text
stringlengths 938
1.05M
|
---|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized AND with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_latch_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN & ~I;
end else begin : USE_FPGA
wire I_n;
assign I_n = ~I;
AND2B1L and2b1l_inst
(
.O(O),
.DI(CIN),
.SRI(I_n)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized AND with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_latch_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN & ~I;
end else begin : USE_FPGA
wire I_n;
assign I_n = ~I;
AND2B1L and2b1l_inst
(
.O(O),
.DI(CIN),
.SRI(I_n)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized AND with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_latch_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN & ~I;
end else begin : USE_FPGA
wire I_n;
assign I_n = ~I;
AND2B1L and2b1l_inst
(
.O(O),
.DI(CIN),
.SRI(I_n)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized AND with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_latch_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN & ~I;
end else begin : USE_FPGA
wire I_n;
assign I_n = ~I;
AND2B1L and2b1l_inst
(
.O(O),
.DI(CIN),
.SRI(I_n)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized AND with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_latch_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN & ~I;
end else begin : USE_FPGA
wire I_n;
assign I_n = ~I;
AND2B1L and2b1l_inst
(
.O(O),
.DI(CIN),
.SRI(I_n)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized Mux from 2:1 upto 16:1.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_mux #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_SEL_WIDTH = 4,
// Data width for comparator.
parameter integer C_DATA_WIDTH = 2
// Data width for comparator.
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL
assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH];
end else begin : USE_FPGA
wire [C_DATA_WIDTH-1:0] C;
wire [C_DATA_WIDTH-1:0] D;
// Lower half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_c_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]),
.O (C)
);
// Upper half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_d_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]),
.O (D)
);
// Generate instantiated generic_baseblocks_v2_1_mux components as required.
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM
if ( C_SEL_WIDTH == 4 ) begin : USE_F8
MUXF8 muxf8_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7
MUXF7 muxf7_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end // C_SEL_WIDTH
end // end for bit_cnt
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized Mux from 2:1 upto 16:1.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_mux #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_SEL_WIDTH = 4,
// Data width for comparator.
parameter integer C_DATA_WIDTH = 2
// Data width for comparator.
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL
assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH];
end else begin : USE_FPGA
wire [C_DATA_WIDTH-1:0] C;
wire [C_DATA_WIDTH-1:0] D;
// Lower half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_c_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]),
.O (C)
);
// Upper half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_d_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]),
.O (D)
);
// Generate instantiated generic_baseblocks_v2_1_mux components as required.
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM
if ( C_SEL_WIDTH == 4 ) begin : USE_F8
MUXF8 muxf8_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7
MUXF7 muxf7_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end // C_SEL_WIDTH
end // end for bit_cnt
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: nto1_mux.v
//
// Description: N:1 MUX based on either binary-encoded or one-hot select input
// One-hot mode does not protect against multiple active SEL_ONEHOT inputs.
// Note: All port signals changed to all-upper-case (w.r.t. prior version).
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: nto1_mux.v
//
// Description: N:1 MUX based on either binary-encoded or one-hot select input
// One-hot mode does not protect against multiple active SEL_ONEHOT inputs.
// Note: All port signals changed to all-upper-case (w.r.t. prior version).
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: nto1_mux.v
//
// Description: N:1 MUX based on either binary-encoded or one-hot select input
// One-hot mode does not protect against multiple active SEL_ONEHOT inputs.
// Note: All port signals changed to all-upper-case (w.r.t. prior version).
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
`default_nettype wire
|
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// File name: nto1_mux.v
//
// Description: N:1 MUX based on either binary-encoded or one-hot select input
// One-hot mode does not protect against multiple active SEL_ONEHOT inputs.
// Note: All port signals changed to all-upper-case (w.r.t. prior version).
//
//-----------------------------------------------------------------------------
`timescale 1ps/1ps
`default_nettype none
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
`default_nettype wire
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 2;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 2;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 2;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized AND with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = CIN & S;
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (1'b0),
.S (S)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized AND with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = CIN & S;
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (1'b0),
.S (S)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized AND with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = CIN & S;
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (1'b0),
.S (S)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized OR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = CIN | S;
end else begin : USE_FPGA
wire S_n;
assign S_n = ~S;
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (1'b1),
.S (S_n)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized OR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = CIN | S;
end else begin : USE_FPGA
wire S_n;
assign S_n = ~S;
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (1'b1),
.S (S_n)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized OR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = CIN | S;
end else begin : USE_FPGA
wire S_n;
assign S_n = ~S;
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (1'b1),
.S (S_n)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized OR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = CIN | S;
end else begin : USE_FPGA
wire S_n;
assign S_n = ~S;
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (1'b1),
.S (S_n)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized OR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry_latch_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN | I;
end else begin : USE_FPGA
OR2L or2l_inst1
(
.O(O),
.DI(CIN),
.SRI(I)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_sel_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) |
( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_sel_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) |
( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_sel_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) |
( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_sel_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) |
( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved.
// --
// -- This file contains confidential and proprietary information
// -- of Xilinx, Inc. and is protected under U.S. and
// -- international copyright and other intellectual property
// -- laws.
// --
// -- DISCLAIMER
// -- This disclaimer is not a license and does not grant any
// -- rights to the materials distributed herewith. Except as
// -- otherwise provided in a valid license issued to you by
// -- Xilinx, and to the maximum extent permitted by applicable
// -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
// -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
// -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
// -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
// -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
// -- (2) Xilinx shall not be liable (whether in contract or tort,
// -- including negligence, or under any other theory of
// -- liability) for any loss or damage of any kind or nature
// -- related to, arising under or in connection with these
// -- materials, including for any direct, or any indirect,
// -- special, incidental, or consequential loss or damage
// -- (including loss of data, profits, goodwill, or any type of
// -- loss or damage suffered as a result of any action brought
// -- by a third party) even if such damage or loss was
// -- reasonably foreseeable or Xilinx had been advised of the
// -- possibility of the same.
// --
// -- CRITICAL APPLICATIONS
// -- Xilinx products are not designed or intended to be fail-
// -- safe, or for use in any application requiring fail-safe
// -- performance, such as life-support or safety devices or
// -- systems, Class III medical devices, nuclear facilities,
// -- applications related to the deployment of airbags, or any
// -- other applications that could lead to death, personal
// -- injury, or severe property or environmental damage
// -- (individually and collectively, "Critical
// -- Applications"). Customer assumes the sole risk and
// -- liability of any use of Xilinx products in Critical
// -- Applications, subject only to applicable laws and
// -- regulations governing limitations on product liability.
// --
// -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
// -- PART OF THIS FILE AT ALL TIMES.
//-----------------------------------------------------------------------------
//
// Description:
// Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic.
//
// Verilog-standard: Verilog 2001
//--------------------------------------------------------------------------
//
// Structure:
//
//
//--------------------------------------------------------------------------
`timescale 1ps/1ps
(* DowngradeIPIdentifiedWarnings="yes" *)
module generic_baseblocks_v2_1_comparator_sel_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) |
( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// pipeline_registers.v
// Created: 4.4.2012
// Modified: 4.4.2012
//
// Implements a series of pipeline registers specified by the input
// parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the
// size of the signal passed through each of the pipeline
// registers. NUMBER_OF_STAGES is the number of pipeline registers
// generated. This accepts values of 0 (yes, it just passes data from
// input to output...) up to however many stages specified.
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module pipeline_registers
(
input clk,
input reset_n,
input [BIT_WIDTH-1:0] pipe_in,
output reg [BIT_WIDTH-1:0] pipe_out
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
BIT_WIDTH = 10,
NUMBER_OF_STAGES = 5;
// Main generate function for conditional hardware instantiation
generate
genvar i;
// Pass-through case for the odd event that no pipeline stages are
// specified.
if (NUMBER_OF_STAGES == 0) begin
always @ *
pipe_out = pipe_in;
end
// Single flop case for a single stage pipeline
else if (NUMBER_OF_STAGES == 1) begin
always @ (posedge clk or negedge reset_n)
pipe_out <= (!reset_n) ? 0 : pipe_in;
end
// Case for 2 or more pipeline stages
else begin
// Create the necessary regs
reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen;
// Create logic for the initial and final pipeline registers
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
pipe_gen[BIT_WIDTH-1:0] <= 0;
pipe_out <= 0;
end
else begin
pipe_gen[BIT_WIDTH-1:0] <= pipe_in;
pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)];
end
end
// Create the intermediate pipeline registers if there are 3 or
// more pipeline stages
for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline
always @ (posedge clk or negedge reset_n)
pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)];
end
end
endgenerate
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// div_pipelined.v
// Created: 4.3.2012
// Modified: 4.5.2012
//
// Testbench for div_pipelined.v
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_div_pipelined();
reg clk, start, reset_n;
reg [7:0] dividend, divisor;
wire data_valid, div_by_zero;
wire [7:0] quotient, quotient_correct;
parameter
BITS = 8;
div_pipelined
#(
.BITS(BITS)
)
div_pipelined
(
.clk(clk),
.reset_n(reset_n),
.dividend(dividend),
.divisor(divisor),
.quotient(quotient),
.div_by_zero(div_by_zero),
// .quotient_correct(quotient_correct),
.start(start),
.data_valid(data_valid)
);
initial begin
#10 reset_n = 0;
#50 reset_n = 1;
#1
clk = 0;
dividend = -1;
divisor = 127;
#1000 $finish;
end
// always
// #20 dividend = dividend + 1;
always begin
#10 divisor = divisor - 1; start = 1;
#10 start = 0;
end
always
#5 clk = ~clk;
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 10/10/2009
// Modified: 3/20/2012
//
// Counter based debounce circuit originally written for EC551 (back
// in the day) and then modified (i.e. chagned entirely) into 3 always
// block format. This debouncer generates a signal that goes high for
// 1 clock cycle after the clock sees an asserted value on the button
// line. This action is then disabled until the counter hits a
// specified count value that is determined by the clock frequency and
// desired debounce frequency. An alternative implementation would not
// use a counter, but would use the shift register approach, looking
// for repeated matches (say 5) on the button line.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 10/10/2009
// Modified: 3/20/2012
//
// Counter based debounce circuit originally written for EC551 (back
// in the day) and then modified (i.e. chagned entirely) into 3 always
// block format. This debouncer generates a signal that goes high for
// 1 clock cycle after the clock sees an asserted value on the button
// line. This action is then disabled until the counter hits a
// specified count value that is determined by the clock frequency and
// desired debounce frequency. An alternative implementation would not
// use a counter, but would use the shift register approach, looking
// for repeated matches (say 5) on the button line.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 10/10/2009
// Modified: 3/20/2012
//
// Counter based debounce circuit originally written for EC551 (back
// in the day) and then modified (i.e. chagned entirely) into 3 always
// block format. This debouncer generates a signal that goes high for
// 1 clock cycle after the clock sees an asserted value on the button
// line. This action is then disabled until the counter hits a
// specified count value that is determined by the clock frequency and
// desired debounce frequency. An alternative implementation would not
// use a counter, but would use the shift register approach, looking
// for repeated matches (say 5) on the button line.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 10/10/2009
// Modified: 3/20/2012
//
// Counter based debounce circuit originally written for EC551 (back
// in the day) and then modified (i.e. chagned entirely) into 3 always
// block format. This debouncer generates a signal that goes high for
// 1 clock cycle after the clock sees an asserted value on the button
// line. This action is then disabled until the counter hits a
// specified count value that is determined by the clock frequency and
// desired debounce frequency. An alternative implementation would not
// use a counter, but would use the shift register approach, looking
// for repeated matches (say 5) on the button line.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 10/10/2009
// Modified: 3/20/2012
//
// Counter based debounce circuit originally written for EC551 (back
// in the day) and then modified (i.e. chagned entirely) into 3 always
// block format. This debouncer generates a signal that goes high for
// 1 clock cycle after the clock sees an asserted value on the button
// line. This action is then disabled until the counter hits a
// specified count value that is determined by the clock frequency and
// desired debounce frequency. An alternative implementation would not
// use a counter, but would use the shift register approach, looking
// for repeated matches (say 5) on the button line.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 10/10/2009
// Modified: 3/20/2012
//
// Counter based debounce circuit originally written for EC551 (back
// in the day) and then modified (i.e. chagned entirely) into 3 always
// block format. This debouncer generates a signal that goes high for
// 1 clock cycle after the clock sees an asserted value on the button
// line. This action is then disabled until the counter hits a
// specified count value that is determined by the clock frequency and
// desired debounce frequency. An alternative implementation would not
// use a counter, but would use the shift register approach, looking
// for repeated matches (say 5) on the button line.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 10/10/2009
// Modified: 3/20/2012
//
// Counter based debounce circuit originally written for EC551 (back
// in the day) and then modified (i.e. chagned entirely) into 3 always
// block format. This debouncer generates a signal that goes high for
// 1 clock cycle after the clock sees an asserted value on the button
// line. This action is then disabled until the counter hits a
// specified count value that is determined by the clock frequency and
// desired debounce frequency. An alternative implementation would not
// use a counter, but would use the shift register approach, looking
// for repeated matches (say 5) on the button line.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module button_debounce
(
input clk, // clock
input reset_n, // asynchronous reset
input button, // bouncy button
output reg debounce // debounced 1-cycle signal
);
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
// These parameters are specified such that you can choose any power
// of 2 frequency for a debouncer between 1 Hz and
// CLK_FREQUENCY. Note, that this will throw errors if you choose a
// non power of 2 frequency (i.e. count_value evaluates to some
// number / 3 which isn't interpreted as a logical right shift). I'm
// assuming this will not work for DEBOUNCE_HZ values less than 1,
// however, I'm uncertain of the value of a debouncer for fractional
// hertz button presses.
localparam
COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ,
WAIT = 0,
FIRE = 1,
COUNT = 2;
reg [1:0] state, next_state;
reg [25:0] count;
always @ (posedge clk or negedge reset_n)
state <= (!reset_n) ? WAIT : next_state;
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
debounce <= 0;
count <= 0;
end
else begin
debounce <= 0;
count <= 0;
case (state)
WAIT: begin
end
FIRE: begin
debounce <= 1;
end
COUNT: begin
count <= count + 1;
end
endcase
end
end
always @ * begin
case (state)
WAIT: next_state = (button) ? FIRE : state;
FIRE: next_state = COUNT;
COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state;
default: next_state = WAIT;
endcase
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Implements a fixed-point parameterized pipelined square root
// operation on an unsigned input of any bit length. The number of
// stages in the pipeline is equal to the number of output bits in the
// computation. This pipelien sustains a throughput of one computation
// per clock cycle.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module sqrt_pipelined
(
input clk, // clock
input reset_n, // asynchronous reset
input start, // optional start signal
input [INPUT_BITS-1:0] radicand, // unsigned radicand
output reg data_valid, // optional data valid signal
output reg [OUTPUT_BITS-1:0] root // unsigned root
);
// WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP
// LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE
// OVERWRITTEN!
parameter
INPUT_BITS = 16; // number of input bits (any integer)
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits
reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation
reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values
reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values
wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values
// This is the first stage of the pipeline.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
start_gen[0] <= 0;
radicand_gen[INPUT_BITS-1:0] <= 0;
root_gen[INPUT_BITS-1:0] <= 0;
end
else begin
start_gen[0] <= start;
if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin
radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0];
root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0];
end
else begin
radicand_gen[INPUT_BITS-1:0] <= radicand;
root_gen[INPUT_BITS-1:0] <= 0;
end
end
end
// Main generate loop to create the masks and pipeline stages.
generate
genvar i;
// Generate all the mask values. These are built up in the
// following fashion:
// LAST MASK: 0x00...001
// 0x00...004 Increasing # OUTPUT_BITS
// 0x00...010 |
// 0x00...040 v
// ...
// FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS
//
// Note that the first mask used can either be of the 0x1... or
// 0x4... variety. This is purely determined by the number of
// computation stages. However, the last mask used will always be
// 0x1 and the second to last mask used will always be 0x4.
for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4
if (i % 2) // i is odd, this is a 4 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2);
else // i is even, this is a 1 mask
assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2);
end
// Generate all the pipeline stages to compute the square root of
// the input radicand stream. The general approach is to compare
// the current values of the root plus the mask to the
// radicand. If root/mask sum is greater than the radicand,
// subtract the mask and the root from the radicand and store the
// radicand for the next stage. Additionally, the root is
// increased by the value of the mask and stored for the next
// stage. If this test fails, then the radicand and the root
// retain their value through to the next stage. The one weird
// thing is that the mask indices appear to be incremented by one
// additional position. This is not the case, however, because the
// first mask is used in the first stage (always block after the
// generate statement).
for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline
always @ (posedge clk or negedge reset_n) begin : pipeline_stage
if (!reset_n) begin
start_gen[i+1] <= 0;
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0;
end
else begin
start_gen[i+1] <= start_gen[i];
if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] -
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] -
root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) +
mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)];
end
else begin
radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i];
root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1;
end
end
end
end
endgenerate
// This is the final stage which just implements a rounding
// operation. This stage could be tacked on as a combinational logic
// stage, but who cares about latency, anyway? This is NOT a true
// rounding stage. In order to add convergent rounding, you need to
// increase the input bit width by 2 (increase the number of
// pipeline stages by 1) and implement rounding in the module that
// instantiates this one.
always @ (posedge clk or negedge reset_n) begin
if (!reset_n) begin
data_valid <= 0;
root <= 0;
end
else begin
data_valid <= start_gen[OUTPUT_BITS-1];
if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS])
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1;
else
root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS];
end
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 4.5.2012
// Modified: 4.5.2012
//
// Testbench for button_debounce.v.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 4.5.2012
// Modified: 4.5.2012
//
// Testbench for button_debounce.v.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 4.5.2012
// Modified: 4.5.2012
//
// Testbench for button_debounce.v.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 4.5.2012
// Modified: 4.5.2012
//
// Testbench for button_debounce.v.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 4.5.2012
// Modified: 4.5.2012
//
// Testbench for button_debounce.v.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 4.5.2012
// Modified: 4.5.2012
//
// Testbench for button_debounce.v.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// button_debounce.v
// Created: 4.5.2012
// Modified: 4.5.2012
//
// Testbench for button_debounce.v.
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_button_debounce();
parameter
CLK_FREQUENCY = 66000000,
DEBOUNCE_HZ = 2;
reg clk, reset_n, button;
wire debounce;
button_debounce
#(
.CLK_FREQUENCY(CLK_FREQUENCY),
.DEBOUNCE_HZ(DEBOUNCE_HZ)
)
button_debounce
(
.clk(clk),
.reset_n(reset_n),
.button(button),
.debounce(debounce)
);
initial begin
clk = 1'bx; reset_n = 1'bx; button = 1'bx;
#10 reset_n = 1;
#10 reset_n = 0; clk = 0;
#10 reset_n = 1;
#10 button = 0;
end
always
#5 clk = ~clk;
always begin
#100 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
#0.1 button = ~button;
end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// t_sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Testbench for generic sqrt operation
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// t_sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Testbench for generic sqrt operation
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// t_sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Testbench for generic sqrt operation
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// t_sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Testbench for generic sqrt operation
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// t_sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Testbench for generic sqrt operation
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// t_sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Testbench for generic sqrt operation
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// t_sqrt_pipelined.v
// Created: 4.2.2012
// Modified: 4.5.2012
//
// Testbench for generic sqrt operation
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
module t_sqrt_pipelined();
parameter
INPUT_BITS = 4;
localparam
OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2;
reg [INPUT_BITS-1:0] radicand;
reg clk, start, reset_n;
wire [OUTPUT_BITS-1:0] root;
wire data_valid;
// wire [7:0] root_good;
sqrt_pipelined
#(
.INPUT_BITS(INPUT_BITS)
)
sqrt_pipelined
(
.clk(clk),
.reset_n(reset_n),
.start(start),
.radicand(radicand),
.data_valid(data_valid),
.root(root)
);
initial begin
radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;;
#10 reset_n = 0; clk = 0;
#50 reset_n = 1; radicand = 0;
// #40 radicand = 81; start = 1;
// #10 radicand = 16'bx; start = 0;
#10000 $finish;
end
always
#5 clk = ~clk;
always begin
#10 radicand = radicand + 1; start = 1;
#10 start = 0;
end
// always begin
// #80 start = 1;
// #10 start = 0;
// end
endmodule
|
////////////////////////////////////////////////////////////////////////////////
// Original Author: Schuyler Eldridge
// Contact Point: Schuyler Eldridge (schuyler.eldridge@gmail.com)
// sign_extender.v
// Created: 5.16.2012
// Modified: 5.16.2012
//
// Generic sign extension module
//
// Copyright (C) 2012 Schuyler Eldridge, Boston University
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns/1ps
module sign_extender
#(
parameter
INPUT_WIDTH = 8,
OUTPUT_WIDTH = 16
)
(
input [INPUT_WIDTH-1:0] original,
output reg [OUTPUT_WIDTH-1:0] sign_extended_original
);
wire [OUTPUT_WIDTH-INPUT_WIDTH-1:0] sign_extend;
generate
genvar i;
for (i = 0; i < OUTPUT_WIDTH-INPUT_WIDTH; i = i + 1) begin : gen_sign_extend
assign sign_extend[i] = (original[INPUT_WIDTH-1]) ? 1'b1 : 1'b0;
end
endgenerate
always @ * begin
sign_extended_original = {sign_extend,original};
end
endmodule
|