~ = 1.5° Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *h* = −28→33 *T*~min~ = 0.363, *T*~max~ = 0.502 *k* = −8→5 5719 measured reflections *l* = −7→6 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e388 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.031 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.078 H-atom parameters constrained *S* = 1.02 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0399*P*)^2^ + 0.3051*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2170 reflections (Δ/σ)~max~ = 0.001 155 parameters Δρ~max~ = 0.39 e Å^−3^ 0 restraints Δρ~min~ = −0.35 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e545 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e590 .table-wrap} ----- --------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Br1 0.456428 (11) 0.43271 (5) 0.67549 (5) 0.05153 (14) Cl1 0.03796 (3) 0.54095 (14) 0.23081 (16) 0.0684 (3) O1 0.27742 (7) 0.5674 (3) 1.1170 (3) 0.0444 (5) H1 0.2529 0.5423 1.0354 0.067\* N1 0.22712 (8) 0.4746 (3) 0.7551 (3) 0.0313 (5) C1 0.31315 (10) 0.4668 (3) 0.7991 (4) 0.0289 (6) C2 0.31691 (10) 0.5350 (3) 1.0152 (4) 0.0309 (6) C3 0.36211 (11) 0.5707 (3) 1.1235 (4) 0.0361 (6) H3 0.3647 0.6166 1.2646 0.043\* C4 0.40322 (11) 0.5392 (3) 1.0256 (4) 0.0363 (6) H4 0.4336 0.5642 1.1000 0.044\* C5 0.39973 (10) 0.4695 (3) 0.8134 (4) 0.0331 (6) C6 0.35529 (10) 0.4331 (3) 0.7031 (4) 0.0304 (6) H6 0.3532 0.3855 0.5628 0.036\* C7 0.26674 (10) 0.4453 (3) 0.6737 (4) 0.0311 (6) H7 0.2655 0.4091 0.5294 0.037\* C8 0.18255 (10) 0.4827 (3) 0.6229 (4) 0.0298 (6) C9 0.17902 (10) 0.5621 (3) 0.4151 (4) 0.0332 (6) H9 0.2069 0.6033 0.3578 0.040\* C10 0.13425 (11) 0.5790 (3) 0.2961 (4) 0.0365 (6) H10 0.1315 0.6315 0.1579 0.044\* C11 0.09378 (11) 0.5175 (4) 0.3836 (5) 0.0390 (7) C12 0.09647 (11) 0.4396 (3) 0.5890 (5) 0.0405 (7) H12 0.0685 0.3987 0.6455 0.049\* C13 0.14112 (10) 0.4237 (3) 0.7077 (4) 0.0334 (6) H13 0.1434 0.3727 0.8465 0.040\* ----- --------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e940 .table-wrap} ----- ------------- ------------- ------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Br1 0.0284 (2) 0.0679 (2) 0.0599 (2) −0.00058 (15) 0.01204 (13) −0.00234 (15) Cl1 0.0355 (5) 0.0899 (7) 0.0749 (6) 0.0049 (5) −0.0157 (4) 0.0006 (5) O1 0.0349 (12) 0.0649 (13) 0.0343 (10) 0.0008 (10) 0.0085 (8) −0.0095 (9) N1 0.0270 (13) 0.0334 (11) 0.0336 (11) −0.0016 (10) 0.0041 (9) 0.0012 (9) C1 0.0319 (16) 0.0250 (12) 0.0299 (13) 0.0014 (11) 0.0035 (10) 0.0002 (10) C2 0.0323 (16) 0.0308 (13) 0.0305 (13) 0.0023 (12) 0.0080 (11) 0.0014 (11) C3 0.0433 (18) 0.0353 (14) 0.0284 (13) −0.0017 (13) −0.0015 (11) −0.0030 (11) C4 0.0323 (17) 0.0362 (14) 0.0386 (14) −0.0030 (12) −0.0045 (12) 0.0012 (11) C5 0.0273 (16) 0.0307 (13) 0.0417 (14) 0.0010 (11) 0.0055 (11) 0.0044 (11) C6 0.0331 (16) 0.0297 (13) 0.0285 (12) 0.0022 (12) 0.0034 (10) −0.0002 (10) C7 0.0343 (16) 0.0293 (13) 0.0300 (12) −0.0008 (11) 0.0043 (11) −0.0025 (10) C8 0.0314 (16) 0.0249 (12) 0.0336 (13) 0.0012 (11) 0.0057 (11) −0.0015 (10) C9 0.0321 (16) 0.0346 (14) 0.0338 (13) −0.0017 (12) 0.0083 (11) 0.0022 (11) C10 0.0381 (18) 0.0351 (14) 0.0358 (14) 0.0041 (12) 0.0014 (12) 0.0011 (11) C11 0.0291 (17) 0.0362 (14) 0.0502 (16) 0.0038 (13) −0.0029 (13) −0.0057 (13) C12 0.0298 (17) 0.0396 (15) 0.0531 (17) −0.0042 (13) 0.0095 (13) −0.0017 (13) C13 0.0308 (16) 0.0348 (14) 0.0358 (13) −0.0013 (12) 0.0087 (11) 0.0036 (11) ----- ------------- ------------- ------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1281 .table-wrap} -------------------- -------------- ----------------------- -------------- Br1---C5 1.886 (3) C5---C6 1.363 (4) Cl1---C11 1.728 (3) C6---H6 0.9300 O1---C2 1.341 (3) C7---H7 0.9300 O1---H1 0.8200 C8---C13 1.377 (4) N1---C7 1.273 (3) C8---C9 1.400 (3) N1---C8 1.405 (3) C9---C10 1.375 (4) C1---C6 1.387 (4) C9---H9 0.9300 C1---C2 1.420 (3) C10---C11 1.367 (4) C1---C7 1.434 (4) C10---H10 0.9300 C2---C3 1.375 (4) C11---C12 1.384 (4) C3---C4 1.366 (4) C12---C13 1.371 (4) C3---H3 0.9300 C12---H12 0.9300 C4---C5 1.401 (4) C13---H13 0.9300 C4---H4 0.9300 C2---O1---H1 109.5 N1---C7---H7 119.2 C7---N1---C8 120.8 (2) C1---C7---H7 119.2 C6---C1---C2 119.2 (2) C13---C8---C9 119.8 (3) C6---C1---C7 119.5 (2) C13---C8---N1 118.5 (2) C2---C1---C7 121.1 (2) C9---C8---N1 121.5 (2) O1---C2---C3 118.8 (2) C10---C9---C8 119.8 (3) O1---C2---C1 121.7 (2) C10---C9---H9 120.1 C3---C2---C1 119.5 (3) C8---C9---H9 120.1 C4---C3---C2 120.6 (2) C11---C10---C9 119.1 (3) C4---C3---H3 119.7 C11---C10---H10 120.4 C2---C3---H3 119.7 C9---C10---H10 120.4 C3---C4---C5 120.2 (3) C10---C11---C12 122.0 (3) C3---C4---H4 119.9 C10---C11---Cl1 118.1 (2) C5---C4---H4 119.9 C12---C11---Cl1 119.9 (2) C6---C5---C4 120.2 (3) C13---C12---C11 118.8 (3) C6---C5---Br1 119.6 (2) C13---C12---H12 120.6 C4---C5---Br1 120.2 (2) C11---C12---H12 120.6 C5---C6---C1 120.3 (2) C12---C13---C8 120.5 (2) C5---C6---H6 119.8 C12---C13---H13 119.8 C1---C6---H6 119.8 C8---C13---H13 119.8 N1---C7---C1 121.7 (2) C6---C1---C2---O1 −179.0 (2) C6---C1---C7---N1 180.0 (2) C7---C1---C2---O1 5.5 (4) C2---C1---C7---N1 −4.6 (4) C6---C1---C2---C3 1.5 (3) C7---N1---C8---C13 149.2 (2) C7---C1---C2---C3 −173.9 (2) C7---N1---C8---C9 −35.6 (3) O1---C2---C3---C4 179.9 (2) C13---C8---C9---C10 −0.6 (4) C1---C2---C3---C4 −0.7 (4) N1---C8---C9---C10 −175.7 (2) C2---C3---C4---C5 −0.2 (4) C8---C9---C10---C11 0.0 (4) C3---C4---C5---C6 0.2 (4) C9---C10---C11---C12 0.3 (4) C3---C4---C5---Br1 178.26 (19) C9---C10---C11---Cl1 179.82 (19) C4---C5---C6---C1 0.7 (4) C10---C11---C12---C13 0.0 (4) Br1---C5---C6---C1 −177.37 (17) Cl1---C11---C12---C13 −179.53 (19) C2---C1---C6---C5 −1.6 (4) C11---C12---C13---C8 −0.6 (4) C7---C1---C6---C5 174.0 (2) C9---C8---C13---C12 0.9 (4) C8---N1---C7---C1 169.8 (2) N1---C8---C13---C12 176.1 (2) -------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1772 .table-wrap} --------------------------------------------------- *Cg*1 is the centroid of the C1--C6 benzene ring. --------------------------------------------------- ::: ::: {#d1e1778 .table-wrap} ------------------------ --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1···N1 0.82 1.87 2.594 (3) 147 C9---H9···O1^i^ 0.93 2.60 3.459 (4) 154. C10---H10···*Cg*1^ii^ 0.93 2.77 3.474 (3) 134 C13---H13···*Cg*1^iii^ 0.03 2.80 3.501 (3) 133 ------------------------ --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*, *y*, *z*−1; (ii) *x*, −*y*+3/2, *z*−1/2; (iii) *x*, −*y*+1/2, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1 is the centroid of the C1--C6 benzene ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------------- --------- ------- ----------- ------------- O1---H1⋯N1 0.82 1.87 2.594 (3) 147 C9---H9⋯O1^i^ 0.93 2.60 3.459 (4) 154 C10---H10⋯*Cg*1^ii^ 0.93 2.77 3.474 (3) 134 C13---H13⋯*Cg*1^iii^ 0.03 2.80 3.501 (3) 133 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:18.293514
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052075/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o597", "authors": [ { "first": "Amir Adabi", "last": "Ardakani" }, { "first": "Reza", "last": "Kia" }, { "first": "Hadi", "last": "Kargar" }, { "first": "Muhammad Nawaz", "last": "Tahir" } ] }
PMC3052076
Related literature {#sec1} ================== For common applications of organic--inorganic hybrid materials, see: Kobel & Hanack (1986[@bb5]); Pierpont & Jung (1994[@bb6]); Huskins & Robson (1990[@bb4]). For related structures and discussion of geometrical features, see: Albrecht *et al.* (2003[@bb1]); El Glaoui *et al.* (2008[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} (C~7~H~11~N~2~)~2~\[ZnCl~4~\]*M* *~r~* = 453.55Triclinic,*a* = 7.7056 (8) Å*b* = 8.2159 (8) Å*c* = 16.0972 (16) Åα = 77.422 (1)°β = 79.804 (1)°γ = 75.983 (1)°*V* = 956.67 (17) Å^3^*Z* = 2Mo *K*α radiationμ = 1.85 mm^−1^*T* = 100 K0.55 × 0.50 × 0.45 mm ### Data collection {#sec2.1.2} Bruker SMART APEX CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb2]) *T* ~min~ = 0.602, *T* ~max~ = 0.74621487 measured reflections5803 independent reflections5638 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.019 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.020*wR*(*F* ^2^) = 0.053*S* = 1.075803 reflections212 parametersH-atom parameters constrainedΔρ~max~ = 0.48 e Å^−3^Δρ~min~ = −0.44 e Å^−3^ {#d5e501} Data collection: *APEX2* (Bruker, 2009[@bb2]); cell refinement: *SAINT* (Bruker, 2009[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005010/rk2262sup1.cif](http://dx.doi.org/10.1107/S1600536811005010/rk2262sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005010/rk2262Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005010/rk2262Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rk2262&file=rk2262sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rk2262sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rk2262&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RK2262](http://scripts.iucr.org/cgi-bin/sendsup?rk2262)). We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP--491 and by YSU. Comment ======= Organic--inorganic compounds constitute a vast family of hybrid materials of considerable technological importance (Kobel & Hanack, 1986; Pierpont & Jung, 1994; Huskins & Robson, 1990). In this work, we report the molecular and crystal structures of one such compound, (C~7~H~11~N~2~)~2~ZnCl~4~. As shown in Fig. 1, only the nitrogen atom of the aromatic ring of the title compound is protonated, but not the dimethylamine group. Thus, to ensure charge equilibrium, the structure associates each tetrachlorizincate anion with two 4-(dimethylamino)pyridinium cations. Fig.2 shows that the atomic arrangement of the title hybrid material which can be described as inorganic \[ZnCl~4~\]^2-^ units isolated from each other by the organic cations. The different entities are held together by columbic attraction and multiple hydrogen bonds to form a three dimensional network. Previous studies have shown that the presence of hydrogen bonds influences appreciably the geometrical parameters of the tetrachlorozincate anions (Albrecht *et al.*, 2003). Indeed, the fact that the Zn---Cl4 bond lengh is the shortest meets the expectation derived from hydrogen bonding effects, as the atom Cl4 is not involved in a hydrogen bond, while the remaining Cl1, Cl2 and Cl3 are acting as acceptors of hydrogen bonds with concurrently weakened Zn---Cl bonds. Both of the hydrogen bonds are bifurcated, N1---H1···(Cl1, Cl2) and N3---H3···(Cl1^i^, Cl3^i^) (Table 1). Symmetry code: (i) -*x*, -*y*+1, -*z*. The Cl---Zn---Cl bond angles range from 102.25 (1)° to 117.03 (1)°. These values indicate that the coordination geometry of the zinc atom can be regarded as a slightly distorted tetrahedron, similar as in other related compounds such as 4-(2--ammonioethyl)morpholin--4--ium tetrachlorozincate where the corresponding limit angles are 98.90 (4)° to 114.74 (4)° (El Glaoui *et al.*, 2008). Intermolecular π--π stacking is present between adjacent 4-(dimethylamino)pyridinium cations with a centroid--centroid distance of 3.5911 (7)Å (symmetry code for the second pyridine ring: (i) -*x*, -*y*+1, -*z*). Experimental {#experimental} ============ A mixture of an aqueous solution of 4-(dimethylamino)pyridine (4 mmol, 0.488 g), zinc chloride (2 mmol, 0.396 g) and HCl (10 ml, 0.4 *M*) in a Petri dish was slowly evaporated at room temperature. Crystals of the title compound, which remained stable under normal conditions of temperature and humidity, were isolated after several days and subjected to X--ray diffraction analysis (yield 57%). Refinement {#refinement} ========== Reflection (0 0 1) was obscured by the beamstop and was omitted from the refinement. C---H hydrogen atoms were placed in calculated positions with C---H distances in the range 0.93Å--0.97Å. N---H hydrogen atoms were placed in calculated positions with N---H distances of 0.88Å. The *U*~iso~(H) values of all H atoms were constrained to 1.2(1.5) times *U*~eq~ of the respective parent atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A view of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. ::: ![](e-67-0m343-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The packing of (C7H11N2)2ZnCl4, viewed down the a axis. Hydrogen bonds are denoted by dotted lines. ::: ![](e-67-0m343-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e187 .table-wrap} ------------------------------- --------------------------------------- (C~7~H~11~N~2~)~2~\[ZnCl~4~\] *Z* = 2 *M~r~* = 453.55 *F*(000) = 464 Triclinic, *P*1 *D*~x~ = 1.574 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 7.7056 (8) Å Cell parameters from 8289 reflections *b* = 8.2159 (8) Å θ = 2.6--31.0° *c* = 16.0972 (16) Å µ = 1.85 mm^−1^ α = 77.422 (1)° *T* = 100 K β = 79.804 (1)° Block, colourless γ = 75.983 (1)° 0.55 × 0.50 × 0.45 mm *V* = 956.67 (17) Å^3^ ------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e327 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEX CCD diffractometer 5803 independent reflections Radiation source: fine--focus sealed tube 5638 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.019 φ and ω scans θ~max~ = 31.5°, θ~min~ = 2.6° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −11→11 *T*~min~ = 0.602, *T*~max~ = 0.746 *k* = −11→11 21487 measured reflections *l* = −23→23 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e444 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.020 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.053 H-atom parameters constrained *S* = 1.07 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0265*P*)^2^ + 0.3664*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5803 reflections (Δ/σ)~max~ = 0.004 212 parameters Δρ~max~ = 0.48 e Å^−3^ 0 restraints Δρ~min~ = −0.44 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e601 .table-wrap} --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*--factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*--factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*--factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*--factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*--factors based on ALL data will be even larger. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e700 .table-wrap} ------ --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.14583 (16) 0.32828 (15) 0.43051 (7) 0.0193 (2) H1 0.0707 0.4358 0.4378 0.023\* C2 0.13978 (15) 0.19127 (14) 0.49549 (7) 0.01699 (19) H2 0.0616 0.2037 0.5475 0.020\* C3 0.25157 (14) 0.02905 (13) 0.48499 (6) 0.01385 (18) C4 0.36177 (14) 0.01982 (14) 0.40430 (7) 0.01539 (18) H4 0.4353 −0.0863 0.3935 0.018\* C5 0.36190 (15) 0.16277 (14) 0.34264 (7) 0.01706 (19) H5 0.4373 0.1555 0.2895 0.020\* C6 0.15682 (17) −0.09487 (17) 0.63337 (7) 0.0221 (2) H6A 0.1832 0.0006 0.6528 0.033\* H6B 0.1952 −0.2011 0.6733 0.033\* H6C 0.0269 −0.0753 0.6315 0.033\* C7 0.36088 (17) −0.27506 (15) 0.53236 (8) 0.0217 (2) H7A 0.3255 −0.3030 0.4825 0.033\* H7B 0.3391 −0.3621 0.5830 0.033\* H7C 0.4894 −0.2719 0.5215 0.033\* C8 −0.02081 (15) 0.25984 (14) −0.12815 (7) 0.01678 (19) H8 0.0133 0.2852 −0.1884 0.020\* C9 0.07683 (14) 0.29557 (13) −0.07416 (7) 0.01428 (18) H9 0.1783 0.3455 −0.0971 0.017\* C10 0.02760 (14) 0.25842 (13) 0.01653 (6) 0.01374 (18) C11 −0.12782 (14) 0.18589 (14) 0.04599 (7) 0.01695 (19) H11 −0.1684 0.1612 0.1057 0.020\* C12 −0.21802 (14) 0.15207 (14) −0.01175 (8) 0.0186 (2) H12 −0.3199 0.1016 0.0085 0.022\* C13 0.29355 (16) 0.34659 (15) 0.03844 (8) 0.0207 (2) H13A 0.3693 0.2723 0.0000 0.031\* H13B 0.3570 0.3413 0.0869 0.031\* H13C 0.2679 0.4643 0.0070 0.031\* C14 0.06780 (18) 0.26180 (17) 0.16320 (7) 0.0250 (2) H14A −0.0625 0.3053 0.1748 0.038\* H14B 0.1316 0.3219 0.1902 0.038\* H14C 0.0967 0.1394 0.1868 0.038\* Cl1 0.21516 (3) 0.72097 (3) 0.315840 (16) 0.01547 (5) Cl2 0.55357 (4) 0.45957 (3) 0.189582 (16) 0.01755 (5) Cl3 0.49003 (3) 0.93916 (3) 0.147680 (17) 0.01690 (5) Cl4 0.72105 (3) 0.67369 (3) 0.331637 (17) 0.01814 (5) N1 0.25646 (14) 0.31464 (12) 0.35590 (6) 0.01823 (18) H1A 0.2598 0.4057 0.3155 0.022\* N2 0.25439 (13) −0.10807 (12) 0.54743 (6) 0.01678 (17) N3 −0.16574 (13) 0.18872 (12) −0.09693 (6) 0.01829 (18) H3 −0.2268 0.1661 −0.1328 0.022\* N4 0.12405 (13) 0.28980 (13) 0.07042 (6) 0.01765 (17) Zn1 0.507513 (15) 0.695820 (15) 0.249259 (7) 0.01220 (4) ------ --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1328 .table-wrap} ----- -------------- -------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0226 (5) 0.0160 (5) 0.0197 (5) −0.0029 (4) −0.0029 (4) −0.0049 (4) C2 0.0179 (5) 0.0175 (5) 0.0155 (5) −0.0035 (4) 0.0002 (4) −0.0049 (4) C3 0.0142 (4) 0.0154 (5) 0.0132 (4) −0.0055 (3) −0.0019 (3) −0.0026 (3) C4 0.0167 (4) 0.0160 (5) 0.0142 (4) −0.0053 (4) 0.0002 (4) −0.0042 (4) C5 0.0197 (5) 0.0193 (5) 0.0135 (4) −0.0077 (4) 0.0001 (4) −0.0037 (4) C6 0.0240 (5) 0.0281 (6) 0.0127 (5) −0.0088 (4) 0.0012 (4) 0.0001 (4) C7 0.0281 (6) 0.0148 (5) 0.0211 (5) −0.0040 (4) −0.0051 (4) −0.0001 (4) C8 0.0165 (5) 0.0172 (5) 0.0147 (4) −0.0016 (4) −0.0020 (4) −0.0012 (4) C9 0.0128 (4) 0.0148 (4) 0.0130 (4) −0.0019 (3) 0.0005 (3) −0.0010 (3) C10 0.0134 (4) 0.0119 (4) 0.0130 (4) 0.0012 (3) −0.0006 (3) −0.0013 (3) C11 0.0155 (4) 0.0145 (5) 0.0163 (5) −0.0004 (4) 0.0023 (4) 0.0000 (4) C12 0.0121 (4) 0.0147 (5) 0.0255 (5) −0.0011 (3) 0.0002 (4) −0.0005 (4) C13 0.0186 (5) 0.0194 (5) 0.0249 (5) −0.0028 (4) −0.0066 (4) −0.0041 (4) C14 0.0288 (6) 0.0295 (6) 0.0129 (5) 0.0024 (5) −0.0037 (4) −0.0043 (4) Cl1 0.01256 (10) 0.01683 (11) 0.01659 (11) −0.00351 (8) 0.00141 (8) −0.00440 (8) Cl2 0.02090 (12) 0.01512 (11) 0.01719 (11) −0.00582 (9) 0.00273 (9) −0.00613 (9) Cl3 0.01644 (11) 0.01347 (11) 0.01837 (11) −0.00359 (8) −0.00078 (9) 0.00147 (8) Cl4 0.01623 (11) 0.02174 (12) 0.01760 (11) −0.00576 (9) −0.00483 (9) −0.00201 (9) N1 0.0245 (5) 0.0151 (4) 0.0156 (4) −0.0066 (3) −0.0036 (4) −0.0004 (3) N2 0.0188 (4) 0.0170 (4) 0.0137 (4) −0.0056 (3) −0.0005 (3) −0.0004 (3) N3 0.0154 (4) 0.0178 (4) 0.0218 (5) −0.0020 (3) −0.0059 (3) −0.0027 (3) N4 0.0183 (4) 0.0202 (4) 0.0134 (4) −0.0017 (3) −0.0024 (3) −0.0032 (3) Zn1 0.01192 (6) 0.01210 (6) 0.01234 (6) −0.00284 (4) −0.00084 (4) −0.00200 (4) ----- -------------- -------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1830 .table-wrap} ---------------------- -------------- ---------------------- -------------- C1---N1 1.3533 (15) C9---C10 1.4263 (14) C1---C2 1.3634 (16) C9---H9 0.9500 C1---H1 0.9500 C10---N4 1.3378 (14) C2---C3 1.4274 (15) C10---C11 1.4268 (15) C2---H2 0.9500 C11---C12 1.3635 (17) C3---N2 1.3352 (13) C11---H11 0.9500 C3---C4 1.4266 (14) C12---N3 1.3476 (15) C4---C5 1.3627 (15) C12---H12 0.9500 C4---H4 0.9500 C13---N4 1.4633 (15) C5---N1 1.3513 (15) C13---H13A 0.9800 C5---H5 0.9500 C13---H13B 0.9800 C6---N2 1.4658 (14) C13---H13C 0.9800 C6---H6A 0.9800 C14---N4 1.4631 (15) C6---H6B 0.9800 C14---H14A 0.9800 C6---H6C 0.9800 C14---H14B 0.9800 C7---N2 1.4641 (15) C14---H14C 0.9800 C7---H7A 0.9800 Cl1---Zn1 2.2983 (3) C7---H7B 0.9800 Cl2---Zn1 2.2747 (3) C7---H7C 0.9800 Cl3---Zn1 2.2831 (3) C8---N3 1.3530 (14) Cl4---Zn1 2.2409 (3) C8---C9 1.3628 (15) N1---H1A 0.8800 C8---H8 0.9500 N3---H3 0.8800 N1---C1---C2 121.51 (10) C12---C11---C10 119.87 (10) N1---C1---H1 119.2 C12---C11---H11 120.1 C2---C1---H1 119.2 C10---C11---H11 120.1 C1---C2---C3 119.63 (10) N3---C12---C11 121.40 (10) C1---C2---H2 120.2 N3---C12---H12 119.3 C3---C2---H2 120.2 C11---C12---H12 119.3 N2---C3---C4 121.16 (10) N4---C13---H13A 109.5 N2---C3---C2 122.02 (10) N4---C13---H13B 109.5 C4---C3---C2 116.81 (9) H13A---C13---H13B 109.5 C5---C4---C3 120.18 (10) N4---C13---H13C 109.5 C5---C4---H4 119.9 H13A---C13---H13C 109.5 C3---C4---H4 119.9 H13B---C13---H13C 109.5 N1---C5---C4 121.05 (10) N4---C14---H14A 109.5 N1---C5---H5 119.5 N4---C14---H14B 109.5 C4---C5---H5 119.5 H14A---C14---H14B 109.5 N2---C6---H6A 109.5 N4---C14---H14C 109.5 N2---C6---H6B 109.5 H14A---C14---H14C 109.5 H6A---C6---H6B 109.5 H14B---C14---H14C 109.5 N2---C6---H6C 109.5 C5---N1---C1 120.78 (10) H6A---C6---H6C 109.5 C5---N1---H1A 119.6 H6B---C6---H6C 109.5 C1---N1---H1A 119.6 N2---C7---H7A 109.5 C3---N2---C7 120.52 (9) N2---C7---H7B 109.5 C3---N2---C6 121.19 (10) H7A---C7---H7B 109.5 C7---N2---C6 118.25 (9) N2---C7---H7C 109.5 C12---N3---C8 121.00 (10) H7A---C7---H7C 109.5 C12---N3---H3 119.5 H7B---C7---H7C 109.5 C8---N3---H3 119.5 N3---C8---C9 120.80 (10) C10---N4---C14 121.26 (10) N3---C8---H8 119.6 C10---N4---C13 120.79 (9) C9---C8---H8 119.6 C14---N4---C13 117.89 (10) C8---C9---C10 120.37 (10) Cl4---Zn1---Cl2 111.223 (12) C8---C9---H9 119.8 Cl4---Zn1---Cl3 110.797 (11) C10---C9---H9 119.8 Cl2---Zn1---Cl3 111.809 (13) N4---C10---C9 121.08 (10) Cl4---Zn1---Cl1 117.034 (13) N4---C10---C11 122.37 (10) Cl2---Zn1---Cl1 103.260 (10) C9---C10---C11 116.54 (10) Cl3---Zn1---Cl1 102.256 (10) N1---C1---C2---C3 −0.32 (17) C4---C5---N1---C1 −0.92 (17) C1---C2---C3---N2 178.17 (10) C2---C1---N1---C5 1.62 (17) C1---C2---C3---C4 −1.56 (15) C4---C3---N2---C7 −4.66 (16) N2---C3---C4---C5 −177.50 (10) C2---C3---N2---C7 175.62 (10) C2---C3---C4---C5 2.24 (15) C4---C3---N2---C6 173.16 (10) C3---C4---C5---N1 −1.05 (16) C2---C3---N2---C6 −6.56 (16) N3---C8---C9---C10 0.00 (16) C11---C12---N3---C8 0.33 (16) C8---C9---C10---N4 178.74 (10) C9---C8---N3---C12 0.33 (16) C8---C9---C10---C11 −0.90 (15) C9---C10---N4---C14 176.17 (10) N4---C10---C11---C12 −178.11 (10) C11---C10---N4---C14 −4.20 (16) C9---C10---C11---C12 1.53 (15) C9---C10---N4---C13 −6.40 (16) C10---C11---C12---N3 −1.29 (16) C11---C10---N4---C13 173.22 (10) ---------------------- -------------- ---------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2516 .table-wrap} ------------------ --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N3---H3···Cl1^i^ 0.88 2.88 3.5090 (11) 130. N3---H3···Cl3^i^ 0.88 2.46 3.2224 (10) 146. N1---H1A···Cl2 0.88 2.81 3.4043 (10) 126. N1---H1A···Cl1 0.88 2.53 3.2066 (10) 134. ------------------ --------- --------- ------------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- --------- ------- ------------- ------------- N3---H3⋯Cl1^i^ 0.88 2.88 3.5090 (11) 130 N3---H3⋯Cl3^i^ 0.88 2.46 3.2224 (10) 146 N1---H1*A*⋯Cl2 0.88 2.81 3.4043 (10) 126 N1---H1*A*⋯Cl1 0.88 2.53 3.2066 (10) 134 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.298021
2011-2-16
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052076/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 16; 67(Pt 3):m343", "authors": [ { "first": "Riadh", "last": "Kefi" }, { "first": "Frederic", "last": "Lefebvre" }, { "first": "Matthias", "last": "Zeller" }, { "first": "Cherif", "last": "Ben Nasr" } ] }
PMC3052077
Related literature {#sec1} ================== For related structures, see: Li (2011[@bb2]); Liang (2008[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} CH~6~N^+^·C~9~H~3~Cl~4~O~4~ ^−^*M* *~r~* = 348.98Monoclinic,*a* = 14.3138 (13) Å*b* = 14.2231 (14) Å*c* = 6.7648 (7) Åβ = 91.021 (1)°*V* = 1377.0 (2) Å^3^*Z* = 4Mo *K*α radiationμ = 0.87 mm^−1^*T* = 298 K0.45 × 0.40 × 0.38 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 1997[@bb1]) *T* ~min~ = 0.697, *T* ~max~ = 0.7346756 measured reflections2413 independent reflections1752 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.034 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.034*wR*(*F* ^2^) = 0.092*S* = 1.062413 reflections176 parametersH-atom parameters constrainedΔρ~max~ = 0.27 e Å^−3^Δρ~min~ = −0.26 e Å^−3^ {#d5e441} Data collection: *SMART* (Bruker, 1997[@bb1]); cell refinement: *SAINT* (Bruker, 1997[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb4]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004351/nc2219sup1.cif](http://dx.doi.org/10.1107/S1600536811004351/nc2219sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004351/nc2219Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004351/nc2219Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?nc2219&file=nc2219sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?nc2219sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?nc2219&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NC2219](http://scripts.iucr.org/cgi-bin/sendsup?nc2219)). The author thanks Shandong Provincial Natural Science Foundation, China (ZR2009BL027) for support. Comment ======= Crystals of the title compound were obtained by accident by the reaction of 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzoic acid and methanamine in methanol. To identify the product of this reaction a single crystal structure analysis was performed. The asymmetric unit of the title compound (I) contains one methylammonium cation and one 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzoate anion (Fig. 1). The bond lengths and angles are in agreement with those in ethylammonium 2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate methanol solvate (Li, 2011) and in ethane-1,2-diammonium bis(2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate) methanol solvate (Liang, 2008). In the crystal structure the cations and anions are connected by intermolecular N---H···O hydrogen bonding into chains that elongate in the direction of the crystallographic c-axis (Fig. 2). Moreover, short distances between chlorine and oxygen atoms are found indicating for intermolecular Cl---O interactions (Fig. 2). Experimental {#experimental} ============ A mixture of 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzoic acid (2.86 g, 0.01 mol) and methanol (15 ml) was refluxed for 0.5 h. Afterwards methanamine (0.45 g, 0.01 mol) was added and the mixture was stirred for 10 min at room temperature. The solution was kept at room temperature for 5 d. On solvent evaporation colourless single crystals of the title compound were obtained that are suitable for X-ray analysis. Refinement {#refinement} ========== H atoms were initially located from difference maps and then refined in a riding model with C---H = 0.96--0.97 Å, N---H = 0.89 Å, O---H = 0.82Å and *U*~iso~(H) = 1.2*U*~eq~(C) or 1.5*U*~eq~(O, N, methyl C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with labelling and 30% probability ellipsoids. ::: ![](e-67-0o605-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Crystal structure of the title compound viewed along the c axis. Hydrogen bonding and Cl···O interactions are shown as dashed lines. ::: ![](e-67-0o605-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e115 .table-wrap} -------------------------------- --------------------------------------- CH~6~N^+^·C~9~H~3~Cl~4~O~4~^−^ *F*(000) = 704 *M~r~* = 348.98 *D*~x~ = 1.683 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å *a* = 14.3138 (13) Å Cell parameters from 2427 reflections *b* = 14.2231 (14) Å θ = 2.9--27.9° *c* = 6.7648 (7) Å µ = 0.87 mm^−1^ β = 91.021 (1)° *T* = 298 K *V* = 1377.0 (2) Å^3^ Block, colorless *Z* = 4 0.45 × 0.40 × 0.38 mm -------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e251 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART CCD area-detector diffractometer 2413 independent reflections Radiation source: fine-focus sealed tube 1752 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.034 phi and ω scans θ~max~ = 25.0°, θ~min~ = 2.9° Absorption correction: multi-scan (*SADABS*; Bruker, 1997) *h* = −10→17 *T*~min~ = 0.697, *T*~max~ = 0.734 *k* = −16→15 6756 measured reflections *l* = −8→7 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e366 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.034 H-atom parameters constrained *wR*(*F*^2^) = 0.092 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.036*P*)^2^ + 0.764*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.06 (Δ/σ)~max~ = 0.001 2413 reflections Δρ~max~ = 0.27 e Å^−3^ 176 parameters Δρ~min~ = −0.26 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0169 (12) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e547 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e646 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.59548 (5) 0.44954 (5) 0.68418 (11) 0.0403 (2) Cl2 0.75122 (6) 0.31368 (5) 0.83762 (13) 0.0504 (3) Cl3 0.94431 (6) 0.31160 (6) 0.64018 (14) 0.0560 (3) Cl4 0.97935 (5) 0.43587 (5) 0.26682 (13) 0.0498 (3) N1 0.56810 (18) 0.82381 (16) 0.3492 (4) 0.0405 (6) H1A 0.5878 0.8600 0.4489 0.061\* H1B 0.5950 0.8422 0.2382 0.061\* H1C 0.5832 0.7642 0.3743 0.061\* O1 0.82037 (15) 0.65000 (13) 0.1792 (3) 0.0405 (5) O2 0.8307 (2) 0.52896 (16) −0.0279 (3) 0.0647 (7) O3 0.61656 (15) 0.57063 (15) 0.1743 (3) 0.0481 (6) O4 0.62782 (14) 0.64439 (13) 0.4641 (3) 0.0408 (5) C1 0.82003 (19) 0.5598 (2) 0.1337 (4) 0.0345 (7) C2 0.64751 (19) 0.58072 (18) 0.3451 (4) 0.0303 (6) C3 0.80417 (19) 0.50129 (17) 0.3163 (4) 0.0282 (6) C4 0.71960 (19) 0.50884 (17) 0.4148 (4) 0.0269 (6) C5 0.70398 (18) 0.44908 (17) 0.5740 (4) 0.0274 (6) C6 0.77229 (19) 0.38691 (18) 0.6410 (4) 0.0303 (6) C7 0.85805 (19) 0.38385 (18) 0.5494 (4) 0.0325 (7) C8 0.87294 (19) 0.43961 (18) 0.3837 (4) 0.0327 (7) C9 0.8303 (3) 0.7137 (2) 0.0141 (5) 0.0592 (10) H9A 0.8873 0.7001 −0.0528 0.089\* H9B 0.8319 0.7773 0.0617 0.089\* H9C 0.7783 0.7061 −0.0760 0.089\* C10 0.4658 (2) 0.8321 (2) 0.3267 (5) 0.0543 (9) H10A 0.4367 0.8127 0.4468 0.082\* H10B 0.4444 0.7928 0.2197 0.082\* H10C 0.4495 0.8963 0.2988 0.082\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1026 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0319 (4) 0.0426 (4) 0.0470 (5) 0.0041 (3) 0.0120 (3) 0.0124 (3) Cl2 0.0489 (5) 0.0470 (5) 0.0554 (5) 0.0046 (4) 0.0012 (4) 0.0251 (4) Cl3 0.0397 (5) 0.0524 (5) 0.0758 (6) 0.0189 (4) −0.0053 (4) 0.0093 (4) Cl4 0.0323 (4) 0.0515 (5) 0.0660 (6) 0.0021 (4) 0.0166 (4) −0.0093 (4) N1 0.0551 (17) 0.0323 (13) 0.0341 (14) 0.0043 (12) −0.0040 (12) −0.0006 (11) O1 0.0548 (14) 0.0320 (11) 0.0350 (11) −0.0030 (10) 0.0087 (10) 0.0036 (9) O2 0.097 (2) 0.0604 (15) 0.0369 (14) −0.0146 (14) 0.0208 (13) −0.0099 (11) O3 0.0471 (13) 0.0616 (14) 0.0352 (12) 0.0050 (11) −0.0105 (10) 0.0095 (10) O4 0.0451 (13) 0.0313 (11) 0.0462 (13) 0.0112 (9) 0.0059 (10) 0.0040 (9) C1 0.0297 (16) 0.0423 (17) 0.0317 (17) −0.0031 (13) 0.0049 (13) −0.0011 (13) C2 0.0264 (15) 0.0295 (15) 0.0352 (17) 0.0005 (12) 0.0043 (13) 0.0089 (13) C3 0.0310 (15) 0.0240 (13) 0.0295 (15) −0.0035 (12) 0.0012 (12) −0.0042 (11) C4 0.0284 (15) 0.0263 (14) 0.0261 (14) −0.0004 (12) −0.0011 (12) −0.0018 (11) C5 0.0226 (14) 0.0283 (14) 0.0314 (15) −0.0005 (12) 0.0022 (12) −0.0028 (12) C6 0.0341 (16) 0.0252 (14) 0.0315 (15) −0.0017 (12) −0.0027 (13) 0.0011 (11) C7 0.0260 (15) 0.0258 (14) 0.0454 (17) 0.0046 (12) −0.0043 (13) −0.0050 (12) C8 0.0296 (15) 0.0294 (14) 0.0391 (17) −0.0011 (12) 0.0060 (13) −0.0095 (13) C9 0.074 (3) 0.051 (2) 0.054 (2) −0.0026 (19) 0.0147 (19) 0.0210 (17) C10 0.055 (2) 0.054 (2) 0.053 (2) 0.0031 (17) −0.0051 (18) 0.0001 (16) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1407 .table-wrap} -------------------- ------------ --------------------- ------------ Cl1---C5 1.734 (3) C2---C4 1.521 (4) Cl2---C6 1.720 (3) C3---C8 1.389 (4) Cl3---C7 1.712 (3) C3---C4 1.396 (4) Cl4---C8 1.729 (3) C4---C5 1.393 (4) N1---C10 1.475 (4) C5---C6 1.388 (4) N1---H1A 0.8900 C6---C7 1.386 (4) N1---H1B 0.8900 C7---C8 1.393 (4) N1---H1C 0.8900 C9---H9A 0.9600 O1---C1 1.319 (3) C9---H9B 0.9600 O1---C9 1.447 (3) C9---H9C 0.9600 O2---C1 1.191 (3) C10---H10A 0.9600 O3---C2 1.238 (3) C10---H10B 0.9600 O4---C2 1.247 (3) C10---H10C 0.9600 C1---C3 1.510 (4) C10---N1---H1A 109.5 C7---C6---C5 119.9 (2) C10---N1---H1B 109.5 C7---C6---Cl2 119.7 (2) H1A---N1---H1B 109.5 C5---C6---Cl2 120.4 (2) C10---N1---H1C 109.5 C6---C7---C8 119.5 (3) H1A---N1---H1C 109.5 C6---C7---Cl3 119.8 (2) H1B---N1---H1C 109.5 C8---C7---Cl3 120.7 (2) C1---O1---C9 115.4 (2) C3---C8---C7 120.4 (2) O2---C1---O1 124.9 (3) C3---C8---Cl4 119.6 (2) O2---C1---C3 124.9 (3) C7---C8---Cl4 119.9 (2) O1---C1---C3 110.2 (2) O1---C9---H9A 109.5 O3---C2---O4 127.2 (3) O1---C9---H9B 109.5 O3---C2---C4 116.1 (2) H9A---C9---H9B 109.5 O4---C2---C4 116.6 (2) O1---C9---H9C 109.5 C8---C3---C4 120.5 (2) H9A---C9---H9C 109.5 C8---C3---C1 120.0 (2) H9B---C9---H9C 109.5 C4---C3---C1 119.5 (2) N1---C10---H10A 109.5 C5---C4---C3 118.3 (2) N1---C10---H10B 109.5 C5---C4---C2 122.1 (2) H10A---C10---H10B 109.5 C3---C4---C2 119.5 (2) N1---C10---H10C 109.5 C6---C5---C4 121.3 (2) H10A---C10---H10C 109.5 C6---C5---Cl1 119.5 (2) H10B---C10---H10C 109.5 C4---C5---Cl1 119.2 (2) C9---O1---C1---O2 3.0 (5) C2---C4---C5---Cl1 5.4 (4) C9---O1---C1---C3 −177.0 (3) C4---C5---C6---C7 0.2 (4) O2---C1---C3---C8 63.3 (4) Cl1---C5---C6---C7 177.8 (2) O1---C1---C3---C8 −116.7 (3) C4---C5---C6---Cl2 −179.9 (2) O2---C1---C3---C4 −115.9 (3) Cl1---C5---C6---Cl2 −2.3 (3) O1---C1---C3---C4 64.1 (3) C5---C6---C7---C8 −3.6 (4) C8---C3---C4---C5 −3.9 (4) Cl2---C6---C7---C8 176.5 (2) C1---C3---C4---C5 175.3 (2) C5---C6---C7---Cl3 176.6 (2) C8---C3---C4---C2 176.6 (2) Cl2---C6---C7---Cl3 −3.3 (3) C1---C3---C4---C2 −4.2 (4) C4---C3---C8---C7 0.6 (4) O3---C2---C4---C5 −118.0 (3) C1---C3---C8---C7 −178.6 (2) O4---C2---C4---C5 63.7 (3) C4---C3---C8---Cl4 −176.7 (2) O3---C2---C4---C3 61.5 (3) C1---C3---C8---Cl4 4.1 (3) O4---C2---C4---C3 −116.8 (3) C6---C7---C8---C3 3.2 (4) C3---C4---C5---C6 3.5 (4) Cl3---C7---C8---C3 −177.0 (2) C2---C4---C5---C6 −177.0 (2) C6---C7---C8---Cl4 −179.5 (2) C3---C4---C5---Cl1 −174.1 (2) Cl3---C7---C8---Cl4 0.3 (3) -------------------- ------------ --------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1945 .table-wrap} ------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1A···O3^i^ 0.89 1.86 2.742 (3) 173 N1---H1B···O4^ii^ 0.89 1.93 2.794 (3) 163 N1---H1C···O4 0.89 1.92 2.797 (3) 170 ------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*, −*y*+3/2, *z*+1/2; (ii) *x*, −*y*+3/2, *z*−1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- --------- ------- ----------- ------------- N1---H1*A*⋯O3^i^ 0.89 1.86 2.742 (3) 173 N1---H1*B*⋯O4^ii^ 0.89 1.93 2.794 (3) 163 N1---H1*C*⋯O4 0.89 1.92 2.797 (3) 170 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.303469
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052077/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o605", "authors": [ { "first": "Jian", "last": "Li" } ] }
PMC3052078
Related literature {#sec1} ================== For related structures, see Gowda *et al.* (2009*a* [@bb3],*b* [@bb4],*c* [@bb5]); Prasad *et al.* (2002[@bb8]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~11~H~11~NO~3~*M* *~r~* = 205.21Monoclinic,*a* = 10.651 (2) Å*b* = 12.601 (3) Å*c* = 8.3130 (17) Åβ = 108.44 (3)°*V* = 1058.4 (4) Å^3^*Z* = 4Mo *K*α radiationμ = 0.10 mm^−1^*T* = 298 K0.30 × 0.20 × 0.10 mm ### Data collection {#sec2.1.2} Enraf--Nonius CAD-4 diffractometerAbsorption correction: ψ scan (North *et al.*, 1968[@bb7]) *T* ~min~ = 0.972, *T* ~max~ = 0.9912018 measured reflections1913 independent reflections1013 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.0223 standard reflections every 200 reflections intensity decay: 1% ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.057*wR*(*F* ^2^) = 0.175*S* = 1.001913 reflections137 parametersH-atom parameters constrainedΔρ~max~ = 0.17 e Å^−3^Δρ~min~ = −0.16 e Å^−3^ {#d5e430} Data collection: *CAD-4 Software* (Enraf--Nonius, 1989[@bb1]); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995[@bb6]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb2]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S160053681100609X/kj2163sup1.cif](http://dx.doi.org/10.1107/S160053681100609X/kj2163sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100609X/kj2163Isup2.hkl](http://dx.doi.org/10.1107/S160053681100609X/kj2163Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?kj2163&file=kj2163sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?kj2163sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?kj2163&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [KJ2163](http://scripts.iucr.org/cgi-bin/sendsup?kj2163)). The authors thank the Center of Testing and Analysis, Nanjing University, for support. They also thank the Natural Science Foundation of Jiangsu Province of China (BK2008195) and the Science Research Foundation of Huaiyin Institute of Technology (2517045). Comment ======= The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitution on the crystal structures of this class compounds (Gowda *et al.*, 2009*a*, 2009*b*, 2009*c*; Prasad *et al.*, 2002), the crystal structure of (*Z*)-4-(benzylamino)-4-oxobut-2-enoic acid has been determined. The molecular conformation (Fig. 1) is stabilized by intramolecular O--H···O bonds. As can be seen from the packing diagram (Fig.2), molecules are linked by intermolecular N--H···O and C--H···O hydrogen bonds to form a chain along the *b* axis in which they may be effective in the stabilization of structure (Table 1). Experimental {#experimental} ============ A solution of maleic andydride (10 g, 0.1 mol) in dichloromethane (50 ml) was added dropwise to an ice-cold solution of phenylmethanamine (10.7 g,0.1 mol) in dichloromethane (50 ml). After the addition was complete (1.5 h), the resulting suspension was stirred at ambient temperature for 20 h. A white solid was collected and washed twice with ether to give the crude product. This crude soild was partitioned between a saturated NaHCO~3~ solution and ether. The aqueous fraction was brought to pH = 1--2 with 5 N HCl in an ice bath then extracted with a (1:l) EtOAc-THF mixture. The combined organic layers were dried with Na~2~SO~4~, filtered and concentrated to give (*Z*)-4-(benzylamino)-4-oxobut-2-enoic acid as a white solid. The product was purified by repeated crystallization from methanol. Crystals of the title compound, suitable for X-ray diffraction, were obtained by slow evaporation from a solution in methanol. Refinement {#refinement} ========== H atoms were positioned geometrically and H-atom parameters were constrained, with O---H = 0.85 Å(for OH), N---H = 0.86 Å(for NH) and C---H = 0.93,0.93 and 0.97Å for aromatic, methylene and doublebond H, respectively, and constrained to ride on their parent atoms, with *U*~iso~(H) = *xU*~eq~(C,*N*,*O*), where *x* = 1.5 for OH, and *x* = 1.2 for all other H atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0o689-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Crystal packing of the title compound. Dashed lines indicate hydrogen bonds. ::: ![](e-67-0o689-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e152 .table-wrap} ------------------------- ------------------------------------- C~11~H~11~NO~3~ *F*(000) = 432 *M~r~* = 205.21 *D*~x~ = 1.288 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 25 reflections *a* = 10.651 (2) Å θ = 9--12° *b* = 12.601 (3) Å µ = 0.10 mm^−1^ *c* = 8.3130 (17) Å *T* = 298 K β = 108.44 (3)° Block, colorless *V* = 1058.4 (4) Å^3^ 0.30 × 0.20 × 0.10 mm *Z* = 4 ------------------------- ------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e279 .table-wrap} ------------------------------------------------------ ---------------------------------------------- Enraf--Nonius CAD-4 diffractometer 1013 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.022 graphite θ~max~ = 25.3°, θ~min~ = 2.0° ω/2θ scans *h* = −12→0 Absorption correction: ψ scan (North *et al.*, 1968) *k* = 0→15 *T*~min~ = 0.972, *T*~max~ = 0.991 *l* = −9→9 2018 measured reflections 3 standard reflections every 200 reflections 1913 independent reflections intensity decay: 1% ------------------------------------------------------ ---------------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e401 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.057 H-atom parameters constrained *wR*(*F*^2^) = 0.175 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.078*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.00 (Δ/σ)~max~ \< 0.001 1913 reflections Δρ~max~ = 0.17 e Å^−3^ 137 parameters Δρ~min~ = −0.16 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.030 (5) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e579 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e678 .table-wrap} ------ ------------ -------------- ------------ -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N 0.6963 (2) 0.4593 (2) 0.1087 (3) 0.0537 (7) H0A 0.6678 0.5211 0.1242 0.064\* O1 0.6741 (2) 0.28274 (17) 0.1283 (3) 0.0636 (7) C1 1.0039 (4) 0.3602 (3) 0.2253 (6) 0.0904 (14) H1A 0.9678 0.2962 0.1767 0.108\* O2 0.3695 (2) 0.17148 (18) 0.3280 (3) 0.0750 (8) C2 1.1254 (4) 0.3611 (4) 0.3536 (7) 0.1015 (16) H2A 1.1693 0.2975 0.3903 0.122\* O3 0.5270 (2) 0.15868 (18) 0.2112 (3) 0.0669 (7) H3B 0.5786 0.2005 0.1821 0.100\* C3 1.1799 (4) 0.4531 (4) 0.4250 (6) 0.0853 (13) H3A 1.2611 0.4532 0.5106 0.102\* C4 1.1149 (4) 0.5457 (4) 0.3707 (6) 0.0871 (13) H4A 1.1519 0.6097 0.4188 0.104\* C5 0.9942 (4) 0.5450 (3) 0.2443 (5) 0.0754 (11) H5A 0.9505 0.6088 0.2085 0.090\* C6 0.9377 (3) 0.4525 (3) 0.1707 (4) 0.0547 (9) C7 0.8043 (3) 0.4522 (3) 0.0365 (4) 0.0621 (10) H7A 0.7989 0.5117 −0.0394 0.074\* H7B 0.7946 0.3876 −0.0296 0.074\* C8 0.6403 (3) 0.3750 (2) 0.1514 (4) 0.0491 (8) C9 0.5356 (3) 0.3986 (3) 0.2282 (4) 0.0500 (8) H9A 0.5219 0.4702 0.2440 0.060\* C10 0.4586 (3) 0.3320 (3) 0.2777 (4) 0.0522 (8) H10A 0.3995 0.3648 0.3235 0.063\* C11 0.4498 (4) 0.2143 (3) 0.2731 (4) 0.0556 (9) ------ ------------ -------------- ------------ -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1032 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N 0.0488 (16) 0.0458 (15) 0.0658 (18) 0.0025 (13) 0.0169 (14) 0.0026 (13) O1 0.0654 (15) 0.0463 (13) 0.0842 (17) 0.0078 (12) 0.0306 (13) −0.0028 (12) C1 0.064 (2) 0.062 (3) 0.134 (4) 0.000 (2) 0.016 (3) −0.001 (2) O2 0.0792 (17) 0.0585 (15) 0.094 (2) −0.0142 (14) 0.0373 (16) 0.0101 (14) C2 0.068 (3) 0.083 (3) 0.141 (4) 0.014 (2) 0.014 (3) 0.025 (3) O3 0.0856 (18) 0.0436 (13) 0.0764 (16) −0.0009 (12) 0.0326 (15) 0.0007 (12) C3 0.066 (3) 0.109 (4) 0.078 (3) 0.001 (3) 0.020 (2) −0.001 (3) C4 0.077 (3) 0.086 (3) 0.097 (3) −0.011 (3) 0.025 (3) −0.027 (3) C5 0.070 (2) 0.061 (3) 0.088 (3) 0.002 (2) 0.014 (2) −0.003 (2) C6 0.0485 (19) 0.055 (2) 0.065 (2) −0.0001 (17) 0.0250 (17) 0.0034 (18) C7 0.059 (2) 0.066 (2) 0.067 (2) −0.0028 (18) 0.0293 (19) 0.0036 (18) C8 0.0486 (19) 0.0436 (18) 0.0496 (19) 0.0012 (16) 0.0075 (15) −0.0011 (15) C9 0.055 (2) 0.0375 (17) 0.057 (2) 0.0008 (15) 0.0162 (17) −0.0012 (15) C10 0.058 (2) 0.0462 (18) 0.054 (2) 0.0006 (17) 0.0205 (17) 0.0011 (16) C11 0.061 (2) 0.0463 (19) 0.053 (2) −0.0039 (19) 0.0084 (17) 0.0024 (17) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1329 .table-wrap} ------------------- ------------ --------------------- ----------- N---C8 1.320 (4) C3---H3A 0.9300 N---C7 1.459 (4) C4---C5 1.379 (5) N---H0A 0.8600 C4---H4A 0.9300 O1---C8 1.250 (3) C5---C6 1.365 (5) C1---C6 1.361 (5) C5---H5A 0.9300 C1---C2 1.392 (6) C6---C7 1.503 (4) C1---H1A 0.9300 C7---H7A 0.9700 O2---C11 1.216 (4) C7---H7B 0.9700 C2---C3 1.347 (6) C8---C9 1.480 (4) C2---H2A 0.9300 C9---C10 1.327 (4) O3---C11 1.304 (4) C9---H9A 0.9300 O3---H3B 0.8501 C10---C11 1.485 (4) C3---C4 1.360 (6) C10---H10A 0.9300 C8---N---C7 122.9 (3) C1---C6---C7 121.0 (3) C8---N---H0A 118.5 C5---C6---C7 120.9 (3) C7---N---H0A 118.5 N---C7---C6 112.2 (3) C6---C1---C2 120.5 (4) N---C7---H7A 109.2 C6---C1---H1A 119.8 C6---C7---H7A 109.2 C2---C1---H1A 119.8 N---C7---H7B 109.2 C3---C2---C1 120.7 (4) C6---C7---H7B 109.2 C3---C2---H2A 119.6 H7A---C7---H7B 107.9 C1---C2---H2A 119.6 O1---C8---N 122.1 (3) C11---O3---H3B 108.9 O1---C8---C9 123.1 (3) C2---C3---C4 119.3 (4) N---C8---C9 114.8 (3) C2---C3---H3A 120.4 C10---C9---C8 129.1 (3) C4---C3---H3A 120.4 C10---C9---H9A 115.5 C3---C4---C5 120.1 (4) C8---C9---H9A 115.5 C3---C4---H4A 120.0 C9---C10---C11 131.6 (3) C5---C4---H4A 120.0 C9---C10---H10A 114.2 C6---C5---C4 121.3 (4) C11---C10---H10A 114.2 C6---C5---H5A 119.3 O2---C11---O3 121.0 (3) C4---C5---H5A 119.3 O2---C11---C10 118.7 (3) C1---C6---C5 118.1 (4) O3---C11---C10 120.3 (3) C6---C1---C2---C3 −0.4 (7) C1---C6---C7---N 98.2 (4) C1---C2---C3---C4 0.1 (7) C5---C6---C7---N −80.0 (4) C2---C3---C4---C5 0.3 (7) C7---N---C8---O1 −1.9 (5) C3---C4---C5---C6 −0.3 (6) C7---N---C8---C9 177.9 (3) C2---C1---C6---C5 0.4 (6) O1---C8---C9---C10 −3.0 (5) C2---C1---C6---C7 −177.9 (4) N---C8---C9---C10 177.2 (3) C4---C5---C6---C1 −0.1 (6) C8---C9---C10---C11 −0.3 (5) C4---C5---C6---C7 178.2 (4) C9---C10---C11---O2 179.7 (3) C8---N---C7---C6 −89.9 (4) C9---C10---C11---O3 −0.3 (5) ------------------- ------------ --------------------- ----------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1757 .table-wrap} ------------------ --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O3---H3B···O1 0.85 1.61 2.461 (3) 178 N---H0A···O2^i^ 0.86 2.00 2.855 (3) 171 C9---H9A···O3^i^ 0.93 2.48 3.413 (4) 177 ------------------ --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, *y*+1/2, −*z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- O3---H3*B*⋯O1 0.85 1.61 2.461 (3) 178 N---H0*A*⋯O2^i^ 0.86 2.00 2.855 (3) 171 C9---H9*A*⋯O3^i^ 0.93 2.48 3.413 (4) 177 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.307818
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052078/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o689", "authors": [ { "first": "Su-Lan", "last": "Dong" }, { "first": "Xiao-Chun", "last": "Cheng" } ] }
PMC3052079
Related literature {#sec1} ================== For our study of the effect of substituents on the structures of this class of compounds, see: Gowda *et al.* (2010**a*[@bb1],*b*[@bb2],c* [@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~18~H~20~N~2~O~2~*M* *~r~* = 296.36Monoclinic,*a* = 11.586 (2) Å*b* = 7.955 (1) Å*c* = 8.803 (1) Åβ = 101.97 (2)°*V* = 793.70 (19) Å^3^*Z* = 2Mo *K*α radiationμ = 0.08 mm^−1^*T* = 293 K0.40 × 0.08 × 0.03 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detectorAbsorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009[@bb4]) *T* ~min~ = 0.968, *T* ~max~ = 0.9983109 measured reflections1615 independent reflections987 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.032 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.066*wR*(*F* ^2^) = 0.163*S* = 0.971615 reflections104 parameters1 restraintH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.19 e Å^−3^Δρ~min~ = −0.21 e Å^−3^ {#d5e429} Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009[@bb4]); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009[@bb4]); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *PLATON* (Spek, 2009[@bb6]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811004442/ds2092sup1.cif](http://dx.doi.org/10.1107/S1600536811004442/ds2092sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004442/ds2092Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004442/ds2092Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ds2092&file=ds2092sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ds2092sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ds2092&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [DS2092](http://scripts.iucr.org/cgi-bin/sendsup?ds2092)). BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program. Comment ======= The amide moiety is an important constituent of many biologically important compounds. As a part of studying the substituent effects on the structures of this class of compounds (Gowda *et al.*, 2010**a*,*b*,c*), in the present work, the structure of *N*,*N*-Bis(2-methylphenyl)-succinamide has been determined (Fig.1). The conformations of N---H and C=O bonds in the C---NH---C(O)---C segments are *anti* to each other and the amide O atoms are *anti* to the H atoms attached to the adjacent C atoms. Further, conformations of the N---H bonds in the amide fragments are *anti* to the *ortho*-methyl groups in the adjacent benzene rings. The dihedral angle between the benzene ring and the NH---C(O)---CH~2~ segment in the two halves of the molecule is 62.1 (2)°. Further, C1---N1---C7---C8 and C1a---N1a---C7a---C8a segments are nearly linear and so also the C1---N1---C7---O1 and C1a---N1a---C7a---O1a segments. The torsion angles of C2---C1---N1---C7 and C6---C1---N1---C7 are -64.0 (4)° and 117.6 (3)°. The series of N---H···O intermolecular hydrogen bonds (Table 1) link the molecules into infinite chains (Fig. 2). Experimental {#experimental} ============ Succinic anhydride (0.01 mol) in toluene (25 ml) was treated drop wise with *o*-toluidine (0.01 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove unreacted *o*-toluidine. The resultant *N*-(2-methylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. The compound was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra. The *N*-(2-methylphenyl)succinamic acid obtained was then treated with phosphorous oxychloride and excess of *o*-toluidine at room temperature with constant stirring. The resultant mixture was stirred for 4 h, kept aside for additional 6 h for completion of the reaction and poured slowly into crushed ice with constant stirring. It was kept aside for a day. The resultant solid, *N*,*N*-Bis(2-methylphenyl)- succinamide was filtered under suction, washed thoroughly with water, dilute sodium hydroxide solution and finally with water. It was recrystallized to constant melting point from a mixture of acetone and chloroform. The purity of the compound was checked by elemental analysis, and characterized by its infrared and NMR spectra. Needle like colorless single crystals used in the X-ray diffraction studies were were grown in a mixture of acetone and chloroform at room temperature. Refinement {#refinement} ========== The H atom of the NH group was located in a difference map and later restrained to the distance N---H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C---H = 0.93--0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the *U*~eq~ of the parent atom). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o607-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Molecular packing of (I) with hydrogen bonding shown as dashed lines. ::: ![](e-67-0o607-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e162 .table-wrap} ------------------------- -------------------------------------- C~18~H~20~N~2~O~2~ *F*(000) = 316 *M~r~* = 296.36 *D*~x~ = 1.240 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 887 reflections *a* = 11.586 (2) Å θ = 2.6--27.6° *b* = 7.955 (1) Å µ = 0.08 mm^−1^ *c* = 8.803 (1) Å *T* = 293 K β = 101.97 (2)° Needle, colourless *V* = 793.70 (19) Å^3^ 0.40 × 0.08 × 0.03 mm *Z* = 2 ------------------------- -------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e292 .table-wrap} ------------------------------------------------------------------------------ ------------------------------------- Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 1615 independent reflections Radiation source: fine-focus sealed tube 987 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.032 Rotation method data acquisition using ω scans θ~max~ = 26.4°, θ~min~ = 3.1° Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) *h* = −14→13 *T*~min~ = 0.968, *T*~max~ = 0.998 *k* = −9→7 3109 measured reflections *l* = −5→11 ------------------------------------------------------------------------------ ------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e407 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.066 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.163 H atoms treated by a mixture of independent and constrained refinement *S* = 0.97 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0688*P*)^2^ + 0.5489*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1615 reflections (Δ/σ)~max~ = 0.001 104 parameters Δρ~max~ = 0.19 e Å^−3^ 1 restraint Δρ~min~ = −0.21 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e564 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e669 .table-wrap} ----- -------------- ------------ -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.2287 (2) 0.4159 (3) 0.4527 (3) 0.0332 (6) C2 0.3283 (2) 0.3765 (4) 0.3956 (3) 0.0375 (7) C3 0.3804 (3) 0.5058 (4) 0.3267 (4) 0.0509 (8) H3 0.4469 0.4828 0.2866 0.061\* C4 0.3357 (3) 0.6671 (4) 0.3168 (4) 0.0572 (9) H4 0.3712 0.7505 0.2682 0.069\* C5 0.2395 (3) 0.7053 (4) 0.3778 (4) 0.0544 (9) H5 0.2106 0.8147 0.3732 0.065\* C6 0.1859 (3) 0.5800 (4) 0.4459 (4) 0.0468 (8) H6 0.1206 0.6051 0.4879 0.056\* C7 0.1138 (2) 0.1563 (3) 0.4500 (3) 0.0299 (6) C8 0.0525 (2) 0.0450 (4) 0.5479 (3) 0.0356 (7) H8A 0.1082 −0.0375 0.6013 0.043\* H8B 0.0266 0.1130 0.6259 0.043\* C9 0.3816 (3) 0.2030 (4) 0.4074 (4) 0.0540 (9) H9A 0.3508 0.1415 0.3140 0.065\* H9B 0.3622 0.1452 0.4946 0.065\* H9C 0.4658 0.2118 0.4212 0.065\* N1 0.1685 (2) 0.2917 (3) 0.5239 (2) 0.0355 (6) H1N 0.155 (2) 0.310 (3) 0.614 (2) 0.043\* O1 0.11453 (17) 0.1214 (2) 0.31422 (19) 0.0414 (6) ----- -------------- ------------ -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e960 .table-wrap} ---- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0376 (14) 0.0357 (16) 0.0271 (13) −0.0083 (12) 0.0085 (11) −0.0046 (12) C2 0.0355 (14) 0.0414 (17) 0.0352 (15) −0.0055 (13) 0.0065 (12) −0.0030 (13) C3 0.0444 (17) 0.061 (2) 0.0507 (19) −0.0170 (17) 0.0179 (15) 0.0004 (17) C4 0.068 (2) 0.047 (2) 0.057 (2) −0.0246 (17) 0.0158 (17) 0.0051 (17) C5 0.070 (2) 0.0332 (18) 0.062 (2) −0.0114 (16) 0.0176 (18) −0.0029 (16) C6 0.0522 (18) 0.0400 (18) 0.0511 (19) −0.0041 (14) 0.0171 (15) −0.0092 (15) C7 0.0344 (14) 0.0312 (14) 0.0249 (13) −0.0012 (12) 0.0078 (10) 0.0012 (12) C8 0.0444 (16) 0.0378 (16) 0.0259 (14) −0.0092 (12) 0.0105 (12) 0.0028 (12) C9 0.0439 (17) 0.058 (2) 0.062 (2) 0.0057 (16) 0.0154 (15) 0.0040 (17) N1 0.0465 (13) 0.0373 (13) 0.0262 (11) −0.0094 (11) 0.0158 (10) −0.0048 (10) O1 0.0570 (13) 0.0437 (12) 0.0264 (10) −0.0154 (10) 0.0157 (9) −0.0039 (9) ---- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1203 .table-wrap} ------------------- ------------ ---------------------- ------------ C1---C2 1.387 (4) C6---H6 0.9300 C1---C6 1.393 (4) C7---O1 1.229 (3) C1---N1 1.427 (3) C7---N1 1.347 (3) C2---C3 1.393 (4) C7---C8 1.512 (3) C2---C9 1.507 (4) C8---C8^i^ 1.509 (5) C3---C4 1.380 (5) C8---H8A 0.9700 C3---H3 0.9300 C8---H8B 0.9700 C4---C5 1.368 (4) C9---H9A 0.9600 C4---H4 0.9300 C9---H9B 0.9600 C5---C6 1.376 (4) C9---H9C 0.9600 C5---H5 0.9300 N1---H1N 0.853 (17) C2---C1---C6 120.8 (3) O1---C7---N1 123.6 (2) C2---C1---N1 121.5 (2) O1---C7---C8 121.4 (2) C6---C1---N1 117.7 (2) N1---C7---C8 115.0 (2) C1---C2---C3 117.3 (3) C8^i^---C8---C7 112.3 (3) C1---C2---C9 122.8 (2) C8^i^---C8---H8A 109.2 C3---C2---C9 119.9 (3) C7---C8---H8A 109.2 C4---C3---C2 121.6 (3) C8^i^---C8---H8B 109.2 C4---C3---H3 119.2 C7---C8---H8B 109.2 C2---C3---H3 119.2 H8A---C8---H8B 107.9 C5---C4---C3 120.5 (3) C2---C9---H9A 109.5 C5---C4---H4 119.8 C2---C9---H9B 109.5 C3---C4---H4 119.8 H9A---C9---H9B 109.5 C4---C5---C6 119.2 (3) C2---C9---H9C 109.5 C4---C5---H5 120.4 H9A---C9---H9C 109.5 C6---C5---H5 120.4 H9B---C9---H9C 109.5 C5---C6---C1 120.6 (3) C7---N1---C1 124.5 (2) C5---C6---H6 119.7 C7---N1---H1N 115.1 (19) C1---C6---H6 119.7 C1---N1---H1N 119.6 (19) C6---C1---C2---C3 −2.3 (4) C2---C1---C6---C5 2.1 (4) N1---C1---C2---C3 179.4 (2) N1---C1---C6---C5 −179.5 (3) C6---C1---C2---C9 176.8 (3) O1---C7---C8---C8^i^ −30.5 (4) N1---C1---C2---C9 −1.5 (4) N1---C7---C8---C8^i^ 150.9 (3) C1---C2---C3---C4 0.6 (4) O1---C7---N1---C1 3.3 (4) C9---C2---C3---C4 −178.6 (3) C8---C7---N1---C1 −178.1 (2) C2---C3---C4---C5 1.4 (5) C2---C1---N1---C7 −64.0 (4) C3---C4---C5---C6 −1.6 (5) C6---C1---N1---C7 117.6 (3) C4---C5---C6---C1 −0.1 (5) ------------------- ------------ ---------------------- ------------ ::: Symmetry codes: (i) −*x*, −*y*, −*z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1618 .table-wrap} ------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1N···O1^ii^ 0.85 (2) 1.99 (2) 2.840 (3) 173 (3) ------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (ii) *x*, −*y*+1/2, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ ---------- ---------- ----------- ------------- N1---H1*N*⋯O1^i^ 0.85 (2) 1.99 (2) 2.840 (3) 173 (3) Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.311228
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052079/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o607", "authors": [ { "first": "B. S.", "last": "Saraswathi" }, { "first": "Sabine", "last": "Foro" }, { "first": "B. Thimme", "last": "Gowda" } ] }
PMC3052080
Related literature {#sec1} ================== For 2-indol-3-yl-methyl­enequinuclidin-3-ols and NADPH oxidase activity, see: Sekhar *et al.* (2003[@bb5]) and for novel substituted (*Z*)-2-(*N*-benzyl­indol-3-yl­methyl­ene)quinuclidin-3-one and (*Z*)-(±)-2-(*N*-benzyl­indol-3-yl­methyl­ene)quinuc­lidin-3-ol derivatives as potent thermal sensitizing agents, see: Sonar *et al.* (2007[@bb8]). For di- and triindolyl­methanes: mol­ecular structures, see: Mason *et al.* (2003[@bb2]) and for structures of 1*H*-indole-3-ethyl­ene-3′-meth­oxy­salicylaldimine and 3-\[3′-aza­pentyl-3′-en-4′-(2′′-hy­droxy­phen­yl)\]indole, see: Zarza *et al.* (1988[@bb9]). For the radio-sensitization activity associated with *N*-benzyl­indolyl-1-aza­bicyclo­\[2.2.2\]octan-3-ones, see: Sonar *et al.* (2003[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~23~H~22~ClN~3~O*M* *~r~* = 391.89Orthorhombic,*a* = 5.8382 (1) Å*b* = 10.7005 (2) Å*c* = 30.9451 (6) Å*V* = 1933.19 (6) Å^3^*Z* = 4Mo *K*α radiationμ = 0.22 mm^−1^*T* = 90 K0.40 × 0.12 × 0.08 mm ### Data collection {#sec2.1.2} Nonius KappaCCD diffractometerAbsorption correction: multi-scan (*SCALEPACK*; Otwinowski & Minor, 1997[@bb4]) *T* ~min~ = 0.918, *T* ~max~ = 0.98337270 measured reflections4433 independent reflections3150 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.103 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.049*wR*(*F* ^2^) = 0.137*S* = 1.064433 reflections254 parametersH-atom parameters constrainedΔρ~max~ = 0.40 e Å^−3^Δρ~min~ = −0.24 e Å^−3^Absolute structure: Flack (1983[@bb1]), 1853 Friedel pairsFlack parameter: −0.03 (4) {#d5e386} Data collection: *COLLECT* (Nonius, 1998[@bb3]); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997[@bb4]); data reduction: *DENZO-SMN* (Otwinowski & Minor, 1997[@bb4]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *SHELXL97* and local procedures. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S160053681100612X/fj2375sup1.cif](http://dx.doi.org/10.1107/S160053681100612X/fj2375sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100612X/fj2375Isup2.hkl](http://dx.doi.org/10.1107/S160053681100612X/fj2375Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?fj2375&file=fj2375sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?fj2375sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?fj2375&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [FJ2375](http://scripts.iucr.org/cgi-bin/sendsup?fj2375)). We are grateful to the NCI/NIH for their financial support under grant No. CA 140409. Comment ======= In view of the radio-sensitization activity associated with *N*-benzylindolyl-1-azabicyclo\[2.2.2\]octan-3-ones (Sonar *et al.*, 2007), we have undertaken the synthesis and structural analysis of a series of (2*Z*,3*E*)-2-((1-benzyl-1*H*-indol-3-yl)methylene) quinuclidin-3-one oximes. Systematic structural modification of the active molecule (*Z*)-2-(1-benzyl-1*H*-indol-3-ylmethylene)1- azabicyclo\[2.2.2\]octan-3-ol, was carried out, and the title compound was synthesized as its structural analogue. The X-ray analysis of the title compound was carried out to confirm the double-bond geometry of the molecule, and to determine the molecular conformation in the crystal structure. X-ray crystallography confirmed the molecular structure and atom connectivity for title compound, as illustrated in Fig. 1. The indole ring is planar, with bond distances and angles comparable with those previously reported for other indole derivatives (Mason *et al.*., 2003; Zarza *et al.*., 1988). The benzene ring of the benzyl group linked to the N1 position of the indole ring is slightly twisted, making a dihedral angle of 78.56 (6)° with the plane of the indole ring system. The title compound is the *Z* isomer, with the C10---C11 bond in a *trans* disposition with respect to the C8---C9 bond. The double bond has a nearly planar arrangement, since the r.m.s. deviation from the best plane passing through atoms N2/C10/ C11/C9/C8 is 0.0143 (15) Å. The azabicyclic system presents very small distortions around atoms N2, C14, C13, C12, C16 and C11. The value of the C1=C8---C9=C10 torsion angle -13.87° indicates the deviation of the indole ring from the plane of the double bond connected to the azabicyclic ring. Experimental {#experimental} ============ Compound 2-((1-(4-chlorobenzyl)-1*H*-indol-3-yl)methylene) quinuclidin-3-one was prepared by aldol condensation of 1-(4-chlorobenzyl-indole-3-carboxaldehyde with 1-azabicyclo\[2.2.2\]octan- 3-one to afford (*Z*)-2-(1-(4-chlorobenzyl-1*H*-indol-3-yl methylene)-1-azabicyclo\[2.2.2\]octan-3-one, as a single geometric isomer, according to the previously reported procedure of Sonar *et al.* (2003). A mixture (*Z*)-2-(1-(4-chlorobenzyl-1*H*-indol-3-yl methylene)1-azabicyclo\[2.2.2\]octan-3-one (0.5 g, 1.32 mmol), hydroxylamine hydrocloride (0.18 g, 2.65 mmol) and sodium acetate trihydrate (0.36 g, 2.65 mmol) was stirred in methanol (25 ml) under reflux for 8 hrs. The reaction mixture was cooled to room temperature, diluted with water (15 ml), and the light yellow solid that separated was collected by filtration, washed with water and dried, to afford the the crude product. Crystallization from methanol gave a colorless crystalline product of (2*Z*,3*E*)-2- ((1-(4-chlorobenzyl)-1*H*-indol-3-yl)methylene) quinuclidin-3-one oxime that was suitable for X-ray analysis. ^1^H NMR (CDCl~3~): δ 1.76--1.79 (*m*, 4H), 2.91--3.09 (*m*, 4H), 3.67--3.69 (*m*, 1H), 5.34 (*s*, 2H), 7.01--7.04 (*d*, 2H), 7.10 (*s*, 1H), 7.14--7.25 (*m*, 5H), 7.30 (*bs*, 1H), 7.79--7.83 (*d*, 1H), 8.21 (*s*, 1H) *p.p.m.*; ^13^C NMR (DMSO d~6~): δ 24.46, 25.87, 47.77, 50.06, 109.92, 110.45, 111.47, 119.34, 120.34, 122.39, 128.05, 128.63, 129.09, 131.27, 133.54, 135.80, 135.98, 138.23, 161.31 *p.p.m.*. Refinement {#refinement} ========== H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.99 Å (*R*~2~CH~2~), 1.00 Å (*R*~3~CH), 0.95 Å (C~Ar~H), 0.84 Å (O---H), and with *U*~iso~(H) values set to either 1.2*U*~eq~ or 1.5*U*~eq~ (OH) of the attached atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o735-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e243 .table-wrap} ------------------------------- --------------------------------------- C~23~H~22~ClN~3~O *F*(000) = 824 *M~r~* = 391.89 *D*~x~ = 1.346 Mg m^−3^ Orthorhombic, *P*2~1~2~1~2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2ac 2ab Cell parameters from 2610 reflections *a* = 5.8382 (1) Å θ = 1.0--27.5° *b* = 10.7005 (2) Å µ = 0.22 mm^−1^ *c* = 30.9451 (6) Å *T* = 90 K *V* = 1933.19 (6) Å^3^ Plate, colourless *Z* = 4 0.40 × 0.12 × 0.08 mm ------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e368 .table-wrap} --------------------------------------------------------------------------- -------------------------------------- Nonius KappaCCD diffractometer 4433 independent reflections Radiation source: fine-focus sealed tube 3150 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.103 Detector resolution: 9.1 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 1.3° ω scans at fixed χ = 55° *h* = −7→7 Absorption correction: multi-scan (*SCALEPACK*; Otwinowski & Minor, 1997) *k* = −13→13 *T*~min~ = 0.918, *T*~max~ = 0.983 *l* = −39→40 37270 measured reflections --------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e491 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.049 H-atom parameters constrained *wR*(*F*^2^) = 0.137 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0788*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.06 (Δ/σ)~max~ \< 0.001 4433 reflections Δρ~max~ = 0.40 e Å^−3^ 254 parameters Δρ~min~ = −0.24 e Å^−3^ 0 restraints Absolute structure: Flack (1983), 1853 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: −0.03 (4) ---------------------------------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e655 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e754 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N1 0.1498 (4) 0.0866 (2) 0.89083 (7) 0.0245 (5) N2 0.0660 (4) 0.1260 (2) 0.75130 (7) 0.0265 (5) N3 0.3789 (4) 0.4000 (2) 0.71465 (7) 0.0311 (6) O1 0.3831 (4) 0.45515 (18) 0.67293 (6) 0.0327 (5) H1O 0.4731 0.5164 0.6730 0.049\* Cl1 0.28052 (15) −0.51575 (6) 0.95786 (2) 0.0408 (2) C1 0.1254 (5) 0.1143 (3) 0.84757 (8) 0.0263 (6) H1 0.0091 0.0816 0.8293 0.032\* C2 0.3379 (5) 0.1501 (2) 0.90706 (9) 0.0257 (6) C3 0.4304 (5) 0.1521 (2) 0.94836 (9) 0.0313 (7) H3 0.3656 0.1040 0.9711 0.038\* C4 0.6191 (5) 0.2263 (3) 0.95518 (10) 0.0338 (7) H4 0.6823 0.2314 0.9834 0.041\* C5 0.7198 (5) 0.2941 (2) 0.92199 (9) 0.0357 (7) H5 0.8529 0.3425 0.9276 0.043\* C6 0.6283 (5) 0.2917 (2) 0.88076 (9) 0.0303 (7) H6 0.6975 0.3385 0.8582 0.036\* C7 0.4340 (5) 0.2203 (2) 0.87271 (9) 0.0252 (6) C8 0.2938 (5) 0.1964 (2) 0.83457 (8) 0.0241 (6) C9 0.3253 (5) 0.2570 (2) 0.79299 (9) 0.0249 (6) H9 0.4310 0.3245 0.7925 0.030\* C10 0.2250 (5) 0.2300 (2) 0.75544 (8) 0.0232 (6) C11 0.2554 (5) 0.2987 (2) 0.71447 (8) 0.0254 (6) C12 0.1228 (5) 0.2401 (3) 0.67821 (9) 0.0307 (7) H12 0.1483 0.2857 0.6504 0.037\* C13 −0.1316 (5) 0.2419 (3) 0.69126 (10) 0.0371 (7) H13A −0.2244 0.1972 0.6694 0.044\* H13B −0.1872 0.3292 0.6931 0.044\* C14 −0.1551 (5) 0.1767 (3) 0.73590 (9) 0.0306 (7) H14A −0.2140 0.2376 0.7573 0.037\* H14B −0.2677 0.1078 0.7336 0.037\* C15 0.1538 (5) 0.0380 (2) 0.71842 (8) 0.0297 (7) H15A 0.0415 −0.0303 0.7143 0.036\* H15B 0.2984 0.0004 0.7289 0.036\* C16 0.1976 (6) 0.1027 (3) 0.67474 (9) 0.0355 (7) H16A 0.3624 0.0980 0.6674 0.043\* H16B 0.1096 0.0603 0.6517 0.043\* C17 −0.0065 (5) 0.0109 (2) 0.91598 (9) 0.0283 (6) H17A −0.1531 0.0046 0.9001 0.034\* H17B −0.0380 0.0546 0.9435 0.034\* C18 0.0755 (5) −0.1200 (3) 0.92624 (8) 0.0256 (6) C19 −0.0692 (5) −0.1968 (3) 0.95003 (8) 0.0289 (6) H19 −0.2120 −0.1649 0.9597 0.035\* C20 −0.0099 (5) −0.3190 (2) 0.95994 (9) 0.0295 (6) H20 −0.1105 −0.3710 0.9760 0.035\* C21 0.1993 (5) −0.3631 (2) 0.94579 (9) 0.0291 (7) C22 0.3478 (5) −0.2890 (2) 0.92239 (8) 0.0292 (7) H22 0.4916 −0.3209 0.9131 0.035\* C23 0.2838 (5) −0.1665 (2) 0.91249 (8) 0.0263 (6) H23 0.3841 −0.1148 0.8962 0.032\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1444 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N1 0.0254 (13) 0.0248 (12) 0.0232 (12) 0.0017 (10) 0.0011 (10) −0.0014 (9) N2 0.0248 (13) 0.0252 (12) 0.0297 (13) −0.0052 (11) 0.0008 (11) 0.0003 (10) N3 0.0348 (15) 0.0266 (12) 0.0321 (13) 0.0075 (11) 0.0085 (12) 0.0067 (10) O1 0.0341 (13) 0.0300 (11) 0.0340 (11) −0.0025 (9) 0.0030 (9) 0.0037 (8) Cl1 0.0491 (5) 0.0268 (4) 0.0464 (4) 0.0042 (4) 0.0006 (4) 0.0036 (3) C1 0.0252 (15) 0.0261 (13) 0.0277 (15) 0.0036 (12) −0.0044 (12) −0.0025 (12) C2 0.0287 (17) 0.0232 (14) 0.0252 (14) 0.0076 (12) −0.0020 (12) −0.0046 (11) C3 0.0337 (17) 0.0270 (15) 0.0332 (17) 0.0081 (13) −0.0022 (14) −0.0056 (12) C4 0.0417 (19) 0.0278 (14) 0.0318 (16) 0.0108 (14) −0.0103 (15) −0.0074 (13) C5 0.0348 (18) 0.0264 (14) 0.0460 (18) 0.0022 (14) −0.0096 (15) −0.0120 (13) C6 0.0320 (17) 0.0222 (14) 0.0367 (17) 0.0010 (13) −0.0031 (14) −0.0031 (12) C7 0.0217 (15) 0.0228 (14) 0.0311 (15) 0.0027 (12) 0.0008 (12) −0.0048 (12) C8 0.0264 (15) 0.0173 (12) 0.0287 (14) 0.0014 (12) 0.0010 (12) −0.0016 (10) C9 0.0198 (14) 0.0208 (12) 0.0342 (15) 0.0015 (12) 0.0011 (12) 0.0005 (11) C10 0.0175 (14) 0.0199 (12) 0.0323 (15) −0.0013 (12) 0.0050 (12) 0.0021 (11) C11 0.0221 (15) 0.0217 (13) 0.0325 (15) 0.0015 (12) 0.0029 (13) 0.0031 (11) C12 0.0309 (17) 0.0337 (16) 0.0275 (16) −0.0038 (14) 0.0004 (13) 0.0065 (12) C13 0.0264 (17) 0.0386 (17) 0.0462 (18) −0.0001 (14) −0.0041 (15) 0.0116 (14) C14 0.0216 (16) 0.0336 (15) 0.0368 (17) −0.0003 (13) −0.0009 (13) 0.0009 (13) C15 0.0326 (17) 0.0222 (13) 0.0342 (16) −0.0013 (13) −0.0030 (13) −0.0045 (12) C16 0.0412 (19) 0.0346 (16) 0.0306 (16) −0.0054 (15) 0.0029 (14) −0.0057 (13) C17 0.0265 (16) 0.0286 (15) 0.0298 (15) 0.0020 (13) 0.0035 (12) 0.0011 (12) C18 0.0261 (15) 0.0285 (14) 0.0224 (14) 0.0010 (13) −0.0023 (12) −0.0018 (11) C19 0.0289 (16) 0.0324 (15) 0.0254 (15) 0.0032 (13) 0.0012 (13) −0.0002 (12) C20 0.0311 (17) 0.0284 (14) 0.0288 (15) −0.0034 (13) 0.0066 (13) 0.0033 (13) C21 0.0377 (18) 0.0229 (13) 0.0268 (14) 0.0035 (13) −0.0051 (13) −0.0020 (11) C22 0.0308 (17) 0.0297 (15) 0.0270 (15) 0.0041 (13) −0.0003 (13) −0.0038 (12) C23 0.0255 (16) 0.0289 (14) 0.0247 (14) −0.0023 (13) 0.0022 (13) −0.0009 (11) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1987 .table-wrap} ---------------------- ------------ ----------------------- ------------ N1---C1 1.379 (3) C11---C12 1.500 (4) N1---C2 1.385 (4) C12---C16 1.538 (4) N1---C17 1.448 (3) C12---C13 1.539 (4) N2---C10 1.455 (3) C12---H12 1.0000 N2---C15 1.479 (3) C13---C14 1.554 (4) N2---C14 1.479 (4) C13---H13A 0.9900 N3---C11 1.302 (4) C13---H13B 0.9900 N3---O1 1.420 (3) C14---H14A 0.9900 O1---H1O 0.8400 C14---H14B 0.9900 Cl1---C21 1.741 (3) C15---C16 1.540 (4) C1---C8 1.378 (4) C15---H15A 0.9900 C1---H1 0.9500 C15---H15B 0.9900 C2---C3 1.387 (4) C16---H16A 0.9900 C2---C7 1.418 (4) C16---H16B 0.9900 C3---C4 1.374 (4) C17---C18 1.514 (4) C3---H3 0.9500 C17---H17A 0.9900 C4---C5 1.388 (4) C17---H17B 0.9900 C4---H4 0.9500 C18---C23 1.381 (4) C5---C6 1.383 (4) C18---C19 1.389 (4) C5---H5 0.9500 C19---C20 1.387 (4) C6---C7 1.390 (4) C19---H19 0.9500 C6---H6 0.9500 C20---C21 1.380 (4) C7---C8 1.459 (4) C20---H20 0.9500 C8---C9 1.453 (4) C21---C22 1.381 (4) C9---C10 1.333 (3) C22---C23 1.397 (4) C9---H9 0.9500 C22---H22 0.9500 C10---C11 1.476 (3) C23---H23 0.9500 C1---N1---C2 109.2 (2) C12---C13---H13A 110.1 C1---N1---C17 125.3 (2) C14---C13---H13A 110.1 C2---N1---C17 125.4 (2) C12---C13---H13B 110.1 C10---N2---C15 109.1 (2) C14---C13---H13B 110.1 C10---N2---C14 107.7 (2) H13A---C13---H13B 108.4 C15---N2---C14 108.3 (2) N2---C14---C13 112.0 (2) C11---N3---O1 110.6 (2) N2---C14---H14A 109.2 N3---O1---H1O 109.5 C13---C14---H14A 109.2 C8---C1---N1 110.3 (2) N2---C14---H14B 109.2 C8---C1---H1 124.9 C13---C14---H14B 109.2 N1---C1---H1 124.9 H14A---C14---H14B 107.9 N1---C2---C3 130.6 (3) N2---C15---C16 112.0 (2) N1---C2---C7 107.6 (2) N2---C15---H15A 109.2 C3---C2---C7 121.9 (3) C16---C15---H15A 109.2 C4---C3---C2 117.6 (3) N2---C15---H15B 109.2 C4---C3---H3 121.2 C16---C15---H15B 109.2 C2---C3---H3 121.2 H15A---C15---H15B 107.9 C3---C4---C5 121.8 (3) C12---C16---C15 108.8 (2) C3---C4---H4 119.1 C12---C16---H16A 109.9 C5---C4---H4 119.1 C15---C16---H16A 109.9 C6---C5---C4 120.6 (3) C12---C16---H16B 109.9 C6---C5---H5 119.7 C15---C16---H16B 109.9 C4---C5---H5 119.7 H16A---C16---H16B 108.3 C5---C6---C7 119.4 (3) N1---C17---C18 115.6 (2) C5---C6---H6 120.3 N1---C17---H17A 108.4 C7---C6---H6 120.3 C18---C17---H17A 108.4 C6---C7---C2 118.7 (3) N1---C17---H17B 108.4 C6---C7---C8 134.4 (3) C18---C17---H17B 108.4 C2---C7---C8 106.9 (2) H17A---C17---H17B 107.4 C1---C8---C9 129.3 (3) C23---C18---C19 119.0 (3) C1---C8---C7 106.0 (2) C23---C18---C17 123.2 (3) C9---C8---C7 124.5 (2) C19---C18---C17 117.8 (3) C10---C9---C8 128.3 (3) C20---C19---C18 121.5 (3) C10---C9---H9 115.9 C20---C19---H19 119.2 C8---C9---H9 115.9 C18---C19---H19 119.2 C9---C10---N2 121.5 (2) C21---C20---C19 118.2 (3) C9---C10---C11 126.0 (2) C21---C20---H20 120.9 N2---C10---C11 112.5 (2) C19---C20---H20 120.9 N3---C11---C10 118.5 (2) C20---C21---C22 121.7 (3) N3---C11---C12 129.5 (2) C20---C21---Cl1 119.6 (2) C10---C11---C12 111.9 (2) C22---C21---Cl1 118.7 (2) C11---C12---C16 107.8 (2) C21---C22---C23 119.0 (3) C11---C12---C13 107.3 (2) C21---C22---H22 120.5 C16---C12---C13 107.7 (3) C23---C22---H22 120.5 C11---C12---H12 111.3 C18---C23---C22 120.4 (3) C16---C12---H12 111.3 C18---C23---H23 119.8 C13---C12---H12 111.3 C22---C23---H23 119.8 C12---C13---C14 108.2 (2) C2---N1---C1---C8 −0.5 (3) C9---C10---C11---N3 −4.8 (4) C17---N1---C1---C8 175.3 (2) N2---C10---C11---N3 174.5 (2) C1---N1---C2---C3 −180.0 (3) C9---C10---C11---C12 178.1 (3) C17---N1---C2---C3 4.3 (4) N2---C10---C11---C12 −2.7 (3) C1---N1---C2---C7 0.2 (3) N3---C11---C12---C16 127.3 (3) C17---N1---C2---C7 −175.5 (2) C10---C11---C12---C16 −55.9 (3) N1---C2---C3---C4 −179.1 (3) N3---C11---C12---C13 −117.0 (3) C7---C2---C3---C4 0.7 (4) C10---C11---C12---C13 59.8 (3) C2---C3---C4---C5 −2.1 (4) C11---C12---C13---C14 −54.6 (3) C3---C4---C5---C6 1.9 (4) C16---C12---C13---C14 61.1 (3) C4---C5---C6---C7 −0.2 (4) C10---N2---C14---C13 60.5 (3) C5---C6---C7---C2 −1.1 (4) C15---N2---C14---C13 −57.4 (3) C5---C6---C7---C8 179.7 (3) C12---C13---C14---N2 −3.5 (4) N1---C2---C7---C6 −179.3 (2) C10---N2---C15---C16 −55.6 (3) C3---C2---C7---C6 0.9 (4) C14---N2---C15---C16 61.4 (3) N1---C2---C7---C8 0.1 (3) C11---C12---C16---C15 57.8 (3) C3---C2---C7---C8 −179.7 (2) C13---C12---C16---C15 −57.6 (3) N1---C1---C8---C9 −175.4 (2) N2---C15---C16---C12 −3.0 (3) N1---C1---C8---C7 0.5 (3) C1---N1---C17---C18 104.6 (3) C6---C7---C8---C1 178.9 (3) C2---N1---C17---C18 −80.3 (3) C2---C7---C8---C1 −0.4 (3) N1---C17---C18---C23 −0.6 (4) C6---C7---C8---C9 −5.0 (5) N1---C17---C18---C19 −179.5 (2) C2---C7---C8---C9 175.8 (2) C23---C18---C19---C20 −0.5 (4) C1---C8---C9---C10 −13.9 (5) C17---C18---C19---C20 178.4 (2) C7---C8---C9---C10 170.9 (3) C18---C19---C20---C21 0.5 (4) C8---C9---C10---N2 −2.2 (4) C19---C20---C21---C22 0.0 (4) C8---C9---C10---C11 176.9 (3) C19---C20---C21---Cl1 179.6 (2) C15---N2---C10---C9 −121.0 (3) C20---C21---C22---C23 −0.5 (4) C14---N2---C10---C9 121.6 (3) Cl1---C21---C22---C23 179.9 (2) C15---N2---C10---C11 59.7 (3) C19---C18---C23---C22 0.0 (4) C14---N2---C10---C11 −57.7 (3) C17---C18---C23---C22 −178.9 (3) O1---N3---C11---C10 −178.2 (2) C21---C22---C23---C18 0.5 (4) O1---N3---C11---C12 −1.6 (4) ---------------------- ------------ ----------------------- ------------ :::
PubMed Central
2024-06-05T04:04:18.314718
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052080/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):o735", "authors": [ { "first": "Narsimha Reddy", "last": "Penthala" }, { "first": "Thirupathi Reddy Yerram", "last": "Reddy" }, { "first": "Sean", "last": "Parkin" }, { "first": "Peter A.", "last": "Crooks" } ] }
PMC3052081
Related literature {#sec1} ================== For applications of 2,6-diamino­pyridine, see: Abu Zuhri & Cox (1989[@bb1]). For related structures, see; Schwalbe *et al.* (1987[@bb13]); Al-Dajani *et al.* (2009[@bb4], 2010[@bb3]); Aghabozorg *et al.* (2005[@bb2]); Büyükgüngör & Odabaşoğlu (2006[@bb9]); Odabaşoğlu & Büyükgüngör (2006[@bb12]); Haddad & Al-Far (2003[@bb10]). For details of oxalic acid, see: Subha Nandhini *et al.* (2001[@bb11]); Bahadur *et al.* (2007[@bb6]); Athimoolam & Natarajan (2007[@bb5]). For hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} 2C~5~H~8~N~3~ ^+^·2C~2~HO~4~ ^−^·H~2~O*M* *~r~* = 416.36Monoclinic,*a* = 8.1681 (1) Å*b* = 34.8396 (4) Å*c* = 7.2031 (1) Åβ = 114.573 (1)°*V* = 1864.16 (4) Å^3^*Z* = 4Mo *K*α radiationμ = 0.13 mm^−1^*T* = 296 K0.29 × 0.27 × 0.15 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009)[@bb8] *T* ~min~ = 0.964, *T* ~max~ = 0.98233926 measured reflections4287 independent reflections3195 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.037 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.048*wR*(*F* ^2^) = 0.127*S* = 1.034287 reflections318 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.49 e Å^−3^Δρ~min~ = −0.30 e Å^−3^ {#d5e799} Data collection: *APEX2* (Bruker, 2009[@bb8]); cell refinement: *SAINT* (Bruker, 2009[@bb8]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb14]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb15]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004119/yk2001sup1.cif](http://dx.doi.org/10.1107/S1600536811004119/yk2001sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004119/yk2001Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004119/yk2001Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?yk2001&file=yk2001sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?yk2001sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?yk2001&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [YK2001](http://scripts.iucr.org/cgi-bin/sendsup?yk2001)). SS gratefully acknowledges funding from Universiti Sains Malaysia under the University Research Grant (No. 1001/PPSK/815028). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. Comment ======= 2,6-Diaminopyridinium and diaminopyridine in general have an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). The crystal structures of 2,6-diaminopyridine (Schwalbe *et al.*, 1987), tetrakis(2,6-diaminopyridinium) diphthalate 2,6-diaminopyridine (Al-Dajani *et al.*, 2009), 2,6-diaminopyridinium pyridinium-2,6-dicarboxylate (Aghabozorg *et al.*, 2005), 2,6-diaminopyridinium hydrogen fumarate (Büyükgüngör & Odabaşoğlu, 2006), bis(2,6-diaminopyridinium) oxalate dihydrate (Odabaşoğlu & Büyükgüngör, 2006), 2,6-diamino pyridinium bromide monohydrate (Haddad & Al-Far, 2003) and 2,6-diamino pyridinium 2-carboxybenzoate (Al-Dajani *et al.*, 2010) have been reported in the literature. Oxalic acid, in principle, exists in three ionization states, viz. singly charged (semioxalate), doubly charged (oxalate) and neutral (oxalic acid). In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title compound, (I), is presented here. The asymmetric unit of the title compound consists of two crystallographically independent 2,6-diaminopyridinium cations (A & B), two hydrogen oxalate anions (A & B) and a water molecule, as shown in Fig. 1. Each 2,6-diaminopyridinium cation is planar, with a maximum deviation of 0.011 (2)Å for atom C6A in cation A and 0.015 (1)Å for atom N1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C2A---N1A---C6A \[123.88 (15)°\] and C2B---N1B---C6B \[123.62 (15)°\] angles compared to those observed in an unprotonated structure (Schwalbe *et al.*, 1987). The oxalic acid molecule exists in a mono-ionized state in the crystals. Similar observations were also found in the crystal structure of glycinium hydrogen oxalate (Subha Nandhini *et al.*, 2001), creatininium hydrogen oxalate monohydrate (Bahadur *et al.*, 2007) and 3-carboxypyridinium hydrogen oxalate (Athimoolam & Natarajan, 2007). Here, the hydrogen oxalate anions adopt twisted conformations and the dihedral angles between planes of their carboxylic groups are 31.01 (11)° and 63.48 (11)° for anions A and B, respectively. In the crystal structure, the carboxylate groups of each hydrogen oxalate anion interact with the corresponding 2,6-diaminopyridinium cations via a pair of N---H···O hydrogen bonds forming an *R*~2~^2^(8) ring motif (Fig. 1) (Bernstein *et al.*, 1995). The ionic units and water molecules are linked by O---H···O and N---H···O (Table 1) hydrogen bonds to form a three-dimensional network (Fig. 2). Experimental {#experimental} ============ Oxalic acid dihydrate (0.01 mol, 1.3 g) was dissolved in 50 ml of methanol in a round bottom flask. 2,6-diaminopyridine (0.01mol, 1.1 g) was dissolved in 50 ml of methanol in a flask and then added in small portions to the oxalic acid with stirring. The reaction mixture was left stirring for 3 hours at room temperature. Brown precipitate was formed, filtered, and washed with methanol. Recrystallization of the brown precipitate with water has yielded after 48 hours brown crystals which was washed with methanol and dried at 353 K. Refinement {#refinement} ========== The N- and O-bound H atoms were located in a difference map and refined freely \[N--H = 0.87 (2)--0.93 (3) Å and O--H = 0.82 (3)-- 0.95 (3) Å. The remaining H atoms were positioned geometrically \[C--H = 0.93Å\] and were refined using a riding model, with *U*~iso~(H) = 1.2*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. ::: ![](e-67-0o591-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of the title compound (I). ::: ![](e-67-0o591-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e140 .table-wrap} -------------------------------------- --------------------------------------- 2C~5~H~8~N~3~^+^·2C~2~HO~4~^−^·H~2~O *F*(000) = 872 *M~r~* = 416.36 *D*~x~ = 1.484 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 8066 reflections *a* = 8.1681 (1) Å θ = 2.7--29.6° *b* = 34.8396 (4) Å µ = 0.13 mm^−1^ *c* = 7.2031 (1) Å *T* = 296 K β = 114.573 (1)° Block, brown *V* = 1864.16 (4) Å^3^ 0.29 × 0.27 × 0.15 mm *Z* = 4 -------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e283 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII CCD area-detector diffractometer 4287 independent reflections Radiation source: fine-focus sealed tube 3195 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.037 φ and ω scans θ~max~ = 27.5°, θ~min~ = 2.3° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −10→10 *T*~min~ = 0.964, *T*~max~ = 0.982 *k* = −45→44 33926 measured reflections *l* = −9→9 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e400 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.048 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.127 H atoms treated by a mixture of independent and constrained refinement *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0544*P*)^2^ + 0.6267*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4287 reflections (Δ/σ)~max~ = 0.001 318 parameters Δρ~max~ = 0.49 e Å^−3^ 0 restraints Δρ~min~ = −0.30 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e557 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e605 .table-wrap} ------ -------------- ------------- ------------ -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1A 0.4482 (2) 0.61834 (4) 0.9547 (3) 0.0707 (5) O2A 0.17712 (17) 0.59774 (4) 0.7486 (2) 0.0604 (4) H2A 0.149 (3) 0.6230 (8) 0.768 (4) 0.086 (8)\* O3A 0.57769 (16) 0.55605 (3) 0.8116 (2) 0.0450 (3) O4A 0.32307 (17) 0.52706 (3) 0.7723 (2) 0.0508 (3) N1A 0.24244 (19) 0.73699 (4) 0.8214 (2) 0.0379 (3) H1NA 0.188 (3) 0.7149 (6) 0.820 (3) 0.055 (6)\* N2A 0.4866 (3) 0.69987 (5) 0.8523 (3) 0.0532 (4) H3NA 0.591 (3) 0.6973 (7) 0.850 (3) 0.067 (7)\* H2NA 0.431 (3) 0.6779 (7) 0.862 (3) 0.065 (7)\* N3A −0.0132 (2) 0.76858 (5) 0.7974 (3) 0.0530 (4) H4NA −0.063 (3) 0.7457 (7) 0.807 (4) 0.074 (7)\* H5NA −0.073 (3) 0.7903 (6) 0.783 (3) 0.050 (6)\* C7A 0.3497 (2) 0.59436 (5) 0.8417 (3) 0.0426 (4) C8A 0.4205 (2) 0.55548 (5) 0.8045 (3) 0.0366 (4) C2A 0.4143 (2) 0.73481 (5) 0.8371 (3) 0.0395 (4) C3A 0.5024 (3) 0.76876 (6) 0.8363 (3) 0.0486 (4) H3A 0.6205 0.7684 0.8493 0.058\* C4A 0.4130 (3) 0.80282 (6) 0.8162 (3) 0.0547 (5) H4A 0.4714 0.8255 0.8127 0.066\* C5A 0.2398 (3) 0.80454 (5) 0.8011 (3) 0.0516 (5) H5A 0.1820 0.8280 0.7876 0.062\* C6A 0.1525 (2) 0.77058 (5) 0.8062 (3) 0.0400 (4) O3B 1.06013 (16) 0.66502 (3) 0.7787 (2) 0.0479 (3) O4B 0.83371 (18) 0.69483 (4) 0.8123 (2) 0.0584 (4) O1B 0.7509 (2) 0.61351 (4) 0.5650 (2) 0.0694 (5) O2B 0.7631 (2) 0.61662 (5) 0.8760 (2) 0.0667 (5) H2B 0.690 (4) 0.5942 (9) 0.840 (4) 0.104 (9)\* N1B 0.72190 (18) 0.48805 (4) 0.7325 (2) 0.0376 (3) H1NB 0.671 (3) 0.5096 (6) 0.750 (3) 0.049 (5)\* N2B 0.4688 (2) 0.45485 (5) 0.7030 (3) 0.0493 (4) H2NB 0.423 (3) 0.4775 (7) 0.731 (3) 0.062 (6)\* H3NB 0.408 (3) 0.4336 (7) 0.672 (3) 0.073 (7)\* N3B 0.9553 (3) 0.52718 (5) 0.7489 (3) 0.0582 (5) H5NB 1.071 (3) 0.5308 (7) 0.762 (3) 0.069 (7)\* H4NB 0.888 (4) 0.5452 (7) 0.739 (4) 0.076 (8)\* C8B 0.9063 (2) 0.66636 (5) 0.7784 (3) 0.0371 (4) C7B 0.7974 (2) 0.62902 (5) 0.7277 (3) 0.0376 (4) C2B 0.6357 (2) 0.45385 (5) 0.7121 (3) 0.0383 (4) C3B 0.7258 (3) 0.42076 (5) 0.7024 (3) 0.0498 (5) H3B 0.6709 0.3969 0.6882 0.060\* C4B 0.8978 (3) 0.42379 (6) 0.7143 (3) 0.0535 (5) H4B 0.9594 0.4015 0.7108 0.064\* C5B 0.9815 (3) 0.45863 (6) 0.7310 (3) 0.0497 (5) H5B 1.0976 0.4600 0.7379 0.060\* C6B 0.8898 (2) 0.49165 (5) 0.7376 (3) 0.0415 (4) O1W 0.8207 (2) 0.65644 (5) 0.2651 (3) 0.0634 (4) H2W 0.798 (4) 0.6437 (8) 0.351 (4) 0.096 (10)\* H1W 0.759 (4) 0.6459 (9) 0.157 (5) 0.098 (10)\* ------ -------------- ------------- ------------ -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1239 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1A 0.0486 (9) 0.0399 (8) 0.1120 (13) −0.0056 (6) 0.0219 (8) −0.0224 (8) O2A 0.0372 (8) 0.0412 (8) 0.1012 (11) 0.0008 (6) 0.0271 (7) −0.0223 (7) O3A 0.0376 (7) 0.0333 (6) 0.0729 (8) −0.0022 (5) 0.0317 (6) −0.0039 (6) O4A 0.0405 (7) 0.0302 (6) 0.0870 (9) −0.0055 (5) 0.0319 (7) −0.0086 (6) N1A 0.0361 (8) 0.0298 (7) 0.0486 (8) −0.0047 (6) 0.0185 (6) 0.0009 (6) N2A 0.0470 (10) 0.0429 (10) 0.0781 (12) 0.0037 (8) 0.0344 (9) 0.0017 (8) N3A 0.0452 (10) 0.0352 (9) 0.0845 (12) 0.0038 (8) 0.0329 (9) 0.0058 (8) C7A 0.0373 (10) 0.0314 (9) 0.0640 (11) −0.0022 (7) 0.0259 (8) −0.0030 (8) C8A 0.0339 (9) 0.0300 (8) 0.0489 (9) −0.0025 (7) 0.0203 (7) −0.0012 (7) C2A 0.0387 (9) 0.0389 (9) 0.0416 (8) −0.0012 (7) 0.0172 (7) −0.0007 (7) C3A 0.0376 (10) 0.0504 (11) 0.0600 (11) −0.0101 (8) 0.0223 (8) −0.0011 (8) C4A 0.0553 (12) 0.0384 (10) 0.0720 (13) −0.0147 (9) 0.0279 (10) −0.0001 (9) C5A 0.0525 (12) 0.0306 (9) 0.0719 (12) −0.0024 (8) 0.0261 (10) 0.0029 (8) C6A 0.0409 (9) 0.0331 (9) 0.0463 (9) −0.0012 (7) 0.0186 (7) 0.0014 (7) O3B 0.0367 (7) 0.0328 (6) 0.0814 (9) −0.0065 (5) 0.0317 (6) −0.0092 (6) O4B 0.0447 (8) 0.0325 (7) 0.1075 (11) −0.0017 (6) 0.0412 (8) −0.0090 (7) O1B 0.0931 (12) 0.0613 (9) 0.0681 (9) −0.0413 (8) 0.0479 (9) −0.0255 (7) O2B 0.0829 (11) 0.0623 (10) 0.0626 (9) −0.0404 (8) 0.0379 (8) −0.0107 (7) N1B 0.0342 (8) 0.0293 (7) 0.0525 (8) 0.0011 (6) 0.0213 (6) −0.0033 (6) N2B 0.0404 (9) 0.0338 (8) 0.0799 (11) −0.0065 (7) 0.0314 (8) −0.0075 (8) N3B 0.0431 (10) 0.0469 (10) 0.0936 (14) −0.0114 (8) 0.0374 (10) −0.0109 (9) C8B 0.0321 (9) 0.0299 (8) 0.0500 (9) −0.0009 (7) 0.0179 (7) −0.0007 (7) C7B 0.0289 (8) 0.0316 (8) 0.0542 (10) −0.0011 (7) 0.0191 (7) −0.0022 (7) C2B 0.0387 (9) 0.0327 (9) 0.0454 (9) −0.0015 (7) 0.0194 (7) −0.0007 (7) C3B 0.0538 (12) 0.0287 (9) 0.0701 (12) 0.0037 (8) 0.0288 (10) 0.0008 (8) C4B 0.0526 (12) 0.0430 (11) 0.0678 (12) 0.0168 (9) 0.0279 (10) 0.0014 (9) C5B 0.0353 (10) 0.0554 (12) 0.0610 (11) 0.0068 (8) 0.0226 (8) −0.0024 (9) C6B 0.0348 (9) 0.0430 (10) 0.0487 (9) −0.0026 (7) 0.0194 (7) −0.0052 (7) O1W 0.0745 (11) 0.0547 (9) 0.0603 (10) −0.0163 (8) 0.0274 (9) −0.0031 (8) ----- ------------- ------------- ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1809 .table-wrap} ----------------------- -------------- ----------------------- -------------- O1A---C7A 1.209 (2) O4B---C8B 1.231 (2) O2A---C7A 1.290 (2) O1B---C7B 1.200 (2) O2A---H2A 0.94 (3) O2B---C7B 1.286 (2) O3A---C8A 1.2637 (19) O2B---H2B 0.95 (3) O4A---C8A 1.2303 (19) N1B---C2B 1.360 (2) N1A---C6A 1.362 (2) N1B---C6B 1.362 (2) N1A---C2A 1.362 (2) N1B---H1NB 0.89 (2) N1A---H1NA 0.89 (2) N2B---C2B 1.338 (2) N2A---C2A 1.337 (2) N2B---H2NB 0.93 (2) N2A---H3NA 0.87 (2) N2B---H3NB 0.87 (3) N2A---H2NA 0.91 (2) N3B---C6B 1.338 (2) N3A---C6A 1.330 (2) N3B---H5NB 0.92 (3) N3A---H4NA 0.91 (3) N3B---H4NB 0.82 (3) N3A---H5NA 0.88 (2) C8B---C7B 1.532 (2) C7A---C8A 1.539 (2) C2B---C3B 1.385 (2) C2A---C3A 1.386 (2) C3B---C4B 1.376 (3) C3A---C4A 1.369 (3) C3B---H3B 0.9300 C3A---H3A 0.9300 C4B---C5B 1.374 (3) C4A---C5A 1.374 (3) C4B---H4B 0.9300 C4A---H4A 0.9300 C5B---C6B 1.385 (3) C5A---C6A 1.390 (2) C5B---H5B 0.9300 C5A---H5A 0.9300 O1W---H2W 0.84 (3) O3B---C8B 1.2567 (19) O1W---H1W 0.82 (3) C7A---O2A---H2A 106.9 (16) C2B---N1B---C6B 123.62 (15) C6A---N1A---C2A 123.88 (15) C2B---N1B---H1NB 120.2 (13) C6A---N1A---H1NA 119.4 (14) C6B---N1B---H1NB 116.1 (13) C2A---N1A---H1NA 116.8 (14) C2B---N2B---H2NB 120.2 (14) C2A---N2A---H3NA 119.8 (16) C2B---N2B---H3NB 117.0 (16) C2A---N2A---H2NA 123.8 (14) H2NB---N2B---H3NB 123 (2) H3NA---N2A---H2NA 116 (2) C6B---N3B---H5NB 120.1 (15) C6A---N3A---H4NA 121.2 (16) C6B---N3B---H4NB 117.6 (19) C6A---N3A---H5NA 117.9 (13) H5NB---N3B---H4NB 122 (2) H4NA---N3A---H5NA 121 (2) O4B---C8B---O3B 126.38 (15) O1A---C7A---O2A 124.31 (16) O4B---C8B---C7B 116.86 (14) O1A---C7A---C8A 122.17 (16) O3B---C8B---C7B 116.75 (14) O2A---C7A---C8A 113.46 (15) O1B---C7B---O2B 124.77 (16) O4A---C8A---O3A 125.94 (15) O1B---C7B---C8B 122.12 (16) O4A---C8A---C7A 118.73 (14) O2B---C7B---C8B 113.11 (15) O3A---C8A---C7A 115.33 (14) N2B---C2B---N1B 117.00 (15) N2A---C2A---N1A 117.55 (16) N2B---C2B---C3B 124.81 (17) N2A---C2A---C3A 124.36 (17) N1B---C2B---C3B 118.19 (16) N1A---C2A---C3A 118.09 (16) C4B---C3B---C2B 118.91 (17) C4A---C3A---C2A 119.02 (17) C4B---C3B---H3B 120.5 C4A---C3A---H3A 120.5 C2B---C3B---H3B 120.5 C2A---C3A---H3A 120.5 C5B---C4B---C3B 122.08 (17) C3A---C4A---C5A 122.15 (18) C5B---C4B---H4B 119.0 C3A---C4A---H4A 118.9 C3B---C4B---H4B 119.0 C5A---C4A---H4A 118.9 C4B---C5B---C6B 118.73 (17) C4A---C5A---C6A 118.93 (18) C4B---C5B---H5B 120.6 C4A---C5A---H5A 120.5 C6B---C5B---H5B 120.6 C6A---C5A---H5A 120.5 N3B---C6B---N1B 117.38 (17) N3A---C6A---N1A 117.60 (16) N3B---C6B---C5B 124.22 (17) N3A---C6A---C5A 124.52 (17) N1B---C6B---C5B 118.40 (16) N1A---C6A---C5A 117.88 (16) H2W---O1W---H1W 103 (3) C7B---O2B---H2B 112.3 (18) O1A---C7A---C8A---O4A 147.14 (19) O4B---C8B---C7B---O1B 116.2 (2) O2A---C7A---C8A---O4A −29.9 (2) O3B---C8B---C7B---O1B −62.9 (2) O1A---C7A---C8A---O3A −32.5 (3) O4B---C8B---C7B---O2B −64.0 (2) O2A---C7A---C8A---O3A 150.49 (17) O3B---C8B---C7B---O2B 116.95 (18) C6A---N1A---C2A---N2A 179.59 (16) C6B---N1B---C2B---N2B −177.96 (16) C6A---N1A---C2A---C3A −0.4 (2) C6B---N1B---C2B---C3B 2.1 (3) N2A---C2A---C3A---C4A 178.82 (19) N2B---C2B---C3B---C4B −179.77 (18) N1A---C2A---C3A---C4A −1.2 (3) N1B---C2B---C3B---C4B 0.2 (3) C2A---C3A---C4A---C5A 1.4 (3) C2B---C3B---C4B---C5B −1.4 (3) C3A---C4A---C5A---C6A 0.0 (3) C3B---C4B---C5B---C6B 0.5 (3) C2A---N1A---C6A---N3A −178.21 (16) C2B---N1B---C6B---N3B 177.04 (17) C2A---N1A---C6A---C5A 1.8 (3) C2B---N1B---C6B---C5B −3.0 (3) C4A---C5A---C6A---N3A 178.47 (19) C4B---C5B---C6B---N3B −178.40 (19) C4A---C5A---C6A---N1A −1.5 (3) C4B---C5B---C6B---N1B 1.7 (3) ----------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2486 .table-wrap} ----------------------- ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1A---H1NA···O3B^i^ 0.89 (2) 1.99 (2) 2.8668 (19) 172.5 (18) O1W---H1W···O1A^ii^ 0.82 (3) 2.53 (3) 3.219 (3) 142 (3) O1W---H1W···O2B^ii^ 0.82 (3) 2.28 (3) 2.984 (2) 145 (3) N2A---H3NA···O4B 0.86 (3) 2.11 (3) 2.972 (3) 173.3 (18) O2A---H2A···O3B^i^ 0.94 (3) 1.65 (3) 2.5743 (18) 169 (3) O2B---H2B···O3A 0.95 (3) 1.58 (3) 2.525 (2) 172 (3) O1W---H2W···O1B 0.84 (3) 2.03 (3) 2.873 (2) 178 (4) N2A---H2NA···O1A 0.91 (2) 2.17 (2) 2.984 (2) 150 (2) N3A---H4NA···O4B^i^ 0.91 (2) 1.97 (3) 2.879 (2) 176 (2) N3A---H5NA···O1W^iii^ 0.88 (2) 2.03 (2) 2.908 (2) 172.3 (18) N1B---H1NB···O3A 0.89 (2) 1.92 (2) 2.8077 (19) 175.0 (17) N2B---H2NB···O4A 0.93 (2) 1.98 (2) 2.914 (2) 176.2 (18) N2B---H3NB···O1B^iv^ 0.87 (2) 2.34 (2) 3.121 (2) 150.8 (18) N3B---H5NB···O2A^v^ 0.92 (3) 2.50 (2) 3.054 (3) 118.8 (19) N3B---H5NB···O4A^v^ 0.92 (3) 2.03 (3) 2.938 (3) 168 (2) ----------------------- ---------- ---------- ------------- --------------- ::: Symmetry codes: (i) *x*−1, *y*, *z*; (ii) *x*, *y*, *z*−1; (iii) *x*−1, −*y*+3/2, *z*+1/2; (iv) −*x*+1, −*y*+1, −*z*+1; (v) *x*+1, *y*, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------------- ---------- ---------- ------------- ------------- N1*A*---H1*NA*⋯O3*B*^i^ 0.89 (2) 1.99 (2) 2.8668 (19) 172.5 (18) O1*W*---H1*W*⋯O1*A*^ii^ 0.82 (3) 2.53 (3) 3.219 (3) 142 (3) O1*W*---H1*W*⋯O2*B*^ii^ 0.82 (3) 2.28 (3) 2.984 (2) 145 (3) N2*A*---H3*NA*⋯O4*B* 0.86 (3) 2.11 (3) 2.972 (3) 173.3 (18) O2*A*---H2*A*⋯O3*B*^i^ 0.94 (3) 1.65 (3) 2.5743 (18) 169 (3) O2*B*---H2*B*⋯O3*A* 0.95 (3) 1.58 (3) 2.525 (2) 172 (3) O1*W*---H2*W*⋯O1*B* 0.84 (3) 2.03 (3) 2.873 (2) 178 (4) N2*A*---H2*NA*⋯O1*A* 0.91 (2) 2.17 (2) 2.984 (2) 150 (2) N3*A*---H4*NA*⋯O4*B*^i^ 0.91 (2) 1.97 (3) 2.879 (2) 176 (2) N3*A*---H5*NA*⋯O1*W*^iii^ 0.88 (2) 2.03 (2) 2.908 (2) 172.3 (18) N1*B*---H1*NB*⋯O3*A* 0.89 (2) 1.92 (2) 2.8077 (19) 175.0 (17) N2*B*---H2*NB*⋯O4*A* 0.93 (2) 1.98 (2) 2.914 (2) 176.2 (18) N2*B*---H3*NB*⋯O1*B*^iv^ 0.87 (2) 2.34 (2) 3.121 (2) 150.8 (18) N3*B*---H5*NB*⋯O2*A*^v^ 0.92 (3) 2.50 (2) 3.054 (3) 118.8 (19) N3*B*---H5*NB*⋯O4*A*^v^ 0.92 (3) 2.03 (3) 2.938 (3) 168 (2) Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . ::: [^1]: ‡ Additional correspondence author, e-mail: shaharum@kb.usm.my. [^2]: § Thomson Reuters ResearcherID: A-3561-2009.
PubMed Central
2024-06-05T04:04:18.321291
2011-2-09
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052081/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 9; 67(Pt 3):o591-o592", "authors": [ { "first": "Mohammad T. M.", "last": "Al-Dajani" }, { "first": "Jamal", "last": "Talaat" }, { "first": "Shaharum", "last": "Shamsuddin" }, { "first": "Madhukar", "last": "Hemamalini" }, { "first": "Hoong-Kun", "last": "Fun" } ] }
PMC3052082
Related literature {#sec1} ================== For applications of naphthyl­amines, see Valenti *et al.* (2006[@bb6]); Black *et al.* (1994[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~19~H~11~NO~3~*M* *~r~* = 301.29Triclinic,*a* = 7.3250 (11) Å*b* = 9.7916 (16) Å*c* = 10.4532 (17) Åα = 70.401 (13)°β = 82.503 (13)°γ = 75.862 (12)°*V* = 683.94 (19) Å^3^*Z* = 2Mo *K*α radiationμ = 0.10 mm^−1^*T* = 298 K0.40 × 0.30 × 0.29 mm ### Data collection {#sec2.1.2} Stoe IPDS II diffractometer7737 measured reflections3627 independent reflections3161 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.040 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.044*wR*(*F* ^2^) = 0.136*S* = 1.133627 reflections212 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.29 e Å^−3^Δρ~min~ = −0.22 e Å^−3^ {#d5e392} Data collection: *X-RED32* (Stoe & Cie, 2005[@bb5]); cell refinement: *X-AREA* (Stoe & Cie, 2005[@bb5]); data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb2]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb3]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811005356/xu5159sup1.cif](http://dx.doi.org/10.1107/S1600536811005356/xu5159sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005356/xu5159Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005356/xu5159Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5159&file=xu5159sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5159sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5159&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5159](http://scripts.iucr.org/cgi-bin/sendsup?xu5159)). We are grateful to the Islamic Azad University, Yazd Branch, for financial support. Comment ======= Naphthylamine is an aromatic amine which can be obtained from nitronaphthalene. Naphthylamines are used in the manufacture of dyes, condensation colors, and rubber and in the synthesis of a large number of chemical (Black *et al.* 1994; Valenti *et al.* 2006). Ninhydrin (2,2-dihydroxyindane-1,3-dione) is a chemical used to detect ammonia or primary and secondary amines. The carbon atom of a carbonyl bears a partial positive charge enhanced by neighboring electron withdrawing groups like carbonyl itself. So the central carbon of a 1,2,3-tricarbonyl compound is much more electrophilic than one in a simple ketone. Thus indane-1,2,3-trione reacts readily with nucleophiles, including water. Whereas for most carbonyl compounds, a carbonyl form is more stable than a product of water addition (hydrate), ninhydrin forms a stable hydrate of the central carbon because of the destabilizing effect of the adjacent carbonyl groups. We report here the crystal structure of 7-hydroxy-7-aH-benzo\[*g*\] isoindolino\[1,2-α\]indole-7,10-dione. The title compound was prepared by the reaction of α-naphthylamine and ninhydrine in molar ratio of 1: 1 in acetone. The structure of title complex is shown in Fig. 1. There are intermolecular hydrogen bondings between O---H···O and C---H···O which play important role in the stabilization of crystalline network (Table 1 & Fig. 2). Experimental {#experimental} ============ The title compound was prepared by the reaction of α- naphthylamine and ninhydrine in molar ratio of 1: 1 in acetone. The mixture was stirred for about 2 h at room temperature. The resulting solution was kept in air. After slow evaporation, single crystals of the title compound suitable for an X-ray diffraction study formed at the bottom of the vessel after 2 weeks (m.p. 138 °C). Refinement {#refinement} ========== Hydroxyl H atom was found in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and refined as riding atoms with C---H = 0.93 Å and *U*~iso~(H) = 1.2*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. ::: ![](e-67-0o680-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The packing diagram of the title compound. The intermolecular O---H···O and C---H···O hydrogen bonds are shown as blue dashed lines. ::: ![](e-67-0o680-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e125 .table-wrap} ------------------------ --------------------------------------- C~19~H~11~NO~3~ *Z* = 2 *M~r~* = 301.29 *F*(000) = 312 Triclinic, *P*1 *D*~x~ = 1.463 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 7.3250 (11) Å Cell parameters from 1011 reflections *b* = 9.7916 (16) Å θ = 2.3--25.0° *c* = 10.4532 (17) Å µ = 0.10 mm^−1^ α = 70.401 (13)° *T* = 298 K β = 82.503 (13)° Block, colorless γ = 75.862 (12)° 0.40 × 0.30 × 0.29 mm *V* = 683.94 (19) Å^3^ ------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e258 .table-wrap} ------------------------------------------ -------------------------------------- Stoe IPDS II diffractometer 3161 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.040 graphite θ~max~ = 29.3°, θ~min~ = 2.3° rotation method scans *h* = −10→10 7737 measured reflections *k* = −13→13 3627 independent reflections *l* = −14→14 ------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e351 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.044 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.136 H atoms treated by a mixture of independent and constrained refinement *S* = 1.13 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.072*P*)^2^ + 0.1037*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3627 reflections (Δ/σ)~max~ \< 0.001 212 parameters Δρ~max~ = 0.29 e Å^−3^ 0 restraints Δρ~min~ = −0.22 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e508 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e607 .table-wrap} ----- -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.60706 (15) 0.62937 (12) 0.49240 (11) 0.0298 (2) C2 0.69780 (16) 0.61664 (13) 0.36032 (12) 0.0324 (2) C3 0.87442 (18) 0.53663 (16) 0.33404 (14) 0.0410 (3) H3 0.9488 0.4711 0.4042 0.049\* C4 0.9358 (2) 0.55825 (19) 0.19890 (16) 0.0494 (3) H4 1.0540 0.5065 0.1779 0.059\* C5 0.8237 (2) 0.65604 (19) 0.09393 (15) 0.0502 (3) H5 0.8694 0.6697 0.0042 0.060\* C6 0.6452 (2) 0.73333 (16) 0.12066 (13) 0.0425 (3) H6 0.5690 0.7968 0.0507 0.051\* C7 0.58481 (16) 0.71222 (13) 0.25611 (12) 0.0332 (2) C8 0.40104 (16) 0.77784 (12) 0.31604 (11) 0.0318 (2) C9 0.33814 (17) 0.94765 (13) 0.28511 (13) 0.0374 (3) C10 0.29102 (17) 0.97079 (13) 0.41761 (13) 0.0358 (3) C11 0.19816 (19) 1.10289 (14) 0.44465 (16) 0.0441 (3) H11 0.1640 1.1909 0.3742 0.053\* C12 0.15988 (19) 1.09807 (16) 0.57670 (17) 0.0469 (3) H12 0.0981 1.1843 0.5963 0.056\* C13 0.21185 (17) 0.96457 (16) 0.68549 (15) 0.0413 (3) C14 0.1701 (2) 0.9614 (2) 0.82289 (17) 0.0541 (4) H14 0.1102 1.0485 0.8415 0.065\* C15 0.2156 (2) 0.8347 (2) 0.92698 (17) 0.0596 (4) H15 0.1890 0.8359 1.0161 0.071\* C16 0.3028 (2) 0.7010 (2) 0.90168 (15) 0.0545 (4) H16 0.3306 0.6140 0.9742 0.065\* C17 0.34726 (19) 0.69747 (16) 0.77121 (13) 0.0422 (3) H17 0.4051 0.6082 0.7558 0.051\* C18 0.30558 (16) 0.82910 (14) 0.65996 (12) 0.0344 (2) C19 0.34334 (15) 0.83897 (12) 0.52100 (12) 0.0310 (2) O1 0.67384 (13) 0.57343 (10) 0.60386 (9) 0.0374 (2) O2 0.24447 (12) 0.73626 (10) 0.28658 (9) 0.0376 (2) H2 0.268 (3) 0.630 (2) 0.317 (2) 0.066 (6)\* O3 0.32112 (19) 1.03639 (12) 0.17284 (11) 0.0592 (3) N1 0.43075 (13) 0.72309 (10) 0.46469 (9) 0.0303 (2) ----- -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1054 .table-wrap} ----- ------------ ------------- ------------ ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0310 (5) 0.0265 (5) 0.0314 (5) −0.0044 (4) −0.0037 (4) −0.0091 (4) C2 0.0318 (5) 0.0332 (5) 0.0334 (5) −0.0057 (4) −0.0021 (4) −0.0128 (4) C3 0.0329 (6) 0.0468 (7) 0.0462 (7) −0.0022 (5) −0.0040 (5) −0.0221 (6) C4 0.0366 (6) 0.0628 (9) 0.0545 (8) −0.0073 (6) 0.0071 (6) −0.0317 (7) C5 0.0490 (8) 0.0656 (9) 0.0402 (7) −0.0176 (7) 0.0120 (6) −0.0237 (7) C6 0.0460 (7) 0.0487 (7) 0.0309 (6) −0.0114 (5) 0.0016 (5) −0.0106 (5) C7 0.0339 (5) 0.0342 (5) 0.0308 (5) −0.0075 (4) −0.0004 (4) −0.0096 (4) C8 0.0328 (5) 0.0321 (5) 0.0268 (5) −0.0041 (4) −0.0038 (4) −0.0057 (4) C9 0.0367 (6) 0.0319 (5) 0.0370 (6) −0.0045 (4) −0.0026 (4) −0.0040 (4) C10 0.0323 (5) 0.0302 (5) 0.0430 (6) −0.0053 (4) −0.0014 (4) −0.0104 (5) C11 0.0384 (6) 0.0293 (6) 0.0628 (8) −0.0041 (5) −0.0020 (6) −0.0146 (5) C12 0.0378 (6) 0.0398 (7) 0.0697 (9) −0.0068 (5) 0.0044 (6) −0.0297 (7) C13 0.0310 (5) 0.0490 (7) 0.0540 (7) −0.0105 (5) 0.0038 (5) −0.0301 (6) C14 0.0438 (7) 0.0725 (10) 0.0611 (9) −0.0126 (7) 0.0084 (6) −0.0447 (9) C15 0.0510 (8) 0.0929 (13) 0.0467 (8) −0.0148 (8) 0.0065 (6) −0.0413 (9) C16 0.0540 (8) 0.0735 (10) 0.0354 (7) −0.0126 (7) 0.0017 (6) −0.0188 (7) C17 0.0428 (7) 0.0495 (7) 0.0346 (6) −0.0087 (5) 0.0009 (5) −0.0158 (5) C18 0.0290 (5) 0.0408 (6) 0.0379 (6) −0.0088 (4) 0.0016 (4) −0.0184 (5) C19 0.0278 (5) 0.0304 (5) 0.0353 (5) −0.0060 (4) 0.0001 (4) −0.0119 (4) O1 0.0403 (5) 0.0356 (4) 0.0330 (4) −0.0006 (3) −0.0097 (3) −0.0091 (3) O2 0.0338 (4) 0.0389 (5) 0.0380 (4) −0.0049 (3) −0.0085 (3) −0.0089 (4) O3 0.0753 (8) 0.0408 (6) 0.0421 (5) −0.0017 (5) −0.0040 (5) 0.0047 (4) N1 0.0325 (5) 0.0292 (4) 0.0265 (4) −0.0019 (3) −0.0028 (3) −0.0080 (3) ----- ------------ ------------- ------------ ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1560 .table-wrap} ----------------------- -------------- ----------------------- -------------- C1---O1 1.2192 (14) C10---C19 1.3826 (16) C1---N1 1.3908 (14) C10---C11 1.4075 (17) C1---C2 1.4829 (16) C11---C12 1.359 (2) C2---C3 1.3855 (16) C11---H11 0.9300 C2---C7 1.3858 (16) C12---C13 1.421 (2) C3---C4 1.387 (2) C12---H12 0.9300 C3---H3 0.9300 C13---C14 1.420 (2) C4---C5 1.393 (2) C13---C18 1.4307 (17) C4---H4 0.9300 C14---C15 1.349 (3) C5---C6 1.387 (2) C14---H14 0.9300 C5---H5 0.9300 C15---C16 1.404 (3) C6---C7 1.3885 (17) C15---H15 0.9300 C6---H6 0.9300 C16---C17 1.3704 (18) C7---C8 1.4983 (16) C16---H16 0.9300 C8---O2 1.4071 (14) C17---C18 1.4148 (19) C8---N1 1.4905 (14) C17---H17 0.9300 C8---C9 1.5445 (16) C18---C19 1.4177 (16) C9---O3 1.2037 (16) C19---N1 1.4278 (14) C9---C10 1.4616 (18) O2---H2 0.96 (2) O1---C1---N1 125.83 (10) C11---C10---C9 127.75 (12) O1---C1---C2 127.52 (10) C12---C11---C10 118.08 (13) N1---C1---C2 106.62 (9) C12---C11---H11 121.0 C3---C2---C7 121.55 (11) C10---C11---H11 121.0 C3---C2---C1 128.81 (11) C11---C12---C13 121.64 (12) C7---C2---C1 109.36 (10) C11---C12---H12 119.2 C2---C3---C4 117.33 (12) C13---C12---H12 119.2 C2---C3---H3 121.3 C14---C13---C12 120.91 (13) C4---C3---H3 121.3 C14---C13---C18 118.03 (14) C3---C4---C5 121.23 (13) C12---C13---C18 121.06 (12) C3---C4---H4 119.4 C15---C14---C13 121.45 (14) C5---C4---H4 119.4 C15---C14---H14 119.3 C6---C5---C4 121.25 (12) C13---C14---H14 119.3 C6---C5---H5 119.4 C14---C15---C16 120.45 (14) C4---C5---H5 119.4 C14---C15---H15 119.8 C5---C6---C7 117.34 (13) C16---C15---H15 119.8 C5---C6---H6 121.3 C17---C16---C15 120.69 (16) C7---C6---H6 121.3 C17---C16---H16 119.7 C2---C7---C6 121.28 (11) C15---C16---H16 119.7 C2---C7---C8 109.15 (10) C16---C17---C18 120.21 (14) C6---C7---C8 129.57 (11) C16---C17---H17 119.9 O2---C8---N1 111.82 (9) C18---C17---H17 119.9 O2---C8---C7 113.83 (9) C17---C18---C19 125.32 (11) N1---C8---C7 103.29 (9) C17---C18---C13 119.13 (12) O2---C8---C9 104.10 (9) C19---C18---C13 115.52 (12) N1---C8---C9 103.13 (9) C10---C19---C18 121.92 (11) C7---C8---C9 120.25 (10) C10---C19---N1 109.84 (10) O3---C9---C10 129.58 (12) C18---C19---N1 128.21 (10) O3---C9---C8 124.77 (12) C8---O2---H2 107.6 (12) C10---C9---C8 105.45 (9) C1---N1---C19 126.89 (9) C19---C10---C11 121.77 (12) C1---N1---C8 111.06 (9) C19---C10---C9 110.43 (10) C19---N1---C8 108.74 (9) O1---C1---C2---C3 1.8 (2) C11---C12---C13---C18 −0.5 (2) N1---C1---C2---C3 179.64 (12) C12---C13---C14---C15 178.73 (14) O1---C1---C2---C7 −172.16 (12) C18---C13---C14---C15 −0.5 (2) N1---C1---C2---C7 5.70 (13) C13---C14---C15---C16 −1.3 (2) C7---C2---C3---C4 1.3 (2) C14---C15---C16---C17 1.6 (3) C1---C2---C3---C4 −171.95 (12) C15---C16---C17---C18 0.0 (2) C2---C3---C4---C5 −0.3 (2) C16---C17---C18---C19 −179.45 (13) C3---C4---C5---C6 −1.2 (2) C16---C17---C18---C13 −1.7 (2) C4---C5---C6---C7 1.6 (2) C14---C13---C18---C17 2.00 (18) C3---C2---C7---C6 −0.90 (19) C12---C13---C18---C17 −177.24 (12) C1---C2---C7---C6 173.56 (11) C14---C13---C18---C19 179.92 (11) C3---C2---C7---C8 177.95 (11) C12---C13---C18---C19 0.68 (17) C1---C2---C7---C8 −7.60 (13) C11---C10---C19---C18 0.37 (18) C5---C6---C7---C2 −0.6 (2) C9---C10---C19---C18 −177.05 (10) C5---C6---C7---C8 −179.17 (13) C11---C10---C19---N1 178.75 (11) C2---C7---C8---O2 −115.06 (11) C9---C10---C19---N1 1.33 (14) C6---C7---C8---O2 63.66 (17) C17---C18---C19---C10 177.17 (12) C2---C7---C8---N1 6.39 (12) C13---C18---C19---C10 −0.61 (17) C6---C7---C8---N1 −174.89 (13) C17---C18---C19---N1 −0.9 (2) C2---C7---C8---C9 120.48 (11) C13---C18---C19---N1 −178.66 (10) C6---C7---C8---C9 −60.81 (18) O1---C1---N1---C19 40.41 (18) O2---C8---C9---O3 −72.49 (16) C2---C1---N1---C19 −137.50 (11) N1---C8---C9---O3 170.63 (13) O1---C1---N1---C8 176.42 (11) C7---C8---C9---O3 56.47 (18) C2---C1---N1---C8 −1.48 (12) O2---C8---C9---C10 102.75 (10) C10---C19---N1---C1 125.80 (12) N1---C8---C9---C10 −14.13 (12) C18---C19---N1---C1 −55.95 (17) C7---C8---C9---C10 −128.29 (11) C10---C19---N1---C8 −11.01 (13) O3---C9---C10---C19 −176.69 (14) C18---C19---N1---C8 167.23 (11) C8---C9---C10---C19 8.38 (13) O2---C8---N1---C1 119.96 (10) O3---C9---C10---C11 6.1 (2) C7---C8---N1---C1 −2.84 (12) C8---C9---C10---C11 −168.84 (12) C9---C8---N1---C1 −128.76 (10) C19---C10---C11---C12 −0.18 (19) O2---C8---N1---C19 −95.95 (11) C9---C10---C11---C12 176.77 (12) C7---C8---N1---C19 141.25 (9) C10---C11---C12---C13 0.3 (2) C9---C8---N1---C19 15.33 (11) C11---C12---C13---C14 −179.76 (13) ----------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2436 .table-wrap} ------------------ ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O2---H2···O1^i^ 0.96 (2) 1.85 (2) 2.7978 (15) 172.2 (17) C6---H6···O3^ii^ 0.93 2.52 3.1609 (18) 126 ------------------ ---------- ---------- ------------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1; (ii) −*x*+1, −*y*+2, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- ---------- ---------- ------------- ------------- O2---H2⋯O1^i^ 0.96 (2) 1.85 (2) 2.7978 (15) 172.2 (17) C6---H6⋯O3^ii^ 0.93 2.52 3.1609 (18) 126 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.327166
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052082/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):o680", "authors": [ { "first": "Saeedeh", "last": "Hashemian" }, { "first": "Behrouz", "last": "Notash" } ] }
PMC3052083
Related literature {#sec1} ================== For the crystal structure of 1-isopropenyl-1*H*-benzimidazol-2(3*H*)-one, see: Saber *et al.* (2010[@bb5]) and for 5-nitro-1-*n*-octyl-1*H*-benzimidazol-2(3*H*)-one, see: Ouzidan *et al.* (2011[@bb4]). For graph-set notation, see: Etter (1990[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~17~H~25~N~3~O~3~*M* *~r~* = 319.40Triclinic,*a* = 5.4933 (2) Å*b* = 10.3063 (4) Å*c* = 16.1655 (6) Åα = 106.504 (2)°β = 98.545 (2)°γ = 96.809 (2)°*V* = 855.21 (6) Å^3^*Z* = 2Mo *K*α radiationμ = 0.09 mm^−1^*T* = 293 K0.32 × 0.06 × 0.04 mm ### Data collection {#sec2.1.2} Bruker APEXII diffractometer10701 measured reflections2971 independent reflections1600 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.068 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.055*wR*(*F* ^2^) = 0.175*S* = 0.892971 reflections209 parametersH-atom parameters constrainedΔρ~max~ = 0.30 e Å^−3^Δρ~min~ = −0.31 e Å^−3^ {#d5e446} Data collection: *APEX2* (Bruker, 2005[@bb2]); cell refinement: *SAINT* (Bruker, 2005[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb8]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004399/zs2093sup1.cif](http://dx.doi.org/10.1107/S1600536811004399/zs2093sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004399/zs2093Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004399/zs2093Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?zs2093&file=zs2093sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?zs2093sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?zs2093&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [ZS2093](http://scripts.iucr.org/cgi-bin/sendsup?zs2093)). We thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study. Comment ======= Tetraalkylammonium halides are used as phase-transfer catalyst in the synthesis of alkyl-substituted benzimidazolones. A previous study reported the 1-isopropenyl derivative in which the amino --NH unit forms a hydrogen bond to the inversion-related molecule to generate a hydrogen-bonded dimer (Saber *et al.*, 2010). The present compound (Scheme I) features a long *n*-octyl chain that adopts an extended zigzag conformation (Fig. 1). The benzimidazolone part of the C~17~H~25~N~3~O~3~ molecule is planar (r.m.s. deviation 0.016 Å) and its mean plane is aligned at 7.9 (4) ° with respect to the mean plane of the nitro substituent. Two molecules are disposed about a center of inversion to generate a hydrogen-bonded cyclic dimer (Table 1), whose hydrogen-bonding motif is described by the *R*^2^~2~(8) graph set (Etter, 1990). Experimental {#experimental} ============ To 5-nitro-1*H*-benzoimidazol-2(3*H*)-one (0.2 g, 1.1 mmol), potassium carbonate (0.30 g, 2.2 mmol) and tetra-*n*-butylammonium bromide (0.07 g, 0.2 mmol) in DMF (15 ml) was added 1-bromo-*n*-decane (0.46 ml, 2.2 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. The compound was recrystallized from diethyl ether to give colorless crystals. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions (C---H 0.93--0.97, N--H 0.88 Å) and were included in the refinement in the riding model approximation, with *U*~iso~(H) set to 1.2--1.5*U*~eq~(C,*N*). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot drawn at the 50% probability level (Barbour, 2001), of two molecules of C17H25N3O3 disposed about a center of inversion. ::: ![](e-67-0o613-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e151 .table-wrap} ----------------------- --------------------------------------- C~17~H~25~N~3~O~3~ *Z* = 2 *M~r~* = 319.40 *F*(000) = 344 Triclinic, *P*1 *D*~x~ = 1.240 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 5.4933 (2) Å Cell parameters from 1521 reflections *b* = 10.3063 (4) Å θ = 2.7--27.3° *c* = 16.1655 (6) Å µ = 0.09 mm^−1^ α = 106.504 (2)° *T* = 293 K β = 98.545 (2)° Prism, colorless γ = 96.809 (2)° 0.32 × 0.06 × 0.04 mm *V* = 855.21 (6) Å^3^ ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e287 .table-wrap} ------------------------------------------ -------------------------------------- Bruker APEXII diffractometer 1600 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.068 graphite θ~max~ = 25.0°, θ~min~ = 3.9° φ and ω scans *h* = −6→6 10701 measured reflections *k* = −10→12 2971 independent reflections *l* = −19→19 ------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e385 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.055 H-atom parameters constrained *wR*(*F*^2^) = 0.175 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.1056*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 0.89 (Δ/σ)~max~ = 0.001 2971 reflections Δρ~max~ = 0.30 e Å^−3^ 209 parameters Δρ~min~ = −0.31 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.034 (6) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e565 .table-wrap} ------ ------------ -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.6868 (3) 0.57512 (19) 0.61197 (12) 0.0413 (6) O2 0.8896 (4) −0.0690 (2) 0.29737 (16) 0.0579 (7) O3 1.2510 (4) −0.0845 (2) 0.36526 (16) 0.0680 (7) N1 0.7157 (4) 0.3830 (2) 0.49844 (15) 0.0357 (6) H1 0.5863 0.3832 0.4592 0.043\* N2 0.9999 (4) 0.4426 (2) 0.61946 (15) 0.0337 (6) N3 1.0691 (5) −0.0264 (2) 0.35868 (19) 0.0482 (7) C1 0.7879 (5) 0.4765 (3) 0.57918 (19) 0.0354 (7) C2 0.8734 (5) 0.2871 (3) 0.48616 (18) 0.0328 (7) C3 0.8717 (5) 0.1718 (3) 0.41760 (19) 0.0371 (7) H3 0.7483 0.1435 0.3671 0.044\* C4 1.0672 (5) 0.1002 (3) 0.4288 (2) 0.0380 (7) C5 1.2516 (5) 0.1396 (3) 0.5022 (2) 0.0397 (8) H5 1.3801 0.0890 0.5052 0.048\* C6 1.2493 (5) 0.2538 (3) 0.5717 (2) 0.0385 (7) H6 1.3723 0.2805 0.6223 0.046\* C7 1.0566 (5) 0.3268 (3) 0.56298 (19) 0.0347 (7) C8 1.1434 (5) 0.5230 (3) 0.70567 (18) 0.0399 (7) H8A 1.0786 0.6078 0.7254 0.048\* H8B 1.3157 0.5469 0.7007 0.048\* C9 1.1361 (5) 0.4479 (3) 0.77434 (19) 0.0420 (7) H9A 1.1954 0.3618 0.7530 0.050\* H9B 1.2519 0.5027 0.8276 0.050\* C10 0.8830 (5) 0.4174 (3) 0.7976 (2) 0.0457 (8) H10A 0.7678 0.3575 0.7457 0.055\* H10B 0.8185 0.5023 0.8171 0.055\* C11 0.8982 (5) 0.3489 (3) 0.8699 (2) 0.0463 (8) H11A 0.9593 0.2632 0.8491 0.056\* H11B 1.0202 0.4076 0.9204 0.056\* C12 0.6562 (6) 0.3190 (3) 0.8998 (2) 0.0516 (9) H12A 0.5896 0.4036 0.9179 0.062\* H12B 0.5366 0.2556 0.8505 0.062\* C13 0.6824 (6) 0.2585 (3) 0.9749 (2) 0.0492 (8) H13A 0.8060 0.3210 1.0234 0.059\* H13B 0.7457 0.1731 0.9561 0.059\* C14 0.4445 (6) 0.2305 (3) 1.0082 (2) 0.0535 (9) H14A 0.3754 0.3146 1.0235 0.064\* H14B 0.3244 0.1634 0.9608 0.064\* C15 0.4751 (6) 0.1780 (3) 1.0874 (2) 0.0531 (9) H15A 0.5400 0.0926 1.0717 0.064\* H15B 0.5981 0.2439 1.1344 0.064\* C16 0.2378 (7) 0.1537 (4) 1.1214 (2) 0.0692 (11) H16A 0.1189 0.0825 1.0760 0.083\* H16B 0.1659 0.2371 1.1331 0.083\* C17 0.2764 (8) 0.1116 (4) 1.2043 (3) 0.0862 (13) H17A 0.1189 0.0965 1.2220 0.129\* H17B 0.3888 0.1832 1.2503 0.129\* H17C 0.3460 0.0286 1.1932 0.129\* ------ ------------ -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1187 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0513 (12) 0.0398 (11) 0.0402 (12) 0.0189 (10) 0.0180 (10) 0.0148 (10) O2 0.0723 (16) 0.0459 (14) 0.0531 (16) 0.0082 (12) 0.0178 (14) 0.0095 (12) O3 0.0794 (17) 0.0556 (14) 0.0770 (18) 0.0342 (13) 0.0326 (14) 0.0149 (13) N1 0.0405 (13) 0.0385 (13) 0.0363 (15) 0.0144 (11) 0.0142 (11) 0.0176 (13) N2 0.0368 (13) 0.0354 (13) 0.0344 (14) 0.0097 (10) 0.0119 (11) 0.0151 (12) N3 0.0618 (18) 0.0381 (15) 0.056 (2) 0.0155 (14) 0.0303 (16) 0.0194 (14) C1 0.0446 (17) 0.0345 (16) 0.0357 (18) 0.0080 (14) 0.0186 (14) 0.0179 (15) C2 0.0383 (16) 0.0332 (16) 0.0355 (18) 0.0072 (13) 0.0170 (14) 0.0184 (14) C3 0.0440 (17) 0.0374 (16) 0.0355 (18) 0.0054 (13) 0.0146 (14) 0.0172 (15) C4 0.0491 (18) 0.0321 (16) 0.0444 (19) 0.0096 (14) 0.0273 (16) 0.0192 (15) C5 0.0412 (17) 0.0383 (17) 0.051 (2) 0.0139 (14) 0.0212 (16) 0.0215 (16) C6 0.0371 (16) 0.0431 (17) 0.0436 (19) 0.0086 (13) 0.0137 (14) 0.0226 (16) C7 0.0415 (16) 0.0346 (16) 0.0376 (18) 0.0073 (13) 0.0212 (14) 0.0191 (14) C8 0.0435 (16) 0.0414 (17) 0.0352 (18) 0.0068 (13) 0.0102 (14) 0.0114 (15) C9 0.0466 (17) 0.0414 (17) 0.0382 (18) 0.0102 (14) 0.0075 (14) 0.0119 (14) C10 0.0541 (19) 0.0456 (18) 0.044 (2) 0.0130 (15) 0.0156 (16) 0.0185 (16) C11 0.0561 (19) 0.0483 (18) 0.0399 (19) 0.0123 (15) 0.0140 (15) 0.0183 (16) C12 0.064 (2) 0.0493 (19) 0.050 (2) 0.0120 (16) 0.0166 (17) 0.0237 (17) C13 0.059 (2) 0.0508 (19) 0.043 (2) 0.0115 (16) 0.0125 (16) 0.0199 (16) C14 0.060 (2) 0.056 (2) 0.054 (2) 0.0110 (16) 0.0165 (17) 0.0275 (18) C15 0.070 (2) 0.0456 (18) 0.046 (2) 0.0063 (16) 0.0131 (18) 0.0188 (17) C16 0.086 (3) 0.071 (2) 0.068 (3) 0.017 (2) 0.036 (2) 0.037 (2) C17 0.136 (4) 0.076 (3) 0.063 (3) 0.012 (3) 0.041 (3) 0.038 (2) ----- ------------- ------------- ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1578 .table-wrap} ------------------- ------------ ----------------------- ------------ O1---C1 1.240 (3) C10---C11 1.525 (4) O2---N3 1.228 (3) C10---H10A 0.9700 O3---N3 1.231 (3) C10---H10B 0.9700 N1---C1 1.353 (3) C11---C12 1.508 (4) N1---C2 1.382 (3) C11---H11A 0.9700 N1---H1 0.8800 C11---H11B 0.9700 N2---C1 1.379 (3) C12---C13 1.511 (4) N2---C7 1.382 (3) C12---H12A 0.9700 N2---C8 1.454 (4) C12---H12B 0.9700 N3---C4 1.468 (4) C13---C14 1.513 (4) C2---C3 1.374 (4) C13---H13A 0.9700 C2---C7 1.402 (4) C13---H13B 0.9700 C3---C4 1.391 (4) C14---C15 1.520 (4) C3---H3 0.9300 C14---H14A 0.9700 C4---C5 1.367 (4) C14---H14B 0.9700 C5---C6 1.380 (4) C15---C16 1.509 (4) C5---H5 0.9300 C15---H15A 0.9700 C6---C7 1.382 (3) C15---H15B 0.9700 C6---H6 0.9300 C16---C17 1.517 (5) C8---C9 1.526 (4) C16---H16A 0.9700 C8---H8A 0.9700 C16---H16B 0.9700 C8---H8B 0.9700 C17---H17A 0.9600 C9---C10 1.514 (4) C17---H17B 0.9600 C9---H9A 0.9700 C17---H17C 0.9600 C9---H9B 0.9700 C1---N1---C2 110.5 (2) C9---C10---H10B 109.3 C1---N1---H1 124.7 C11---C10---H10B 109.3 C2---N1---H1 124.7 H10A---C10---H10B 108.0 C1---N2---C7 109.0 (2) C12---C11---C10 115.4 (2) C1---N2---C8 124.0 (2) C12---C11---H11A 108.4 C7---N2---C8 126.9 (2) C10---C11---H11A 108.4 O2---N3---O3 123.7 (3) C12---C11---H11B 108.4 O2---N3---C4 118.5 (2) C10---C11---H11B 108.4 O3---N3---C4 117.8 (3) H11A---C11---H11B 107.5 O1---C1---N1 127.5 (3) C13---C12---C11 113.7 (2) O1---C1---N2 125.5 (3) C13---C12---H12A 108.8 N1---C1---N2 107.0 (2) C11---C12---H12A 108.8 C3---C2---N1 132.1 (3) C13---C12---H12B 108.8 C3---C2---C7 121.8 (2) C11---C12---H12B 108.8 N1---C2---C7 106.1 (2) H12A---C12---H12B 107.7 C2---C3---C4 115.5 (3) C12---C13---C14 115.2 (2) C2---C3---H3 122.3 C12---C13---H13A 108.5 C4---C3---H3 122.3 C14---C13---H13A 108.5 C5---C4---C3 123.6 (3) C12---C13---H13B 108.5 C5---C4---N3 118.8 (3) C14---C13---H13B 108.5 C3---C4---N3 117.6 (3) H13A---C13---H13B 107.5 C4---C5---C6 120.7 (2) C15---C14---C13 115.0 (3) C4---C5---H5 119.6 C15---C14---H14A 108.5 C6---C5---H5 119.6 C13---C14---H14A 108.5 C7---C6---C5 117.2 (3) C15---C14---H14B 108.5 C7---C6---H6 121.4 C13---C14---H14B 108.5 C5---C6---H6 121.4 H14A---C14---H14B 107.5 N2---C7---C6 131.5 (3) C16---C15---C14 114.5 (3) N2---C7---C2 107.3 (2) C16---C15---H15A 108.6 C6---C7---C2 121.2 (3) C14---C15---H15A 108.6 N2---C8---C9 113.2 (2) C16---C15---H15B 108.6 N2---C8---H8A 108.9 C14---C15---H15B 108.6 C9---C8---H8A 108.9 H15A---C15---H15B 107.6 N2---C8---H8B 108.9 C15---C16---C17 113.5 (3) C9---C8---H8B 108.9 C15---C16---H16A 108.9 H8A---C8---H8B 107.8 C17---C16---H16A 108.9 C10---C9---C8 115.7 (2) C15---C16---H16B 108.9 C10---C9---H9A 108.4 C17---C16---H16B 108.9 C8---C9---H9A 108.4 H16A---C16---H16B 107.7 C10---C9---H9B 108.4 C16---C17---H17A 109.5 C8---C9---H9B 108.4 C16---C17---H17B 109.5 H9A---C9---H9B 107.4 H17A---C17---H17B 109.5 C9---C10---C11 111.6 (2) C16---C17---H17C 109.5 C9---C10---H10A 109.3 H17A---C17---H17C 109.5 C11---C10---H10A 109.3 H17B---C17---H17C 109.5 C2---N1---C1---O1 −179.0 (2) C8---N2---C7---C6 2.5 (4) C2---N1---C1---N2 1.4 (3) C1---N2---C7---C2 −0.7 (3) C7---N2---C1---O1 180.0 (2) C8---N2---C7---C2 −177.4 (2) C8---N2---C1---O1 −3.2 (4) C5---C6---C7---N2 179.3 (3) C7---N2---C1---N1 −0.4 (3) C5---C6---C7---C2 −0.8 (4) C8---N2---C1---N1 176.4 (2) C3---C2---C7---N2 −177.8 (2) C1---N1---C2---C3 177.4 (3) N1---C2---C7---N2 1.4 (3) C1---N1---C2---C7 −1.7 (3) C3---C2---C7---C6 2.3 (4) N1---C2---C3---C4 179.3 (2) N1---C2---C7---C6 −178.4 (2) C7---C2---C3---C4 −1.7 (4) C1---N2---C8---C9 114.0 (3) C2---C3---C4---C5 −0.3 (4) C7---N2---C8---C9 −69.7 (3) C2---C3---C4---N3 178.0 (2) N2---C8---C9---C10 −65.3 (3) O2---N3---C4---C5 172.5 (2) C8---C9---C10---C11 −177.1 (2) O3---N3---C4---C5 −7.0 (4) C9---C10---C11---C12 177.9 (3) O2---N3---C4---C3 −5.8 (4) C10---C11---C12---C13 −176.8 (3) O3---N3---C4---C3 174.7 (2) C11---C12---C13---C14 178.5 (3) C3---C4---C5---C6 1.8 (4) C12---C13---C14---C15 −176.4 (3) N3---C4---C5---C6 −176.5 (2) C13---C14---C15---C16 178.6 (3) C4---C5---C6---C7 −1.2 (4) C14---C15---C16---C17 −175.7 (3) C1---N2---C7---C6 179.2 (3) ------------------- ------------ ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2461 .table-wrap} ----------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1···O1^i^ 0.88 1.92 2.784 (3) 168 ----------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- --------- ------- ----------- ------------- N1---H1⋯O1^i^ 0.88 1.92 2.784 (3) 168 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.332926
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052083/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o613", "authors": [ { "first": "Younes", "last": "Ouzidan" }, { "first": "Y.", "last": "Kandri Rodi" }, { "first": "Sonia", "last": "Ladeira" }, { "first": "El Mokhtar", "last": "Essassi" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3052084
Related literature {#sec1} ================== For the effect of substituents on the structures of benzanilides, see: Gowda *et al.* (2008[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~10~H~6~N~4~O~5~S·H~2~O*M* *~r~* = 312.26Monoclinic,*a* = 13.7075 (12) Å*b* = 6.9734 (6) Å*c* = 13.8507 (13) Åβ = 108.512 (1)°*V* = 1255.45 (19) Å^3^*Z* = 4Mo *K*α radiationμ = 0.30 mm^−1^*T* = 296 K0.28 × 0.07 × 0.06 mm ### Data collection {#sec2.1.2} Bruker SMART 1000 CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 2004[@bb6]) *T* ~min~ = 0.922, *T* ~max~ = 0.9836750 measured reflections2214 independent reflections1937 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.015 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.029*wR*(*F* ^2^) = 0.088*S* = 1.022214 reflections203 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.19 e Å^−3^Δρ~min~ = −0.21 e Å^−3^ {#d5e456} Data collection: *SMART* (Bruker, 1998[@bb1]); cell refinement: *SAINT* (Bruker, 2006[@bb2]); data reduction: *SAINT* and *CrystalStructure* (Rigaku/MSC, 2006[@bb5]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *ORTEPII* (Johnson, 1976[@bb4]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811005228/xu5155sup1.cif](http://dx.doi.org/10.1107/S1600536811005228/xu5155sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005228/xu5155Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005228/xu5155Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5155&file=xu5155sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5155sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5155&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5155](http://scripts.iucr.org/cgi-bin/sendsup?xu5155)). The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities. Comment ======= In the present work, the structure of 3,5-dinitro-*N*-thiazol-2-yl-benzamide monohydrate has been determined to explore the effect of substituents on the structure of benzanilides (Gowda *et al.*, 2008). The molecule is not planar. The thiazole ring is twisted to the benzene ring at a dihedral angle of 25.87 (7)°. The nitro groups are 12.30 (20)° and 15.68 (15)° from the phenyl ring plane of C5---C10. The thiazole ring is making a dihedral angle of 11.90 (2)° with the amido group which in turn makes a dihedral angle of 14.01 (4)° with the phenyl ring plane of C5---C10. There are intermolecular N---H···O, O---H···N and O---H···O H-bond interactions, which link the molecules to form 2-D networks in the crystal lattice. There are also weak π···π interactions between neighbouring rings in the crystal lattice. Experimental {#experimental} ============ A solution of 3,5-dinitrobenzoyl chloride (0.01 mol) and 2-aminothiazole (0.01 mol) in anhydrous acetone was refluxed for 4 h. After completion of the reaction, the crude solid product was filtered, washed with water and purified by re-crystallization from ethyl acetate/water. Refinement {#refinement} ========== All of the C-bound H atoms are observable from difference Fourier map but are all placed at geometrical positions with C---H = 0.93 Å for phenyl H-atoms. All C-bound H-atoms are refined using riding model with *U*~iso~(H) = 1.2*U*~eq~(C). Both the N-- and O-bound H-atoms were located from a difference Fourier map and refined isotropically. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The ORTEP plot of the compound was shown at 50% probability thermal ellipsoids. ::: ![](e-67-0o660-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e117 .table-wrap} -------------------------- --------------------------------------- C~10~H~6~N~4~O~5~S·H~2~O *F*(000) = 640 *M~r~* = 312.26 *D*~x~ = 1.652 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 9023 reflections *a* = 13.7075 (12) Å θ = 1.8--25.0° *b* = 6.9734 (6) Å µ = 0.30 mm^−1^ *c* = 13.8507 (13) Å *T* = 296 K β = 108.512 (1)° Needle, colourless *V* = 1255.45 (19) Å^3^ 0.28 × 0.07 × 0.06 mm *Z* = 4 -------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e251 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART 1000 CCD diffractometer 2214 independent reflections Radiation source: fine-focus sealed tube 1937 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.015 ω scans θ~max~ = 25.0°, θ~min~ = 3.0° Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) *h* = −16→15 *T*~min~ = 0.922, *T*~max~ = 0.983 *k* = −8→8 6750 measured reflections *l* = −16→16 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e365 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.029 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.088 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0569*P*)^2^ + 0.2612*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.02 (Δ/σ)~max~ = 0.001 2214 reflections Δρ~max~ = 0.19 e Å^−3^ 203 parameters Δρ~min~ = −0.21 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0069 (14) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e546 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e645 .table-wrap} ----- --------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 −0.17423 (3) 0.90512 (6) 0.12088 (3) 0.03884 (16) O1 0.02312 (8) 0.95294 (19) 0.11971 (8) 0.0469 (3) O2 0.35736 (11) 1.1250 (3) 0.08520 (11) 0.0793 (5) O3 0.49514 (9) 1.0180 (3) 0.19517 (10) 0.0669 (4) O4 0.48076 (9) 0.7824 (2) 0.51780 (10) 0.0590 (4) O5 0.34262 (11) 0.8314 (3) 0.55577 (10) 0.0777 (5) N1 −0.14748 (10) 0.9651 (2) 0.31080 (10) 0.0403 (3) N2 0.00921 (9) 0.94048 (19) 0.27755 (10) 0.0351 (3) H2N 0.0335 (15) 0.929 (3) 0.3435 (15) 0.046 (5)\* N3 0.40286 (11) 1.0453 (2) 0.16479 (11) 0.0505 (4) N4 0.39071 (10) 0.8282 (2) 0.49550 (10) 0.0453 (4) C1 −0.28028 (12) 0.9200 (2) 0.16129 (13) 0.0425 (4) H1 −0.3480 0.9069 0.1193 0.051\* C2 −0.25176 (12) 0.9531 (2) 0.26157 (13) 0.0429 (4) H2 −0.2996 0.9672 0.2960 0.052\* C3 −0.09807 (11) 0.9410 (2) 0.24567 (11) 0.0331 (3) C4 0.06477 (11) 0.9452 (2) 0.21168 (11) 0.0338 (3) C5 0.17976 (11) 0.9424 (2) 0.25696 (11) 0.0324 (3) C6 0.23598 (11) 0.9885 (2) 0.19236 (12) 0.0368 (4) H6 0.2027 1.0230 0.1251 0.044\* C7 0.34216 (11) 0.9820 (2) 0.23006 (12) 0.0379 (4) C8 0.39520 (12) 0.9255 (2) 0.32777 (12) 0.0382 (4) H8 0.4665 0.9150 0.3507 0.046\* C9 0.33678 (11) 0.8856 (2) 0.38975 (11) 0.0352 (3) C10 0.23081 (11) 0.8948 (2) 0.35798 (11) 0.0340 (3) H10 0.1944 0.8698 0.4029 0.041\* O6 0.07962 (11) 0.8457 (2) 0.48713 (10) 0.0503 (3) H6B 0.0571 (18) 0.752 (4) 0.4970 (18) 0.076 (9)\* H6C 0.0932 (18) 0.912 (3) 0.5399 (19) 0.073 (8)\* ----- --------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1045 .table-wrap} ----- ------------ ------------- ------------- --------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0299 (2) 0.0482 (3) 0.0354 (2) −0.00058 (15) 0.00610 (16) 0.00073 (16) O1 0.0341 (6) 0.0737 (9) 0.0322 (6) 0.0033 (5) 0.0092 (5) 0.0028 (5) O2 0.0531 (8) 0.1362 (15) 0.0526 (8) −0.0101 (8) 0.0222 (7) 0.0276 (9) O3 0.0322 (7) 0.1079 (12) 0.0660 (9) −0.0099 (7) 0.0233 (6) −0.0043 (8) O4 0.0356 (6) 0.0801 (10) 0.0533 (7) 0.0133 (6) 0.0030 (5) 0.0077 (7) O5 0.0573 (9) 0.1376 (15) 0.0406 (7) 0.0245 (9) 0.0190 (6) 0.0190 (8) N1 0.0314 (7) 0.0498 (8) 0.0414 (7) 0.0005 (6) 0.0139 (6) 0.0001 (6) N2 0.0260 (7) 0.0474 (8) 0.0312 (7) −0.0003 (5) 0.0078 (5) −0.0010 (6) N3 0.0379 (8) 0.0734 (11) 0.0447 (8) −0.0118 (7) 0.0197 (7) −0.0075 (7) N4 0.0388 (8) 0.0546 (9) 0.0393 (7) 0.0046 (6) 0.0076 (6) 0.0011 (6) C1 0.0275 (8) 0.0450 (9) 0.0529 (10) −0.0009 (6) 0.0096 (7) 0.0055 (7) C2 0.0289 (8) 0.0485 (10) 0.0540 (10) 0.0014 (6) 0.0170 (7) 0.0057 (8) C3 0.0285 (7) 0.0355 (8) 0.0349 (8) 0.0006 (6) 0.0097 (6) 0.0016 (6) C4 0.0299 (8) 0.0377 (8) 0.0340 (8) 0.0001 (6) 0.0107 (6) −0.0008 (6) C5 0.0280 (8) 0.0339 (8) 0.0355 (8) −0.0005 (5) 0.0106 (6) −0.0036 (6) C6 0.0329 (8) 0.0437 (9) 0.0339 (8) −0.0024 (6) 0.0107 (6) −0.0032 (7) C7 0.0329 (8) 0.0449 (9) 0.0398 (8) −0.0054 (6) 0.0169 (7) −0.0069 (7) C8 0.0281 (7) 0.0435 (9) 0.0424 (9) −0.0005 (6) 0.0105 (6) −0.0091 (7) C9 0.0322 (8) 0.0377 (8) 0.0341 (8) 0.0024 (6) 0.0082 (6) −0.0037 (6) C10 0.0330 (8) 0.0358 (8) 0.0352 (8) 0.0008 (6) 0.0137 (6) −0.0021 (6) O6 0.0545 (8) 0.0628 (9) 0.0371 (7) −0.0040 (7) 0.0195 (6) −0.0006 (6) ----- ------------ ------------- ------------- --------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1450 .table-wrap} --------------- ------------- ---------------- ------------- S1---C1 1.7187 (16) C1---H1 0.9300 S1---C3 1.7304 (15) C2---H2 0.9300 O1---C4 1.2205 (18) C4---C5 1.500 (2) O2---N3 1.215 (2) C5---C10 1.391 (2) O3---N3 1.2147 (18) C5---C6 1.391 (2) O4---N4 1.2162 (17) C6---C7 1.382 (2) O5---N4 1.2171 (18) C6---H6 0.9300 N1---C3 1.299 (2) C7---C8 1.375 (2) N1---C2 1.377 (2) C8---C9 1.376 (2) N2---C4 1.3618 (19) C8---H8 0.9300 N2---C3 1.3947 (19) C9---C10 1.379 (2) N2---H2N 0.871 (19) C10---H10 0.9300 N3---C7 1.477 (2) O6---H6B 0.75 (3) N4---C9 1.471 (2) O6---H6C 0.84 (3) C1---C2 1.338 (2) C1---S1---C3 88.30 (8) O1---C4---C5 121.21 (13) C3---N1---C2 109.65 (14) N2---C4---C5 117.15 (13) C4---N2---C3 123.06 (13) C10---C5---C6 119.83 (13) C4---N2---H2N 126.6 (12) C10---C5---C4 123.35 (13) C3---N2---H2N 110.2 (12) C6---C5---C4 116.81 (13) O3---N3---O2 124.34 (15) C7---C6---C5 118.77 (14) O3---N3---C7 117.90 (15) C7---C6---H6 120.6 O2---N3---C7 117.74 (14) C5---C6---H6 120.6 O4---N4---O5 123.90 (14) C8---C7---C6 123.06 (14) O4---N4---C9 118.23 (13) C8---C7---N3 117.61 (14) O5---N4---C9 117.87 (13) C6---C7---N3 119.28 (14) C2---C1---S1 110.49 (12) C7---C8---C9 116.21 (14) C2---C1---H1 124.8 C7---C8---H8 121.9 S1---C1---H1 124.8 C9---C8---H8 121.9 C1---C2---N1 116.08 (14) C8---C9---C10 123.66 (14) C1---C2---H2 122.0 C8---C9---N4 117.92 (14) N1---C2---H2 122.0 C10---C9---N4 118.41 (13) N1---C3---N2 120.67 (14) C9---C10---C5 118.33 (13) N1---C3---S1 115.47 (11) C9---C10---H10 120.8 N2---C3---S1 123.84 (11) C5---C10---H10 120.8 O1---C4---N2 121.63 (13) H6B---O6---H6C 108 (2) --------------- ------------- ---------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1796 .table-wrap} ------------------- ------------ ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H2N···O6 0.871 (19) 1.974 (19) 2.8313 (18) 167.9 (17) O6---H6B···O1^i^ 0.75 (3) 2.38 (2) 3.0350 (19) 147 (2) O6---H6C···N1^ii^ 0.84 (3) 2.14 (3) 2.964 (2) 168 (2) ------------------- ------------ ------------ ------------- --------------- ::: Symmetry codes: (i) *x*, −*y*+3/2, *z*+1/2; (ii) −*x*, −*y*+2, −*z*+1. Table 2 Table 1. π···π interactions (Å, °) *Cg1* and *Cg2* are centroids of the rings S1/N1/C1-C3 and C5-C10 respectively, *CgI···CgJ* is the distance between ring centroids. The dihedral angle is that between the planes of the rings *I* and *J*. *CgI*\_Perp is the perpendicular distance of *CgI* from ring *J*. *CgJ*\_Perp is the perpendicular distance of *CgJ* from ring *I*. {#d1e1898} ========================================================================================================================================================================================================================================================================================================================================================================================== ::: {#d1e1953 .table-wrap} ----- ------- ------------- ---------------- ------------- ------------- *I* *J* *CgI···CgJ* Dihedral angle *CgI*\_Perp *CgJ*\_Perp 1 2^i^ 3.7158 (9) 7.02 (7) 3.3718 (6) -3.4374 (6) 1 2^ii^ 3.7107 (9) 7.02 (7) -3.3175 (6) 3.4409 (6) ----- ------- ------------- ---------------- ------------- ------------- ::: symmetry operators: ^i^: -X,-1/2+Y,1/2-Z ^ii^: -X,1/2+Y,1/2-Z ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- ------------ ------------ ------------- ------------- N2---H2*N*⋯O6 0.871 (19) 1.974 (19) 2.8313 (18) 167.9 (17) O6---H6*B*⋯O1^i^ 0.75 (3) 2.38 (2) 3.0350 (19) 147 (2) O6---H6*C*⋯N1^ii^ 0.84 (3) 2.14 (3) 2.964 (2) 168 (2) Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:18.338875
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052084/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o660", "authors": [ { "first": "Sohail", "last": "Saeed" }, { "first": "Naghmana", "last": "Rashid" }, { "first": "Wing-Tak", "last": "Wong" }, { "first": "Rizwan", "last": "Hussain" } ] }
PMC3052085
Related literature {#sec1} ================== For background to the synthetic procedure,: see: Yadigarov *et al.* (2010[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~13~H~16~N~2~S*M* *~r~* = 232.34Monoclinic,*a* = 5.5028 (5) Å*b* = 30.832 (3) Å*c* = 7.8355 (7) Åβ = 110.016 (1)°*V* = 1249.08 (19) Å^3^*Z* = 4Mo *K*α radiationμ = 0.23 mm^−1^*T* = 100 K0.30 × 0.20 × 0.20 mm ### Data collection {#sec2.1.2} Bruker APEXII diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb3]) *T* ~min~ = 0.933, *T* ~max~ = 0.9557129 measured reflections2749 independent reflections2486 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.024 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.045*wR*(*F* ^2^) = 0.120*S* = 1.062749 reflections156 parameters2 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.38 e Å^−3^Δρ~min~ = −0.24 e Å^−3^ {#d5e406} Data collection: *APEX2* (Bruker, 2005[@bb2]); cell refinement: *SAINT* (Bruker, 2005[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb5]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811006386/im2269sup1.cif](http://dx.doi.org/10.1107/S1600536811006386/im2269sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006386/im2269Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006386/im2269Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?im2269&file=im2269sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?im2269sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?im2269&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [IM2269](http://scripts.iucr.org/cgi-bin/sendsup?im2269)). We thank Baku State University and the University of Malaya for supporting this study. Comment ======= A recent study reported the reaction of 1-chloro-3-(2,4,6-trimethylphenyl)-propan-2-one with primary amines. The chlorine atom in the α-chloro ketone is not replaced directly by an amino RNH-- group. The intermediate product undergoes a Favorskii rearrangement that furnishes a compound having two methylene groups between the aromatic system and the amido unit (Yadigarov *et al.*, 2010). The present study employs thiourea as the amine. One of its amino --NH~2~ groups is involved in the formation of the thiazolyl ring in the resulting product (Scheme I, Fig. 1). The methylene carbon is connected to the five-membered thiazolyl ring and the six-membered mesityl group. The rings are aligned at 75.4 (1) °. The amino --NH~2~ substitutent interacts with the ring N atom of an adjacent molecule by an N--H···N hydrogen bond generating a helical chain that runs along the *b*-axis of the monoclinic unit cell. Experimental {#experimental} ============ 1-Chloro-3-(2,4,6-trimethylphenyl)-propan-2-one (10 mmol) and thiourea (10 mmol) were stirred in water (100 ml) for an hour. A precipitate formed and this was collected and redissolved in hot ethanol. Slow evaporation of the solvent gave colorless crystals in 50% yield; m.p. 380--381 K. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions \[C--H 0.93 to 0.97 Å\] and were included in the refinement in the riding model approximation, with *U~iso~*(H) set to 1.2-1.5 *U~eq~*(C). The amino H-atoms were located in a difference Fourier map and were refined with a distance restraint of N--H 0.88±0.01 Å; their temperature factors were refined isotropically. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of C13H16N2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. ::: ![](e-67-0o721-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e124 .table-wrap} ------------------------- --------------------------------------- C~13~H~16~N~2~S *F*(000) = 496 *M~r~* = 232.34 *D*~x~ = 1.235 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 3598 reflections *a* = 5.5028 (5) Å θ = 2.6--29.1° *b* = 30.832 (3) Å µ = 0.23 mm^−1^ *c* = 7.8355 (7) Å *T* = 100 K β = 110.016 (1)° Prism, colorless *V* = 1249.08 (19) Å^3^ 0.30 × 0.20 × 0.20 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e252 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII diffractometer 2749 independent reflections Radiation source: fine-focus sealed tube 2486 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.024 φ and ω scans θ~max~ = 27.5°, θ~min~ = 2.6° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −7→7 *T*~min~ = 0.933, *T*~max~ = 0.955 *k* = −40→24 7129 measured reflections *l* = −9→10 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e369 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.045 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.120 H atoms treated by a mixture of independent and constrained refinement *S* = 1.06 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.060*P*)^2^ + 0.6878*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2749 reflections (Δ/σ)~max~ = 0.001 156 parameters Δρ~max~ = 0.38 e Å^−3^ 2 restraints Δρ~min~ = −0.24 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e528 .table-wrap} ------ ------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 0.65720 (8) 0.220399 (14) 0.75764 (6) 0.02680 (15) N1 0.2450 (3) 0.26387 (5) 0.7802 (2) 0.0283 (3) H11 0.351 (3) 0.2757 (6) 0.8795 (19) 0.030 (5)\* H12 0.080 (2) 0.2637 (8) 0.764 (3) 0.038 (6)\* N2 0.1780 (3) 0.20379 (5) 0.58369 (19) 0.0241 (3) C1 0.3278 (3) 0.23024 (5) 0.7040 (2) 0.0215 (3) C2 0.5821 (3) 0.17807 (6) 0.6029 (2) 0.0267 (4) H2 0.7056 0.1604 0.5759 0.032\* C3 0.3239 (3) 0.17382 (5) 0.5263 (2) 0.0244 (3) C4 0.1797 (4) 0.13975 (6) 0.3931 (3) 0.0338 (4) H4A 0.0544 0.1542 0.2862 0.041\* H4B 0.0800 0.1217 0.4502 0.041\* C5 0.3520 (3) 0.11046 (6) 0.3288 (2) 0.0282 (4) C6 0.3814 (4) 0.11748 (6) 0.1605 (2) 0.0301 (4) C7 0.5436 (4) 0.09018 (7) 0.1069 (3) 0.0344 (4) H7 0.5633 0.0950 −0.0075 0.041\* C8 0.6772 (4) 0.05629 (6) 0.2137 (3) 0.0344 (4) C9 0.6454 (4) 0.04995 (6) 0.3799 (3) 0.0365 (4) H9 0.7352 0.0269 0.4557 0.044\* C10 0.4858 (4) 0.07644 (6) 0.4388 (3) 0.0336 (4) C11 0.2363 (5) 0.15279 (7) 0.0330 (3) 0.0473 (6) H11A 0.2694 0.1807 0.0966 0.071\* H11B 0.0505 0.1465 −0.0085 0.071\* H11C 0.2946 0.1541 −0.0719 0.071\* C12 0.8478 (4) 0.02682 (8) 0.1499 (3) 0.0487 (6) H12A 0.9348 0.0438 0.0820 0.073\* H12B 0.7419 0.0042 0.0711 0.073\* H12C 0.9776 0.0133 0.2552 0.073\* C13 0.4571 (7) 0.06770 (8) 0.6208 (3) 0.0609 (8) H13A 0.5687 0.0434 0.6802 0.091\* H13B 0.2767 0.0605 0.6029 0.091\* H13C 0.5074 0.0936 0.6974 0.091\* ------ ------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e956 .table-wrap} ----- ------------- ------------- ------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0157 (2) 0.0299 (2) 0.0334 (3) −0.00014 (16) 0.00646 (16) −0.00426 (18) N1 0.0173 (7) 0.0329 (8) 0.0320 (8) 0.0012 (6) 0.0049 (6) −0.0077 (7) N2 0.0193 (7) 0.0246 (7) 0.0269 (7) −0.0006 (6) 0.0061 (5) −0.0005 (6) C1 0.0171 (7) 0.0248 (8) 0.0214 (7) 0.0014 (6) 0.0051 (6) 0.0038 (6) C2 0.0229 (8) 0.0246 (8) 0.0342 (9) 0.0014 (7) 0.0118 (7) −0.0012 (7) C3 0.0241 (8) 0.0230 (8) 0.0267 (8) 0.0000 (7) 0.0096 (6) 0.0010 (7) C4 0.0296 (9) 0.0303 (9) 0.0407 (10) −0.0038 (8) 0.0110 (8) −0.0094 (8) C5 0.0298 (9) 0.0229 (8) 0.0295 (9) −0.0032 (7) 0.0072 (7) −0.0051 (7) C6 0.0343 (9) 0.0249 (9) 0.0255 (9) −0.0034 (7) 0.0031 (7) −0.0002 (7) C7 0.0414 (10) 0.0374 (11) 0.0234 (9) −0.0047 (9) 0.0098 (8) −0.0049 (8) C8 0.0328 (10) 0.0319 (10) 0.0339 (10) −0.0014 (8) 0.0055 (8) −0.0129 (8) C9 0.0458 (11) 0.0245 (9) 0.0292 (9) 0.0056 (8) 0.0000 (8) −0.0014 (8) C10 0.0489 (11) 0.0239 (9) 0.0260 (9) −0.0024 (8) 0.0102 (8) −0.0025 (7) C11 0.0621 (14) 0.0328 (11) 0.0353 (11) 0.0052 (10) 0.0016 (10) 0.0071 (9) C12 0.0402 (12) 0.0481 (13) 0.0552 (14) 0.0031 (10) 0.0127 (10) −0.0213 (11) C13 0.118 (2) 0.0327 (12) 0.0400 (13) 0.0024 (13) 0.0379 (15) 0.0050 (10) ----- ------------- ------------- ------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1281 .table-wrap} ---------------- ------------- ------------------- ------------- S1---C2 1.7323 (18) C7---C8 1.383 (3) S1---C1 1.7415 (16) C7---H7 0.9500 N1---C1 1.351 (2) C8---C9 1.386 (3) N1---H11 0.88 (1) C8---C12 1.509 (3) N1---H12 0.87 (1) C9---C10 1.389 (3) N2---C1 1.304 (2) C9---H9 0.9500 N2---C3 1.396 (2) C10---C13 1.512 (3) C2---C3 1.346 (2) C11---H11A 0.9800 C2---H2 0.9500 C11---H11B 0.9800 C3---C4 1.502 (2) C11---H11C 0.9800 C4---C5 1.515 (2) C12---H12A 0.9800 C4---H4A 0.9900 C12---H12B 0.9800 C4---H4B 0.9900 C12---H12C 0.9800 C5---C10 1.397 (3) C13---H13A 0.9800 C5---C6 1.399 (3) C13---H13B 0.9800 C6---C7 1.393 (3) C13---H13C 0.9800 C6---C11 1.508 (3) C2---S1---C1 89.03 (8) C6---C7---H7 118.8 C1---N1---H11 119.3 (14) C7---C8---C9 117.63 (18) C1---N1---H12 115.1 (16) C7---C8---C12 121.1 (2) H11---N1---H12 118 (2) C9---C8---C12 121.3 (2) C1---N2---C3 110.84 (14) C8---C9---C10 121.79 (18) N2---C1---N1 125.03 (15) C8---C9---H9 119.1 N2---C1---S1 114.43 (12) C10---C9---H9 119.1 N1---C1---S1 120.50 (13) C9---C10---C5 119.78 (17) C3---C2---S1 110.36 (13) C9---C10---C13 119.37 (19) C3---C2---H2 124.8 C5---C10---C13 120.84 (19) S1---C2---H2 124.8 C6---C11---H11A 109.5 C2---C3---N2 115.33 (15) C6---C11---H11B 109.5 C2---C3---C4 127.16 (16) H11A---C11---H11B 109.5 N2---C3---C4 117.47 (15) C6---C11---H11C 109.5 C3---C4---C5 113.94 (15) H11A---C11---H11C 109.5 C3---C4---H4A 108.8 H11B---C11---H11C 109.5 C5---C4---H4A 108.8 C8---C12---H12A 109.5 C3---C4---H4B 108.8 C8---C12---H12B 109.5 C5---C4---H4B 108.8 H12A---C12---H12B 109.5 H4A---C4---H4B 107.7 C8---C12---H12C 109.5 C10---C5---C6 119.39 (17) H12A---C12---H12C 109.5 C10---C5---C4 120.04 (17) H12B---C12---H12C 109.5 C6---C5---C4 120.56 (17) C10---C13---H13A 109.5 C5---C6---C7 118.95 (17) C10---C13---H13B 109.5 C5---C6---C11 122.00 (18) H13A---C13---H13B 109.5 C7---C6---C11 119.01 (18) C10---C13---H13C 109.5 C8---C7---C6 122.45 (18) H13A---C13---H13C 109.5 C8---C7---H7 118.8 H13B---C13---H13C 109.5 ---------------- ------------- ------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1710 .table-wrap} ------------------ ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H11···N2^i^ 0.88 (1) 2.06 (1) 2.907 (2) 163 (2) ------------------ ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) *x*+1/2, −*y*+1/2, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- ---------- ---------- ----------- ------------- N1---H11⋯N2^i^ 0.88 (1) 2.06 (1) 2.907 (2) 163 (2) Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.342878
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052085/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):o721", "authors": [ { "first": "Abel M.", "last": "Maharramov" }, { "first": "Ali N.", "last": "Khalilov" }, { "first": "Atash V.", "last": "Gurbanov" }, { "first": "Mirze A.", "last": "Allahverdiyev" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3052086
Related literature {#sec1} ================== For the medicinal usage of *M. pteleifolia* in China, see: Chinese Pharmacopoeia (1977[@bb3]) and for folk use of *M. pteleifolia* in South East Asia, see: Gunawardana *et al.* (1987[@bb4]); Shaari *et al.* (2006[@bb5]). For related structures and background to pteleifolosin C, see: Smith *et al.* (2001[@bb8]); Sultana *et al.* (1999[@bb9]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~21~H~20~O~7~*M* *~r~* = 384.37Triclinic,*a* = 8.4073 (18) Å*b* = 9.0343 (19) Å*c* = 12.489 (3) Åα = 79.371 (2)°β = 83.519 (3)°γ = 78.806 (3)°*V* = 911.7 (3) Å^3^*Z* = 2Mo *K*α radiationμ = 0.11 mm^−1^*T* = 296 K0.60 × 0.50 × 0.45 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb6]) *T* ~min~ = 0.939, *T* ~max~ = 0.9548186 measured reflections4103 independent reflections3126 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.019 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.046*wR*(*F* ^2^) = 0.114*S* = 0.984103 reflections259 parametersH-atom parameters constrainedΔρ~max~ = 0.21 e Å^−3^Δρ~min~ = −0.22 e Å^−3^ {#d5e435} Data collection: *APEX2* (Bruker, 2004[@bb2]); cell refinement: *SAINT* (Bruker, 1997[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb7]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811005393/jh2258sup1.cif](http://dx.doi.org/10.1107/S1600536811005393/jh2258sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005393/jh2258Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005393/jh2258Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?jh2258&file=jh2258sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?jh2258sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?jh2258&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [JH2258](http://scripts.iucr.org/cgi-bin/sendsup?jh2258)). We thank Professor Bing Chen for helpful discussions and assistance with the crystallization Comment ======= The title substance is a new compound named pteleifolosin C, which is from petroleum ether soluble fraction of an indigenous Chinese tree Melicope pteleifolia, Rutaceae. In the southern area of China and in the neighboring district of South East Asia, Melicope pteleifolia is a medical herb and an edible plant as well (Gunawardana *et al.*, 1987; Shaari *et al.*, 2006). As a staple material of Guang Dong herbal tea, it also serves as a medical herb for the treatment of injury, wounds, fester and eczema (Chinese Pharmacopoeia, 1977). Nowadays it is used as a constituent in many Chinese patent medicines. In order to find its bioactive ingredients we studied the chemical composition of its leaves and found pteleifolosin C among other flavones. Experimental {#experimental} ============ The dried leaves powder (5 K g) of *M*. pteleifolia was percolated with 80% EtOH to yield crude extract which was fractionated in a Soxhlet to give petroleum ether, ethyl acetate, acetone and methanol soluble fraction successively. The petroleum ether fraction was subjected to column chromatography over silica gel using solvents of increasing polarity. The fraction obtained with 25% ethyl acetate in petroleum ether was subsequently subjected to gel filtration (Sephadex LH-20) eluting with CHCl~3~ and CH~3~OH (1:1) mixtures to give yellow powder, which was purified by prep. HPLC and yielded pteleifolosin C (25 mg). It is similar to the flavones found in the same genus with the O-prenylated side chain (Sultana *et al.*, 1999; Smith *et al.*, 2001). ^1^HNMR (500 MHz, DMSO-*d~6~*): δ 9.55 (1*H*, s, --OH), 12.43 (1*H*, s, --OH), 6.33 (1*H*, d, J=2.0 Hz), 6.72 (1*H*, d, J=2.0 Hz), 7.72 (1*H*, d, J=1.6 Hz), 9.31 (1*H*, s, --OH), 7.09 (1*H*, d, J=8.5 Hz), 7.68 (1*H*, d, J=1.6, 8.5 Hz), 4.64 (2*H*, d, J=6.5 Hz), 5.46 (1*H*, t, J=6.5 Hz), 1.76 (3*H*, s), 1.73 (3*H*, s), 3.85 (3*H*, s); The dihedral angle between the benzene ring C6---C11 and the benzene ring C15---C20 is 2.7 (2)°. and the dihedral angle between the ring C8, C9, C12, C13, C14, O3 and the benzene ring C15---C20 is 2.2 (2) °. The C2---C4 (1.319 (2) Å) and C13---C14 (1.359 (2) Å) are double bands and are significantly shorter than the other C---C bond (e.g.The distance between the single band C1---C2 is 1.495 (3) Å) Refinement {#refinement} ========== All H atoms attached to C were fixed geometrically and treated as riding with C---H = 0.96 Å (methyl) or 0.93 Å (aromatic) with *U*~iso~(H)= 1.2*U*~eq~ (aromatic) or *U*~iso~(H) = 1.5*U*~eq~ (methyl). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular view the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. ::: ![](e-67-0o661-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e185 .table-wrap} ---------------------- --------------------------------------- C~21~H~20~O~7~ *Z* = 2 *M~r~* = 384.37 *F*(000) = 404 Triclinic, *P*1 *D*~x~ = 1.400 Mg m^−3^ *a* = 8.4073 (18) Å Mo *K*α radiation, λ = 0.71073 Å *b* = 9.0343 (19) Å Cell parameters from 3191 reflections *c* = 12.489 (3) Å θ = 0.0--0.0° α = 79.371 (2)° µ = 0.11 mm^−1^ β = 83.519 (3)° *T* = 296 K γ = 78.806 (3)° Block, colourless *V* = 911.7 (3) Å^3^ 0.60 × 0.50 × 0.45 mm ---------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e313 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII CCD diffractometer 4103 independent reflections Radiation source: fine-focus sealed tube 3126 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.019 φ and ω scans θ~max~ = 27.5°, θ~min~ = 2.3° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −10→10 *T*~min~ = 0.939, *T*~max~ = 0.954 *k* = −11→11 8186 measured reflections *l* = −16→16 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e430 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.046 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.114 H-atom parameters constrained *S* = 0.98 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0437*P*)^2^ + 0.4019*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4103 reflections (Δ/σ)~max~ = 0.001 259 parameters Δρ~max~ = 0.21 e Å^−3^ 0 restraints Δρ~min~ = −0.22 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e587 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e686 .table-wrap} ------ -------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C5 0.0698 (2) 0.01370 (19) 0.72012 (14) 0.0408 (4) H5A 0.1690 −0.0115 0.6744 0.049\* H5B −0.0105 0.0810 0.6751 0.049\* C2 −0.0595 (2) −0.21729 (19) 0.72655 (15) 0.0416 (4) C4 0.0075 (2) −0.12862 (19) 0.77422 (14) 0.0428 (4) H4 0.0170 −0.1574 0.8490 0.051\* C3 −0.1194 (3) −0.3565 (2) 0.79063 (18) 0.0584 (5) H3A −0.0962 −0.3684 0.8656 0.088\* H3B −0.0656 −0.4454 0.7606 0.088\* H3C −0.2347 −0.3445 0.7866 0.088\* C1 −0.0815 (3) −0.1880 (2) 0.60687 (17) 0.0596 (5) H1A −0.0403 −0.0973 0.5729 0.089\* H1B −0.1951 −0.1745 0.5962 0.089\* H1C −0.0234 −0.2736 0.5747 0.089\* O1 0.10023 (15) 0.08534 (13) 0.80716 (9) 0.0457 (3) C9 0.30637 (18) 0.47465 (17) 0.75333 (12) 0.0334 (3) C7 0.18620 (19) 0.29532 (17) 0.67786 (13) 0.0351 (3) H7 0.1540 0.2639 0.6181 0.042\* C8 0.25584 (17) 0.42543 (17) 0.66575 (12) 0.0308 (3) C11 0.2147 (2) 0.2601 (2) 0.87334 (13) 0.0433 (4) H11 0.1990 0.2042 0.9429 0.052\* C6 0.16667 (19) 0.21424 (18) 0.78258 (13) 0.0368 (4) C10 0.2850 (2) 0.38769 (19) 0.85908 (13) 0.0404 (4) O2 0.3353 (2) 0.43126 (16) 0.94546 (10) 0.0612 (4) H2 0.3772 0.5074 0.9245 0.092\* C14 0.33864 (17) 0.63647 (16) 0.54058 (12) 0.0296 (3) C12 0.37894 (18) 0.60914 (17) 0.73464 (12) 0.0337 (3) C13 0.39232 (18) 0.68726 (17) 0.62346 (12) 0.0327 (3) O3 0.27254 (13) 0.50474 (12) 0.56215 (8) 0.0341 (3) O4 0.42931 (16) 0.66001 (14) 0.80866 (9) 0.0477 (3) C19 0.2782 (2) 0.69577 (18) 0.24055 (13) 0.0383 (4) H19 0.2381 0.6470 0.1927 0.046\* C15 0.33922 (17) 0.70364 (17) 0.42430 (12) 0.0304 (3) C18 0.33616 (19) 0.83015 (18) 0.20187 (12) 0.0348 (3) C16 0.39856 (19) 0.83993 (17) 0.38400 (12) 0.0343 (3) H16 0.4396 0.8888 0.4313 0.041\* C17 0.39621 (19) 0.90123 (17) 0.27506 (13) 0.0348 (3) C20 0.27958 (19) 0.63340 (18) 0.35041 (13) 0.0356 (3) H20 0.2400 0.5429 0.3755 0.043\* O7 0.34083 (16) 0.90551 (14) 0.09652 (9) 0.0479 (3) O6 0.45551 (17) 1.03420 (14) 0.23818 (10) 0.0501 (3) H6 0.4399 1.0631 0.1734 0.075\* C21 0.2862 (3) 0.8369 (2) 0.01710 (15) 0.0635 (6) H21A 0.3524 0.7381 0.0141 0.095\* H21B 0.2944 0.9006 −0.0532 0.095\* H21C 0.1749 0.8255 0.0367 0.095\* O5 0.46006 (16) 0.81540 (14) 0.60612 (9) 0.0478 (3) H5 0.4836 0.8311 0.6645 0.072\* ------ -------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1348 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C5 0.0505 (9) 0.0343 (9) 0.0406 (9) −0.0176 (7) −0.0023 (7) −0.0040 (7) C2 0.0397 (9) 0.0351 (9) 0.0512 (10) −0.0108 (7) 0.0002 (7) −0.0085 (8) C4 0.0513 (10) 0.0358 (9) 0.0427 (9) −0.0165 (7) −0.0038 (7) −0.0007 (7) C3 0.0605 (12) 0.0405 (11) 0.0785 (14) −0.0238 (9) 0.0020 (10) −0.0096 (10) C1 0.0662 (13) 0.0615 (13) 0.0584 (12) −0.0201 (10) −0.0063 (10) −0.0191 (10) O1 0.0668 (8) 0.0371 (7) 0.0382 (6) −0.0282 (6) −0.0063 (5) 0.0019 (5) C9 0.0385 (8) 0.0312 (8) 0.0319 (8) −0.0106 (6) −0.0025 (6) −0.0043 (6) C7 0.0423 (8) 0.0333 (8) 0.0335 (8) −0.0147 (7) −0.0058 (6) −0.0048 (6) C8 0.0346 (7) 0.0284 (8) 0.0297 (7) −0.0097 (6) −0.0020 (6) −0.0015 (6) C11 0.0612 (11) 0.0411 (10) 0.0297 (8) −0.0210 (8) −0.0037 (7) 0.0015 (7) C6 0.0427 (9) 0.0304 (8) 0.0386 (9) −0.0149 (7) −0.0032 (7) −0.0006 (7) C10 0.0543 (10) 0.0397 (9) 0.0311 (8) −0.0171 (8) −0.0049 (7) −0.0054 (7) O2 0.1038 (11) 0.0607 (9) 0.0313 (6) −0.0451 (8) −0.0121 (7) −0.0029 (6) C14 0.0325 (7) 0.0243 (7) 0.0332 (8) −0.0095 (6) −0.0021 (6) −0.0034 (6) C12 0.0394 (8) 0.0322 (8) 0.0326 (8) −0.0116 (6) −0.0038 (6) −0.0070 (6) C13 0.0376 (8) 0.0279 (8) 0.0350 (8) −0.0132 (6) −0.0029 (6) −0.0040 (6) O3 0.0468 (6) 0.0302 (6) 0.0292 (5) −0.0178 (5) −0.0057 (4) −0.0016 (4) O4 0.0714 (8) 0.0457 (7) 0.0350 (6) −0.0294 (6) −0.0104 (6) −0.0065 (5) C19 0.0528 (10) 0.0331 (8) 0.0344 (8) −0.0169 (7) −0.0096 (7) −0.0060 (7) C15 0.0322 (7) 0.0280 (8) 0.0316 (7) −0.0068 (6) −0.0032 (6) −0.0045 (6) C18 0.0436 (8) 0.0326 (8) 0.0283 (8) −0.0092 (7) −0.0039 (6) −0.0025 (6) C16 0.0432 (8) 0.0319 (8) 0.0320 (8) −0.0147 (6) −0.0046 (6) −0.0065 (6) C17 0.0418 (8) 0.0279 (8) 0.0367 (8) −0.0137 (6) −0.0026 (6) −0.0031 (6) C20 0.0451 (9) 0.0290 (8) 0.0357 (8) −0.0151 (7) −0.0054 (7) −0.0029 (6) O7 0.0756 (9) 0.0419 (7) 0.0299 (6) −0.0223 (6) −0.0089 (6) 0.0000 (5) O6 0.0808 (9) 0.0405 (7) 0.0363 (6) −0.0356 (6) −0.0079 (6) 0.0029 (5) C21 0.1061 (17) 0.0570 (13) 0.0328 (9) −0.0242 (12) −0.0198 (10) −0.0021 (9) O5 0.0753 (8) 0.0424 (7) 0.0364 (6) −0.0362 (6) −0.0113 (6) −0.0028 (5) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1971 .table-wrap} ---------------------- -------------- ----------------------- -------------- C5---O1 1.4328 (19) C10---O2 1.3501 (19) C5---C4 1.498 (2) O2---H2 0.8200 C5---H5A 0.9700 C14---C13 1.359 (2) C5---H5B 0.9700 C14---O3 1.3793 (16) C2---C4 1.319 (2) C14---C15 1.467 (2) C2---C1 1.495 (3) C12---O4 1.2513 (17) C2---C3 1.503 (2) C12---C13 1.440 (2) C4---H4 0.9300 C13---O5 1.3590 (17) C3---H3A 0.9600 C19---C18 1.380 (2) C3---H3B 0.9600 C19---C20 1.384 (2) C3---H3C 0.9600 C19---H19 0.9300 C1---H1A 0.9600 C15---C20 1.396 (2) C1---H1B 0.9600 C15---C16 1.404 (2) C1---H1C 0.9600 C18---O7 1.3655 (19) O1---C6 1.3581 (18) C18---C17 1.396 (2) C9---C8 1.390 (2) C16---C17 1.372 (2) C9---C10 1.419 (2) C16---H16 0.9300 C9---C12 1.433 (2) C17---O6 1.3713 (18) C7---C6 1.385 (2) C20---H20 0.9300 C7---C8 1.389 (2) O7---C21 1.421 (2) C7---H7 0.9300 O6---H6 0.8200 C8---O3 1.3650 (18) C21---H21A 0.9600 C11---C10 1.369 (2) C21---H21B 0.9600 C11---C6 1.400 (2) C21---H21C 0.9600 C11---H11 0.9300 O5---H5 0.8200 O1---C5---C4 105.77 (13) O2---C10---C9 119.45 (14) O1---C5---H5A 110.6 C11---C10---C9 120.28 (14) C4---C5---H5A 110.6 C10---O2---H2 109.5 O1---C5---H5B 110.6 C13---C14---O3 119.66 (13) C4---C5---H5B 110.6 C13---C14---C15 128.81 (13) H5A---C5---H5B 108.7 O3---C14---C15 111.53 (12) C4---C2---C1 123.26 (17) O4---C12---C9 123.70 (14) C4---C2---C3 121.40 (17) O4---C12---C13 119.81 (14) C1---C2---C3 115.33 (16) C9---C12---C13 116.49 (13) C2---C4---C5 126.59 (16) C14---C13---O5 121.85 (14) C2---C4---H4 116.7 C14---C13---C12 121.80 (13) C5---C4---H4 116.7 O5---C13---C12 116.35 (13) C2---C3---H3A 109.5 C8---O3---C14 121.51 (11) C2---C3---H3B 109.5 C18---C19---C20 120.15 (14) H3A---C3---H3B 109.5 C18---C19---H19 119.9 C2---C3---H3C 109.5 C20---C19---H19 119.9 H3A---C3---H3C 109.5 C20---C15---C16 118.06 (14) H3B---C3---H3C 109.5 C20---C15---C14 120.56 (13) C2---C1---H1A 109.5 C16---C15---C14 121.38 (13) C2---C1---H1B 109.5 O7---C18---C19 126.65 (13) H1A---C1---H1B 109.5 O7---C18---C17 114.35 (14) C2---C1---H1C 109.5 C19---C18---C17 118.99 (14) H1A---C1---H1C 109.5 C17---C16---C15 120.24 (13) H1B---C1---H1C 109.5 C17---C16---H16 119.9 C6---O1---C5 119.15 (12) C15---C16---H16 119.9 C8---C9---C10 118.12 (14) C16---C17---O6 118.83 (13) C8---C9---C12 119.70 (14) C16---C17---C18 121.24 (14) C10---C9---C12 122.18 (14) O6---C17---C18 119.93 (14) C6---C7---C8 117.30 (14) C19---C20---C15 121.31 (14) C6---C7---H7 121.3 C19---C20---H20 119.3 C8---C7---H7 121.3 C15---C20---H20 119.3 O3---C8---C7 116.47 (13) C18---O7---C21 117.28 (13) O3---C8---C9 120.82 (13) C17---O6---H6 109.5 C7---C8---C9 122.71 (14) O7---C21---H21A 109.5 C10---C11---C6 119.59 (15) O7---C21---H21B 109.5 C10---C11---H11 120.2 H21A---C21---H21B 109.5 C6---C11---H11 120.2 O7---C21---H21C 109.5 O1---C6---C7 124.01 (14) H21A---C21---H21C 109.5 O1---C6---C11 114.00 (14) H21B---C21---H21C 109.5 C7---C6---C11 121.99 (14) C13---O5---H5 109.5 O2---C10---C11 120.26 (15) C1---C2---C4---C5 0.8 (3) C15---C14---C13---C12 178.36 (14) C3---C2---C4---C5 −179.14 (17) O4---C12---C13---C14 −179.72 (15) O1---C5---C4---C2 168.75 (17) C9---C12---C13---C14 0.2 (2) C4---C5---O1---C6 176.45 (14) O4---C12---C13---O5 −0.4 (2) C6---C7---C8---O3 −179.33 (14) C9---C12---C13---O5 179.51 (14) C6---C7---C8---C9 0.5 (2) C7---C8---O3---C14 179.37 (13) C10---C9---C8---O3 179.69 (14) C9---C8---O3---C14 −0.5 (2) C12---C9---C8---O3 −0.8 (2) C13---C14---O3---C8 1.6 (2) C10---C9---C8---C7 −0.2 (2) C15---C14---O3---C8 −178.21 (12) C12---C9---C8---C7 179.31 (14) C13---C14---C15---C20 179.39 (15) C5---O1---C6---C7 9.8 (2) O3---C14---C15---C20 −0.8 (2) C5---O1---C6---C11 −170.35 (15) C13---C14---C15---C16 −0.9 (2) C8---C7---C6---O1 179.81 (14) O3---C14---C15---C16 178.91 (13) C8---C7---C6---C11 −0.1 (2) C20---C19---C18---O7 −179.26 (16) C10---C11---C6---O1 179.35 (15) C20---C19---C18---C17 0.2 (2) C10---C11---C6---C7 −0.8 (3) C20---C15---C16---C17 0.4 (2) C6---C11---C10---O2 −178.46 (17) C14---C15---C16---C17 −179.33 (14) C6---C11---C10---C9 1.1 (3) C15---C16---C17---O6 −179.80 (14) C8---C9---C10---O2 178.91 (15) C15---C16---C17---C18 −0.3 (2) C12---C9---C10---O2 −0.5 (3) O7---C18---C17---C16 179.55 (15) C8---C9---C10---C11 −0.7 (2) C19---C18---C17---C16 0.0 (2) C12---C9---C10---C11 179.86 (16) O7---C18---C17---O6 −1.0 (2) C8---C9---C12---O4 −179.14 (15) C19---C18---C17---O6 179.51 (15) C10---C9---C12---O4 0.3 (3) C18---C19---C20---C15 −0.1 (3) C8---C9---C12---C13 1.0 (2) C16---C15---C20---C19 −0.2 (2) C10---C9---C12---C13 −179.57 (15) C14---C15---C20---C19 179.55 (15) O3---C14---C13---O5 179.23 (13) C19---C18---O7---C21 −2.5 (3) C15---C14---C13---O5 −1.0 (3) C17---C18---O7---C21 178.09 (16) O3---C14---C13---C12 −1.5 (2) ---------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2912 .table-wrap} ----------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O5---H5···O4 0.82 2.21 2.6682 (17) 115 O5---H5···O6^i^ 0.82 2.04 2.7914 (16) 153 O6---H6···O7 0.82 2.19 2.6440 (16) 115 O2---H2···O4 0.82 1.88 2.6155 (17) 148 ----------------- --------- --------- ------------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+2, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- --------- ------- ------------- ------------- O5---H5⋯O4 0.82 2.21 2.6682 (17) 115 O5---H5⋯O6^i^ 0.82 2.04 2.7914 (16) 153 O6---H6⋯O7 0.82 2.19 2.6440 (16) 115 O2---H2⋯O4 0.82 1.88 2.6155 (17) 148 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.346599
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052086/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):o661", "authors": [ { "first": "Sheng-Hua", "last": "Zhu" }, { "first": "Shao-Qian", "last": "Liu" } ] }
PMC3052087
Related literature {#sec1} ================== For the use of substituted terpyridine ligands in coordination chemistry due to their ability to form complexes with transition metals, see: Chen *et al.* (2010[@bb3]); Feng *et al.* (2006[@bb4]); Hou *et al.* (2005[@bb6]); Mutai *et al.* (2001[@bb8]). For the synthesis of the title compound, see: Mutai *et al.* (2001[@bb8]). For related structures, see: Granifo *et al.* (2004[@bb5]); Chen *et al.* (2010[@bb3]). For the biochemcial importance of terpyridine ligands, see: Bertrand *et al.* (2007[@bb1]); Maity *et al.* (2010[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Cu(NO~3~)~2~(C~21~H~14~ClN~3~)\]\[Cu(NO~3~)(C~21~H~14~ClN~3~)(H~2~O)\]NO~3~·H~2~O*M* *~r~* = 1098.76Monoclinic,*a* = 14.7172 (2) Å*b* = 15.0680 (2) Å*c* = 20.4214 (3) Åβ = 105.377 (1)°*V* = 4366.51 (10) Å^3^*Z* = 4Cu *K*α radiationμ = 3.04 mm^−1^*T* = 293 K0.30 × 0.20 × 0.20 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2000[@bb2]) *T* ~min~ = 0.462, *T* ~max~ = 0.58117732 measured reflections8572 independent reflections7142 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.027 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.044*wR*(*F* ^2^) = 0.115*S* = 1.008572 reflections643 parameters15 restraintsH-atom parameters constrainedΔρ~max~ = 0.56 e Å^−3^Δρ~min~ = −0.27 e Å^−3^ {#d5e460} Data collection: *SMART* (Bruker, 2000[@bb2]); cell refinement: *SAINT* (Bruker, 2000[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008[@bb9]); software used to prepare material for publication: *CIFTAB* in *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811005290/nc2216sup1.cif](http://dx.doi.org/10.1107/S1600536811005290/nc2216sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005290/nc2216Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005290/nc2216Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?nc2216&file=nc2216sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?nc2216sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?nc2216&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NC2216](http://scripts.iucr.org/cgi-bin/sendsup?nc2216)). The authors thank the National Natural Science Foundation of China (20901060, 20871094) and the Program for Young Excellent Talents in Tongji University. Comment ======= Substituted terpyridine ligands have attracted widespread attention in coordination chemistry due to their ability to form complexes with transition metals, (Chen *et al.*,2010; Feng *et al.*,2006; Granifo *et al.*,2004; Hou *et al.*,2005; Mutai *et al.*,2001). Recent studies reveal that under certain conditions, copper complexes with phenanthroline and polypyridine ligands have good DNA binding activity, which attracted great interest in biochemistry (Bertrand *et al.*,2007; Maity *et al.*,2010). The crystal structure of the title compound was determined as part of an ongoing study of the properties of copper complex containing terpyridyl ligands. The crystal structure of the title compound consists of two crystallographically independent complexes, in which the copper cations are always penta coordinated within a distorted square-pyramidal coordination (Fig.1). In one of these complexes two copper atom is coordinated by three N atoms of the tridentrate chelating ligand and two O atoms of two independent two nitrate anions.In the other complex the copper is coordinated by three N atoms of the chelating ligand, one O atom of one nitrate anion and an O atom of one water molecule. The structure contains one additional nitrate anion and one additional water molecule that are not connected to the copper cations. The central Cu--N bond lengths \[Cu(1)---N(5) = 1.9287 (16) Å and Cu(2)---N(2) = 1.9256 (18)Å\] are slightly shorter than those to the outer N atoms of 2.0178 (18), 2.0277 (18), 2.0096 (19) and 2.014 (2)Å. The bond angles to the N atoms of the terpyridyl unit of 80.40 (8), 80.07 (8), 80.39 (7) and 79.97 (7) ° deviate from the ideal values which is a common characteristics for terpyridyl-containing complexes (Granifo *et al.*,2004). The apical Cu--O bond lenghts (Cu(1)---O(1 W) 2.208 (2) Å and Cu(2)---O(4) 2.163 (3) Å) are longer than the other Cu--O bonds. Experimental {#experimental} ============ 4\'-(4-Chlorophenyl)-2,2\':6\',2\'\'-terpyridine (Cl-ptp) has been synthesized by a procedure reported in the literature (Mutai *et al.* 2001). A solution of Cl-ptp (42.35 mg, 0.124 mmol) in dichloromethane (3 ml) was mixed with anhydrous acetonitrile (3 ml) dissolving copper nitrate (29.96 mg, 0.124 mmol),then sealed and kept it in refrigerator. Several days later, blue crystals were collected by filtration. Refinement {#refinement} ========== All H atom were positioned geometrically and refined as riding, with aromatic C---H =0.93 Å and with Uiso(H) = 1.2Ueq(C).The water H were located in difference map and were refined isotropic. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### ORTEP drawing of the title compound with labelling showing displacement ellipsoids at the 30% probability level. All hydrogen atoms have been omitted for clarity. ::: ![](e-67-0m346-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e118 .table-wrap} ------------------------------------------------------------------------------------- ---------------------------------- \[Cu(NO~3~)~2~(C~21~H~14~ClN~3~)\]\[Cu(NO~3~)(C~21~H~14~ClN~3~)(H~2~O)\]NO~3~·H~2~O *Z* = 4 *M~r~* = 1098.76 *F*(000) = 2232 Monoclinic, *P*2~1~/*c* *D*~x~ = 1.671 Mg m^−3^ *a* = 14.7172 (2) Å Cu *K*α radiation, λ = 1.54178 Å *b* = 15.0680 (2) Å µ = 3.04 mm^−1^ *c* = 20.4214 (3) Å *T* = 293 K β = 105.377 (1)° Block, blue *V* = 4366.51 (10) Å^3^ 0.30 × 0.20 × 0.20 mm ------------------------------------------------------------------------------------- ---------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e264 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART CCD area-detector diffractometer 8572 independent reflections Radiation source: fine-focus sealed tube 7142 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.027 ω scans θ~max~ = 72.9°, θ~min~ = 3.1° Absorption correction: multi-scan (*SADABS*; Bruker, 2000) *h* = −18→17 *T*~min~ = 0.462, *T*~max~ = 0.581 *k* = −18→17 17732 measured reflections *l* = −24→25 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e378 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.044 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.115 H-atom parameters constrained *S* = 1.00 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0792*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 8572 reflections (Δ/σ)~max~ = 0.001 643 parameters Δρ~max~ = 0.56 e Å^−3^ 15 restraints Δρ~min~ = −0.27 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e532 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e631 .table-wrap} ------ -------------- --------------- --------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Cu2 0.37161 (3) 0.70822 (2) 0.243697 (17) 0.04814 (11) Cl1 −0.06351 (4) 0.37787 (4) −0.19024 (3) 0.05263 (14) N1 0.38825 (15) 0.58174 (12) 0.27589 (10) 0.0443 (4) N2 0.30021 (13) 0.64907 (11) 0.16278 (9) 0.0395 (3) N3 0.32876 (16) 0.81395 (13) 0.18301 (11) 0.0499 (4) N8 0.57336 (15) 0.69059 (13) 0.25635 (10) 0.0481 (4) O4 0.5200 (2) 0.73693 (19) 0.28333 (17) 0.0547 (6) 0.85 O5 0.5407 (3) 0.6533 (3) 0.20330 (17) 0.0886 (10) 0.85 O6 0.6581 (2) 0.6877 (3) 0.28725 (18) 0.0811 (8) 0.85 O4\' 0.5462 (19) 0.7293 (19) 0.2997 (11) 0.085 (9)\* 0.15 O5\' 0.5103 (12) 0.6818 (14) 0.2011 (8) 0.074 (5)\* 0.15 O6\' 0.6530 (13) 0.6649 (19) 0.2589 (15) 0.107 (8)\* 0.15 N9 0.28984 (17) 0.76429 (13) 0.34439 (11) 0.0520 (5) O7 0.36819 (15) 0.77450 (13) 0.33053 (10) 0.0605 (5) O8 0.23158 (17) 0.71330 (18) 0.30946 (15) 0.0806 (7) O9 0.2733 (2) 0.80703 (15) 0.39136 (12) 0.0764 (6) C1 0.34510 (15) 0.52113 (14) 0.22914 (10) 0.0380 (4) C2 0.35475 (17) 0.43099 (14) 0.24211 (11) 0.0439 (4) H2A 0.3244 0.3898 0.2097 0.053\* C3 0.41109 (19) 0.40344 (16) 0.30496 (12) 0.0492 (5) H3A 0.4191 0.3433 0.3149 0.059\* C4 0.45462 (19) 0.46552 (18) 0.35206 (12) 0.0517 (5) H4A 0.4924 0.4480 0.3942 0.062\* C5 0.44127 (19) 0.55490 (17) 0.33570 (12) 0.0516 (5) H5A 0.4704 0.5971 0.3676 0.062\* C6 0.29006 (14) 0.56106 (13) 0.16427 (10) 0.0372 (4) C7 0.23287 (15) 0.51691 (12) 0.10898 (10) 0.0381 (4) H7A 0.2253 0.4557 0.1103 0.046\* C8 0.18654 (14) 0.56533 (13) 0.05104 (10) 0.0368 (4) C9 0.19961 (16) 0.65762 (14) 0.05147 (11) 0.0415 (4) H9A 0.1702 0.6916 0.0138 0.050\* C10 0.25694 (16) 0.69735 (13) 0.10885 (11) 0.0399 (4) C11 0.27548 (17) 0.79410 (13) 0.11984 (12) 0.0442 (4) C12 0.2395 (2) 0.85883 (15) 0.07258 (14) 0.0528 (5) H12A 0.2039 0.8440 0.0292 0.063\* C13 0.2579 (2) 0.94744 (16) 0.09149 (17) 0.0619 (7) H13A 0.2340 0.9926 0.0607 0.074\* C14 0.3114 (2) 0.96745 (16) 0.15558 (18) 0.0647 (7) H14A 0.3240 1.0262 0.1689 0.078\* C15 0.3459 (2) 0.89932 (17) 0.19996 (16) 0.0606 (6) H15A 0.3825 0.9130 0.2433 0.073\* C16 0.12483 (14) 0.51953 (12) −0.00913 (10) 0.0357 (4) C17 0.11446 (17) 0.42722 (14) −0.00964 (11) 0.0435 (4) H17A 0.1471 0.3945 0.0278 0.052\* C18 0.05659 (18) 0.38366 (13) −0.06473 (12) 0.0457 (5) H18A 0.0500 0.3223 −0.0642 0.055\* C19 0.00875 (15) 0.43232 (14) −0.12038 (10) 0.0395 (4) C20 0.01727 (17) 0.52367 (14) −0.12187 (11) 0.0458 (5) H20A −0.0155 0.5560 −0.1596 0.055\* C21 0.07546 (17) 0.56623 (13) −0.06619 (11) 0.0446 (5) H21A 0.0816 0.6276 −0.0670 0.053\* Cu1 0.64469 (2) 0.755439 (18) 0.511420 (14) 0.03832 (10) Cl2 1.01554 (6) 1.13769 (4) 0.93957 (3) 0.0688 (2) O1 0.53539 (13) 0.68233 (11) 0.46355 (8) 0.0514 (4) O1W 0.71041 (19) 0.71742 (18) 0.43010 (11) 0.0773 (6) H1O1 0.6778 0.7146 0.3890 0.116\* H2O1 0.7678 0.7228 0.4297 0.116\* O2 0.4079 (2) 0.6278 (2) 0.48005 (15) 0.0932 (9) O3 0.48744 (19) 0.72562 (16) 0.54977 (12) 0.0739 (6) N4 0.71391 (13) 0.65875 (11) 0.57323 (9) 0.0393 (3) N5 0.71651 (12) 0.82709 (11) 0.58543 (8) 0.0345 (3) N6 0.60310 (13) 0.87827 (11) 0.47501 (9) 0.0394 (3) N7 0.47370 (16) 0.67908 (14) 0.49853 (11) 0.0536 (5) C22 0.77267 (14) 0.68840 (12) 0.63225 (10) 0.0356 (4) C23 0.82755 (17) 0.63125 (14) 0.67921 (11) 0.0443 (4) H23A 0.8669 0.6526 0.7196 0.053\* C24 0.8226 (2) 0.54068 (15) 0.66470 (14) 0.0533 (5) H24A 0.8593 0.5007 0.6952 0.064\* C25 0.7630 (2) 0.51087 (14) 0.60480 (14) 0.0547 (6) H25A 0.7591 0.4507 0.5943 0.066\* C26 0.70929 (18) 0.57172 (15) 0.56072 (12) 0.0484 (5) H26A 0.6682 0.5513 0.5207 0.058\* C27 0.77161 (14) 0.78655 (12) 0.63989 (10) 0.0343 (4) C28 0.82017 (14) 0.83482 (13) 0.69578 (10) 0.0363 (4) H28A 0.8594 0.8064 0.7331 0.044\* C29 0.80945 (14) 0.92764 (12) 0.69537 (10) 0.0353 (4) C30 0.74968 (15) 0.96743 (12) 0.63802 (10) 0.0367 (4) H30A 0.7402 1.0285 0.6366 0.044\* C31 0.70481 (14) 0.91482 (12) 0.58339 (10) 0.0347 (4) C32 0.64043 (14) 0.94527 (13) 0.51785 (10) 0.0351 (4) C33 0.62025 (15) 1.03327 (13) 0.50081 (10) 0.0384 (4) H33A 0.6463 1.0784 0.5310 0.046\* C34 0.55991 (16) 1.05270 (14) 0.43731 (11) 0.0427 (4) H34A 0.5448 1.1112 0.4246 0.051\* C35 0.52309 (16) 0.98441 (16) 0.39380 (11) 0.0465 (5) H35A 0.4834 0.9964 0.3510 0.056\* C36 0.54549 (17) 0.89771 (15) 0.41408 (11) 0.0452 (4) H36A 0.5198 0.8517 0.3846 0.054\* C37 0.86092 (15) 0.98066 (13) 0.75508 (10) 0.0376 (4) C38 0.87342 (17) 1.07184 (14) 0.75065 (11) 0.0447 (5) H38A 0.8495 1.1006 0.7094 0.054\* C39 0.9212 (2) 1.12044 (14) 0.80709 (13) 0.0516 (5) H39A 0.9288 1.1814 0.8037 0.062\* C40 0.95691 (18) 1.07797 (15) 0.86793 (11) 0.0473 (5) C41 0.9460 (2) 0.98785 (16) 0.87392 (12) 0.0600 (7) H41A 0.9706 0.9594 0.9152 0.072\* C42 0.8979 (2) 0.94048 (14) 0.81760 (12) 0.0581 (7) H42A 0.8900 0.8797 0.8217 0.070\* N10 0.89519 (16) 0.71939 (12) 0.86786 (10) 0.0501 (5) O10 0.9058 (2) 0.76082 (15) 0.92176 (12) 0.0773 (7) O11 0.95399 (15) 0.72583 (13) 0.83381 (10) 0.0598 (4) O12 0.82643 (18) 0.67101 (17) 0.84712 (13) 0.0789 (7) O2W 0.88021 (19) 1.31295 (18) 0.57881 (14) 0.0829 (7) H1O2 0.9248 1.2790 0.5993 0.124\* H2O2 0.8795 1.3574 0.6043 0.124\* ------ -------------- --------------- --------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1967 .table-wrap} ----- -------------- -------------- -------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cu2 0.0591 (2) 0.03360 (16) 0.04541 (18) −0.00919 (13) 0.00277 (14) −0.00994 (12) Cl1 0.0598 (3) 0.0456 (3) 0.0432 (3) −0.0050 (2) −0.0026 (2) −0.0097 (2) N1 0.0531 (10) 0.0368 (8) 0.0399 (9) −0.0078 (7) 0.0070 (7) −0.0066 (7) N2 0.0427 (9) 0.0328 (8) 0.0403 (8) −0.0054 (6) 0.0061 (7) −0.0063 (6) N3 0.0569 (11) 0.0337 (9) 0.0557 (11) −0.0063 (8) 0.0088 (9) −0.0081 (8) N8 0.0534 (11) 0.0426 (9) 0.0453 (9) −0.0022 (8) 0.0080 (8) 0.0020 (8) O4 0.0515 (14) 0.0482 (12) 0.0612 (13) −0.0112 (10) 0.0094 (13) −0.0154 (11) O5 0.087 (2) 0.109 (3) 0.0670 (17) −0.007 (2) 0.0153 (15) −0.0462 (18) O6 0.0576 (15) 0.102 (2) 0.0740 (18) 0.0114 (14) 0.0004 (12) −0.0151 (17) N9 0.0623 (12) 0.0377 (9) 0.0518 (11) 0.0028 (8) 0.0076 (9) −0.0060 (8) O7 0.0622 (11) 0.0582 (10) 0.0585 (10) −0.0155 (9) 0.0115 (8) −0.0215 (8) O8 0.0637 (13) 0.0821 (15) 0.0933 (17) −0.0165 (11) 0.0161 (12) −0.0364 (13) O9 0.1051 (18) 0.0619 (11) 0.0688 (13) 0.0017 (12) 0.0344 (13) −0.0190 (10) C1 0.0409 (9) 0.0363 (9) 0.0351 (9) −0.0053 (8) 0.0070 (7) −0.0054 (7) C2 0.0529 (12) 0.0362 (10) 0.0401 (10) −0.0032 (8) 0.0077 (9) −0.0046 (8) C3 0.0590 (13) 0.0422 (10) 0.0438 (11) 0.0008 (10) 0.0091 (10) 0.0024 (9) C4 0.0574 (13) 0.0544 (12) 0.0375 (10) −0.0024 (10) 0.0025 (9) 0.0001 (9) C5 0.0618 (14) 0.0484 (12) 0.0392 (10) −0.0106 (10) 0.0041 (9) −0.0075 (9) C6 0.0406 (9) 0.0320 (9) 0.0385 (9) −0.0029 (7) 0.0098 (8) −0.0042 (7) C7 0.0451 (10) 0.0288 (8) 0.0386 (9) −0.0036 (7) 0.0081 (8) −0.0026 (7) C8 0.0385 (9) 0.0334 (9) 0.0384 (9) −0.0009 (7) 0.0099 (7) −0.0029 (7) C9 0.0481 (11) 0.0320 (9) 0.0420 (10) −0.0012 (8) 0.0077 (8) −0.0011 (8) C10 0.0436 (10) 0.0324 (9) 0.0439 (10) −0.0026 (7) 0.0119 (8) −0.0028 (8) C11 0.0494 (11) 0.0320 (9) 0.0524 (12) −0.0045 (8) 0.0154 (9) −0.0055 (8) C12 0.0636 (14) 0.0359 (10) 0.0596 (13) −0.0048 (10) 0.0174 (11) −0.0009 (9) C13 0.0750 (17) 0.0344 (11) 0.0802 (18) −0.0018 (11) 0.0273 (14) 0.0056 (11) C14 0.0738 (18) 0.0338 (10) 0.089 (2) −0.0121 (11) 0.0250 (15) −0.0106 (12) C15 0.0674 (16) 0.0380 (11) 0.0737 (17) −0.0128 (11) 0.0138 (13) −0.0144 (11) C16 0.0410 (10) 0.0314 (9) 0.0340 (9) −0.0005 (7) 0.0085 (7) −0.0031 (7) C17 0.0557 (12) 0.0332 (9) 0.0364 (9) −0.0034 (8) 0.0031 (8) 0.0030 (7) C18 0.0590 (13) 0.0297 (9) 0.0438 (11) −0.0059 (8) 0.0056 (9) −0.0010 (8) C19 0.0424 (10) 0.0383 (9) 0.0355 (9) −0.0029 (8) 0.0066 (8) −0.0080 (8) C20 0.0549 (12) 0.0369 (9) 0.0392 (10) 0.0057 (9) 0.0013 (9) −0.0009 (8) C21 0.0555 (12) 0.0293 (8) 0.0435 (11) 0.0024 (8) 0.0036 (9) −0.0019 (8) Cu1 0.04705 (17) 0.03035 (15) 0.03209 (15) −0.00569 (11) 0.00088 (12) −0.00446 (10) Cl2 0.0935 (5) 0.0550 (3) 0.0464 (3) −0.0186 (3) −0.0019 (3) −0.0200 (2) O1 0.0582 (9) 0.0499 (8) 0.0403 (7) −0.0183 (7) 0.0030 (7) −0.0090 (6) O1W 0.0907 (16) 0.0972 (16) 0.0499 (10) −0.0037 (13) 0.0288 (11) −0.0108 (11) O2 0.0825 (17) 0.109 (2) 0.0879 (17) −0.0557 (16) 0.0212 (13) −0.0209 (15) O3 0.0870 (15) 0.0717 (12) 0.0667 (12) −0.0139 (12) 0.0270 (11) −0.0181 (11) N4 0.0477 (9) 0.0302 (7) 0.0378 (8) −0.0016 (7) 0.0077 (7) −0.0039 (6) N5 0.0407 (8) 0.0288 (7) 0.0316 (7) −0.0058 (6) 0.0052 (6) −0.0038 (6) N6 0.0441 (9) 0.0357 (8) 0.0340 (8) −0.0032 (7) 0.0024 (7) 0.0001 (6) N7 0.0574 (12) 0.0500 (10) 0.0480 (10) −0.0135 (9) 0.0046 (9) −0.0022 (8) C22 0.0426 (10) 0.0305 (8) 0.0335 (8) −0.0029 (7) 0.0096 (7) −0.0039 (7) C23 0.0537 (12) 0.0358 (10) 0.0399 (10) 0.0015 (8) 0.0061 (9) −0.0002 (8) C24 0.0642 (14) 0.0341 (10) 0.0576 (13) 0.0077 (10) 0.0093 (11) 0.0042 (9) C25 0.0712 (15) 0.0283 (9) 0.0620 (14) 0.0017 (9) 0.0132 (12) −0.0073 (9) C26 0.0590 (13) 0.0337 (9) 0.0483 (11) −0.0052 (9) 0.0070 (9) −0.0126 (8) C27 0.0400 (9) 0.0312 (8) 0.0302 (8) −0.0028 (7) 0.0068 (7) −0.0005 (7) C28 0.0442 (10) 0.0303 (8) 0.0309 (8) −0.0016 (7) 0.0041 (7) −0.0004 (7) C29 0.0421 (9) 0.0296 (8) 0.0320 (8) −0.0031 (7) 0.0059 (7) −0.0023 (7) C30 0.0450 (10) 0.0266 (8) 0.0361 (9) −0.0025 (7) 0.0063 (8) −0.0014 (7) C31 0.0403 (9) 0.0300 (8) 0.0329 (9) −0.0038 (7) 0.0080 (7) −0.0004 (7) C32 0.0374 (9) 0.0346 (9) 0.0323 (8) −0.0042 (7) 0.0073 (7) 0.0006 (7) C33 0.0419 (10) 0.0343 (9) 0.0379 (9) −0.0022 (7) 0.0089 (8) 0.0016 (7) C34 0.0446 (11) 0.0417 (10) 0.0413 (10) 0.0035 (8) 0.0103 (8) 0.0082 (8) C35 0.0460 (11) 0.0534 (12) 0.0353 (9) 0.0004 (9) 0.0024 (8) 0.0058 (9) C36 0.0486 (11) 0.0452 (10) 0.0367 (10) −0.0044 (9) 0.0023 (8) −0.0023 (8) C37 0.0461 (10) 0.0297 (8) 0.0328 (9) −0.0018 (7) 0.0030 (7) −0.0045 (7) C38 0.0582 (12) 0.0320 (9) 0.0377 (10) −0.0035 (8) 0.0016 (9) −0.0008 (8) C39 0.0680 (15) 0.0315 (9) 0.0499 (12) −0.0091 (9) 0.0062 (11) −0.0082 (9) C40 0.0561 (12) 0.0407 (10) 0.0400 (10) −0.0065 (9) 0.0040 (9) −0.0129 (8) C41 0.0896 (19) 0.0403 (11) 0.0364 (10) 0.0035 (12) −0.0073 (11) −0.0033 (9) C42 0.097 (2) 0.0281 (9) 0.0376 (11) −0.0009 (11) −0.0034 (11) −0.0025 (8) N10 0.0618 (12) 0.0311 (8) 0.0489 (10) −0.0042 (8) −0.0005 (9) 0.0087 (7) O10 0.1122 (19) 0.0648 (12) 0.0536 (11) −0.0207 (12) 0.0193 (11) −0.0108 (9) O11 0.0646 (11) 0.0525 (9) 0.0594 (10) 0.0011 (8) 0.0113 (9) 0.0076 (8) O12 0.0731 (14) 0.0745 (13) 0.0776 (14) −0.0272 (12) 0.0000 (11) 0.0053 (11) O2W 0.0724 (14) 0.0842 (15) 0.0845 (15) 0.0128 (12) 0.0073 (12) 0.0130 (13) ----- -------------- -------------- -------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e3300 .table-wrap} ------------------ ------------- ------------------- ------------- Cu2---N2 1.9256 (18) Cu1---O1 1.9806 (16) Cu2---N1 2.0096 (19) Cu1---N4 2.0178 (18) Cu2---N3 2.014 (2) Cu1---N6 2.0277 (18) Cu2---O7 2.0475 (18) Cu1---O1W 2.208 (2) Cu2---O4 2.163 (3) Cl2---C40 1.739 (2) Cl1---C19 1.742 (2) O1---N7 1.297 (3) N1---C5 1.326 (3) O1W---H1O1 0.8500 N1---C1 1.352 (3) O1W---H2O1 0.8501 N2---C10 1.333 (3) O2---N7 1.218 (3) N2---C6 1.336 (3) O3---N7 1.231 (3) N3---C15 1.339 (3) N4---C26 1.334 (3) N3---C11 1.354 (3) N4---C22 1.359 (3) N8---O5 1.202 (3) N5---C31 1.332 (3) N8---O4\' 1.214 (14) N5---C27 1.338 (3) N8---O6\' 1.222 (14) N6---C36 1.339 (3) N8---O6 1.240 (4) N6---C32 1.353 (3) N8---O5\' 1.263 (13) C22---C23 1.379 (3) N8---O4 1.279 (3) C22---C27 1.488 (2) N9---O8 1.229 (3) C23---C24 1.394 (3) N9---O9 1.232 (3) C23---H23A 0.9300 N9---O7 1.267 (3) C24---C25 1.378 (4) C1---C2 1.384 (3) C24---H24A 0.9300 C1---C6 1.485 (3) C25---C26 1.378 (4) C2---C3 1.394 (3) C25---H25A 0.9300 C2---H2A 0.9300 C26---H26A 0.9300 C3---C4 1.372 (3) C27---C28 1.382 (3) C3---H3A 0.9300 C28---C29 1.407 (3) C4---C5 1.389 (4) C28---H28A 0.9300 C4---H4A 0.9300 C29---C30 1.400 (3) C5---H5A 0.9300 C29---C37 1.486 (3) C6---C7 1.386 (3) C30---C31 1.385 (3) C7---C8 1.403 (3) C30---H30A 0.9300 C7---H7A 0.9300 C31---C32 1.492 (2) C8---C9 1.404 (3) C32---C33 1.383 (3) C8---C16 1.490 (3) C33---C34 1.395 (3) C9---C10 1.385 (3) C33---H33A 0.9300 C9---H9A 0.9300 C34---C35 1.373 (3) C10---C11 1.489 (3) C34---H34A 0.9300 C11---C12 1.375 (4) C35---C36 1.384 (3) C12---C13 1.396 (3) C35---H35A 0.9300 C12---H12A 0.9300 C36---H36A 0.9300 C13---C14 1.370 (5) C37---C42 1.387 (3) C13---H13A 0.9300 C37---C38 1.392 (3) C14---C15 1.374 (4) C38---C39 1.389 (3) C14---H14A 0.9300 C38---H38A 0.9300 C15---H15A 0.9300 C39---C40 1.372 (3) C16---C21 1.390 (3) C39---H39A 0.9300 C16---C17 1.399 (3) C40---C41 1.377 (3) C17---C18 1.383 (3) C41---C42 1.379 (3) C17---H17A 0.9300 C41---H41A 0.9300 C18---C19 1.378 (3) C42---H42A 0.9300 C18---H18A 0.9300 N10---O12 1.228 (3) C19---C20 1.383 (3) N10---O10 1.239 (3) C20---C21 1.386 (3) N10---O11 1.249 (3) C20---H20A 0.9300 O2W---H1O2 0.8500 C21---H21A 0.9300 O2W---H2O2 0.8501 Cu1---N5 1.9287 (16) N2---Cu2---N1 80.40 (8) C21---C20---H20A 120.6 N2---Cu2---N3 80.07 (8) C20---C21---C16 121.70 (19) N1---Cu2---N3 160.46 (8) C20---C21---H21A 119.2 N2---Cu2---O7 146.70 (8) C16---C21---H21A 119.2 N1---Cu2---O7 102.01 (8) N5---Cu1---O1 154.52 (7) N3---Cu2---O7 94.10 (9) N5---Cu1---N4 80.39 (7) N2---Cu2---O4 132.92 (9) O1---Cu1---N4 96.69 (7) N1---Cu2---O4 92.52 (11) N5---Cu1---N6 79.97 (7) N3---Cu2---O4 101.09 (11) O1---Cu1---N6 101.54 (7) O7---Cu2---O4 80.36 (9) N4---Cu1---N6 160.33 (7) C5---N1---C1 119.73 (19) N5---Cu1---O1W 118.45 (9) C5---N1---Cu2 125.54 (15) O1---Cu1---O1W 86.84 (9) C1---N1---Cu2 114.59 (15) N4---Cu1---O1W 91.94 (9) C10---N2---C6 121.93 (18) N6---Cu1---O1W 96.37 (9) C10---N2---Cu2 119.28 (14) N7---O1---Cu1 110.17 (13) C6---N2---Cu2 118.61 (15) Cu1---O1W---H1O1 120.7 C15---N3---C11 118.7 (2) Cu1---O1W---H2O1 128.1 C15---N3---Cu2 126.5 (2) H1O1---O1W---H2O1 107.3 C11---N3---Cu2 114.79 (14) C26---N4---C22 118.74 (19) O5---N8---O4\' 138.8 (13) C26---N4---Cu1 126.75 (16) O5---N8---O6\' 92.3 (14) C22---N4---Cu1 114.48 (13) O4\'---N8---O6\' 128.3 (19) C31---N5---C27 121.60 (16) O5---N8---O6 123.3 (3) C31---N5---Cu1 119.44 (14) O4\'---N8---O6 97.3 (13) C27---N5---Cu1 118.77 (13) O6\'---N8---O6 31.1 (13) C36---N6---C32 119.07 (18) O5---N8---O5\' 28.7 (9) C36---N6---Cu1 126.56 (15) O4\'---N8---O5\' 113.3 (16) C32---N6---Cu1 114.36 (13) O6\'---N8---O5\' 118.3 (17) O2---N7---O3 124.2 (3) O6---N8---O5\' 148.4 (10) O2---N7---O1 118.0 (2) O5---N8---O4 120.0 (3) O3---N7---O1 117.7 (2) O4\'---N8---O4 20.7 (12) N4---C22---C23 121.93 (18) O6\'---N8---O4 147.7 (14) N4---C22---C27 113.44 (17) O6---N8---O4 116.7 (3) C23---C22---C27 124.62 (18) O5\'---N8---O4 93.0 (10) C22---C23---C24 118.4 (2) N8---O4---Cu2 113.81 (19) C22---C23---H23A 120.8 O8---N9---O9 121.8 (3) C24---C23---H23A 120.8 O8---N9---O7 118.8 (2) C25---C24---C23 119.5 (2) O9---N9---O7 119.3 (2) C25---C24---H24A 120.2 N9---O7---Cu2 111.52 (14) C23---C24---H24A 120.2 N1---C1---C2 121.5 (2) C26---C25---C24 118.9 (2) N1---C1---C6 113.54 (18) C26---C25---H25A 120.6 C2---C1---C6 124.92 (18) C24---C25---H25A 120.6 C1---C2---C3 118.3 (2) N4---C26---C25 122.5 (2) C1---C2---H2A 120.8 N4---C26---H26A 118.7 C3---C2---H2A 120.8 C25---C26---H26A 118.7 C4---C3---C2 119.7 (2) N5---C27---C28 120.86 (17) C4---C3---H3A 120.1 N5---C27---C22 112.81 (16) C2---C3---H3A 120.1 C28---C27---C22 126.32 (18) C3---C4---C5 118.8 (2) C27---C28---C29 119.05 (18) C3---C4---H4A 120.6 C27---C28---H28A 120.5 C5---C4---H4A 120.6 C29---C28---H28A 120.5 N1---C5---C4 121.9 (2) C30---C29---C28 118.38 (17) N1---C5---H5A 119.1 C30---C29---C37 121.79 (17) C4---C5---H5A 119.1 C28---C29---C37 119.83 (17) N2---C6---C7 120.35 (19) C31---C30---C29 119.24 (17) N2---C6---C1 112.63 (18) C31---C30---H30A 120.4 C7---C6---C1 127.02 (18) C29---C30---H30A 120.4 C6---C7---C8 119.44 (17) N5---C31---C30 120.84 (18) C6---C7---H7A 120.3 N5---C31---C32 112.28 (17) C8---C7---H7A 120.3 C30---C31---C32 126.88 (17) C7---C8---C9 118.33 (19) N6---C32---C33 121.96 (18) C7---C8---C16 120.55 (17) N6---C32---C31 113.75 (17) C9---C8---C16 121.11 (19) C33---C32---C31 124.28 (18) C10---C9---C8 119.0 (2) C32---C33---C34 118.45 (19) C10---C9---H9A 120.5 C32---C33---H33A 120.8 C8---C9---H9A 120.5 C34---C33---H33A 120.8 N2---C10---C9 120.90 (18) C35---C34---C33 119.3 (2) N2---C10---C11 112.43 (19) C35---C34---H34A 120.4 C9---C10---C11 126.6 (2) C33---C34---H34A 120.4 N3---C11---C12 122.0 (2) C34---C35---C36 119.5 (2) N3---C11---C10 113.4 (2) C34---C35---H35A 120.3 C12---C11---C10 124.6 (2) C36---C35---H35A 120.3 C11---C12---C13 118.3 (3) N6---C36---C35 121.8 (2) C11---C12---H12A 120.9 N6---C36---H36A 119.1 C13---C12---H12A 120.9 C35---C36---H36A 119.1 C14---C13---C12 119.7 (3) C42---C37---C38 117.65 (19) C14---C13---H13A 120.2 C42---C37---C29 120.71 (18) C12---C13---H13A 120.2 C38---C37---C29 121.64 (18) C13---C14---C15 118.9 (2) C39---C38---C37 120.9 (2) C13---C14---H14A 120.5 C39---C38---H38A 119.6 C15---C14---H14A 120.5 C37---C38---H38A 119.6 N3---C15---C14 122.4 (3) C40---C39---C38 119.6 (2) N3---C15---H15A 118.8 C40---C39---H39A 120.2 C14---C15---H15A 118.8 C38---C39---H39A 120.2 C21---C16---C17 117.73 (18) C39---C40---C41 121.0 (2) C21---C16---C8 121.72 (18) C39---C40---Cl2 120.39 (17) C17---C16---C8 120.54 (18) C41---C40---Cl2 118.63 (19) C18---C17---C16 121.35 (19) C40---C41---C42 118.9 (2) C18---C17---H17A 119.3 C40---C41---H41A 120.6 C16---C17---H17A 119.3 C42---C41---H41A 120.6 C19---C18---C17 119.19 (18) C41---C42---C37 122.1 (2) C19---C18---H18A 120.4 C41---C42---H42A 119.0 C17---C18---H18A 120.4 C37---C42---H42A 119.0 C18---C19---C20 121.20 (19) O12---N10---O10 120.3 (3) C18---C19---Cl1 119.47 (16) O12---N10---O11 118.9 (2) C20---C19---Cl1 119.33 (17) O10---N10---O11 120.8 (2) C19---C20---C21 118.8 (2) H1O2---O2W---H2O2 107.7 C19---C20---H20A 120.6 ------------------ ------------- ------------------- ------------- :::
PubMed Central
2024-06-05T04:04:18.353345
2011-2-19
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052087/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 19; 67(Pt 3):m346", "authors": [ { "first": "Juan", "last": "Zhao" }, { "first": "Shuo", "last": "Shi" }, { "first": "Tianming", "last": "Yao" }, { "first": "Zhongfei", "last": "Tan" } ] }
PMC3052088
Related literature {#sec1} ================== For applications of heterocyclic derivatives, see: Al-Talib *et al.* (1990[@bb1]); Nakagawa *et al.* (1996[@bb2]); Zhang *et al.* (2007[@bb7]). For related structuresbn,, see: Wang *et al.* (2010[@bb5], 2011[@bb6]); Zhao *et al.* (2010[@bb8]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~18~H~16~N~6~O~2~S~2~*M* *~r~* = 412.49Monoclinic,*a* = 4.9780 (6) Å*b* = 5.7933 (7) Å*c* = 31.003 (4) Åβ = 92.588 (5)°*V* = 893.20 (18) Å^3^*Z* = 2Mo *K*α radiationμ = 0.33 mm^−1^*T* = 113 K0.20 × 0.18 × 0.10 mm ### Data collection {#sec2.1.2} Rigaku Saturn CCD area-detector diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005[@bb3]) *T* ~min~ = 0.937, *T* ~max~ = 0.9628437 measured reflections2128 independent reflections1811 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.035 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.032*wR*(*F* ^2^) = 0.089*S* = 1.102128 reflections127 parametersH-atom parameters constrainedΔρ~max~ = 0.40 e Å^−3^Δρ~min~ = −0.19 e Å^−3^ {#d5e381} Data collection: *CrystalClear* (Rigaku/MSC, 2005[@bb3]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb4]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811006805/kp2310sup1.cif](http://dx.doi.org/10.1107/S1600536811006805/kp2310sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006805/kp2310Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006805/kp2310Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?kp2310&file=kp2310sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?kp2310sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?kp2310&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [KP2310](http://scripts.iucr.org/cgi-bin/sendsup?kp2310)). We gratefully acknowledge support of this project by the Key Laboratory Project of Liaoning Province (No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (No. 20071103). Comment ======= Heterocycle derivatives containing N, O and S atoms are under intensive studies due to their wide applications in medicine, industry and coordination chemistry (Al-Talib *et al.*, 1990; Nakagawa *et al.*, 1996; Zhang *et al.*, 2007). We are focusing the synthetic and structural studies on the novel thio-based ligands (Wang *et al.*, 2010, 2011; Zhao *et al.*, 2010). Here we present the synthesis and the crystal structure of the title compound (I), namely, 1,4-bis\[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-ylsulfanyl\]butane. The molecular structure of title compound (I) (Fig. 1)reveals a twofold rotational axis through the mid of the C-C bond of butane group. Therefore, an asymmetric unit comprises a half of the molecule. 1,3,4-Oxadiazole moiety is planar with an r.m.s. deviation of 0.0033 (2)Å and maximum deviation of 0.0052 (2)Å for the atom C7. The dihedral angle between the oxadiazole and its attached pyridinyl ring \[r.m.s. deviation = 0.0062 (2) Å\] of 5.3 (3)° indicates that they are almost coplanar. As a result of π-π conjugation, the C*~sp~*^2^-S bond \[S1---C7 = 1.722 (13) Å\] is significantly shorter than the C*~sp~*^3^-S bond \[S1---C8 = 1.817 (12) Å\]. Experimental {#experimental} ============ A suspension of 5-(pyridin-4-yl)-1,3,4-oxadiazole-2-thiol (2.0 mmol) and 1,1-dibromobutane (1.0 mmol) in ethanol (10 mL) was stirred at room temperature. The reaction progress was monitored *via* TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light-yellow solid in 87% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1). Refinement {#refinement} ========== All H atoms were positioned geometrically and refined as riding (C---H = 0.95--0.99 Å) and allowed to ride on their parent atoms, with *U*~iso~(H) = 1.2*U*~eq~(parent). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of the molecule of (I) showing the atom-labelling scheme \[symmetry code: (A)-x, -y + 1, -z + 1\]. Displacement ellipsoids are drawn at the 50% probability level. ::: ![](e-67-0o740-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e145 .table-wrap} ------------------------- --------------------------------------- C~18~H~16~N~6~O~2~S~2~ *F*(000) = 428 *M~r~* = 412.49 *D*~x~ = 1.534 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 2798 reflections *a* = 4.9780 (6) Å θ = 2.6--27.9° *b* = 5.7933 (7) Å µ = 0.33 mm^−1^ *c* = 31.003 (4) Å *T* = 113 K β = 92.588 (5)° Prism, light-yellow *V* = 893.20 (18) Å^3^ 0.20 × 0.18 × 0.10 mm *Z* = 2 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e278 .table-wrap} ---------------------------------------------------------------------- -------------------------------------- Rigaku Saturn CCD area-detector diffractometer 2128 independent reflections Radiation source: rotating anode 1811 reflections with *I* \> 2σ(*I*) multilayer *R*~int~ = 0.035 Detector resolution: 14.63 pixels mm^-1^ θ~max~ = 27.9°, θ~min~ = 2.6° φ and ω scans *h* = −4→6 Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) *k* = −7→7 *T*~min~ = 0.937, *T*~max~ = 0.962 *l* = −38→40 8437 measured reflections ---------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e401 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.032 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.089 H-atom parameters constrained *S* = 1.10 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0531*P*)^2^ + 0.054*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2128 reflections (Δ/σ)~max~ = 0.001 127 parameters Δρ~max~ = 0.40 e Å^−3^ 0 restraints Δρ~min~ = −0.19 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e558 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e657 .table-wrap} ----- -------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 0.25227 (6) 0.35176 (5) 0.422550 (9) 0.01776 (12) O1 0.61211 (17) 0.17771 (15) 0.37253 (3) 0.0163 (2) N1 1.3455 (2) −0.0526 (2) 0.27364 (3) 0.0197 (2) N2 0.7346 (2) −0.15583 (19) 0.40229 (3) 0.0186 (2) N3 0.5348 (2) −0.05632 (19) 0.42735 (3) 0.0189 (2) C1 1.1858 (3) 0.1307 (2) 0.27715 (4) 0.0190 (3) H1 1.2063 0.2551 0.2576 0.023\* C2 0.9910 (3) 0.1507 (2) 0.30774 (4) 0.0179 (3) H2 0.8797 0.2836 0.3086 0.021\* C3 0.9634 (2) −0.0287 (2) 0.33688 (4) 0.0155 (3) C4 1.1268 (3) −0.2220 (2) 0.33375 (4) 0.0185 (3) H4 1.1125 −0.3479 0.3531 0.022\* C5 1.3118 (3) −0.2262 (2) 0.30146 (4) 0.0199 (3) H5 1.4206 −0.3598 0.2990 0.024\* C6 0.7718 (2) −0.0138 (2) 0.37112 (4) 0.0153 (3) C7 0.4729 (2) 0.1379 (2) 0.40882 (4) 0.0152 (3) C8 0.1260 (3) 0.2236 (2) 0.47114 (4) 0.0177 (3) H8A 0.0331 0.0764 0.4640 0.021\* H8B 0.2770 0.1908 0.4921 0.021\* C9 −0.0695 (3) 0.3927 (2) 0.49063 (4) 0.0178 (3) H9A −0.2052 0.4403 0.4680 0.021\* H9B −0.1652 0.3137 0.5137 0.021\* ----- -------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e983 .table-wrap} ---- ------------ -------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0216 (2) 0.01715 (19) 0.01492 (18) 0.00366 (11) 0.00549 (12) 0.00101 (11) O1 0.0174 (4) 0.0179 (5) 0.0140 (4) 0.0017 (3) 0.0045 (3) 0.0003 (3) N1 0.0180 (5) 0.0223 (6) 0.0191 (5) −0.0024 (4) 0.0030 (4) −0.0030 (4) N2 0.0208 (6) 0.0179 (6) 0.0176 (5) 0.0020 (4) 0.0053 (4) −0.0002 (4) N3 0.0201 (5) 0.0193 (6) 0.0177 (5) 0.0022 (4) 0.0053 (4) −0.0003 (4) C1 0.0194 (7) 0.0202 (7) 0.0176 (6) −0.0024 (5) 0.0037 (5) 0.0011 (5) C2 0.0178 (6) 0.0173 (6) 0.0186 (6) 0.0012 (5) 0.0023 (5) −0.0005 (5) C3 0.0146 (6) 0.0185 (6) 0.0132 (5) −0.0014 (5) −0.0001 (4) −0.0016 (4) C4 0.0205 (6) 0.0185 (6) 0.0166 (6) 0.0009 (5) 0.0022 (5) 0.0009 (5) C5 0.0193 (6) 0.0200 (6) 0.0207 (6) 0.0025 (5) 0.0029 (5) −0.0026 (5) C6 0.0142 (6) 0.0160 (6) 0.0158 (6) 0.0011 (4) 0.0003 (4) −0.0017 (4) C7 0.0155 (6) 0.0188 (6) 0.0114 (5) −0.0013 (4) 0.0028 (4) −0.0014 (4) C8 0.0215 (6) 0.0162 (6) 0.0158 (6) −0.0010 (5) 0.0055 (5) −0.0007 (5) C9 0.0173 (6) 0.0182 (6) 0.0183 (6) −0.0013 (5) 0.0042 (5) −0.0030 (5) ---- ------------ -------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1273 .table-wrap} ------------------- -------------- ---------------------- -------------- S1---C7 1.7218 (13) C2---H2 0.9500 S1---C8 1.8171 (12) C3---C4 1.3902 (17) O1---C6 1.3669 (14) C3---C6 1.4615 (16) O1---C7 1.3675 (14) C4---C5 1.3906 (17) N1---C1 1.3337 (17) C4---H4 0.9500 N1---C5 1.3404 (17) C5---H5 0.9500 N2---C6 1.2888 (16) C8---C9 1.5251 (17) N2---N3 1.4121 (15) C8---H8A 0.9900 N3---C7 1.2941 (16) C8---H8B 0.9900 C1---C2 1.3914 (18) C9---C9^i^ 1.525 (2) C1---H1 0.9500 C9---H9A 0.9900 C2---C3 1.3878 (17) C9---H9B 0.9900 C7---S1---C8 99.16 (6) C4---C5---H5 118.1 C6---O1---C7 101.91 (9) N2---C6---O1 113.00 (10) C1---N1---C5 116.91 (11) N2---C6---C3 128.89 (11) C6---N2---N3 106.29 (10) O1---C6---C3 118.07 (10) C7---N3---N2 105.69 (10) N3---C7---O1 113.10 (11) N1---C1---C2 123.91 (12) N3---C7---S1 131.13 (10) N1---C1---H1 118.0 O1---C7---S1 115.76 (9) C2---C1---H1 118.0 C9---C8---S1 108.47 (9) C3---C2---C1 118.29 (12) C9---C8---H8A 110.0 C3---C2---H2 120.9 S1---C8---H8A 110.0 C1---C2---H2 120.9 C9---C8---H8B 110.0 C2---C3---C4 118.84 (11) S1---C8---H8B 110.0 C2---C3---C6 121.06 (11) H8A---C8---H8B 108.4 C4---C3---C6 120.08 (11) C9^i^---C9---C8 112.82 (13) C3---C4---C5 118.21 (12) C9^i^---C9---H9A 109.0 C3---C4---H4 120.9 C8---C9---H9A 109.0 C5---C4---H4 120.9 C9^i^---C9---H9B 109.0 N1---C5---C4 123.80 (12) C8---C9---H9B 109.0 N1---C5---H5 118.1 H9A---C9---H9B 107.8 C6---N2---N3---C7 −0.50 (14) C2---C3---C6---N2 −174.70 (13) C5---N1---C1---C2 0.29 (19) C4---C3---C6---N2 3.7 (2) N1---C1---C2---C3 1.2 (2) C2---C3---C6---O1 2.71 (17) C1---C2---C3---C4 −1.37 (19) C4---C3---C6---O1 −178.93 (11) C1---C2---C3---C6 177.01 (11) N2---N3---C7---O1 0.93 (14) C2---C3---C4---C5 0.23 (18) N2---N3---C7---S1 −177.95 (10) C6---C3---C4---C5 −178.17 (11) C6---O1---C7---N3 −0.96 (13) C1---N1---C5---C4 −1.56 (19) C6---O1---C7---S1 178.10 (8) C3---C4---C5---N1 1.3 (2) C8---S1---C7---N3 −0.56 (14) N3---N2---C6---O1 −0.09 (14) C8---S1---C7---O1 −179.42 (9) N3---N2---C6---C3 177.42 (12) C7---S1---C8---C9 177.46 (9) C7---O1---C6---N2 0.61 (13) S1---C8---C9---C9^i^ −69.35 (15) C7---O1---C6---C3 −177.20 (11) ------------------- -------------- ---------------------- -------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*+1.
PubMed Central
2024-06-05T04:04:18.364367
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052088/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):o740", "authors": [ { "first": "Qing-lei", "last": "Liu" }, { "first": "Wei", "last": "Wang" }, { "first": "Yan", "last": "Gao" }, { "first": "Xiao-yu", "last": "Jia" }, { "first": "Jing-jing", "last": "Zhang" } ] }
PMC3052089
Related literature {#sec1} ================== For background to structural studies of quinoline derivatives, see: Kaiser *et al.* (2009[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~8~H~10~NO^+^·Cl^−^*M* *~r~* = 171.62Monoclinic,*a* = 4.8979 (1) Å*b* = 15.8136 (4) Å*c* = 10.8203 (3) Åβ = 102.569 (3)°*V* = 817.98 (3) Å^3^*Z* = 4Mo *K*α radiationμ = 0.41 mm^−1^*T* = 100 K0.30 × 0.25 × 0.20 mm ### Data collection {#sec2.1.2} Agilent Supernova Dual diffractometer with an Atlas detectorAbsorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010[@bb1]) *T* ~min~ = 0.920, *T* ~max~ = 1.0003262 measured reflections1436 independent reflections1256 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.019 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.029*wR*(*F* ^2^) = 0.080*S* = 1.071436 reflections113 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.20 e Å^−3^Δρ~min~ = −0.27 e Å^−3^ {#d5e459} Data collection: *CrysAlis PRO* (Agilent, 2010[@bb1]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb3]) and *DIAMOND* (Brandenburg, 2006[@bb2]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811004739/hg2797sup1.cif](http://dx.doi.org/10.1107/S1600536811004739/hg2797sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811004739/hg2797Isup2.hkl](http://dx.doi.org/10.1107/S1600536811004739/hg2797Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hg2797&file=hg2797sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hg2797sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hg2797&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HG2797](http://scripts.iucr.org/cgi-bin/sendsup?hg2797)). PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The authors thank the University of Malaya for supporting this study. Comment ======= The title salt, (I), was obtained as an unexpected product during the attempted synthesis of a quinoline derivative, investigated as a part of an on-going programme into the synthesis and structural chemistry of quinolines of interest owing to their putative anti-malarial activity (Kaiser *et al.*, 2009). Ionic (I), Fig. 1, comprises a 2-acetylanilinium cation and a chloride anion. The cation is essentially planar with the acetyl group only slightly twisted out of the plane of the benzene ring to which it is connected, the C1--C2--C3--C4 torsion angle = 4.6 (2) °. The observed conformation is stabilized by an intramolecular N--H···O hydrogen bond, Table 1. In the crystal packing, centrosymmetrically related molecules are connected into a supramolecular dimer *via* N--H···Cl hydrogen bonds, Table 1 and Fig. 2. The dimeric aggregates are arranged into layers in the *ac* plane *via* a combination of C--H···O, Table 1, and C---O···π contacts \[C2--O1···*Cg*(C3---C8)^i^ = 3.1871 (13) Å with the angle at O1 = 96.44 (10) ° for *i*: 1 + *x*, *y*, *z*; and C2--O1···*Cg*(C3---C8)^ii^ = 3.3787 (13) Å with the angle at O1 = 98.36 (9) ° for *ii*: *x*, 1/2 - *y*, -1/2 + *z*\]. The presence of C--H···Cl interactions, Table 1, contributes to the stability of the structure along the *b* axis, Fig. 3. Experimental {#experimental} ============ A mixture of 2-aminoacetophenone (0.01 *M*), acetophenone (0.01 *M*) and a catalytic amount of conc. HCl was heated on a water bath for 10 min. The resultant solid was filtered, dried and purified by column chromatography using a 1:5 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of an acetone solution of (I) which yielded colourless needles. *M*.pt. 421--423 K. Yield: 66%. The X-ray study showed that the original 2-aminoacetophenone had been protonated and crystallized as a chloride salt. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions (C---H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with *U*~iso~(H) set to 1.2 to 1.5*U*~equiv~(C). The N-bound H-atoms were located in a difference Fourier map and refined freely. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The constituent ions of salt (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. ::: ![](e-67-0o623-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Supramolecular dimer in (I) mediated by N--H···Cl hydrogen bonding, shown as orange dashed lines. ::: ![](e-67-0o623-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### Unit-cell contents shown in projection down the a axis in (I). The N--H···Cl hydrogen bonding, and C--H···Cl, C--H···O and C--O···π contacts are shown as orange, blue, pink, and purple dashed lines, respectively. ::: ![](e-67-0o623-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e187 .table-wrap} ------------------------- --------------------------------------- C~8~H~10~NO^+^·Cl^−^ *F*(000) = 360 *M~r~* = 171.62 *D*~x~ = 1.394 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 2016 reflections *a* = 4.8979 (1) Å θ = 2.3--29.1° *b* = 15.8136 (4) Å µ = 0.41 mm^−1^ *c* = 10.8203 (3) Å *T* = 100 K β = 102.569 (3)° Pris,, colourless *V* = 817.98 (3) Å^3^ 0.30 × 0.25 × 0.20 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e318 .table-wrap} ------------------------------------------------------------------- -------------------------------------- Agilent Supernova Dual diffractometer with an Atlas detector 1436 independent reflections Radiation source: SuperNova (Mo) X-ray Source 1256 reflections with *I* \> 2σ(*I*) Mirror *R*~int~ = 0.019 Detector resolution: 10.4041 pixels mm^-1^ θ~max~ = 25.0°, θ~min~ = 2.3° ω scans *h* = −5→5 Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) *k* = −18→17 *T*~min~ = 0.920, *T*~max~ = 1.000 *l* = −10→12 3262 measured reflections ------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e438 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.029 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.080 H atoms treated by a mixture of independent and constrained refinement *S* = 1.07 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0393*P*)^2^ + 0.2093*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1436 reflections (Δ/σ)~max~ = 0.001 113 parameters Δρ~max~ = 0.20 e Å^−3^ 0 restraints Δρ~min~ = −0.27 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e595 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e694 .table-wrap} ----- ------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.10927 (9) 0.47141 (2) 0.83017 (4) 0.02647 (17) O1 0.8706 (2) 0.23737 (7) 0.91735 (11) 0.0277 (3) N1 0.6529 (3) 0.38178 (9) 0.98223 (14) 0.0210 (3) H1N 0.508 (4) 0.4081 (12) 0.9220 (19) 0.036 (5)\* H2N 0.753 (4) 0.4233 (13) 1.0322 (19) 0.033 (5)\* H3N 0.759 (4) 0.3532 (12) 0.9418 (19) 0.034 (5)\* C1 0.7572 (5) 0.10071 (11) 0.97971 (19) 0.0377 (5) H1A 0.8665 0.0826 0.9186 0.057\* H1B 0.5674 0.0776 0.9552 0.057\* H1C 0.8466 0.0800 1.0642 0.057\* C2 0.7435 (3) 0.19573 (10) 0.98154 (15) 0.0233 (4) C3 0.5701 (3) 0.23753 (10) 1.06204 (15) 0.0197 (4) C4 0.4392 (4) 0.18953 (10) 1.14121 (16) 0.0238 (4) H4 0.4639 0.1299 1.1444 0.029\* C5 0.2751 (4) 0.22678 (11) 1.21474 (16) 0.0253 (4) H5 0.1875 0.1928 1.2673 0.030\* C6 0.2381 (3) 0.31345 (10) 1.21206 (16) 0.0240 (4) H6 0.1249 0.3391 1.2626 0.029\* C7 0.3663 (3) 0.36268 (10) 1.13559 (15) 0.0219 (4) H7 0.3423 0.4223 1.1337 0.026\* C8 0.5289 (3) 0.32504 (10) 1.06211 (15) 0.0185 (4) ----- ------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e983 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0285 (3) 0.0215 (3) 0.0298 (3) 0.00177 (17) 0.00704 (19) −0.00224 (17) O1 0.0280 (7) 0.0299 (7) 0.0275 (7) 0.0043 (5) 0.0113 (6) −0.0002 (5) N1 0.0222 (8) 0.0193 (8) 0.0235 (8) −0.0005 (7) 0.0091 (7) 0.0013 (7) C1 0.0527 (13) 0.0241 (10) 0.0401 (12) 0.0081 (9) 0.0182 (10) −0.0017 (9) C2 0.0230 (9) 0.0236 (9) 0.0212 (9) 0.0040 (7) 0.0003 (7) −0.0008 (7) C3 0.0173 (8) 0.0210 (9) 0.0199 (8) 0.0010 (7) 0.0016 (7) 0.0006 (7) C4 0.0251 (9) 0.0188 (9) 0.0262 (9) 0.0001 (7) 0.0027 (7) 0.0048 (7) C5 0.0226 (9) 0.0300 (10) 0.0238 (9) −0.0034 (8) 0.0060 (7) 0.0067 (8) C6 0.0196 (9) 0.0304 (10) 0.0232 (9) 0.0015 (7) 0.0073 (7) −0.0005 (8) C7 0.0205 (9) 0.0191 (9) 0.0264 (9) 0.0015 (7) 0.0058 (7) −0.0005 (7) C8 0.0158 (8) 0.0205 (8) 0.0190 (8) −0.0017 (6) 0.0031 (7) 0.0017 (7) ----- ------------- ------------- ------------- -------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1212 .table-wrap} ------------------- -------------- ------------------- -------------- O1---C2 1.221 (2) C3---C8 1.399 (2) N1---C8 1.466 (2) C3---C4 1.400 (2) N1---H1N 0.95 (2) C4---C5 1.380 (2) N1---H2N 0.92 (2) C4---H4 0.9500 N1---H3N 0.87 (2) C5---C6 1.382 (2) C1---C2 1.504 (2) C5---H5 0.9500 C1---H1A 0.9800 C6---C7 1.383 (2) C1---H1B 0.9800 C6---H6 0.9500 C1---H1C 0.9800 C7---C8 1.377 (2) C2---C3 1.496 (2) C7---H7 0.9500 C8---N1---H1N 109.3 (12) C4---C3---C2 120.68 (15) C8---N1---H2N 108.9 (12) C5---C4---C3 121.54 (15) H1N---N1---H2N 108.2 (16) C5---C4---H4 119.2 C8---N1---H3N 110.2 (13) C3---C4---H4 119.2 H1N---N1---H3N 108.7 (18) C4---C5---C6 120.10 (16) H2N---N1---H3N 111.5 (18) C4---C5---H5 120.0 C2---C1---H1A 109.5 C6---C5---H5 120.0 C2---C1---H1B 109.5 C5---C6---C7 119.76 (16) H1A---C1---H1B 109.5 C5---C6---H6 120.1 C2---C1---H1C 109.5 C7---C6---H6 120.1 H1A---C1---H1C 109.5 C8---C7---C6 119.82 (15) H1B---C1---H1C 109.5 C8---C7---H7 120.1 O1---C2---C3 121.12 (15) C6---C7---H7 120.1 O1---C2---C1 120.10 (16) C7---C8---C3 121.98 (15) C3---C2---C1 118.77 (15) C7---C8---N1 116.21 (14) C8---C3---C4 116.80 (15) C3---C8---N1 121.80 (14) C8---C3---C2 122.52 (14) O1---C2---C3---C8 4.3 (2) C5---C6---C7---C8 0.3 (2) C1---C2---C3---C8 −175.12 (16) C6---C7---C8---C3 −0.1 (2) O1---C2---C3---C4 −176.05 (15) C6---C7---C8---N1 178.95 (14) C1---C2---C3---C4 4.6 (2) C4---C3---C8---C7 −0.4 (2) C8---C3---C4---C5 0.7 (2) C2---C3---C8---C7 179.28 (15) C2---C3---C4---C5 −179.04 (15) C4---C3---C8---N1 −179.37 (15) C3---C4---C5---C6 −0.4 (3) C2---C3---C8---N1 0.3 (2) C4---C5---C6---C7 −0.1 (3) ------------------- -------------- ------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1568 .table-wrap} ------------------- ---------- ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1n···Cl1 0.95 (2) 2.23 (2) 3.1463 (15) 162.9 (17) N1---H2n···Cl1^i^ 0.92 (2) 2.24 (2) 3.1366 (15) 165.0 (17) N1---H3n···O1 0.87 (2) 1.946 (19) 2.6778 (18) 140.3 (18) C5---H5···Cl1^ii^ 0.95 2.73 3.5332 (18) 142 C6---H6···O1^iii^ 0.95 2.59 3.2496 (19) 127 ------------------- ---------- ------------ ------------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+2; (ii) *x*, −*y*+1/2, *z*+1/2; (iii) *x*−1, −*y*+1/2, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ----------------- ---------- ---------- ------------- ------------- N1---H1n⋯Cl1 0.95 (2) 2.23 (2) 3.1463 (15) 163 (2) N1---H2n⋯Cl1^i^ 0.92 (2) 2.24 (2) 3.1366 (15) 165 (2) N1---H3n⋯O1 0.87 (2) 1.95 (2) 2.6778 (18) 140 (2) C5---H5⋯Cl1^ii^ 0.95 2.73 3.5332 (18) 142 C6---H6⋯O1^iii^ 0.95 2.59 3.2496 (19) 127 Symmetry codes: (i) ; (ii) ; (iii) . ::: [^1]: ‡ Additional correspondence author, e-mail: juliebhavana@gmail.com.
PubMed Central
2024-06-05T04:04:18.368443
2011-2-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052089/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 12; 67(Pt 3):o623", "authors": [ { "first": "R.", "last": "Prasath" }, { "first": "P.", "last": "Bhavana" }, { "first": "Seik Weng", "last": "Ng" }, { "first": "Edward R. T.", "last": "Tiekink" } ] }
PMC3052090
Related literature {#sec1} ================== For background to the use of [l]{.smallcaps}-serine derivatives in anti-tumour therapy, see: Jiao *et al.* (2009[@bb4]); Yakura *et al.* (2007[@bb15]); Takahashi *et al.* (1988[@bb12]); Sin *et al.* (1998[@bb10]). For background to *N*-acyl­hydrazone derivatives from [l]{.smallcaps}-serine for anti-tumour testing, see: Rollas & Küçükgüzel (2007[@bb7]); Terzioğlu & Gürsoy (2003[@bb13]). For related structures, see: Pinheiro *et al.* (2010[@bb6]); de Souza *et al.* (2010[@bb11]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~15~H~21~N~3~O~6~·C~2~H~6~O*M* *~r~* = 385.42Monoclinic,*a* = 17.4054 (4) Å*b* = 8.7266 (2) Å*c* = 15.0105 (4) Åβ = 122.219 (2)°*V* = 1928.87 (8) Å^3^*Z* = 4Mo *K*α radiationμ = 0.10 mm^−1^*T* = 120 K0.16 × 0.14 × 0.06 mm ### Data collection {#sec2.1.2} Bruker--Nonius Roper CCD camera on κ-goniostat diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 2007[@bb8]) *T* ~min~ = 0.897, *T* ~max~ = 1.00019885 measured reflections2369 independent reflections2303 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.041 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.036*wR*(*F* ^2^) = 0.099*S* = 1.062369 reflections271 parameters7 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.61 e Å^−3^Δρ~min~ = −0.33 e Å^−3^ {#d5e599} Data collection: *COLLECT* (Hooft, 1998[@bb3]); cell refinement: *DENZO* (Otwinowski & Minor, 1997[@bb5]) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb2]) and *DIAMOND* (Brandenburg, 2006[@bb1]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb14]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003795/hb5793sup1.cif](http://dx.doi.org/10.1107/S1600536811003795/hb5793sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003795/hb5793Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003795/hb5793Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hb5793&file=hb5793sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hb5793sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hb5793&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HB5793](http://scripts.iucr.org/cgi-bin/sendsup?hb5793)). The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Comment ======= Several *L*-serine derivatives have been found to have potential in anti-tumour therapy, for example, conagenin, a naturally occurring serine derivative, was shown to improve the anti-tumour efficacy of adriamycin and mitomycin C against murine leukemias (Jiao *et al.*, 2009; Yakura *et al.*, 2007). Other *L*-serine derivatives reported as potential new anti-tumour agents include the antibiotic thrazarine, which sensitizes tumour cells to macrophage-mediated cytolysis (Takahashi *et al.*, 1988), and eponemycin, an immunomodulator, which plays a crucial role in tumour progression and metastases by supplying essential nutrients to B16 melanoma cells (Sin *et al.*, 1998). Following on from such reports, we have synthesized some *N*-acylhydrazones derivatives from *L*-serine to use in anti-tumour testing. The choice of *N*-acylhydrazonyl derivatives was suggested by publications indicating that compounds with such groups can aid anti-tumoural activities (Rollas *et al.*, 2007; Terzioğlu *et al.*, 2003). In continuation of on-going structural studies of these compounds (Pinheiro *et al.*, 2010; de Souza *et al.*, 2010), we now report the structure of the ethanol solvate of *tert*-butyl (1*S*)-2-\[2-(2,4-dihydroxybenzylidene)hydrazino\]-1-(hydroxymethyl)-2-oxoethylcarbamate, (I). Although the absolute structure of (I), Fig. 1, could not be determined experimentally, the assignment of the *S*-configuration at the C9 atom is based on a starting reagent. The overall conformation of the molecule is curved with the major kink occurring at the C9 atom. The dihydroxybenzene ring is slightly twisted out of the plane of the hydrazine residue with the C2---C1---C7---N1 torsion angle being -8.2 (3) °. The conformation about the N1---C7 imine bond \[1.287 (3) Å\] is *E*. Each of the carbonyl groups is diagonally opposite the amine group and the dihedral angle formed between the two amide residues is 85.7 (2) °. As expected with four hydroxyl and two amine donors, there is significant hydrogen bonding operating in the crystal structure, Table 1. While the O1-hydroxy group forms an intramolecular O--H···N hydrogen bond with the hydrazine-N1 atom, the remaining interactions are intermolecular in nature. The O2-hydroxy group forms an O---H···O hydrogen bond with the O5-carbonyl, and the O3-hydroxyl group linked to the chiral centre is connected to the ethanol molecule which in turn forms a hydrogen bond to the O2-hydroxyl group. The N2-amine is connected to the O3-carbonyl and the N3-amine forms a hydrogen bond with the O4-hydroxyl. The result of the hydrogen bonding is the formation of layers of molecules in the *ab* plane sandwiched by ethanol molecules. The layers stack along the *c* axis, Fig. 2. Experimental {#experimental} ============ To a stirred solution of *tert*-butyl (1*S*)-2-hydrazino-1-(hydroxymethyl)-2-oxoethylcarbamate (1.0 mmol) in ethanol (10 ml) at room temperature was added 2,4-dihydroxybenzaldehyde (1.05 mmol). The reaction mixture was stirred for 4 h. at 1073 K and concentrated under reduced pressure. The residue was purified by washing with cold ethanol (3 *x* 10 ml), affording the target molecule in 74% yield, m.pt. 423--424 K. The colourless block used in the structure determination was grown from EtOH. ^1^H NMR (500 MHz, DMSO-d6) δ (p.p.m.): 11.50 (1*H*, s, NHN), 11.30 (1*H*, s), 9.92 (1*H*, s), 8.30 (1*H*, s, N=CH), 7.26 (1*H*, d, J = 8.4 Hz, H6), 6.80 (1*H*, d, J = 7.7 Hz, NHCH), 6.35--6.30 (1*H*, m, H5), 6.29 (1*H*, s, H3), 4.95 (1*H*, s, OH), 4.02 (1*H*, m, CH), 3.70--3.50 (2*H*, m, CH~2~OH); 1.39 (9*H*, s, (CH~3~)~3~C). ^13^C NMR (125 MHz, DMSO-d6) δ (p.p.m.): 170.8, 160.3, 157.9, 155.2, 141.8, 128.0, 110.4, 107.6, 102.3, 78.0, 61.1, 53.9, 28.2. IR (cm^-1^; KBr): 3200 (O---H), 1678 (COCH and COO). EM/ESI: \[M---H\]: 338.3. Refinement {#refinement} ========== The C-bound H atoms were geometrically placed (C--H = 0.95--0.99 Å) and refined as riding with *U*~iso~(H) = 1.2--1.5*U*~eq~(C). The O-- and N-bound H atoms were located from a difference map and refined with the distance restraints O--H = 0.84 ± 0.01 and N--H = 0.86±0.01 Å, and with *U*~iso~(H) = *zU*~eq~(carrier atom); *z* = 1.5 for O and *z* = 1.2 for N. Disorder was resolved in the solvent ethanol molecule in that two distinct positions were discerned for the C atoms. From fractional anisotropic refinement, the major component had a site occupancy factor = 0.612 (10). In the absence of significant anomalous scattering effects, 2067 Friedel pairs were averaged in the final refinement. However, the absolute configuration was assigned on the basis of the chirality of the *L*-serine starting material. The maximum and minimum residual electron density peaks of 0.61 and 0.33 e Å^-3^, respectively, were located 0.42 Å and 0.37 Å from the H6 and H16*a* atoms, respectively. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The ethanol molecule of solvation has been omitted. ::: ![](e-67-0o581-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view in projection down the b axis of the stacking of two-dimensional supramolecular arrays in the ab plane in (I) with the O---H···O and N---H···O hydrogen bonding shown as orange and blue dashed lines, respectively. ::: ![](e-67-0o581-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e272 .table-wrap} ------------------------------ --------------------------------------- C~15~H~21~N~3~O~6~·C~2~H~6~O *F*(000) = 824 *M~r~* = 385.42 *D*~x~ = 1.327 Mg m^−3^ Monoclinic, *C*2 Mo *K*α radiation, λ = 0.71073 Å Hall symbol: C 2y Cell parameters from 4327 reflections *a* = 17.4054 (4) Å θ = 2.9--27.5° *b* = 8.7266 (2) Å µ = 0.10 mm^−1^ *c* = 15.0105 (4) Å *T* = 120 K β = 122.219 (2)° Block, colourless *V* = 1928.87 (8) Å^3^ 0.16 × 0.14 × 0.06 mm *Z* = 4 ------------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e405 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker--Nonius Roper CCD camera on κ-goniostat diffractometer 2369 independent reflections Radiation source: Bruker-Nonius FR591 rotating anode CCD 2303 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.041 Detector resolution: 9.091 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 3.2° φ and ω scans *h* = −22→22 Absorption correction: multi-scan (*SADABS*; Sheldrick, 2007) *k* = −11→11 *T*~min~ = 0.897, *T*~max~ = 1.000 *l* = −19→19 19885 measured reflections --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e531 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.036 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.099 H atoms treated by a mixture of independent and constrained refinement *S* = 1.06 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0606*P*)^2^ + 1.0679*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2369 reflections (Δ/σ)~max~ = 0.001 271 parameters Δρ~max~ = 0.61 e Å^−3^ 7 restraints Δρ~min~ = −0.33 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e688 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e787 .table-wrap} ------ --------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) O1 −0.01014 (11) 0.6314 (2) 0.76103 (14) 0.0306 (4) H1o 0.0421 (13) 0.674 (4) 0.796 (2) 0.046\* O2 −0.30367 (9) 0.6766 (2) 0.69839 (12) 0.0259 (3) H2o −0.3330 (19) 0.728 (3) 0.717 (2) 0.039\* O3 0.27544 (10) 0.67257 (19) 0.95473 (12) 0.0251 (3) O4 0.39535 (10) 0.8716 (2) 0.89717 (11) 0.0266 (3) H4o 0.3474 (13) 0.853 (4) 0.8402 (14) 0.040\* O5 0.39849 (11) 0.7949 (2) 1.22519 (13) 0.0333 (4) O6 0.53955 (10) 0.7219 (2) 1.26444 (11) 0.0267 (4) N1 0.11580 (11) 0.8217 (2) 0.89800 (13) 0.0219 (4) N2 0.20132 (11) 0.8878 (2) 0.95418 (14) 0.0221 (4) H2n 0.2041 (18) 0.9793 (16) 0.976 (2) 0.027\* N3 0.44121 (11) 0.8160 (2) 1.10779 (13) 0.0206 (4) H3n 0.4884 (12) 0.824 (3) 1.104 (2) 0.025\* C1 −0.04087 (13) 0.8468 (3) 0.83868 (15) 0.0209 (4) C2 −0.06834 (13) 0.7128 (2) 0.77631 (15) 0.0204 (4) C3 −0.15725 (13) 0.6607 (3) 0.72779 (15) 0.0214 (4) H3 −0.1759 0.5722 0.6843 0.026\* C4 −0.21852 (13) 0.7390 (3) 0.74340 (15) 0.0205 (4) C5 −0.19388 (13) 0.8728 (3) 0.80333 (16) 0.0237 (4) H5 −0.2368 0.9262 0.8124 0.028\* C6 −0.10573 (14) 0.9263 (3) 0.84935 (16) 0.0230 (4) H6 −0.0888 1.0186 0.8889 0.028\* C7 0.05209 (14) 0.9025 (3) 0.89384 (16) 0.0218 (4) H7 0.0660 0.9998 0.9273 0.026\* C8 0.27609 (13) 0.8076 (2) 0.97909 (15) 0.0193 (4) C9 0.36197 (12) 0.9053 (2) 1.03518 (15) 0.0192 (4) H9 0.3536 0.9876 1.0756 0.023\* C10 0.37737 (13) 0.9809 (3) 0.95365 (16) 0.0232 (4) H10A 0.3228 1.0408 0.9035 0.028\* H10B 0.4292 1.0528 0.9900 0.028\* C11 0.45577 (14) 0.7797 (3) 1.20233 (17) 0.0227 (4) C12 0.57832 (15) 0.6887 (3) 1.37713 (16) 0.0303 (5) C13 0.52980 (18) 0.5534 (4) 1.3883 (2) 0.0379 (6) H13A 0.4669 0.5818 1.3629 0.057\* H13B 0.5608 0.5234 1.4626 0.057\* H13C 0.5302 0.4672 1.3467 0.057\* C14 0.5758 (2) 0.8318 (4) 1.4328 (2) 0.0445 (7) H14A 0.5988 0.9190 1.4126 0.067\* H14B 0.6139 0.8166 1.5092 0.067\* H14C 0.5132 0.8521 1.4127 0.067\* C15 0.67546 (16) 0.6455 (4) 1.41358 (19) 0.0429 (7) H15A 0.6751 0.5548 1.3748 0.064\* H15B 0.7093 0.6227 1.4891 0.064\* H15C 0.7045 0.7309 1.4003 0.064\* O7 0.27404 (12) 0.3530 (2) 0.28565 (16) 0.0403 (4) H7o 0.292 (3) 0.443 (2) 0.304 (3) 0.060\* C16 0.3454 (10) 0.245 (2) 0.3050 (12) 0.0525 (8) 0.612 (10) H16A 0.3995 0.3029 0.3182 0.063\* 0.612 (10) H16B 0.3241 0.1816 0.2413 0.063\* 0.612 (10) C17 0.3713 (5) 0.1452 (9) 0.3940 (6) 0.0495 (14) 0.612 (10) H17A 0.3926 0.2073 0.4574 0.074\* 0.612 (10) H17B 0.4200 0.0765 0.4046 0.074\* 0.612 (10) H17C 0.3186 0.0845 0.3801 0.074\* 0.612 (10) C18 0.3420 (13) 0.249 (3) 0.3037 (18) 0.0525 (8) 0.388 (10) H18A 0.3795 0.2940 0.2789 0.063\* 0.388 (10) H18B 0.3133 0.1547 0.2621 0.063\* 0.388 (10) C19 0.4010 (8) 0.2074 (14) 0.4154 (9) 0.0495 (14) 0.388 (10) H19A 0.4427 0.2922 0.4538 0.074\* 0.388 (10) H19B 0.4360 0.1155 0.4219 0.074\* 0.388 (10) H19C 0.3637 0.1869 0.4450 0.074\* 0.388 (10) ------ --------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1599 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0239 (7) 0.0322 (9) 0.0381 (9) −0.0014 (7) 0.0182 (7) −0.0059 (7) O2 0.0155 (7) 0.0351 (9) 0.0283 (8) −0.0018 (6) 0.0124 (6) −0.0029 (7) O3 0.0231 (7) 0.0197 (7) 0.0301 (7) −0.0008 (6) 0.0126 (6) −0.0001 (6) O4 0.0205 (7) 0.0384 (9) 0.0223 (7) 0.0012 (7) 0.0123 (6) 0.0005 (7) O5 0.0274 (8) 0.0464 (10) 0.0352 (8) 0.0105 (8) 0.0227 (7) 0.0136 (8) O6 0.0211 (7) 0.0410 (10) 0.0188 (7) 0.0088 (7) 0.0111 (6) 0.0070 (7) N1 0.0152 (7) 0.0239 (9) 0.0251 (8) −0.0026 (7) 0.0097 (7) −0.0006 (7) N2 0.0169 (8) 0.0203 (9) 0.0271 (8) −0.0025 (7) 0.0104 (7) −0.0017 (7) N3 0.0154 (7) 0.0261 (9) 0.0205 (8) 0.0034 (7) 0.0097 (6) 0.0031 (7) C1 0.0180 (8) 0.0233 (10) 0.0208 (8) 0.0006 (8) 0.0100 (7) 0.0034 (8) C2 0.0187 (8) 0.0238 (11) 0.0196 (8) 0.0019 (8) 0.0109 (7) 0.0035 (8) C3 0.0193 (9) 0.0250 (10) 0.0192 (8) −0.0005 (8) 0.0098 (7) −0.0001 (8) C4 0.0147 (8) 0.0272 (10) 0.0188 (8) 0.0007 (8) 0.0084 (7) 0.0042 (8) C5 0.0188 (9) 0.0300 (12) 0.0246 (9) 0.0041 (8) 0.0132 (8) 0.0026 (8) C6 0.0218 (9) 0.0245 (10) 0.0247 (9) 0.0009 (8) 0.0137 (8) −0.0004 (8) C7 0.0199 (9) 0.0218 (10) 0.0231 (9) −0.0018 (8) 0.0109 (8) 0.0000 (8) C8 0.0184 (9) 0.0201 (10) 0.0200 (8) 0.0001 (8) 0.0106 (7) 0.0035 (7) C9 0.0158 (8) 0.0190 (9) 0.0216 (8) 0.0009 (7) 0.0091 (7) 0.0003 (7) C10 0.0175 (9) 0.0248 (10) 0.0265 (10) −0.0001 (8) 0.0113 (8) 0.0034 (8) C11 0.0200 (9) 0.0255 (10) 0.0230 (9) 0.0020 (8) 0.0116 (8) 0.0028 (8) C12 0.0291 (11) 0.0417 (13) 0.0195 (9) 0.0073 (10) 0.0127 (8) 0.0072 (9) C13 0.0358 (12) 0.0448 (15) 0.0369 (13) 0.0103 (11) 0.0219 (11) 0.0141 (11) C14 0.0570 (17) 0.0470 (16) 0.0246 (11) 0.0099 (14) 0.0184 (12) 0.0012 (11) C15 0.0255 (11) 0.070 (2) 0.0263 (11) 0.0118 (12) 0.0096 (9) 0.0146 (12) O7 0.0275 (8) 0.0350 (10) 0.0458 (10) 0.0023 (8) 0.0110 (8) 0.0098 (9) C16 0.0547 (19) 0.0421 (17) 0.0537 (18) 0.0098 (15) 0.0241 (16) 0.0009 (14) C17 0.047 (3) 0.045 (4) 0.054 (3) 0.014 (2) 0.025 (3) 0.012 (3) C18 0.0547 (19) 0.0421 (17) 0.0537 (18) 0.0098 (15) 0.0241 (16) 0.0009 (14) C19 0.047 (3) 0.045 (4) 0.054 (3) 0.014 (2) 0.025 (3) 0.012 (3) ----- ------------- ------------- ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2111 .table-wrap} ------------------- -------------- ---------------------- -------------- O1---C2 1.353 (3) C9---H9 1.0000 O1---H1o 0.86 (3) C10---H10A 0.9900 O2---C4 1.372 (2) C10---H10B 0.9900 O2---H2o 0.83 (3) C12---C13 1.512 (4) O3---C8 1.232 (3) C12---C14 1.516 (4) O4---C10 1.417 (3) C12---C15 1.521 (3) O4---H4o 0.833 (10) C13---H13A 0.9800 O5---C11 1.222 (3) C13---H13B 0.9800 O6---C11 1.342 (2) C13---H13C 0.9800 O6---C12 1.478 (2) C14---H14A 0.9800 N1---C7 1.287 (3) C14---H14B 0.9800 N1---N2 1.386 (2) C14---H14C 0.9800 N2---C8 1.343 (3) C15---H15A 0.9800 N2---H2n 0.855 (10) C15---H15B 0.9800 N3---C11 1.340 (3) C15---H15C 0.9800 N3---C9 1.447 (2) O7---C18 1.400 (9) N3---H3n 0.86 (3) O7---C16 1.460 (8) C1---C6 1.405 (3) O7---H7O 0.842 (10) C1---C2 1.412 (3) C16---C17 1.450 (12) C1---C7 1.453 (3) C16---H16A 0.9900 C2---C3 1.389 (3) C16---H16B 0.9900 C3---C4 1.388 (3) C17---H17A 0.9800 C3---H3 0.9500 C17---H17B 0.9800 C4---C5 1.394 (3) C17---H17C 0.9800 C5---C6 1.385 (3) C18---C19 1.47 (2) C5---H5 0.9500 C18---H18A 0.9900 C6---H6 0.9500 C18---H18B 0.9900 C7---H7 0.9500 C19---H19A 0.9800 C8---C9 1.525 (3) C19---H19B 0.9800 C9---C10 1.535 (3) C19---H19C 0.9800 C2---O1---H1o 109 (3) O5---C11---N3 123.4 (2) C4---O2---H2o 108 (2) O6---C11---N3 110.28 (17) C10---O4---H4o 109 (2) O6---C12---C13 109.8 (2) C11---O6---C12 122.20 (16) O6---C12---C14 109.9 (2) C7---N1---N2 114.81 (18) C13---C12---C14 113.6 (2) C8---N2---N1 121.30 (18) O6---C12---C15 101.66 (17) C8---N2---H2n 122.1 (18) C13---C12---C15 110.2 (2) N1---N2---H2n 116.4 (18) C14---C12---C15 111.0 (2) C11---N3---C9 119.41 (16) C12---C13---H13A 109.5 C11---N3---H3n 116.2 (18) C12---C13---H13B 109.5 C9---N3---H3n 118.0 (19) H13A---C13---H13B 109.5 C6---C1---C2 118.39 (18) C12---C13---H13C 109.5 C6---C1---C7 119.2 (2) H13A---C13---H13C 109.5 C2---C1---C7 122.35 (18) H13B---C13---H13C 109.5 O1---C2---C3 117.67 (19) C12---C14---H14A 109.5 O1---C2---C1 121.84 (18) C12---C14---H14B 109.5 C3---C2---C1 120.49 (18) H14A---C14---H14B 109.5 C2---C3---C4 119.5 (2) C12---C14---H14C 109.5 C2---C3---H3 120.3 H14A---C14---H14C 109.5 C4---C3---H3 120.3 H14B---C14---H14C 109.5 O2---C4---C3 116.6 (2) C12---C15---H15A 109.5 O2---C4---C5 121.99 (18) C12---C15---H15B 109.5 C3---C4---C5 121.43 (18) H15A---C15---H15B 109.5 C6---C5---C4 118.80 (19) C12---C15---H15C 109.5 C6---C5---H5 120.6 H15A---C15---H15C 109.5 C4---C5---H5 120.6 H15B---C15---H15C 109.5 C5---C6---C1 121.4 (2) C18---O7---C16 0(3) C5---C6---H6 119.3 C18---O7---H7o 114 (3) C1---C6---H6 119.3 C16---O7---H7o 114 (3) N1---C7---C1 120.9 (2) O7---C16---C17 112.6 (7) N1---C7---H7 119.6 O7---C16---H16A 109.1 C1---C7---H7 119.6 C17---C16---H16A 109.1 O3---C8---N2 124.15 (19) O7---C16---H16B 109.1 O3---C8---C9 123.30 (18) C17---C16---H16B 109.1 N2---C8---C9 112.44 (18) H16A---C16---H16B 107.8 N3---C9---C8 112.03 (17) O7---C18---C19 112.6 (15) N3---C9---C10 109.30 (16) O7---C18---H18A 109.1 C8---C9---C10 109.66 (16) C19---C18---H18A 109.1 N3---C9---H9 108.6 O7---C18---H18B 109.1 C8---C9---H9 108.6 C19---C18---H18B 109.1 C10---C9---H9 108.6 H18A---C18---H18B 107.8 O4---C10---C9 112.07 (18) C18---C19---H19A 109.5 O4---C10---H10A 109.2 C18---C19---H19B 109.5 C9---C10---H10A 109.2 H19A---C19---H19B 109.5 O4---C10---H10B 109.2 C18---C19---H19C 109.5 C9---C10---H10B 109.2 H19A---C19---H19C 109.5 H10A---C10---H10B 107.9 H19B---C19---H19C 109.5 O5---C11---O6 126.34 (19) C7---N1---N2---C8 169.49 (18) N1---N2---C8---C9 176.62 (17) C6---C1---C2---O1 179.01 (19) C11---N3---C9---C8 −78.9 (2) C7---C1---C2---O1 −2.6 (3) C11---N3---C9---C10 159.32 (19) C6---C1---C2---C3 −0.6 (3) O3---C8---C9---N3 −33.9 (3) C7---C1---C2---C3 177.78 (19) N2---C8---C9---N3 149.72 (17) O1---C2---C3---C4 178.56 (18) O3---C8---C9---C10 87.7 (2) C1---C2---C3---C4 −1.8 (3) N2---C8---C9---C10 −88.7 (2) C2---C3---C4---O2 −176.30 (18) N3---C9---C10---O4 58.1 (2) C2---C3---C4---C5 2.7 (3) C8---C9---C10---O4 −65.0 (2) O2---C4---C5---C6 177.85 (19) C12---O6---C11---O5 −9.2 (4) C3---C4---C5---C6 −1.1 (3) C12---O6---C11---N3 172.7 (2) C4---C5---C6---C1 −1.5 (3) C9---N3---C11---O5 12.9 (4) C2---C1---C6---C5 2.3 (3) C9---N3---C11---O6 −168.91 (18) C7---C1---C6---C5 −176.19 (19) C11---O6---C12---C13 69.9 (3) N2---N1---C7---C1 −179.27 (17) C11---O6---C12---C14 −55.8 (3) C6---C1---C7---N1 170.21 (19) C11---O6---C12---C15 −173.4 (2) C2---C1---C7---N1 −8.2 (3) C18---O7---C16---C17 −98 (83) N1---N2---C8---O3 0.3 (3) C16---O7---C18---C19 52 (82) ------------------- -------------- ---------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3043 .table-wrap} -------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1o···N1 0.86 (3) 1.89 (3) 2.643 (3) 147 (3) N2---H2n···O3^i^ 0.86 (3) 1.91 (2) 2.760 (2) 171 (2) O2---H2o···O5^ii^ 0.83 (3) 1.86 (3) 2.669 (3) 165 (3) N3---H3n···O4^iii^ 0.86 (3) 2.08 (3) 2.926 (3) 173 (2) O4---H4o···O7^iv^ 0.83 (1) 1.94 (2) 2.761 (3) 167 (3) O7---H7o···O2^v^ 0.84 (1) 2.05 (2) 2.858 (2) 162 (4) -------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1/2, *y*+1/2, −*z*+2; (ii) −*x*, *y*, −*z*+2; (iii) −*x*+1, *y*, −*z*+2; (iv) −*x*+1/2, *y*+1/2, −*z*+1; (v) −*x*, *y*, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- ---------- ---------- ----------- ------------- O1---H1*o*⋯N1 0.86 (3) 1.89 (3) 2.643 (3) 147 (3) N2---H2*n*⋯O3^i^ 0.86 (3) 1.91 (2) 2.760 (2) 171 (2) O2---H2*o*⋯O5^ii^ 0.83 (3) 1.86 (3) 2.669 (3) 165 (3) N3---H3*n*⋯O4^iii^ 0.86 (3) 2.08 (3) 2.926 (3) 173 (2) O4---H4*o*⋯O7^iv^ 0.83 (1) 1.94 (2) 2.761 (3) 167 (3) O7---H7*o*⋯O2^v^ 0.84 (1) 2.05 (2) 2.858 (2) 162 (4) Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . ::: [^1]: ‡ Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
PubMed Central
2024-06-05T04:04:18.371547
2011-2-09
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052090/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 9; 67(Pt 3):o581-o582", "authors": [ { "first": "Alessandra C.", "last": "Pinheiro" }, { "first": "Marcus V. N.", "last": "de Souza" }, { "first": "Edward R. T.", "last": "Tiekink" }, { "first": "Solange M. S. V.", "last": "Wardell" }, { "first": "James L.", "last": "Wardell" } ] }
PMC3052091
Related literature {#sec1} ================== For related magnesium complexes, see: Erxleben & Schumacher (2001[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Mg(C~2~H~3~O~3~)(H~2~O)~4~\]NO~3~*M* *~r~* = 233.43Monoclinic,*a* = 5.777 (2) Å*b* = 7.171 (3) Å*c* = 23.045 (8) Åβ = 92.839 (4)°*V* = 953.5 (6) Å^3^*Z* = 4Mo *K*α radiationμ = 0.23 mm^−1^*T* = 298 K0.20 × 0.18 × 0.18 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2001[@bb1]) *T* ~min~ = 0.956, *T* ~max~ = 0.9604632 measured reflections1713 independent reflections1424 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.027 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.044*wR*(*F* ^2^) = 0.115*S* = 1.061713 reflections141 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.29 e Å^−3^Δρ~min~ = −0.18 e Å^−3^ {#d5e637} Data collection: *SMART* (Bruker, 2001[@bb1]); cell refinement: *SAINT* (Bruker, 2001[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb3]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811006611/go2005sup1.cif](http://dx.doi.org/10.1107/S1600536811006611/go2005sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811006611/go2005Isup2.hkl](http://dx.doi.org/10.1107/S1600536811006611/go2005Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?go2005&file=go2005sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?go2005sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?go2005&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [GO2005](http://scripts.iucr.org/cgi-bin/sendsup?go2005)). This work was supported financially by the NSFC (grants 20971047 and U0734005), Guangdong Provincial Science and Technology Bureau (grant 2008B010600009) and the Key Research Program of Guangdong Provincial Universities Science and Technology innovation (grant cxzd1020). Comment ======= The compound crystallizes in the monoclinic system, space group *P*2~1~/n, an ORTEP view is shown in Fig. 1. The Mg^II^ ion is hexa-coordinated by four oxygen atoms from water and two oxygen atoms from 2-hydroxyacetato ions. The Mg---O distances are in the range of 2.021 (2)---2.069 (2) Å. The O---Mg---O bond angles fall in the range of 76.73 (8)---171.89 (10) °. The C---O distances of HOCH~2~COO^-^ are within the range of 1.247 (3) Å to 1.413 (3) Å. This molecular complex exhibits a 3D structure via O---H···O hydrogen bonding interactions (Fig. 2). Experimental {#experimental} ============ A mixture of 2-hydroxyacetic acid (0.038 g, 0.5 mmol), Mg(NO~3~)~2~.6H~2~O (0.064 g, 0.25 mmol) and H~2~O (7 mL) was heated to 180 °C for 72 h in a 15 ml Teflon-lined stainless-steel autoclave and then cooled to room temperature at a rate of 5 °C/h. Colorless block crystals were collected and dried in air in *ca.* 48% yield based on Mg. Refinement {#refinement} ========== H atoms were positioned in calculated positions, with C---H = 0.93 (aromatic) and 0.96 Å (ethanol), and refined in riding mode with *U*~iso~(H) = 1.5 *U*~eq~(C) for ethanol and 1.2 *U*~eq~(C) for the others. Water H atoms were restrained, with O---H = 0.85 (1)Å and H···H = 1.29 (1) Å. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Displacement ellipsoid plot (40% probability level) of the title compound. ::: ![](e-67-0m374-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The packing diagram of the title compound. ::: ![](e-67-0m374-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e140 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------- \[Mg(C~2~H~3~O~3~)(H~2~O)~4~\]NO~3~ *F*(000) = 488 *M~r~* = 233.43 *D*~x~ = 1.626 Mg m^−3^*D*~m~ = 1.626 Mg m^−3^*D*~m~ measured by not measured Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 1638 reflections *a* = 5.777 (2) Å θ = 2.8--26.0° *b* = 7.171 (3) Å µ = 0.23 mm^−1^ *c* = 23.045 (8) Å *T* = 298 K β = 92.839 (4)° Block, colorless *V* = 953.5 (6) Å^3^ 0.20 × 0.18 × 0.18 mm *Z* = 4 ------------------------------------- ------------------------------------------------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e295 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART CCD area-detector diffractometer 1713 independent reflections Radiation source: fine-focus sealed tube 1424 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.027 φ and ω scans θ~max~ = 25.2°, θ~min~ = 1.8° Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *h* = −6→6 *T*~min~ = 0.956, *T*~max~ = 0.960 *k* = −8→6 4632 measured reflections *l* = −27→27 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e412 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.044 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.115 H atoms treated by a mixture of independent and constrained refinement *S* = 1.06 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0488*P*)^2^ + 0.7836*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1713 reflections (Δ/σ)~max~ \< 0.001 141 parameters Δρ~max~ = 0.29 e Å^−3^ 0 restraints Δρ~min~ = −0.18 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e569 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e614 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Mg1 0.03285 (14) 0.16089 (12) 0.12732 (3) 0.0330 (3) O2 −0.2625 (3) 0.1820 (3) 0.17242 (7) 0.0381 (5) O3W 0.3575 (3) 0.1539 (3) 0.09850 (8) 0.0480 (5) H3W1 0.4864 0.1697 0.1172 0.080 (13)\* H3W2 0.3969 0.1891 0.0652 0.054 (9)\* O1 0.1570 (3) 0.2201 (4) 0.21105 (8) 0.0507 (6) O1W −0.1370 (3) 0.0888 (3) 0.05123 (8) 0.0431 (5) H1W2 −0.1878 0.1479 0.0213 0.065\* H1W1 −0.1967 −0.0171 0.0433 0.065\* O4W 0.0493 (4) −0.1211 (3) 0.14223 (9) 0.0520 (6) H4W1 0.0047 −0.1825 0.1712 0.078\* H4W2 0.1424 −0.2007 0.1291 0.078\* O2W −0.0052 (4) 0.4340 (3) 0.10109 (10) 0.0557 (6) H2W1 0.0818 0.4998 0.0805 0.083\* H2W2 −0.1280 0.4991 0.0973 0.083\* N1 0.4889 (4) 0.6773 (3) 0.05397 (10) 0.0436 (6) O4 0.2764 (4) 0.6940 (3) 0.04229 (10) 0.0606 (6) O6 0.6310 (4) 0.7402 (3) 0.02097 (9) 0.0599 (6) O5 0.5496 (4) 0.5979 (5) 0.09917 (11) 0.0840 (9) C2 −0.0077 (5) 0.2379 (5) 0.25407 (12) 0.0396 (6) C1 −0.2471 (4) 0.2188 (4) 0.22541 (11) 0.0337 (6) O3 −0.4157 (3) 0.2385 (3) 0.25663 (8) 0.0503 (6) H1 0.004 (5) 0.352 (5) 0.2734 (14) 0.052 (9)\* H3 0.294 (6) 0.232 (4) 0.2291 (13) 0.048 (8)\* H2 0.019 (5) 0.144 (5) 0.2852 (14) 0.055 (9)\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e978 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Mg1 0.0246 (4) 0.0441 (5) 0.0305 (4) −0.0018 (4) 0.0053 (3) −0.0009 (4) O2 0.0242 (9) 0.0586 (12) 0.0315 (9) −0.0037 (8) 0.0030 (7) −0.0057 (8) O3W 0.0260 (10) 0.0799 (15) 0.0387 (11) −0.0066 (9) 0.0068 (8) 0.0017 (10) O1 0.0214 (10) 0.0941 (17) 0.0368 (10) −0.0028 (10) 0.0024 (8) −0.0129 (10) O1W 0.0464 (11) 0.0480 (11) 0.0342 (10) −0.0048 (9) −0.0040 (8) 0.0008 (8) O4W 0.0674 (14) 0.0443 (12) 0.0464 (11) 0.0072 (10) 0.0232 (10) 0.0089 (9) O2W 0.0463 (12) 0.0447 (12) 0.0769 (15) −0.0032 (10) 0.0127 (11) 0.0100 (11) N1 0.0465 (15) 0.0436 (14) 0.0411 (13) −0.0027 (11) 0.0062 (11) 0.0033 (10) O4 0.0420 (13) 0.0704 (16) 0.0692 (15) −0.0009 (11) 0.0007 (10) 0.0225 (12) O6 0.0554 (13) 0.0775 (16) 0.0478 (12) −0.0177 (12) 0.0120 (10) 0.0040 (11) O5 0.0578 (16) 0.131 (2) 0.0627 (16) 0.0079 (16) 0.0018 (12) 0.0440 (16) C2 0.0284 (14) 0.0565 (18) 0.0343 (14) −0.0019 (13) 0.0048 (11) −0.0107 (14) C1 0.0268 (13) 0.0393 (14) 0.0353 (13) −0.0008 (11) 0.0052 (10) −0.0053 (11) O3 0.0283 (10) 0.0824 (16) 0.0408 (10) −0.0016 (10) 0.0083 (8) −0.0188 (11) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1272 .table-wrap} ------------------- ------------- ------------------- ------------ Mg1---O3W 2.021 (2) O1W---H1W1 0.8499 Mg1---O1W 2.033 (2) O4W---H4W1 0.8500 Mg1---O2 2.0467 (19) O4W---H4W2 0.8499 Mg1---O4W 2.052 (2) O2W---H2W1 0.8499 Mg1---O2W 2.058 (2) O2W---H2W2 0.8500 Mg1---O1 2.069 (2) N1---O5 1.223 (3) O2---C1 1.248 (3) N1---O6 1.232 (3) O3W---H3W1 0.8498 N1---O4 1.250 (3) O3W---H3W2 0.8498 C2---C1 1.509 (4) O1---C2 1.413 (3) C2---H1 0.94 (3) O1---H3 0.88 (3) C2---H2 0.99 (3) O1W---H1W2 0.8499 C1---O3 1.247 (3) O3W---Mg1---O1W 97.25 (8) Mg1---O1W---H1W2 134.9 O3W---Mg1---O2 168.28 (8) Mg1---O1W---H1W1 125.8 O1W---Mg1---O2 94.47 (8) H1W2---O1W---H1W1 98.7 O3W---Mg1---O4W 89.68 (9) Mg1---O4W---H4W1 129.0 O1W---Mg1---O4W 84.85 (9) Mg1---O4W---H4W2 128.8 O2---Mg1---O4W 91.19 (8) H4W1---O4W---H4W2 98.7 O3W---Mg1---O2W 90.83 (9) Mg1---O2W---H2W1 129.4 O1W---Mg1---O2W 87.06 (9) Mg1---O2W---H2W2 129.0 O2---Mg1---O2W 89.95 (9) H2W1---O2W---H2W2 98.7 O4W---Mg1---O2W 171.89 (10) O5---N1---O6 121.7 (3) O3W---Mg1---O1 91.56 (8) O5---N1---O4 117.7 (2) O1W---Mg1---O1 170.61 (8) O6---N1---O4 120.6 (2) O2---Mg1---O1 76.73 (8) O1---C2---C1 108.6 (2) O4W---Mg1---O1 92.00 (10) O1---C2---H1 112 (2) O2W---Mg1---O1 96.07 (10) C1---C2---H1 109.3 (19) C1---O2---Mg1 119.44 (16) O1---C2---H2 111.1 (19) Mg1---O3W---H3W1 129.3 C1---C2---H2 111.3 (19) Mg1---O3W---H3W2 125.7 H1---C2---H2 104 (3) H3W1---O3W---H3W2 98.8 O3---C1---O2 124.6 (2) C2---O1---Mg1 117.30 (16) O3---C1---C2 117.5 (2) C2---O1---H3 106 (2) O2---C1---C2 117.8 (2) Mg1---O1---H3 136 (2) ------------------- ------------- ------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1600 .table-wrap} ---------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O3W---H3W1···O2^i^ 0.85 1.88 2.719 (3) 167 O3W---H3W2···O6^ii^ 0.85 2.05 2.860 (3) 160 O1---H3···O3^i^ 0.88 (3) 1.76 (3) 2.638 (3) 172 (3) O1W---H1W2···O4^iii^ 0.85 1.90 2.747 (3) 173 O1W---H1W1···O6^iv^ 0.85 2.06 2.905 (3) 174 O4W---H4W1···O3^v^ 0.85 1.85 2.687 (3) 166 O4W---H4W2···O4^vi^ 0.85 2.31 3.014 (3) 141 O2W---H2W1···O4 0.85 2.02 2.860 (3) 169 O2W---H2W2···O5^vii^ 0.85 2.00 2.826 (3) 166 ---------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) *x*+1, *y*, *z*; (ii) −*x*+1, −*y*+1, −*z*; (iii) −*x*, −*y*+1, −*z*; (iv) *x*−1, *y*−1, *z*; (v) −*x*−1/2, *y*−1/2, −*z*+1/2; (vi) *x*, *y*−1, *z*; (vii) *x*−1, *y*, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: ------------- ------------- Mg1---O3*W* 2.021 (2) Mg1---O1*W* 2.033 (2) Mg1---O2 2.0467 (19) Mg1---O4*W* 2.052 (2) Mg1---O2*W* 2.058 (2) Mg1---O1 2.069 (2) ------------- ------------- ::: ::: {#table2 .table-wrap} Table 2 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------ ---------- ---------- ----------- ------------- O3*W*---H3*W*1⋯O2^i^ 0.85 1.88 2.719 (3) 167 O3*W*---H3*W*2⋯O6^ii^ 0.85 2.05 2.860 (3) 160 O1---H3⋯O3^i^ 0.88 (3) 1.76 (3) 2.638 (3) 172 (3) O1*W*---H1*W*2⋯O4^iii^ 0.85 1.90 2.747 (3) 173 O1*W*---H1*W*1⋯O6^iv^ 0.85 2.06 2.905 (3) 174 O4*W*---H4*W*1⋯O3^v^ 0.85 1.85 2.687 (3) 166 O4*W*---H4*W*2⋯O4^vi^ 0.85 2.31 3.014 (3) 141 O2*W*---H2*W*1⋯O4 0.85 2.02 2.860 (3) 169 O2*W*---H2*W*2⋯O5^vii^ 0.85 2.00 2.826 (3) 166 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) ; (vi) ; (vii) . :::
PubMed Central
2024-06-05T04:04:18.378087
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052091/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 26; 67(Pt 3):m374", "authors": [ { "first": "Wen-Jing", "last": "Liu" }, { "first": "Zhi-Qiang", "last": "Wei" }, { "first": "Shan-Tang", "last": "Yue" } ] }
PMC3052092
Related literature {#sec1} ================== For related structures, see: Aghabozorg *et al.* (2008[@bb1], 2010[@bb2]); Sheshmani *et al.* (2005[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} (C~5~H~8~N~3~)~2~\[Bi~2~(C~7~H~3~NO~4~)~4~(H~2~O)~2~\]·4H~2~O*M* *~r~* = 1406.76Triclinic,*a* = 9.3462 (19) Å*b* = 10.726 (2) Å*c* = 11.098 (2) Åα = 95.13 (3)°β = 91.38 (3)°γ = 90.47 (3)°*V* = 1107.7 (4) Å^3^*Z* = 1Mo *K*α radiationμ = 8.03 mm^−1^*T* = 298 K0.33 × 0.27 × 0.23 mm ### Data collection {#sec2.1.2} Stoe IPDS-2 diffractometerAbsorption correction: numerical (*X-SHAPE* and *X-RED32*; Stoe & Cie, 2005[@bb7]) *T* ~min~ = 0.083, *T* ~max~ = 0.15612406 measured reflections5940 independent reflections5539 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.113 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.057*wR*(*F* ^2^) = 0.154*S* = 1.055940 reflections347 parameters9 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 2.98 e Å^−3^Δρ~min~ = −2.93 e Å^−3^ {#d5e806} Data collection: *X-AREA* (Stoe & Cie, 2005[@bb7]); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb3]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb4]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811005629/hy2406sup1.cif](http://dx.doi.org/10.1107/S1600536811005629/hy2406sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811005629/hy2406Isup2.hkl](http://dx.doi.org/10.1107/S1600536811005629/hy2406Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hy2406&file=hy2406sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hy2406sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hy2406&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HY2406](http://scripts.iucr.org/cgi-bin/sendsup?hy2406)). We are grateful to the Islamic Azad University, North Tehran Branch, for financial support. Comment ======= Pyridine-2,6-dicarboxylic acid (pydcH~2~) can form various complexes containing transition and main metals (Aghabozorg *et al.*, 2008). There are complexes in which pydc acts as a bridging ligand between two metal atoms (Aghabozorg *et al.*, 2010; Sheshmani *et al.*, 2005). Herein, we report the crystal structure of the title compund as another example of bismuth(III) coordination compound, which bears heterocyclic 2,3-diaminopyridine (2,3-dapy) and pydcH~2~ ligands. The molecular structure of the title compound is shown in Fig. 1. The centrosymmetric binuclear unit consists of two Bi^III^ atoms, four (pydc)^2-^ ligands, two coordinated water molecules. Two pydc ligands act as tridentate ligands with an N atom of the pyridine ring and two O atoms of the dicarboxylate groups acting as donors. One of the dicarboxylate O atoms for the other two pydc ligands plays a bridging role between two Bi atoms. The structure also contains two (2,3-dapyH)^+^ cations and four uncoordinated water molecules. The Bi^III^ atom is eight-coordinated in an N~2~O~6~ environment and has a distorted bicapped trigonal-prismatic geometry, as it is shown in Fig. 2. There are extensive intermolecular O---H···O, N---H···O and weak C---H···O hydrogen bonds, which cause the stability of the crystal structure (Fig. 3, Table 1). There are also π--π interactions between the (2,3-dapyH)^+^ rings and between the (2,3-dapyH)^+^ and pydc rings (Fig. 4), with centroid--centroid distances of 3.489 (5) and 3.694 (5) Å, respectively. Furthermore, there is C---H···π interacton between C---H group of the (2,3-dapyH)^+^ cation and pydc ligand, with an C---H···centroid distance of 2.78 Å (Fig. 5). Experimental {#experimental} ============ An aqueous solution of Bi(NO~3~)~3~ (1 mmol), pydcH~2~ (3 mmol) and 2,3-dapy (1 mmol) was refluxed for about 30 min in a 1:3:1 molar ratio. Brown crystals of the title compound were obtained from the solution by slow evaporation of the solvent within two weeks at room temperature. Refinement {#refinement} ========== H atoms attached to pyridine N and water O atoms were found in a difference Fourier map and refined with *U*~iso~(H) = 1.0--1.5*U*~eq~(N,O). H atoms of the water molecules, H9A, H9B, H10A, H10B, H11A, H11B were refined with distance restraints of O---H = 0.81 (7), 0.84 (8), 0.94 (8), 0.80 (8), 0.89 (8) and 0.92 (9) Å and H···H distance restraints of 1.45 (4) Å for H10A···H10B and 1.40 (4) Å for H11A···H11B. H atoms on C atoms were positioned geometrically and refined as riding atoms, with C---H = 0.93 Å and *U*~iso~(H) = 1.2*U*~eq~(C). The highest residual electron density was found at 0.83 Å from Bi1 atom and the deepest hole at 0.74 Å from Bi1 atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. \[Symmetry code: (i) -x+1, -y, -z+2.\] ::: ![](e-67-0m360-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The coordination environment of the BiIII atom, showing a distorted bicapped trigonal-prismatic geometry. \[Symmetry code: (i) -x+1, -y, -z+2.\] ::: ![](e-67-0m360-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### A view of the crystal packing, showing O---H···O, N---H···O and weak C---H···O hydrogen bonds (dashed lines) in the title compound. ::: ![](e-67-0m360-fig3) ::: ::: {#Fap4 .fig} Fig. 4. ::: {.caption} ###### π--π stacking interactions between the aromatic rings of the (2,3-dapyH)+ cation and pydc ligand. ::: ![](e-67-0m360-fig4) ::: ::: {#Fap5 .fig} Fig. 5. ::: {.caption} ###### C---H···π interaction between C---H group of the (2,3-dapyH)+ cation and the aromatic ring of the pydc ligand. ::: ![](e-67-0m360-fig5) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e219 .table-wrap} --------------------------------------------------------------- --------------------------------------- (C~5~H~8~N~3~)~2~\[Bi~2~(C~7~H~3~NO~4~)~4~(H~2~O)~2~\]·4H~2~O *Z* = 1 *M~r~* = 1406.76 *F*(000) = 680 Triclinic, *P*1 *D*~x~ = 2.109 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 9.3462 (19) Å Cell parameters from 5940 reflections *b* = 10.726 (2) Å θ = 2.2--29.2° *c* = 11.098 (2) Å µ = 8.03 mm^−1^ α = 95.13 (3)° *T* = 298 K β = 91.38 (3)° Prism, brown γ = 90.47 (3)° 0.33 × 0.27 × 0.23 mm *V* = 1107.7 (4) Å^3^ --------------------------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e382 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Stoe IPDS-2 diffractometer 5940 independent reflections Radiation source: fine-focus sealed tube 5539 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.113 ω scans θ~max~ = 29.2°, θ~min~ = 2.2° Absorption correction: numerical (*X-SHAPE* and *X-RED32*; Stoe & Cie, 2005) *h* = −12→12 *T*~min~ = 0.083, *T*~max~ = 0.156 *k* = −14→14 12406 measured reflections *l* = −15→15 ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e499 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.057 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.154 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.1042*P*)^2^ + 3.0215*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.05 (Δ/σ)~max~ = 0.001 5940 reflections Δρ~max~ = 2.98 e Å^−3^ 347 parameters Δρ~min~ = −2.93 e Å^−3^ 9 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0047 (13) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e682 .table-wrap} ------ ------------- --------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O10 0.8002 (8) 0.0220 (8) 0.8803 (9) 0.0534 (19) O8 −0.0239 (8) 0.3014 (6) 1.0095 (8) 0.056 (2) O11 0.9124 (8) 0.8479 (8) 0.7003 (7) 0.0502 (17) O6 0.6729 (7) 0.3001 (6) 0.7953 (8) 0.0494 (17) Bi1 0.32379 (2) 0.045644 (19) 0.88303 (2) 0.02387 (13) N1 0.4091 (7) −0.0927 (6) 0.7035 (5) 0.0265 (11) C5 0.3481 (8) −0.0744 (7) 0.5968 (7) 0.0297 (14) C1 0.5057 (7) −0.1819 (6) 0.7123 (6) 0.0247 (12) C3 0.4867 (12) −0.2374 (10) 0.4998 (8) 0.047 (2) H3 0.5131 −0.2871 0.4312 0.056\* C7 0.2415 (9) 0.0299 (7) 0.5988 (8) 0.0359 (16) C2 0.5469 (10) −0.2566 (9) 0.6098 (8) 0.0426 (19) H2 0.6147 −0.3188 0.6163 0.051\* C4 0.3855 (10) −0.1434 (9) 0.4899 (8) 0.0388 (17) H4 0.3450 −0.1277 0.4155 0.047\* N4 1.1655 (8) 0.4867 (7) 0.2534 (8) 0.0436 (18) H4A 1.1986 0.4137 0.2319 0.052\* H4B 1.2133 0.5526 0.2398 0.052\* C15 1.0421 (8) 0.4974 (7) 0.3068 (7) 0.0300 (14) C16 0.9763 (9) 0.6147 (8) 0.3425 (8) 0.0333 (15) N3 0.9707 (9) 0.3919 (7) 0.3263 (7) 0.0383 (15) N5 1.0463 (9) 0.7230 (6) 0.3244 (9) 0.0462 (19) H5A 1.0086 0.7940 0.3469 0.055\* H5B 1.1281 0.7205 0.2904 0.055\* C17 0.8460 (10) 0.6133 (9) 0.3960 (10) 0.043 (2) H17 0.8021 0.6885 0.4204 0.051\* C19 0.8402 (11) 0.3898 (9) 0.3806 (9) 0.046 (2) H19 0.7959 0.3144 0.3938 0.055\* C18 0.7782 (10) 0.5004 (11) 0.4144 (10) 0.048 (2) H18 0.6892 0.5012 0.4502 0.057\* O3 0.2133 (7) 0.0852 (6) 0.7009 (6) 0.0381 (13) O7 0.0896 (6) 0.1326 (5) 0.9346 (6) 0.0340 (12) O5 0.5370 (6) 0.1332 (5) 0.8106 (6) 0.0324 (11) N2 0.3143 (7) 0.2700 (6) 0.8827 (6) 0.0262 (11) C8 0.4311 (8) 0.3335 (7) 0.8530 (7) 0.0283 (13) O4 0.1860 (11) 0.0529 (9) 0.5024 (7) 0.066 (2) C14 0.0788 (9) 0.2486 (7) 0.9591 (8) 0.0331 (15) C13 0.5562 (8) 0.2518 (7) 0.8158 (7) 0.0290 (14) C12 0.1996 (8) 0.3318 (7) 0.9215 (7) 0.0294 (14) C9 0.4360 (8) 0.4623 (7) 0.8582 (8) 0.0321 (15) H9 0.5173 0.5045 0.8362 0.039\* C11 0.1952 (8) 0.4614 (7) 0.9293 (8) 0.0324 (15) H11 0.1135 0.5036 0.9554 0.039\* C10 0.3145 (9) 0.5268 (7) 0.8975 (9) 0.0358 (17) H10 0.3137 0.6138 0.9023 0.043\* O1 0.5240 (6) −0.1236 (5) 0.9223 (5) 0.0290 (10) O2 0.6605 (9) −0.2791 (7) 0.8471 (6) 0.0489 (17) C6 0.5695 (8) −0.1989 (7) 0.8366 (7) 0.0276 (13) O9 0.1606 (8) −0.1496 (7) 0.8422 (7) 0.0455 (15) H10B 0.867 (9) 0.064 (12) 0.906 (13) 0.055\* H11A 0.851 (13) 0.845 (14) 0.638 (9) 0.068\* H11B 0.860 (15) 0.908 (13) 0.742 (11) 0.068\* H9A 0.143 (14) −0.171 (15) 0.909 (8) 0.068\* H9B 0.090 (13) −0.126 (14) 0.802 (10) 0.068\* H10A 0.717 (9) 0.070 (11) 0.875 (12) 0.055\* H3A 1.007 (14) 0.325 (13) 0.289 (12) 0.055\* ------ ------------- --------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1427 .table-wrap} ----- -------------- -------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O10 0.036 (3) 0.043 (3) 0.081 (6) 0.007 (3) −0.001 (3) 0.005 (4) O8 0.052 (4) 0.029 (3) 0.090 (6) 0.012 (3) 0.045 (4) 0.005 (3) O11 0.049 (4) 0.054 (4) 0.049 (4) 0.022 (3) −0.006 (3) 0.011 (3) O6 0.034 (3) 0.034 (3) 0.080 (5) −0.004 (2) 0.025 (3) 0.001 (3) Bi1 0.02420 (17) 0.01863 (16) 0.02853 (18) 0.00371 (9) 0.00376 (9) −0.00045 (9) N1 0.030 (3) 0.026 (3) 0.024 (3) 0.004 (2) 0.004 (2) 0.000 (2) C5 0.032 (3) 0.025 (3) 0.032 (4) 0.000 (3) 0.003 (3) 0.000 (3) C1 0.025 (3) 0.022 (3) 0.026 (3) 0.002 (2) 0.003 (2) −0.004 (2) C3 0.060 (6) 0.049 (5) 0.030 (4) 0.014 (4) 0.012 (4) −0.010 (4) C7 0.039 (4) 0.028 (3) 0.042 (4) 0.006 (3) 0.004 (3) 0.006 (3) C2 0.041 (4) 0.046 (5) 0.037 (4) 0.011 (4) 0.006 (3) −0.015 (4) C4 0.045 (4) 0.043 (4) 0.027 (4) 0.004 (3) 0.006 (3) −0.003 (3) N4 0.037 (4) 0.030 (3) 0.063 (5) 0.005 (3) 0.019 (3) −0.004 (3) C15 0.035 (4) 0.030 (3) 0.025 (3) 0.000 (3) −0.001 (3) 0.002 (3) C16 0.032 (4) 0.029 (3) 0.039 (4) 0.000 (3) 0.005 (3) 0.003 (3) N3 0.045 (4) 0.027 (3) 0.043 (4) −0.001 (3) 0.010 (3) −0.002 (3) N5 0.051 (4) 0.019 (3) 0.069 (5) 0.007 (3) 0.024 (4) 0.002 (3) C17 0.037 (4) 0.036 (4) 0.055 (6) 0.012 (3) 0.013 (4) 0.002 (4) C19 0.053 (5) 0.041 (4) 0.044 (5) −0.009 (4) 0.013 (4) 0.003 (4) C18 0.033 (4) 0.057 (6) 0.052 (5) −0.011 (4) 0.015 (4) −0.008 (4) O3 0.044 (3) 0.034 (3) 0.036 (3) 0.018 (2) −0.007 (2) 0.001 (2) O7 0.029 (2) 0.024 (2) 0.048 (3) −0.0006 (19) 0.007 (2) 0.004 (2) O5 0.031 (3) 0.024 (2) 0.042 (3) 0.0096 (19) 0.014 (2) 0.002 (2) N2 0.027 (3) 0.025 (3) 0.026 (3) 0.005 (2) 0.006 (2) −0.002 (2) C8 0.033 (3) 0.022 (3) 0.029 (3) 0.002 (2) 0.006 (3) 0.001 (2) O4 0.082 (6) 0.073 (5) 0.042 (4) 0.035 (5) −0.015 (4) 0.003 (4) C14 0.033 (4) 0.024 (3) 0.043 (4) 0.005 (3) 0.008 (3) 0.008 (3) C13 0.027 (3) 0.027 (3) 0.032 (3) 0.004 (2) 0.008 (3) −0.001 (3) C12 0.028 (3) 0.025 (3) 0.035 (4) 0.002 (2) 0.005 (3) −0.003 (3) C9 0.026 (3) 0.025 (3) 0.046 (4) 0.003 (2) 0.008 (3) 0.003 (3) C11 0.028 (3) 0.026 (3) 0.043 (4) 0.006 (3) 0.007 (3) −0.001 (3) C10 0.036 (4) 0.023 (3) 0.048 (5) 0.007 (3) 0.006 (3) 0.000 (3) O1 0.030 (2) 0.032 (2) 0.023 (2) 0.007 (2) −0.0015 (19) −0.0062 (19) O2 0.067 (4) 0.040 (3) 0.039 (3) 0.029 (3) −0.002 (3) −0.002 (3) C6 0.027 (3) 0.026 (3) 0.029 (3) 0.004 (2) 0.006 (3) −0.002 (3) O9 0.045 (3) 0.041 (3) 0.049 (4) −0.012 (3) 0.010 (3) −0.005 (3) ----- -------------- -------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2072 .table-wrap} ------------------------ ------------- --------------------------- ------------- O10---H10B 0.80 (8) C15---C16 1.433 (11) O10---H10A 0.94 (8) C16---N5 1.362 (11) O8---C14 1.239 (10) C16---C17 1.368 (12) O11---H11A 0.89 (8) N3---C19 1.374 (12) O11---H11B 0.92 (9) N3---H3A 0.87 (14) O6---C13 1.238 (9) N5---H5A 0.8600 Bi1---O3 2.323 (6) N5---H5B 0.8600 Bi1---O5 2.384 (6) C17---C18 1.396 (15) Bi1---N2 2.409 (6) C17---H17 0.9300 Bi1---O7 2.447 (6) C19---C18 1.351 (15) Bi1---N1 2.525 (6) C19---H19 0.9300 Bi1---O9 2.581 (7) C18---H18 0.9300 Bi1---O1^i^ 2.627 (5) O7---C14 1.255 (9) Bi1---O1 2.673 (5) O5---C13 1.279 (9) N1---C1 1.329 (9) N2---C12 1.325 (9) N1---C5 1.333 (10) N2---C8 1.346 (9) C5---C4 1.394 (11) C8---C9 1.377 (10) C5---C7 1.504 (11) C8---C13 1.510 (10) C1---C2 1.395 (10) C14---C12 1.522 (11) C1---C6 1.516 (10) C12---C11 1.386 (10) C3---C2 1.364 (14) C9---C10 1.394 (10) C3---C4 1.398 (14) C9---H9 0.9300 C3---H3 0.9300 C11---C10 1.381 (12) C7---O4 1.224 (12) C11---H11 0.9300 C7---O3 1.266 (11) C10---H10 0.9300 C2---H2 0.9300 O1---C6 1.275 (9) C4---H4 0.9300 O1---Bi1^i^ 2.627 (5) N4---C15 1.310 (11) O2---C6 1.225 (10) N4---H4A 0.8600 O9---H9A 0.81 (7) N4---H4B 0.8600 O9---H9B 0.84 (8) C15---N3 1.346 (10) H10B---O10---H10A 112 (9) N3---C15---C16 117.8 (7) H11A---O11---H11B 91 (8) N5---C16---C17 122.4 (8) O3---Bi1---O5 87.5 (2) N5---C16---C15 119.2 (7) O3---Bi1---N2 73.7 (2) C17---C16---C15 118.4 (8) O5---Bi1---N2 67.26 (19) C15---N3---C19 124.1 (8) O3---Bi1---O7 74.0 (2) C15---N3---H3A 113 (9) O5---Bi1---O7 133.22 (18) C19---N3---H3A 122 (9) N2---Bi1---O7 66.40 (19) C16---N5---H5A 120.0 O3---Bi1---N1 66.3 (2) C16---N5---H5B 120.0 O5---Bi1---N1 70.7 (2) H5A---N5---H5B 120.0 N2---Bi1---N1 122.1 (2) C16---C17---C18 120.9 (8) O7---Bi1---N1 132.5 (2) C16---C17---H17 119.6 O3---Bi1---O9 79.0 (3) C18---C17---H17 119.6 O5---Bi1---O9 140.1 (2) C18---C19---N3 118.1 (9) N2---Bi1---O9 140.2 (2) C18---C19---H19 121.0 O7---Bi1---O9 78.7 (2) N3---C19---H19 121.0 N1---Bi1---O9 69.4 (2) C19---C18---C17 120.7 (8) O3---Bi1---O1^i^ 150.1 (2) C19---C18---H18 119.6 O5---Bi1---O1^i^ 74.6 (2) C17---C18---H18 119.6 N2---Bi1---O1^i^ 77.3 (2) C7---O3---Bi1 124.9 (5) O7---Bi1---O1^i^ 100.97 (19) C14---O7---Bi1 119.0 (5) N1---Bi1---O1^i^ 126.40 (18) C13---O5---Bi1 121.0 (4) O9---Bi1---O1^i^ 129.7 (2) C12---N2---C8 119.8 (6) O3---Bi1---O1 128.33 (18) C12---N2---Bi1 120.5 (5) O5---Bi1---O1 76.04 (18) C8---N2---Bi1 119.4 (5) N2---Bi1---O1 136.45 (19) N2---C8---C9 122.5 (7) O7---Bi1---O1 147.79 (19) N2---C8---C13 114.3 (6) N1---Bi1---O1 61.99 (18) C9---C8---C13 123.2 (7) O9---Bi1---O1 83.3 (2) O8---C14---O7 125.2 (8) O1^i^---Bi1---O1 70.87 (18) O8---C14---C12 117.1 (7) C1---N1---C5 120.5 (6) O7---C14---C12 117.7 (7) C1---N1---Bi1 123.4 (5) O6---C13---O5 122.5 (7) C5---N1---Bi1 116.0 (5) O6---C13---C8 120.1 (7) N1---C5---C4 122.3 (7) O5---C13---C8 117.4 (6) N1---C5---C7 115.4 (7) N2---C12---C11 121.4 (7) C4---C5---C7 122.3 (8) N2---C12---C14 114.3 (6) N1---C1---C2 120.7 (7) C11---C12---C14 124.3 (7) N1---C1---C6 117.8 (6) C8---C9---C10 117.5 (7) C2---C1---C6 121.5 (7) C8---C9---H9 121.3 C2---C3---C4 120.3 (8) C10---C9---H9 121.3 C2---C3---H3 119.8 C10---C11---C12 118.8 (7) C4---C3---H3 119.8 C10---C11---H11 120.6 O4---C7---O3 124.9 (8) C12---C11---H11 120.6 O4---C7---C5 117.8 (8) C11---C10---C9 119.9 (7) O3---C7---C5 117.3 (7) C11---C10---H10 120.0 C3---C2---C1 119.3 (8) C9---C10---H10 120.0 C3---C2---H2 120.3 C6---O1---Bi1^i^ 124.2 (5) C1---C2---H2 120.3 C6---O1---Bi1 121.5 (5) C5---C4---C3 116.9 (8) Bi1^i^---O1---Bi1 109.13 (18) C5---C4---H4 121.6 O2---C6---O1 125.5 (7) C3---C4---H4 121.6 O2---C6---C1 119.2 (7) C15---N4---H4A 120.0 O1---C6---C1 115.2 (6) C15---N4---H4B 120.0 Bi1---O9---H9A 105 (10) H4A---N4---H4B 120.0 Bi1---O9---H9B 106 (10) N4---C15---N3 118.1 (8) H9A---O9---H9B 116 (10) N4---C15---C16 124.0 (7) O3---Bi1---N1---C1 −178.5 (6) O1^i^---Bi1---O5---C13 −75.3 (6) O5---Bi1---N1---C1 85.6 (6) O1---Bi1---O5---C13 −148.9 (6) N2---Bi1---N1---C1 131.0 (5) O3---Bi1---N2---C12 86.6 (6) O7---Bi1---N1---C1 −142.8 (5) O5---Bi1---N2---C12 −179.2 (6) O9---Bi1---N1---C1 −91.8 (6) O7---Bi1---N2---C12 7.3 (6) O1^i^---Bi1---N1---C1 33.0 (6) N1---Bi1---N2---C12 134.0 (6) O1---Bi1---N1---C1 1.6 (5) O9---Bi1---N2---C12 38.0 (7) O3---Bi1---N1---C5 −0.5 (5) O1^i^---Bi1---N2---C12 −100.8 (6) O5---Bi1---N1---C5 −96.4 (5) O1---Bi1---N2---C12 −144.4 (5) N2---Bi1---N1---C5 −51.0 (6) O3---Bi1---N2---C8 −99.3 (6) O7---Bi1---N1---C5 35.2 (6) O5---Bi1---N2---C8 −5.1 (5) O9---Bi1---N1---C5 86.2 (5) O7---Bi1---N2---C8 −178.5 (6) O1^i^---Bi1---N1---C5 −149.0 (5) N1---Bi1---N2---C8 −51.9 (6) O1---Bi1---N1---C5 179.6 (6) O9---Bi1---N2---C8 −147.8 (5) C1---N1---C5---C4 −2.4 (11) O1^i^---Bi1---N2---C8 73.3 (5) Bi1---N1---C5---C4 179.5 (6) O1---Bi1---N2---C8 29.8 (7) C1---N1---C5---C7 −179.6 (7) C12---N2---C8---C9 −1.7 (12) Bi1---N1---C5---C7 2.4 (8) Bi1---N2---C8---C9 −175.9 (6) C5---N1---C1---C2 1.1 (11) C12---N2---C8---C13 177.3 (7) Bi1---N1---C1---C2 179.0 (6) Bi1---N2---C8---C13 3.1 (9) C5---N1---C1---C6 −179.2 (6) Bi1---O7---C14---O8 −164.6 (8) Bi1---N1---C1---C6 −1.3 (9) Bi1---O7---C14---C12 16.9 (10) N1---C5---C7---O4 177.7 (9) Bi1---O5---C13---O6 169.5 (7) C4---C5---C7---O4 0.5 (13) Bi1---O5---C13---C8 −8.4 (10) N1---C5---C7---O3 −4.0 (11) N2---C8---C13---O6 −174.6 (8) C4---C5---C7---O3 178.8 (8) C9---C8---C13---O6 4.4 (13) C4---C3---C2---C1 0.4 (16) N2---C8---C13---O5 3.3 (11) N1---C1---C2---C3 −0.2 (14) C9---C8---C13---O5 −177.7 (8) C6---C1---C2---C3 −179.8 (9) C8---N2---C12---C11 1.8 (12) N1---C5---C4---C3 2.6 (13) Bi1---N2---C12---C11 175.9 (6) C7---C5---C4---C3 179.5 (9) C8---N2---C12---C14 −176.5 (7) C2---C3---C4---C5 −1.5 (15) Bi1---N2---C12---C14 −2.4 (9) N4---C15---C16---N5 −2.3 (13) O8---C14---C12---N2 171.6 (9) N3---C15---C16---N5 179.7 (9) O7---C14---C12---N2 −9.8 (11) N4---C15---C16---C17 179.0 (9) O8---C14---C12---C11 −6.6 (14) N3---C15---C16---C17 1.0 (12) O7---C14---C12---C11 172.0 (8) N4---C15---N3---C19 −179.6 (9) N2---C8---C9---C10 0.8 (13) C16---C15---N3---C19 −1.5 (13) C13---C8---C9---C10 −178.1 (8) N5---C16---C17---C18 −179.2 (11) N2---C12---C11---C10 −1.0 (13) C15---C16---C17---C18 −0.6 (15) C14---C12---C11---C10 177.1 (8) C15---N3---C19---C18 1.4 (15) C12---C11---C10---C9 0.2 (13) N3---C19---C18---C17 −0.9 (17) C8---C9---C10---C11 −0.1 (13) C16---C17---C18---C19 0.6 (17) O3---Bi1---O1---C6 −2.0 (7) O4---C7---O3---Bi1 −178.0 (9) O5---Bi1---O1---C6 −77.3 (6) C5---C7---O3---Bi1 3.8 (11) N2---Bi1---O1---C6 −110.2 (6) O5---Bi1---O3---C7 68.1 (7) O7---Bi1---O1---C6 124.4 (6) N2---Bi1---O3---C7 135.2 (8) N1---Bi1---O1---C6 −1.9 (5) O7---Bi1---O3---C7 −155.3 (8) O9---Bi1---O1---C6 68.3 (6) N1---Bi1---O3---C7 −1.9 (7) O1^i^---Bi1---O1---C6 −155.5 (7) O9---Bi1---O3---C7 −74.1 (7) O3---Bi1---O1---Bi1^i^ 153.5 (2) O1^i^---Bi1---O3---C7 120.6 (7) O5---Bi1---O1---Bi1^i^ 78.3 (2) O1---Bi1---O3---C7 −1.8 (8) N2---Bi1---O1---Bi1^i^ 45.4 (4) O3---Bi1---O7---C14 −91.9 (7) O7---Bi1---O1---Bi1^i^ −80.0 (4) O5---Bi1---O7---C14 −21.3 (8) N1---Bi1---O1---Bi1^i^ 153.6 (3) N2---Bi1---O7---C14 −13.0 (6) O9---Bi1---O1---Bi1^i^ −136.2 (3) N1---Bi1---O7---C14 −125.7 (6) O1^i^---Bi1---O1---Bi1^i^ 0.0 O9---Bi1---O7---C14 −173.6 (7) Bi1^i^---O1---C6---O2 28.4 (11) O1^i^---Bi1---O7---C14 57.8 (7) Bi1---O1---C6---O2 −179.9 (7) O1---Bi1---O7---C14 129.2 (6) Bi1^i^---O1---C6---C1 −149.8 (5) O3---Bi1---O5---C13 80.5 (6) Bi1---O1---C6---C1 2.0 (8) N2---Bi1---O5---C13 7.2 (6) N1---C1---C6---O2 −178.8 (8) O7---Bi1---O5---C13 15.4 (7) C2---C1---C6---O2 0.9 (12) N1---Bi1---O5---C13 146.3 (7) N1---C1---C6---O1 −0.6 (10) O9---Bi1---O5---C13 150.0 (6) C2---C1---C6---O1 179.1 (8) ------------------------ ------------- --------------------------- ------------- ::: Symmetry codes: (i) −*x*+1, −*y*, −*z*+2. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3681 .table-wrap} ------------------------ ----------- ----------- ------------ --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N3---H3A···O11^ii^ 0.87 (14) 2.02 (14) 2.797 (10) 148 (12) N4---H4A···O2^iii^ 0.86 2.11 2.924 (9) 158 N4---H4B···O6^ii^ 0.86 1.97 2.830 (10) 178 N5---H5A···O3^iv^ 0.86 2.53 3.216 (10) 138 N5---H5B···O6^ii^ 0.86 2.11 2.972 (10) 176 O9---H9A···O8^v^ 0.81 (7) 2.07 (12) 2.746 (10) 141 (15) O9---H9B···O11^vi^ 0.84 (8) 1.99 (10) 2.771 (11) 155 (15) O10---H10A···O5 0.94 (8) 1.96 (8) 2.862 (9) 160 (11) O10---H10B···O7^vii^ 0.80 (8) 2.21 (8) 2.972 (10) 160 (13) O11---H11A···O4^iv^ 0.89 (8) 2.01 (13) 2.717 (11) 136 (14) O11---H11B···O10^viii^ 0.92 (9) 1.96 (9) 2.836 (12) 158 (13) C11---H11···O8^ix^ 0.93 2.26 3.050 (10) 142 ------------------------ ----------- ----------- ------------ --------------- ::: Symmetry codes: (ii) −*x*+2, −*y*+1, −*z*+1; (iii) −*x*+2, −*y*, −*z*+1; (iv) −*x*+1, −*y*+1, −*z*+1; (v) −*x*, −*y*, −*z*+2; (vi) *x*−1, *y*−1, *z*; (vii) *x*+1, *y*, *z*; (viii) *x*, *y*+1, *z*; (ix) −*x*, −*y*+1, −*z*+2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ----------------------- ----------- ----------- ------------ ------------- N3---H3*A*⋯O11^i^ 0.87 (14) 2.02 (14) 2.797 (10) 148 (12) N4---H4*A*⋯O2^ii^ 0.86 2.11 2.924 (9) 158 N4---H4*B*⋯O6^i^ 0.86 1.97 2.830 (10) 178 N5---H5*A*⋯O3^iii^ 0.86 2.53 3.216 (10) 138 N5---H5*B*⋯O6^i^ 0.86 2.11 2.972 (10) 176 O9---H9*A*⋯O8^iv^ 0.81 (7) 2.07 (12) 2.746 (10) 141 (15) O9---H9*B*⋯O11^v^ 0.84 (8) 1.99 (10) 2.771 (11) 155 (15) O10---H10*A*⋯O5 0.94 (8) 1.96 (8) 2.862 (9) 160 (11) O10---H10*B*⋯O7^vi^ 0.80 (8) 2.21 (8) 2.972 (10) 160 (13) O11---H11*A*⋯O4^iii^ 0.89 (8) 2.01 (13) 2.717 (11) 136 (14) O11---H11*B*⋯O10^vii^ 0.92 (9) 1.96 (9) 2.836 (12) 158 (13) C11---H11⋯O8^viii^ 0.93 2.26 3.050 (10) 142 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) ; (vi) ; (vii) ; (viii) . :::
PubMed Central
2024-06-05T04:04:18.381916
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052092/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 23; 67(Pt 3):m360-m361", "authors": [ { "first": "Hossein", "last": "Aghabozorg" }, { "first": "Shokoofeh", "last": "Kazemi" }, { "first": "Ali Akbar", "last": "Agah" }, { "first": "Masoud", "last": "Mirzaei" }, { "first": "Behrouz", "last": "Notash" } ] }
PMC3052093
Related literature {#sec1} ================== For the crystal structure of 1-isopropenyl-1*H*-benzimidazol-2(3*H*)-one, see: Saber *et al.* (2010[@bb4]). For graph-set notation, see: Etter (1990[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~15~H~21~N~3~O~3~*M* *~r~* = 291.35Triclinic,*a* = 4.9997 (3) Å*b* = 11.4942 (6) Å*c* = 13.8739 (7) Åα = 74.214 (3)°β = 79.637 (4)°γ = 84.108 (4)°*V* = 753.50 (7) Å^3^*Z* = 2Mo *K*α radiationμ = 0.09 mm^−1^*T* = 295 K0.22 × 0.12 × 0.06 mm ### Data collection {#sec2.1.2} Bruker APEXII diffractometer10215 measured reflections3084 independent reflections1538 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.080 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.055*wR*(*F* ^2^) = 0.144*S* = 0.953084 reflections195 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.21 e Å^−3^Δρ~min~ = −0.17 e Å^−3^ {#d5e431} Data collection: *APEX2* (Bruker, 2005[@bb2]); cell refinement: *SAINT* (Bruker, 2005[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003503/zs2090sup1.cif](http://dx.doi.org/10.1107/S1600536811003503/zs2090sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003503/zs2090Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003503/zs2090Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?zs2090&file=zs2090sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?zs2090sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?zs2090&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [ZS2090](http://scripts.iucr.org/cgi-bin/sendsup?zs2090)). We thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study. Comment ======= Tetraalkylammonium halides are used as phase-transfer catalyst in the synthesis of alkyl-substituted benzimidazolones. A previous study reported the 1-isopropenyl derivative; the amino --NH unit forms a hydrogen bond to the inversion-related molecule to generate a hydrogen-bonded dimer (Saber *et al.*, 2010). The present compound (Scheme I) features a long *n*-octyl chain that adopts an extended zigzag conformation (Fig. 1). The benzimidazolone part of the C~15~H~21~N~3~O~3~ molecule is planar (r.m.s. deviation 0.007 Å) and its mean plane is aligned at 10.4 (3) ° with respect to the mean plane of the nitro substituent. Two molecules are disposed about a center of inversion to generate a hydrogen-bonded cyclic dimer, whose hydrogen-bonding motif is described by the *R*~2~^2^(8) graph set (Etter, 1990). Experimental {#experimental} ============ To 5-nitro-1*H*-benzoimidazol-2(3*H*)-one (0.2 g, 1.1 mmol), potassium carbonate (0.30 g, 2.2 mmol) and tetra-*n*-butylammonium bromide (0.07 g, 0.2 mmol) in DMF (15 ml) was added 1-bromo-*n*-octane (0.38 ml, 2.2 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. The compound was recrystallized from diethyl ether to give colorless crystals. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions (C---H 0.93--0.97 Å) and were included in the refinement in the riding model approximation, with *U*~iso~(H) set to 1.2--1.5*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of two molecules of C15H21N3O3 disposed about a center of inversion: drawn at the 50% probability level. ::: ![](e-67-0o558-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e148 .table-wrap} ----------------------- -------------------------------------- C~15~H~21~N~3~O~3~ *Z* = 2 *M~r~* = 291.35 *F*(000) = 312 Triclinic, *P*1 *D*~x~ = 1.284 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 4.9997 (3) Å Cell parameters from 926 reflections *b* = 11.4942 (6) Å θ = 2.1--26.5° *c* = 13.8739 (7) Å µ = 0.09 mm^−1^ α = 74.214 (3)° *T* = 295 K β = 79.637 (4)° Block, colorless γ = 84.108 (4)° 0.22 × 0.12 × 0.06 mm *V* = 753.50 (7) Å^3^ ----------------------- -------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e284 .table-wrap} ------------------------------------------ -------------------------------------- Bruker APEXII diffractometer 1538 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.080 graphite θ~max~ = 26.5°, θ~min~ = 2.1° φ and ω scans *h* = −5→6 10215 measured reflections *k* = −14→14 3084 independent reflections *l* = −17→17 ------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e382 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.055 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.144 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0609*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 0.95 (Δ/σ)~max~ = 0.001 3084 reflections Δρ~max~ = 0.21 e Å^−3^ 195 parameters Δρ~min~ = −0.17 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.016 (4) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e562 .table-wrap} ------ ------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.6268 (4) 0.47630 (17) 0.37325 (14) 0.0426 (5) O2 −0.5372 (4) 0.15689 (19) 0.72705 (15) 0.0534 (6) O3 −0.5678 (4) 0.02018 (19) 0.64945 (15) 0.0534 (6) N1 0.3626 (4) 0.32787 (19) 0.35991 (16) 0.0325 (6) N2 0.2757 (5) 0.3907 (2) 0.50001 (18) 0.0351 (6) N3 −0.4666 (5) 0.1112 (2) 0.65519 (18) 0.0407 (6) C1 0.1487 (5) 0.2628 (2) 0.42194 (19) 0.0299 (6) C2 0.0021 (5) 0.1746 (2) 0.4085 (2) 0.0341 (7) H2 0.0387 0.1491 0.3491 0.041\* C3 −0.2003 (5) 0.1257 (2) 0.48628 (19) 0.0336 (7) H3 −0.3034 0.0660 0.4800 0.040\* C4 −0.2502 (5) 0.1658 (2) 0.57430 (19) 0.0324 (6) C5 −0.1062 (5) 0.2549 (2) 0.58994 (19) 0.0339 (7) H5 −0.1433 0.2802 0.6494 0.041\* C6 0.0937 (5) 0.3025 (2) 0.51182 (19) 0.0316 (7) C7 0.4414 (6) 0.4067 (3) 0.4080 (2) 0.0364 (7) C8 0.4867 (6) 0.3212 (3) 0.25805 (19) 0.0399 (7) H8A 0.5128 0.2370 0.2563 0.048\* H8B 0.6644 0.3549 0.2417 0.048\* C9 0.3124 (6) 0.3898 (2) 0.17815 (19) 0.0381 (7) H9A 0.4130 0.3908 0.1113 0.046\* H9B 0.1488 0.3469 0.1872 0.046\* C10 0.2313 (6) 0.5199 (2) 0.1835 (2) 0.0407 (7) H10A 0.1183 0.5181 0.2484 0.049\* H10B 0.3947 0.5602 0.1806 0.049\* C11 0.0788 (6) 0.5937 (3) 0.0999 (2) 0.0429 (8) H11A −0.0721 0.5490 0.0964 0.051\* H11B 0.1997 0.6062 0.0354 0.051\* C12 −0.0298 (6) 0.7161 (3) 0.1179 (2) 0.0491 (8) H12A 0.1215 0.7581 0.1248 0.059\* H12B −0.1543 0.7024 0.1816 0.059\* C13 −0.1770 (6) 0.7985 (3) 0.0349 (2) 0.0507 (9) H13A −0.3121 0.7528 0.0213 0.061\* H13B −0.2729 0.8647 0.0601 0.061\* C14 0.0045 (6) 0.8505 (3) −0.0629 (2) 0.0509 (8) H14A 0.0916 0.7847 −0.0908 0.061\* H14B 0.1463 0.8924 −0.0492 0.061\* C15 −0.1477 (7) 0.9384 (3) −0.1419 (2) 0.0608 (10) H15A −0.0220 0.9683 −0.2027 0.091\* H15B −0.2301 1.0050 −0.1156 0.091\* H15C −0.2864 0.8972 −0.1568 0.091\* H1 0.296 (6) 0.428 (3) 0.549 (2) 0.059 (10)\* ------ ------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1155 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0398 (12) 0.0451 (12) 0.0468 (12) −0.0145 (11) −0.0018 (10) −0.0170 (10) O2 0.0546 (14) 0.0572 (14) 0.0491 (13) −0.0085 (12) 0.0087 (11) −0.0240 (11) O3 0.0546 (14) 0.0502 (14) 0.0571 (14) −0.0244 (12) 0.0059 (11) −0.0184 (11) N1 0.0301 (13) 0.0333 (13) 0.0366 (13) −0.0044 (11) −0.0056 (11) −0.0123 (10) N2 0.0323 (13) 0.0398 (14) 0.0369 (14) −0.0067 (11) −0.0038 (11) −0.0153 (11) N3 0.0350 (14) 0.0398 (15) 0.0446 (15) −0.0036 (12) −0.0038 (12) −0.0074 (12) C1 0.0253 (15) 0.0291 (15) 0.0350 (15) −0.0002 (13) −0.0035 (12) −0.0089 (12) C2 0.0343 (16) 0.0342 (16) 0.0353 (15) 0.0021 (13) −0.0053 (13) −0.0129 (12) C3 0.0337 (16) 0.0302 (15) 0.0402 (16) −0.0038 (13) −0.0076 (13) −0.0127 (13) C4 0.0276 (15) 0.0311 (15) 0.0357 (15) −0.0002 (13) −0.0033 (12) −0.0058 (12) C5 0.0327 (16) 0.0371 (16) 0.0327 (15) 0.0001 (14) −0.0044 (13) −0.0119 (13) C6 0.0306 (15) 0.0303 (15) 0.0371 (16) 0.0002 (13) −0.0102 (13) −0.0115 (12) C7 0.0348 (17) 0.0355 (16) 0.0426 (17) −0.0001 (14) −0.0136 (14) −0.0123 (14) C8 0.0335 (16) 0.0457 (18) 0.0409 (17) −0.0014 (14) −0.0004 (13) −0.0159 (14) C9 0.0344 (16) 0.0467 (18) 0.0353 (16) −0.0033 (14) 0.0021 (13) −0.0186 (13) C10 0.0399 (17) 0.0428 (17) 0.0394 (16) −0.0041 (14) −0.0029 (14) −0.0121 (13) C11 0.0412 (17) 0.0477 (18) 0.0393 (16) −0.0004 (15) −0.0021 (14) −0.0142 (14) C12 0.055 (2) 0.0479 (19) 0.0447 (18) 0.0084 (16) −0.0101 (15) −0.0150 (15) C13 0.051 (2) 0.051 (2) 0.0470 (18) 0.0069 (16) −0.0025 (16) −0.0134 (15) C14 0.0452 (19) 0.054 (2) 0.0514 (19) −0.0034 (16) −0.0071 (16) −0.0098 (16) C15 0.063 (2) 0.061 (2) 0.053 (2) −0.0012 (19) −0.0071 (18) −0.0094 (17) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1625 .table-wrap} ------------------- ------------ ----------------------- ------------ O1---C7 1.230 (3) C9---C10 1.526 (4) O2---N3 1.231 (3) C9---H9A 0.9700 O3---N3 1.235 (3) C9---H9B 0.9700 N1---C7 1.385 (3) C10---C11 1.515 (4) N1---C1 1.388 (3) C10---H10A 0.9700 N1---C8 1.457 (3) C10---H10B 0.9700 N2---C7 1.368 (3) C11---C12 1.524 (4) N2---C6 1.389 (3) C11---H11A 0.9700 N2---H1 0.93 (3) C11---H11B 0.9700 N3---C4 1.464 (3) C12---C13 1.527 (4) C1---C2 1.380 (4) C12---H12A 0.9700 C1---C6 1.414 (3) C12---H12B 0.9700 C2---C3 1.378 (4) C13---C14 1.500 (4) C2---H2 0.9300 C13---H13A 0.9700 C3---C4 1.392 (4) C13---H13B 0.9700 C3---H3 0.9300 C14---C15 1.529 (4) C4---C5 1.394 (4) C14---H14A 0.9700 C5---C6 1.369 (4) C14---H14B 0.9700 C5---H5 0.9300 C15---H15A 0.9600 C8---C9 1.530 (3) C15---H15B 0.9600 C8---H8A 0.9700 C15---H15C 0.9600 C8---H8B 0.9700 C7---N1---C1 109.6 (2) C10---C9---H9B 108.9 C7---N1---C8 123.1 (2) C8---C9---H9B 108.9 C1---N1---C8 127.3 (2) H9A---C9---H9B 107.8 C7---N2---C6 110.3 (2) C11---C10---C9 114.5 (2) C7---N2---H1 123.8 (19) C11---C10---H10A 108.6 C6---N2---H1 125.6 (19) C9---C10---H10A 108.6 O2---N3---O3 122.7 (2) C11---C10---H10B 108.6 O2---N3---C4 118.5 (3) C9---C10---H10B 108.6 O3---N3---C4 118.8 (2) H10A---C10---H10B 107.6 C2---C1---N1 131.6 (2) C10---C11---C12 111.7 (2) C2---C1---C6 121.5 (2) C10---C11---H11A 109.3 N1---C1---C6 106.8 (2) C12---C11---H11A 109.3 C3---C2---C1 117.6 (3) C10---C11---H11B 109.3 C3---C2---H2 121.2 C12---C11---H11B 109.3 C1---C2---H2 121.2 H11A---C11---H11B 107.9 C2---C3---C4 119.8 (3) C11---C12---C13 115.1 (2) C2---C3---H3 120.1 C11---C12---H12A 108.5 C4---C3---H3 120.1 C13---C12---H12A 108.5 C3---C4---C5 123.8 (3) C11---C12---H12B 108.5 C3---C4---N3 118.1 (3) C13---C12---H12B 108.5 C5---C4---N3 118.0 (2) H12A---C12---H12B 107.5 C6---C5---C4 115.4 (2) C14---C13---C12 114.8 (2) C6---C5---H5 122.3 C14---C13---H13A 108.6 C4---C5---H5 122.3 C12---C13---H13A 108.6 C5---C6---N2 131.8 (3) C14---C13---H13B 108.6 C5---C6---C1 121.7 (3) C12---C13---H13B 108.6 N2---C6---C1 106.5 (2) H13A---C13---H13B 107.6 O1---C7---N2 127.7 (3) C13---C14---C15 113.2 (2) O1---C7---N1 125.5 (3) C13---C14---H14A 108.9 N2---C7---N1 106.8 (3) C15---C14---H14A 108.9 N1---C8---C9 112.1 (2) C13---C14---H14B 108.9 N1---C8---H8A 109.2 C15---C14---H14B 108.9 C9---C8---H8A 109.2 H14A---C14---H14B 107.8 N1---C8---H8B 109.2 C14---C15---H15A 109.5 C9---C8---H8B 109.2 C14---C15---H15B 109.5 H8A---C8---H8B 107.9 H15A---C15---H15B 109.5 C10---C9---C8 113.2 (2) C14---C15---H15C 109.5 C10---C9---H9A 108.9 H15A---C15---H15C 109.5 C8---C9---H9A 108.9 H15B---C15---H15C 109.5 C7---N1---C1---C2 −179.8 (3) C2---C1---C6---C5 0.4 (4) C8---N1---C1---C2 2.2 (4) N1---C1---C6---C5 −179.3 (2) C7---N1---C1---C6 −0.2 (3) C2---C1---C6---N2 −179.9 (2) C8---N1---C1---C6 −178.2 (2) N1---C1---C6---N2 0.5 (3) N1---C1---C2---C3 179.3 (2) C6---N2---C7---O1 −179.2 (3) C6---C1---C2---C3 −0.3 (3) C6---N2---C7---N1 0.4 (3) C1---C2---C3---C4 0.0 (4) C1---N1---C7---O1 179.5 (2) C2---C3---C4---C5 0.1 (4) C8---N1---C7---O1 −2.4 (4) C2---C3---C4---N3 −179.8 (2) C1---N1---C7---N2 −0.1 (3) O2---N3---C4---C3 −170.3 (2) C8---N1---C7---N2 177.9 (2) O3---N3---C4---C3 10.9 (3) C7---N1---C8---C9 −100.3 (3) O2---N3---C4---C5 9.7 (3) C1---N1---C8---C9 77.4 (3) O3---N3---C4---C5 −169.1 (2) N1---C8---C9---C10 52.0 (3) C3---C4---C5---C6 0.0 (4) C8---C9---C10---C11 175.1 (2) N3---C4---C5---C6 179.9 (2) C9---C10---C11---C12 172.1 (3) C4---C5---C6---N2 −179.9 (2) C10---C11---C12---C13 177.7 (3) C4---C5---C6---C1 −0.2 (3) C11---C12---C13---C14 −71.2 (4) C7---N2---C6---C5 179.2 (3) C12---C13---C14---C15 −176.5 (3) C7---N2---C6---C1 −0.6 (3) ------------------- ------------ ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2411 .table-wrap} ----------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H1···O1^i^ 0.93 (3) 1.84 (3) 2.755 (3) 169 (3) ----------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- ---------- ---------- ----------- ------------- N2---H1⋯O1^i^ 0.93 (3) 1.84 (3) 2.755 (3) 169 (3) Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:18.390906
2011-2-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052093/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Feb 5; 67(Pt 3):o558", "authors": [ { "first": "Younes", "last": "Ouzidan" }, { "first": "Y.", "last": "Kandri Rodi" }, { "first": "Natalie", "last": "Saffon" }, { "first": "El Mokhtar", "last": "Essassi" }, { "first": "Seik Weng", "last": "Ng" } ] }