text
stringlengths 5
1.02M
|
---|
# This file include the utils for starting an experiment
# Use ```include("utils.jl")``` in your experiments
import Base: run
using Requires
@require Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" using Plots
include("BanditExpBase.jl")
using ...Algorithms
using ...Arms
using ...Algorithms: make_agents_with_k
# using ..BanditExpBase: run |
module LLVM
using Unicode
using Printf
using Libdl
## source code includes
include("base.jl")
include("version.jl")
const libllvm = Base.libllvm_path()
if libllvm === nothing
error("""Cannot find the LLVM library loaded by Julia.
Please use a version of Julia that has been built with USE_LLVM_SHLIB=1 (like the official binaries).
If you are, please file an issue and attach the output of `Libdl.dllist()`.""")
end
module API
using CEnum
using ..LLVM
using ..LLVM: libllvm
llvm_version = if version() < v"12"
"11"
elseif version().major == 12
"12"
else
"13"
end
libdir = joinpath(@__DIR__, "..", "lib")
if !isdir(libdir)
error("""
The LLVM API bindings for v$llvm_version do not exist.
You might need a newer version of LLVM.jl for this version of Julia.""")
end
import LLVMExtra_jll: libLLVMExtra
include(joinpath(libdir, llvm_version, "libLLVM_h.jl"))
include(joinpath(libdir, "libLLVM_extra.jl"))
include(joinpath(libdir, "libLLVM_julia.jl"))
end # module API
# LLVM API wrappers
include("support.jl")
include("types.jl")
include("passregistry.jl")
include("init.jl")
include("core.jl")
include("linker.jl")
include("irbuilder.jl")
include("analysis.jl")
include("moduleprovider.jl")
include("pass.jl")
include("passmanager.jl")
include("execution.jl")
include("buffer.jl")
include("target.jl")
include("targetmachine.jl")
include("datalayout.jl")
include("ir.jl")
include("bitcode.jl")
include("transform.jl")
include("debuginfo.jl")
include("dibuilder.jl")
include("jitevents.jl")
include("utils.jl")
has_orc_v1() = v"8" <= LLVM.version() < v"12"
if has_orc_v1()
include("orc.jl")
end
has_orc_v2() = v"12" <= LLVM.version()
if has_orc_v2()
include("orcv2.jl")
end
include("interop.jl")
include("deprecated.jl")
## initialization
function __init__()
# sanity checks
@debug "Using LLVM $(version()) at $libllvm"
if libllvm != Base.libllvm_path()
@error "Mismatch between LLVM library used during precompilation ($libllvm) and the current run-time situation ($(Base.libllvm_path())). Please recompile the package."
end
if version() !== runtime_version()
@error "Using a different version of LLVM ($(runtime_version())) than the one shipped with Julia ($(version())); this is unsupported"
end
_install_handlers()
_install_handlers(GlobalContext())
end
end
|
import Markdown
const _unexported_public_api = Any[
## ../docs/src/manual.md
# Experimental
channel_unordered,
append_unordered!,
ZipSource,
GetIndex,
SetIndex,
Inject,
## ../docs/src/interface.md
# Core interface for transducers
Transducer,
AbstractFilter,
R_,
inner,
xform,
start,
next,
complete,
# Helpers for stateful transducers
wrap,
unwrap,
wrapping,
# Interface for reducibles
__foldl__,
getproperty(@__MODULE__, Symbol("@return_if_reduced")),
getproperty(@__MODULE__, Symbol("@next")),
]
const _explicit_internal_list = Any[
# Manually list some internal objects to avoid Documenter.jl's
# "docstring potentially missing" warning:
DefaultInit,
]
is_internal(@nospecialize(t)) =
t ∈ _explicit_internal_list ||
(parentmodule(t) === @__MODULE__) && t ∉ _unexported_public_api
is_transducer_type(t) = t isa Type && t <: Transducer && t !== Transducer
is_transducer_type(::typeof(Zip)) = true
struct TransducerLister
m::Module
end
TransducerLister() = TransducerLister(@__MODULE__)
Transducer(tl::TransducerLister) = opcompose(
Filter() do x
t = getproperty(tl.m, x)
is_transducer_type(t)
end,
Map(x -> Docs.Binding(tl.m, x)),
)
(tl::TransducerLister)() = eduction(Transducer(tl), names(tl.m))
header_code(m::Markdown.MD) =
if !isempty(m.content)
header_code(m.content[1])
end
header_code(c::Markdown.Code) = c
header_code(::Any) = nothing
first_paragraph(m::Markdown.MD) =
if length(m.content) == 1
first_paragraph(m.content[1])
elseif length(m.content) > 1
first_paragraph(m.content[2])
end
first_paragraph(p::Markdown.Paragraph) = p
first_paragraph(::Any) = nothing
hasdoc(m::Module, b::Docs.Binding) = haskey(Docs.meta(m), b)
function Base.show(io::IO, ::MIME"text/markdown", tl::TransducerLister)
println(io, "| **Transducer** | **Summary** |")
println(io, "|:-- |:-- |")
foreach(tl()) do binding
hasdoc(tl.m, binding) || return
d = Docs.doc(binding)
h = header_code(d)
if h === nothing
shown = binding.var
else
shown, = split(h.code, "\n", limit=2)
end
p = first_paragraph(d)
if p === nothing
gist = ""
else
gist, = split(sprint(show, "text/markdown", Markdown.MD(p)),
"\n", limit=2)
end
println(io,
"| [`", shown, "`](@ref ", binding, ")",
" | ", gist,
" |")
end
end
function Markdown.MD(tl::TransducerLister)
io = IOBuffer()
show(io, "text/markdown", tl)
seek(io, 0)
return Markdown.parse(io)
end
Base.show(io::IO, mime::MIME"text/plain", tl::TransducerLister) =
_show(io, mime, tl)
Base.show(io::IO, mime::MIME"text/html", tl::TransducerLister) =
_show(io, mime, tl)
_show(io, mime, tl) = show(io, mime, Markdown.MD(tl))
|
function get_bdt(obj::PreloadedTimeScales)
return jcall(obj, "getBDT", BDTScale, ())
end
function get_glonass(obj::PreloadedTimeScales)
return jcall(obj, "getGLONASS", GLONASSScale, ())
end
function get_gps(obj::PreloadedTimeScales)
return jcall(obj, "getGPS", GPSScale, ())
end
function get_gst(obj::PreloadedTimeScales)
return jcall(obj, "getGST", GalileoScale, ())
end
function get_irnss(obj::PreloadedTimeScales)
return jcall(obj, "getIRNSS", IRNSSScale, ())
end
function get_qzss(obj::PreloadedTimeScales)
return jcall(obj, "getQZSS", QZSSScale, ())
end
function get_tai(obj::PreloadedTimeScales)
return jcall(obj, "getTAI", TAIScale, ())
end
function get_tcb(obj::PreloadedTimeScales)
return jcall(obj, "getTCB", TCBScale, ())
end
function get_tcg(obj::PreloadedTimeScales)
return jcall(obj, "getTCG", TCGScale, ())
end
function get_tdb(obj::PreloadedTimeScales)
return jcall(obj, "getTDB", TDBScale, ())
end
function get_tt(obj::PreloadedTimeScales)
return jcall(obj, "getTT", TTScale, ())
end
function get_utc(obj::PreloadedTimeScales)
return jcall(obj, "getUTC", UTCScale, ())
end
|
using BinaryBuilder, Pkg
julia_version = v"1.6.0"
name = "RDKit"
version = v"2021.09.1pre"
sources = [
GitSource("https://github.com/rdkit/rdkit.git", "d859a23c9e514e3266adeb7119ef337f87e7214b"),
]
script = raw"""
cd ${WORKSPACE}/srcdir/rdkit
mkdir build
cd build
cmake \
-DCMAKE_BUILD_TYPE=Release \
-DRDK_INSTALL_INTREE=OFF \
-DRDK_BUILD_INCHI_SUPPORT=ON \
-DRDK_BUILD_PYTHON_WRAPPERS=OFF \
-DRDK_BUILD_CFFI_LIB=ON \
-DRDK_BUILD_FREETYPE_SUPPORT=ON \
-DRDK_BUILD_CPP_TESTS=OFF \
-RDK_BUILD_SLN_SUPPORT=OFF \
-DCMAKE_INSTALL_PREFIX=${prefix} \
-DCMAKE_TOOLCHAIN_FILE=${CMAKE_TARGET_TOOLCHAIN} \
-DCMAKE_PREFIX_PATH=${prefix} \
..
make -j${nproc}
make install
"""
platforms = [
Platform("x86_64", "linux"),
Platform("i686", "linux"),
Platform("aarch64", "linux"),
Platform("x86_64", "macos"),
# Platform("aarch64", "macos"),
]
platforms = expand_cxxstring_abis(platforms)
products = [
LibraryProduct("librdkitcffi", :librdkitcffi),
]
dependencies = [
Dependency("FreeType2_jll"),
Dependency("boost_jll"),
BuildDependency("Eigen_jll"),
Dependency("Zlib_jll"),
]
build_tarballs(ARGS, name, version, sources, script, platforms, products, dependencies;
preferred_gcc_version=v"5", julia_compat="^$(julia_version.major).$(julia_version.minor)")
|
const KeyMap = (
UP = ["W", "UP"],
DOWN = ["S", "DOWN"],
LEFT = ["A", "LEFT"],
RIGHT = ["D", "RIGHT"],
)
const Settings = (
framerate = 10,
resolution = 20,
colors = (
bg = "#111",
snake = "#eee",
gameover = "red"
)
)
const Dir = (
UP = [ 0, -1],
DOWN = [ 0, 1],
LEFT = [-1, 0],
RIGHT = [ 1, 0]
) |
using Flux
using BSON
using LinearAlgebra
using Statistics
using Random
using Zygote: @adjoint
using Zygote: @nograd
using Zygote
using ProgressBars
using Distributions
using Flux.Losses: ctc_loss
Random.seed!(1)
const TRAINDIR = "train"
const EPOCHS = 100
const BATCH_SIZE = 1
const VAL_SIZE = 500
losses = []
forward = LSTM(39, 100)
backward = LSTM(39, 100)
output = Dense(200, 62)
const NOISE = Normal(0, 0.6)
function m(x)
h0f = forward.(x)
h0b = Flux.flip(backward, x)
h0 = vcat.(h0f, h0b)
o = output.(h0)
return o
end
function loss(x, y)
x = addNoise(x)
Flux.reset!((forward, backward))
yhat = m(x)
yhat = reduce(hcat, yhat)
l = ctc_loss(yhat, y)
addToGlobalLoss(l)
return l
end
@nograd function addNoise(x)
return [xI .+ Float32.(rand(NOISE, 39)) for xI in x]
end
function readData(dataDir)
fnames = readdir(dataDir)
shuffle!(MersenneTwister(4), fnames)
Xs = []
Ys = []
for fname in fnames
BSON.@load joinpath(dataDir, fname) x y
x = [Float32.(x[i,:]) for i in 1:size(x,1)]
push!(Xs, x)
push!(Ys, collapse(argmax.(eachcol(y))))
end
m = mean(reduce(vcat, Xs))
st = std(reduce(vcat, Xs))
for (i, x) in enumerate(Xs)
Xs[i] = [(xI .- m) ./ st for xI in x]
end
return (Xs, Ys)
end
function lev(s, t)
m = length(s)
n = length(t)
d = Array{Int}(zeros(m+1, n+1))
for i=2:(m+1)
@inbounds d[i, 1] = i-1
end
for j=2:(n+1)
@inbounds d[1, j] = j-1
end
for j=2:(n+1)
for i=2:(m+1)
@inbounds if s[i-1] == t[j-1]
substitutionCost = 0
else
substitutionCost = 1
end
@inbounds d[i, j] = min(d[i-1, j] + 1, # Deletion
d[i, j-1] + 1, # Insertion
d[i-1, j-1] + substitutionCost) # Substitution
end
end
@inbounds return d[m+1, n+1]
end
function collapse(seq)
if isempty(seq) return seq end
s = [seq[1]]
for ch in seq[2:end]
if ch != s[end]
push!(s, ch)
end
end
filter!(x -> x != 62, s)
return s
end
# collapses all repetitions into a single item and
# removes blanks; used because data set in its current
# form has one-hot encoded phones for every time step
# instead of just the phones contained in the sequence.
# With a proper re-extraction of the data, this would not
# be necessary.
function alt_collapse(seq)
if isempty(seq) return seq end
s = [seq[1]]
for ch in seq[2:end]
if ch != s[end]
push!(s, ch)
end
end
filter!(!=(62), s)
return s
end
"""
per(x, y)
Compute the phoneme error rate of the model for input `x` and target `y`. The phoneme error rate
is defined as the Levenshtein distance between the labeling produced by running `x` through
the model and the target labeling in `y`, all divided by the length of the target labeling
in `y`
"""
function per(x, y)
Flux.reset!((forward, backward))
yhat = m(x)
yhat = reduce(hcat, yhat)
yhat = mapslices(argmax, yhat, dims=1) |> vec |> alt_collapse
# y = mapslices(argmax, y, dims=1) |> vec |> collapse
return lev(yhat, y) / length(y)
end
function addToGlobalLoss(x)
global losses
push!(losses, x)
end
@adjoint function addToGlobalLoss(x)
addToGlobalLoss(x)
return nothing, () -> nothing
end
function main()
println("Loading files")
Xs, Ys = readData(TRAINDIR)
data = collect(zip(Xs, Ys))
Xs = [d[1] for d in data]
Ys = [d[2] for d in data]
println("Beginning training")
data = zip(Xs, Ys) |> collect
valData = data[1:VAL_SIZE]
data = data[VAL_SIZE+1:end]
opt = Momentum(1e-4)
for i in 1:EPOCHS
global losses
losses = []
println("Beginning epoch $i/$EPOCHS")
Flux.train!(loss, Flux.params((forward, backward, output)), ProgressBar(data), opt)
println("Calculating PER...")
p = mean(map(x -> per(x...), valData))
println("PER: $(p*100)")
println("Mean loss: ", mean(losses))
end
end
main()
|
export blasso, sfwsolver, momsossolver, solve!
mutable struct BLASSO{T, FT, DT}
y::Array{T, 1}
φ::FT
λ::Real
domain::DT
μ::Union{AbstractMeasureLike, Nothing}
objvalue::Union{Real, Nothing}
dualsol::Union{Vector{Real}, Nothing}
mommat::Union{MomentMatrix, Nothing}
end
function blasso(y::Array{T, 1}, φ::Array{PT, 1}, λ::Real,
domain::AbstractSemialgebraicSet) where {T, PT<:AbstractPolynomialLike}
BLASSO(y, φ, λ, domain, nothing, nothing, nothing, nothing)
end
function blasso(y::Array{T, 1}, φ::Function, λ::Real,
domain::Array{BT, 2}) where {T, BT}
BLASSO(y, φ, λ, domain, nothing, nothing, nothing, nothing)
end
struct Solver
name::String
options::Dict
end
function sfwsolver(niter::Integer, gridsize::Integer)
Solver("sfw", Dict("niter" => niter, "gridsize" => gridsize))
end
function momsossolver(ϵ::Real, maxdeg::Union{Int, String}="defaut")
Solver("momsos", Dict("ϵ" => ϵ, "maxdeg" => maxdeg))
end
function solve!(blasso::BLASSO, solver::Solver)
if solver.name == "momsos"
momsos!(blasso, solver.options["ϵ"], solver.options["maxdeg"])
elseif solver.name == "sfw"
sfw!(blasso, solver.options["niter"], solver.options["gridsize"])
else
throw(ArgumentError(solver.name,
"solver name must be either 'momsos' or 'sfw'"))
end
end
|
# Generic.
include("compiler/utils.jl")
include("compiler/loop_detection.jl")
include("compiler/reaching.jl")
include("compiler/address_blanket.jl")
include("compiler/absint/absint.jl")
# Kernel detection and dynamic addressing hints.
include("compiler/hints.jl")
# Trace types system
include("compiler/absint/trace_types.jl")
# Support error checker.
include("compiler/static/support_checker.jl")
# Partial evaluation/specialization
include("compiler/specializer/diffs.jl")
include("compiler/specializer/transforms.jl")
include("compiler/specializer/interface.jl")
# Automatic addressing converts stochastic functions into PPs
include("compiler/automatic_addressing/automatic_addressing_transform.jl")
# ------------ Documentation ------------ #
|
using Test
using OrdinaryDiffEq, Calculus, ForwardDiff, FiniteDiff
function f(du,u,p,t)
du[1] = -p[1]
du[2] = p[2]
end
for x in 0:0.001:5
called = false
if x in [1.0, 2.0, 3.0, 4.0, 5.0]
print("AD Ping $x")
end
function test_f(p)
cb = ContinuousCallback((u,t,i) -> u[1], (integrator)->(called=true;integrator.p[2]=zero(integrator.p[2])))
prob = ODEProblem(f,eltype(p).([1.0,0.0]),eltype(p).((0.0,1.0)),copy(p))
integrator = init(prob,Tsit5(),abstol=1e-14,reltol=1e-14,callback=cb)
step!(integrator)
solve!(integrator).u[end]
end
p = [2.0, x]
called = false
findiff = Calculus.finite_difference_jacobian(test_f,p)
@test called
called = false
fordiff = ForwardDiff.jacobian(test_f,p)
@test called
@test findiff ≈ fordiff
end
function f2(du,u,p,t)
du[1] = -u[2]
du[2] = p[2]
end
for x in 2.1:0.001:5
called = false
if x in [3.0, 4.0, 5.0]
print("AD Ping $x")
end
function test_f2(p)
cb = ContinuousCallback((u,t,i) -> u[1], (integrator)->(called=true;integrator.p[2]=zero(integrator.p[2])))
prob = ODEProblem(f2,eltype(p).([1.0,0.0]),eltype(p).((0.0,1.0)),copy(p))
integrator = init(prob,Tsit5(),abstol=1e-12,reltol=1e-12,callback=cb)
step!(integrator)
solve!(integrator).u[end]
end
p = [2.0, x]
findiff = Calculus.finite_difference_jacobian(test_f2,p)
@test called
called = false
fordiff = ForwardDiff.jacobian(test_f2,p)
@test called
@test findiff ≈ fordiff
end
#=
#x = 2.0 is an interesting case
x = 2.0
function test_f2(p)
cb = ContinuousCallback((u,t,i) -> u[1], (integrator)->(@show(x,integrator.t);called=true;integrator.p[2]=zero(integrator.p[2])))
prob = ODEProblem(f2,eltype(p).([1.0,0.0]),eltype(p).((0.0,1.0)),copy(p))
integrator = init(prob,Tsit5(),abstol=1e-12,reltol=1e-12,callback=cb)
step!(integrator)
solve!(integrator).u[end]
end
p = [2.0, x]
findiff = Calculus.finite_difference_jacobian(test_f2,p)
@test called
called = false
fordiff = ForwardDiff.jacobian(test_f2,p)
@test called
# At that value, it shouldn't be called, but a small perturbation will make it called, so finite difference is wrong!
=#
for x in 1.0:0.001:2.5
if x in [1.5, 2.0, 2.5]
print("AD Ping $x")
end
function lotka_volterra(du,u,p,t)
x, y = u
α, β, δ, γ = p
du[1] = dx = α*x - β*x*y
du[2] = dy = -δ*y + γ*x*y
end
u0 = [1.0,1.0]
tspan = (0.0,10.0)
p = [x,1.0,3.0,1.0]
prob = ODEProblem(lotka_volterra,u0,tspan,p)
sol = solve(prob,Tsit5())
called=false
function test_lotka(p)
cb = ContinuousCallback((u,t,i) -> u[1]-2.5, (integrator)->(called=true;integrator.p[4]=1.5))
prob = ODEProblem(lotka_volterra,eltype(p).([1.0,1.0]),eltype(p).((0.0,10.0)),copy(p))
integrator = init(prob,Tsit5(),abstol=1e-12,reltol=1e-12,callback=cb)
step!(integrator)
solve!(integrator).u[end]
end
findiff = Calculus.finite_difference_jacobian(test_lotka,p)
@test called
called = false
fordiff = ForwardDiff.jacobian(test_lotka,p)
@test called
@test findiff ≈ fordiff
end
# Gradients and Hessians
function myobj(θ)
f(u,p,t) = -θ[1]*u
u0, _ = promote(10.0, θ[1])
prob = ODEProblem(f, u0, (0.0, 1.0))
sol = solve(prob, Tsit5())
diff = sol.u - 10*exp.(-sol.t)
return diff'diff
end
ForwardDiff.gradient(myobj, [1.0])
ForwardDiff.hessian(myobj, [1.0])
function myobj2(θ)
f(du,u,p,t) = (du[1]=-θ[1]*u[1])
u0, _ = promote(10.0, θ[1])
prob = ODEProblem(f, [u0], (0.0, 1.0))
sol = solve(prob, Tsit5())
diff = sol[:,1] .- 10 .*exp.(-sol.t)
return diff'diff
end
ForwardDiff.gradient(myobj2, [1.0])
ForwardDiff.hessian(myobj2, [1.0])
function myobj3(θ)
f(u,p,t) = -θ[1]*u
u0, _ = promote(10.0, θ[1])
tspan_end, _ = promote(1.0, θ[1])
prob = ODEProblem(f, u0, (0.0, tspan_end))
sol = solve(prob, Tsit5())
diff = sol.u - 10*exp.(-sol.t)
return diff'diff
end
ForwardDiff.gradient(myobj3, [1.0])
ForwardDiff.hessian(myobj3, [1.0])
function myobj4(θ)
f(du,u,p,t) = (du[1] = -θ[1]*u[1])
u0, _ = promote(10.0, θ[1])
tspan_end, _ = promote(1.0, θ[1])
prob = ODEProblem(f, [u0], (0.0, tspan_end))
sol = solve(prob, Tsit5())
diff = sol[:,1] .- 10 .* exp.(-sol.t)
return diff'diff
end
ForwardDiff.gradient(myobj4, [1.0])
ForwardDiff.hessian(myobj4, [1.0])
f1s = function (du,u,p,t)
du[1] = p[2] * u[1]
du[2] = p[3] * u[2]
du[3] = p[4] * u[3]
du[4] = p[5] * u[4]
nothing
end
f2s = function (du,u,p,t)
du[1] = p[1]*u[2]
du[2] = p[1]*u[3]
du[3] = p[1]*u[4]
du[4] = p[1]*u[1]
nothing
end
u0 = [3.4, 3.3, 3.2, 3.1]
params = [0.002, -0.005, -0.004, -0.003, -0.002]
tspan = (7.0, 84.0)
times = collect(minimum(tspan):0.5:maximum(tspan))
prob = SplitODEProblem(f1s,f2s, u0, tspan, params)
sol2 = solve(prob, KenCarp4(); dt=0.5, saveat=times)
function difffunc(p)
tmp_prob = remake(prob,p=p)
vec(solve(tmp_prob,KenCarp4(),saveat=times))
end
ForwardDiff.jacobian(difffunc,ones(5))
# https://github.com/SciML/OrdinaryDiffEq.jl/issues/1221
f_a = function (du, u, p, t)
du[1] = -p[1]*u[1] + exp(-t)
end
of_a = p -> begin
u0 = [0.0]
tspan = (0.0, 5.0)
prob = ODEProblem(f_a, u0, tspan, p)
# sol = solve(prob, Tsit5()) # works
# sol = solve(prob, Rodas5(autodiff=false)) # works
sol = solve(prob, Rodas5(autodiff=true),abstol=1e-14,reltol=1e-14) # fails
return sum(t -> abs2(t[1]), sol([1.0, 2.0, 3.0]))
end
@test !iszero(ForwardDiff.gradient(t -> of_a(t), [1.0]))
@test ForwardDiff.gradient(t -> of_a(t), [1.0]) ≈ FiniteDiff.finite_difference_gradient(t -> of_a(t), [1.0]) rtol=1e-5
SOLVERS_FOR_AD = (
(BS3 , 1e-12),
(Tsit5 , 1e-12),
(KenCarp4 , 1e-11),
(KenCarp47 , 1e-11),
(KenCarp5 , 1e-11),
(KenCarp58 , 1e-12),
(TRBDF2 , 1e-07),
(Rodas4 , 1e-12),
(Rodas5 , 1e-12),
(Rosenbrock23, 1e-10),
(Rosenbrock32, 1e-11),
(Vern6 , 1e-11),
(Vern7 , 1e-11),
(RadauIIA3 , 1e-04),
(RadauIIA5 , 1e-12),
)
@testset "$alg can handle ForwardDiff.Dual in u0 with rtol=$rtol when iip=$iip" for
(alg, rtol) in SOLVERS_FOR_AD,
iip in (true, false)
if iip
f = (du, u, p, t) -> du .= -0.5*u
else
f = (u, p, t) -> -0.5*u
end
g = u0 -> begin
tspan = (0.0, 1.0)
prob = ODEProblem(
f,
u0,
tspan
)
solve(prob, alg(), abstol=1e-14, reltol=1e-14)(last(tspan))[1]
end
@test ForwardDiff.gradient(g, [10.0])[1] ≈ exp(-0.5) rtol=rtol
end
@testset "$alg can handle ForwardDiff.Dual in t0 with rtol=$rtol when iip=$iip" for
(alg, rtol) in SOLVERS_FOR_AD,
iip in (true, false)
if iip
f = (du, u, p, t) -> du .= -0.5*u
else
f = (u, p, t) -> -0.5*u
end
_u0 = 10.0
g = t0 -> begin
tspan = (t0, 1.0)
u0 = typeof(t0)[_u0]
prob = ODEProblem(
f,
u0,
tspan
)
solve(prob, alg(), abstol=1e-14, reltol=1e-14)(last(tspan))[1]
end
@test ForwardDiff.derivative(g, 0.0) ≈ _u0/2*exp(-0.5) rtol=rtol
end
|
@userplot ImPlot
@recipe function f(h::ImPlot)
if length(h.args) != 1 || !(typeof(h.args[1]) <: AbstractArray)
error("Image plots require an arugment that is a subtype of AbstractArray. Got: $(typeof(h.args))")
end
data = only(h.args)
if !(typeof(data) <: AstroImage)
data = AstroImage(only(h.args))
end
T = eltype(data)
if ndims(data) != 2
error("Image passed to `implot` must be two-dimensional. Got ndims(img)=$(ndims(data))")
end
wcsn = get(plotattributes, :wcsn, 1)
# Show WCS coordinates if wcsticks is true or unspecified, and has at least one WCS axis present.
showwcsticks = get(plotattributes, :wcsticks, true) && !all(==(""), wcs(data, wcsn).ctype)
showwcstitle = get(plotattributes, :wcstitle, true) && length(refdims(data)) > 0 && !all(==(""), wcs(data, wcsn).ctype)
minx = first(parent(dims(data,1)))
maxx = last(parent(dims(data,1)))
miny = first(parent(dims(data,2)))
maxy = last(parent(dims(data,2)))
extent = (minx-0.5, maxx+0.5, miny-0.5, maxy+0.5)
if haskey(plotattributes, :xlims)
extent = (plotattributes[:xlims]..., extent[3:4]...)
end
if haskey(plotattributes, :ylims)
extent = (extent[1:2]..., plotattributes[:ylims]...)
end
if showwcsticks
wcsg = WCSGrid(data, Float64.(extent), wcsn)
gridspec = wcsgridspec(wcsg)
end
# Use package defaults if not user provided.
clims --> _default_clims[]
stretch --> _default_stretch[]
cmap --> _default_cmap[]
bias = get(plotattributes, :bias, 0.5)
contrast = get(plotattributes, :contrast, 1)
platescale = get(plotattributes, :platescale, 1)
grid := false
# In most cases, a grid framestyle is a nicer looking default for images
# but the user can override.
framestyle --> :box
if T <: Colorant
imgv = data
else
clims = plotattributes[:clims]
stretch = plotattributes[:stretch]
cmap = plotattributes[:cmap]
if T <: Complex
img = abs.(data)
img["UNIT"] = "magnitude"
else
img = data
end
imgv = imview(img; clims, stretch, cmap, contrast, bias)
end
# Reduce large images using the same heuristic as Images.jl
maxpixels = get(plotattributes, :maxpixels, 10^6)
_length1(A::AbstractArray) = length(eachindex(A))
_length1(A) = length(A)
while _length1(imgv) > maxpixels
imgv = restrict(imgv)
end
# We have to do a lot of flipping to keep the orientation corect
yflip := false
xflip := false
# Disable equal aspect ratios if the scales are totally different
displayed_data_ratio = (extent[2]-extent[1])/(extent[4]-extent[3])
if displayed_data_ratio >= 7
aspect_ratio --> :none
end
# we have a wcs flag (from the image by default) so that users can skip over
# plotting in physical coordinates. This is especially important
# if the WCS headers are mallformed in some way.
showgrid = get(plotattributes, :xgrid, true) && get(plotattributes, :ygrid, true)
# Display a title giving our position along unplotted dimensions
if length(refdims(imgv)) > 0
if showwcstitle
refdimslabel = join(map(refdims(imgv)) do d
# match dimension with the wcs axis number
i = wcsax(imgv, d)
ct = wcs(imgv, wcsn).ctype[i]
label = ctype_label(ct, wcs(imgv, wcsn).radesys)
if label == "NONE"
label = name(d)
end
value = pix_to_world(imgv, [1,1]; wcsn, all=true, parent=true)[i]
unit = wcs(imgv, wcsn).cunit[i]
if ct == "STOKES"
return _stokes_name(_stokes_symbol(value))
else
return @sprintf("%s = %.5g %s", label, value, unit)
end
end, ", ")
else
refdimslabel = join(map(d->"$(name(d))= $(d[1])", refdims(imgv)), ", ")
end
title --> refdimslabel
end
# To ensure the physical axis tick labels are correct the axes must be
# tight to the image
xl = (first(dims(imgv,1))-0.5)*platescale, (last(dims(imgv,1))+0.5)*platescale
yl = (first(dims(imgv,2))-0.5)*platescale, (last(dims(imgv,2))+0.5)*platescale
ylims --> yl
xlims --> xl
subplot_i = 0
# Actual image series (RGB pixels by this point)
@series begin
subplot_i += 1
subplot := subplot_i
colorbar := false
aspect_ratio --> 1
# Note: if the axes are on unusual sides (e.g. y-axis at right, x-axis at top)
# then these coordinates are not correct. They are only correct exactly
# along the axis.
# In astropy, the ticks are actually tilted to reflect this, though in general
# the transformation from pixel to coordinates can be non-linear and curved.
if showwcsticks
xticks --> (gridspec.tickpos1x, wcslabels(wcs(imgv, wcsn), wcsax(imgv, dims(imgv,1)), gridspec.tickpos1w))
xguide --> ctype_label(wcs(imgv, wcsn).ctype[wcsax(imgv, dims(imgv,1))], wcs(imgv, wcsn).radesys)
yticks --> (gridspec.tickpos2x, wcslabels(wcs(imgv, wcsn), wcsax(imgv, dims(imgv,2)), gridspec.tickpos2w))
yguide --> ctype_label(wcs(imgv, wcsn).ctype[wcsax(imgv, dims(imgv,2))], wcs(imgv, wcsn).radesys)
end
ax1 = collect(parent(dims(imgv,1))) .* platescale
ax2 = collect(parent(dims(imgv,2))) .* platescale
# Views of images are not currently supported by plotly() so we have to collect them.
# ax1, ax2, view(parent(imgv), reverse(axes(imgv,1)),:)
ax1, ax2, parent(imgv)[reverse(axes(imgv,1)),:]
end
# If wcs=true (default) and grid=true (not default), overplot a WCS
# grid.
if showgrid && showwcsticks
# Plot the WCSGrid as a second series (actually just lines)
@series begin
subplot := 1
# Use a default grid color that shows up across more
# color maps
if !haskey(plotattributes, :xforeground_color_grid) && !haskey(plotattributes, :yforeground_color_grid)
gridcolor --> :lightgray
end
wcsg, gridspec
end
end
# Disable the colorbar.
# Plots.jl does not give us sufficient control to make sure the range and ticks
# are correct after applying a non-linear stretch.
# We attempt to make our own colorbar using a second plot.
showcolorbar = !(T <: Colorant) && get(plotattributes, :colorbar, true) != :none
if T <: Complex
layout := @layout [
imgmag{0.5h}
imgangle{0.5h}
]
end
if showcolorbar
if T <: Complex
layout := @layout [
imgmag{0.95w, 0.5h} colorbar{0.5h}
imgangle{0.95w, 0.5h} colorbarangle{0.5h}
]
else
layout := @layout [
img{0.95w} colorbar
]
end
colorbar_title = get(plotattributes, :colorbar_title, "")
if !haskey(plotattributes, :colorbar_title)
if haskey(header(img), "UNIT")
colorbar_title = string(img[:UNIT])
elseif haskey(header(img), "BUNIT")
colorbar_title = string(img[:BUNIT])
end
end
subplot_i += 1
@series begin
subplot := subplot_i
aspect_ratio := :none
colorbar := false
cbimg, cbticks = imview_colorbar(img; clims, stretch, cmap, contrast, bias)
xticks := []
ymirror := true
yticks := cbticks
yguide := colorbar_title
xguide := ""
xlims := Tuple(axes(cbimg, 2))
ylims := Tuple(axes(cbimg, 2))
title := ""
# Views of images are not currently supported by plotly so we have to collect them
# view(cbimg, reverse(axes(cbimg,1)),:)
cbimg[reverse(axes(cbimg,1)),:]
end
end
# TODO: refactor to reduce duplication
if T <: Complex
img = angle.(data)
img["UNIT"] = "angle (rad)"
imgv = imview(img, clims=(-1pi, 1pi),stretch=identity, cmap=:cyclic_mygbm_30_95_c78_n256_s25)
@series begin
subplot_i += 1
subplot := subplot_i
colorbar := false
title := ""
aspect_ratio --> 1
# Note: if the axes are on unusual sides (e.g. y-axis at right, x-axis at top)
# then these coordinates are not correct. They are only correct exactly
# along the axis.
# In astropy, the ticks are actually tilted to reflect this, though in general
# the transformation from pixel to coordinates can be non-linear and curved.
if showwcsticks
xticks --> (gridspec.tickpos1x, wcslabels(wcs(imgv, wcsn), wcsax(imgv, dims(imgv,1)), gridspec.tickpos1w))
xguide --> ctype_label(wcs(imgv, wcsn).ctype[wcsax(imgv, dims(imgv,1))], wcs(imgv, wcsn).radesys)
yticks --> (gridspec.tickpos2x, wcslabels(wcs(imgv, wcsn), wcsax(imgv, dims(imgv,2)), gridspec.tickpos2w))
yguide --> ctype_label(wcs(imgv, wcsn).ctype[wcsax(imgv, dims(imgv,2))], wcs(imgv, wcsn).radesys)
end
ax1 = collect(parent(dims(imgv,1))) .* platescale
ax2 = collect(parent(dims(imgv,2))) .* platescale
# Views of images are not currently supported by plotly() so we have to collect them.
# ax1, ax2, view(parent(imgv), reverse(axes(imgv,1)),:)
ax1, ax2, parent(imgv)[reverse(axes(imgv,1)),:]
end
if showcolorbar
colorbar_title = get(plotattributes, :colorbar_title, "")
if !haskey(plotattributes, :colorbar_title) && haskey(header(img), "UNIT")
colorbar_title = string(img[:UNIT])
end
@series begin
subplot_i += 1
subplot := subplot_i
aspect_ratio := :none
colorbar := false
cbimg, _ = imview_colorbar(img; stretch=identity, clims=(-pi, pi), cmap=:cyclic_mygbm_30_95_c78_n256_s25)
xticks := []
ymirror := true
ax = axes(cbimg,1)
yticks := ([first(ax), mean(ax), last(ax)], ["-π", "0", "π"])
yguide := colorbar_title
xguide := ""
xlims := Tuple(axes(cbimg, 2))
ylims := Tuple(axes(cbimg, 2))
title := ""
view(cbimg, reverse(axes(cbimg,1)),:)
end
end
end
return
end
"""
implot(
img::AbstractArray;
clims=Percent(99.5),
stretch=identity,
cmap=:magma,
bias=0.5,
contrast=1,
wcsticks=true,
grid=true,
platescale=1
)
Create a read only view of an array or AstroImageMat mapping its data values
to an array of Colors. Equivalent to:
implot(
imview(
img::AbstractArray;
clims=Percent(99.5),
stretch=identity,
cmap=:magma,
bias=0.5,
contrast=1,
),
wcsn=1,
wcsticks=true,
wcstitle=true,
grid=true,
platescale=1
)
### Image Rendering
See `imview` for how data is mapped to RGBA pixel values.
### WCS & Image Coordinates
If provided with an AstroImage that has WCS headers set, the tick marks and plot grid
are calculated using WCS.jl. By default, use the first WCS coordinate system.
The underlying pixel coordinates are those returned by `dims(img)` multiplied by `platescale`.
This allows you to overplot lines, regions, etc. using pixel coordinates.
If you wish to compute the pixel coordinate of a point in world coordinates, see `world_to_pix`.
* `wcsn` (default `1`) select which WCS transform in the headers to use for ticks & grid
* `wcsticks` (default `true` if WCS headers present) display ticks and labels, and title using world coordinates
* `wcstitle` (default `true` if WCS headers present and `length(refdims(img))>0`). When slicing a cube, display the location along unseen axes in world coordinates instead of pixel coordinates.
* `grid` (default `true`) show a grid over the plot. Uses WCS coordinates if `wcsticks` is true, otherwise pixel coordinates multiplied by `platescale`.
* `platescale` (default `1`). Scales the underlying pixel coordinates to ease overplotting, etc. If `wcsticks` is false, the displayed pixel coordinates are also scaled.
### Defaults
The default values of `clims`, `stretch`, and `cmap` are `extrema`, `identity`, and `nothing`
respectively.
You may alter these defaults using `AstroImages.set_clims!`, `AstroImages.set_stretch!`, and
`AstroImages.set_cmap!`.
"""
implot
struct WCSGrid
img::AstroImage
extent::NTuple{4,Float64}
wcsn::Int
end
"""
wcsticks(img, axnum)
Generate nice tick labels for an AstroImageMat along axis `axnum`
Returns a vector of pixel positions and a vector of strings.
Example:
plot(img, xticks=wcsticks(WCSGrid(img), 1), yticks=wcsticks(WCSGrid(img), 2))
"""
function wcsticks(wcsg::WCSGrid, axnum, gs = wcsgridspec(wcsg))
tickposx = axnum == 1 ? gs.tickpos1x : gs.tickpos2x
tickposw = axnum == 1 ? gs.tickpos1w : gs.tickpos2w
return tickposx, wcslabels(
wcs(wcsg.img, wcsg.wcsn),
axnum,
tickposw
)
end
# Function to generate nice string coordinate labels given a WCSTransform, axis number,
# and a vector of tick positions in world coordinates.
# This is used for labelling ticks and for annotating grid lines.
function wcslabels(w::WCSTransform, axnum, tickposw)
if length(tickposw) == 0
return String[]
end
# Select a unit converter (e.g. 12.12 -> (a,b,c,d)) and list of units
if w.cunit[axnum] == "deg"
if startswith(uppercase(w.ctype[axnum]), "RA")
converter = deg2hms
units = hms_units
else
converter = deg2dmsmμ
units = dmsmμ_units
end
else
converter = x->(x,)
units = ("",)
end
# Format inital ticklabel
ticklabels = fill("", length(tickposw))
# We only include the part of the label that has changed since the last time.
# Split up coordinates into e.g. sexagesimal
parts = map(tickposw) do w
vals = converter(w)
return vals
end
# Start with something impossible of the same size:
last_coord = Inf .* converter(first(tickposw))
zero_coords_i = maximum(map(parts) do vals
changing_coord_i = findfirst(vals .!= last_coord)
if isnothing(changing_coord_i)
changing_coord_i = 1
end
last_coord = vals
return changing_coord_i
end)
# Loop through using only the relevant part of the label
# Start with something impossible of the same size:
last_coord = Inf .* converter(first(tickposw))
for (i,vals) in enumerate(parts)
changing_coord_i = findfirst(vals .!= last_coord)
if isnothing(changing_coord_i)
changing_coord_i = 1
end
# Don't display just e.g. 00" when we should display 50'00"
if changing_coord_i > 1 && vals[changing_coord_i] == 0
changing_coord_i = changing_coord_i -1
end
val_unit_zip = zip(vals[changing_coord_i:zero_coords_i],units[changing_coord_i:zero_coords_i])
ticklabels[i] = mapreduce(*, enumerate(val_unit_zip)) do (coord_i,(val,unit))
# If the last coordinate we print if the last coordinate we have available,
# display it with decimal places
if coord_i + changing_coord_i - 1== length(vals)
str = @sprintf("%.2f", val)
else
str = @sprintf("%02d", val)
end
if length(str) > 0
return str * unit
else
return str
end
end
last_coord = vals
end
return ticklabels
end
# Extended form of deg2dms that further returns mas, microas.
function deg2dmsmμ(deg)
d,m,s = deg2dms(deg)
s_f = floor(s)
mas = (s - s_f)*1e3
mas_f = floor(mas)
μas = (mas - mas_f)*1e3
return (d,m,s_f,mas_f,μas)
end
const dmsmμ_units = [
"°",
"'",
"\"",
"mas",
"μas",
]
const hms_units = [
"ʰ",
"ᵐ",
"ˢ",
]
function ctype_label(ctype,radesys)
if length(ctype) == 0
return radesys
elseif startswith(ctype, "RA")
return "Right Ascension ($(radesys))"
elseif startswith(ctype, "GLON")
return "Galactic Longitude"
elseif startswith(ctype, "TLON")
return "ITRS"
elseif startswith(ctype, "DEC")
return "Declination ($(radesys))"
elseif startswith(ctype, "GLAT")
return "Galactic Latitude"
# elseif startswith(ctype, "TLAT")
elseif ctype == "STOKES"
return "Polarization"
else
return ctype
end
end
"""
WCSGrid(img::AstroImageMat, ax=(1,2), coords=(first(axes(img,ax[1])),first(axes(img,ax[2]))))
Given an AstroImageMat, return information necessary to plot WCS gridlines in physical
coordinates against the image's pixel coordinates.
This function has to work on both plotted axes at once to handle rotation and general
curvature of the WCS grid projected on the image coordinates.
"""
function WCSGrid(img::AstroImageMat, wcsn=1)
minx = first(dims(img,2))
maxx = last(dims(img,2))
miny = first(dims(img,1))
maxy = last(dims(img,1))
extent = (minx-0.5, maxx+0.5, miny-0.5, maxy+0.5)
@show extent
return WCSGrid(img, extent, wcsn)
end
# Recipe for a WCSGrid with lines, optional ticks (on by default),
# and optional grid labels (off by defaut).
# The AstroImageMat plotrecipe uses this recipe for grid lines if `grid=true`.
@recipe function f(wcsg::WCSGrid, gridspec=wcsgridspec(wcsg))
label --> ""
xs, ys = wcsgridlines(gridspec)
if haskey(plotattributes, :foreground_color_grid)
color --> plotattributes[:foreground_color_grid]
elseif haskey(plotattributes, :foreground_color)
color --> plotattributes[:foreground_color]
else
color --> :black
end
if haskey(plotattributes, :foreground_color_text)
textcolor = plotattributes[:foreground_color_text]
else
textcolor = plotattributes[:color]
end
annotate = haskey(plotattributes, :gridlabels) && plotattributes[:gridlabels]
xguide --> ctype_label(wcs(wcsg.img, wcsg.wcsn).ctype[wcsax(wcsg.img, dims(wcsg.img,1))], wcs(wcsg.img, wcsg.wcsn).radesys)
yguide --> ctype_label(wcs(wcsg.img, wcsg.wcsn).ctype[wcsax(wcsg.img, dims(wcsg.img,2))], wcs(wcsg.img, wcsg.wcsn).radesys)
xlims --> wcsg.extent[1], wcsg.extent[2]
ylims --> wcsg.extent[3], wcsg.extent[4]
grid := false
tickdirection := :none
xticks --> wcsticks(wcsg, 1, gridspec)
yticks --> wcsticks(wcsg, 2, gridspec)
@series xs, ys
# We can optionally annotate the grid with their coordinates.
# These come after the grid lines so they appear overtop.
if annotate
@series begin
# TODO: why is this reverse necessary?
rotations = reverse(rad2deg.(gridspec.annotations1θ))
ticklabels = wcslabels(wcs(wcsg.img), 1, gridspec.annotations1w)
seriestype := :line
linewidth := 0
# TODO: we need to use requires to load in Plots for the necessary text control. Future versions of RecipesBase might fix this.
series_annotations := [
Main.Plots.text(" $l", :right, :bottom, textcolor, 8, rotation=(-95 <= r <= 95) ? r : r+180)
for (l, r) in zip(ticklabels, rotations)
]
gridspec.annotations1x, gridspec.annotations1y
end
@series begin
rotations = rad2deg.(gridspec.annotations2θ)
ticklabels = wcslabels(wcs(wcsg.img), 2, gridspec.annotations2w)
seriestype := :line
linewidth := 0
series_annotations := [
Main.Plots.text(" $l", :right, :bottom, textcolor, 8, rotation=(-95 <= r <= 95) ? r : r+180)
for (l, r) in zip(ticklabels, rotations)
]
gridspec.annotations2x, gridspec.annotations2y
end
end
return
end
# Helper: true if all elements in vector are equal to each other.
allequal(itr) = all(==(first(itr)), itr)
# This function is responsible for actually laying out grid lines for a WCSGrid,
# ensuring they don't exceed the plot bounds, finding where they intersect the axes,
# and picking tick locations at the appropriate intersections with the left and
# bottom axes.
function wcsgridspec(wsg::WCSGrid)
# Most of the complexity of this function is making sure everything
# generalizes to N different, possiby skewed axes, where a change in
# the opposite coordinate or even an unplotted coordinate affects
# the grid.
# x and y denote pixel coordinates (along `ax`), u and v are world coordinates roughly along same.
minx, maxx, miny, maxy = wsg.extent
# Find the extent of this slice in world coordinates
posxy = [
minx minx maxx maxx
miny maxy miny maxy
]
posuv = pix_to_world(wsg.img, posxy; wsg.wcsn, parent=true)
(minu, maxu), (minv, maxv) = extrema(posuv, dims=2)
# In general, grid can be curved when plotted back against the image,
# so we will need to sample multiple points along the grid.
# TODO: find a good heuristic for this based on the curvature.
N_points = 50
urange = range(minu, maxu, length=N_points)
vrange = range(minv, maxv, length=N_points)
# Find nice grid spacings using PlotUtils.optimize_ticks
# These heuristics can probably be improved
# TODO: this does not handle coordinates that wrap around
Q=[(1.0,1.0), (3.0, 0.8), (2.0, 0.7), (5.0, 0.5)]
k_min = 3
k_ideal = 5
k_max = 10
tickpos2x = Float64[]
tickpos2w = Float64[]
gridlinesxy2 = NTuple{2,Vector{Float64}}[]
# Not all grid lines will intersect the x & y axes nicely.
# If we don't get enough valid tick marks (at least 2) loop again
# requesting more locations up to three times.
local tickposv
j = 5
while length(tickpos2x) < 2 && j > 0
k_min += 2
k_ideal += 2
k_max += 2
j -= 1
tickposv = optimize_ticks(6minv, 6maxv; Q, k_min, k_ideal, k_max)[1]./6
empty!(tickpos2x)
empty!(tickpos2w)
empty!(gridlinesxy2)
for tickv in tickposv
# Make sure we handle unplotted slices correctly.
griduv = repeat(posuv[:,1], 1, N_points)
griduv[1,:] .= urange
griduv[2,:] .= tickv
posxy = world_to_pix(wsg.img, griduv; wsg.wcsn, parent=true)
# Now that we have the grid in pixel coordinates,
# if we find out where the grid intersects the axes we can put
# the labels in the correct spot
# We can use these masks to determine where, and in what direction
# the gridlines leave the plot extent
in_horz_ax = minx .<= posxy[1,:] .<= maxx
in_vert_ax = miny .<= posxy[2,:] .<= maxy
in_axes = in_horz_ax .& in_vert_ax
if count(in_axes) < 2
continue
elseif all(in_axes)
point_entered = [
posxy[1,begin]
posxy[2,begin]
]
point_exitted = [
posxy[1,end]
posxy[2,end]
]
elseif allequal(posxy[1,findfirst(in_axes):findlast(in_axes)])
point_entered = [
posxy[1,max(begin,findfirst(in_axes)-1)]
# posxy[2,max(begin,findfirst(in_axes)-1)]
miny
]
point_exitted = [
posxy[1,min(end,findlast(in_axes)+1)]
# posxy[2,min(end,findlast(in_axes)+1)]
maxy
]
# Vertical grid lines
elseif allequal(posxy[2,findfirst(in_axes):findlast(in_axes)])
point_entered = [
minx #posxy[1,max(begin,findfirst(in_axes)-1)]
posxy[2,max(begin,findfirst(in_axes)-1)]
]
point_exitted = [
maxx #posxy[1,min(end,findlast(in_axes)+1)]
posxy[2,min(end,findlast(in_axes)+1)]
]
else
# Use the masks to pick an x,y point inside the axes and an
# x,y point outside the axes.
i = findfirst(in_axes)
x1 = posxy[1,i]
y1 = posxy[2,i]
x2 = posxy[1,i+1]
y2 = posxy[2,i+1]
if x2-x1 ≈ 0
@warn "undef slope"
end
# Fit a line where we cross the axis
m1 = (y2-y1)/(x2-x1)
b1 = y1-m1*x1
# If the line enters via the vertical axes...
if findfirst(in_vert_ax) <= findfirst(in_horz_ax)
# Then we simply evaluate it at that axis
x = abs(x1-maxx) < abs(x1-minx) ? maxx : minx
x = clamp(x,minx,maxx)
y = m1*x+b1
else
# We must find where it enters the plot from
# bottom or top
x = abs(y1-maxy) < abs(y1-miny) ? (maxy-b1)/m1 : (miny-b1)/m1
x = clamp(x,minx,maxx)
y = m1*x+b1
end
# From here, do a linear fit to find the intersection with the axis.
point_entered = [
x
y
]
# Use the masks to pick an x,y point inside the axes and an
# x,y point outside the axes.
i = findlast(in_axes)
x1 = posxy[1,i-1]
y1 = posxy[2,i-1]
x2 = posxy[1,i]
y2 = posxy[2,i]
if x2-x1 ≈ 0
@warn "undef slope"
end
# Fit a line where we cross the axis
m2 = (y2-y1)/(x2-x1)
b2 = y2-m2*x2
if findlast(in_vert_ax) > findlast(in_horz_ax)
# Then we simply evaluate it at that axis
x = abs(x1-maxx) < abs(x1-minx) ? maxx : minx
x = clamp(x,minx,maxx)
y = m2*x+b2
else
# We must find where it enters the plot from
# bottom or top
x = abs(y1-maxy) < abs(y1-miny) ? (maxy-b2)/m2 : (miny-b2)/m2
x = clamp(x,minx,maxx)
y = m2*x+b2
end
# From here, do a linear fit to find the intersection with the axis.
point_exitted = [
x
y
]
end
if point_entered[1] == minx
push!(tickpos2x, point_entered[2])
push!(tickpos2w, tickv)
end
if point_exitted[1] == minx
push!(tickpos2x, point_exitted[2])
push!(tickpos2w, tickv)
end
posxy_neat = [point_entered posxy[[1,2],in_axes] point_exitted]
# posxy_neat = posxy
# TODO: do unplotted other axes also need a fit?
gridlinexy = (
posxy_neat[1,:],
posxy_neat[2,:]
)
push!(gridlinesxy2, gridlinexy)
end
end
# Then do the opposite coordinate
k_min = 3
k_ideal = 5
k_max = 10
tickpos1x = Float64[]
tickpos1w = Float64[]
gridlinesxy1 = NTuple{2,Vector{Float64}}[]
# Not all grid lines will intersect the x & y axes nicely.
# If we don't get enough valid tick marks (at least 2) loop again
# requesting more locations up to three times.
local tickposu
j = 5
while length(tickpos1x) < 2 && j > 0
k_min += 2
k_ideal += 2
k_max += 2
j -= 1
tickposu = optimize_ticks(6minu, 6maxu; Q, k_min, k_ideal, k_max)[1]./6
empty!(tickpos1x)
empty!(tickpos1w)
empty!(gridlinesxy1)
for ticku in tickposu
# Make sure we handle unplotted slices correctly.
griduv = repeat(posuv[:,1], 1, N_points)
griduv[1,:] .= ticku
griduv[2,:] .= vrange
posxy = world_to_pix(wsg.img, griduv; wsg.wcsn, parent=true)
# Now that we have the grid in pixel coordinates,
# if we find out where the grid intersects the axes we can put
# the labels in the correct spot
# We can use these masks to determine where, and in what direction
# the gridlines leave the plot extent
in_horz_ax = minx .<= posxy[1,:] .<= maxx
in_vert_ax = miny .<= posxy[2,:] .<= maxy
in_axes = in_horz_ax .& in_vert_ax
if count(in_axes) < 2
continue
elseif all(in_axes)
point_entered = [
posxy[1,begin]
posxy[2,begin]
]
point_exitted = [
posxy[1,end]
posxy[2,end]
]
# Horizontal grid lines
elseif allequal(posxy[1,findfirst(in_axes):findlast(in_axes)])
point_entered = [
posxy[1,findfirst(in_axes)]
miny
]
point_exitted = [
posxy[1,findlast(in_axes)]
maxy
]
# push!(tickpos1x, posxy[1,findfirst(in_axes)])
# push!(tickpos1w, ticku)
# Vertical grid lines
elseif allequal(posxy[2,findfirst(in_axes):findlast(in_axes)])
point_entered = [
minx
posxy[2,findfirst(in_axes)]
]
point_exitted = [
maxx
posxy[2,findfirst(in_axes)]
]
else
# Use the masks to pick an x,y point inside the axes and an
# x,y point outside the axes.
i = findfirst(in_axes)
x1 = posxy[1,i]
y1 = posxy[2,i]
x2 = posxy[1,i+1]
y2 = posxy[2,i+1]
if x2-x1 ≈ 0
@warn "undef slope"
end
# Fit a line where we cross the axis
m1 = (y2-y1)/(x2-x1)
b1 = y1-m1*x1
# If the line enters via the vertical axes...
if findfirst(in_vert_ax) < findfirst(in_horz_ax)
# Then we simply evaluate it at that axis
x = abs(x1-maxx) < abs(x1-minx) ? maxx : minx
x = clamp(x,minx,maxx)
y = m1*x+b1
else
# We must find where it enters the plot from
# bottom or top
x = abs(y1-maxy) < abs(y1-miny) ? (maxy-b1)/m1 : (miny-b1)/m1
x = clamp(x,minx,maxx)
y = m1*x+b1
end
# From here, do a linear fit to find the intersection with the axis.
point_entered = [
x
y
]
# Use the masks to pick an x,y point inside the axes and an
# x,y point outside the axes.
i = findlast(in_axes)
x1 = posxy[1,i-1]
y1 = posxy[2,i-1]
x2 = posxy[1,i]
y2 = posxy[2,i]
if x2-x1 ≈ 0
@warn "undef slope"
end
# Fit a line where we cross the axis
m2 = (y2-y1)/(x2-x1)
b2 = y2-m2*x2
if findlast(in_vert_ax) > findlast(in_horz_ax)
# Then we simply evaluate it at that axis
x = abs(x1-maxx) < abs(x1-minx) ? maxx : minx
x = clamp(x,minx,maxx)
y = m2*x+b2
else
# We must find where it enters the plot from
# bottom or top
x = abs(y1-maxy) < abs(y1-miny) ? (maxy-b2)/m2 : (miny-b2)/m2
x = clamp(x,minx,maxx)
y = m2*x+b2
end
# From here, do a linear fit to find the intersection with the axis.
point_exitted = [
x
y
]
end
posxy_neat = [point_entered posxy[[1,2],in_axes] point_exitted]
# TODO: do unplotted other axes also need a fit?
if point_entered[2] == miny
push!(tickpos1x, point_entered[1])
push!(tickpos1w, ticku)
end
if point_exitted[2] == miny
push!(tickpos1x, point_exitted[1])
push!(tickpos1w, ticku)
end
gridlinexy = (
posxy_neat[1,:],
posxy_neat[2,:]
)
push!(gridlinesxy1, gridlinexy)
end
end
# Grid annotations are simpler:
annotations1w = Float64[]
annotations1x = Float64[]
annotations1y = Float64[]
annotations1θ = Float64[]
for ticku in tickposu
# Make sure we handle unplotted slices correctly.
griduv = posuv[:,1]
griduv[1] = ticku
griduv[2] = mean(vrange)
posxy = world_to_pix(wsg.img, griduv; wsg.wcsn, parent=true)
if !(minx < posxy[1] < maxx) ||
!(miny < posxy[2] < maxy)
continue
end
push!(annotations1w, ticku)
push!(annotations1x, posxy[1])
push!(annotations1y, posxy[2])
# Now find slope (TODO: stepsize)
# griduv[ax[2]] -= 1
griduv[2] += 0.1step(vrange)
posxy2 = world_to_pix(wsg.img, griduv; wsg.wcsn, parent=true)
θ = atan(
posxy2[2] - posxy[2],
posxy2[1] - posxy[1],
)
push!(annotations1θ, θ)
end
annotations2w = Float64[]
annotations2x = Float64[]
annotations2y = Float64[]
annotations2θ = Float64[]
for tickv in tickposv
# Make sure we handle unplotted slices correctly.
griduv = posuv[:,1]
griduv[1] = mean(urange)
griduv[2] = tickv
posxy = world_to_pix(wsg.img, griduv; wsg.wcsn, parent=true)
if !(minx < posxy[1] < maxx) ||
!(miny < posxy[2] < maxy)
continue
end
push!(annotations2w, tickv)
push!(annotations2x, posxy[1])
push!(annotations2y, posxy[2])
griduv[1] += 0.1step(urange)
posxy2 = world_to_pix(wsg.img, griduv; wsg.wcsn, parent=true)
θ = atan(
posxy2[2] - posxy[2],
posxy2[1] - posxy[1],
)
push!(annotations2θ, θ)
end
return (;
gridlinesxy1,
gridlinesxy2,
tickpos1x,
tickpos1w,
tickpos2x,
tickpos2w,
annotations1w,
annotations1x,
annotations1y,
annotations1θ,
annotations2w,
annotations2x,
annotations2y,
annotations2θ,
)
end
# From a WCSGrid, return just the grid lines as a single pair of x & y coordinates
# suitable for plotting.
function wcsgridlines(wcsg::WCSGrid)
return wcsgridlines(wcsgridspec(wcsg))
end
function wcsgridlines(gridspec::NamedTuple)
# Unroll grid lines into a single series separated by NaNs
xs1 = mapreduce(vcat, gridspec.gridlinesxy1, init=Float64[]) do gridline
return vcat(gridline[1], NaN)
end
ys1 = mapreduce(vcat, gridspec.gridlinesxy1, init=Float64[]) do gridline
return vcat(gridline[2], NaN)
end
xs2 = mapreduce(vcat, gridspec.gridlinesxy2, init=Float64[]) do gridline
return vcat(gridline[1], NaN)
end
ys2 = mapreduce(vcat, gridspec.gridlinesxy2, init=Float64[]) do gridline
return vcat(gridline[2], NaN)
end
xs = vcat(xs1, NaN, xs2)
ys = vcat(ys1, NaN, ys2)
return xs, ys
end
@userplot PolQuiver
@recipe function f(h::PolQuiver)
cube = only(h.args)
bins = get(plotattributes, :bins, 4)
ticklen = get(plotattributes, :ticklen, nothing)
minpol = get(plotattributes, :minpol, 0.1)
i = cube[Pol=At(:I)]
q = cube[Pol=At(:Q)]
u = cube[Pol=At(:U)]
polinten = @. sqrt(q^2 + u^2)
linpolfrac = polinten ./ i
binratio=1/bins
xs = imresize([x for x in dims(cube,1), y in dims(cube,2)], ratio=binratio)
ys = imresize([y for x in dims(cube,1), y in dims(cube,2)], ratio=binratio)
qx = imresize(q, ratio=binratio)
qy = imresize(u, ratio=binratio)
qlinpolfrac = imresize(linpolfrac, ratio=binratio)
qpolintenr = imresize(polinten, ratio=binratio)
# We want the longest ticks to be around 1 bin long by default.
qmaxlen = quantile(filter(isfinite,qpolintenr), 0.98)
if isnothing(ticklen)
a = bins / qmaxlen
else
a = ticklen / qmaxlen
end
# Only show arrows where the data is finite, and more than a couple pixels
# long.
mask = (isfinite.(qpolintenr)) .& (qpolintenr .>= minpol.*qmaxlen)
pointstmp = map(xs[mask],ys[mask],qx[mask],qy[mask]) do x,y,qxi,qyi
return ([x, x+a*qxi, NaN], [y, y+a*qyi, NaN])
end
xs = reduce(vcat, getindex.(pointstmp, 1))
ys = reduce(vcat, getindex.(pointstmp, 2))
colors = qlinpolfrac[mask]
if !isnothing(colors)
line_z := repeat(colors, inner=3)
end
label --> ""
color --> :turbo
framestyle --> :box
aspect_ratio --> 1
linewidth --> 1.5
colorbar --> true
colorbar_title --> "Linear polarization fraction"
xl = first(dims(i,2)), last(dims(i,2))
yl = first(dims(i,1)), last(dims(i,1))
ylims --> yl
xlims --> xl
@series begin
xs, ys
end
end
"""
polquiver(polqube::AstroImage)
Given a data cube (of at least 2 spatial dimensions, plus a polarization axis),
plot a vector field of polarization data.
The tick length represents the polarization intensity, sqrt(q^2 + u^2),
and the color represents the linear polarization fraction, sqrt(q^2 + u^2) / i.
There are several ways you can adjust the appearance of the plot using keyword arguments:
* `bins` (default = 1) By how much should we bin down the polarization data before drawing the ticks? This reduced clutter from higher resolution datasets. Can be fractional.
* `ticklen` (default = bins) How long the 98th percentile arrow should be. By default, 1 bin long. Make this larger to draw longer arrows.
* `color` (default = :turbo) What colorscheme should be used for linear polarization fraction.
* `minpol` (default = 0.2) Hides arrows that are shorter than `minpol` times the 98th percentile arrow to make a cleaner image. Set to 0 to display all data.
Use `implot` and `polquiver!` to overplot polarization data over an image.
"""
polquiver
|
# COV_EXCL_START
using .CUDA, Cassette
cuda_is_loaded = true
#! format: off
const cudafuns = (
:cos, :cospi, :sin, :sinpi, :tan,
:acos, :asin, :atan,
:cosh, :sinh, :tanh,
:acosh, :asinh, :atanh,
:log, :log10, :log1p, :log2,
:exp, :exp2, :exp10, :expm1, :ldexp,
:abs,
:sqrt, :cbrt,
:ceil, :floor,
)
#! format: on
Cassette.@context CeedCudaContext
@inline function Cassette.overdub(::CeedCudaContext, ::typeof(Core.kwfunc), f)
return Core.kwfunc(f)
end
@inline function Cassette.overdub(::CeedCudaContext, ::typeof(Core.apply_type), args...)
return Core.apply_type(args...)
end
@inline function Cassette.overdub(
::CeedCudaContext,
::typeof(StaticArrays.Size),
x::Type{<:AbstractArray{<:Any,N}},
) where {N}
return StaticArrays.Size(x)
end
for f in cudafuns
@eval @inline function Cassette.overdub(
::CeedCudaContext,
::typeof(Base.$f),
x::Union{Float32,Float64},
)
return CUDA.$f(x)
end
end
function setarray!(v::CeedVector, mtype::MemType, cmode::CopyMode, arr::CuArray)
ptr = Ptr{CeedScalar}(UInt64(pointer(arr)))
C.CeedVectorSetArray(v[], mtype, cmode, ptr)
if cmode == USE_POINTER
v.arr = arr
end
end
struct FieldsCuda
inputs::NTuple{16,Int}
outputs::NTuple{16,Int}
end
function generate_kernel(qf_name, kf, dims_in, dims_out)
ninputs = length(dims_in)
noutputs = length(dims_out)
input_sz = prod.(dims_in)
output_sz = prod.(dims_out)
f_ins = [Symbol("rqi$i") for i = 1:ninputs]
f_outs = [Symbol("rqo$i") for i = 1:noutputs]
args = Vector{Union{Symbol,Expr}}(undef, ninputs + noutputs)
def_ins = Vector{Expr}(undef, ninputs)
f_ins_j = Vector{Union{Symbol,Expr}}(undef, ninputs)
for i = 1:ninputs
if length(dims_in[i]) == 0
def_ins[i] = :(local $(f_ins[i]))
f_ins_j[i] = f_ins[i]
args[i] = f_ins[i]
else
def_ins[i] =
:($(f_ins[i]) = LibCEED.MArray{Tuple{$(dims_in[i]...)},Float64}(undef))
f_ins_j[i] = :($(f_ins[i])[j])
args[i] = :(LibCEED.SArray{Tuple{$(dims_in[i]...)},Float64}($(f_ins[i])))
end
end
for i = 1:noutputs
args[ninputs+i] = f_outs[i]
end
def_outs = [
:($(f_outs[i]) = LibCEED.MArray{Tuple{$(dims_out[i]...)},Float64}(undef))
for i = 1:noutputs
]
device_ptr_type = Core.LLVMPtr{CeedScalar,LibCEED.AS.Global}
read_quads_in = [
:(
for j = 1:$(input_sz[i])
$(f_ins_j[i]) = unsafe_load(
reinterpret($device_ptr_type, fields.inputs[$i]),
q + (j - 1)*Q,
a,
)
end
) for i = 1:ninputs
]
write_quads_out = [
:(
for j = 1:$(output_sz[i])
unsafe_store!(
reinterpret($device_ptr_type, fields.outputs[$i]),
$(f_outs[i])[j],
q + (j - 1)*Q,
a,
)
end
) for i = 1:noutputs
]
qf = gensym(qf_name)
quote
function $qf(ctx_ptr, Q, fields)
gd = LibCEED.gridDim()
bi = LibCEED.blockIdx()
bd = LibCEED.blockDim()
ti = LibCEED.threadIdx()
inc = bd.x*gd.x
$(def_ins...)
$(def_outs...)
# Alignment for data read/write
a = Val($(Base.datatype_alignment(CeedScalar)))
# Cassette context for replacing intrinsics with CUDA versions
ctx = LibCEED.CeedCudaContext()
for q = (ti.x+(bi.x-1)*bd.x):inc:Q
$(read_quads_in...)
LibCEED.Cassette.overdub(ctx, $kf, ctx_ptr, $(args...))
$(write_quads_out...)
end
return
end
end
end
function mk_cufunction(ceed, def_module, qf_name, kf, dims_in, dims_out)
k_fn = Core.eval(def_module, generate_kernel(qf_name, kf, dims_in, dims_out))
tt = Tuple{Ptr{Nothing},Int32,FieldsCuda}
host_k = cufunction(k_fn, tt; maxregs=64)
return host_k.fun.handle
end
# COV_EXCL_STOP
|
function Glonass(arg0::jdouble, arg1::AbsoluteDate, arg2::AbsoluteDate, arg3::ExtendedPVCoordinatesProvider, arg4::Frame)
return Glonass((jdouble, AbsoluteDate, AbsoluteDate, ExtendedPVCoordinatesProvider, Frame), arg0, arg1, arg2, arg3, arg4)
end
|
# Note that this script can accept some limited command-line arguments, run
# `julia build_tarballs.jl --help` to see a usage message.
using BinaryBuilder, Pkg
name = "Raylib"
version = v"4.0.0"
# Collection of sources required to complete build
sources = [
GitSource("https://github.com/raysan5/raylib.git",
"0851960397f02a477d80eda2239f90fae14dec64"),
DirectorySource("./bundled"),
]
# Bash recipe for building across all platforms
script = raw"""
cd $WORKSPACE/srcdir/raylib/src/
atomic_patch -p1 ../../patches/add-missing-header.patch
atomic_patch -p1 ../../patches/make-install-everywhere.patch
atomic_patch -p2 ../../patches/make-ldflags-windows.patch
export CFLAGS="-D_POSIX_C_SOURCE=200112L"
if [[ "${target}" == *-freebsd* ]]; then
# Allow definition of `u_char`, `u_short`, `u_int`, and `u_long` in sys/types.h
CFLAGS="${CFLAGS} -D__BSD_VISIBLE"
fi
CFLAGS="${CFLAGS} -DSUPPORT_EVENTS_AUTOMATION -DSUPPORT_FILEFORMAT_BMP -DSUPPORT_FILEFORMAT_JPG"
FLAGS=()
if [[ "${target}" == *-mingw* ]]; then
# raylib.rc.data is broken for x64, remove it from compilation
sed -i 's+$(RAYLIB_RES_FILE)+ +g' Makefile
# we need to specify the OS in the flags to make for Windows
FLAGS+=(OS=Windows_NT)
fi
make -j${nproc} USE_EXTERNAL_GLFW=TRUE PLATFORM=PLATFORM_DESKTOP RAYLIB_LIBTYPE=SHARED RAYLIB_MODULE_RAYGUI=TRUE RAYLIB_MODULE_PHYSAC=TRUE "${FLAGS[@]}"
make install RAYLIB_LIBTYPE=SHARED DESTDIR="${prefix}" RAYLIB_INSTALL_PATH="${libdir}"
"""
# These are the platforms we will build for by default, unless further
# platforms are passed in on the command line
platforms = supported_platforms(; exclude=p->arch(p)=="armv6l")
# The products that we will ensure are always built
products = [
LibraryProduct(["libraylib","raylib"], :libraylib)
]
x11_platforms = filter(p ->Sys.islinux(p) || Sys.isfreebsd(p), platforms)
# Dependencies that must be installed before this package can be built
dependencies = [
Dependency(PackageSpec(name="alsa_jll", uuid="45378030-f8ea-5b20-a7c7-1a9d95efb90e"); platforms=filter(Sys.islinux, platforms))
Dependency(PackageSpec(name="Mesa_jll", uuid="78dcde23-ec64-5e07-a917-6fe22bbc0f45"); platforms=filter(Sys.iswindows, platforms))
Dependency(PackageSpec(name="Xorg_libX11_jll", uuid="4f6342f7-b3d2-589e-9d20-edeb45f2b2bc"); platforms=x11_platforms)
Dependency(PackageSpec(name="Xorg_libXrandr_jll", uuid="ec84b674-ba8e-5d96-8ba1-2a689ba10484"); platforms=x11_platforms)
Dependency(PackageSpec(name="Xorg_libXi_jll", uuid="a51aa0fd-4e3c-5386-b890-e753decda492"); platforms=x11_platforms)
Dependency(PackageSpec(name="Xorg_libXcursor_jll", uuid="935fb764-8cf2-53bf-bb30-45bb1f8bf724"); platforms=x11_platforms)
Dependency(PackageSpec(name="Xorg_libXinerama_jll", uuid="d1454406-59df-5ea1-beac-c340f2130bc3"); platforms=x11_platforms)
BuildDependency(PackageSpec(name="Xorg_xorgproto_jll", uuid="c4d99508-4286-5418-9131-c86396af500b"))
Dependency(PackageSpec(name="GLFW_jll", uuid="0656b61e-2033-5cc2-a64a-77c0f6c09b89"))
]
# Build the tarballs, and possibly a `build.jl` as well.
build_tarballs(ARGS, name, version, sources, script, platforms, products, dependencies; julia_compat="1.6")
|
export GenNeighbourhood
export GenNeighbourhoodIesimo
using Distributions
"""
GenNeighbourhood(w::Vector{Real} ,µ::Real, var ::Real)
Devuelve vecino del vector `w` de acorde a una normal
de media `µ` y varianza `var`.
"""
function GenNeighbourhood(w::Vector{<:Real} ,µ::Real, var ::Real)::Vector{<:Real}
distribution = Normal(µ, var)
z=rand(distribution,size(w))
w_new = map(
x -> min(1, max(0,x)),
w-z
)
return w_new
end
"""
GenNeighbourhoodIesimo(w::Vector{<:Real} ,µ::Real, var ::Real, index::Int)::Vector{<:Real}
Devuelve vecino del vector `w` de acorde a una normal
de media `µ` y varianza `var` donde solo se ha cambia la componente iéxima.
"""
function GenNeighbourhoodIesimo(w::Vector{<:Real} ,µ::Real, var ::Real, index::Int)::Vector{<:Real}
distribution = Normal(µ, var)
z=rand(distribution)
w_new = w
w_new[index] = min(1, max(0,w_new[index]-z))
return w_new
end |
module Milann
using Flux
import Flux.Tracker: data, @grad, track
using Statistics
# This implemens a MIL version where the bag instances are stored in a continuous tensor and bags are delimited by ranges.
export RangeMIL, segmax, segmean, segmax_naive, segmean_naive, segmaxmean
struct RangeMIL
premodel
aggregation
postmodel
end
@Flux.treelike RangeMIL
function (m::RangeMIL)(X::AbstractArray, B::AbstractArray)
(nfeatures, ninsts), nbags = size(X), length(B)
# X: nfeatures x ninsts, B: nbags
Ypre = m.premodel(X)
# Ypre: npremodeloutput x ninstances
Yagg = m.aggregation(Ypre, B)
# Yagg: npremodeloutput x nbags
m.postmodel(Yagg)
end
"""
segmax(X, segments)
Compute segmented maximum for instances `X` and bags indexed by `segments`.
"""
function segmax(X, segments)
Y = similar(X, size(X, 1), length(segments))
# naive approach, fast on CPU
# for (i, seg) in enumerate(segments)
# Y[:, i:i] .= mean(view(X, :, seg), dims=2)
# end
# sliced approach much better for GPU
Y .= 0
mlen = maximum(length.(segments))
for i in 1:mlen
Yindices = [j for (j, e) in enumerate(segments) if length(e) >= i]
Xindices = map(q -> first(q) + i - 1, filter(e -> length(e) >= i, segments))
Y[:, Yindices] = max.(view(Y, :, Yindices), view(X, :, Xindices))
end
Y
end
"""
segmax_idx(X, segments)
Compute segmented maximum for instances `X` and bags indexed by `segments`. Same as segmax, but returns also the indices of maxima in input (used for grad computation).
"""
function segmax_idx(X, segments)
Y = similar(X, size(X, 1), length(segments))
Y2 = similar(X, size(Y)...) # twice the memmory!
idxs = similar(X, size(Y)...)
Y .= -Inf
Y2 .= NaN
idxs .= 0
mlen = maximum(length.(segments))
for i in 1:mlen
Yindices = [j for (j, e) in enumerate(segments) if length(e) >= i]
Xindices = map(q -> first(q) + i - 1, filter(e -> length(e) >= i, segments))
Y2[:, Yindices] = max.(view(Y, :, Yindices), view(X, :, Xindices))
idxs[:, Yindices] += view(Y, :, Yindices) .!= view(Y2, :, Yindices) # has been max increased since last iteration?
tmp = Y; Y = Y2; Y2 = tmp # just copy references
end
# idxs now holds indices of maxima relative to bags, make them relative to inputs
offsets = first.(segments) .- 1 # first indices in X minus 1
Y, Int.(cpu(idxs) .+ reshape(offsets, 1, length(offsets)))
end
segmax(X::TrackedArray, segments) = track(segmax, X, segments)
function dsegmax(Δ, segments, idxs)
grads = similar(Δ, size(Δ, 1), last(last(segments)))
grads .= 0
for (i, row) in enumerate(eachrow(idxs))
# @show size(row), minimum(row), size(Δ)
grads[i, row] .= Δ[i, :]
end
grads, nothing
end
@grad function segmax(X, segments)
Y, idxs = segmax_idx(data(X), segments)
Y, Δ -> dsegmax(Δ, segments, idxs)
end
"""
segmean(X, segments)
Compute segmented mean for instances `X` and bags indexed by `segments`.
"""
function segmean(X, segments)
Y = similar(X, size(X, 1), length(segments))
# naive approach, fast on CPU
# for (i, seg) in enumerate(segments)
# Y[:, i:i] .= mean(view(X, :, seg), dims=2)
# end
# sliced approach much better for GPU
Y .= 0
mlen = maximum(length.(segments))
for i in 1:mlen
Yindices = [j for (j, e) in enumerate(segments) if length(e) >= i]
Xindices = map(q -> first(q) + i - 1, filter(e -> length(e) >= i, segments))
Y[:, Yindices] += view(X, :, Xindices)
end
Y ./= reshape(gpu(length.(segments)), 1, length(segments))
Y
end
segmean(X::TrackedArray, segments) = track(segmean, X, segments)
function dsegmean(Δ, segments)
grads = similar(Δ, size(Δ, 1), last(last(segments)))
# naive approach, fast on CPU
# for (i, seg) in enumerate(segments)
# grads[:, seg] .= view(Δ, :,i) / length(seg)
# end
# sliced approach much better for GPU
mlen = maximum(length.(segments))
for i in 1:mlen
Yindices = [j for (j, e) in enumerate(segments) if length(e) >= i]
Xindices = map(q -> first(q) + i - 1, filter(e -> length(e) >= i, segments))
grads[:, Xindices] .= view(Δ, :, Yindices)
end
for i in 2:mlen # normalization
Xindices = vcat((collect(seg) for seg in segments if length(seg) == i)...)
if length(Xindices) > 0
grads[:, Xindices] ./= i
end
end
grads, nothing
end
@grad segmean(X, segments) = segmean(data(X), segments), Δ -> dsegmean(Δ, segments)
"""
segmax_naive(X, segments)
Segmented maximum: naive reference implementation using default AD.
"""
function segmax_naive(X, segments)
hcat((maximum(X[:,s], dims=ndims(X)) for s in segments)...)
end
"""
segmean_naive(X, segments)
Segmented mean: naive reference implementation using default AD.
"""
function segmean_naive(X, segments)
hcat((mean(X[:,s], dims=ndims(X)) for s in segments)...)
end
"""
segmaxmean(X, segments)
Combine `segmax` and `segmean`.
"""
segmaxmean(X, segments) = vcat(segmax(X, segments), segmean(X, segments))
end # module
|
module ITKFFI
include("image.jl")
include("filter.jl")
@wraptype Float2D
@wraptype Float3D
@wraptype Double2D
@wraptype Double3D
@wraptype Short2D
@wraptype Short3D
end
|
module SWScale
include(joinpath(Pkg.dir("VideoIO"),"src","init.jl"))
w(f) = joinpath(swscale_dir, f)
using AVUtil
include(w("LIBSWSCALE.jl"))
end
|
for i in 1:2:9
println(i)
end #> 1 3 5 7 9
typeof(1:1000) #> UnitRange{Int64}
a = split("A,B,C,D",",")
typeof(a) #> Array{SubString{String},1}
show(a) #> SubString{String}["A","B","C","D"]
arr = [100, 25, 37]
arra = Any[100, 25, "ABC"] #> element type Any
arr[1] #> 100
arr[end] #> 37
# arr[6]
#> ERROR: BoundsError: attempt to access 3-element Array{Int64,1} at index [6]
println(eltype(arr)) #> Int64
println(length(arr)) #> 3
println(ndims(arr)) #> 1
println(size(arr,1)) #> 3
println(size(arr)) #> (3,)
arr2 = Array{Int64}(undef, 5)
show(arr2) #> [1, 2, 3, 4, 5]
sizehint!(arr2, 10^5)
arr3 = Float64[] #> 0-element Array{Float64,1}
push!(arr3, 1.0) #> 1-element Array{Float64,1}
arr4 = collect(1:7) #> 7-element Array{Int64,1}
show(arr4) #> [1, 2, 3, 4, 5, 6, 7]
# for in loop and changing the array:
da = [1,2,3,4,5]
for n in da
n *= 2
end
da #> 5-element Array{Int64,1}: 1 2 3 4 5
for i in 1:length(da)
da[i] *= 2
end
da #> 5-element Array{Int64,1}: 2 4 6 8 10
arr4 = [1,2,3,4,5,6,7] #> 7-element Array{Int64,1}: [1,2,3,4,5,6,7]
join(arr4, ", ") #> "1, 2, 3, 4, 5, 6, 7"
arr4[1:3] # => [1, 2, 3]
arr4[4:end] # => [4, 5, 6, 7]
arr = [1,2,3,4,5]
arr[2:4] = [8,9,10]
println(arr) #> 1 8 9 10 5
zeros(5)
ones(4)
ones(3, 2)
eqa = range(0, step=10, length=5) #> 0:10:40
println()
show(eqa) #> 0:10:40
fill!(arr, 42) #> [42, 42, 42, 42, 42]
println()
println(Array{Any}(undef, 4)) #> Any[#undef,#undef,#undef,#undef]
v1 = rand(Int32, 5)
println(v1) #> Int32[1735276173,972339632,1303377282,1493859467,-788555652]
b = collect(1:7)
c = [100,200,300]
append!(b,c) # Now b is [1, 2, 3, 4, 5, 6, 7, 100, 200, 300]
pop!(b) #> 300, b is now [1, 2, 3, 4, 5, 6, 7, 100, 200]
push!(b, 42) # b is now [1, 2, 3, 4, 5, 6, 7, 100, 200, 42]
popfirst!(b) #> 1, b is now [2, 3, 4, 5, 6, 7, 100, 200, 42]
pushfirst!(b, 42) # b is now [1, 2, 3, 4, 5, 6, 7, 100, 200, 42]
splice!(b,8) #> 100, b is now [42, 2, 3, 4, 5, 6, 7, 200, 42]
in(42, b) #> true
in(43, b) #> false
println()
println("sorting:")
sort(b) #> [2,3,4,5,6,7,42,42,200], b is not changed
println(b) #> [42,2,3,4,5,6,7,200,42]
sort!(b) #> b is now changed to [2,3,4,5,6,7,42,42,200]
println(b) #> [2,3,4,5,6,7,42,42,200]
println()
arr = [1, 5, 3]
# looping
for e in arr
print("$e ")
end # prints 1 5 3
arr = [1, 2, 3]
arr .+ 2 #> [3, 7, 5]
arr * 2 #> [2, 10, 6]
a1 = [1, 2, 3]
a2 = [4, 5, 6]
a1 .* a2 #> [4, 10, 18]
using LinearAlgebra
LinearAlgebra.dot(a1, a2) #> 32
sum(a1 .* a2)
repeat([1, 2, 3], inner = [2]) #> [1,1,2,2,3,3]
a = [1,2,4,6]
a1 = a
show(a1)
a[4] = 0
show(a) #> [1,2,4,0]
show(a1) #> [1,2,4,0]
b = copy(a)
b = deepcopy(a)
a = [1,2,3]
function change_array(arr)
arr[2] = 25
end
change_array(a)
println(a) #>[ 1, 25, 3]
# the splat operator:
arr = ['a', 'b', 'c']
show(join(arr)) #> "abc"
show(string(arr)) #> "['a', 'b', 'c']"
show(string(arr...)) #> "abc" |
module ImageUtilities
export save_image_grid
export image_grid_figure
export image_grid_tensor
export image_grid
export color_image
export color_image_tensor
using FluxGAN: GAN
using Flux: cpu
using CairoMakie
using Images
using FileIO
using Dates
using EllipsisNotation
using Random
###########################
# image utility functions #
###########################
# save image grid figure from model
#
function save_image_grid(model::GAN, output_dir::String;
layout=(5, 5),
date=false,
file_info=[],
img_res=150,
kws...)
if file_info == []
info = ""
else
info = mapreduce(tag -> string(tag) * "_", *, file_info)
end
file = info * "grid_$(layout[1])_$(layout[2])" *
(date ? "_" * string(today()) : "")
imgs = image_grid_tensor(model, *(layout...); kws...)
fig = image_grid_figure(imgs, layout; img_res=img_res)
save(output_dir * "/" * file * ".png", fig)
end
# generate and return color images tensor from model
#
function image_grid_tensor(model::GAN, n::Int;
uncenter=true,
seed=false)
@assert model.hparams.img_size ≠ undef "Image size not defined!"
if seed Random.seed!(69) end
imgs = cpu(model.G)(randn(Float32, model.hparams.latent_dim, n))
if uncenter imgs = @. (imgs + 1f0) / 2f0 end
imgs = reshape(imgs, model.hparams.img_size..., :)
color_image_tensor(imgs)
end
# return image grid makie figure from image grid tensor
#
function image_grid_figure(imgs::Array, layout::Tuple{Int,Int};
img_res=150,
hflip=true)
n = size(imgs)[end]
rows, cols = layout
@assert rows * cols == n "Number of images ≠ grid size!"
imgs = [imgs[.., i] for i in 1:n]
if hflip imgs = map(img -> reverse(img, dims=2), imgs) end
fig = Figure(resolution=(cols * img_res, rows * img_res))
for i = 1:rows, j = 1:cols
ax, = image(fig[i,j], imgs[i + rows * (j - 1)])
hidedecorations!(ax)
hidexdecorations!(ax, ticks=false)
hideydecorations!(ax, ticks=false)
end
fig
end
# return image grid from GAN and layout
#
function image_grid(model::GAN, layout::Tuple{Int,Int}; kws...)
imgs = image_grid_tensor(model, *(layout...); kws...)
image_grid(imgs, layout)
end
# convert images tensor into an image grid
#
function image_grid(imgs::Array{Color, 3}, layout::Tuple{Int,Int})
h, w, n = size(imgs)
rows, cols = layout
@assert rows * cols == n "Number of images ≠ grid size!"
grid = Array{Color}(undef, h * rows, w * cols)
for i = 1:rows, j = 1:cols
img = imgs[:, :, i + rows*(j - 1)]
grid[((i - 1)*h + 1):i*h, ((j - 1)*w + 1):j*w] = img'
end
grid
end
# return color RGB image from image array
#
function color_image(img::Array)
@assert length(size(img)) ∈ [2, 3] "Image tensor dimension ∉ [2, 3]!"
if length(size(img)) == 3
img = permutedims(img, (3, 1, 2))
img = Matrix(colorview(RGB, img))
else
img = Matrix(colorview(Gray, img))
end
img
end
# convert tensor of image data into color image tensor
#
function color_image_tensor(imgs::Array)
color_imgs = Array{Color}(undef, size(imgs)[1:2]..., size(imgs)[end])
for i = 1:size(imgs)[end]
color_imgs[:, :, i] = color_image(imgs[.., i])
end
color_imgs
end
end |
# # Magnetic liquid droplet in magnetic field
# The behaviour of droplets under the action of magnetic fields of different configurations is an important issue in many domains, including microfluidics (Seeman et al. 2012), mechanics of tissues (Douezan et al. 2011; Frasca et al. 2014), studies of dynamic self-assembly (Timonen et al. 2013) and many others. After the successful synthesis of magnetic fluids in the late sixties by (Rosensweig 1985) an exciting story about droplets of magnetic fluid began. At first, the elongation of the droplets in an external field was observed and explained by Arhipenko et al. (1978). Later on, different droplet configurations were experimentally observed in the high-frequency rotating field, which was subject to our numerical study in [^1].
# Here I present the essential ingredients to reproduce the results of the paper with the new tools SurfaceTopology, LaplaceBIE and ElTopo (optional).
using LinearAlgebra
using GeometryTypes
using SurfaceTopology
using LaplaceBIE
using AbstractPlotting, GLMakie
## using ElTopo
# The calculation requires normal vector and vertex areas methods. Latter one gives the area of 1/3 of the vertex ring, so the sum is the area of the droplet.
function normals(vertices,topology)
n = Point{3,Float64}[]
for v in 1:length(vertices)
s = Point(0,0,0)
for (v1,v2) in EdgeRing(v,topology)
s += cross(vertices[v1],vertices[v2])
end
normal = s ./ norm(s)
push!(n,normal)
end
return n
end
function vertexareas(points,topology)
vareas = zeros(Float64,length(points))
for face in Faces(topology)
v1,v2,v3 = face
area = norm(cross(points[v3]-points[v1],points[v2]-points[v1])) /2
vareas[v1] += area/3
vareas[v2] += area/3
vareas[v3] += area/3
end
return vareas
end
# These are tools to keep track if the calculation is sensible. Since we are working in an incompressible fluid, the volume needs to be constant, and the energy of the droplet decreases until equilibrium is reached.
function surfacevolume(points,topology)
normal0 = [0,0,1]
s = 0
for face in Faces(topology)
y1 = points[face[1]]
y2 = points[face[2]]
y3 = points[face[3]]
normaly = cross(y2-y1,y3-y1)
normaly /= norm(normaly)
area = norm(cross(y2-y1,y3-y1))/2
areaproj = dot(normaly,normal0)*area
volume = dot(y1 + y2 + y3,normal0)/3*areaproj
s += volume
end
return s
end
function energy(points,normals,faces,psi,mup,gammap,H0)
vareas = vertexareas(points,faces)
Area = sum(vareas)
s = 0
for xkey in 1:length(points)
s += psi[xkey]*dot(H0,normals[xkey]) * vareas[xkey]
end
Es = gammap * Area
Em = 1/8/pi * (1 - mup) * s
return Es+Em
end
# For calculating the equilibrium of the droplet, we use a curvatureless algorithm for a vicious droplet developed by Zinchenko 1997. He found a way to calculate velocity generated by a surface tension without explicitly calculating the curvature, which makes it easier to implement and from some tests also more stable. The following method accepts surface defined by points, normals and faces (or topology) and surface force as well as surface tension γ and viscosity η (which only affects the scaling of time).
function stokesvelocity(points,normals,faces,forcen,etaP,gammap)
vareas = vertexareas(points,faces)
velocityn = zeros(Float64,length(points))
for xkey in 1:length(points)
x = points[xkey]
nx = normals[xkey]
fx = forcen[xkey]
s = 0
for ykey in 1:length(points)
if ykey==xkey
continue
end
y = points[ykey]
ny = normals[ykey]
fy = forcen[ykey]
### Need to check a missing 2
s += vareas[ykey]*1 ./8/pi/etaP* dot(y-x,nx+ny)/norm(y-x)^3*(1-3*dot(y-x,nx)*dot(y-x,ny)/norm(y-x)^2) * gammap
s += vareas[ykey]*1 ./8/pi/etaP* ( dot(nx,ny)/norm(x-y) + dot(nx,x -y)*dot(ny,x-y)/norm(x-y)^3 )*(fy - fx)
end
velocityn[xkey] = s
end
return velocityn
end
# Now having methods defined, we can include a sphere and proceed with calculation.
include("sphere.jl")
msh = unitsphere(2)
vertices, faces = msh.vertices, msh.faces
## Now let's do something fun. Visualize the process with Makie in real time.
x = Node(msh)
y = lift(x->x,x)
scene = Scene(show_axis=false)
wireframe!(scene,y,linewidth = 3f0)
mesh!(scene,y, color = :white, shading = false)
display(scene)
## Initial parameters
H0 = [4.,0.,0.]
etap = 1.
gammap = 1.
μ = 10.
t = 0.
Δt = 0.1
N = 100
volume0 = surfacevolume(vertices,faces)
record(scene, "mdrop.gif", 1:N) do i # for i in 1:N
n = normals(vertices,faces)
psi = surfacepotential(vertices,n,faces,μ,H0)
P∇ψ = tangentderivatives(vertices,n,faces,psi)
Hn = normalderivatives(vertices,n,faces,P∇ψ,μ,H0)
E = energy(vertices,n,faces,psi,μ,gammap,H0)
rV = surfacevolume(vertices,faces)/volume0
@show E,rV
Ht = [norm(j) for j in P∇ψ]
# The force generated (M⋅∇)H, which includes a jump of magnetization at the surface and force coming from the whole bulk.
tensorn = μ*(μ-1)/8/pi * Hn.^2 + (μ-1)/8/pi * Ht.^2
vn = stokesvelocity(vertices,n,faces,tensorn,etap,gammap)
vertices .+= n .* vn * Δt
msh = HomogenousMesh(vertices,faces)
### ElTopo stabilization
## par = SurfTrack(allow_vertex_movement=true)
## msh = stabilize(msh,par)
push!(x,msh)
AbstractPlotting.force_update!()
global vertices, faces = msh.vertices, msh.faces
global t += Δt
end
# ![](mdrop.gif)
# [^1]: Erdmanis, J. & Kitenbergs, G. & Perzynski, R. & Cebers, A. (2017) Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment
|
# This script will usually fail as Stan gives up when the integration fails.
using StanSample, StatsPlots
ProjDir = @__DIR__
ben_model = "
functions {
real[] dz_dt(real t, // time
real[] z, // system state {prey, predator}
real[] theta, // parameters
real[] x_r, // unused data
int[] x_i) {
real u = z[1];
real v = z[2];
real alpha = theta[1];
real beta = theta[2];
real gamma = theta[3];
real delta = theta[4];
real du_dt = (alpha - beta * v) * u;
real dv_dt = (-gamma + delta * u) * v;
return { du_dt, dv_dt };
}
}
data {
int<lower = 0> N;
real t0;
real ts[N];
real y_init[2];
real y[N, 2];
}
transformed data {
real beta = 1.0;
real gamma = 3.0;
real delta = 1.0;
}
parameters {
real alpha;
real z_init[2];
real<lower = 0> sigma[2];
}
transformed parameters {
real theta[4] = { alpha, beta, gamma, delta };
real z[N, 2] = integrate_ode_rk45(dz_dt, z_init, t0, ts, theta,
rep_array(0.0, 0), rep_array(0, 0),
1e-5, 1e-3, 500);
}
model {
alpha ~ normal(1.5, 0.01);
sigma ~ inv_gamma(3, 3);
z_init ~ normal(1, 0.01);
for (k in 1:2) {
y_init[k] ~ normal(z_init[k], sigma[k]);
y[ , k] ~ normal(z[, k], sigma[k]);
}
}
";
sm = SampleModel("Ben", ben_model, tmpdir="$(@__DIR__)/tmp")
obs = reshape([
2.75487369287842, 6.77861583902452, 0.977380864533721,
1.87996617432547,6.10484970865812, 1.38241825210688, 1.32745986436496,
4.35128045090906, 3.28082272129074, 1.02627964892546,
0.252582832985904, 2.01848763447693, 1.91654508055532,
0.33796473710305, 0.621805831293324, 3.47392930294277, 0.512736737236118,
0.304559407399392, 4.56901766791213, 0.91966250277948], (10,2))
ben_data = Dict(
:N => 10,
:t0 => 0,
:ts => 1:10,
:y => obs,
:y_init => [1.01789244983237, 0.994539126829031]
)
t = ben_data[:ts]
plot(xlab="t", ylab="prey and pred")
plot!(t, obs[:,1], lab="prey")
plot!(t, obs[:, 2], lab="pred")
savefig("$(ProjDir)/observations.png")
@time rc = stan_sample(sm; data=ben_data)
if success(rc)
p = read_samples(sm, output_format=:particles)
display(p)
end
|
using Flux
struct NeuralNetworkQ{Tm, To, Tp} <: AbstractQApproximator{Any, Int}
model::Tm
opt::To
ps::Tp
function NeuralNetworkQ(model::Tm, opt::To) where {Tm, To}
m = gpu(model)
ps = params(m)
new{typeof(m), To, typeof(ps)}(m, opt, ps)
end
end
(Q::NeuralNetworkQ)(s, ::Val{:dist}) = Q.model(s)
(Q::NeuralNetworkQ)(s) = Q(s, Val(:dist))
(Q::NeuralNetworkQ)(s, ::Val{:argmax}) = reshape(map(i -> i[1], findmax(Q(s).data, dims=1)[2]), :)
(Q::NeuralNetworkQ)(s, ::Val{:max}) = dropdims(maximum(Q(s), dims=1), dims=1)
(Q::NeuralNetworkQ)(s, a::Int) = Q(s)[a]
function (Q::NeuralNetworkQ)(s, a::AbstractArray{Int, 1})
dist = Q(s)
inds = CartesianIndex.(a, axes(dist, 2))
dist[inds]
end
function update!(Q::NeuralNetworkQ, loss)
Flux.back!(loss)
Flux.Optimise.update!(Q.opt, Q.ps)
end |
module AnnDatas
using HDF5
using SparseArrays
using DataFrames
export AnnData
struct AnnData
X::SparseMatrixCSC
obsm::Union{Nothing, Dict{String, Any}}
obsp::Union{Nothing, Dict{String, Any}}
uns::Union{Nothing, Dict{String, Any}}
obs::Union{Nothing, DataFrame}
var::Union{Nothing, DataFrame}
end
"""
Read a CSR matrix in a SparseMatrixCSC
"""
function read_csr_matrix(g::HDF5.Group)
attr = attributes(g)
@assert read(attr["encoding-type"]) == "csr_matrix"
m, n = read(attr["shape"])
V = read(g["data"])
csr_indices = read(g["indices"]) .+ 1
csr_indptr = read(g["indptr"]) .+ 1
nnz = length(V)
# easiest way to do this is to go CSR -> COO -> CSC
I = Vector{Int32}(undef, nnz)
J = Vector{Int32}(undef, nnz)
for i in 1:m
for k in csr_indptr[i]:csr_indptr[i+1]-1
I[k] = i
J[k] = csr_indices[k]
end
end
return sparse(I, J, V, m, n)
end
"""
Read a serialized data frame into a DataFrame
"""
function read_dataframe(input::HDF5.File, path::String)
if !haskey(input, path)
return nothing
end
g = input[path]
columns = Dict{String, Any}()
attr = attributes(g)
@assert read(attr["encoding-type"]) == "dataframe"
columnorder = read(attr["column-order"])
for key in keys(g)
columns[key] = read(g[key])
end
df = DataFrame(Dict(key => columns[key] for key in columnorder))
df[!,"_index"] = read(g["_index"])
return df
end
"""
General purpose function to read a groups into a dictionary tree structure.
"""
function read_group(input::HDF5.File, path::String)
if !haskey(input, path)
return nothing
end
g = input[path]
data = Dict{String, Any}()
for key in keys(g)
dataset = g[key]
if isa(dataset, HDF5.Group)
attr = attributes(dataset)
if length(attr) == 0
# data[key] = read_group(dataset)
data[key] = read(dataset)
elseif haskey(attr, "encoding-type") && read(attr["encoding-type"]) == "csr_matrix"
data[key] = read_csr_matrix(dataset)
else
data[key] = read(dataset)
end
# TODO: special cases for other types of data
else
data[key] = read(dataset)
end
end
return data
end
"""
Read an AnnData struct from the given h5ad filename.
"""
function Base.read(filename::AbstractString, ::Type{AnnData})
input = h5open(filename)
if isa(input["X"], HDF5.Group)
X = read_csr_matrix(input["X"])
else
X = read(input["X"])
end
obsm = read_group(input, "obsm")
obsp = read_group(input, "obsp")
uns = read_group(input, "uns")
obs = read_dataframe(input, "obs")
var = read_dataframe(input, "var")
close(input)
return AnnData(X, obsm, obsp, uns, obs, var)
end
end # module
|
module BIFMHelperNodeTest
using Test
using ReactiveMP
using Random
import ReactiveMP: @test_rules
@testset "BIFMHelperNode" begin
@testset "Creation" begin
node = make_node(BIFMHelper)
@test functionalform(node) === BIFMHelper
@test sdtype(node) === Stochastic()
@test name.(interfaces(node)) === (:out, :in)
@test factorisation(node) === ((1, 2), )
@test length(methods(functional_dependencies, (Any, FactorNode{Type{BIFMHelper}}, Int))) === 1
end
@testset "Average energy" begin
node = make_node(BIFMHelper)
@test score(AverageEnergy(),
BIFMHelper,
Val{(:out, :in)},
(Marginal(MvNormalMeanCovariance([1,1], [2 0; 0 3]), false, false), Marginal(MvNormalMeanCovariance([1,1], [2 0; 0 3]), false, false)),
nothing) ≈ entropy(MvNormalMeanCovariance([1,1], [2 0; 0 3]))
@test score(AverageEnergy(),
BIFMHelper,
Val{(:out, :in)},
(Marginal(MvNormalMeanCovariance([1,2], [2 0; 0 1]), false, false), Marginal(MvNormalMeanPrecision([1,2], [0.5 0; 0 1]), false, false)),
nothing) ≈ entropy(MvNormalMeanCovariance([1,2], [2 0; 0 1]))
end
end
end |
__precompile__()
module MicroLogging
# ----- Core API to go in Base -----
export
## Logger types
AbstractLogger, LogLevel, NullLogger,
# Public logger API:
# handle_message, shouldlog, min_enabled_level, catch_exceptions
# (not exported, as they're not generally called by users)
#
## Log creation
@debug, @info, @warn, @error, @logmsg,
## Logger installation and control
# TODO: Should some of these go into stdlib ?
with_logger, current_logger, global_logger, disable_logging
# ----- API to go in StdLib package ? -----
export
SimpleLogger, # Possibly needed in Base?
# TODO: configure_logging needs a big rethink (see, eg, python's logger
# config system)
configure_logging
# ----- MicroLogging stuff, for now -----
export
InteractiveLogger
# core.jl includes the code which will hopefully go into Base in 0.7
const core_in_base = isdefined(Base, :CoreLogging)
if core_in_base
import Logging:
@debug, @info, @warn, @error, @logmsg,
AbstractLogger,
LogLevel, BelowMinLevel, Debug, Info, Warn, Error, AboveMaxLevel,
with_logger, current_logger, global_logger, disable_logging,
handle_message, shouldlog, min_enabled_level, catch_exceptions,
SimpleLogger
else
include("core.jl")
end
include("loggers.jl")
include("config.jl")
if !core_in_base
include("test.jl")
end
function __init__()
global_logger(InteractiveLogger(STDERR))
end
end
|
using Stheno, Test, Random, LinearAlgebra, Statistics
@testset "Stheno" begin
@testset "util" begin
include("util/covariance_matrices.jl")
include("util/woodbury.jl")
include("util/block_arrays.jl")
include("util/abstract_data_set.jl")
end
@testset "mean_and_kernel" begin
include("test_util.jl")
include("mean_and_kernel/mean.jl")
include("mean_and_kernel/kernel.jl")
include("mean_and_kernel/compose.jl")
include("mean_and_kernel/finite.jl")
include("mean_and_kernel/conditional.jl")
include("mean_and_kernel/block.jl")
# include("mean_and_kernel/transform.jl")
include("mean_and_kernel/input_transform.jl")
include("mean_and_kernel/zero.jl")
include("mean_and_kernel/degenerate.jl")
include("mean_and_kernel/derivative.jl")
include("mean_and_kernel/conversion.jl")
end
@testset "gp" begin
include("gp/abstract_gp.jl")
include("gp/gp.jl")
include("gp/block_gp.jl")
end
@testset "linops" begin
include("linops/indexing.jl")
include("linops/addition.jl")
include("linops/product.jl")
# include("linops/integrate.jl")
include("linops/project.jl")
include("linops/conditioning.jl")
end
@testset "integration" begin
include("util/toeplitz_integration.jl")
end
end
|
"""
Get the curl of a vector f w.r.t Ds
"""
function curl(vec, Ds)
[Ds[2](vec[3]) - Ds[3](vec[2]), Ds[3](vec[1]) - Ds[1](vec[3]), Ds[1](vec[2]) - Ds[2](vec[1])]
end
"""
Get the divergence of a function f w.r.t Ds with the option of multiplying each part of the sum by a v
"""
function divergence(Ds, f, v=ones(length(Ds)))
if f isa AbstractArray
sum([v[i] * Ds[i](f[i]) for i in eachindex(Ds)])
else
sum([v[i] * Ds[i](f) for i in eachindex(Ds)])
end
end
"""
Print the loss of the loss function
"""
function print_loss(timeCounter, startTime, times, losses)
deltaT_s = time_ns() #Start a clock when the callback begins
timeCounter = timeCounter + time_ns() - deltaT_s
ctime = time_ns() - startTime - timeCounter #This variable is the time to use for the time benchmark plot
append!(times, ctime/10^9) #Conversion nanosec to seconds
function cb(p, l)
append!(losses, l)
println("Current loss is: $l")
return false
end
end
"""
Simulates a collisionless plasma given:
plasma – Struct of type CollisionlessPlasma
lb – lower bound
ub – upper bound
time_lb – lower time boundary
time_ub – upper time boundary
GPU – whether this should be executed on the GPU or not
inner_layers – how many layers in the neural network
strategy – what NeuralPDE training strategy should be used
"""
function solve(plasma::CollisionlessPlasma;
lb=0.0, ub=1.0, time_lb=lb, time_ub=ub,
GPU=true, inner_layers=16, strategy=StochasticTraining(100),
E_bcs=Neumann,
f_bcs=(a=1, g=0), maxiters=[30,100], normalized=true)
if lb > ub
error("lower bound must be larger than upper bound")
end
if GPU && strategy == QuadratureTraining()
error("QuadratureTraining does not have GPU support. Use another strategy (e.g. StochasticTraining(200)) instead")
end
losses = []
times = []
timeCounter = 0.0
startTime = time_ns()
# constants
dim = 3
geometry = plasma.geometry.f # this might change with a geometry refactor
dis = plasma.distributions
species = [d.species for d in dis]
consts = Constants()
μ_0, ϵ_0 = consts.μ_0, consts.ϵ_0
# get qs, ms, Ps from species
qs, ms = Float64[], Float64[]
for s in species
push!(qs,s.q)
push!(ms,s.m)
end
Ps = [d.P for d in dis]
if normalized
qs .= 1
ms .= 1
ϵ_0 = 1
μ_0 = 0
end
# variables
fs = Symbolics.variables(:f, eachindex(species); T=SymbolicUtils.FnType{Tuple,Real})
Es = Symbolics.variables(:E, 1:dim; T=SymbolicUtils.FnType{Tuple,Real})
Bs = Symbolics.variables(:B, 1:dim; T=SymbolicUtils.FnType{Tuple,Real})
# parameters
@parameters t
xs,vs = Symbolics.variables(:x, 1:dim), Symbolics.variables(:v, 1:dim)
# integrals
_I = Integral(tuple(vs...) in DomainSets.ProductDomain(ClosedInterval(-Inf ,Inf), ClosedInterval(-Inf ,Inf), ClosedInterval(-Inf ,Inf)))
# differentials
Dxs = Differential.(xs)
Dvs = Differential.(vs)
Dt = Differential(t)
# domains
xs_int = xs .∈ Interval(lb, ub)
vs_int = vs .∈ Interval(lb, ub)
t_int = t ∈ Interval(time_lb, time_ub)
domains = [t_int;xs_int;vs_int]
# helpers
_Es = [E(t,xs...) for E in Es]
_Bs = [B(t,xs...) for B in Bs]
_fs = [f(t,xs...,vs...) for f in fs]
# divergences
div_vs = [divergence(Dxs, _f, vs) for _f in _fs]
div_B = divergence(Dxs, _Bs)
div_E = divergence(Dxs, _Es)
Fs = [qs[i]/ms[i] * (_Es + cross(vs,_Bs)) for i in eachindex(qs)]
divv_Fs = [divergence(Dvs, _fs[i], Fs[i]) for i in eachindex(_fs)]
# charge and current densities
ρ = sum([qs[i] * _I(_fs[i]) for i in eachindex(qs)])
J = sum([qs[i] * _I(_fs[i]) * vs[j] for i in 1:length(_fs), j in 1:length(vs)])
# system of equations
vlasov_eqs = Dt.(_fs) .~ .- div_vs .- divv_Fs
curl_E_eqs = curl(_Es, Dxs) .~ Dt.(_Bs)
curl_B_eqs = ϵ_0*μ_0 * Dt.(_Es) .- curl(_Bs, Dxs) .~ - μ_0.*J
div_E_eq = div_E ~ ρ/ϵ_0
div_B_eq = div_B ~ 0
eqs = [vlasov_eqs; curl_E_eqs; curl_B_eqs; div_E_eq; div_B_eq]
# boundary conditions
div_E0 = sum([Dxs[i](Es[i](time_lb, xs...)) for i in eachindex(Dxs)])
div_B0 = sum([Dxs[i](Bs[i](time_lb, xs...)) for i in eachindex(Dxs)])
vlasov_ics = [fs[i](time_lb,xs...,vs...) ~ Ps[i](xs,vs) * geometry(xs) for i in eachindex(fs)]
div_B_ic = div_B0 ~ 0
div_E_ic = div_E0 ~ sum([qs[i] * _I(fs[i](time_lb,xs...,vs...)) for i in eachindex(qs)])/ϵ_0 * geometry(xs)
E_bcs = [E_bcs(t, xs, Dxs, Es, lb); E_bcs(t, xs, Dxs, Es, ub)]
f_bcs = [Reflective(t, xs, vs, fs, lb, f_bcs.a, f_bcs.g); Reflective(t, xs, vs, fs, ub, f_bcs.a, f_bcs.g)]
bcs = [vlasov_ics;div_B_ic; div_E_ic; E_bcs; f_bcs]
# get variables
vars_arg = [_fs...; _Es...; _Bs...]
vars = [fs, Bs, Es]
dict_vars = Dict()
for var in vars
push!(dict_vars, var => [v for v in var])
end
# set up PDE System
@named pde_system = PDESystem(eqs, bcs, domains, [t,xs...,vs...], vars_arg)
# set up problem
il = inner_layers
ps_chains = [FastChain(FastDense(length(domains), il, Flux.σ), FastDense(il,il,Flux.σ), FastDense(il, 1)) for _ in 1:length(_fs)]
xs_chains = [FastChain(FastDense(length([t, xs...]), il, Flux.σ), FastDense(il,il,Flux.σ), FastDense(il, 1)) for _ in 1:length([_Es; _Bs])]
chain = [ps_chains;xs_chains]
initθ = GPU ? map(c -> CuArray(Float64.(c)), DiffEqFlux.initial_params.(chain)) : map(c -> Float64.(c), DiffEqFlux.initial_params.(chain))
discretization = NeuralPDE.PhysicsInformedNN(chain, strategy, init_params=initθ)
prob = SciMLBase.discretize(pde_system, discretization)
# solve
opt = Optim.BFGS()
res = GalacticOptim.solve(prob, opt, cb = print_loss(timeCounter, startTime, times, losses), maxiters=maxiters[1])
prob = remake(prob, u0=res.minimizer)
res = GalacticOptim.solve(prob, ADAM(0.01), cb = print_loss(timeCounter, startTime, times, losses), maxiters=maxiters[2])
phi = discretization.phi
return PlasmaSolution(plasma, vars, dict_vars, phi, res, initθ, domains, losses, times)
end
"""
Simulates an electrostatic plasma given:
plasma – Struct of type ElectrostaticPlasma
dim – in how many D and V dimensions should the simulation happen
lb – lower bound
ub – upper bound
time_lb – lower time boundary
time_ub – upper time boundary
GPU – whether this should be executed on the GPU or not
inner_layers – how many layers in the neural network
strategy – what NeuralPDE training strategy should be used
"""
function solve(plasma::ElectrostaticPlasma;
lb=0.0, ub=1.0, time_lb=lb, time_ub=ub,
dim=3, GPU=true, inner_layers=16, strategy=StochasticTraining(80*dim),
E_bcs=Neumann,f_bcs=(a=1, g=0), maxiters=[30,100], normalized=true)
if lb > ub
error("lower bound must be larger than upper bound")
end
if GPU && strategy == QuadratureTraining()
error("QuadratureTraining does not have GPU support. Use another strategy (e.g. StochasticTraining(200)) instead")
end
losses = []
times = []
timeCounter = 0.0
startTime = time_ns()
# constants
geometry = plasma.geometry.f # this might change with a geometry refactor
dis = plasma.distributions
species = [d.species for d in dis]
consts = Constants()
ϵ_0 = consts.ϵ_0
# get qs, ms, Ps from species
qs, ms = Float64[], Float64[]
for s in species
push!(qs,s.q)
push!(ms,s.m)
end
Ps = [d.P for d in dis]
if normalized
qs .= 1
ms .= 1
ϵ_0 = 1
end
# variables
fs = Symbolics.variables(:f, eachindex(species); T=SymbolicUtils.FnType{Tuple,Real})
Es = Symbolics.variables(:E, 1:dim; T=SymbolicUtils.FnType{Tuple,Real})
# parameters
@parameters t
xs,vs = Symbolics.variables(:x, 1:dim), Symbolics.variables(:v, 1:dim)
# integrals
_I = if length(vs) > 1
intervals = [ClosedInterval(-Inf ,Inf) for _ in 1:length(vs)]
_I = Integral(tuple(vs...) in DomainSets.ProductDomain(intervals...))
else
_I = Integral(first(vs) in DomainSets.ClosedInterval(-Inf ,Inf))
end
# differentials
Dxs = Differential.(xs)
Dvs = Differential.(vs)
Dt = Differential(t)
# domains
xs_int = xs .∈ Interval(lb, ub)
vs_int = vs .∈ Interval(lb, ub)
t_int = t ∈ Interval(time_lb, time_ub)
domains = [t_int;xs_int;vs_int]
# helpers
_Es = [E(t,xs...) for E in Es]
_fs = [f(t,xs...,vs...) for f in fs]
# divergences
div_vs = [divergence(Dxs, _f, vs) for _f in _fs]
div_E = divergence(Dxs, _Es)
Fs = [qs[i]/ms[i] * _Es for i in eachindex(qs)]
divv_Fs = [divergence(Dvs, _fs[i], Fs[i]) for i in eachindex(_fs)]
# charge density
ρ = sum([qs[i] * _I(_fs[i]) for i in eachindex(qs)])
# equations
vlasov_eqs = Dt.(_fs) .~ .- div_vs .- divv_Fs
div_E_eq = div_E ~ ρ/ϵ_0
eqs = [vlasov_eqs; div_E_eq]
# boundary and initial conditions
div_E0 = sum([Dxs[i](Es[i](time_lb, xs...)) for i in eachindex(Dxs)])
vlasov_ics = [fs[i](time_lb,xs...,vs...) ~ Ps[i](xs,vs) * geometry(xs) for i in eachindex(fs)]
div_E_ic = div_E0 ~ sum([qs[i] * _I(fs[i](time_lb,xs...,vs...)) for i in eachindex(qs)])/ϵ_0 * geometry(xs)
f_bcs = [Reflective(t, xs, vs, fs, lb, f_bcs.a, f_bcs.g); Reflective(t, xs, vs, fs, ub, f_bcs.a, f_bcs.g)]
E_bcs = [E_bcs(t, xs, Dxs, Es, lb); E_bcs(t, xs, Dxs, Es, ub)]
bcs = [vlasov_ics; div_E_ic; E_bcs; f_bcs]
# set up variables
vars_arg = [_fs; _Es]
vars = [fs, Es]
dict_vars = Dict()
for var in vars
push!(dict_vars, var => [v for v in var])
end
# set up and return PDE System
@named pde_system = PDESystem(eqs, bcs, domains, [t,xs...,vs...], vars_arg)
# set up problem
il = inner_layers
ps_chains = [FastChain(FastDense(length(domains), il, Flux.σ), FastDense(il,il,Flux.σ), FastDense(il, 1)) for _ in 1:length(_fs)]
xs_chains = [FastChain(FastDense(length([t, xs...]), il, Flux.σ), FastDense(il,il,Flux.σ), FastDense(il, 1)) for _ in 1:length(_Es)]
chain = [ps_chains;xs_chains]
initθ = GPU ? map(c -> CuArray(Float64.(c)), DiffEqFlux.initial_params.(chain)) : map(c -> Float64.(c), DiffEqFlux.initial_params.(chain))
discretization = NeuralPDE.PhysicsInformedNN(chain, strategy, init_params=initθ)
prob = SciMLBase.discretize(pde_system, discretization)
# solve
opt = Optim.BFGS()
res = GalacticOptim.solve(prob, opt, cb = print_loss(timeCounter, startTime, times, losses), maxiters=maxiters[1])
prob = remake(prob, u0=res.minimizer)
res = GalacticOptim.solve(prob, ADAM(0.01), cb = print_loss(timeCounter, startTime, times, losses), maxiters=maxiters[2])
phi = discretization.phi
return PlasmaSolution(plasma, vars, dict_vars, phi, res, initθ, domains, losses, times)
end |
struct BoundingBox
ramin::Float64
ramax::Float64
decmin::Float64
decmax::Float64
function BoundingBox(ramin::Float64, ramax::Float64,
decmin::Float64, decmax::Float64)
@assert ramax > ramin "ramax must be greater than ramin"
@assert decmax > decmin "decmax must be greater than decmin"
new(ramin, ramax, decmin, decmax)
end
end
function BoundingBox(ramin::String, ramax::String,
decmin::String, decmax::String)
BoundingBox(parse(Float64, ramin),
parse(Float64, ramax),
parse(Float64, decmin),
parse(Float64, decmax))
end
"""
SurveyDataSet
Abstract type representing a collection of imaging data and associated
metadata from a survey. Concrete subtypes are for specific
surveys. They provide methods for querying which images are available
and loading Celeste Image objects from disk. In short, they provide an
interface between survey data organized on disk and in-memory Celeste
objects.
"""
abstract type SurveyDataSet end
load_images(::SurveyDataSet, box::BoundingBox) =
error("load_images() not defined for this SurveyDataSet type")
|
# wraps variables found in ASWING.INC for use in Julia
struct ASWING_s
PI::Array{Float64,1}
DTOR::Array{Float64,1}
VERSION::Array{Float64,1}
STIPL::Array{Float64,1}
STIPR::Array{Float64,1}
TBTIPL::Array{Float64,1}
TBTIPR::Array{Float64,1}
MACHPG::Array{Float64,1}
GEEW::Array{Float64,1}
SREF::Array{Float64,1}
CREF::Array{Float64,1}
BREF::Array{Float64,1}
XYZREF::Array{Float64,2}
BGREFX::Array{Float64,1}
BGREFY::Array{Float64,1}
BGREFZ::Array{Float64,1}
ULCON::Array{Float64,1}
GRNORM::Array{Float64,1}
VSOSL::Array{Float64,1}
VSO_SI::Array{Float64,1}
VSOSL_SI::Array{Float64,1}
RHOSL::Array{Float64,1}
RHO_SI::Array{Float64,1}
RHOSL_SI::Array{Float64,1}
RMUSL::Array{Float64,1}
RMU_SI::Array{Float64,1}
RMUSL_SI::Array{Float64,1}
EXPII::Array{Float64,1}
EXPNN::Array{Float64,1}
LALTKM::Array{Int32,1}
AUTSCL::Array{Int32,1}
LTERSE::Array{Int32,1}
LVLFIX::Array{Int32,1}
LAELAG::Array{Int32,1}
LLEVEC::Array{Int32,1}
STEADY::Array{Int32,1}
CONLAW::Array{Int32,1}
CONSET::Array{Int32,1}
LFGUST::Array{Int32,1}
LROMFR::Array{Int32,1}
LVISEN::Array{Int32,1}
LLGROU::Array{Int32,1}
LLREFP::Array{Int32,1}
LAXPLT::Array{Int32,1}
LELIST::Array{Int32,1}
LENGLI::Array{Int32,1}
LESPEC::Array{Int32,1}
LNODES::Array{Int32,1}
LUNSWP::Array{Int32,1}
LPLRIB::Array{Int32,1}
LPLZLO::Array{Int32,1}
LPLBAR::Array{Int32,1}
LFRPAN::Array{Int32,1}
LFRROT::Array{Int32,1}
LGEOM::Array{Int32,1}
LLRHS::Array{Int32,1}
LVAIC::Array{Int32,1}
LWSET::Array{Int32,1}
LCSET::Array{Int32,1}
LQBDEF::Array{Int32,2}
LBSYMM::OffsetArrays.OffsetArray{Int32,2,Array{Int32,2}}
LSFLAP::Array{Int32,1}
LSPENG::Array{Int32,1}
LSSENS::Array{Int32,1}
LQINI::Array{Int32,1}
LAINI::Array{Int32,1}
LCONV::Array{Int32,1}
LMACH::Array{Int32,1}
PSTEADY::Array{Int32,1}
LPBEAM::Array{Int32,1}
LPWAKE::Array{Int32,1}
LDCON::Array{Int32,1}
LUCON::Array{Int32,1}
LQCON::Array{Int32,2}
NQ::Array{Int32,1}
NCP::Array{Int32,1}
IBEAM::Array{Int32,1}
IICON::Array{Int32,1}
II::Array{Int32,1}
IFRST::Array{Int32,1}
ILAST::Array{Int32,1}
IITOT::Array{Int32,1}
NNCON::Array{Int32,1}
NN::Array{Int32,1}
NFRST::Array{Int32,1}
NLAST::Array{Int32,1}
NNTOT::Array{Int32,1}
KEQ0::Array{Int32,2}
KEQ::Array{Int32,2}
NRHS::Array{Int32,1}
NGVAR::Array{Int32,1}
NGPAR::Array{Int32,1}
NGFOR::Array{Int32,1}
NGFEQ::Array{Int32,1}
NFRP::Array{Int32,1}
NFRPF::Array{Int32,1}
NFRPR::Array{Int32,1}
NBEAM::Array{Int32,1}
NFUSE::Array{Int32,1}
NSURF::Array{Int32,1}
ICOORD::Array{Int32,1}
IENGTYP::Array{Int32,1}
IGUSDIR::Array{Int32,1}
NXGUST::Array{Int32,1}
NYGUST::Array{Int32,1}
NZGUST::Array{Int32,1}
NFGUST::Array{Int32,1}
IGRIM::Array{Int32,1}
LRES::Array{Int32,1}
LQJOIN::Array{Int32,2}
LAN::Array{Int32,1}
LHEAD::Array{Int32,1}
LELEV::Array{Int32,1}
LBANK::Array{Int32,1}
LVAC::Array{Int32,1}
LRAC::Array{Int32,1}
LVEL::Array{Int32,1}
LROT::Array{Int32,1}
LPOS::Array{Int32,1}
LFLAP::Array{Int32,1}
LPENG::Array{Int32,1}
LVIDT::Array{Int32,1}
LALDT::Array{Int32,1}
LBEDT::Array{Int32,1}
LHEDT::Array{Int32,1}
LELDT::Array{Int32,1}
LBADT::Array{Int32,1}
LWDT::Array{Int32,1}
LADT::Array{Int32,1}
LVIDTS::Array{Int32,1}
LALDTS::Array{Int32,1}
LBEDTS::Array{Int32,1}
LHEDTS::Array{Int32,1}
LELDTS::Array{Int32,1}
LBADTS::Array{Int32,1}
LWDTS::Array{Int32,2}
LADTS::Array{Int32,2}
LFRPK::Array{Int32,1}
KFRPL::Array{Int32,1}
LFLAPF::Array{Int32,1}
LPENGF::Array{Int32,1}
LGUS1F::Array{Int32,1}
LGUS2F::Array{Int32,1}
LGUS3F::Array{Int32,1}
LGUS4F::Array{Int32,1}
VGI_FRP::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
AFORCE::Array{Float64,1}
RFORCE::Array{Float64,1}
EFORCE::Array{Float64,1}
GFORCE::Array{Float64,1}
TFORCE::Array{Float64,1}
AMOMNT::Array{Float64,1}
RMOMNT::Array{Float64,1}
EMOMNT::Array{Float64,1}
GMOMNT::Array{Float64,1}
TMOMNT::Array{Float64,1}
AFOR_Q::Array{Float64,3}
AFOR_GL::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
AFOR_FRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
AMOM_Q::Array{Float64,3}
AMOM_GL::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
AMOM_FRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
RFOR_Q::Array{Float64,3}
RFOR_GL::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
RFOR_FRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
RMOM_Q::Array{Float64,3}
RMOM_GL::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
RMOM_FRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
EFOR_Q::Array{Float64,3}
EFOR_GL::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
EFOR_FRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
EMOM_Q::Array{Float64,3}
EMOM_GL::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
EMOM_FRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GFOR_Q::Array{Float64,3}
GFOR_GL::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GFOR_FRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GMOM_Q::Array{Float64,3}
GMOM_GL::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GMOM_FRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
AFOR_UT::Array{Float64,3}
AFOR_GLT::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
AMOM_UT::Array{Float64,3}
AMOM_GLT::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
RFOR_UT::Array{Float64,3}
RFOR_GLT::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
RMOM_UT::Array{Float64,3}
RMOM_GLT::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
EFOR_UT::Array{Float64,3}
EFOR_GLT::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
EMOM_UT::Array{Float64,3}
EMOM_GLT::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GFOR_UT::Array{Float64,3}
GFOR_GLT::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GMOM_UT::Array{Float64,3}
GMOM_GLT::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
FAERO::Array{Float64,1}
FAERO_Q::Array{Float64,3}
FAERO_GL::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
FAERO_FRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
FAERO_UT::Array{Float64,3}
FAERO_GLT::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
MAERO::Array{Float64,1}
MAERO_Q::Array{Float64,3}
MAERO_GL::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
MAERO_FRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
MAERO_UT::Array{Float64,3}
MAERO_GLT::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
DVENG::Array{Float64,2}
XENG::Array{Float64,3}
XENG_ANG::Array{Float64,3}
RENG::Array{Float64,3}
RENG_ANG::Array{Float64,3}
VENG::Array{Float64,3}
VENG_Q::Array{Float64,3}
VENG_GL::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
FENG::Array{Float64,3}
FENG_Q::Array{Float64,3}
FENG_GL::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
MENG::Array{Float64,3}
MENG_Q::Array{Float64,3}
MENG_GL::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
MASS::Array{Float64,1}
MASSP::Array{Float64,1}
MASSB::Array{Float64,1}
AREAB::Array{Float64,1}
RCGXYZ0::Array{Float64,1}
RMASST0::Array{Float64,2}
RINERT0::Array{Float64,2}
RCGXYZ::Array{Float64,2}
RMASST::Array{Float64,3}
RINERT::Array{Float64,3}
PCGXYZ0::Array{Float64,1}
PMASST0::Array{Float64,2}
PINERT0::Array{Float64,2}
PCGXYZ::Array{Float64,2}
PMASST::Array{Float64,3}
PINERT::Array{Float64,3}
AMASST0::Array{Float64,2}
AINERT0::Array{Float64,2}
AMASST::Array{Float64,3}
AINERT::Array{Float64,3}
RCGXYZB0::Array{Float64,2}
RMASSTB0::Array{Float64,3}
AMASSTB0::Array{Float64,3}
RINERTB0::Array{Float64,3}
AINERTB0::Array{Float64,3}
RCGXYZB::Array{Float64,3}
RMASSTB::Array{Float64,4}
RINERTB::Array{Float64,4}
AMASSTB::Array{Float64,4}
AINERTB::Array{Float64,4}
QPYLO::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
TB::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
QB::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
QBT::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
TJOIN::Array{Float64,2}
TGROU::Array{Float64,1}
SBRK::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
TBFIL::Array{Float64,1}
QBFIL::Array{Float64,1}
QBTFIL::Array{Float64,1}
ANGJ::Array{Float64,2}
ANGJM::Array{Float64,2}
MOMJ::Array{Float64,2}
HJAX::Array{Float64,2}
NB::OffsetArrays.OffsetArray{Int32,2,Array{Int32,2}}
KBTYPE::Array{Int32,1}
KBNUM::Array{Int32,1}
KBPYLO::Array{Int32,1}
KBJOIN::Array{Int32,2}
KBGROU::Array{Int32,1}
NPYLO::Array{Int32,1}
ISPYLO::Array{Int32,1}
IPYLO::Array{Int32,1}
KPTYPE::Array{Int32,1}
ISSENS::Array{Int32,1}
ISENS::Array{Int32,1}
NJOIN::Array{Int32,1}
ISJOIN::Array{Int32,2}
IJOIN::Array{Int32,2}
KJTYPE::Array{Int32,1}
NGROU::Array{Int32,1}
ISGROU::Array{Int32,1}
IGROU::Array{Int32,1}
KGTYPE::Array{Int32,1}
NCORN::Array{Int32,1}
ISCORN::Array{Int32,1}
ICORN::Array{Int32,1}
JBCORN::Array{Int32,1}
IBCORN::Array{Int32,1}
NBRK::Array{Int32,1}
IBRK::OffsetArrays.OffsetArray{Int32,2,Array{Int32,2}}
JFIL::Array{Int32,1}
ISFIL::Array{Int32,1}
NBFIL::Array{Int32,1}
NANGJ::Array{Int32,1}
QSNSP::Array{Float64,3}
QSENS::Array{Float64,3}
QSENS_Q::Array{Float64,3}
QSENS_QT::Array{Float64,3}
QSENS_GL::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
QSENS_GLT::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
QSENS_FRP::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
TPMAT::Array{Float64,3}
VIWIND::Array{Float64,1}
ALWIND::Array{Float64,1}
BEWIND::Array{Float64,1}
VIW_VEL::Array{Float64,1}
ALW_VEL::Array{Float64,1}
BEW_VEL::Array{Float64,1}
Q::Array{Float64,3}
Q0::Array{Float64,2}
QPAR::Array{Float64,2}
S::Array{Float64,1}
THET::Array{Float64,1}
SPLT::Array{Float64,1}
TBI::Array{Float64,1}
SCP::Array{Float64,1}
XYZTFZ::Array{Float64,2}
XYZTFZI::Array{Float64,2}
PARAM::Array{Float64,2}
AN::Array{Float64,2}
PSPEC::Array{Float64,2}
PSPECSET::Array{Float64,2}
WFLAP::Array{Float64,2}
WPENG::Array{Float64,2}
QJOIN::Array{Float64,3}
QPNT::Array{Float64,3}
DTIME::Array{Float64,1}
TIME::Array{Float64,1}
QTWT::OffsetArrays.OffsetArray{Float64,1,Array{Float64,1}}
RDOT::Array{Float64,2}
UDOT::Array{Float64,2}
PSDOT::Array{Float64,1}
ANDOT::Array{Float64,1}
QSDOT::Array{Float64,2}
AKGUST::Array{Float64,2}
ALGUST::Array{Float64,2}
VFGUST::Array{Float64,3}
NPOINT::Array{Int32,1}
IPOINT::Array{Int32,1}
NPTIME::Array{Int32,1}
IPNTD::Array{Int32,1}
IPNTVL::Array{Int32,1}
KCSET::Array{Int32,1}
IQEXP::Array{Int32,3}
IPPAR::Array{Int32,2}
IPPARSET::Array{Int32,2}
ANF::Array{Float64,2}
RCCORE::Array{Float64,1}
VIB::Array{Float64,2}
WIB::Array{Float64,2}
VEB::Array{Float64,2}
VIC::Array{Float64,2}
WIC::Array{Float64,2}
VEC::Array{Float64,2}
VIP::Array{Float64,2}
WIP::Array{Float64,2}
VEP::Array{Float64,2}
VIB_MA::Array{Float64,2}
WIB_MA::Array{Float64,2}
VIC_MA::Array{Float64,2}
WIC_MA::Array{Float64,2}
VIP_MA::Array{Float64,2}
WIP_MA::Array{Float64,2}
VIB_AL::Array{Float64,2}
WIB_AL::Array{Float64,2}
VEB_AL::Array{Float64,2}
VIC_AL::Array{Float64,2}
WIC_AL::Array{Float64,2}
VEC_AL::Array{Float64,2}
VIP_AL::Array{Float64,2}
WIP_AL::Array{Float64,2}
VEP_AL::Array{Float64,2}
VIB_BE::Array{Float64,2}
WIB_BE::Array{Float64,2}
VEB_BE::Array{Float64,2}
VIC_BE::Array{Float64,2}
WIC_BE::Array{Float64,2}
VEC_BE::Array{Float64,2}
VIP_BE::Array{Float64,2}
WIP_BE::Array{Float64,2}
VEP_BE::Array{Float64,2}
VIB_POS::Array{Float64,3}
WIB_POS::Array{Float64,3}
VIC_POS::Array{Float64,3}
WIC_POS::Array{Float64,3}
VIP_POS::Array{Float64,3}
WIP_POS::Array{Float64,3}
VIB_EUL::Array{Float64,3}
WIB_EUL::Array{Float64,3}
VIC_EUL::Array{Float64,3}
WIC_EUL::Array{Float64,3}
VIP_EUL::Array{Float64,3}
WIP_EUL::Array{Float64,3}
VIB_AN::Array{Float64,3}
WIB_VI::Array{Float64,2}
VIC_AN::Array{Float64,3}
WIC_VI::Array{Float64,2}
VIP_AN::Array{Float64,3}
WIP_VI::Array{Float64,2}
VEB_XENG::Array{Float64,4}
VEB_RENG::Array{Float64,4}
VEC_XENG::Array{Float64,4}
VEC_RENG::Array{Float64,4}
VEP_XENG::Array{Float64,4}
VEP_RENG::Array{Float64,4}
VEB_VENG::Array{Float64,4}
VEC_VENG::Array{Float64,4}
VEP_VENG::Array{Float64,4}
VEB_FENG::Array{Float64,4}
VEB_MENG::Array{Float64,4}
VEC_FENG::Array{Float64,4}
VEC_MENG::Array{Float64,4}
VEP_FENG::Array{Float64,4}
VEP_MENG::Array{Float64,4}
VIB_AN_MA::Array{Float64,3}
WIB_VI_MA::Array{Float64,2}
VIC_AN_MA::Array{Float64,3}
WIC_VI_MA::Array{Float64,2}
VIP_AN_MA::Array{Float64,3}
WIP_VI_MA::Array{Float64,2}
VIB_AN_AL::Array{Float64,3}
WIB_VI_AL::Array{Float64,2}
VIC_AN_AL::Array{Float64,3}
WIC_VI_AL::Array{Float64,2}
VIP_AN_AL::Array{Float64,3}
WIP_VI_AL::Array{Float64,2}
VIB_AN_BE::Array{Float64,3}
WIB_VI_BE::Array{Float64,2}
VIC_AN_BE::Array{Float64,3}
WIC_VI_BE::Array{Float64,2}
VIP_AN_BE::Array{Float64,3}
WIP_VI_BE::Array{Float64,2}
VIB_AN_POS::Array{Float64,4}
WIB_VI_POS::Array{Float64,3}
VIC_AN_POS::Array{Float64,4}
WIC_VI_POS::Array{Float64,3}
VIP_AN_POS::Array{Float64,4}
WIP_VI_POS::Array{Float64,3}
VIB_AN_EUL::Array{Float64,4}
WIB_VI_EUL::Array{Float64,3}
VIC_AN_EUL::Array{Float64,4}
WIC_VI_EUL::Array{Float64,3}
VIP_AN_EUL::Array{Float64,4}
WIP_VI_EUL::Array{Float64,3}
VEB_GL::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
VEC_GL::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
VEP_GL::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
AJSAV::Array{Float64,3}
CJSAV::Array{Float64,3}
RJSAV::Array{Float64,3}
ATJSAV::Array{Float64,3}
CTJSAV::Array{Float64,3}
RTJSAV::Array{Float64,3}
RFRPJSAV::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
A::Array{Float64,3}
B::Array{Float64,3}
C::Array{Float64,3}
R::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
AT::Array{Float64,3}
BT::Array{Float64,3}
CT::Array{Float64,3}
RT::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
RFRP::OffsetArrays.OffsetArray{Float64,3,Array{Float64,3}}
GVSYS::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GPSYS::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GFSYS::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GVSYST::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GPSYST::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GFSYST::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GVQ::Array{Float64,2}
GPQ::Array{Float64,2}
GFQ::Array{Float64,2}
GVQT::Array{Float64,2}
GPQT::Array{Float64,2}
GFQT::Array{Float64,2}
GVFRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GPFRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GFFRP::OffsetArrays.OffsetArray{Float64,2,Array{Float64,2}}
GFLSQ::Array{Float64,2}
WLSQ::Array{Float64,1}
ZA::Array{ComplexF64,3}
ZB::Array{ComplexF64,3}
ZC::Array{ComplexF64,3}
ZR::OffsetArrays.OffsetArray{ComplexF64,3,Array{ComplexF64,3}}
ZGVSYS::OffsetArrays.OffsetArray{ComplexF64,2,Array{ComplexF64,2}}
ZGPSYS::OffsetArrays.OffsetArray{ComplexF64,2,Array{ComplexF64,2}}
ZGFSYS::OffsetArrays.OffsetArray{ComplexF64,2,Array{ComplexF64,2}}
ZGVQ::Array{ComplexF64,2}
ZGPQ::Array{ComplexF64,2}
ZGFQ::Array{ComplexF64,2}
NGVQ::Array{Int32,1}
KGVQ::Array{Int32,1}
IGVQ::Array{Int32,1}
NGPQ::Array{Int32,1}
KGPQ::Array{Int32,1}
IGPQ::Array{Int32,1}
NGFQ::Array{Int32,1}
KGFQ::Array{Int32,1}
IGFQ::Array{Int32,1}
NGVQZ::Array{Int32,1}
KGVQZ::Array{Int32,1}
IGVQZ::Array{Int32,1}
NGPQZ::Array{Int32,1}
KGPQZ::Array{Int32,1}
IGPQZ::Array{Int32,1}
NGFQZ::Array{Int32,1}
KGFQZ::Array{Int32,1}
IGFQZ::Array{Int32,1}
NGVQ1::Array{Int32,1}
NGPQ1::Array{Int32,1}
NGFQ1::Array{Int32,1}
IGVPIV::Array{Int32,1}
IGPPIV::Array{Int32,1}
IGFPIV::Array{Int32,1}
ITER::Array{Int32,1}
ITMAX::Array{Int32,1}
NEIGIT::Array{Int32,1}
EPS::Array{Float64,1}
DELRMS::Array{Float64,1}
DELMAX::Array{Float64,1}
DGLOB::OffsetArrays.OffsetArray{Float64,1,Array{Float64,1}}
DQ::Array{Float64,2}
ARGP1::Array{Cchar,1}
ARGP2::Array{Cchar,1}
PREFIX::Array{Cchar,1}
NAME::Array{Cchar,1}
ANAME::Array{Array{Cchar,1}}
BNAME::Array{Array{Cchar,1}}
CNAME::Array{Array{Cchar,1}}
CUNIT::Array{Array{Cchar,1}}
CKEY::Array{Array{Cchar,1}}
RNAME::Array{Array{Cchar,1}}
RUNIT::Array{Array{Cchar,1}}
RKEY::Array{Array{Cchar,1}}
IDEV::Array{Int32,1}
IDEVRP::Array{Int32,1}
IDEVM::Array{Int32,1}
IPSLU::Array{Int32,1}
NCOLOR::Array{Int32,1}
NBFREQ::Array{Int32,1}
NBEIGEN::Array{Int32,1}
NFRAME::Array{Int32,1}
IVGCUT::Array{Int32,1}
IVGFUN::Array{Int32,1}
ILINE::Array{Int32,1}
ICOLOR::Array{Int32,1}
ICOLB::Array{Int32,1}
ICOLF::Array{Int32,1}
LPLOT::Array{Int32,1}
LPGRID::Array{Int32,1}
LCEDPL::Array{Int32,1}
LSVMOV::Array{Int32,1}
SCRNFL::Array{Float64,1}
SCRNFP::Array{Float64,1}
SIZE::Array{Float64,1}
CSIZ::Array{Float64,1}
XWIND::Array{Float64,1}
YWIND::Array{Float64,1}
AZIMOB::Array{Float64,1}
ELEVOB::Array{Float64,1}
ROBINV::Array{Float64,1}
XYZUP::Array{Float64,1}
WAKLFR::Array{Float64,1}
SAXLFR::Array{Float64,1}
SLOMOF::Array{Float64,1}
EIGENF::Array{Float64,1}
TMOVIE::Array{Float64,1}
TIME1::Array{Float64,1}
TIME2::Array{Float64,1}
DPHASE::Array{Float64,1}
SCALEF::Array{Float64,1}
DTDUMP::Array{Float64,1}
BFREQ1::Array{Float64,1}
BFREQ2::Array{Float64,1}
VGCXYZ::Array{Float64,1}
VGCLIM::Array{Float64,2}
CL_VEL::Array{Float64,2}
CM_VEL::Array{Float64,2}
CN_VEL::Array{Float64,2}
CR_VEL::Array{Float64,2}
CL_ROT::Array{Float64,2}
CM_ROT::Array{Float64,2}
CN_ROT::Array{Float64,2}
CR_ROT::Array{Float64,2}
FOR_VEL::Array{Float64,3}
MOM_VEL::Array{Float64,3}
FOR_ROT::Array{Float64,3}
MOM_ROT::Array{Float64,3}
FOR_FLAP::Array{Float64,3}
MOM_FLAP::Array{Float64,3}
FOR_PENG::Array{Float64,3}
MOM_PENG::Array{Float64,3}
JEDIT::Array{Int32,1}
ISEDIT::Array{Int32,1}
LSLOPE::Array{Int32,1}
LEDSYM::OffsetArrays.OffsetArray{Int32,2,Array{Int32,2}}
EDPAR::Array{Float64,1}
TOFFE::Array{Float64,1}
TFACE::Array{Float64,1}
QOFFE::Array{Float64,1}
QFACE::Array{Float64,1}
TBMIN::Array{Float64,1}
TBMAX::Array{Float64,1}
DELTB::Array{Float64,1}
QBMIN::Array{Float64,1}
QBMAX::Array{Float64,1}
DELQB::Array{Float64,1}
IGUST::Array{Int32,1}
VGCON::Array{Float64,1}
function ASWING_s()
as_con = cglobal((:as_con_, libaswing), Float64); as_con_idx = as_con
PI = unsafe_wrap(Array, as_con_idx, 1); as_con_idx += sizeof(Float64)
DTOR = unsafe_wrap(Array, as_con_idx, 1); as_con_idx += sizeof(Float64)
VERSION = unsafe_wrap(Array, as_con_idx, 1)
as_par = cglobal((:as_par_, libaswing), Float64); as_par_idx = as_par
STIPL = unsafe_wrap(Array, as_par_idx, NBX); as_par_idx += sizeof(Float64)*NBX
STIPR = unsafe_wrap(Array, as_par_idx, NBX); as_par_idx += sizeof(Float64)*NBX
TBTIPL = unsafe_wrap(Array, as_par_idx, NBX); as_par_idx += sizeof(Float64)*NBX
TBTIPR = unsafe_wrap(Array, as_par_idx, NBX); as_par_idx += sizeof(Float64)*NBX
MACHPG = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
GEEW = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
SREF = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
CREF = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
BREF = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
XYZREF = unsafe_wrap(Array, as_par_idx, (3,3)); as_par_idx += sizeof(Float64)*3*3
BGREFX = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
BGREFY = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
BGREFZ = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
ULCON = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
GRNORM = unsafe_wrap(Array, as_par_idx, 3); as_par_idx += sizeof(Float64)*3
VSOSL = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
VSO_SI = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
VSOSL_SI = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
RHOSL = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
RHO_SI = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
RHOSL_SI = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
RMUSL = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
RMU_SI = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
RMUSL_SI = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
EXPII = unsafe_wrap(Array, as_par_idx, 1); as_par_idx += sizeof(Float64)
EXPNN = unsafe_wrap(Array, as_par_idx, 1)
as_log = cglobal((:as_log_, libaswing), Int32); as_log_idx = as_log
LALTKM = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
AUTSCL = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LTERSE = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LVLFIX = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LAELAG = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LLEVEC = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
STEADY = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
CONLAW = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
CONSET = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LFGUST = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LROMFR = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LVISEN = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LLGROU = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LLREFP = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LAXPLT = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LELIST = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LENGLI = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LESPEC = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LNODES = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LUNSWP = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LPLRIB = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LPLZLO = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LPLBAR = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LFRPAN = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LFRROT = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LGEOM = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LLRHS = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LVAIC = unsafe_wrap(Array, as_log_idx, 1); as_log_idx += sizeof(Int32)
LWSET = unsafe_wrap(Array, as_log_idx, NBX); as_log_idx += sizeof(Int32)*NBX
LCSET = unsafe_wrap(Array, as_log_idx, NSETX); as_log_idx += sizeof(Int32)*NSETX
LQBDEF = unsafe_wrap(Array, as_log_idx, (JBX, NBX)); as_log_idx += sizeof(Int32)*JBX*NBX
lbsymm = unsafe_wrap(Array, as_log_idx, (JBX+1, NBX)); as_log_idx += sizeof(Int32)*(JBX+1)*NBX
LBSYMM = OffsetArrays.OffsetArray(lbsymm,0:JBX,1:NBX)
LSFLAP = unsafe_wrap(Array, as_log_idx, NFLPX); as_log_idx += sizeof(Int32)*NFLPX
LSPENG = unsafe_wrap(Array, as_log_idx, NENGX); as_log_idx += sizeof(Int32)*NENGX
LSSENS = unsafe_wrap(Array, as_log_idx, NSENX); as_log_idx += sizeof(Int32)*NSENX
LQINI = unsafe_wrap(Array, as_log_idx, NPNTX); as_log_idx += sizeof(Int32)*NPNTX
LAINI = unsafe_wrap(Array, as_log_idx, NPNTX); as_log_idx += sizeof(Int32)*NPNTX
LCONV = unsafe_wrap(Array, as_log_idx, NPNTX); as_log_idx += sizeof(Int32)*NPNTX
LMACH = unsafe_wrap(Array, as_log_idx, NPNTX); as_log_idx += sizeof(Int32)*NPNTX
PSTEADY = unsafe_wrap(Array, as_log_idx, NPNTX); as_log_idx += sizeof(Int32)*NPNTX
LPBEAM = unsafe_wrap(Array, as_log_idx, NBX); as_log_idx += sizeof(Int32)*NBX
LPWAKE = unsafe_wrap(Array, as_log_idx, NBX); as_log_idx += sizeof(Int32)*NBX
LDCON = unsafe_wrap(Array, as_log_idx, NDDIM); as_log_idx += sizeof(Int32)*NDDIM
LUCON = unsafe_wrap(Array, as_log_idx, NUDIM); as_log_idx += sizeof(Int32)*NUDIM
LQCON = unsafe_wrap(Array, as_log_idx, (NQDIM, NSENX))
as_int = cglobal((:as_int_, libaswing), Int32); as_int_idx = as_int
NQ = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NCP = unsafe_wrap(Array, as_int_idx, NBX); as_int_idx += sizeof(Int32)*NBX
IBEAM = unsafe_wrap(Array, as_int_idx, NBX); as_int_idx += sizeof(Int32)*NBX
IICON = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
II = unsafe_wrap(Array, as_int_idx, NBX); as_int_idx += sizeof(Int32)*NBX
IFRST = unsafe_wrap(Array, as_int_idx, NBX); as_int_idx += sizeof(Int32)*NBX
ILAST = unsafe_wrap(Array, as_int_idx, NBX); as_int_idx += sizeof(Int32)*NBX
IITOT = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NNCON = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NN = unsafe_wrap(Array, as_int_idx, NBX); as_int_idx += sizeof(Int32)*NBX
NFRST = unsafe_wrap(Array, as_int_idx, NBX); as_int_idx += sizeof(Int32)*NBX
NLAST = unsafe_wrap(Array, as_int_idx, NBX); as_int_idx += sizeof(Int32)*NBX
NNTOT = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
KEQ0 = unsafe_wrap(Array, as_int_idx, (12, NBX)); as_int_idx += sizeof(Int32)*12*NBX
KEQ = unsafe_wrap(Array, as_int_idx, (12, IIX)); as_int_idx += sizeof(Int32)*12*IIX
NRHS = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NGVAR = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NGPAR = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NGFOR = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NGFEQ = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NFRP = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NFRPF = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NFRPR = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NBEAM = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NFUSE = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NSURF = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
ICOORD = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
IENGTYP = unsafe_wrap(Array, as_int_idx, NENGX); as_int_idx += sizeof(Int32)*NENGX
IGUSDIR = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NXGUST = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NYGUST = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NZGUST = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
NFGUST = unsafe_wrap(Array, as_int_idx, 1); as_int_idx += sizeof(Int32)
IGRIM = unsafe_wrap(Array, as_int_idx, NPNTX)
as_gll = cglobal((:as_gll_, libaswing), Int32); as_gll_idx = as_gll
LRES = unsafe_wrap(Array, as_gll_idx, 1); as_gll_idx += sizeof(Int32)
LQJOIN = unsafe_wrap(Array, as_gll_idx, (12, NJX)); as_gll_idx += sizeof(Int32)*12*NJX
LAN = unsafe_wrap(Array, as_gll_idx, NNX); as_gll_idx += sizeof(Int32)*NNX
LHEAD = unsafe_wrap(Array, as_gll_idx, 1); as_gll_idx += sizeof(Int32)
LELEV = unsafe_wrap(Array, as_gll_idx, 1); as_gll_idx += sizeof(Int32)
LBANK = unsafe_wrap(Array, as_gll_idx, 1); as_gll_idx += sizeof(Int32)
LVAC = unsafe_wrap(Array, as_gll_idx, 3); as_gll_idx += sizeof(Int32)*3
LRAC = unsafe_wrap(Array, as_gll_idx, 3); as_gll_idx += sizeof(Int32)*3
LVEL = unsafe_wrap(Array, as_gll_idx, 3); as_gll_idx += sizeof(Int32)*3
LROT = unsafe_wrap(Array, as_gll_idx, 3); as_gll_idx += sizeof(Int32)*3
LPOS = unsafe_wrap(Array, as_gll_idx, 3); as_gll_idx += sizeof(Int32)*3
LFLAP = unsafe_wrap(Array, as_gll_idx, NFLPX); as_gll_idx += sizeof(Int32)*NFLPX
LPENG = unsafe_wrap(Array, as_gll_idx, NENGX); as_gll_idx += sizeof(Int32)*NENGX
LVIDT = unsafe_wrap(Array, as_gll_idx, 1); as_gll_idx += sizeof(Int32)
LALDT = unsafe_wrap(Array, as_gll_idx, 1); as_gll_idx += sizeof(Int32)
LBEDT = unsafe_wrap(Array, as_gll_idx, 1); as_gll_idx += sizeof(Int32)
LHEDT = unsafe_wrap(Array, as_gll_idx, 1); as_gll_idx += sizeof(Int32)
LELDT = unsafe_wrap(Array, as_gll_idx, 1); as_gll_idx += sizeof(Int32)
LBADT = unsafe_wrap(Array, as_gll_idx, 1); as_gll_idx += sizeof(Int32)
LWDT = unsafe_wrap(Array, as_gll_idx, 3); as_gll_idx += sizeof(Int32)*3
LADT = unsafe_wrap(Array, as_gll_idx, 3); as_gll_idx += sizeof(Int32)*3
LVIDTS = unsafe_wrap(Array, as_gll_idx, NSENX); as_gll_idx += sizeof(Int32)*NSENX
LALDTS = unsafe_wrap(Array, as_gll_idx, NSENX); as_gll_idx += sizeof(Int32)*NSENX
LBEDTS = unsafe_wrap(Array, as_gll_idx, NSENX); as_gll_idx += sizeof(Int32)*NSENX
LHEDTS = unsafe_wrap(Array, as_gll_idx, NSENX); as_gll_idx += sizeof(Int32)*NSENX
LELDTS = unsafe_wrap(Array, as_gll_idx, NSENX); as_gll_idx += sizeof(Int32)*NSENX
LBADTS = unsafe_wrap(Array, as_gll_idx, NSENX); as_gll_idx += sizeof(Int32)*NSENX
LWDTS = unsafe_wrap(Array, as_gll_idx, (3,NSENX)); as_gll_idx += sizeof(Int32)*NSENX*3
LADTS = unsafe_wrap(Array, as_gll_idx, (3,NSENX));
as_fpi = cglobal((:as_fpi_, libaswing), Int32); as_fpi_idx = as_fpi
LFRPK = unsafe_wrap(Array, as_fpi_idx, NFRPX); as_fpi_idx += sizeof(Int32)*NFRPX
KFRPL = unsafe_wrap(Array, as_fpi_idx, NFRLX); as_fpi_idx += sizeof(Int32)*NFRLX
LFLAPF = unsafe_wrap(Array, as_fpi_idx, NFLPX); as_fpi_idx += sizeof(Int32)*NFLPX
LPENGF = unsafe_wrap(Array, as_fpi_idx, NENGX); as_fpi_idx += sizeof(Int32)*NENGX
LGUS1F = unsafe_wrap(Array, as_fpi_idx, NGUSX); as_fpi_idx += sizeof(Int32)*NGUSX
LGUS2F = unsafe_wrap(Array, as_fpi_idx, NGUSX); as_fpi_idx += sizeof(Int32)*NGUSX
LGUS3F = unsafe_wrap(Array, as_fpi_idx, NGUSX); as_fpi_idx += sizeof(Int32)*NGUSX
LGUS4F = unsafe_wrap(Array, as_fpi_idx, NGUSX);
as_fpr = cglobal((:as_fpr_, libaswing), Float64); as_fpr_idx = as_fpr
vgi_frp = unsafe_wrap(Array, as_fpr_idx, (3, IIX, NFRLX+1))
VGI_FRP = OffsetArrays.OffsetArray(vgi_frp,1:3, 1:IIX, 0:NFRLX)
as_frc = cglobal((:as_frc_, libaswing), Float64); as_frc_idx = as_frc
AFORCE = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
RFORCE = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
EFORCE = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
GFORCE = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
TFORCE = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
AMOMNT = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
RMOMNT = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
EMOMNT = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
GMOMNT = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
TMOMNT = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
AFOR_Q = unsafe_wrap(Array, as_frc_idx, (3, 18, IIX)); as_frc_idx += sizeof(Float64)*3*18*IIX
afor_gl = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
AFOR_GL = OffsetArrays.OffsetArray(afor_gl, 1:3, 0:NGLX)
afor_frp = unsafe_wrap(Array, as_frc_idx, (3, NFRLX+1)); as_frc_idx += sizeof(Float64)*3*(NFRLX+1)
AFOR_FRP = OffsetArrays.OffsetArray(afor_frp, 1:3, 0:NFRLX)
AMOM_Q = unsafe_wrap(Array, as_frc_idx, (3, 18, IIX)); as_frc_idx += sizeof(Float64)*3*18*IIX
amom_gl = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
AMOM_GL = OffsetArrays.OffsetArray(amom_gl, 1:3, 0:NGLX)
amom_frp = unsafe_wrap(Array, as_frc_idx, (3, NFRLX+1)); as_frc_idx += sizeof(Float64)*3*(NFRLX+1)
AMOM_FRP = OffsetArrays.OffsetArray(amom_frp, 1:3, 0:NFRLX)
RFOR_Q = unsafe_wrap(Array, as_frc_idx, (3, 18, IIX)); as_frc_idx += sizeof(Float64)*3*18*IIX
rfor_gl = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
RFOR_GL = OffsetArrays.OffsetArray(rfor_gl, 1:3, 0:NGLX)
rfor_frp = unsafe_wrap(Array, as_frc_idx, (3, NFRLX+1)); as_frc_idx += sizeof(Float64)*3*(NFRLX+1)
RFOR_FRP = OffsetArrays.OffsetArray(rfor_frp, 1:3, 0:NFRLX)
RMOM_Q = unsafe_wrap(Array, as_frc_idx, (3, 18, IIX)); as_frc_idx += sizeof(Float64)*3*18*IIX
rmom_gl = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
RMOM_GL = OffsetArrays.OffsetArray(rmom_gl, 1:3, 0:NGLX)
rmom_frp = unsafe_wrap(Array, as_frc_idx, (3, NFRLX+1)); as_frc_idx += sizeof(Float64)*3*(NFRLX+1)
RMOM_FRP = OffsetArrays.OffsetArray(rmom_frp, 1:3, 0:NFRLX)
EFOR_Q = unsafe_wrap(Array, as_frc_idx, (3, 18, IIX)); as_frc_idx += sizeof(Float64)*3*18*IIX
efor_gl = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
EFOR_GL = OffsetArrays.OffsetArray(efor_gl, 1:3, 0:NGLX)
efor_frp = unsafe_wrap(Array, as_frc_idx, (3, NFRLX+1)); as_frc_idx += sizeof(Float64)*3*(NFRLX+1)
EFOR_FRP = OffsetArrays.OffsetArray(efor_frp, 1:3, 0:NFRLX)
EMOM_Q = unsafe_wrap(Array, as_frc_idx, (3, 18, IIX)); as_frc_idx += sizeof(Float64)*3*18*IIX
emom_gl = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
EMOM_GL = OffsetArrays.OffsetArray(emom_gl, 1:3, 0:NGLX)
emom_frp = unsafe_wrap(Array, as_frc_idx, (3, NFRLX+1)); as_frc_idx += sizeof(Float64)*3*(NFRLX+1)
EMOM_FRP = OffsetArrays.OffsetArray(emom_frp, 1:3, 0:NFRLX)
GFOR_Q = unsafe_wrap(Array, as_frc_idx, (3, 18, IIX)); as_frc_idx += sizeof(Float64)*3*18*IIX
gfor_gl = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
GFOR_GL = OffsetArrays.OffsetArray(gfor_gl, 1:3, 0:NGLX)
gfor_frp = unsafe_wrap(Array, as_frc_idx, (3, NFRLX+1)); as_frc_idx += sizeof(Float64)*3*(NFRLX+1)
GFOR_FRP = OffsetArrays.OffsetArray(gfor_frp, 1:3, 0:NFRLX)
GMOM_Q = unsafe_wrap(Array, as_frc_idx, (3, 18, IIX)); as_frc_idx += sizeof(Float64)*3*18*IIX
gmom_gl = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
GMOM_GL = OffsetArrays.OffsetArray(gmom_gl, 1:3, 0:NGLX)
gmom_frp = unsafe_wrap(Array, as_frc_idx, (3, NFRLX+1)); as_frc_idx += sizeof(Float64)*3*(NFRLX+1)
GMOM_FRP = OffsetArrays.OffsetArray(gmom_frp, 1:3, 0:NFRLX)
AFOR_UT = unsafe_wrap(Array, as_frc_idx, (3, 6, IIX)); as_frc_idx += sizeof(Float64)*3*6*IIX
afor_glt = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
AFOR_GLT = OffsetArrays.OffsetArray(afor_glt, 1:3, 0:NGLX)
AMOM_UT = unsafe_wrap(Array, as_frc_idx, (3, 6, IIX)); as_frc_idx += sizeof(Float64)*3*6*IIX
amom_glt = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
AMOM_GLT = OffsetArrays.OffsetArray(amom_glt, 1:3, 0:NGLX)
RFOR_UT = unsafe_wrap(Array, as_frc_idx, (3, 6, IIX)); as_frc_idx += sizeof(Float64)*3*6*IIX
rfor_glt = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
RFOR_GLT = OffsetArrays.OffsetArray(rfor_glt, 1:3, 0:NGLX)
RMOM_UT = unsafe_wrap(Array, as_frc_idx, (3, 6, IIX)); as_frc_idx += sizeof(Float64)*3*6*IIX
rmom_glt = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
RMOM_GLT = OffsetArrays.OffsetArray(rmom_glt, 1:3, 0:NGLX)
EFOR_UT = unsafe_wrap(Array, as_frc_idx, (3, 6, IIX)); as_frc_idx += sizeof(Float64)*3*6*IIX
efor_glt = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
EFOR_GLT = OffsetArrays.OffsetArray(efor_glt, 1:3, 0:NGLX)
EMOM_UT = unsafe_wrap(Array, as_frc_idx, (3, 6, IIX)); as_frc_idx += sizeof(Float64)*3*6*IIX
emom_glt = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
EMOM_GLT = OffsetArrays.OffsetArray(emom_glt, 1:3, 0:NGLX)
GFOR_UT = unsafe_wrap(Array, as_frc_idx, (3, 6, IIX)); as_frc_idx += sizeof(Float64)*3*6*IIX
gfor_glt = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
GFOR_GLT = OffsetArrays.OffsetArray(gfor_glt, 1:3, 0:NGLX)
GMOM_UT = unsafe_wrap(Array, as_frc_idx, (3, 6, IIX)); as_frc_idx += sizeof(Float64)*3*6*IIX
gmom_glt = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
GMOM_GLT = OffsetArrays.OffsetArray(gmom_glt, 1:3, 0:NGLX)
FAERO = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
FAERO_Q = unsafe_wrap(Array, as_frc_idx, (3, 18, IIX)); as_frc_idx += sizeof(Float64)*3*18*IIX
faero_gl = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
FAERO_GL = OffsetArrays.OffsetArray(faero_gl, 1:3, 0:NGLX)
faero_frp = unsafe_wrap(Array, as_frc_idx, (3, NFRLX+1)); as_frc_idx += sizeof(Float64)*3*(NFRLX+1)
FAERO_FRP = OffsetArrays.OffsetArray(faero_frp, 1:3, 0:NFRLX)
FAERO_UT = unsafe_wrap(Array, as_frc_idx, (3, 6, IIX)); as_frc_idx += sizeof(Float64)*3*6*IIX
faero_glt = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
FAERO_GLT = OffsetArrays.OffsetArray(faero_glt, 1:3, 0:NGLX)
MAERO = unsafe_wrap(Array, as_frc_idx, 3); as_frc_idx += sizeof(Float64)*3
MAERO_Q = unsafe_wrap(Array, as_frc_idx, (3, 18, IIX)); as_frc_idx += sizeof(Float64)*3*18*IIX
maero_gl = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1)); as_frc_idx += sizeof(Float64)*3*(NGLX+1)
MAERO_GL = OffsetArrays.OffsetArray(maero_gl, 1:3, 0:NGLX)
maero_frp = unsafe_wrap(Array, as_frc_idx, (3, NFRLX+1)); as_frc_idx += sizeof(Float64)*3*(NFRLX+1)
MAERO_FRP = OffsetArrays.OffsetArray(maero_frp, 1:3, 0:NFRLX)
MAERO_UT = unsafe_wrap(Array, as_frc_idx, (3, 6, IIX)); as_frc_idx += sizeof(Float64)*3*6*IIX
maero_glt = unsafe_wrap(Array, as_frc_idx, (3, NGLX+1));
MAERO_GLT = OffsetArrays.OffsetArray(maero_glt, 1:3, 0:NGLX)
as_eng = cglobal((:as_eng_, libaswing), Float64); as_eng_idx = as_eng
DVENG = unsafe_wrap(Array, as_eng_idx, (NPX, NPNTX)); as_eng_idx += sizeof(Float64)*NPX*NPNTX
XENG = unsafe_wrap(Array, as_eng_idx, (3, NPX, NPNTX)); as_eng_idx += sizeof(Float64)*3*NPX*NPNTX
XENG_ANG = unsafe_wrap(Array, as_eng_idx, (3, 3, NPX)); as_eng_idx += sizeof(Float64)*3*3*NPX
RENG = unsafe_wrap(Array, as_eng_idx, (3, NPX, NPNTX)); as_eng_idx += sizeof(Float64)*3*NPX*NPNTX
RENG_ANG = unsafe_wrap(Array, as_eng_idx, (3, 3, NPX)); as_eng_idx += sizeof(Float64)*3*3*NPX
VENG = unsafe_wrap(Array, as_eng_idx, (3, NPX, NPNTX)); as_eng_idx += sizeof(Float64)*3*NPX*NPNTX
VENG_Q = unsafe_wrap(Array, as_eng_idx, (3, 18, NPX)); as_eng_idx += sizeof(Float64)*3*18*NPX
veng_gl = unsafe_wrap(Array, as_eng_idx, (3, NGLX+1, NPX)); as_eng_idx += sizeof(Float64)*3*(NGLX+1)*NPX
VENG_GL = OffsetArrays.OffsetArray(veng_gl, 1:3, 0:NGLX, 1:NPX)
FENG = unsafe_wrap(Array, as_eng_idx, (3, NPX, NPNTX)); as_eng_idx += sizeof(Float64)*3*NPX*NPNTX
FENG_Q = unsafe_wrap(Array, as_eng_idx, (3, 18, NPX)); as_eng_idx += sizeof(Float64)*3*18*NPX
feng_gl = unsafe_wrap(Array, as_eng_idx, (3, NGLX+1, NPX)); as_eng_idx += sizeof(Float64)*3*(NGLX+1)*NPX
FENG_GL = OffsetArrays.OffsetArray(feng_gl, 1:3, 0:NGLX, 1:NPX)
MENG = unsafe_wrap(Array, as_eng_idx, (3, NPX, NPNTX)); as_eng_idx += sizeof(Float64)*3*NPX*NPNTX
MENG_Q = unsafe_wrap(Array, as_eng_idx, (3, 18, NPX)); as_eng_idx += sizeof(Float64)*3*18*NPX
meng_gl = unsafe_wrap(Array, as_eng_idx, (3, NGLX+1, NPX))
MENG_GL = OffsetArrays.OffsetArray(meng_gl, 1:3, 0:NGLX, 1:NPX)
as_awt = cglobal((:as_awt_, libaswing), Float64); as_awt_idx = as_awt
MASS = unsafe_wrap(Array, as_awt_idx, 1); as_awt_idx += sizeof(Float64)
MASSP = unsafe_wrap(Array, as_awt_idx, 1); as_awt_idx += sizeof(Float64)
MASSB = unsafe_wrap(Array, as_awt_idx, NBX); as_awt_idx += sizeof(Float64)*NBX
AREAB = unsafe_wrap(Array, as_awt_idx, NBX); as_awt_idx += sizeof(Float64)*NBX
RCGXYZ0 = unsafe_wrap(Array, as_awt_idx, 3); as_awt_idx += sizeof(Float64)*3
RMASST0 = unsafe_wrap(Array, as_awt_idx, (3,3)); as_awt_idx += sizeof(Float64)*3*3
RINERT0 = unsafe_wrap(Array, as_awt_idx, (3,3)); as_awt_idx += sizeof(Float64)*3*3
RCGXYZ = unsafe_wrap(Array, as_awt_idx, (3,NPNTX)); as_awt_idx += sizeof(Float64)*3*NPNTX
RMASST = unsafe_wrap(Array, as_awt_idx, (3,3,NPNTX)); as_awt_idx += sizeof(Float64)*3*3*NPNTX
RINERT = unsafe_wrap(Array, as_awt_idx, (3,3,NPNTX)); as_awt_idx += sizeof(Float64)*3*3*NPNTX
PCGXYZ0 = unsafe_wrap(Array, as_awt_idx, 3); as_awt_idx += sizeof(Float64)*3
PMASST0 = unsafe_wrap(Array, as_awt_idx, (3,3)); as_awt_idx += sizeof(Float64)*3*3
PINERT0 = unsafe_wrap(Array, as_awt_idx, (3,3)); as_awt_idx += sizeof(Float64)*3*3
PCGXYZ = unsafe_wrap(Array, as_awt_idx, (3,NPNTX)); as_awt_idx += sizeof(Float64)*3*NPNTX
PMASST = unsafe_wrap(Array, as_awt_idx, (3,3,NPNTX)); as_awt_idx += sizeof(Float64)*3*3*NPNTX
PINERT = unsafe_wrap(Array, as_awt_idx, (3,3,NPNTX)); as_awt_idx += sizeof(Float64)*3*3*NPNTX
AMASST0 = unsafe_wrap(Array, as_awt_idx, (3,3)); as_awt_idx += sizeof(Float64)*3*3
AINERT0 = unsafe_wrap(Array, as_awt_idx, (3,3)); as_awt_idx += sizeof(Float64)*3*3
AMASST = unsafe_wrap(Array, as_awt_idx, (3,3,NPNTX)); as_awt_idx += sizeof(Float64)*3*3*NPNTX
AINERT = unsafe_wrap(Array, as_awt_idx, (3,3,NPNTX)); as_awt_idx += sizeof(Float64)*3*3*NPNTX
RCGXYZB0 = unsafe_wrap(Array, as_awt_idx, (3, NBX)); as_awt_idx += sizeof(Float64)*3*NBX
RMASSTB0 = unsafe_wrap(Array, as_awt_idx, (3, 3, NBX)); as_awt_idx += sizeof(Float64)*3*3*NBX
AMASSTB0 = unsafe_wrap(Array, as_awt_idx, (3, 3, NBX)); as_awt_idx += sizeof(Float64)*3*3*NBX
RINERTB0 = unsafe_wrap(Array, as_awt_idx, (3, 3, NBX)); as_awt_idx += sizeof(Float64)*3*3*NBX
AINERTB0 = unsafe_wrap(Array, as_awt_idx, (3, 3, NBX)); as_awt_idx += sizeof(Float64)*3*3*NBX
RCGXYZB = unsafe_wrap(Array, as_awt_idx, (3, NBX, NPNTX)); as_awt_idx += sizeof(Float64)*3*NBX*NPNTX
RMASSTB = unsafe_wrap(Array, as_awt_idx, (3, 3, NBX, NPNTX)); as_awt_idx += sizeof(Float64)*3*3*NBX*NPNTX
AMASSTB = unsafe_wrap(Array, as_awt_idx, (3, 3, NBX, NPNTX)); as_awt_idx += sizeof(Float64)*3*3*NBX*NPNTX
RINERTB = unsafe_wrap(Array, as_awt_idx, (3, 3, NBX, NPNTX)); as_awt_idx += sizeof(Float64)*3*3*NBX*NPNTX
AINERTB = unsafe_wrap(Array, as_awt_idx, (3, 3, NBX, NPNTX)); as_awt_idx += sizeof(Float64)*3*3*NBX*NPNTX
as_inr = cglobal((:as_inr_, libaswing), Float64); as_inr_idx = as_inr
qpylo = unsafe_wrap(Array, as_inr_idx, (KPX+1, NPX)); as_inr_idx += sizeof(Float64)*(KPX+1)*NPX
QPYLO = OffsetArrays.OffsetArray(qpylo, 0:KPX, 1:NPX)
tb = unsafe_wrap(Array, as_inr_idx, (IBX, JBX+1, NBX)); as_inr_idx += sizeof(Float64)*IBX*(JBX+1)*NBX
TB = OffsetArrays.OffsetArray(tb, 1:IBX, 0:JBX, 1:NBX)
qb = unsafe_wrap(Array, as_inr_idx, (IBX, JBX+1, NBX)); as_inr_idx += sizeof(Float64)*IBX*(JBX+1)*NBX
QB = OffsetArrays.OffsetArray(qb, 1:IBX, 0:JBX, 1:NBX)
qbt = unsafe_wrap(Array, as_inr_idx, (IBX, JBX+1, NBX)); as_inr_idx += sizeof(Float64)*IBX*(JBX+1)*NBX
QBT = OffsetArrays.OffsetArray(qbt, 1:IBX, 0:JBX, 1:NBX)
TJOIN = unsafe_wrap(Array, as_inr_idx, (2, NJX)); as_inr_idx += sizeof(Float64)*2*NJX
TGROU = unsafe_wrap(Array, as_inr_idx, NGX); as_inr_idx += sizeof(Float64)*NGX
sbrk = unsafe_wrap(Array, as_inr_idx, (NBRKX+2, NBX)); as_inr_idx += sizeof(Float64)*(NBRKX+2)*NBX
SBRK = OffsetArrays.OffsetArray(sbrk,0:NBRKX+1,1:NBX)
TBFIL = unsafe_wrap(Array, as_inr_idx, IBX); as_inr_idx += sizeof(Float64)*IBX
QBFIL = unsafe_wrap(Array, as_inr_idx, IBX); as_inr_idx += sizeof(Float64)*IBX
QBTFIL = unsafe_wrap(Array, as_inr_idx, IBX); as_inr_idx += sizeof(Float64)*IBX
ANGJ = unsafe_wrap(Array, as_inr_idx, (NAJX, NJX)); as_inr_idx += sizeof(Float64)*NAJX*NJX
ANGJM = unsafe_wrap(Array, as_inr_idx, (NAJX, NJX)); as_inr_idx += sizeof(Float64)*NAJX*NJX
MOMJ = unsafe_wrap(Array, as_inr_idx, (NAJX, NJX)); as_inr_idx += sizeof(Float64)*NAJX*NJX
HJAX = unsafe_wrap(Array, as_inr_idx, (3, NJX)); as_inr_idx += sizeof(Float64)*3*NJX
as_ini = cglobal((:as_ini_, libaswing), Int32); as_ini_idx = as_ini
nb = unsafe_wrap(Array, as_ini_idx, (JBX+1, NBX)); as_ini_idx += sizeof(Int32)*(JBX+1)*NBX
NB = OffsetArrays.OffsetArray(nb, 0:JBX, 1:NBX)
KBTYPE = unsafe_wrap(Array, as_ini_idx, NBX); as_ini_idx += sizeof(Int32)*NBX
KBNUM = unsafe_wrap(Array, as_ini_idx, NBX); as_ini_idx += sizeof(Int32)*NBX
KBPYLO = unsafe_wrap(Array, as_ini_idx, NPX); as_ini_idx += sizeof(Int32)*NPX
KBJOIN = unsafe_wrap(Array, as_ini_idx, (2, NJX)); as_ini_idx += sizeof(Int32)*2*NJX
KBGROU = unsafe_wrap(Array, as_ini_idx, NGX); as_ini_idx += sizeof(Int32)*NGX
NPYLO = unsafe_wrap(Array, as_ini_idx, 1); as_ini_idx += sizeof(Int32)
ISPYLO = unsafe_wrap(Array, as_ini_idx, NPX); as_ini_idx += sizeof(Int32)*NPX
IPYLO = unsafe_wrap(Array, as_ini_idx, NPX); as_ini_idx += sizeof(Int32)*NPX
KPTYPE = unsafe_wrap(Array, as_ini_idx, NPX); as_ini_idx += sizeof(Int32)*NPX
ISSENS = unsafe_wrap(Array, as_ini_idx, NSENX); as_ini_idx += sizeof(Int32)*NSENX
ISENS = unsafe_wrap(Array, as_ini_idx, NSENX); as_ini_idx += sizeof(Int32)*NSENX
NJOIN = unsafe_wrap(Array, as_ini_idx, 1); as_ini_idx += sizeof(Int32)
ISJOIN = unsafe_wrap(Array, as_ini_idx, (2, NJX)); as_ini_idx += sizeof(Int32)*2*NJX
IJOIN = unsafe_wrap(Array, as_ini_idx, (2, NJX)); as_ini_idx += sizeof(Int32)*2*NJX
KJTYPE = unsafe_wrap(Array, as_ini_idx, NJX); as_ini_idx += sizeof(Int32)*NJX
NGROU = unsafe_wrap(Array, as_ini_idx, 1); as_ini_idx += sizeof(Int32)
ISGROU = unsafe_wrap(Array, as_ini_idx, NGX); as_ini_idx += sizeof(Int32)*NGX
IGROU = unsafe_wrap(Array, as_ini_idx, NGX); as_ini_idx += sizeof(Int32)*NGX
KGTYPE = unsafe_wrap(Array, as_ini_idx, NGX); as_ini_idx += sizeof(Int32)*NGX
NCORN = unsafe_wrap(Array, as_ini_idx, 1); as_ini_idx += sizeof(Int32)
ISCORN = unsafe_wrap(Array, as_ini_idx, NCX); as_ini_idx += sizeof(Int32)*NCX
ICORN = unsafe_wrap(Array, as_ini_idx, NCX); as_ini_idx += sizeof(Int32)*NCX
JBCORN = unsafe_wrap(Array, as_ini_idx, NCX); as_ini_idx += sizeof(Int32)*NCX
IBCORN = unsafe_wrap(Array, as_ini_idx, NCX); as_ini_idx += sizeof(Int32)*NCX
NBRK = unsafe_wrap(Array, as_ini_idx, NBX); as_ini_idx += sizeof(Int32)*NBX
ibrk = unsafe_wrap(Array, as_ini_idx, (NBRKX+2, NBX)); as_ini_idx += sizeof(Int32)*(NBRKX+2)*NBX
IBRK = OffsetArrays.OffsetArray(ibrk, 0:NBRKX+1, 1:NBX)
JFIL = unsafe_wrap(Array, as_ini_idx, 1); as_ini_idx += sizeof(Int32)
ISFIL = unsafe_wrap(Array, as_ini_idx, 1); as_ini_idx += sizeof(Int32)
NBFIL = unsafe_wrap(Array, as_ini_idx, 1); as_ini_idx += sizeof(Int32)
NANGJ = unsafe_wrap(Array, as_ini_idx, NJX);
as_snr = cglobal((:as_snr_, libaswing), Float64); as_snr_idx = as_snr
QSNSP = unsafe_wrap(Array, as_snr_idx, (IRTOT, NSENX, NPNTX)); as_snr_idx += sizeof(Float64)*IRTOT*NSENX*NPNTX
QSENS = unsafe_wrap(Array, as_snr_idx, (KSTOT, NSENX, NPNTX)); as_snr_idx += sizeof(Float64)*KSTOT*NSENX*NPNTX
QSENS_Q = unsafe_wrap(Array, as_snr_idx, (KSTOT, 18, NSENX)); as_snr_idx += sizeof(Float64)*KSTOT*18*NSENX
QSENS_QT = unsafe_wrap(Array, as_snr_idx, (KSTOT, 6, NSENX)); as_snr_idx += sizeof(Float64)*KSTOT*6*NSENX
qsens_gl = unsafe_wrap(Array, as_snr_idx, (KSTOT, NGLX+1, NSENX)); as_snr_idx += sizeof(Float64)*KSTOT*(NGLX+1)*NSENX
QSENS_GL = OffsetArrays.OffsetArray(qsens_gl, 1:KSTOT, 0:NGLX, 1:NSENX)
qsens_glt = unsafe_wrap(Array, as_snr_idx, (KSTOT, NGLX+1, NSENX)); as_snr_idx += sizeof(Float64)*KSTOT*(NGLX+1)*NSENX
QSENS_GLT = OffsetArrays.OffsetArray(qsens_glt, 1:KSTOT, 0:NGLX, 1:NSENX)
qsens_frp = unsafe_wrap(Array, as_snr_idx, (KSTOT, NFRLX+1, NSENX)); as_snr_idx += sizeof(Float64)*KSTOT*(NFRLX+1)*NSENX
QSENS_FRP = OffsetArrays.OffsetArray(qsens_frp, 1:KSTOT, 0:NFRLX, 1:NSENX)
TPMAT = unsafe_wrap(Array, as_snr_idx, (3, 3, NPX))
as_vab = cglobal((:as_vab_, libaswing), Float64); as_vab_idx = as_vab
VIWIND = unsafe_wrap(Array, as_vab_idx, 1); as_vab_idx += sizeof(Float64)
ALWIND = unsafe_wrap(Array, as_vab_idx, 1); as_vab_idx += sizeof(Float64)
BEWIND = unsafe_wrap(Array, as_vab_idx, 1); as_vab_idx += sizeof(Float64)
VIW_VEL = unsafe_wrap(Array, as_vab_idx, 3); as_vab_idx += sizeof(Float64)*3
ALW_VEL = unsafe_wrap(Array, as_vab_idx, 3); as_vab_idx += sizeof(Float64)*3
BEW_VEL = unsafe_wrap(Array, as_vab_idx, 3); as_vab_idx += sizeof(Float64)*3
as_var = cglobal((:as_var_, libaswing), Float64); as_var_idx = as_var
Q = unsafe_wrap(Array, as_var_idx, (18, IIX, NPNTX)); as_var_idx += sizeof(Float64)*18*IIX*NPNTX
Q0 = unsafe_wrap(Array, as_var_idx, (6, IIX)); as_var_idx += sizeof(Float64)*6*IIX
QPAR = unsafe_wrap(Array, as_var_idx, (IIX, JBX)); as_var_idx += sizeof(Float64)*IIX*JBX
S = unsafe_wrap(Array, as_var_idx, IIX); as_var_idx += sizeof(Float64)*IIX
THET = unsafe_wrap(Array, as_var_idx, IIX); as_var_idx += sizeof(Float64)*IIX
SPLT = unsafe_wrap(Array, as_var_idx, IIX); as_var_idx += sizeof(Float64)*IIX
TBI = unsafe_wrap(Array, as_var_idx, IIX); as_var_idx += sizeof(Float64)*IIX
SCP = unsafe_wrap(Array, as_var_idx, IIX); as_var_idx += sizeof(Float64)*IIX
XYZTFZ = unsafe_wrap(Array, as_var_idx, (3, IIX)); as_var_idx += sizeof(Float64)*3*IIX
XYZTFZI = unsafe_wrap(Array, as_var_idx, (3, IIX)); as_var_idx += sizeof(Float64)*3*IIX
PARAM = unsafe_wrap(Array, as_var_idx, (KPTOT, NPNTX)); as_var_idx += sizeof(Float64)*KPTOT*NPNTX
AN = unsafe_wrap(Array, as_var_idx, (NNX, NPNTX)); as_var_idx += sizeof(Float64)*NNX*NPNTX
PSPEC = unsafe_wrap(Array, as_var_idx, (IPTOT, NPNTX)); as_var_idx += sizeof(Float64)*IPTOT*NPNTX
PSPECSET = unsafe_wrap(Array, as_var_idx, (IPTOT, NSETX)); as_var_idx += sizeof(Float64)*IPTOT*NSETX
WFLAP = unsafe_wrap(Array, as_var_idx, (NFLPX, NPNTX)); as_var_idx += sizeof(Float64)*NFLPX*NPNTX
WPENG = unsafe_wrap(Array, as_var_idx, (NENGX, NPNTX)); as_var_idx += sizeof(Float64)*NENGX*NPNTX
QJOIN = unsafe_wrap(Array, as_var_idx, (12, NJX, NPNTX)); as_var_idx += sizeof(Float64)*12*NJX*NPNTX
QPNT = unsafe_wrap(Array, as_var_idx, (IIX, IQTOT, NPNTX)); as_var_idx += sizeof(Float64)*IIX*IQTOT*NPNTX
DTIME = unsafe_wrap(Array, as_var_idx, 1); as_var_idx += sizeof(Float64)
TIME = unsafe_wrap(Array, as_var_idx, NPNTX); as_var_idx += sizeof(Float64)*NPNTX
qtwt = unsafe_wrap(Array, as_var_idx, 3); as_var_idx += sizeof(Float64)*3
QTWT = OffsetArrays.OffsetArray(qtwt,0:2)
RDOT = unsafe_wrap(Array, as_var_idx, (6, IIX)); as_var_idx += sizeof(Float64)*6*IIX
UDOT = unsafe_wrap(Array, as_var_idx, (6, IIX)); as_var_idx += sizeof(Float64)*6*IIX
PSDOT = unsafe_wrap(Array, as_var_idx, KPTOT); as_var_idx += sizeof(Float64)*KPTOT
ANDOT = unsafe_wrap(Array, as_var_idx, NNX); as_var_idx += sizeof(Float64)*NNX
QSDOT = unsafe_wrap(Array, as_var_idx, (KSTOT, NSENX)); as_var_idx += sizeof(Float64)*KSTOT*NSENX
AKGUST = unsafe_wrap(Array, as_var_idx, (3, NGUSX)); as_var_idx += sizeof(Float64)*3*NGUSX
ALGUST = unsafe_wrap(Array, as_var_idx, (3, NGUSX)); as_var_idx += sizeof(Float64)*3*NGUSX
VFGUST = unsafe_wrap(Array, as_var_idx, (3, 4, NGUSX));
as_pti = cglobal((:as_pti_, libaswing), Int32); as_pti_idx = as_pti
NPOINT = unsafe_wrap(Array, as_pti_idx, 1); as_pti_idx += sizeof(Int32)
IPOINT = unsafe_wrap(Array, as_pti_idx, 1); as_pti_idx += sizeof(Int32)
NPTIME = unsafe_wrap(Array, as_pti_idx, 1); as_pti_idx += sizeof(Int32)
IPNTD = unsafe_wrap(Array, as_pti_idx, 1); as_pti_idx += sizeof(Int32)
IPNTVL = unsafe_wrap(Array, as_pti_idx, 1); as_pti_idx += sizeof(Int32)
KCSET = unsafe_wrap(Array, as_pti_idx, 1); as_pti_idx += sizeof(Int32)
IQEXP = unsafe_wrap(Array, as_pti_idx, (IQTOT, NBX, NPNTX)); as_pti_idx += sizeof(Int32)*IQTOT*NBX*NPNTX
IPPAR = unsafe_wrap(Array, as_pti_idx, (KPFREE, NPNTX)); as_pti_idx += sizeof(Int32)*KPFREE*NPNTX
IPPARSET = unsafe_wrap(Array, as_pti_idx, (KPFREE, NSETX)); as_pti_idx += sizeof(Int32)*KPFREE*NSETX
as_aic = cglobal((:as_aic_, libaswing), Float64); as_aic_idx = as_aic
ANF = unsafe_wrap(Array, as_aic_idx, (NNX, IIX)); as_aic_idx += sizeof(Float64)*NNX*IIX
RCCORE = unsafe_wrap(Array, as_aic_idx, 1); as_aic_idx += sizeof(Float64)
VIB = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
WIB = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VEB = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIC = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
WIC = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VEC = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIP = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
WIP = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
VEP = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
VIB_MA = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
WIB_MA = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIC_MA = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
WIC_MA = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIP_MA = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
WIP_MA = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
VIB_AL = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
WIB_AL = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VEB_AL = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIC_AL = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
WIC_AL = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VEC_AL = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIP_AL = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
WIP_AL = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
VEP_AL = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
VIB_BE = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
WIB_BE = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VEB_BE = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIC_BE = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
WIC_BE = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VEC_BE = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIP_BE = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
WIP_BE = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
VEP_BE = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
VIB_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
WIB_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
VIC_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
WIC_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
VIP_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX)); as_aic_idx += sizeof(Float64)*3*3*NPX
WIP_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX)); as_aic_idx += sizeof(Float64)*3*3*NPX
VIB_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
WIB_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
VIC_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
WIC_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
VIP_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX)); as_aic_idx += sizeof(Float64)*3*3*NPX
WIP_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX)); as_aic_idx += sizeof(Float64)*3*3*NPX
VIB_AN = unsafe_wrap(Array, as_aic_idx, (3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*NNX*IIX
WIB_VI = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIC_AN = unsafe_wrap(Array, as_aic_idx, (3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*NNX*IIX
WIC_VI = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIP_AN = unsafe_wrap(Array, as_aic_idx, (3, NNX, NPX)); as_aic_idx += sizeof(Float64)*3*NNX*NPX
WIP_VI = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
VEB_XENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NPX*IIX
VEB_RENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NPX*IIX
VEC_XENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NPX*IIX
VEC_RENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NPX*IIX
VEP_XENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, NPX)); as_aic_idx += sizeof(Float64)*3*3*NPX*NPX
VEP_RENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, NPX)); as_aic_idx += sizeof(Float64)*3*3*NPX*NPX
VEB_VENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NPX*IIX
VEC_VENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NPX*IIX
VEP_VENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, NPX)); as_aic_idx += sizeof(Float64)*3*3*NPX*NPX
VEB_FENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NPX*IIX
VEB_MENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NPX*IIX
VEC_FENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NPX*IIX
VEC_MENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NPX*IIX
VEP_FENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, NPX)); as_aic_idx += sizeof(Float64)*3*3*NPX*NPX
VEP_MENG = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX, NPX)); as_aic_idx += sizeof(Float64)*3*3*NPX*NPX
VIB_AN_MA = unsafe_wrap(Array, as_aic_idx, (3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*NNX*IIX
WIB_VI_MA = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIC_AN_MA = unsafe_wrap(Array, as_aic_idx, (3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*NNX*IIX
WIC_VI_MA = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIP_AN_MA = unsafe_wrap(Array, as_aic_idx, (3, NNX, NPX)); as_aic_idx += sizeof(Float64)*3*NNX*NPX
WIP_VI_MA = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
VIB_AN_AL = unsafe_wrap(Array, as_aic_idx, (3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*NNX*IIX
WIB_VI_AL = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIC_AN_AL = unsafe_wrap(Array, as_aic_idx, (3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*NNX*IIX
WIC_VI_AL = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIP_AN_AL = unsafe_wrap(Array, as_aic_idx, (3, NNX, NPX)); as_aic_idx += sizeof(Float64)*3*NNX*NPX
WIP_VI_AL = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
VIB_AN_BE = unsafe_wrap(Array, as_aic_idx, (3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*NNX*IIX
WIB_VI_BE = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIC_AN_BE = unsafe_wrap(Array, as_aic_idx, (3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*NNX*IIX
WIC_VI_BE = unsafe_wrap(Array, as_aic_idx, (3, IIX)); as_aic_idx += sizeof(Float64)*3*IIX
VIP_AN_BE = unsafe_wrap(Array, as_aic_idx, (3, NNX, NPX)); as_aic_idx += sizeof(Float64)*3*NNX*NPX
WIP_VI_BE = unsafe_wrap(Array, as_aic_idx, (3, NPX)); as_aic_idx += sizeof(Float64)*3*NPX
VIB_AN_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NNX*IIX
WIB_VI_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
VIC_AN_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NNX*IIX
WIC_VI_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
VIP_AN_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, NNX, NPX)); as_aic_idx += sizeof(Float64)*3*3*NNX*NPX
WIP_VI_POS = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX)); as_aic_idx += sizeof(Float64)*3*3*NPX
VIB_AN_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NNX*IIX
WIB_VI_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
VIC_AN_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, NNX, IIX)); as_aic_idx += sizeof(Float64)*3*3*NNX*IIX
WIC_VI_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, IIX)); as_aic_idx += sizeof(Float64)*3*3*IIX
VIP_AN_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, NNX, NPX)); as_aic_idx += sizeof(Float64)*3*3*NNX*NPX
WIP_VI_EUL = unsafe_wrap(Array, as_aic_idx, (3, 3, NPX)); as_aic_idx += sizeof(Float64)*3*3*NPX
veb_gl = unsafe_wrap(Array, as_aic_idx, (3, NGLX+1, IIX)); as_aic_idx += sizeof(Float64)*3*(NGLX+1)*IIX
VEB_GL = OffsetArrays.OffsetArray(veb_gl,1:3, 0:NGLX, 1:IIX)
vec_gl = unsafe_wrap(Array, as_aic_idx, (3, NGLX+1, IIX)); as_aic_idx += sizeof(Float64)*3*(NGLX+1)*IIX
VEC_GL = OffsetArrays.OffsetArray(vec_gl,1:3, 0:NGLX, 1:IIX)
vep_gl = unsafe_wrap(Array, as_aic_idx, (3, NGLX+1, NPX)); as_aic_idx += sizeof(Float64)*3*(NGLX+1)*NPX
VEP_GL = OffsetArrays.OffsetArray(vep_gl,1:3, 0:NGLX, 1:NPX)
as_syj = cglobal((:as_syj_, libaswing), Float64); as_syj_idx = as_syj
AJSAV = unsafe_wrap(Array, as_syj_idx, (12, 18, NJX)); as_syj_idx += sizeof(Float64)*12*18*NJX
CJSAV = unsafe_wrap(Array, as_syj_idx, (12, 18, NJX)); as_syj_idx += sizeof(Float64)*12*18*NJX
RJSAV = unsafe_wrap(Array, as_syj_idx, (12, NGLX, NJX)); as_syj_idx += sizeof(Float64)*12*NGLX*NJX
ATJSAV = unsafe_wrap(Array, as_syj_idx, (12, 6, NJX)); as_syj_idx += sizeof(Float64)*12*6*NJX
CTJSAV = unsafe_wrap(Array, as_syj_idx, (12, 6, NJX)); as_syj_idx += sizeof(Float64)*12*6*NJX
RTJSAV = unsafe_wrap(Array, as_syj_idx, (12, NGLX, NJX)); as_syj_idx += sizeof(Float64)*12*NGLX*NJX
rfrpjsav = unsafe_wrap(Array, as_syj_idx, (12, NFRLX+1, NJX)); as_syj_idx += sizeof(Float64)*12*(NFRLX+1)*NJX
RFRPJSAV = OffsetArrays.OffsetArray(rfrpjsav, 1:12, 0:NFRLX, 1:NJX)
as_syr = cglobal((:as_syr_, libaswing), Float64); as_syr_idx = as_syr
A = unsafe_wrap(Array, as_syr_idx, (18, 18, IIX)); as_syr_idx += sizeof(Float64)*18*18*IIX
B = unsafe_wrap(Array, as_syr_idx, (18, 18, IIX)); as_syr_idx += sizeof(Float64)*18*18*IIX
C = unsafe_wrap(Array, as_syr_idx, (18, 18, IIX)); as_syr_idx += sizeof(Float64)*18*18*IIX
r = unsafe_wrap(Array, as_syr_idx, (18, NGLX+1, IIX)); as_syr_idx += sizeof(Float64)*18*(NGLX+1)*IIX
R = OffsetArrays.OffsetArray(r, 1:18, 0:NGLX, 1:IIX)
AT = unsafe_wrap(Array, as_syr_idx, (18, 6, IIX)); as_syr_idx += sizeof(Float64)*18*6*IIX
BT = unsafe_wrap(Array, as_syr_idx, (18, 6, IIX)); as_syr_idx += sizeof(Float64)*18*6*IIX
CT = unsafe_wrap(Array, as_syr_idx, (18, 6, IIX)); as_syr_idx += sizeof(Float64)*18*6*IIX
rt = unsafe_wrap(Array, as_syr_idx, (18, NGLX+1, IIX)); as_syr_idx += sizeof(Float64)*18*(NGLX+1)*IIX
RT = OffsetArrays.OffsetArray(rt, 1:18, 0:NGLX, 1:IIX)
rfrp = unsafe_wrap(Array, as_syr_idx, (18, NFRLX+1, IIX)); as_syr_idx += sizeof(Float64)*18*(NFRLX+1)*IIX
RFRP = OffsetArrays.OffsetArray(rfrp, 1:18, 0:NFRLX, 1:IIX)
as_syg = cglobal((:as_syg_, libaswing), Float64); as_syg_idx = as_syg
gvsys = unsafe_wrap(Array, as_syg_idx, (NGVX, NGLX+1)); as_syg_idx += sizeof(Float64)*NGVX*(NGLX+1)
GVSYS = OffsetArrays.OffsetArray(gvsys, 1:NGVX, 0:NGLX)
gpsys = unsafe_wrap(Array, as_syg_idx, (NGPX, NGLX+1)); as_syg_idx += sizeof(Float64)*NGPX*(NGLX+1)
GPSYS = OffsetArrays.OffsetArray(gpsys, 1:NGPX, 0:NGLX)
gfsys = unsafe_wrap(Array, as_syg_idx, (NGFX, NGLX+1)); as_syg_idx += sizeof(Float64)*NGFX*(NGLX+1)
GFSYS = OffsetArrays.OffsetArray(gfsys, 1:NGFX, 0:NGLX)
gvsyst = unsafe_wrap(Array, as_syg_idx, (NGVX, NGLX+1)); as_syg_idx += sizeof(Float64)*NGVX*(NGLX+1)
GVSYST = OffsetArrays.OffsetArray(gvsyst, 1:NGVX, 0:NGLX)
gpsyst = unsafe_wrap(Array, as_syg_idx, (NGPX, NGLX+1)); as_syg_idx += sizeof(Float64)*NGPX*(NGLX+1)
GPSYST = OffsetArrays.OffsetArray(gpsyst, 1:NGPX, 0:NGLX)
gfsyst = unsafe_wrap(Array, as_syg_idx, (NGFX, NGLX+1)); as_syg_idx += sizeof(Float64)*NGFX*(NGLX+1)
GFSYST = OffsetArrays.OffsetArray(gfsyst, 1:NGFX, 0:NGLX)
GVQ = unsafe_wrap(Array, as_syg_idx, (18, NGVQX)); as_syg_idx += sizeof(Float64)*18*NGVQX
GPQ = unsafe_wrap(Array, as_syg_idx, (18, NGPQX)); as_syg_idx += sizeof(Float64)*18*NGPQX
GFQ = unsafe_wrap(Array, as_syg_idx, (18, NGFQX)); as_syg_idx += sizeof(Float64)*18*NGFQX
GVQT = unsafe_wrap(Array, as_syg_idx, (6, NGVQX)); as_syg_idx += sizeof(Float64)*6*NGVQX
GPQT = unsafe_wrap(Array, as_syg_idx, (6, NGPQX)); as_syg_idx += sizeof(Float64)*6*NGPQX
GFQT = unsafe_wrap(Array, as_syg_idx, (6, NGFQX)); as_syg_idx += sizeof(Float64)*6*NGFQX
gvfrp = unsafe_wrap(Array, as_syg_idx, (NGVX, NFRLX+1)); as_syg_idx += sizeof(Float64)*NGVX*(NFRLX+1)
GVFRP = OffsetArrays.OffsetArray(gvfrp, 1:NGVX, 0:NFRLX)
gpfrp = unsafe_wrap(Array, as_syg_idx, (NGPX, NFRLX+1)); as_syg_idx += sizeof(Float64)*NGPX*(NFRLX+1)
GPFRP = OffsetArrays.OffsetArray(gpfrp, 1:NGPX, 0:NFRLX)
gffrp = unsafe_wrap(Array, as_syg_idx, (NGFX, NFRLX+1)); as_syg_idx += sizeof(Float64)*NGFX*(NFRLX+1)
GFFRP = OffsetArrays.OffsetArray(gffrp, 1:NGFX, 0:NFRLX)
GFLSQ = unsafe_wrap(Array, as_syg_idx, (NGFX, NGFX)); as_syg_idx += sizeof(Float64)*NGFX*NGFX
WLSQ = unsafe_wrap(Array, as_syg_idx, NGFX);
as_syz = cglobal((:as_syz_, libaswing), ComplexF64); as_syz_idx = as_syz
ZA = unsafe_wrap(Array, as_syz_idx, (18, 18, IIX)); as_syz_idx += sizeof(ComplexF64)*18*18*IIX
ZB = unsafe_wrap(Array, as_syz_idx, (18, 18, IIX)); as_syz_idx += sizeof(ComplexF64)*18*18*IIX
ZC = unsafe_wrap(Array, as_syz_idx, (18, 18, IIX)); as_syz_idx += sizeof(ComplexF64)*18*18*IIX
zr = unsafe_wrap(Array, as_syz_idx, (18, NGLX+1, IIX)); as_syz_idx += sizeof(ComplexF64)*18*(NGLX+1)*IIX
ZR = OffsetArrays.OffsetArray(zr, 1:18, 0:NGLX, 1:IIX)
zgvsys = unsafe_wrap(Array, as_syz_idx, (NGVX, NGLX+1)); as_syz_idx += sizeof(ComplexF64)*NGVX*(NGLX+1)
ZGVSYS = OffsetArrays.OffsetArray(zgvsys, 1:NGVX, 0:NGLX)
zgpsys = unsafe_wrap(Array, as_syz_idx, (NGPX, NGLX+1)); as_syz_idx += sizeof(ComplexF64)*NGPX*(NGLX+1)
ZGPSYS = OffsetArrays.OffsetArray(zgpsys, 1:NGPX, 0:NGLX)
zgfsys = unsafe_wrap(Array, as_syz_idx, (NGFX, NGLX+1)); as_syz_idx += sizeof(ComplexF64)*NGFX*(NGLX+1)
ZGFSYS = OffsetArrays.OffsetArray(zgfsys, 1:NGFX, 0:NGLX)
ZGVQ = unsafe_wrap(Array, as_syz_idx, (18, NGVQX)); as_syz_idx += sizeof(ComplexF64)*18*NGVQX
ZGPQ = unsafe_wrap(Array, as_syz_idx, (18, NGPQX)); as_syz_idx += sizeof(ComplexF64)*18*NGPQX
ZGFQ = unsafe_wrap(Array, as_syz_idx, (18, NGFQX)); as_syz_idx += sizeof(ComplexF64)*18*NGFQX
as_syi = cglobal((:as_syi_, libaswing), Int32); as_syi_idx = as_syi
NGVQ = unsafe_wrap(Array, as_syi_idx, 1); as_syi_idx += sizeof(Int32)
KGVQ = unsafe_wrap(Array, as_syi_idx, NGVQX); as_syi_idx += sizeof(Int32)*NGVQX
IGVQ = unsafe_wrap(Array, as_syi_idx, NGVQX); as_syi_idx += sizeof(Int32)*NGVQX
NGPQ = unsafe_wrap(Array, as_syi_idx, 1); as_syi_idx += sizeof(Int32)
KGPQ = unsafe_wrap(Array, as_syi_idx, NGPQX); as_syi_idx += sizeof(Int32)*NGPQX
IGPQ = unsafe_wrap(Array, as_syi_idx, NGPQX); as_syi_idx += sizeof(Int32)*NGPQX
NGFQ = unsafe_wrap(Array, as_syi_idx, 1); as_syi_idx += sizeof(Int32)
KGFQ = unsafe_wrap(Array, as_syi_idx, NGFQX); as_syi_idx += sizeof(Int32)*NGFQX
IGFQ = unsafe_wrap(Array, as_syi_idx, NGFQX); as_syi_idx += sizeof(Int32)*NGFQX
NGVQZ = unsafe_wrap(Array, as_syi_idx, 1); as_syi_idx += sizeof(Int32)
KGVQZ = unsafe_wrap(Array, as_syi_idx, NGVQX); as_syi_idx += sizeof(Int32)*NGVQX
IGVQZ = unsafe_wrap(Array, as_syi_idx, NGVQX); as_syi_idx += sizeof(Int32)*NGVQX
NGPQZ = unsafe_wrap(Array, as_syi_idx, 1); as_syi_idx += sizeof(Int32)
KGPQZ = unsafe_wrap(Array, as_syi_idx, NGPQX); as_syi_idx += sizeof(Int32)*NGPQX
IGPQZ = unsafe_wrap(Array, as_syi_idx, NGPQX); as_syi_idx += sizeof(Int32)*NGPQX
NGFQZ = unsafe_wrap(Array, as_syi_idx, 1); as_syi_idx += sizeof(Int32)
KGFQZ = unsafe_wrap(Array, as_syi_idx, NGFQX); as_syi_idx += sizeof(Int32)*NGFQX
IGFQZ = unsafe_wrap(Array, as_syi_idx, NGFQX); as_syi_idx += sizeof(Int32)*NGFQX
NGVQ1 = unsafe_wrap(Array, as_syi_idx, 1); as_syi_idx += sizeof(Int32)
NGPQ1 = unsafe_wrap(Array, as_syi_idx, 1); as_syi_idx += sizeof(Int32)
NGFQ1 = unsafe_wrap(Array, as_syi_idx, 1); as_syi_idx += sizeof(Int32)
IGVPIV = unsafe_wrap(Array, as_syi_idx, NGVX); as_syi_idx += sizeof(Int32)*NGVX
IGPPIV = unsafe_wrap(Array, as_syi_idx, NGPX); as_syi_idx += sizeof(Int32)*NGPX
IGFPIV = unsafe_wrap(Array, as_syi_idx, NGFX); as_syi_idx += sizeof(Int32)*NGFX
as_itr = cglobal((:as_itr_, libaswing), Int32); as_itr_idx = as_itr
ITER = unsafe_wrap(Array, as_itr_idx, 1); as_itr_idx += sizeof(Int32)
ITMAX = unsafe_wrap(Array, as_itr_idx, 1); as_itr_idx += sizeof(Int32)
NEIGIT = unsafe_wrap(Array, as_itr_idx, 1); as_itr_idx += sizeof(Int32)
as_tol = cglobal((:as_tol_, libaswing), Float64); as_tol_idx = as_tol
EPS = unsafe_wrap(Array, as_tol_idx, 1); as_tol_idx += sizeof(Float64)
DELRMS = unsafe_wrap(Array, as_tol_idx, 1); as_tol_idx += sizeof(Float64)
DELMAX = unsafe_wrap(Array, as_tol_idx, 1); as_tol_idx += sizeof(Float64)
dglob = unsafe_wrap(Array, as_tol_idx, NGLX+1); as_tol_idx += sizeof(Float64)*(NGLX+1)
DGLOB = OffsetArrays.OffsetArray(dglob, 0:NGLX)
DQ = unsafe_wrap(Array, as_tol_idx, (18, IIX)); as_tol_idx += sizeof(Float64)*18*IIX
as_nam = cglobal((:as_nam_, libaswing), Cchar); as_nam_idx = as_nam
ARGP1 = unsafe_wrap(Array, as_nam_idx, 80); as_nam_idx += sizeof(Cchar)*80
ARGP2 = unsafe_wrap(Array, as_nam_idx, 80); as_nam_idx += sizeof(Cchar)*80
PREFIX = unsafe_wrap(Array, as_nam_idx, 80); as_nam_idx += sizeof(Cchar)*80
NAME = unsafe_wrap(Array, as_nam_idx, 80); as_nam_idx += sizeof(Cchar)*80
ANAME = Array{Array{Cchar,1}, 1}(undef, NPNTX)
for i = 1:NPNTX
ANAME[i] = unsafe_wrap(Array, as_nam_idx, 64); as_nam_idx += sizeof(Cchar)*64
end
BNAME = Array{Array{Cchar,1}, 1}(undef, NBX)
for i = 1:NBX
BNAME[i] = unsafe_wrap(Array, as_nam_idx, 64); as_nam_idx += sizeof(Cchar)*64
end
CNAME = Array{Array{Cchar,1}, 1}(undef, IPTOT)
for i = 1:IPTOT
CNAME[i] = unsafe_wrap(Array, as_nam_idx, 16); as_nam_idx += sizeof(Cchar)*16
end
CUNIT = Array{Array{Cchar,1}, 1}(undef, IPTOT)
for i = 1:IPTOT
CUNIT[i] = unsafe_wrap(Array, as_nam_idx, 16); as_nam_idx += sizeof(Cchar)*16
end
CKEY = Array{Array{Cchar,1}, 1}(undef, IPTOT)
for i = 1:IPTOT
CKEY[i] = unsafe_wrap(Array, as_nam_idx, 2); as_nam_idx += sizeof(Cchar)*2
end
RNAME = Array{Array{Cchar,1}, 1}(undef, IPTOT)
for i = 1:IPTOT
RNAME[i] = unsafe_wrap(Array, as_nam_idx, 12); as_nam_idx += sizeof(Cchar)*12
end
RUNIT = Array{Array{Cchar,1}, 1}(undef, IPTOT)
for i = 1:IPTOT
RUNIT[i] = unsafe_wrap(Array, as_nam_idx, 16); as_nam_idx += sizeof(Cchar)*16
end
RKEY = Array{Array{Cchar,1}, 1}(undef, IPTOT)
for i = 1:IPTOT
RKEY[i] = unsafe_wrap(Array, as_nam_idx, 2); as_nam_idx += sizeof(Cchar)*2
end
as_pli = cglobal((:as_pli_, libaswing), Int32); as_pli_idx = as_pli
IDEV = unsafe_wrap(Array, as_pli_idx, 1); as_pli_idx += sizeof(Int32)
IDEVRP = unsafe_wrap(Array, as_pli_idx, 1); as_pli_idx += sizeof(Int32)
IDEVM = unsafe_wrap(Array, as_pli_idx, 1); as_pli_idx += sizeof(Int32)
IPSLU = unsafe_wrap(Array, as_pli_idx, 1); as_pli_idx += sizeof(Int32)
NCOLOR = unsafe_wrap(Array, as_pli_idx, 1); as_pli_idx += sizeof(Int32)
NBFREQ = unsafe_wrap(Array, as_pli_idx, 1); as_pli_idx += sizeof(Int32)
NBEIGEN = unsafe_wrap(Array, as_pli_idx, 1); as_pli_idx += sizeof(Int32)
NFRAME = unsafe_wrap(Array, as_pli_idx, 1); as_pli_idx += sizeof(Int32)
IVGCUT = unsafe_wrap(Array, as_pli_idx, 1); as_pli_idx += sizeof(Int32)
IVGFUN = unsafe_wrap(Array, as_pli_idx, 1); as_pli_idx += sizeof(Int32)
ILINE = unsafe_wrap(Array, as_pli_idx, NPNTX); as_pli_idx += sizeof(Int32)*NPNTX
ICOLOR = unsafe_wrap(Array, as_pli_idx, NPNTX); as_pli_idx += sizeof(Int32)*NPNTX
ICOLB = unsafe_wrap(Array, as_pli_idx, NBX); as_pli_idx += sizeof(Int32)*NBX
ICOLF = unsafe_wrap(Array, as_pli_idx, NFRPX); as_pli_idx += sizeof(Int32)*NFRPX
as_pll = cglobal((:as_pll_, libaswing), Int32); as_pll_idx = as_pll
LPLOT = unsafe_wrap(Array, as_pll_idx, 1); as_pll_idx += sizeof(Int32)
LPGRID = unsafe_wrap(Array, as_pll_idx, 1); as_pll_idx += sizeof(Int32)
LCEDPL = unsafe_wrap(Array, as_pll_idx, 1); as_pll_idx += sizeof(Int32)
LSVMOV = unsafe_wrap(Array, as_pll_idx, 1); as_pll_idx += sizeof(Int32)
as_plr = cglobal((:as_plr_, libaswing), Float64); as_plr_idx = as_plr
SCRNFL = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
SCRNFP = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
SIZE = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
CSIZ = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
XWIND = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
YWIND = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
AZIMOB = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
ELEVOB = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
ROBINV = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
XYZUP = unsafe_wrap(Array, as_plr_idx, 3); as_plr_idx += sizeof(Float64)*3
WAKLFR = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
SAXLFR = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
SLOMOF = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
EIGENF = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
TMOVIE = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
TIME1 = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
TIME2 = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
DPHASE = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
SCALEF = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
DTDUMP = unsafe_wrap(Array, as_plr_idx, NBX); as_plr_idx += sizeof(Float64)*NBX
BFREQ1 = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
BFREQ2 = unsafe_wrap(Array, as_plr_idx, 1); as_plr_idx += sizeof(Float64)
VGCXYZ = unsafe_wrap(Array, as_plr_idx, 3); as_plr_idx += sizeof(Float64)*3
VGCLIM = unsafe_wrap(Array, as_plr_idx, (2,3)); as_plr_idx += sizeof(Float64)*2*3
as_sen = cglobal((:as_sen_, libaswing), Float64); as_sen_idx = as_sen
CL_VEL = unsafe_wrap(Array, as_sen_idx, (3,NPNTX)); as_sen_idx += sizeof(Float64)*3*NPNTX
CM_VEL = unsafe_wrap(Array, as_sen_idx, (3,NPNTX)); as_sen_idx += sizeof(Float64)*3*NPNTX
CN_VEL = unsafe_wrap(Array, as_sen_idx, (3,NPNTX)); as_sen_idx += sizeof(Float64)*3*NPNTX
CR_VEL = unsafe_wrap(Array, as_sen_idx, (3,NPNTX)); as_sen_idx += sizeof(Float64)*3*NPNTX
CL_ROT = unsafe_wrap(Array, as_sen_idx, (3,NPNTX)); as_sen_idx += sizeof(Float64)*3*NPNTX
CM_ROT = unsafe_wrap(Array, as_sen_idx, (3,NPNTX)); as_sen_idx += sizeof(Float64)*3*NPNTX
CN_ROT = unsafe_wrap(Array, as_sen_idx, (3,NPNTX)); as_sen_idx += sizeof(Float64)*3*NPNTX
CR_ROT = unsafe_wrap(Array, as_sen_idx, (3,NPNTX)); as_sen_idx += sizeof(Float64)*3*NPNTX
FOR_VEL = unsafe_wrap(Array, as_sen_idx, (3,3,NPNTX)); as_sen_idx += sizeof(Float64)*3*3*NPNTX
MOM_VEL = unsafe_wrap(Array, as_sen_idx, (3,3,NPNTX)); as_sen_idx += sizeof(Float64)*3*3*NPNTX
FOR_ROT = unsafe_wrap(Array, as_sen_idx, (3,3,NPNTX)); as_sen_idx += sizeof(Float64)*3*3*NPNTX
MOM_ROT = unsafe_wrap(Array, as_sen_idx, (3,3,NPNTX)); as_sen_idx += sizeof(Float64)*3*3*NPNTX
FOR_FLAP = unsafe_wrap(Array, as_sen_idx, (3,NFLPX,NPNTX)); as_sen_idx += sizeof(Float64)*3*NFLPX*NPNTX
MOM_FLAP = unsafe_wrap(Array, as_sen_idx, (3,NFLPX,NPNTX)); as_sen_idx += sizeof(Float64)*3*NFLPX*NPNTX
FOR_PENG = unsafe_wrap(Array, as_sen_idx, (3,NENGX,NPNTX)); as_sen_idx += sizeof(Float64)*3*NENGX*NPNTX
MOM_PENG = unsafe_wrap(Array, as_sen_idx, (3,NENGX,NPNTX)); as_sen_idx += sizeof(Float64)*3*NENGX*NPNTX
as_edi = cglobal((:as_edi_, libaswing), Int32); as_edi_idx = as_edi
JEDIT = unsafe_wrap(Array, as_edi_idx, 1); as_edi_idx += sizeof(Int32)
ISEDIT = unsafe_wrap(Array, as_edi_idx, 1); as_edi_idx += sizeof(Int32)
as_edl = cglobal((:as_edl_, libaswing), Int32); as_edl_idx = as_edl
LSLOPE = unsafe_wrap(Array, as_edl_idx, 1); as_edl_idx += sizeof(Int32)
ledsym = unsafe_wrap(Array, as_edl_idx, (JBX+1,NBX));
LEDSYM = OffsetArrays.OffsetArray(ledsym, 0:JBX, 1:NBX)
as_edr = cglobal((:as_edr_, libaswing), Float64); as_edr_idx = as_edr
EDPAR = unsafe_wrap(Array, as_edr_idx, 1); as_edr_idx += sizeof(Float64)
TOFFE = unsafe_wrap(Array, as_edr_idx, 1); as_edr_idx += sizeof(Float64)
TFACE = unsafe_wrap(Array, as_edr_idx, 1); as_edr_idx += sizeof(Float64)
QOFFE = unsafe_wrap(Array, as_edr_idx, 1); as_edr_idx += sizeof(Float64)
QFACE = unsafe_wrap(Array, as_edr_idx, 1); as_edr_idx += sizeof(Float64)
TBMIN = unsafe_wrap(Array, as_edr_idx, 1); as_edr_idx += sizeof(Float64)
TBMAX = unsafe_wrap(Array, as_edr_idx, 1); as_edr_idx += sizeof(Float64)
DELTB = unsafe_wrap(Array, as_edr_idx, 1); as_edr_idx += sizeof(Float64)
QBMIN = unsafe_wrap(Array, as_edr_idx, 1); as_edr_idx += sizeof(Float64)
QBMAX = unsafe_wrap(Array, as_edr_idx, 1); as_edr_idx += sizeof(Float64)
DELQB = unsafe_wrap(Array, as_edr_idx, 1); as_edr_idx += sizeof(Float64)
com_vgi = cglobal((:com_vgi_, libaswing), Int32)
IGUST = unsafe_wrap(Array, com_vgi, 1)
com_vgr = cglobal((:com_vgr_, libaswing), Float64)
VGCON = unsafe_wrap(Array, com_vgr, 6)
new(PI, DTOR, VERSION, STIPL, STIPR, TBTIPL, TBTIPR, MACHPG, GEEW, SREF,
CREF, BREF, XYZREF, BGREFX, BGREFY, BGREFZ, ULCON, GRNORM, VSOSL,
VSO_SI, VSOSL_SI, RHOSL, RHO_SI, RHOSL_SI, RMUSL, RMU_SI, RMUSL_SI,
EXPII, EXPNN, LALTKM, AUTSCL, LTERSE, LVLFIX, LAELAG, LLEVEC,
STEADY, CONLAW, CONSET, LFGUST, LROMFR, LVISEN, LLGROU, LLREFP,
LAXPLT, LELIST, LENGLI, LESPEC, LNODES, LUNSWP, LPLRIB, LPLZLO,
LPLBAR, LFRPAN, LFRROT, LGEOM, LLRHS, LVAIC, LWSET, LCSET, LQBDEF,
LBSYMM, LSFLAP, LSPENG, LSSENS, LQINI, LAINI, LCONV, LMACH, PSTEADY,
LPBEAM, LPWAKE, LDCON, LUCON, LQCON, NQ, NCP, IBEAM, IICON, II,
IFRST, ILAST, IITOT, NNCON, NN, NFRST, NLAST, NNTOT, KEQ0, KEQ,
NRHS, NGVAR, NGPAR, NGFOR, NGFEQ, NFRP, NFRPF, NFRPR, NBEAM, NFUSE,
NSURF, ICOORD, IENGTYP, IGUSDIR, NXGUST, NYGUST, NZGUST, NFGUST,
IGRIM, LRES, LQJOIN, LAN, LHEAD, LELEV, LBANK, LVAC, LRAC, LVEL,
LROT, LPOS, LFLAP, LPENG, LVIDT, LALDT, LBEDT, LHEDT, LELDT, LBADT,
LWDT, LADT, LVIDTS, LALDTS, LBEDTS, LHEDTS, LELDTS, LBADTS, LWDTS,
LADTS, LFRPK, KFRPL, LFLAPF, LPENGF, LGUS1F, LGUS2F, LGUS3F, LGUS4F,
VGI_FRP, AFORCE, RFORCE, EFORCE, GFORCE, TFORCE, AMOMNT, RMOMNT,
EMOMNT, GMOMNT, TMOMNT, AFOR_Q, AFOR_GL, AFOR_FRP, AMOM_Q, AMOM_GL,
AMOM_FRP, RFOR_Q, RFOR_GL, RFOR_FRP, RMOM_Q, RMOM_GL, RMOM_FRP,
EFOR_Q, EFOR_GL, EFOR_FRP, EMOM_Q, EMOM_GL, EMOM_FRP, GFOR_Q,
GFOR_GL, GFOR_FRP, GMOM_Q, GMOM_GL, GMOM_FRP, AFOR_UT, AFOR_GLT,
AMOM_UT, AMOM_GLT, RFOR_UT, RFOR_GLT, RMOM_UT, RMOM_GLT, EFOR_UT,
EFOR_GLT, EMOM_UT, EMOM_GLT, GFOR_UT, GFOR_GLT, GMOM_UT, GMOM_GLT,
FAERO, FAERO_Q, FAERO_GL, FAERO_FRP, FAERO_UT, FAERO_GLT, MAERO,
MAERO_Q, MAERO_GL, MAERO_FRP, MAERO_UT, MAERO_GLT, DVENG, XENG,
XENG_ANG, RENG, RENG_ANG, VENG, VENG_Q, VENG_GL, FENG, FENG_Q,
FENG_GL, MENG, MENG_Q, MENG_GL, MASS, MASSP, MASSB, AREAB, RCGXYZ0,
RMASST0, RINERT0, RCGXYZ, RMASST, RINERT, PCGXYZ0, PMASST0, PINERT0,
PCGXYZ, PMASST, PINERT, AMASST0, AINERT0, AMASST, AINERT, RCGXYZB0,
RMASSTB0, AMASSTB0, RINERTB0, AINERTB0, RCGXYZB, RMASSTB, RINERTB,
AMASSTB, AINERTB, QPYLO, TB, QB, QBT, TJOIN, TGROU, SBRK, TBFIL,
QBFIL, QBTFIL, ANGJ, ANGJM, MOMJ, HJAX, NB, KBTYPE, KBNUM, KBPYLO,
KBJOIN, KBGROU, NPYLO, ISPYLO, IPYLO, KPTYPE, ISSENS, ISENS, NJOIN,
ISJOIN, IJOIN, KJTYPE, NGROU, ISGROU, IGROU, KGTYPE, NCORN, ISCORN,
ICORN, JBCORN, IBCORN, NBRK, IBRK, JFIL, ISFIL, NBFIL, NANGJ, QSNSP,
QSENS, QSENS_Q, QSENS_QT, QSENS_GL, QSENS_GLT, QSENS_FRP, TPMAT,
VIWIND, ALWIND, BEWIND, VIW_VEL, ALW_VEL, BEW_VEL, Q, Q0, QPAR, S,
THET, SPLT, TBI, SCP, XYZTFZ, XYZTFZI, PARAM, AN, PSPEC, PSPECSET,
WFLAP, WPENG, QJOIN, QPNT, DTIME, TIME, QTWT, RDOT, UDOT, PSDOT,
ANDOT, QSDOT, AKGUST, ALGUST, VFGUST, NPOINT, IPOINT, NPTIME, IPNTD,
IPNTVL, KCSET, IQEXP, IPPAR, IPPARSET, ANF, RCCORE, VIB, WIB, VEB,
VIC, WIC, VEC, VIP, WIP, VEP, VIB_MA, WIB_MA, VIC_MA, WIC_MA,
VIP_MA, WIP_MA, VIB_AL, WIB_AL, VEB_AL, VIC_AL, WIC_AL, VEC_AL,
VIP_AL, WIP_AL, VEP_AL, VIB_BE, WIB_BE, VEB_BE, VIC_BE, WIC_BE,
VEC_BE, VIP_BE, WIP_BE, VEP_BE, VIB_POS, WIB_POS, VIC_POS, WIC_POS,
VIP_POS, WIP_POS, VIB_EUL, WIB_EUL, VIC_EUL, WIC_EUL, VIP_EUL,
WIP_EUL, VIB_AN, WIB_VI, VIC_AN, WIC_VI, VIP_AN, WIP_VI, VEB_XENG,
VEB_RENG, VEC_XENG, VEC_RENG, VEP_XENG, VEP_RENG, VEB_VENG,
VEC_VENG, VEP_VENG, VEB_FENG, VEB_MENG, VEC_FENG, VEC_MENG,
VEP_FENG, VEP_MENG, VIB_AN_MA, WIB_VI_MA, VIC_AN_MA, WIC_VI_MA,
VIP_AN_MA, WIP_VI_MA, VIB_AN_AL, WIB_VI_AL, VIC_AN_AL, WIC_VI_AL,
VIP_AN_AL, WIP_VI_AL, VIB_AN_BE, WIB_VI_BE, VIC_AN_BE, WIC_VI_BE,
VIP_AN_BE, WIP_VI_BE, VIB_AN_POS, WIB_VI_POS, VIC_AN_POS,
WIC_VI_POS, VIP_AN_POS, WIP_VI_POS, VIB_AN_EUL, WIB_VI_EUL,
VIC_AN_EUL, WIC_VI_EUL, VIP_AN_EUL, WIP_VI_EUL, VEB_GL, VEC_GL,
VEP_GL, AJSAV, CJSAV, RJSAV, ATJSAV, CTJSAV, RTJSAV, RFRPJSAV, A, B,
C, R, AT, BT, CT, RT, RFRP, GVSYS, GPSYS, GFSYS, GVSYST, GPSYST,
GFSYST, GVQ, GPQ, GFQ, GVQT, GPQT, GFQT, GVFRP, GPFRP, GFFRP, GFLSQ,
WLSQ, ZA, ZB, ZC, ZR, ZGVSYS, ZGPSYS, ZGFSYS, ZGVQ, ZGPQ, ZGFQ,
NGVQ, KGVQ, IGVQ, NGPQ, KGPQ, IGPQ, NGFQ, KGFQ, IGFQ, NGVQZ, KGVQZ,
IGVQZ, NGPQZ, KGPQZ, IGPQZ, NGFQZ, KGFQZ, IGFQZ, NGVQ1, NGPQ1,
NGFQ1, IGVPIV, IGPPIV, IGFPIV, ITER, ITMAX, NEIGIT, EPS, DELRMS,
DELMAX, DGLOB, DQ, ARGP1, ARGP2, PREFIX, NAME, ANAME, BNAME, CNAME,
CUNIT, CKEY, RNAME, RUNIT, RKEY, IDEV, IDEVRP, IDEVM, IPSLU, NCOLOR,
NBFREQ, NBEIGEN, NFRAME, IVGCUT, IVGFUN, ILINE, ICOLOR, ICOLB,
ICOLF, LPLOT, LPGRID, LCEDPL, LSVMOV, SCRNFL, SCRNFP, SIZE, CSIZ,
XWIND, YWIND, AZIMOB, ELEVOB, ROBINV, XYZUP, WAKLFR, SAXLFR, SLOMOF,
EIGENF, TMOVIE, TIME1, TIME2, DPHASE, SCALEF, DTDUMP, BFREQ1,
BFREQ2, VGCXYZ, VGCLIM, CL_VEL, CM_VEL, CN_VEL, CR_VEL, CL_ROT,
CM_ROT, CN_ROT, CR_ROT, FOR_VEL, MOM_VEL, FOR_ROT, MOM_ROT,
FOR_FLAP, MOM_FLAP, FOR_PENG, MOM_PENG, JEDIT, ISEDIT, LSLOPE,
LEDSYM, EDPAR, TOFFE, TFACE, QOFFE, QFACE, TBMIN, TBMAX, DELTB,
QBMIN, QBMAX, DELQB, IGUST, VGCON
)
end
end
|
using UtilitiesForMRI, LinearAlgebra, PyPlot
# Cartesian domain
n = (64, 64, 64)
h = (1.0, 1.0, 1.0)
# o = (0.0, 0.0, 0.0)
o = (-5.0, -5.0, 0.0)
X = spatial_sampling(Float32, n; h=h, o=o)
# Cartesian sampling in k-space
phase_encoding = (1,2)
K = kspace_Cartesian_sampling(X; phase_encoding=phase_encoding)
nt, nk = size(K)
# Fourier operator
tol = 1f-6
F = nfft(X, K; tol=tol)
F0 = F(zeros(Float32, nt, 6))
# Rigid-body perturbation
θ = zeros(Float32, nt, 6)
θ[:, 1] .= 0
θ[:, 2] .= 0
θ[:, 3] .= 0
θ[:, 4] .= 0
θ[:, 5] .= 0
θ[:, 6] .= 0
# Volume
u = zeros(ComplexF32, n); u[33-5:33+5, 33-5:33+5, 33-5:33+5] .= 1
# Rigid-body motion
# u_rbm = F0'*F(θ)*u
figure()
for θxy = range(0,2*pi; length=20)
θ[:, 4] .= θxy
u_rbm = F0'*F(θ)*u
imshow(real(u_rbm)[:,:,33])
pause(0.1)
end |
using CSV
csvlist = CSV.File("day2_input.txt", header=false)
function check_passwd1(csvlist)
valid = 0
for l in csvlist
min, max = Tuple([parse(Int, n) for n in split(l[1], '-')])
char = l[2][1]
passwd = l[3]
len = length([c for c in passwd if c == char])
if min <= len <= max
valid += 1
end
end
return valid
end
function check_passwd2(csvlist)
valid = 0
for l in csvlist
pos1, pos2 = Tuple([parse(Int, n) for n in split(l[1], '-')])
char = l[2][1]
passwd = l[3]
if (passwd[pos1] == char) ⊻ (passwd[pos2] == char)
valid += 1
end
end
return valid
end
println("Number of valid lines in problem 1 of day 2 = $(check_passwd1(csvlist)) from a total of $(length(csvlist))")
println("Number of valid lines in problem 2 of day 2 = $(check_passwd2(csvlist)) from a total of $(length(csvlist))")
|
### A Pluto.jl notebook ###
# v0.16.1
using Markdown
using InteractiveUtils
# ╔═╡ c9994475-bef9-4557-b774-e20bd99c049d
using DataFrames, Statistics, CategoricalArrays, DataFramesMeta
# ╔═╡ aac765bf-9ccd-4442-beea-38a765c59d0a
using CSV, SQLite, Query, Tables
# ╔═╡ c8633fe3-cdfe-4346-bf2e-dc43c4d7a90c
using Random
# ╔═╡ 22c94091-2278-4f60-a57a-d8b5d419fd37
using BenchmarkTools
# ╔═╡ 6047eebc-cc01-48e3-8d58-d7c2bb683389
import Downloads
# ╔═╡ ceb84193-d5b6-493c-b109-9bb040dba50c
#=
DataFrame constructor
A DataFrame object can be created with several columns, NamedTuple, Dicts, Arrays, Vectors, Arrays of Strings, matrices, etc.
=#
# ╔═╡ a5853228-b040-46e2-937b-134aa833b199
df = DataFrame((a=[7, 7], b=[3, 4]))
# ╔═╡ 2dfeea25-0a7d-477b-8f0b-238cb5ac996f
length(df[1,:]) # get number of elements in the DataFrameRow
# ╔═╡ d4e72dfe-88cf-455c-8619-fa337d8ad198
df[1, :]
# ╔═╡ 4276b4fc-83b2-45bb-a114-af205d47041b
gf = groupby(df, :a)[1]
# ╔═╡ c5337a2c-44ec-4813-8430-b3505b6488e1
ByRow(+)([1, 2, 3, 4, 5], [2, 4, 5, 6, 7]) # implements the function row-wise
# ╔═╡ e2faa9b1-9ae0-4ef8-a235-5bc67f997f23
AsTable((Name = "Nabs", Age = 23))
# ╔═╡ 88224c4a-2e92-48be-a329-9a7e5b449d57
DataFrame([7 1 5; 9 10 11], :auto) # here columns x1, x2, x3, .. are auto generated
# ╔═╡ d461a50d-bab2-4f46-b0d6-56568439b2e9
eachrow(df)[2]
# ╔═╡ d8e290ee-42ee-42b9-b098-254e72af8638
eachcol(df)
# ╔═╡ ff6bad5e-7373-4c2e-a69c-e4dc4ad4b620
similar(df, 4) # has same number of columns as the parent dataframe but with specified numer of rows
# ╔═╡ 386f80f7-10d1-4075-897d-af48ff2f5eda
# There are 3 ways to read CSV files to a DataFrame
# ╔═╡ 46871146-e192-4d1a-944b-eb06fa3d44ec
# Let's download the CSV file
# ╔═╡ f24fb0a1-2a39-4a0d-aa7c-f60856307f6d
Downloads.download("https://www.stats.govt.nz/assets/Uploads/Gross-domestic-product/Gross-domestic-product-March-2021-quarter/Download-data/gross-domestic-product-March-2021-quarter-csv.csv", "gdp.csv")
# ╔═╡ 20e1013b-f753-4e21-a0f6-5afa50341811
# Pass to constructor
# ╔═╡ 92083de8-cb06-48c8-bca3-14a84c80587f
df1 = DataFrame(CSV.File("gdp.csv"))
# ╔═╡ 9a12e206-a900-40e1-ad28-348dfba3b840
# Pipe it
# ╔═╡ 286dff3d-d926-43b2-abcd-0c9c68fb978c
df2 = CSV.File("gdp.csv") |> DataFrame
# ╔═╡ 317347d7-54cd-4a01-bf61-6154e7a9e63e
#=
Other formats from which a Julian DataFrame can be created and written to are:
1. Arrow.jl
2. Feather.jl
3. Avro.jl
4. JSONTables.jl
5. Parquet.jl (Parquet)
6. StatFiles.jl (Stata, SPSS, SAS)
7. XLSX.jl
=#
# You can also use DelimitedFiles.jl for creating DataFrame
# ╔═╡ 50e83a4f-68c6-45ff-bc58-fb24a1fdda83
# using the CSV read() function
# ╔═╡ b5352a9f-385f-4e1a-9bd4-c43a95681b9e
df3 = CSV.read("gdp.csv", DataFrame) # Here DataFrame is passed as an object
# ╔═╡ 68a29a3d-040b-49d9-8453-0ec29b9ea91f
isapprox.(df2, df3) # this won't work because the columns have String type data
# ╔═╡ 87cb09b7-05d5-4863-8ec0-015ca5755cad
isapprox.(DataFrame(a=rand(10), b=rand(10)), DataFrame(a=rand(10), b=rand(10))) #broadcasted over all values over columns
# ╔═╡ 50b0a355-ebf8-4a5f-89ce-132724abf382
isapprox(DataFrame(a=rand(10), b=rand(10)), DataFrame(a=rand(10), b=rand(10)))
# ╔═╡ 90f197cc-4fbd-4dc0-b7d0-1e8d37a592a1
values(df1)
# ╔═╡ 44ba67f4-b846-4f8f-afd2-40f9bb6ee93c
pairs(df1[!,:Period])
# ╔═╡ 2a147ec5-302b-4ef7-a25d-50a6a40916a6
# create DataFrame column by column
# ╔═╡ 322d07a8-95dc-490c-be8b-68b2cf332c19
b = DataFrame()
# ╔═╡ 946a5035-4586-442d-be37-b714ef171d99
b.A = 1:20
# ╔═╡ ed786d21-3bbf-4786-8ce1-3853de366a83
b.B = repeat(["M", "F"], 10)
# ╔═╡ 9470fd0e-286d-4ad4-bb5f-d76916a84d0e
# create DataFrame row by row
# ╔═╡ 977c1861-f6ef-4505-94e6-cdf064679487
push!(b, [21, "M"])
# ╔═╡ b74f2b45-dcd8-4cc8-9043-71b1388e475a
push!(b, Dict(:A => 22, :B => "F"))
# ╔═╡ bd7ccba5-3eea-4fa9-ac1b-4a3f67760b18
# DataFrames supports Tables.jl which is the Julian interface to interact with tabular data
# ╔═╡ 6a3c345c-4ea6-4b3f-9eb4-44779863d2d8
CSV.write("df2csv.csv", b) # write to a CSV file
# ╔═╡ 7d40b765-b7f7-400d-9269-6906ffe0d922
SQLite.load!(b, SQLite.DB(), "df2sqlite_table") # in memory sqlite database
# ╔═╡ 9a420cda-0e7b-4372-b5c5-bd8fd6319d42
b1 = b |> @map({_.A, _.B}) |> DataFrame # transform df through Query.jl
# ╔═╡ f17ec4dc-8e3d-4381-9b29-5ef755592036
Tables.rowtable(b) # use NamedTuples for creating DataFrame
# ╔═╡ f4b36082-c332-481c-96ba-dcbbd014cc80
gdp = copy(df3)
# ╔═╡ f5d6e9e3-d260-4778-b19c-2d345c06d1e6
# iterate over the dataframe
eachcol(gdp)
# ╔═╡ 70474af2-007d-4a11-b7ce-d102916875b5
# Accessing columns of DataFrame
# ╔═╡ 7e6cee35-cc6c-43bf-bb02-3584f4148bec
# Using . or ! operators
# ╔═╡ 7699de43-d5ca-42c2-b082-3a49e183152d
gdp.Period # or gdp."Period" gives the same result. You have to make a copy of the DataFrame before accessing columns using '.' (dot operator) or '!' operator.
# ╔═╡ f6d08f22-de4e-4a69-86f2-414445b980b2
gdp[!, :Period]
# ╔═╡ d15d313c-8a75-42aa-918e-4d9cfb15509f
gdp[!, "Period"]
# ╔═╡ ff293953-6eef-4fd5-9399-80610c1e719b
# Accessing dataframes with '!' is better as it makes a copy of the dataframe and any alteration made in the respective columns of the copy doesn't affect the actual dataframe.
# ╔═╡ a6ebd155-2252-4059-96cc-7a1c77b14df1
# using names, propertynames function
# ╔═╡ b3d029a5-4dab-42dd-9735-dd63082fb97f
names(gdp) # returns an array of Strings
# ╔═╡ c1f4417a-5940-48f3-84e5-2b7b6721e031
names(gdp, String) # return column names which are of a particular DataType
# ╔═╡ aa9744b3-7a0f-4d26-8da5-933310ae5d3a
propertynames(gdp) # here you can get column names as Symbols
# ╔═╡ 9a1a83ed-2801-4f21-8a99-3a4e7ec70a5e
rename(gdp, :UNITS => :UNITS_STATS)
# ╔═╡ 499dc896-5c55-4bee-a9e3-e006c495c67d
groupiegdp = groupby(gdp, [:Period, :Data_value])
# ╔═╡ 45060fd5-db50-4222-8e0d-3d7bb8be5b08
get(groupiegdp, (UNITS="Percent",), nothing)
# ╔═╡ ec2e9079-f447-4da5-ac08-b63b7cf4d4a4
groupcols(groupiegdp)
# ╔═╡ e027e8fd-a918-4a64-a88b-54fc7d5ce4b4
groupindices(groupiegdp)
# ╔═╡ ffa1c8de-b952-4718-bcc5-5c65fe721dc8
keys(groupiegdp)
# ╔═╡ 2a5f7dea-5ae4-4da7-906f-0b9810e9cea0
valuecols(groupiegdp)
# ╔═╡ 311d401a-8778-4362-b2b3-01df66b37142
parent(groupiegdp)
# ╔═╡ 28ea219e-fbf7-477a-b245-95fc7397b256
# Basic info about DataFrame
# ╔═╡ 528af444-1692-433f-9800-763cb1da56d3
empty(gdp) # creates a 0x0 dataframe with similar column names. If you want to clear out the initial datframe then use in place empty!().
# ╔═╡ 764e6a45-fe29-47a8-914a-21c545887c3c
size(gdp)
# ╔═╡ bb22078d-fe42-4f4c-8b0b-0b4cb1f71469
nrow(gdp)
# ╔═╡ bf4cbe82-43c8-4f5b-bffb-9a0e7ffa8d93
ncol(gdp)
# ╔═╡ 08fa8033-ab7b-483d-9500-6c32c4f243c3
ndims(gdp)
# ╔═╡ 98d20964-0a16-43d4-aadc-e56aec601213
rownumber(gdp[2,:])
# ╔═╡ 75fd60e7-d96d-4edb-9766-ff41ef600805
parentindices(gdp)
# ╔═╡ f4408b75-8a25-42e7-917b-42f9c0bfff2e
parent(gdp)
# ╔═╡ 3093d613-5109-4051-b8f6-935b842246a6
describe(gdp, cols=4:7)
# ╔═╡ 20270e3d-9e84-4ff5-811c-47e80d5459d3
show(stdout, MIME("text/latex"), gdp) # output is printed in terminal
# ╔═╡ 0b86cc10-63cb-42a2-9812-1384c097ae35
show(stdout, MIME("text/csv"), gdp) # output is printed in terminal
# ╔═╡ 626c4687-0719-4651-bb3b-1d638d936b7e
show(stdout, MIME("text/html"), describe(gdp)) # output is printed in terminal
# ╔═╡ 9ee344ee-e3a0-44c0-9627-6855e942c789
# While using Julia REPL, all the bulk of a dataframe is not shown in the screen. To fit the whole dataframe you can use show(df, allcols=true) or show(df, allrows=true).
show(gdp, allcols=true)
# ╔═╡ 34e7c893-902f-4868-8855-ad83b56b4b8c
show(gdp, allrows=true)
# ╔═╡ 6c7e3124-ea5f-4e58-820a-abaf55fed480
mean(gdp."MAGNTUDE")
# ╔═╡ 009b37eb-f3a0-418b-971c-0bcbe9ef94fb
mapcols(MAGNTUDE -> MAGNTUDE .^ 7, gdp) # other operators are not discussed as String type data doesn't have to do anything with any other operator other than `^`.
# ╔═╡ c2db935d-f49c-4538-acbd-de75399ae932
first(gdp, 5)
# ╔═╡ 2de6853a-9c0b-414f-a3fa-af38bf407a6a
last(gdp, 5)
# ╔═╡ e2bf6f84-a9f1-4dc4-be6a-3280451cc1ae
view(gdp, 77:300, :) # or else use macro @view gdp[end:-1:1, [1, 4]]. No new objects is created while using view, hence gives better performance while you are trying to peek into the data.
# ╔═╡ c901457f-312b-4dee-98ed-b81493f56030
@timev gdp[1:end-1, 1:end-1]
# ╔═╡ b1a61755-8791-48e6-90dd-cb6023034395
@timev @view gdp[1:end-1, 1:end-1]
# ╔═╡ 4e6fe563-2c1b-42dc-a83e-3c4207e447d2
# view creates a mapping of indices from the view to the indices of the parent. As you can see in the chapter, view uses less memory allocations and takes less time than accessing dataframe using '[]' operator because no new object is created and points to the same memory location as of the parent. You can update the dataset using view and '[]' operator.
# ╔═╡ 107f0e6d-a9a1-4414-bf45-b0b0b1c57c67
# Broadcasting
# ╔═╡ ee04f0e0-3a93-4adf-9b90-83987e1f1d1e
# As opposed to R, broadcasting in Julia is similar to that of Python. We use '.' dot operator.
# ╔═╡ e6da06de-fc3e-4a89-868f-62dc47490126
s = [24, 54.0, 345, 098765, 43, 231.4, 497.23]
# ╔═╡ a2efce21-5f2a-43b9-9e1b-1861220617a7
s[3:7] .= 0
# ╔═╡ ed5802e5-65a1-4e8c-a633-613a07a3bfec
# ':' operator does the broadcasting in place. '!' operator creates a new vector instead of replacing the old one.
# ╔═╡ c0634c82-f36c-4bfa-8284-564adc309932
insertcols!(df1, 1, :Country => "India") # this is called pseudo-broadcasting. It inserts columns in arbitrary places.
# ╔═╡ 3aeeeb61-e004-4317-81c7-aa37d7ade55e
# Selectors in DataFrame
# ╔═╡ ee03f50a-3def-44aa-b14d-c4b5da7a9a63
gdp[:, Not(:Period)]
# ╔═╡ 72dfa3c2-ec92-4c97-98a7-525964218356
gdp[:, Between(:Data_value, :MAGNTUDE)]
# ╔═╡ 6d699f5b-0ac0-40b9-a601-ec0205131cdd
gdp[:, Cols("Period", Between("Data_value", "MAGNTUDE"))]
# ╔═╡ 08c1fbea-ad4f-414d-a942-6445a5fc8f62
# You can use Regex to select columns too. Here, we select columns having number "6" and not the 3rd column.
gdp[Not(3), r"6"]
# ╔═╡ 2c1e30ce-f3fa-4a67-b4f3-0587f466ec00
sample = DataFrame(x = [("a", "z"), ("b", "y"), ("c","x")])
# ╔═╡ 12cb9501-d815-45ef-84b2-2886e180a90c
sample1 = DataFrame(x = [("1", "10"), ("2", "9"), ("3","8")])
# ╔═╡ ecc4cd83-cc73-4358-8df5-25d566b36185
flatten(sample, :x)
# ╔═╡ cbb9f819-2645-4f7d-9c61-537041bd5466
hcat(sample, sample1, makeunique=true)
# ╔═╡ 263b9a78-34bb-44a5-bf76-b5d402a4579e
vcat(sample, sample1)
# ╔═╡ 52cf77af-1fee-4b47-8f02-5c94e060a401
reduce(vcat, [sample, sample1])
# ╔═╡ 50f35a40-8fee-4a3f-b3a9-b344a8c4253e
repeat(sample, inner = 3, outer = 5)
# ╔═╡ 6e8eafa8-6854-4b4b-8a02-a82f08314505
# Transformation functions
# ╔═╡ 81ecd06e-8c13-4dc0-81c9-ed575b8303bb
gdp
# ╔═╡ 95cf6d4e-a89b-40c1-a6b0-2f0692c27651
append!(gdp, gdp)
# ╔═╡ eccb8cec-d709-4682-bc34-2867402a6cfc
combine(gdp, :Data_value => mean => :mean_data_value) # this aggregates data and makes a copy
# ╔═╡ 86bbd468-ecc4-4026-9dd4-5d8f2b9d50dc
select(gdp, :Data_value => mean => :mean_data_value)
# this broadcasted the result of the mean
# in mean missing takes precedence
# ╔═╡ e69776d2-3640-4c9f-aef2-d30a94dee390
transform(gdp, :Data_value => maximum) # inserts a column with the maximum value of the dataframe
# ╔═╡ 8ba893b5-97fc-4a41-9dc5-67f9c11708bc
transform(gdp, :Subject => :Group, :Group => :Subject) # transform retains all columns present in parent dataframe unlike select
# ╔═╡ acec4361-d271-41dd-b6cf-4571eae16406
select(gdp, :Period, :Data_value, [:Period, :Data_value] => (-) => :resulting_vector) # this assumes both the columns to be consecutive and calculates the specified operation. Only +, - works. select always makes a copy of the columns. You can change this with argument copycols set to false.
# ╔═╡ 38fb2132-8f03-4b5c-aa76-a265bac69497
# Joins
# ╔═╡ 454d0957-0cdc-4490-bbdc-8409b07cddcd
#=
Julia supports innerjoin, leftjoin, rightjoin, outerjoin, semijoin, antijoin and crossjoin.
=#
# ╔═╡ ff622ae3-b4ea-4b0c-90cb-a6d1cd7c857e
pupil = DataFrame(Rno = [40, 50, 60, 80, 90, 100, 130], Name = ["P1", "P2", "P3", "P4", "P5", "P6", "P7"])
# ╔═╡ c49773c7-cb73-437c-abb2-3e05e9b3c4f7
mark = DataFrame(Rno = [20, 30, 60, 70, 90, 110, 120], Marks = [25, 45, 63, 72, 64, 87, 36])
# ╔═╡ cd93d1b5-b587-4dc3-ae93-de0489163c3a
innerjoin(pupil, mark, on = :Rno)
# ╔═╡ 96202339-68d6-4d8b-af6e-f56e4b6b282d
leftjoin(pupil, mark, on = :Rno)
# ╔═╡ fd9351e2-e0b8-4042-b2d2-0b8cddf76b8a
rightjoin(pupil, mark, on = :Rno)
# ╔═╡ efdf00c9-f0b0-4d9b-b940-e0f4168220ac
outerjoin(pupil, mark, on = :Rno)
# ╔═╡ c1ad8951-554a-4f9c-ac02-2b86c69210e9
semijoin(pupil, mark, on = :Rno)
# ╔═╡ 005f08fc-15b8-4927-bf4f-6f656bd7c509
antijoin(pupil, mark, on = :Rno)
# ╔═╡ 0b81cbeb-e441-4ff7-8586-4aaaa14a5204
crossjoin(pupil, mark, makeunique = true)
# ╔═╡ 85c381d1-aa5b-4e36-b764-4f2c08056723
new_pupil = DataFrame(Rno = [40, 50, 60, 80, 90, 100, 130], Name = ["P1", "P2", "P3", "P4", "P5", "P6", "P7"])
# ╔═╡ bdab1a2a-e3e9-4dd6-ba5a-3f1cbd430e9a
new_mark = DataFrame(ID = [20, 30, 60, 70, 90, 110, 120], Marks = [25, 45, 63, 72, 64, 87, 36])
# ╔═╡ d348eb2c-ce88-4813-9fdd-dbb9f6263c79
innerjoin(new_pupil, new_mark, on = :Rno => :ID) # if you have two columns conveying the same meaning but with differing names use on argument.
# ╔═╡ f66dca42-73e6-4ed9-be87-8092f45f75ae
outerjoin(new_pupil, new_mark, on = :Rno => :ID)
# ╔═╡ 87c933d0-d56f-41ec-9740-42da3aea7b02
outerjoin(pupil, mark, on=:Rno, validate=(true, true), source=:source) # for the two columns to be equal according to `isequal()`, an argument `validate` is introduced
# ╔═╡ adef617a-8b1f-4198-ba22-95c2fc23e487
# Grouping
# ╔═╡ 7d8430ce-3b06-4007-a091-dd00ebe5a4bd
grby = groupby(gdp, :Period)
# ╔═╡ 46f31f61-afaa-4788-8f44-b83face4b005
combine(gdp, :Period => mean)
# ╔═╡ cb438dec-931a-4856-91ad-809d9d4d9106
# Reshaping
# ╔═╡ 490769ee-72b2-46cd-aa88-e5b3bfe2ca9e
stack(gdp, 1:4) # convert from landscape to portrait format
# ╔═╡ 6310d056-f97b-444e-b257-3b22774f7e86
stack(gdp, [:MAGNTUDE, :UNITS], :Subject) # the 3rd argument shows which columsn are repeated
# ╔═╡ e946a789-e9e1-4f46-b7b6-d278c0d6234c
unstack(stack(gdp, Not(:Subject)), allowduplicates=true)
# ╔═╡ bcae0cbd-d30f-458a-bc74-e969dab36ed1
permutedims(b, 2, makeunique=true)
# ╔═╡ 783edc23-96fe-4484-bef0-7666668171ac
# Sorting
# ╔═╡ a63091de-654b-43fa-93ab-466fb7ad7f38
sort!(gdp)
# ╔═╡ 5e351fca-85ea-4e52-b607-e693deac1719
sort!(gdp, rev = true)
# ╔═╡ 64d4462f-f8fd-4186-9d48-dffd76c12fe6
sort!(gdp, [:Data_value, :MAGNTUDE])
# ╔═╡ 38a542dc-eee3-45b5-a52f-e342af3da728
sort!(gdp, [order(:Period, by=length), order(:Data_value, rev=true)]) # specify ordering for a particular set of columns
# ╔═╡ e2518ebc-0bfe-4ce4-9775-cd2c5abaf201
issorted(gdp)
# ╔═╡ 49c607c2-c386-4ba9-817b-c80317c0c51f
sortperm(gdp, [:Data_value, :MAGNTUDE])
# ╔═╡ 3bf66bee-e84b-4293-83f0-b5af13a3f3eb
# ╔═╡ c2d3f70e-19ef-4e59-9d22-5728a1e0f0e7
# Filtering
# ╔═╡ ff666cf9-42dc-4dfc-88bc-6ccd5f1065d5
delete!(gdp, [5, 7, 9]) # indices must be unique and sorted
# ╔═╡ 222b9658-7aba-426a-a5bd-42dee53f4365
empty(df) # clear all values from the rows
# ╔═╡ 46253de4-245c-449f-9144-5fbe0fe52af1
unique(df1)
# ╔═╡ 99a8113d-19c3-484c-a589-d75174b27422
subset(df, :b => x -> x .> 3)
# ╔═╡ adb5bf96-3f83-41ac-bfb0-2e2e1ee2e8b6
filter!(row -> row.b > 3, df)
# ╔═╡ 362bf8c3-e5d4-4631-849e-9f1af5264453
only(df)
# ╔═╡ 79a0555b-3815-4a8a-ad82-297bb0721c34
nonunique(df1)
# ╔═╡ 4ac3df0d-cf63-4cab-8c7c-6ce37a3589b2
# Handling missing values
# ╔═╡ 3845701a-4d36-4b40-a5e9-df3b3578c7a5
allowmissing!(df2) # The DataType has changed for each column.
# ╔═╡ 38f77f4d-da45-4ebf-9916-a3ddb03fb39e
disallowmissing!(DataFrame(x=Union{Int, Missing}[7, 9, 7, 6, 53, missing, 3, 2, 56, missing]), error=false)
# ╔═╡ 17536f1d-bbb0-46d9-91a6-e094b749ec9e
dropmissing!(DataFrame(x=Union{Int, Missing}[7, 9, 7, 6, 53, missing, 3, 2, 56, missing]))
# ╔═╡ 9eeb9b8a-c943-421c-a414-7bd7069bbcae
completecases(DataFrame(x=Union{Int, Missing}[7, 9, 7, 6, 53, missing, 3, 2, 56, missing]))
# ╔═╡ 374a0805-1ed4-4eef-bab7-cc4da4659a72
# Categorical Data
# ╔═╡ 1dd794a3-61c0-4f27-af0d-89bfdc973bdb
dat = CategoricalArray(repeat(["M", "F", missing], 3))
# ╔═╡ d9a58858-2bb1-44b3-a4c6-30b5d62936c4
levels(dat)
# ╔═╡ fe58c5a4-8193-440d-be36-ac989017dc42
levels!(dat, ["F", "M"]) # changes the order of appearance
# ╔═╡ 4b158c96-0273-46f1-b6fe-c75fb0974dae
sort(dat)
# ╔═╡ 371e9b4c-1a94-42a9-b4ee-a837bd005a7a
dat_new = compress(dat) # since Categorical Arrays can store upto \2^32 levels. compress() is used to lessen the memory space.
# ╔═╡ fd45ccc8-7d10-4081-b681-ea398248b495
dat2 = categorical(repeat(["N", "A", "P"], 3), ordered=true)
# ╔═╡ 05e57f17-784e-49e5-815e-f7d94aea5ab8
isordered(dat2)
# ╔═╡ 466b9320-6fe1-41df-9dae-7c90a12fca5d
dat == dat2
# ╔═╡ 8ae1afae-ea67-49d9-be53-7909885fb083
# Missing Data
# We have gone through missing datatype previously. Here we will see just one examples of how to convert any missing data to have a numeric value in Julia
# ╔═╡ 91559ca4-aa63-409c-a9da-c02726121bee
missin = [8, 30, 41, missing]
# ╔═╡ 27cdd96d-774e-4afb-b680-4f3f52a21e94
coalesce.(missin, 0)
# ╔═╡ f23449ba-ad22-4f75-a896-3aa8f94a3b74
# Data Manipulation Frameworks
# ╔═╡ 0d499e42-4467-4384-a5f9-193f259fec60
# The main part of data analysis work is data manipulation. In Julia, we can use DataFramesMeta.jl and Query.jl to manipulate DataFrames which is similar to frameworks in Python/R.
# ╔═╡ 6b3dc5c1-7c61-47fc-ae1b-03f4116de245
@linq gdp |>
where(:Period .> 2000) |>
select(units="Percent", :Series_reference) # linq macro helps to perform a series of transformations of the DataFrame. You can use all the split-apply-combine methods here within linq macro.
# ╔═╡ 27d5e59d-e9a0-49b3-805b-1637a5e9d078
@from i in gdp begin
@where i.Period > 2000 && i.Data_value > 0
@select i.Series_reference
@collect
end
# Query also helps you to manipulate the dataframe
# ╔═╡ ca1077c7-6bfe-406f-95d5-1686328022e2
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
CategoricalArrays = "324d7699-5711-5eae-9e2f-1d82baa6b597"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
DataFramesMeta = "1313f7d8-7da2-5740-9ea0-a2ca25f37964"
Downloads = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
Query = "1a8c2f83-1ff3-5112-b086-8aa67b057ba1"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SQLite = "0aa819cd-b072-5ff4-a722-6bc24af294d9"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
[compat]
BenchmarkTools = "~1.1.4"
CSV = "~0.8.5"
CategoricalArrays = "~0.10.0"
DataFrames = "~1.2.2"
DataFramesMeta = "~0.9.0"
Query = "~1.0.0"
SQLite = "~1.1.4"
Tables = "~1.5.0"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
[[ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[BenchmarkTools]]
deps = ["JSON", "Logging", "Printf", "Statistics", "UUIDs"]
git-tree-sha1 = "42ac5e523869a84eac9669eaceed9e4aa0e1587b"
uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
version = "1.1.4"
[[BinaryProvider]]
deps = ["Libdl", "Logging", "SHA"]
git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058"
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
version = "0.5.10"
[[CSV]]
deps = ["Dates", "Mmap", "Parsers", "PooledArrays", "SentinelArrays", "Tables", "Unicode"]
git-tree-sha1 = "b83aa3f513be680454437a0eee21001607e5d983"
uuid = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
version = "0.8.5"
[[CategoricalArrays]]
deps = ["DataAPI", "Future", "JSON", "Missings", "Printf", "RecipesBase", "Statistics", "StructTypes", "Unicode"]
git-tree-sha1 = "1562002780515d2573a4fb0c3715e4e57481075e"
uuid = "324d7699-5711-5eae-9e2f-1d82baa6b597"
version = "0.10.0"
[[Chain]]
git-tree-sha1 = "cac464e71767e8a04ceee82a889ca56502795705"
uuid = "8be319e6-bccf-4806-a6f7-6fae938471bc"
version = "0.4.8"
[[Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "727e463cfebd0c7b999bbf3e9e7e16f254b94193"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.34.0"
[[Crayons]]
git-tree-sha1 = "3f71217b538d7aaee0b69ab47d9b7724ca8afa0d"
uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
version = "4.0.4"
[[DBInterface]]
git-tree-sha1 = "d3e9099ef8d63b180a671a35552f93a1e0250cbb"
uuid = "a10d1c49-ce27-4219-8d33-6db1a4562965"
version = "2.4.1"
[[DataAPI]]
git-tree-sha1 = "ee400abb2298bd13bfc3df1c412ed228061a2385"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.7.0"
[[DataFrames]]
deps = ["Compat", "DataAPI", "Future", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrettyTables", "Printf", "REPL", "Reexport", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"]
git-tree-sha1 = "d785f42445b63fc86caa08bb9a9351008be9b765"
uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
version = "1.2.2"
[[DataFramesMeta]]
deps = ["Chain", "DataFrames", "MacroTools", "Reexport"]
git-tree-sha1 = "807e984bf12084b39d99bb27e27ad45bf111d3a1"
uuid = "1313f7d8-7da2-5740-9ea0-a2ca25f37964"
version = "0.9.0"
[[DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "7d9d316f04214f7efdbb6398d545446e246eff02"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.10"
[[DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[DataValues]]
deps = ["DataValueInterfaces", "Dates"]
git-tree-sha1 = "d88a19299eba280a6d062e135a43f00323ae70bf"
uuid = "e7dc6d0d-1eca-5fa6-8ad6-5aecde8b7ea5"
version = "0.4.13"
[[Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[Downloads]]
deps = ["ArgTools", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
[[Formatting]]
deps = ["Printf"]
git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8"
uuid = "59287772-0a20-5a39-b81b-1366585eb4c0"
version = "0.4.2"
[[Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[InvertedIndices]]
deps = ["Test"]
git-tree-sha1 = "15732c475062348b0165684ffe28e85ea8396afc"
uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f"
version = "1.0.0"
[[IterableTables]]
deps = ["DataValues", "IteratorInterfaceExtensions", "Requires", "TableTraits", "TableTraitsUtils"]
git-tree-sha1 = "70300b876b2cebde43ebc0df42bc8c94a144e1b4"
uuid = "1c8ee90f-4401-5389-894e-7a04a3dc0f4d"
version = "1.0.0"
[[IteratorInterfaceExtensions]]
git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856"
uuid = "82899510-4779-5014-852e-03e436cf321d"
version = "1.0.0"
[[JLLWrappers]]
deps = ["Preferences"]
git-tree-sha1 = "642a199af8b68253517b80bd3bfd17eb4e84df6e"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.3.0"
[[JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.2"
[[LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
[[LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
[[LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
[[Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[LinearAlgebra]]
deps = ["Libdl"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "0fb723cd8c45858c22169b2e42269e53271a6df7"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.7"
[[Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
[[Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "2ca267b08821e86c5ef4376cffed98a46c2cb205"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "1.0.1"
[[Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
[[NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
[[OrderedCollections]]
git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.4.1"
[[Parsers]]
deps = ["Dates"]
git-tree-sha1 = "bfd7d8c7fd87f04543810d9cbd3995972236ba1b"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "1.1.2"
[[Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[PooledArrays]]
deps = ["DataAPI", "Future"]
git-tree-sha1 = "a193d6ad9c45ada72c14b731a318bedd3c2f00cf"
uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720"
version = "1.3.0"
[[Preferences]]
deps = ["TOML"]
git-tree-sha1 = "00cfd92944ca9c760982747e9a1d0d5d86ab1e5a"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.2.2"
[[PrettyTables]]
deps = ["Crayons", "Formatting", "Markdown", "Reexport", "Tables"]
git-tree-sha1 = "0d1245a357cc61c8cd61934c07447aa569ff22e6"
uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d"
version = "1.1.0"
[[Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[Query]]
deps = ["DataValues", "IterableTables", "MacroTools", "QueryOperators", "Statistics"]
git-tree-sha1 = "a66aa7ca6f5c29f0e303ccef5c8bd55067df9bbe"
uuid = "1a8c2f83-1ff3-5112-b086-8aa67b057ba1"
version = "1.0.0"
[[QueryOperators]]
deps = ["DataStructures", "DataValues", "IteratorInterfaceExtensions", "TableShowUtils"]
git-tree-sha1 = "911c64c204e7ecabfd1872eb93c49b4e7c701f02"
uuid = "2aef5ad7-51ca-5a8f-8e88-e75cf067b44b"
version = "0.9.3"
[[REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[Random]]
deps = ["Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[RecipesBase]]
git-tree-sha1 = "44a75aa7a527910ee3d1751d1f0e4148698add9e"
uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
version = "1.1.2"
[[Reexport]]
git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "1.2.2"
[[Requires]]
deps = ["UUIDs"]
git-tree-sha1 = "4036a3bd08ac7e968e27c203d45f5fff15020621"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "1.1.3"
[[SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[SQLite]]
deps = ["BinaryProvider", "DBInterface", "Dates", "Libdl", "Random", "SQLite_jll", "Serialization", "Tables", "Test", "WeakRefStrings"]
git-tree-sha1 = "97261d38a26415048ce87f49a7a20902aa047836"
uuid = "0aa819cd-b072-5ff4-a722-6bc24af294d9"
version = "1.1.4"
[[SQLite_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "9a0e24b81e3ce02c4b2eb855476467c7b93b8a8f"
uuid = "76ed43ae-9a5d-5a62-8c75-30186b810ce8"
version = "3.36.0+0"
[[SentinelArrays]]
deps = ["Dates", "Random"]
git-tree-sha1 = "54f37736d8934a12a200edea2f9206b03bdf3159"
uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c"
version = "1.3.7"
[[Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[SortingAlgorithms]]
deps = ["DataStructures"]
git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508"
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
version = "1.0.1"
[[SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[StructTypes]]
deps = ["Dates", "UUIDs"]
git-tree-sha1 = "8445bf99a36d703a09c601f9a57e2f83000ef2ae"
uuid = "856f2bd8-1eba-4b0a-8007-ebc267875bd4"
version = "1.7.3"
[[TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
[[TableShowUtils]]
deps = ["DataValues", "Dates", "JSON", "Markdown", "Test"]
git-tree-sha1 = "14c54e1e96431fb87f0d2f5983f090f1b9d06457"
uuid = "5e66a065-1f0a-5976-b372-e0b8c017ca10"
version = "0.2.5"
[[TableTraits]]
deps = ["IteratorInterfaceExtensions"]
git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39"
uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c"
version = "1.0.1"
[[TableTraitsUtils]]
deps = ["DataValues", "IteratorInterfaceExtensions", "Missings", "TableTraits"]
git-tree-sha1 = "78fecfe140d7abb480b53a44f3f85b6aa373c293"
uuid = "382cd787-c1b6-5bf2-a167-d5b971a19bda"
version = "1.0.2"
[[Tables]]
deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"]
git-tree-sha1 = "d0c690d37c73aeb5ca063056283fde5585a41710"
uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
version = "1.5.0"
[[Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
[[Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[WeakRefStrings]]
deps = ["DataAPI", "Random", "Test"]
git-tree-sha1 = "28807f85197eaad3cbd2330386fac1dcb9e7e11d"
uuid = "ea10d353-3f73-51f8-a26c-33c1cb351aa5"
version = "0.6.2"
[[Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
[[nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
[[p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
"""
# ╔═╡ Cell order:
# ╠═c9994475-bef9-4557-b774-e20bd99c049d
# ╠═aac765bf-9ccd-4442-beea-38a765c59d0a
# ╠═6047eebc-cc01-48e3-8d58-d7c2bb683389
# ╠═c8633fe3-cdfe-4346-bf2e-dc43c4d7a90c
# ╠═22c94091-2278-4f60-a57a-d8b5d419fd37
# ╠═ceb84193-d5b6-493c-b109-9bb040dba50c
# ╠═a5853228-b040-46e2-937b-134aa833b199
# ╠═2dfeea25-0a7d-477b-8f0b-238cb5ac996f
# ╠═d4e72dfe-88cf-455c-8619-fa337d8ad198
# ╠═4276b4fc-83b2-45bb-a114-af205d47041b
# ╠═c5337a2c-44ec-4813-8430-b3505b6488e1
# ╠═e2faa9b1-9ae0-4ef8-a235-5bc67f997f23
# ╠═88224c4a-2e92-48be-a329-9a7e5b449d57
# ╠═d461a50d-bab2-4f46-b0d6-56568439b2e9
# ╠═d8e290ee-42ee-42b9-b098-254e72af8638
# ╠═ff6bad5e-7373-4c2e-a69c-e4dc4ad4b620
# ╠═386f80f7-10d1-4075-897d-af48ff2f5eda
# ╠═46871146-e192-4d1a-944b-eb06fa3d44ec
# ╠═f24fb0a1-2a39-4a0d-aa7c-f60856307f6d
# ╠═20e1013b-f753-4e21-a0f6-5afa50341811
# ╠═92083de8-cb06-48c8-bca3-14a84c80587f
# ╠═9a12e206-a900-40e1-ad28-348dfba3b840
# ╠═286dff3d-d926-43b2-abcd-0c9c68fb978c
# ╠═317347d7-54cd-4a01-bf61-6154e7a9e63e
# ╠═50e83a4f-68c6-45ff-bc58-fb24a1fdda83
# ╠═b5352a9f-385f-4e1a-9bd4-c43a95681b9e
# ╠═68a29a3d-040b-49d9-8453-0ec29b9ea91f
# ╠═87cb09b7-05d5-4863-8ec0-015ca5755cad
# ╠═50b0a355-ebf8-4a5f-89ce-132724abf382
# ╠═90f197cc-4fbd-4dc0-b7d0-1e8d37a592a1
# ╠═44ba67f4-b846-4f8f-afd2-40f9bb6ee93c
# ╠═2a147ec5-302b-4ef7-a25d-50a6a40916a6
# ╠═322d07a8-95dc-490c-be8b-68b2cf332c19
# ╠═946a5035-4586-442d-be37-b714ef171d99
# ╠═ed786d21-3bbf-4786-8ce1-3853de366a83
# ╠═9470fd0e-286d-4ad4-bb5f-d76916a84d0e
# ╠═977c1861-f6ef-4505-94e6-cdf064679487
# ╠═b74f2b45-dcd8-4cc8-9043-71b1388e475a
# ╠═bd7ccba5-3eea-4fa9-ac1b-4a3f67760b18
# ╠═6a3c345c-4ea6-4b3f-9eb4-44779863d2d8
# ╠═7d40b765-b7f7-400d-9269-6906ffe0d922
# ╠═9a420cda-0e7b-4372-b5c5-bd8fd6319d42
# ╠═f17ec4dc-8e3d-4381-9b29-5ef755592036
# ╠═f5d6e9e3-d260-4778-b19c-2d345c06d1e6
# ╠═f4b36082-c332-481c-96ba-dcbbd014cc80
# ╠═70474af2-007d-4a11-b7ce-d102916875b5
# ╠═7e6cee35-cc6c-43bf-bb02-3584f4148bec
# ╠═7699de43-d5ca-42c2-b082-3a49e183152d
# ╠═f6d08f22-de4e-4a69-86f2-414445b980b2
# ╠═d15d313c-8a75-42aa-918e-4d9cfb15509f
# ╠═ff293953-6eef-4fd5-9399-80610c1e719b
# ╠═a6ebd155-2252-4059-96cc-7a1c77b14df1
# ╠═b3d029a5-4dab-42dd-9735-dd63082fb97f
# ╠═c1f4417a-5940-48f3-84e5-2b7b6721e031
# ╠═aa9744b3-7a0f-4d26-8da5-933310ae5d3a
# ╠═9a1a83ed-2801-4f21-8a99-3a4e7ec70a5e
# ╠═499dc896-5c55-4bee-a9e3-e006c495c67d
# ╠═45060fd5-db50-4222-8e0d-3d7bb8be5b08
# ╠═ec2e9079-f447-4da5-ac08-b63b7cf4d4a4
# ╠═e027e8fd-a918-4a64-a88b-54fc7d5ce4b4
# ╠═ffa1c8de-b952-4718-bcc5-5c65fe721dc8
# ╠═2a5f7dea-5ae4-4da7-906f-0b9810e9cea0
# ╠═311d401a-8778-4362-b2b3-01df66b37142
# ╠═28ea219e-fbf7-477a-b245-95fc7397b256
# ╠═528af444-1692-433f-9800-763cb1da56d3
# ╠═764e6a45-fe29-47a8-914a-21c545887c3c
# ╠═bb22078d-fe42-4f4c-8b0b-0b4cb1f71469
# ╠═bf4cbe82-43c8-4f5b-bffb-9a0e7ffa8d93
# ╠═08fa8033-ab7b-483d-9500-6c32c4f243c3
# ╠═98d20964-0a16-43d4-aadc-e56aec601213
# ╠═75fd60e7-d96d-4edb-9766-ff41ef600805
# ╠═f4408b75-8a25-42e7-917b-42f9c0bfff2e
# ╠═3093d613-5109-4051-b8f6-935b842246a6
# ╠═20270e3d-9e84-4ff5-811c-47e80d5459d3
# ╠═0b86cc10-63cb-42a2-9812-1384c097ae35
# ╠═626c4687-0719-4651-bb3b-1d638d936b7e
# ╠═9ee344ee-e3a0-44c0-9627-6855e942c789
# ╠═34e7c893-902f-4868-8855-ad83b56b4b8c
# ╠═6c7e3124-ea5f-4e58-820a-abaf55fed480
# ╠═009b37eb-f3a0-418b-971c-0bcbe9ef94fb
# ╠═c2db935d-f49c-4538-acbd-de75399ae932
# ╠═2de6853a-9c0b-414f-a3fa-af38bf407a6a
# ╠═e2bf6f84-a9f1-4dc4-be6a-3280451cc1ae
# ╠═c901457f-312b-4dee-98ed-b81493f56030
# ╠═b1a61755-8791-48e6-90dd-cb6023034395
# ╠═4e6fe563-2c1b-42dc-a83e-3c4207e447d2
# ╠═107f0e6d-a9a1-4414-bf45-b0b0b1c57c67
# ╠═ee04f0e0-3a93-4adf-9b90-83987e1f1d1e
# ╠═e6da06de-fc3e-4a89-868f-62dc47490126
# ╠═a2efce21-5f2a-43b9-9e1b-1861220617a7
# ╠═ed5802e5-65a1-4e8c-a633-613a07a3bfec
# ╠═c0634c82-f36c-4bfa-8284-564adc309932
# ╠═3aeeeb61-e004-4317-81c7-aa37d7ade55e
# ╠═ee03f50a-3def-44aa-b14d-c4b5da7a9a63
# ╠═72dfa3c2-ec92-4c97-98a7-525964218356
# ╠═6d699f5b-0ac0-40b9-a601-ec0205131cdd
# ╠═08c1fbea-ad4f-414d-a942-6445a5fc8f62
# ╠═2c1e30ce-f3fa-4a67-b4f3-0587f466ec00
# ╠═12cb9501-d815-45ef-84b2-2886e180a90c
# ╠═ecc4cd83-cc73-4358-8df5-25d566b36185
# ╠═cbb9f819-2645-4f7d-9c61-537041bd5466
# ╠═263b9a78-34bb-44a5-bf76-b5d402a4579e
# ╠═52cf77af-1fee-4b47-8f02-5c94e060a401
# ╠═50f35a40-8fee-4a3f-b3a9-b344a8c4253e
# ╠═6e8eafa8-6854-4b4b-8a02-a82f08314505
# ╠═81ecd06e-8c13-4dc0-81c9-ed575b8303bb
# ╠═95cf6d4e-a89b-40c1-a6b0-2f0692c27651
# ╠═eccb8cec-d709-4682-bc34-2867402a6cfc
# ╠═86bbd468-ecc4-4026-9dd4-5d8f2b9d50dc
# ╠═e69776d2-3640-4c9f-aef2-d30a94dee390
# ╠═8ba893b5-97fc-4a41-9dc5-67f9c11708bc
# ╠═acec4361-d271-41dd-b6cf-4571eae16406
# ╠═38fb2132-8f03-4b5c-aa76-a265bac69497
# ╠═454d0957-0cdc-4490-bbdc-8409b07cddcd
# ╠═ff622ae3-b4ea-4b0c-90cb-a6d1cd7c857e
# ╠═c49773c7-cb73-437c-abb2-3e05e9b3c4f7
# ╠═cd93d1b5-b587-4dc3-ae93-de0489163c3a
# ╠═96202339-68d6-4d8b-af6e-f56e4b6b282d
# ╠═fd9351e2-e0b8-4042-b2d2-0b8cddf76b8a
# ╠═efdf00c9-f0b0-4d9b-b940-e0f4168220ac
# ╠═c1ad8951-554a-4f9c-ac02-2b86c69210e9
# ╠═005f08fc-15b8-4927-bf4f-6f656bd7c509
# ╠═0b81cbeb-e441-4ff7-8586-4aaaa14a5204
# ╠═85c381d1-aa5b-4e36-b764-4f2c08056723
# ╠═bdab1a2a-e3e9-4dd6-ba5a-3f1cbd430e9a
# ╠═d348eb2c-ce88-4813-9fdd-dbb9f6263c79
# ╠═f66dca42-73e6-4ed9-be87-8092f45f75ae
# ╠═87c933d0-d56f-41ec-9740-42da3aea7b02
# ╠═adef617a-8b1f-4198-ba22-95c2fc23e487
# ╠═7d8430ce-3b06-4007-a091-dd00ebe5a4bd
# ╠═46f31f61-afaa-4788-8f44-b83face4b005
# ╠═cb438dec-931a-4856-91ad-809d9d4d9106
# ╠═490769ee-72b2-46cd-aa88-e5b3bfe2ca9e
# ╠═6310d056-f97b-444e-b257-3b22774f7e86
# ╠═e946a789-e9e1-4f46-b7b6-d278c0d6234c
# ╠═bcae0cbd-d30f-458a-bc74-e969dab36ed1
# ╠═783edc23-96fe-4484-bef0-7666668171ac
# ╠═a63091de-654b-43fa-93ab-466fb7ad7f38
# ╠═5e351fca-85ea-4e52-b607-e693deac1719
# ╠═64d4462f-f8fd-4186-9d48-dffd76c12fe6
# ╠═38a542dc-eee3-45b5-a52f-e342af3da728
# ╠═e2518ebc-0bfe-4ce4-9775-cd2c5abaf201
# ╠═49c607c2-c386-4ba9-817b-c80317c0c51f
# ╠═3bf66bee-e84b-4293-83f0-b5af13a3f3eb
# ╠═c2d3f70e-19ef-4e59-9d22-5728a1e0f0e7
# ╠═ff666cf9-42dc-4dfc-88bc-6ccd5f1065d5
# ╠═222b9658-7aba-426a-a5bd-42dee53f4365
# ╠═46253de4-245c-449f-9144-5fbe0fe52af1
# ╠═99a8113d-19c3-484c-a589-d75174b27422
# ╠═adb5bf96-3f83-41ac-bfb0-2e2e1ee2e8b6
# ╠═362bf8c3-e5d4-4631-849e-9f1af5264453
# ╠═79a0555b-3815-4a8a-ad82-297bb0721c34
# ╠═4ac3df0d-cf63-4cab-8c7c-6ce37a3589b2
# ╠═3845701a-4d36-4b40-a5e9-df3b3578c7a5
# ╠═38f77f4d-da45-4ebf-9916-a3ddb03fb39e
# ╠═17536f1d-bbb0-46d9-91a6-e094b749ec9e
# ╠═9eeb9b8a-c943-421c-a414-7bd7069bbcae
# ╠═374a0805-1ed4-4eef-bab7-cc4da4659a72
# ╠═1dd794a3-61c0-4f27-af0d-89bfdc973bdb
# ╠═d9a58858-2bb1-44b3-a4c6-30b5d62936c4
# ╠═fe58c5a4-8193-440d-be36-ac989017dc42
# ╠═4b158c96-0273-46f1-b6fe-c75fb0974dae
# ╠═371e9b4c-1a94-42a9-b4ee-a837bd005a7a
# ╠═fd45ccc8-7d10-4081-b681-ea398248b495
# ╠═05e57f17-784e-49e5-815e-f7d94aea5ab8
# ╠═466b9320-6fe1-41df-9dae-7c90a12fca5d
# ╠═8ae1afae-ea67-49d9-be53-7909885fb083
# ╠═91559ca4-aa63-409c-a9da-c02726121bee
# ╠═27cdd96d-774e-4afb-b680-4f3f52a21e94
# ╠═f23449ba-ad22-4f75-a896-3aa8f94a3b74
# ╠═0d499e42-4467-4384-a5f9-193f259fec60
# ╠═6b3dc5c1-7c61-47fc-ae1b-03f4116de245
# ╠═27d5e59d-e9a0-49b3-805b-1637a5e9d078
# ╠═ca1077c7-6bfe-406f-95d5-1686328022e2
# ╟─00000000-0000-0000-0000-000000000001
# ╟─00000000-0000-0000-0000-000000000002
|
import GetC.@getCFun
#function bodies
@getCFun "libGLU" gluQuadricTexture gluQuadricTexture(quad::Ptr{Void},texture::GLboolean)::Void
@getCFun "libGLU" strtoimax strtoimax(__nptr::Ptr,__endptr::Ptr,__base::Int32)::intmax_t
@getCFun "libGLU" wcstoimax wcstoimax(__nptr::Ptr,__endptr::Ptr,__base::Int32)::intmax_t
@getCFun "libGLU" imaxabs imaxabs(__n::intmax_t)::intmax_t
@getCFun "libGLU" imaxdiv imaxdiv(__numer::intmax_t,__denom::intmax_t)::imaxdiv_t
@getCFun "libGLU" strtoumax strtoumax(__nptr::Ptr,__endptr::Ptr,__base::Int32)::uintmax_t
@getCFun "libGLU" gluDisk gluDisk(quad::Ptr{Void},inner::GLdouble,outer::GLdouble,slices::GLint,stacks::GLint)::Void
@getCFun "libGLU" wcstoumax wcstoumax(__nptr::Ptr,__endptr::Ptr,__base::Int32)::uintmax_t
@getCFun "libGLU" gluNewQuadric gluNewQuadric()::Ptr{Void}
@getCFun "libGLU" gluPerspective gluPerspective(fovy::GLdouble,aspect::GLdouble,znear::GLdouble,zfar::GLdouble)::Void
@getCFun "libGLU" gluBuild2DMipmaps gluBuild2DMipmaps(target::GLenum,internalFormat::GLint,width::GLsizei,height::GLsizei,format::GLenum,thetype::GLenum,data::Ptr{Uint8})::GLint
@getCFun "libGLU" gluCylinder gluCylinder(quad::Ptr{Void},base::GLdouble,top::GLdouble,height::GLdouble,slices::GLint,stacks::GLint)::Void
@getCFun "libGLU" gluPartialDisk gluPartialDisk(quad::Ptr{Void},inner::GLdouble,outer::GLdouble,slices::GLint,loops::GLint,start::GLdouble,sweep::GLdouble)::Void
@getCFun "libGLU" gluSphere gluSphere(quad::Ptr{Void},radius::GLdouble,slices::GLint,stacks::GLint)::Void
@getCFun "libGLU" gluQuadricNormals gluQuadricNormals(quad::Ptr{Void},normal::GLenum)::Void
#constants
const GL_GLU_VERTEX = 100101
const GL_GLU_NURBS_ERROR6 = 100256
const GL_GLU_NURBS_TESSELLATOR_EXT = 100161
const GL_GLU_TESS_BOUNDARY_ONLY = 100141
const GL_GLU_TESS_END = 100102
const GL_GLU_OUTLINE_POLYGON = 100240
const GL_GLU_NURBS_ERROR19 = 100269
const GL_GLU_NURBS_ERROR21 = 100271
const GL_GLU_NURBS_ERROR20 = 100270
const GL_GLU_NURBS_ERROR36 = 100286
const GL_GLU_DISPLAY_MODE = 100204
const GL_GLU_SILHOUETTE = 100013
const GL_GLU_OUTSIDE = 100020
const GL_GLU_CCW = 100121
const GL_GLU_TESS_WINDING_NEGATIVE = 100133
const GL_GLU_TESS_ERROR8 = 100158
const GL_GLU_NURBS_ERROR18 = 100268
const GL_GLU_NURBS_BEGIN_EXT = 100164
const GL_GLU_NURBS_NORMAL = 100166
const GL_GLU_CULLING = 100201
const GL_GLU_EXT_object_space_tess = 1
const GL_GLU_NURBS_TEX_COORD_DATA_EXT = 100174
const GL_GLU_PARAMETRIC_ERROR = 100216
const GL_GLU_TESS_BEGIN_DATA = 100106
const GL_GLU_NURBS_ERROR12 = 100262
const GL_GLU_NURBS_MODE = 100160
const GL_GLU_TESS_ERROR3 = 100153
const GL_GLU_TESS_NEED_COMBINE_CALLBACK = 100156
const GL_GLU_INTERIOR = 100122
const GL_GLU_INSIDE = 100021
const GL_GLU_TESS_EDGE_FLAG = 100104
const GL_GLU_NURBS_ERROR9 = 100259
const GL_GLU_TESS_MISSING_END_CONTOUR = 100154
const GL_GLU_NURBS_ERROR7 = 100257
const GL_GLU_V_STEP = 100207
const GL_GLU_TESS_MISSING_BEGIN_CONTOUR = 100152
const GL_GLU_INVALID_VALUE = 100901
const GL_GLU_PATH_LENGTH = 100215
const GL_GLU_TESS_ERROR_DATA = 100109
const GL_GLU_EXTENSIONS = 100801
const GL_GLU_NURBS_ERROR17 = 100267
const GL_GLU_NURBS_ERROR1 = 100251
const GL_GLU_NURBS_NORMAL_EXT = 100166
const GL_GLU_NURBS_ERROR29 = 100279
const GL_GLU_AUTO_LOAD_MATRIX = 100200
const GL_GLU_MAP1_TRIM_3 = 100211
const GL_GLU_NONE = 100002
const GL_GLU_NURBS_ERROR16 = 100266
const GL_GLU_NURBS_VERTEX = 100165
const GL_GLU_EXT_nurbs_tessellator = 1
const GL_GLU_NURBS_ERROR33 = 100283
const GL_GLU_OBJECT_PARAMETRIC_ERROR = 100208
const GL_GLU_NURBS_END_EXT = 100169
const GL_GLU_EDGE_FLAG = 100104
const GL_GLU_TESS_ERROR5 = 100155
const GL_GLU_TESS_MISSING_END_POLYGON = 100153
const GL_GLU_TRUE = 1
const GL_GLU_NURBS_ERROR26 = 100276
const GL_GLU_NURBS_END_DATA = 100175
const GL_GLU_NURBS_TEXTURE_COORD_DATA = 100174
const GL_GLU_INVALID_ENUM = 100900
const GL_GLU_SAMPLING_TOLERANCE = 100203
const GL_GLU_TESS_WINDING_POSITIVE = 100132
const GL_GLU_LINE = 100011
const GL_GLU_VERSION_1_1 = 1
const GL_GLU_NURBS_COLOR_DATA = 100173
const GL_GLU_NURBS_ERROR25 = 100275
const GL_GLU_TESS_ERROR = 100103
const GL_GLU_NURBS_VERTEX_DATA = 100171
const GL_GLU_TESS_ERROR2 = 100152
const GL_GLU_NURBS_ERROR = 100103
const GL_GLU_VERSION_1_3 = 1
const GL_GLU_TESS_BEGIN = 100100
const GL_GLU_NURBS_RENDERER = 100162
const GL_GLU_TESS_WINDING_ODD = 100130
const GL_GLU_TESS_ERROR1 = 100151
const GL_GLU_TESS_ERROR6 = 100156
const GL_GLU_OUTLINE_PATCH = 100241
const GL_GLU_VERSION = 100800
const GL_GLU_OBJECT_PARAMETRIC_ERROR_EXT = 100208
const GL_GLU_SAMPLING_METHOD = 100205
const GL_GLU_NURBS_TEX_COORD_EXT = 100168
const GL_GLU_TESS_VERTEX = 100101
const GL_GLU_POINT = 100010
const GL_GLU_FALSE = 0
const GL_GLU_NURBS_VERTEX_EXT = 100165
const GL_GLU_NURBS_BEGIN_DATA_EXT = 100170
const GL_GLU_TESS_EDGE_FLAG_DATA = 100110
const GL_GLU_FILL = 100012
const GL_GLU_OBJECT_PATH_LENGTH = 100209
const GL_GLU_NURBS_ERROR30 = 100280
const GL_GLU_SMOOTH = 100000
const GL_GLU_CW = 100120
const GL_GLU_TESS_END_DATA = 100108
const GL_GLU_NURBS_ERROR15 = 100265
const GL_GLU_NURBS_ERROR27 = 100277
const GL_GLU_NURBS_ERROR22 = 100272
const GL_GLU_NURBS_ERROR32 = 100282
const GL_GLU_EXTERIOR = 100123
const GL_GLU_TESS_ERROR4 = 100154
const GL_GLU_NURBS_ERROR13 = 100263
const GL_GLU_DOMAIN_DISTANCE = 100217
const GL_GLU_NURBS_ERROR34 = 100284
const GL_GLU_NURBS_ERROR23 = 100273
const GL_GLU_NURBS_ERROR4 = 100254
const GL_GLU_NURBS_COLOR_DATA_EXT = 100173
const GL_GLU_NURBS_ERROR8 = 100258
const GL_GLU_NURBS_COLOR_EXT = 100167
const GL_GLU_NURBS_ERROR31 = 100281
const GL_GLU_NURBS_ERROR2 = 100252
const GL_GLU_NURBS_ERROR28 = 100278
const GL_GLU_TESS_WINDING_ABS_GEQ_TWO = 100134
const GL_GLU_NURBS_ERROR11 = 100261
const GL_GLU_NURBS_END_DATA_EXT = 100175
const GL_GLU_NURBS_ERROR37 = 100287
const GL_GLU_UNKNOWN = 100124
const GL_GLU_BEGIN = 100100
const GL_GLU_NURBS_ERROR24 = 100274
const GL_GLU_OBJECT_PATH_LENGTH_EXT = 100209
const GL_GLU_ERROR = 100103
const GL_GLU_TESS_VERTEX_DATA = 100107
const GL_GLU_TESS_ERROR7 = 100157
const GL_GLU_NURBS_NORMAL_DATA_EXT = 100172
const GL_GLU_TESS_COORD_TOO_LARGE = 100155
const GL_GLU_NURBS_BEGIN_DATA = 100170
const GL_GLU_NURBS_VERTEX_DATA_EXT = 100171
const GL_GLU_NURBS_TEXTURE_COORD = 100168
const GL_GLU_NURBS_NORMAL_DATA = 100172
const GL_GLU_NURBS_ERROR10 = 100260
const GL_GLU_TESS_MISSING_BEGIN_POLYGON = 100151
const GL_GLU_NURBS_END = 100169
const GL_GLU_NURBS_ERROR5 = 100255
const GL_GLU_END = 100102
const GL_GLU_TESS_WINDING_NONZERO = 100131
const GL_GLU_TESS_MAX_COORD = 1.0e150
const GL_GLU_NURBS_ERROR35 = 100285
const GL_GLU_TESS_COMBINE_DATA = 100111
const GL_GLU_TESS_WINDING_RULE = 100140
const GL_GLU_NURBS_ERROR3 = 100253
const GL_GLU_NURBS_RENDERER_EXT = 100162
const GL_GLU_TESS_TOLERANCE = 100142
const GL_GLU_FLAT = 100001
const GL_GLU_PARAMETRIC_TOLERANCE = 100202
const GL_GLU_INVALID_OPERATION = 100904
const GL_GLU_NURBS_MODE_EXT = 100160
const GL_GLU_NURBS_TESSELLATOR = 100161
const GL_GLU_TESS_COMBINE = 100105
const GL_GLU_INCOMPATIBLE_GL_VERSION = 100903
const GL_GLU_VERSION_1_2 = 1
const GL_GLU_NURBS_ERROR14 = 100264
const GL_GLU_MAP1_TRIM_2 = 100210
const GL_GLU_OUT_OF_MEMORY = 100902
const GL_GLU_NURBS_COLOR = 100167
const GL_GLU_NURBS_BEGIN = 100164
const GL_GLU_U_STEP = 100206
# Export everything!
export gluQuadricTexture, strtoimax, wcstoimax, imaxabs, imaxdiv, strtoumax, gluDisk, wcstoumax, gluNewQuadric, gluPerspective, gluBuild2DMipmaps, gluCylinder, gluPartialDisk, gluSphere, gluQuadricNormals, GL_GLU_VERTEX, GL_GLU_NURBS_ERROR6, GL_GLU_NURBS_TESSELLATOR_EXT, GL_GLU_TESS_BOUNDARY_ONLY, GL_GLU_TESS_END, GL_GLU_OUTLINE_POLYGON, GL_GLU_NURBS_ERROR19, GL_GLU_NURBS_ERROR21, GL_GLU_NURBS_ERROR20, GL_GLU_NURBS_ERROR36, GL_GLU_DISPLAY_MODE, GL_GLU_SILHOUETTE, GL_GLU_OUTSIDE, GL_GLU_CCW, GL_GLU_TESS_WINDING_NEGATIVE, GL_GLU_TESS_ERROR8, GL_GLU_NURBS_ERROR18, GL_GLU_NURBS_BEGIN_EXT, GL_GLU_NURBS_NORMAL, GL_GLU_CULLING, GL_GLU_EXT_object_space_tess, GL_GLU_NURBS_TEX_COORD_DATA_EXT, GL_GLU_PARAMETRIC_ERROR, GL_GLU_TESS_BEGIN_DATA, GL_GLU_NURBS_ERROR12, GL_GLU_NURBS_MODE, GL_GLU_TESS_ERROR3, GL_GLU_TESS_NEED_COMBINE_CALLBACK, GL_GLU_INTERIOR, GL_GLU_INSIDE, GL_GLU_TESS_EDGE_FLAG, GL_GLU_NURBS_ERROR9, GL_GLU_TESS_MISSING_END_CONTOUR, GL_GLU_NURBS_ERROR7, GL_GLU_V_STEP, GL_GLU_TESS_MISSING_BEGIN_CONTOUR, GL_GLU_INVALID_VALUE, GL_GLU_PATH_LENGTH, GL_GLU_TESS_ERROR_DATA, GL_GLU_EXTENSIONS, GL_GLU_NURBS_ERROR17, GL_GLU_NURBS_ERROR1, GL_GLU_NURBS_NORMAL_EXT, GL_GLU_NURBS_ERROR29, GL_GLU_AUTO_LOAD_MATRIX, GL_GLU_MAP1_TRIM_3, GL_GLU_NONE, GL_GLU_NURBS_ERROR16, GL_GLU_NURBS_VERTEX, GL_GLU_EXT_nurbs_tessellator, GL_GLU_NURBS_ERROR33, GL_GLU_OBJECT_PARAMETRIC_ERROR, GL_GLU_NURBS_END_EXT, GL_GLU_EDGE_FLAG, GL_GLU_TESS_ERROR5, GL_GLU_TESS_MISSING_END_POLYGON, GL_GLU_TRUE, GL_GLU_NURBS_ERROR26, GL_GLU_NURBS_END_DATA, GL_GLU_NURBS_TEXTURE_COORD_DATA, GL_GLU_INVALID_ENUM, GL_GLU_SAMPLING_TOLERANCE, GL_GLU_TESS_WINDING_POSITIVE, GL_GLU_LINE, GL_GLU_VERSION_1_1, GL_GLU_NURBS_COLOR_DATA, GL_GLU_NURBS_ERROR25, GL_GLU_TESS_ERROR, GL_GLU_NURBS_VERTEX_DATA, GL_GLU_TESS_ERROR2, GL_GLU_NURBS_ERROR, GL_GLU_VERSION_1_3, GL_GLU_TESS_BEGIN, GL_GLU_NURBS_RENDERER, GL_GLU_TESS_WINDING_ODD, GL_GLU_TESS_ERROR1, GL_GLU_TESS_ERROR6, GL_GLU_OUTLINE_PATCH, GL_GLU_VERSION, GL_GLU_OBJECT_PARAMETRIC_ERROR_EXT, GL_GLU_SAMPLING_METHOD, GL_GLU_NURBS_TEX_COORD_EXT, GL_GLU_TESS_VERTEX, GL_GLU_POINT, GL_GLU_FALSE, GL_GLU_NURBS_VERTEX_EXT, GL_GLU_NURBS_BEGIN_DATA_EXT, GL_GLU_TESS_EDGE_FLAG_DATA, GL_GLU_FILL, GL_GLU_OBJECT_PATH_LENGTH, GL_GLU_NURBS_ERROR30, GL_GLU_SMOOTH, GL_GLU_CW, GL_GLU_TESS_END_DATA, GL_GLU_NURBS_ERROR15, GL_GLU_NURBS_ERROR27, GL_GLU_NURBS_ERROR22, GL_GLU_NURBS_ERROR32, GL_GLU_EXTERIOR, GL_GLU_TESS_ERROR4, GL_GLU_NURBS_ERROR13, GL_GLU_DOMAIN_DISTANCE, GL_GLU_NURBS_ERROR34, GL_GLU_NURBS_ERROR23, GL_GLU_NURBS_ERROR4, GL_GLU_NURBS_COLOR_DATA_EXT, GL_GLU_NURBS_ERROR8, GL_GLU_NURBS_COLOR_EXT, GL_GLU_NURBS_ERROR31, GL_GLU_NURBS_ERROR2, GL_GLU_NURBS_ERROR28, GL_GLU_TESS_WINDING_ABS_GEQ_TWO, GL_GLU_NURBS_ERROR11, GL_GLU_NURBS_END_DATA_EXT, GL_GLU_NURBS_ERROR37, GL_GLU_UNKNOWN, GL_GLU_BEGIN, GL_GLU_NURBS_ERROR24, GL_GLU_OBJECT_PATH_LENGTH_EXT, GL_GLU_ERROR, GL_GLU_TESS_VERTEX_DATA, GL_GLU_TESS_ERROR7, GL_GLU_NURBS_NORMAL_DATA_EXT, GL_GLU_TESS_COORD_TOO_LARGE, GL_GLU_NURBS_BEGIN_DATA, GL_GLU_NURBS_VERTEX_DATA_EXT, GL_GLU_NURBS_TEXTURE_COORD, GL_GLU_NURBS_NORMAL_DATA, GL_GLU_NURBS_ERROR10, GL_GLU_TESS_MISSING_BEGIN_POLYGON, GL_GLU_NURBS_END, GL_GLU_NURBS_ERROR5, GL_GLU_END, GL_GLU_TESS_WINDING_NONZERO, GL_GLU_TESS_MAX_COORD, GL_GLU_NURBS_ERROR35, GL_GLU_TESS_COMBINE_DATA, GL_GLU_TESS_WINDING_RULE, GL_GLU_NURBS_ERROR3, GL_GLU_NURBS_RENDERER_EXT, GL_GLU_TESS_TOLERANCE, GL_GLU_FLAT, GL_GLU_PARAMETRIC_TOLERANCE, GL_GLU_INVALID_OPERATION, GL_GLU_NURBS_MODE_EXT, GL_GLU_NURBS_TESSELLATOR, GL_GLU_TESS_COMBINE, GL_GLU_INCOMPATIBLE_GL_VERSION, GL_GLU_VERSION_1_2, GL_GLU_NURBS_ERROR14, GL_GLU_MAP1_TRIM_2, GL_GLU_OUT_OF_MEMORY, GL_GLU_NURBS_COLOR, GL_GLU_NURBS_BEGIN, GL_GLU_U_STEP
|
module EqualitySaturation
using Mixtape
using MacroTools
using BenchmarkTools
f(x) = (x - x) + (10 * 15)
@ctx (true, true, false) struct MyMix end
allow(ctx::MyMix, m::Module) = m == EqualitySaturation
swap(e) = e
function swap(e::Expr)
new = MacroTools.postwalk(e) do s
isexpr(s, :call) || return s
s.args[1] == Base.literal_pow || return s
return Expr(:call, apply, Base.:(*), s.args[3:end]...)
end
return new
end
function transform(::MyMix, b)
return b
end
Mixtape.@load_call_interface()
display(call(MyMix(), f, 3))
end # module
|
#=
---------------------------------------------------------------------------
Implements a few collections that the main mcmc sampler from the file
`mcmc.jl` uses to keep track of the current state and history of where it
was. The following structures are defined:
- AccptTracker : for tracking historical acceptance rate
- ParamHistory : for storing the parameter chain
- ActionTracker : keeps track of what to do on a given iteration
- Workspace : main workspace for `mcmc` function from `mcmc.jl`
- ParamUpdtDefn : defines a single parameter update step
- GibbsDefn : defines an entire gibbs sweep of parameter updates
---------------------------------------------------------------------------
=#
import Base: last, getindex, length, display, eltype
#===============================================================================
Workspace for the MCMC chain
===============================================================================#
"""
struct MCMCWorkspace{T,S,V}
Implements a few collections that the main mcmc sampler from the file
`mcmc.jl` uses to keep track of the current state and history of where it
was. The following structures are defined:
- `θ_chain` for the parameter chain
- `updates` #TODO
- `pos` for the current position of the sampler
- `mean` for the current sample mean of the sampler
- `cov` for the current sample covariance matrix of sampler
- `updates_hist` #TODO
"""
struct MCMCWorkspace{T,S,V}
θ_chain::Vector{T}
updates::S
pos::Vector{Bool}
mean::Vector{V}
cov::Matrix{V}
updates_hist::Vector
function MCMCWorkspace(setup::MCMCSetup, schedule, θ::T) where T
# TODO create an object that pre-allocates the memory based on schedule
# this is difficult due to potential fusing of kernels which results
# in a random overall number of updates
θ_chain = [θ]
S = typeof(setup.updates)
pos = list_of_pos_params(setup.updates, θ)
V = eltype(θ)
new{T,S,V}(θ_chain, setup.updates, pos, copy(θ), zero(θ*θ'), [])
end
end
function list_of_pos_params(updates, θ)
pos = fill(false, length(θ))
for updt in updates
if typeof(updt) <: ParamUpdate{MetropolisHastingsUpdt}
ind_pos = indices_of_pos(updt.updt_coord, updt.t_kernel.pos)
for (c,p) in ind_pos
if p
pos[c] = true
end
end
end
end
pos
end
function indices_of_pos(coords, pos)
coord_indices = indices(coords)
@assert length(coord_indices) == length(pos)
zip(coord_indices, pos)
end
function update!(ws::MCMCWorkspace, acc, θ, i)
not_imputation = !(typeof(ws.updates[i]) <: Imputation)
not_imputation && push!(ws.θ_chain, θ)
not_imputation && update_mean_cov!(ws.mean, ws.cov, θ, length(ws.θ_chain), ws.pos)
register_accpt!(ws.updates[i], acc)
end
function update_mean_cov!(θ_mean, θ_cov, θ, θ_len, pos)
ϑ = neutralise_domain(θ, pos)
prev_mean = copy(θ_mean)
θ_mean .*= θ_len/(θ_len+1)
θ_mean .+= (ϑ./(θ_len+1))
old_sum_sq = (θ_len-1)/θ_len * θ_cov + prev_mean * prev_mean'
new_sum_sq = old_sum_sq + (ϑ * ϑ')/(θ_len)
θ_cov .= new_sum_sq - (θ_len+1)/θ_len * (θ_mean * θ_mean')
end
function neutralise_domain(θ, pos)
ϑ = copy(θ)
ϑ[pos] = log.(ϑ[pos])
ϑ
end
function readjust!(ws::MCMCWorkspace, mcmc_iter)
for i in 1:length(ws.updates)
readjust!(ws.updates[i], ws.cov, mcmc_iter)
end
end
function fuse!(ws::MCMCWorkspace, schedule)
# NOTE for now, the `fuse!` function is quite restricted and will fuse all
# Metropolis-Hastings transition kernels into a single one
MH_updates = [u for u in ws.updates
if typeof(u) <: ParamUpdate{<:MetropolisHastingsUpdt}]
order_updates!(MH_updates)
fusion_updt_coord = fuse_coord(MH_updates)
fusion_cov = Matrix(view(ws.cov, fusion_updt_coord, fusion_updt_coord))
fusion_kernel = fuse_kernels(MH_updates, fusion_cov)
fusion_priors = fuse_priors(MH_updates)
fusion_aux = fuse_aux(MH_updates)
fusion_param_updt = ParamUpdate(MetropolisHastingsUpdt(), fusion_updt_coord,
ws.θ_chain[end], fusion_kernel,
fusion_priors, fusion_aux)
push!(ws.updates, fusion_param_updt)
MH_updt_idx = [i for (i,u) in enumerate(ws.updates)
if typeof(u) <: ParamUpdate{<:MetropolisHastingsUpdt}]
reschedule!(schedule, MH_updt_idx, length(ws.updates))
end
"""
getindex(g::MCMCWorkspace, i::Int)
Return `i`th definition of parameter update
"""
getindex(g::MCMCWorkspace, i::Int) = g.updates[i]
"""
length(g::MCMCWorkspace)
Return the total number of parameter updates in a single Gibbs sweep
"""
length(g::MCMCWorkspace) = length(g.updates)
mutable struct SingleElem{T} val::T end
set!(x::SingleElem{T}, y::T) where T = (x.val = y)
#===============================================================================
Workspace for the Diffusion Model
===============================================================================#
"""
Workspace{ObsScheme,S,TX,TW,R,TP,TZ}
The main container of the `mcmc` function from `mcmc.jl` in which most data
pertinent to sampling is stored
"""
struct Workspace{ObsScheme,S,TX,TW,R,TP,TZ}# ,Q, where Q = eltype(result)
# Related to imputed path
Wnr::Wiener{S} # Wiener, driving law
XXᵒ::Vector{TX} # Diffusion proposal paths
XX::Vector{TX} # Accepted diffusion paths
WWᵒ::Vector{TW} # Driving noise of proposal
WW::Vector{TW} # Driving noise of the accepted paths
Pᵒ::Vector{R} # Guided proposals parameterised by proposal param
P::Vector{R} # Guided proposals parameterised by accepted param
fpt::Vector # Additional information about first passage times
# Related to historically sampled paths
skip_for_save::Int64 # Thining parameter for saving path
paths::Vector # Storage with historical, accepted paths
time::Vector{Float64} # Storage with time axis
# Related to the starting point
x0_prior::TP
z::SingleElem{TZ}
#recompute_ODEs::Vector{Bool} # Info on whether to recompute H,Hν,c after resp. param updt
"""
Workspace(setup::DiffusionSetup{ObsScheme})
Initialise workspace of the mcmc sampler according to a `setup` variable
"""
function Workspace(setup::DiffusionSetup{ObsScheme}) where ObsScheme
x0_prior, Wnr = deepcopy(setup.x0_prior), deepcopy(setup.Wnr)
XX, WW = deepcopy(setup.XX), deepcopy(setup.WW)
P, fpt = deepcopy(setup.P), deepcopy(setup.fpt)
# forcedSolve defines type by the starting point, make sure it matches
x0_guess = eltype(eltype(XX))(setup.x0_guess)
TW, TX, S, R = eltype(WW), eltype(XX), valtype(Wnr), eltype(P)
TP = typeof(x0_prior)
m = length(P)
y = copy(x0_guess)
for i in 1:m
WW[i] = Bridge.samplepath(P[i].tt, zero(S))
sample!(WW[i], Wnr)
WW[i], XX[i] = forcedSolve(EulerMaruyamaBounded(), y, WW[i], P[i]) # this will enforce adherence to domain
while !checkFpt(ObsScheme(), XX[i], fpt[i])
sample!(WW[i], Wnr)
forcedSolve!(EulerMaruyamaBounded(), XX[i], y, WW[i], P[i]) # this will enforce adherence to domain
end
y = XX[i].yy[end]
end
y = x0_guess
ll = ( logpdf(x0_prior, y)
+ path_log_likhd(ObsScheme(), XX, P, 1:m, fpt, skipFPT=true)
+ lobslikelihood(P[1], y) )
XXᵒ, WWᵒ, Pᵒ = deepcopy(XX), deepcopy(WW), deepcopy(P)
# compute the white noise that generates x0_guess under the initial posterior
z = inv_start_pt(y, x0_prior, P[1])
TZ = typeof(z)
z = SingleElem{TZ}(z)
skip = setup.skip_for_save
_time = collect(Iterators.flatten(p.tt[1:skip:end-1] for p in P))
#check_if_recompute_ODEs(setup)
(workspace = new{ObsScheme,S,TX,TW,R,TP,TZ}(Wnr, XXᵒ, XX, WWᵒ, WW, Pᵒ,
P, fpt, skip, [], _time,
x0_prior, z),
ll = ll, θ = params(P[1].Target))
end
function Workspace(ws::Workspace{ObsScheme,S,TX,TW,R̃,TP,TZ}, P::Vector{R},
Pᵒ::Vector{R}) where {ObsScheme,S,TX,TW,R̃,R,TP,TZ}
new{ObsScheme,S,TX,TW,R,TP,TZ}(ws.Wnr, ws.XXᵒ, ws.XX, ws.WWᵒ, ws.WW, Pᵒ,
P, ws.fpt, ws.skip_for_save, ws.paths,
ws.time, ws.x0_prior, ws.z)
end
end
eltype(::SamplePath{T}) where T = T
eltype(::Type{SamplePath{T}}) where T = T
solver_type(::Workspace{O,B,ST}) where {O,B,ST} = ST
obs_scheme(::Workspace{O}) where O = O()
next(ws::Workspace, ::Any) = ws
function next(ws::Workspace, updt::Imputation{<:Block})
XX, P, Pᵒ, bl = ws.XX, ws.P, ws.Pᵒ, updt.blocking
θ = params(P[1].Target)
vs = find_end_pts(bl, XX)
P_new = [GuidPropBridge(Pi, bl.Ls[i], vs[i], bl.Σs[i], bl.change_pts[i],
θ, bl.aux_flags[i]) for (i,Pi) in enumerate(P)]
Pᵒ_new = [GuidPropBridge(Pᵒi, bl.Ls[i], vs[i], bl.Σs[i], bl.change_pts[i],
θ, bl.aux_flags[i]) for (i,Pᵒi) in enumerate(Pᵒ)]
Workspace(ws, P_new, Pᵒ_new)
end
"""
save_imputed!(ws::Workspace)
Save the entire path spanning all segments in `XX`. Only 1 in every `ws.skip_for_save`
points is saved to reduce storage space.
"""
function save_imputed!(ws::Workspace)
skip = ws.skip_for_save
push!(ws.paths, collect(Iterators.flatten(ws.XX[i].yy[1:skip:end-1]
for i in 1:length(ws.XX))))
end
function adaptation_object(setup::DiffusionSetup, ws::Workspace)
adpt = deepcopy(setup.adaptive_prop)
if typeof(adpt) <: Adaptation{Val{false}}
return nothing
end
m = length(ws.XX)
resize!(adpt, m, [length(ws.XX[i]) for i in 1:m])
adpt
end
function create_workspace(setup::MCMCSetup, schedule::MCMCSchedule, θ)
MCMCWorkspace(setup, schedule, θ)
end
function create_workspace(setup::T) where {T <: ModelSetup}
Workspace(setup)
end
|
## Poisson regression
struct analysis_Poisson_Reg
formula::FormulaTerm
#modelClass::PoissonRegression
#LikelihoodMod::String
#PriorMod::String
#Link::String
#ComputeMethod::String
fit
beta
LogLike::Float64
#LogPost::Float64
AIC::Float64
BIC::Float64
#R_sqr::Float64
#Adjusted_R_sqr::Float64
#sigma::Float64
#Cooks_distance
end
function Poisson_Reg(formula::FormulaTerm,data::DataFrame)
formula = apply_schema(formula, schema(formula, data));
y, X = modelcols(formula, data);
fm_frame=ModelFrame(formula,data);
X=modelmatrix(fm_frame);
p = size(X, 2);
n = size(X, 1);
## Fit Model
res = glm(formula,data,Poisson(), LogLink());
fit = coeftable(res)
beta_hat = coef(res)
logLike = GLM.loglikelihood(res)
npar = p;
AIC = 2*npar - 2*logLike
BIC = log(n)*npar - 2*logLike
ans = analysis_Poisson_Reg(formula,fit,beta_hat,logLike,AIC,BIC)
ans
end
function Poisson_Reg_predicts(obj,newdata::DataFrame)
formula = obj.formula;
fm_frame=ModelFrame(formula,newdata);
X=modelmatrix(fm_frame);
beta = obj.beta
z = X*beta;
μ = exp.(z) ;
μ
end
## Poisson Regression with Ridge Prior
function Poisson_Reg(formula::FormulaTerm,data::DataFrame,PriorMod::Prior_Ridge,h::Float64,sim_size::Int64)
formula = apply_schema(formula, schema(formula, data));
y, X = modelcols(formula, data);
@model PoissonReg(X, y) = begin
p = size(X, 2);
n = size(X, 1);
#priors
λ~InverseGamma(h,h)
α ~ Normal(0,λ)
β ~ filldist(Normal(0,λ), p)
## link
z = α .+ X * β
mu = exp.(z)
#likelihood
for i = 1:n
y[i] ~ Poisson(mu[i])
end
end
PoissonReg_model=PoissonReg(X,y);
chain = sample(CRRao_rng, PoissonReg_model, NUTS(), sim_size);
summaries, quantiles = describe(chain);
ans = MCMC_chain(chain,summaries,quantiles)
ans
end
## Poisson Regression with Laplace Prior
function Poisson_Reg(formula::FormulaTerm,data::DataFrame,PriorMod::Prior_Laplace,h::Float64,sim_size::Int64)
formula = apply_schema(formula, schema(formula, data));
y, X = modelcols(formula, data);
@model PoissonReg(X, y) = begin
p = size(X, 2);
n = size(X, 1);
#priors
λ~InverseGamma(h,h)
α ~ Laplace(0,λ)
β ~ filldist(Laplace(0,λ), p)
## link
z = α .+ X * β
mu = exp.(z)
#likelihood
for i = 1:n
y[i] ~ Poisson(mu[i])
end
end
PoissonReg_model=PoissonReg(X,y);
chain = sample(CRRao_rng, PoissonReg_model, NUTS(), sim_size);
summaries, quantiles = describe(chain);
ans = MCMC_chain(chain,summaries,quantiles)
ans
end
## Poisson Regression with Cauchy Prior
function Poisson_Reg(formula::FormulaTerm,data::DataFrame,PriorMod::Prior_Cauchy,h::Float64,sim_size::Int64)
formula = apply_schema(formula, schema(formula, data));
y, X = modelcols(formula, data);
@model PoissonReg(X, y) = begin
p = size(X, 2);
n = size(X, 1);
#priors
λ~InverseGamma(h,h)
α ~ TDist(1)*λ
β ~ filldist(TDist(1)*λ, p)
## link
z = α .+ X * β
mu = exp.(z)
#likelihood
for i = 1:n
y[i] ~ Poisson(mu[i])
end
end
PoissonReg_model=PoissonReg(X,y);
chain = sample(CRRao_rng, PoissonReg_model, NUTS(), sim_size);
summaries, quantiles = describe(chain);
ans = MCMC_chain(chain,summaries,quantiles)
ans
end
## Poisson Regression with T-Distributed Prior
function Poisson_Reg(formula::FormulaTerm,data::DataFrame,PriorMod::Prior_TDist,h::Float64,sim_size::Int64)
formula = apply_schema(formula, schema(formula, data));
y, X = modelcols(formula, data);
@model PoissonReg(X, y) = begin
p = size(X, 2);
n = size(X, 1);
#priors
λ~InverseGamma(h,h)
ν~InverseGamma(h,h)
α ~ TDist(ν)*λ
β ~ filldist(TDist(ν)*λ, p)
## link
z = α .+ X * β
mu = exp.(z)
#likelihood
for i = 1:n
y[i] ~ Poisson(mu[i])
end
end
PoissonReg_model=PoissonReg(X,y);
chain = sample(CRRao_rng, PoissonReg_model, NUTS(), sim_size);
summaries, quantiles = describe(chain);
ans = MCMC_chain(chain,summaries,quantiles)
ans
end
## Poisson Regression with Uniform Prior
function Poisson_Reg(formula::FormulaTerm,data::DataFrame,PriorMod::Prior_Uniform,h::Float64,sim_size::Int64)
formula = apply_schema(formula, schema(formula, data));
y, X = modelcols(formula, data);
@model PoissonReg(X, y) = begin
p = size(X, 2);
n = size(X, 1);
#priors
λ~InverseGamma(h,h)
α ~ Uniform(-λ,λ)
β ~ filldist(Uniform(-λ,λ), p)
## link
z = α .+ X * β
mu = exp.(z)
#likelihood
for i = 1:n
y[i] ~ Poisson(mu[i])
end
end
PoissonReg_model=PoissonReg(X,y);
chain = sample(CRRao_rng, PoissonReg_model, NUTS(), sim_size);
summaries, quantiles = describe(chain);
ans = MCMC_chain(chain,summaries,quantiles)
ans
end
|
using BOMBS
using Test
using CSV
using DataFrames
using LinearAlgebra
using Dates
using Distributions
using Random
using CmdStan
# -------------------------------------------------------- MODEL DEFINITION TESTS
model_def = Dict();
model_def["NameF"] = [];
model_def["nStat"] = [];
model_def["nPar"] = [];
model_def["nInp"] = [];
model_def["stName"] = [];
model_def["parName"] = [];
model_def["inpName"] = [];
model_def["eqns"] = [];
model_def["Y0eqs"] = [];
model_def["Y0Sim"] = [];
model_def["tols"] = [];
model_def["solver"] = [];
model_def2 = defModStruct();
model_def2["NameF"] = "Test";
model_def2["nStat"] = 2;
model_def2["nPar"] = 4;
model_def2["nInp"] = 1;
model_def2["stName"] = ["A", "B"];
model_def2["parName"] = ["k1", "k2", "k3", "k4"];
model_def2["inpName"] = ["inp1"];
model_def2["eqns"] = ["dA = k1*A - k2*A*inp1", "dB = k3*(A^2) - k4*B"];
model_def2["Y0eqs"] = ["A = 1", "B = k3*(A^2)/k4"];
model_def2["Y0Sim"] = false;
model_def2["tols"] = [1e-5,1e-5];
model_def2["solver"] = "CVODE_BDF";
# -------------------------------------------------------- SIMULATION TESTS
simul_def = Dict()
simul_def["Nexp"] = [];
simul_def["finalTime"] = [];
simul_def["switchT"] = [];
simul_def["y0"] = [];
simul_def["preInd"] = [];
simul_def["uInd"] = [];
simul_def["theta"] = [];
simul_def["tsamps"] = [];
simul_def["plot"] = [];
simul_def["flag"] = [];
simul_def2 = defSimulStruct();
simul_def2["Nexp"] = 2;
simul_def2["finalTime"] = [40, 40];
simul_def2["switchT"] = [[0,20,40], [0,20,40]];
simul_def2["y0"] = [[0,0], [0,0]];
simul_def2["preInd"] = [[0.1], [0.1]];
simul_def2["uInd"] = [[1,1], [1,1]];
simul_def2["theta"] = [0.1 0.2 0.2 0.02; 0.2 0.1 0.2 0.01; 1 1 1 0.1];
simul_def2["tsamps"] = [[0,5,10,15,20,25,30,35,40], [0,3,5,10,12,15,20,25,27, 30,33, 35,40]];
simul_def2["plot"] = false;
simul_def2["flag"] = "testsim";
simul_def3 = Dict()
simul_def3["ObservablesFile"] = [];
simul_def3["EventInputsFile"] = [];
simul_def3["theta"] = [];
simul_def3["MainDir"] = [];
simul_def3["plot"] = [];
simul_def3["flag"] = [];
simul_defCSV1 = Dict();
simul_defCSV1["ObservablesFile"] = ["TestSimulCSVObs.csv"];
simul_defCSV1["EventInputsFile"] = ["TestSimulCSVInps.csv"];
simul_defCSV1["theta"] = ["Theta1.csv"];
simul_defCSV1["MainDir"] = [];
simul_defCSV1["plot"] = false;
simul_defCSV1["flag"] = "testsimCSV";
simul_defCSV2 = Dict();
simul_defCSV2["Nexp"] = 1;
simul_defCSV2["finalTime"] = [40];
simul_defCSV2["switchT"] = [[0.0,20.0,40.0]];
simul_defCSV2["y0"] = [[0,0]];
simul_defCSV2["preInd"] = [[0.1]];
simul_defCSV2["uInd"] = [reshape([1, 0.5], 2,1)];
simul_defCSV2["theta"] = [0.1 0.2 0.2 0.002];
simul_defCSV2["tsamps"] = [[0,5,10,15,20,25,30,35,40]];
simul_defCSV2["plot"] = false;
simul_defCSV2["flag"] = "testsimCSV";
# -------------------------------------------------------- PSEUDO-DATA TESTS
pseudo_def = Dict();
pseudo_def["Nexp"] = [];
pseudo_def["finalTime"] = [];
pseudo_def["switchT"] = [];
pseudo_def["y0"] = [];
pseudo_def["preInd"] = [];
pseudo_def["uInd"] = [];
pseudo_def["theta"] = [];
pseudo_def["tsamps"] = [];
pseudo_def["plot"] = [];
pseudo_def["flag"] = [];
pseudo_def["Obs"] = [];
pseudo_def["Noise"] = [];
pseudo_def2 = defPseudoDatStruct();
pseudo_def2["Nexp"] = 2;
pseudo_def2["finalTime"] = [40, 40];
pseudo_def2["switchT"] = [[0,20,40], [0,20,40]];
pseudo_def2["y0"] = [[0,0], [0,0]];
pseudo_def2["preInd"] = [[0.1], [0.1]];
pseudo_def2["uInd"] = [[1,1], [1,1]];
pseudo_def2["theta"] = [0.1 0.2 0.2 0.02; 0.2 0.1 0.2 0.01; 1 1 1 0.1];
pseudo_def2["tsamps"] = [[0,5,10,15,20,25,30,35,40], [0,3,5,10,12,15,20,25,27, 30,33, 35,40]];
pseudo_def2["plot"] = false;
pseudo_def2["flag"] = "testPD";
pseudo_def2["Obs"] = ["B*2"];
pseudo_def2["Noise"] = [0.1];
pseudo_def3 = Dict()
pseudo_def3["ObservablesFile"] = [];
pseudo_def3["EventInputsFile"] = [];
pseudo_def3["theta"] = [];
pseudo_def3["MainDir"] = [];
pseudo_def3["plot"] = [];
pseudo_def3["flag"] = [];
pseudo_def3["Obs"] = [];
pseudo_def3["Noise"] = [];
pseudo_defCSV1 = Dict();
pseudo_defCSV1["ObservablesFile"] = ["TestSimulCSVObsPD.csv"];
pseudo_defCSV1["EventInputsFile"] = ["TestSimulCSVInpsPD.csv"];
pseudo_defCSV1["theta"] = ["Theta1PD.csv"];
pseudo_defCSV1["MainDir"] = [];
pseudo_defCSV1["plot"] = false;
pseudo_defCSV1["flag"] = "testPDCSV";
pseudo_defCSV1["Obs"] = ["B*2"];
pseudo_defCSV1["Noise"] = [0.1];
pseudo_defCSV2 = Dict();
pseudo_defCSV2["Nexp"] = 1;
pseudo_defCSV2["finalTime"] = [40];
pseudo_defCSV2["switchT"] = [[0.0,20.0,40.0]];
pseudo_defCSV2["y0"] = [[0,0]];
pseudo_defCSV2["preInd"] = [[0.1]];
pseudo_defCSV2["uInd"] = [reshape([1, 0.5], 2,1)];
pseudo_defCSV2["theta"] = [0.1 0.2 0.2 0.002];
pseudo_defCSV2["tsamps"] = [[0,5,10,15,20,25,30,35,40]];
pseudo_defCSV2["plot"] = false;
pseudo_defCSV2["flag"] = "testPDCSV";
pseudo_defCSV2["Obs"] = ["B*2"];
pseudo_defCSV2["Noise"] = [0.1];
# -------------------------------------------------------- MLE TESTS
mle_def = Dict();
mle_def["Nexp"] = [];
mle_def["finalTime"] = [];
mle_def["switchT"] = [];
mle_def["y0"] = [];
mle_def["preInd"] = [];
mle_def["uInd"] = [];
mle_def["tsamps"] = [];
mle_def["plot"] = [];
mle_def["flag"] = [];
mle_def["thetaMAX"] = [];
mle_def["thetaMIN"] = [];
mle_def["runs"] = [];
mle_def["parallel"] = [];
mle_def["DataMean"] = [];
mle_def["DataError"] = [];
mle_def["Obs"] = [];
mle_def["OPTsolver"] = [];
mle_def["MaxTime"] = [];
mle_def["MaxFuncEvals"] = [];
mle_def2 = Dict();
mle_def2["Nexp"] = 1;
mle_def2["finalTime"] = [40];
mle_def2["switchT"] = [[0,20,40]];
mle_def2["y0"] = [[0,0]];
mle_def2["preInd"] = [[0.1]];
mle_def2["uInd"] = [[1,1]];
mle_def2["tsamps"] = [[0,5,10,15,20,25,30,35,40]];
mle_def2["plot"] = false;
mle_def2["flag"] = "testmle";
mle_def2["thetaMAX"] = [0.15 0.25 0.25 0.025];
mle_def2["thetaMIN"] = [0.1 0.2 0.2 0.02];
mle_def2["runs"] = 2;
mle_def2["parallel"] = false;
mle_def2["DataMean"] = [[0 1 2 3 4 5 6 7 8; 0 1 2 3 4 5 6 7 8]'];
mle_def2["DataError"] = [[[0,1,2,3,4,5,6,7,8], [0,1,2,3,4,5,6,7,8]]];
mle_def2["Obs"] = ["A", "B"];
mle_def2["OPTsolver"] = "adaptive_de_rand_1_bin_radiuslimited";
mle_def2["MaxTime"] = [];
mle_def2["MaxFuncEvals"] = 10;
cvmle_def = Dict();
cvmle_def["Nexp"] = [];
cvmle_def["finalTime"] = [];
cvmle_def["switchT"] = [];
cvmle_def["y0"] = [];
cvmle_def["preInd"] = [];
cvmle_def["uInd"] = [];
cvmle_def["theta"] = [];
cvmle_def["tsamps"] = [];
cvmle_def["plot"] = [];
cvmle_def["flag"] = [];
cvmle_def["DataMean"] = [];
cvmle_def["DataError"] = [];
cvmle_def["Obs"] = [];
cvmle_def2 = Dict();
cvmle_def2["Nexp"] = 1;
cvmle_def2["finalTime"] = [40];
cvmle_def2["switchT"] = [[0,20,40]];
cvmle_def2["y0"] = [[0,0]];
cvmle_def2["preInd"] = [[0.1]];
cvmle_def2["uInd"] = [[1,1]];
cvmle_def2["theta"] = convert(Array, [0.1 0.2 0.2 0.02;0.12 0.22 0.22 0.022]');
cvmle_def2["tsamps"] = [[0,5,10,15,20,25,30,35,40]];
cvmle_def2["plot"] = false;
cvmle_def2["flag"] = "cvmletest";
cvmle_def2["DataMean"] = [[0 1 2 3 4 5 6 7 8]'];
cvmle_def2["DataError"] = [[[0,1,2,3,4,5,6,7,8]]];;
cvmle_def2["Obs"] = ["B"];
testdict1 = Dict();
testdict2 = Dict();
testdict1["a"] = "a";
testdict1["b"] = "b";
testdict2["a"] = [];
testdict2["b"] = 1;
@testset "ModelGenTests" begin
# In case any modification to the structure is made, this will be the test to see if I have forgot some entry
@test model_def == defModStruct()
# Check function does some modifications, so it is good to see that it does what it should
@test model_def2 == checkStruct(model_def2)
# Check that a file has been generated (the functions containing the ODEs)
GenerateModel(model_def2)
@test isfile(string(pwd(),"\\ModelsFunctions\\", model_def2["NameF"], "_Model.jl"))
rm(string(pwd(),"\\ModelsFunctions\\", model_def2["NameF"], "_Model.jl"))
# rm(string(pwd(),"\\ModelsFunctions"))
end
@testset "ModelSimulationTests" begin
CSV.write("Theta1.csv", DataFrame([0.1 0.2 0.2 0.002]))
CSV.write("TestSimulCSVInps.csv", DataFrame([0 40 0.1 1; 20 40 0.1 0.5]))
CSV.write("TestSimulCSVObs.csv", DataFrame([0 0 0; 5 0 0; 10 0 0; 15 0 0; 20 0 0; 25 0 0; 30 0 0; 35 0 0; 40 0 0]))
# In case any modification to the structure is made, this will be the test to see if I have forgot some entry
@test simul_def == defSimulStruct()
# Check function does some modifications, so it is good to see that it does what it should
@test simul_def2 == checkStructSimul(model_def2, simul_def2)
# In case any modification to the structure is made, this will be the test to see if I have forgot some entry
@test simul_def3 == defSimulStructFiles()
# Might need to add a test for this, but then I need some example CSV files
@test simul_defCSV2 == extractSimulCSV(model_def2, simul_defCSV1)
rm("Theta1.csv")
rm("TestSimulCSVInps.csv")
rm("TestSimulCSVObs.csv")
GenerateModel(model_def2);
simuls, ~, ~ = simulateODEs(model_def2, simul_def2);
@test length(simuls) == simul_def2["Nexp"]
for i in 1:2
a,b,c = size(simuls[string("Exp_", i)])
@test a == length(simul_def2["tsamps"][i])
@test b == (model_def2["nStat"])
@test c == length(simul_def2["theta"])/model_def2["nPar"]
@test sum(simuls[string("Exp_", i)]) != 0
end
plotSimsODE(simuls,model_def2,simul_def2)
for i in 1:2
@test isfile(string(simul_def2["savepath"], "\\PlotSimulation_Exp", i,"_", simul_def2["flag"], ".png"))
rm(string(simul_def2["savepath"], "\\PlotSimulation_Exp", i,"_", simul_def2["flag"], ".png"))
end
rm(string(pwd(),"\\ModelsFunctions\\", model_def2["NameF"], "_Model.jl"))
rm(string(simul_def2["savepath"], "\\", simul_def2["savename"]))
rm(string(simul_def2["savepath"]))
end
@testset "PseudoDataGenerationTests" begin
CSV.write("Theta1PD.csv", DataFrame([0.1 0.2 0.2 0.002]))
CSV.write("TestSimulCSVInpsPD.csv", DataFrame([0 40 0.1 1; 20 40 0.1 0.5]))
CSV.write("TestSimulCSVObsPD.csv", DataFrame([0 0 0; 5 0 0; 10 0 0; 15 0 0; 20 0 0; 25 0 0; 30 0 0; 35 0 0; 40 0 0]))
# In case any modification to the structure is made, this will be the test to see if I have forgot some entry
@test pseudo_def == defPseudoDatStruct()
# Check function does some modifications, so it is good to see that it does what it should
@test pseudo_def2 == checkStructPseudoDat(model_def2, pseudo_def2)
# In case any modification to the structure is made, this will be the test to see if I have forgot some entry
@test pseudo_def3 == defPseudoDatStructFiles()
# Might need to add a test for this, but then I need some example CSV files
@test pseudo_defCSV2 == extractPseudoDatCSV(model_def2, pseudo_defCSV1)
rm("Theta1PD.csv")
rm("TestSimulCSVInpsPD.csv")
rm("TestSimulCSVObsPD.csv")
GenerateModel(model_def2)
pdat, ~, ~ = GenPseudoDat(model_def2, pseudo_def2);
@test length(pdat["SimsObs"]) == pseudo_def2["Nexp"]
@test length(pdat["Sims"]) == pseudo_def2["Nexp"]
@test length(pdat["PData"]) == pseudo_def2["Nexp"]
@test length(pdat["PError"]) == pseudo_def2["Nexp"]
for i in 1:2
a,b,c = size(pdat["Sims"][string("Exp_", i)])
@test a == length(pseudo_def2["tsamps"][i])
@test b == (model_def2["nStat"])
@test c == length(pseudo_def2["theta"])/model_def2["nPar"]
@test sum(pdat["Sims"][string("Exp_", i)]) != 0
a,b,c = size(pdat["SimsObs"][string("PDExp_", i)])
@test b == length(pseudo_def2["Obs"]);
@test pdat["SimsObs"][string("PDExp_", i)][:,1,:] == pdat["Sims"][string("Exp_", i)][:,2,:].*2
a,b,c = size(pdat["PData"][string("PDExp_", i)])
@test b == length(pseudo_def2["Obs"]);
@test length(pdat["PData"][string("PDExp_", i)]) == length(pdat["PError"][string("PDExp_", i)])
end
plotPseudoDatODE(pdat,model_def2,pseudo_def2)
for i in 1:2
@test isfile(string(pseudo_def2["savepath"], "\\PlotPseudoDat_Exp", i,"_", pseudo_def2["flag"], ".png"))
rm(string(pseudo_def2["savepath"], "\\PlotPseudoDat_Exp", i,"_", pseudo_def2["flag"], ".png"))
end
rm(string(pwd(),"\\ModelsFunctions\\", model_def2["NameF"], "_Model.jl"))
rm(string(pseudo_def2["savepath"], "\\", pseudo_def2["savename"]))
for i in 1:2
rm(string(pseudo_def2["savepath"], "\\PseudoDataFiles\\", model_def2["NameF"], "_EXP", i, "_", pseudo_def2["flag"], "_Events_Inputs.csv"))
rm(string(pseudo_def2["savepath"], "\\PseudoDataFiles\\", model_def2["NameF"], "_EXP", i, "_", pseudo_def2["flag"], "_Observables.csv"))
rm(string(pseudo_def2["savepath"], "\\PseudoDataFiles\\", model_def2["NameF"], "_EXP", i, "_", pseudo_def2["flag"], "_Simulations.csv"))
end
rm(string(pseudo_def2["savepath"], "\\PseudoDataFiles"))
rm(string(pseudo_def2["savepath"]))
end
@testset "MLESeriesTests" begin
# First check that both structure calls give what it is supposed to
@test mle_def == defMLEStruct();
@test cvmle_def == defCrossValMLEStruct();
# Check functionality of helpping functions
testdict3 = SimToMle(testdict1, testdict2);
@test testdict3 == testdict2;
simst = reshape([1 2 3 4; 1 2 3 4; 1 2 3 4], 3,4,1);
obst = ["c*2"];
stnamest = ["a","b","c","d"];
@test sum(selectObsSim_te(simst, obst, stnamest)) == sum(simst[:,3,:]*2);
@test (selectObsSim_te(simst, [2], stnamest)) == reshape([2,2,2], 3,1,1);
ttess1 = Dict();
ttess1["nInp"] = 2;
ttess2 = Dict();
ttess2["uInd"] = [[1 1 1; 2 2 2]'];
@test restructInputs_te(ttess1, ttess2, 1) == [1,2,1,2,1,2];
ttess1["nInp"] = 3;
ttess2["uInd"] = [[1 1 1; 2 2 2; 3 3 3]'];
@test restructInputs_te(ttess1, ttess2, 1) == [1,2,3,1,2,3,1,2,3];
# More tests might be needed?
m=10;
s=1;
d=9;
@test (-0.5)*(log(2*pi) + 0 + (1)) == UVloglike(d, m, s);
m=[10, 10, 10, 10];
s=[1,1,1,1];
d=[9, 11, 9, 11];
@test ((-0.5)*(log(2*pi) + 0 + (1)))*4 == UVloglike(d, m, s);
m=[10, 15, 10, 15];
s=[0.5,0.5,0.5,0.5];
d=[12, 12, 12, 12];
@test ((-0.5)*(log(2*pi) + log(0.25) + (2^2)/0.25)) + ((-0.5)*(log(2*pi) + log(0.25) + (2^2)/0.25)) +
((-0.5)*(log(2*pi) + log(0.25) + (3^2)/0.25)) + ((-0.5)*(log(2*pi) + log(0.25) + (3^2)/0.25)) == UVloglike(d, m, s);
m=[10, 10];
s=[1 1; 1 1]; # Diagonal element of 0.1 is added to avoid Infs due to non positive definite covariances.
d=[9, 11];
correcmat = Diagonal(ones(length(d))).*0.1;
@test [MVloglike(d, m, s)] == (-0.5) * ((length(d)*log(2*pi)) .+ log(det(s.+correcmat)) .+ ([-1 1]*inv(s.+correcmat)*[-1,1]));
# Check structure check functions (with and without CSVs)
@test mle_def2 == checkStructMLE(model_def2, mle_def2)
@test cvmle_def2 == checkStructCrossValMLE(model_def2, cvmle_def2)
# Check MLE
GenerateModel(model_def2);
mle_res, model_def3, mle_def3 = MLEtheta(model_def2, mle_def2);
@test !isempty(mle_res);
@test typeof(mle_res["StanDict"]) <: Array;
@test typeof(mle_res["StanDict"][1]) <: Dict;
@test typeof(mle_res["StanDict"][2]) <: Dict;
@test symdiff(["k1","k2","k3","k4"],keys(mle_res["StanDict"][1])) == [];
@test symdiff(["k1","k2","k3","k4"],keys(mle_res["StanDict"][2])) == [];
@test length(mle_res["Theta"]) == 4*2;
@test size(mle_res["Theta"]) == (4,2);
@test length(mle_res["convCurv"]) == 2;
@test (typeof(mle_res["convCurv"][1][1]) == Tuple{Int,Float64} || typeof(mle_res["convCurv"][1][1]) == Tuple{Int,Float32});
@test (typeof(mle_res["convCurv"][1][2]) == Tuple{Int,Float64} || typeof(mle_res["convCurv"][1][2]) == Tuple{Int,Float32});
@test (typeof(mle_res["convCurv"][2][1]) == Tuple{Int,Float64} || typeof(mle_res["convCurv"][2][1]) == Tuple{Int,Float32});
@test (typeof(mle_res["convCurv"][2][2]) == Tuple{Int,Float64} || typeof(mle_res["convCurv"][2][2]) == Tuple{Int,Float32});
@test length(mle_res["BestTheta"]) == 4;
@test length(mle_res["BestCFV"]) == 2;
#----------------------------- the parallel stuff!!!!
mle_def2["parallel"] = true;
mle_res2, model_def3, mle_def3 = MLEtheta(model_def2, mle_def2);
@test isempty(mle_res2);
@test isfile(string(mle_def3["savepath"], "\\MLEScripts\\", model_def3["NameF"], "_MLE.jl"));
mle_res3, ~, ~ = finishMLEres(mle_res, model_def2, mle_def2);
@test !isempty(mle_res3);
mle_def2["parallel"] = false;
# Check CV for MLE results
cvmle_res, ~, ~ = CrossValMLE(model_def2, cvmle_def2);
@test !isempty(cvmle_res);
@test !isempty(cvmle_res["BestSimulations"][1]);
@test size(cvmle_res["BestSimulations"][1])[2] == 2;
@test length(cvmle_res["Costs"]) == 2;
@test !isempty(cvmle_res["BestSimObservables"][1]);
@test size(cvmle_res["BestSimObservables"][1])[2] == 1;
@test length(cvmle_res["BestTheta"]) == 4;
@test typeof(cvmle_res["SimObservables"]) <: Dict;
@test size(cvmle_res["SimObservables"]["ExpObs_1"])[2] == 1;
@test typeof(cvmle_res["Simulations"]) <: Dict;
@test size(cvmle_res["Simulations"]["Exp_1"])[2] == 2;
# Test Plotting
plotMLEResults(mle_res,model_def2,mle_def2)
@test isfile(string(mle_def2["savepath"], "\\PlotMLEResults_Exp", 1,"_", mle_def2["flag"], ".png"))
@test isfile(string(mle_def2["savepath"], "\\Plot_MLEConvergence", "_", mle_def2["flag"], ".png"))
rm(string(mle_def2["savepath"], "\\PlotMLEResults_Exp", 1,"_", mle_def2["flag"], ".png"))
rm(string(mle_def2["savepath"], "\\Plot_MLEConvergence", "_", mle_def2["flag"], ".png"))
rm(string(pwd(),"\\ModelsFunctions\\", model_def2["NameF"], "_Model.jl"))
rm(string(mle_def2["savepath"], "\\", mle_def2["savename"]))
rm(string(mle_def2["savepath"], "\\MLEScripts\\", model_def2["NameF"], "_MLE.jl"))
rm(string(mle_def2["savepath"], "\\MLEScripts"))
rm(string(cvmle_def2["savepath"], "\\", cvmle_def2["savename"]))
rm(string(mle_def2["savepath"], "\\",model_def2["NameF"], "_", today(), "_SimulationResults_MLEsimulations1.jld"))
rm(string(mle_def2["savepath"], "\\",model_def2["NameF"], "_", today(), "_SimulationResults_MLEsimulations2.jld"))
rm(string(mle_def2["savepath"]))
end
@testset "StanInferenceTests" begin
# Tests on structure definitions
bayinf_def = defBayInfStruct();
@test typeof(bayinf_def) <: Dict;
entries1 = ["Priors", "Data", "StanSettings", "flag", "plot", "runInf", "MultiNormFit"];
@test isempty(symdiff(entries1,keys(bayinf_def)));
datinf_def = defBayInfDataStruct();
@test typeof(datinf_def) <: Dict;
entries2 = ["Nexp", "finalTime", "switchT", "y0", "preInd", "uInd", "tsamps", "Obs", "DataMean", "DataError"];
@test isempty(symdiff(entries2,keys(datinf_def)));
csvinf_def = defBayInfDataFromFilesStruct();
@test typeof(csvinf_def) <: Dict;
entries3 = ["Obs", "Observables", "Inputs", "y0"];
@test isempty(symdiff(entries3,keys(csvinf_def)));
stainf_def = defBasicStanSettingsStruct();
@test typeof(stainf_def) <: Dict;
entries4 = ["cmdstan_home", "nchains", "nsamples", "nwarmup", "printsummary", "init", "maxdepth", "adaptdelta", "jitter"];
@test isempty(symdiff(entries4,keys(stainf_def)));
# Check structures
stainf_def["cmdstan_home"] = "C:/Users/David/.cmdstanpy/cmdstan-2.20.0";
stainf_def["nchains"] = 2;
stainf_def["nsamples"] = 20;
stainf_def["nwarmup"] = 20;
stainf_def["printsummary"] = false;
stainf_def["init"] = [];
stainf_def["maxdepth"] = 13;
stainf_def["adaptdelta"] = 0.95;
stainf_def["jitter"] = 0.5;
@test stainf_def == checkStructBayInfStanSettings(model_def2, stainf_def);
datinf_def["Nexp"] = 1;
datinf_def["finalTime"] = [40];
datinf_def["switchT"] = [[0,20,40]];
datinf_def["y0"] = [[0,0]];
datinf_def["preInd"] = [[0.1]];
datinf_def["uInd"] = [[1,1]];
datinf_def["tsamps"] = [[0,5,10,15,20,25,30,35,40]];
datinf_def["DataMean"] = [[0 1 2 3 4 5 6 7 8; 0 1 2 3 4 5 6 7 8]'];
datinf_def["DataError"] = [[[0,1,2,3,4,5,6,7,8], [0,1,2,3,4,5,6,7,8]]];
datinf_def["Obs"] = ["A", "B"];
@test datinf_def == checkStructBayInfData(model_def2, datinf_def);
bayinf_def["Priors"] = [0.15 0.25 0.25 0.025; 0.1 0.2 0.2 0.02]'';
bayinf_def["Data"] = datinf_def;
bayinf_def["StanSettings"] = stainf_def;
bayinf_def["flag"] = "stantest";
bayinf_def["plot"] = false;
bayinf_def["runInf"] = false;
bayinf_def["MultiNormFit"] = false;
bayinf_def2 = checkStructBayInf(model_def2, bayinf_def);
@test bayinf_def["Data"] == bayinf_def2["Data"]
@test bayinf_def["StanSettings"] == bayinf_def2["StanSettings"]
@test bayinf_def["flag"] == bayinf_def2["flag"]
@test bayinf_def["plot"] == bayinf_def2["plot"]
@test bayinf_def["runInf"] == bayinf_def2["runInf"]
@test bayinf_def["MultiNormFit"] == bayinf_def2["MultiNormFit"]
@test length(bayinf_def2["Priors"]) == 3;
@test typeof(bayinf_def2["Priors"]) <: Dict
# checkStructBayInfDataFiles(model_def, data_def)
# Helpper functions tests
s1 = [0,1,3,9,10]
@test convertBoundTo2(s1, 10, 20) == s1.+10;
@test convertBoundTo2(s1.+10, 0, 10) == s1;
samp1 = rand(Normal(10,1), 80000,4);
fipri1 = fitPriorSamps(samp1, model_def2);
@test length(fipri1["pars"]) == 4;
@test length(fipri1["transpars"]) == 5;
@test length(fipri1["pridis"]) == 4;
fipri2 = fitPriorSampsMultiNorm(samp1, model_def2);
@test length(fipri2["pars"]) < 4;
@test length(fipri2["transpars"]) == 5;
@test length(fipri2["pridis"]) < 4;
kee = ["transpars","mera","cora","pars","pridis","numN"]
@test isempty(symdiff(kee,keys(fipri2)));
dis1 = genStanInitDict(samp1', model_def2["parName"], 10);
@test typeof(dis1[1]) <: Dict;
@test isempty(symdiff(model_def2["parName"],keys(dis1[1])));
@test length(dis1) == 10;
# reparamDictStan(dis1, bayinf_def)
# Stan
genStanModel(model_def2, bayinf_def)
@test isfile(string(pwd(),"\\ModelsFunctions\\", model_def2["NameF"], "_StanModel.stan"))
sdat = restructureDataInference(model_def2, bayinf_def);
datks = ["elm","tml","ts","tsl","tsmax","Nsp","inputs","evnT","m","stsl","stslm","sts","obser","obSta","nindu","preInd","Means","Y0us","Erros"]
for i in 1:length(datks)
@test datks[i] in keys(sdat)
@test !isempty(sdat[datks[i]])
end
modelpath, Model, StanModel, inferdata, init, ~, ~ = getStanInferenceElements(model_def2, bayinf_def);
@test isfile(modelpath);
rm(modelpath)
@test typeof(Model) == String;
@test typeof(StanModel) == CmdStan.Stanmodel;
@test inferdata == sdat;
@test isempty(init);
# saveStanResults(rc, chns, cnames, model_def, bayinf_def)
# runStanInference(model_def, bayinf_def)
stin, ~, ~ = StanInfer(model_def2, bayinf_def);
kssm = ["init", "StanModel", "inferdata", "Model", "modelpath"]
@test isempty(symdiff(kssm,keys(stin)));
# Entropy tests
ps = genSamplesPrior(model_def2, bayinf_def, 100);
@test size(ps) == (100, 4);
w = [1];
E = [[1 0; 0 1]];
MU = reshape([10, 10], 2, 1);
x = reshape([10, 10], 2, 1);
@test round(BOMBS.H_Upper(w,E)) == 3;
@test round(BOMBS.mvGauss(x, MU, E[1])[1], digits=2) == 0.16;
@test round(BOMBS.H_Lower(w, E, MU'), digits = 1) == 2.5;
@test round(BOMBS.GaussMix(x[:,1], convert(Array, MU'), E, w), digits=2) == 0.16;
@test round(BOMBS.ZOTSE(MU', E, w)) == 2;
# Due to the use of global variables I cannot test the other functions... But I can test that the main script runs.
# Do not know why, but I cannot make ScikitLearn work in the test file (works in scripts and jupyter)??? Need to have a look at it.
# computeH(ps, model_def2, "test")
# Plots
# plotStanResults(staninf_res, model_def, bayinf_def)
rm(string(pwd(),"\\ModelsFunctions\\", model_def2["NameF"], "_StanModel.stan"));
rm(string(pwd(),"\\tmp\\", model_def2["NameF"], "_Stan_",bayinf_def["flag"],".stan"));
end
@testset "OEDModelSelectionTests" begin
# structure definition
oedms_def = defODEModelSelectStruct();
@test typeof(oedms_def) <: Dict;
entries1 = ["Model_1", "Model_2", "Obs", "Theta_M1", "Theta_M2", "y0_M1", "y0_M2", "preInd_M1", "preInd_M2",
"finalTime", "switchT", "tsamps", "equalStep",
"fixedInp", "fixedStep", "plot", "flag", "uUpper", "uLower", "maxiter"];
@test isempty(symdiff(entries1,keys(oedms_def)));
#structure check
model_def3 = defModStruct();
model_def3["NameF"] = "Test2";
model_def3["nStat"] = 2;
model_def3["nPar"] = 4;
model_def3["nInp"] = 1;
model_def3["stName"] = ["A", "B"];
model_def3["parName"] = ["k1", "k2", "k3", "k4"];
model_def3["inpName"] = ["inp1"];
model_def3["eqns"] = ["dA = k1*A - k2*A*inp1", "dB = k3*(A^2) - k4*B"];
model_def3["Y0eqs"] = ["A = 1", "B = k3*(A^2)/k4"];
model_def3["Y0Sim"] = false;
model_def3["tols"] = [1e-5,1e-5];
model_def3["solver"] = "CVODE_BDF";
oedms_def = Dict()
oedms_def["Model_1"] = model_def2;
oedms_def["Model_2"] = model_def3;
oedms_def["Obs"] = ["B"];
oedms_def["Theta_M1"] = [0.1 0.2 0.2 0.02; 0.11 0.21 0.21 0.021; 0.12 0.22 0.22 0.022];
oedms_def["Theta_M2"] = [0.13 0.23 0.23 0.023; 0.14 0.24 0.24 0.024; 0.15 0.25 0.25 0.025];
oedms_def["y0_M1"] = [0,0];
oedms_def["y0_M2"] = [0,0];
oedms_def["preInd_M1"] = [0.1];
oedms_def["preInd_M2"] = [0.1];
oedms_def["finalTime"] = [40];
oedms_def["switchT"] = [0,20,30,40];
oedms_def["tsamps"] = [0,5,10,15,20,25,30,35,40];
oedms_def["fixedInp"] = [];
oedms_def["fixedStep"] = [(1,[0])];
oedms_def["equalStep"] = [[2,3]];
oedms_def["plot"] = false;
oedms_def["flag"] = "testoedms";
oedms_def["uUpper"] = [1];
oedms_def["uLower"] = [0];
oedms_def["maxiter"] = 5;
@test oedms_def == checkStructOEDMS(oedms_def);
# Distance functions
m1 = [10, 10];
s1 = [1 0; 0 1];
m2 = [11, 11];
s2 = [1 0; 0 1];
m3 = [15, 15];
s3 = [1 0; 0 1];
@test BhattacharyyaDist(m1, m1, s1, s1) == 0;
@test BhattacharyyaDist(m1, m2, s1, s2) == 0.25;
@test BhattacharyyaDist(m1, m3, s1, s3) == 6.25;
@test EuclideanDist(m1, m1) == 0;
@test EuclideanDist(m1, m2) == sqrt(2);
@test EuclideanDist(m1, m3) == sqrt(50);
# Generate utility script
oedms_def = genOptimMSFuncts(oedms_def);
@test isfile(string(pwd(), "\\ModelsFunctions\\", model_def2["NameF"], "_Model.jl"));
@test isfile(string(pwd(), "\\ModelsFunctions\\", model_def3["NameF"], "_Model.jl"));
@test isfile(string(pwd(), "\\Results\\", model_def2["NameF"], "_VS_", model_def3["NameF"], "_", today(),
"\\OEDModelSelectionScripts\\", model_def2["NameF"], "_VS_", model_def3["NameF"], "_OEDMS.jl"));
# Bayes settings
# Need to figure out if there is any test I can do here
# opt = settingsBayesOpt(oedms_def);
# Main function
oedms_res, oedms_def = mainOEDMS(oedms_def);
@test !isempty(oedms_res);
@test typeof(oedms_res) <: Dict;
@test isfile(string(pwd(), "\\Results\\", model_def2["NameF"], "_VS_", model_def3["NameF"], "_", today(),"\\OEDModelSelectResults_", oedms_def["flag"], ".jld"));
@test oedms_res["uInpOpt"]["inp1"][1] == 0;
@test oedms_res["uInpOpt"]["inp1"][2] == oedms_res["uInpOpt"]["inp1"][3];
@test length(oedms_res["BestUtil"]) == 1;
@test size(oedms_res["ConvCurv"])[1] == 5;
@test size(oedms_res["Simul_M1"]) == size(oedms_res["Simul_M2"]);
@test size(oedms_res["SimulObs_M1"])[2] == size(oedms_res["Simul_M1"])[2]-1;
@test size(oedms_res["SimulObs_M2"])[2] == size(oedms_res["Simul_M2"])[2]-1;
# Plot results
plotOEDMSResults(oedms_res, oedms_def);
@test isfile(string(oedms_def["savepath"], "\\Plot_OEDMSConvergence_", oedms_def["flag"], ".png"));
rm(string(oedms_def["savepath"], "\\Plot_OEDMSConvergence_", oedms_def["flag"], ".png"));
@test isfile(string(oedms_def["savepath"], "\\PlotOEDMSResults_Exp1_", oedms_def["flag"], ".png"));
rm(string(oedms_def["savepath"], "\\PlotOEDMSResults_Exp1_", oedms_def["flag"], ".png"));
rm(string(pwd(), "\\Results\\", model_def2["NameF"], "_VS_", model_def3["NameF"], "_", today(),"\\OEDModelSelectResults_", oedms_def["flag"], ".jld"));
rm(string(pwd(), "\\ModelsFunctions\\", model_def2["NameF"], "_Model.jl"))
rm(string(pwd(), "\\ModelsFunctions\\", model_def3["NameF"], "_Model.jl"))
rm(string(pwd(), "\\Results\\", model_def2["NameF"], "_VS_", model_def3["NameF"], "_", today(),
"\\OEDModelSelectionScripts\\", model_def2["NameF"], "_VS_", model_def3["NameF"], "_OEDMS.jl"));
rm(string(pwd(), "\\Results\\", model_def2["NameF"], "_VS_", model_def3["NameF"], "_", today(),
"\\OEDModelSelectionScripts"));
rm(string(pwd(), "\\Results\\", model_def2["NameF"], "_VS_", model_def3["NameF"], "_", today()));
end
@testset "OEDModelCalibrationTests" begin
# structure definition
oedmc_def = defODEModelCalibrStruct();
@test typeof(oedmc_def) <: Dict;
entries1 = ["Model", "Obs", "Theta", "y0", "preInd", "finalTime", "switchT", "tsamps", "equalStep",
"fixedInp", "fixedStep", "plot", "flag", "uUpper", "uLower", "maxiter", "util"];
@test isempty(symdiff(entries1,keys(oedmc_def)));
oedmc_def = Dict()
oedmc_def["Model"] = model_def2;
oedmc_def["Obs"] = ["B"];
oedmc_def["Theta"] = [0.1 0.2 0.2 0.02; 0.11 0.21 0.21 0.021; 0.12 0.22 0.22 0.022];
oedmc_def["y0"] = [0,0];
oedmc_def["preInd"] = [0.1];
oedmc_def["finalTime"] = [40];
oedmc_def["switchT"] = [0,20,30,40];
oedmc_def["tsamps"] = [0,5,10,15,20,25,30,35,40];
oedmc_def["fixedInp"] = [];
oedmc_def["fixedStep"] = [(1,[0])];
oedmc_def["equalStep"] = [[2,3]];
oedmc_def["plot"] = false;
oedmc_def["flag"] = "testoedmc";
oedmc_def["uUpper"] = [1];
oedmc_def["uLower"] = [0];
oedmc_def["maxiter"] = 5;
oedmc_def["util"] = "perc";
@test oedmc_def == checkStructOEDMC(oedmc_def);
# Generate utility script
oedmc_def = genOptimMCFuncts(oedmc_def);
@test isfile(string(pwd(), "\\ModelsFunctions\\", model_def2["NameF"], "_Model.jl"));
@test isfile(string(pwd(), "\\Results\\", model_def2["NameF"], "_", today(),
"\\OEDModelCalibrationScripts\\", model_def2["NameF"], "_OEDMC.jl"));
# Main function
oedmc_res, oedmc_def = mainOEDMC(oedmc_def);
@test !isempty(oedmc_res);
@test typeof(oedmc_res) <: Dict;
@test isfile(string(pwd(), "\\Results\\", model_def2["NameF"], "_", today(),"\\OEDModelCalibrationResults_", oedmc_def["flag"], ".jld"));
@test oedmc_res["uInpOpt"]["inp1"][1] == 0;
@test oedmc_res["uInpOpt"]["inp1"][2] == oedmc_res["uInpOpt"]["inp1"][3];
@test length(oedmc_res["BestUtil"]) == 1;
@test size(oedmc_res["ConvCurv"])[1] == 5;
@test size(oedmc_res["SimulObs_MC"])[2] == size(oedmc_res["Simul_MC"])[2]-1;
# Plot results
plotOEDMCResults(oedmc_res, oedmc_def);
@test isfile(string(oedmc_def["savepath"], "\\Plot_OEDMCConvergence_", oedmc_def["flag"], ".png"));
rm(string(oedmc_def["savepath"], "\\Plot_OEDMCConvergence_", oedmc_def["flag"], ".png"));
@test isfile(string(oedmc_def["savepath"], "\\PlotOEDMCResults_Exp1_", oedmc_def["flag"], ".png"));
rm(string(oedmc_def["savepath"], "\\PlotOEDMCResults_Exp1_", oedmc_def["flag"], ".png"));
rm(string(pwd(), "\\ModelsFunctions\\", model_def2["NameF"], "_Model.jl"));
rm(string(pwd(), "\\Results\\", model_def2["NameF"], "_", today(),
"\\OEDModelCalibrationScripts\\", model_def2["NameF"], "_OEDMC.jl"));
rm(string(pwd(), "\\Results\\", model_def2["NameF"], "_", today(),"\\OEDModelCalibrationResults_", oedmc_def["flag"], ".jld"));
rm(string(pwd(), "\\Results\\", model_def2["NameF"], "_", today(),
"\\OEDModelCalibrationScripts"));
rm(string(pwd(), "\\Results\\", model_def2["NameF"], "_", today()));
end
# rm(string(pwd(), "\\ModelsFunctions"))
# rm(string(pwd(), "\\Results"))
# rm(string(pwd(), "\\tmp"))
|
#prelude.jl
#some common imports used by almost all scripts:
using Base.MPFR: ROUNDING_MODE, big_ln2
using Base.Math: @horner, libm, nan_dom_err |
struct Graph
n :: Int32 # |V|
m :: Int32 # |E|
V :: Array{Int32, 1} # V[i] = Real Index of node i
E :: Array{Tuple{Int32, Int32, Int32, Float64}, 1} # (ID, u, v, w) in Edge Set
end
function readGraph(fileName, graphType) # Read graph from a file | graphType = [weighted, unweighted]
# Initialized
n = 0
origin = Dict{Int32, Int32}()
label = Dict{Int32, Int32}()
edge = Set{Tuple{Int32, Int32, Float64}}()
getid(x :: Int32) = haskey(label, x) ? label[x] : label[x] = n += 1
open(fileName) do f1
for line in eachline(f1)
# Read origin data from file
buf = split(line)
u = parse(Int32, buf[1])
v = parse(Int32, buf[2])
if graphType == "weighted"
w = parse(Float64, buf[3])
else
w = 1.0
end
if u == v
continue
end
# Label the node
u1 = getid(u)
v1 = getid(v)
origin[u1] = u
origin[v1] = v
# Store the edge
if u1 > v1
u1, v1 = v1, u1
end
push!(edge, (u1, v1, w))
end
end
# Store data into the struct Graph
m = length(edge)
V = Array{Int32, 1}(undef, n)
E = Array{Tuple{Int32, Int32, Int32, Float64}, 1}(undef, m)
for i = 1 : n
V[i] = origin[i]
end
ID = 0
for (u, v, w) in edge
ID = ID + 1
E[ID] = (ID, u, v, w)
end
return Graph(n, m, V, E)
end
function getConnectedComponents(G)
F = zeros(Int, G.n)
foreach(i -> F[i] = i, 1 : G.n)
find(x) = begin
if F[x] != x
F[x] = find(F[x])
end
return F[x]
end
for (ID, u, v, w) in G.E
p = find(u)
q = find(v)
(p != q) ? F[p] = q : nothing
end
CC = zeros(Int, G.n)
foreach(i -> CC[i] = find(i), 1 : G.n)
return CC
end
function getBiconnectedComponents(G)
dfn = zeros(Int, G.n)
low = zeros(Int, G.n)
cnt = 0
cutPoint = zeros(Bool, G.n)
bccid = zeros(Int, G.n)
edgeC = zeros(Int, G.m)
S = zeros(Int, 2*G.m)
top = 0
nbcc = 0
bcc = Array{Array{Int, 1}, 1}(undef, G.n)
g = Array{Array{Int, 1}, 1}(undef, G.n)
gID = Array{Array{Int, 1}, 1}(undef, G.n)
for i = 1 : G.n
g[i] = []
gID[i] = []
bcc[i] = []
end
for (ID, u, v, w) in G.E
push!(g[u], v)
push!(gID[u], ID)
push!(g[v], u)
push!(gID[v], ID)
end
DFS(u, fa) = begin
cnt += 1
dfn[u] = cnt
low[u] = cnt
son = 0
for i = 1 : size(g[u], 1)
v = g[u][i]
if dfn[v] == 0
top += 1
S[top] = gID[u][i]
son += 1
DFS(v, u)
low[u] = min(low[u], low[v])
if dfn[u] <= low[v]
cutPoint[u] = true
nbcc += 1
while true
x = S[top]
top -= 1
if bccid[G.E[x][2]] != nbcc
bccid[G.E[x][2]] = nbcc
push!(bcc[nbcc], G.E[x][2])
end
if bccid[G.E[x][3]] != nbcc
bccid[G.E[x][3]] = nbcc
push!(bcc[nbcc], G.E[x][3])
end
if x == gID[u][i]
break
end
end
end
elseif ((v != fa) && (dfn[v] < dfn[u]))
top += 1
S[top] = gID[u][i]
low[u] = min(low[u], dfn[v])
end
end
if (fa == 0) && (son <= 1)
cutPoint[u] = false
end
end
for i = 1 : G.n
if dfn[i] == 0
DFS(i, 0)
end
end
timeStamp = 0
fill!(bccid, 0)
for i = 1 : nbcc
timeStamp += 1
for j = 1 : size(bcc[i], 1)
bccid[bcc[i][j]] = timeStamp
end
for u in bcc[i]
for j = 1 : size(g[u], 1)
v = g[u][j]
ei = gID[u][j]
(bccid[v] == timeStamp) ? edgeC[ei] = timeStamp : nothing
end
end
end
for i = 1 : G.m
if edgeC[i] == 0
timeStamp += 1
edgeC[i] = timeStamp
end
end
cutList = Array{Int, 1}()
for i = 1 : G.n
if cutPoint[i] == true
push!(cutList, i)
end
end
return cutList, edgeC
end
function IsBiconnected(G)
cutList, edgeC = getBiconnectedComponents(G)
return size(cutList, 1) == 0
end
function getAdjacentList(G)
g = Array{Array{Int, 1}, 1}(undef, G.n)
foreach(i -> g[i] = [], 1 : G.n)
for (ID, u, v, w) in G.E
push!(g[u], v)
push!(g[v], u)
end
return g
end
function SubGraph(G, Selected, EC)
n = 0
label = Dict{Int32, Int32}()
nodeList = Array{Int32, 1}()
for i = 1 : G.n
if Selected[i]
n += 1
push!(nodeList, i)
label[i] = n
end
end
m = 0
edges = Array{Tuple{Int32, Int32, Int32, Float64}, 1}()
for (ID, u, v, w) in G.E
if haskey(label, u) && haskey(label, v)
m += 1
push!(edges, (m, label[u], label[v], EC[ID]))
end
end
V = zeros(Int, n)
foreach(i -> V[i] = G.V[nodeList[i]], 1 : n)
return Graph(n, m, V, edges)
end
|
function Sockets.connect(fun::Function, args...)
client = connect(args...)
res = fun(client)
close(client)
res
end
@enum Magic::Int NEW_WORKER NEW_TASK RESULT ALIVE FINISHED
struct Tasker{XT,YT,Sampler<:AbstractSampler{XT,YT},
Server,ActiveTasks,
LifeSigns,AliveThreshold,Mutex}
sampler::Sampler
server::Server
active_tasks::ActiveTasks
life_signs::LifeSigns
alive_threshold::AliveThreshold
mutex::Mutex
end
Tasker(sampler::AbstractSampler, server, alive_threshold::Number) =
Tasker(sampler, server, Int[],
Vector{typeof(now())}(), alive_threshold,
Threads.SpinLock())
function Base.show(io::IO, t::Tasker)
s = t.sampler
n = length(s)
write(io, "$(n) ($(count(s.done)) done) samples Tasker listening on ")
show(io, t.server)
end
function Base.show(io::IO, ::MIME"text/plain", t::Tasker)
show(io, t)
println(io)
tn = now()
pretty_table(io,
hcat(eachindex(t.active_tasks), t.active_tasks,
tn .- t.life_signs),
header=["Worker id", "Current task", "Alive"],
hlines=[1], vlines=[])
println(io)
end
function serve_tasks!(tasker::Tasker{XT,YT};
plot_fun::Union{Function,Nothing}=nothing) where {XT,YT}
server = tasker.server
s = tasker.sampler
load_samples!(s)
pf = () -> begin
if !isnothing(plot_fun)
sel = done(s)
plot_fun(s.x[sel], s.y[sel])
end
end
pf()
# At the moment, we run the task server synchronously, i.e. we do
# not allow any workers in the same Julia process.
while !isdone(s) || any(!iszero, tasker.active_tasks)
sock = accept(server)
magic = read(sock, Magic)
tasks_left = !isdone(s)
@info "Got connected" sock magic tasks_left islocked(tasker.mutex)
if magic == NEW_WORKER
if tasks_left
lock(tasker.mutex) do
push!(tasker.active_tasks, 0)
push!(tasker.life_signs, now())
end
worker_id = length(tasker.active_tasks)
@info "Assigning new worker id #$(worker_id)"
write(sock, NEW_WORKER, worker_id)
else
write(sock, FINISHED)
end
elseif magic == NEW_TASK
worker_id = read(sock, Int)
if tasks_left
lock(tasker.mutex) do
nd = filter(∉(tasker.active_tasks), not_done(s))
if isempty(nd)
@warn "Could not find next sample, weird"
tasker.active_tasks[worker_id] = 0
write(sock, FINISHED)
else
i = first(nd)
tasker.active_tasks[worker_id] = i
tasker.life_signs[worker_id] = now()
x = get_sample!(s, i)
write(sock, NEW_TASK, i, x)
@info "Worker #$(worker_id) asks for work, gets it" i x
end
end
else
tasker.active_tasks[worker_id] = 0
write(sock, FINISHED)
@info "Worker #$(worker_id) asks for work, none left"
end
elseif magic == RESULT
worker_id = read(sock, Int)
x = read(sock, XT)
y = read(sock, YT)
lock(tasker.mutex) do
i = tasker.active_tasks[worker_id]
@info "Worker #$(worker_id) tells us the following result" i x y
s[i] = (x,y)
tasker.life_signs[worker_id] = now()
save_samples!(s)
end
pf()
elseif magic == ALIVE
worker_id = read(sock, Int)
@info "Worker #$(worker_id) is still alive, nice"
lock(tasker.mutex) do
tasker.life_signs[worker_id] = now()
end
end
horizontal_line(color=:red)
display(tasker)
horizontal_line()
horizontal_line(color=:yellow)
end
close(server)
end
function task_farm(fun::Function, sampler::AbstractSampler{XT,YT};
host=localhost, port=2000,
alive_sleep=60, alive_threshold=3alive_sleep,
kwargs...) where {XT,YT}
server = try
if host == localhost || hostname() == host
listen(host == localhost ? localhost : IPv4(0), port)
else
nothing
end
catch IOError
nothing
end
if !isnothing(server)
@info "We are the server, yay!"
tasker = Tasker(sampler, server, alive_threshold)
serve_tasks!(tasker; kwargs...)
else
@info "We are a measly worker"
worker_id = connect(host, port) do client
write(client, NEW_WORKER)
response = read(client, Magic)
if response == NEW_WORKER
read(client, Int)
elseif response == FINISHED
@info "There's not even anything to do"
end
end
if !isnothing(worker_id)
@info "We are measly worker #$(worker_id)"
@sync begin
# @async while isopen(client)
# lock(mutex) do
# write(client, ALIVE, worker_id)
# end
# sleep(alive_sleep)
# end
while true
horizontal_line(color=:green)
ix = connect(host, port) do client
write(client, NEW_TASK, worker_id)
response = read(client, Magic)
@info "Requested work" response
if response == NEW_TASK
read(client, Int), read(client, XT)
elseif response == FINISHED
@info "We must go home"
end
end
isnothing(ix) && break
i,x = ix
@info "We are asked to work" i x
y = fun(i, x)
connect(host, port) do client
write(client, RESULT, worker_id, x, y)
end
end
end
end
end
horizontal_line(color=:blue)
@info "We are done"
end
export task_farm
|
# High-level tests
makearray(D, val) = fill(val, ntuple(d -> 1, D))
if comm_rank == 0
const dirname2 = Filesystem.mktempdir(; cleanup=true)
const filename2 = "$dirname2/test.bp"
@testset "High-level write tests " begin
file = adios_open_serial(filename2, mode_write)
adios_define_attribute(file, "a1", float(π))
adios_define_attribute(file, "a2", [float(π)])
adios_define_attribute(file, "a3", [float(π), 0])
adios_put!(file, "v1", float(ℯ))
adios_put!(file, "v3", makearray(1, float(ℯ)))
adios_put!(file, "v4", makearray(2, float(ℯ)))
adios_put!(file, "v5", makearray(3, float(ℯ)))
adios_put!(file, "g1/v6", makearray(4, float(ℯ)))
adios_put!(file, "g1/g2/v7", makearray(5, float(ℯ)))
@test shapeid(inquire_variable(file.io, "v1")) == shapeid_local_value
@test shapeid(inquire_variable(file.io, "v3")) == shapeid_local_array
@test shapeid(inquire_variable(file.io, "v4")) == shapeid_local_array
@test shapeid(inquire_variable(file.io, "v5")) == shapeid_local_array
@test shapeid(inquire_variable(file.io, "g1/v6")) == shapeid_local_array
@test shapeid(inquire_variable(file.io, "g1/g2/v7")) ==
shapeid_local_array
adios_define_attribute(file, "v4/a4", float(π))
adios_define_attribute(file, "v5", "a5", [float(π)])
adios_define_attribute(file, "g1/v6", "a6", [float(π), 0])
adios_perform_puts!(file)
close(file)
end
# run(`/Users/eschnett/src/CarpetX/Cactus/view/bin/bpls -aD $filename2`)
@testset "High-level read tests " begin
file = adios_open_serial(filename2, mode_read)
@test Set(adios_subgroup_names(file, "")) == Set(["g1"])
@test_broken Set(adios_subgroup_names(file, "g1")) == Set(["g2"])
@test Set(adios_subgroup_names(file, "g1")) == Set(["/g2"]) # don't want this
@test Set(adios_all_attribute_names(file)) ==
Set(["a1", "a2", "a3", "v4/a4", "v5/a5", "g1/v6/a6"])
@test Set(adios_group_attribute_names(file, "g1")) == Set()
@test Set(adios_group_attribute_names(file, "g1/v6")) ==
Set(["g1/v6/a6"])
@test adios_attribute_data(file, "a1") == float(π)
@test adios_attribute_data(file, "a2") == float(π)
@test adios_attribute_data(file, "a3") == [float(π), 0]
@test adios_attribute_data(file, "v4", "a4") == float(π)
@test adios_attribute_data(file, "v5/a5") == float(π)
@test adios_attribute_data(file, "g1/v6", "a6") == [float(π), 0]
@test Set(adios_all_variable_names(file)) ==
Set(["v1", "v3", "v4", "v5", "g1/v6", "g1/g2/v7"])
@test Set(adios_group_variable_names(file, "g1")) == Set(["g1/v6"])
@test Set(adios_group_variable_names(file, "g1/g2")) ==
Set(["g1/g2/v7"])
# Local values are converted to global arrays
@test shapeid(inquire_variable(file.io, "v1")) == shapeid_global_array
@test shapeid(inquire_variable(file.io, "v3")) == shapeid_local_array
@test shapeid(inquire_variable(file.io, "v4")) == shapeid_local_array
@test shapeid(inquire_variable(file.io, "v5")) == shapeid_local_array
@test shapeid(inquire_variable(file.io, "g1/v6")) == shapeid_local_array
@test shapeid(inquire_variable(file.io, "g1/g2/v7")) ==
shapeid_local_array
@test ndims(inquire_variable(file.io, "v1")) == 1
@test ndims(inquire_variable(file.io, "v3")) == 1
@test ndims(inquire_variable(file.io, "v4")) == 2
@test ndims(inquire_variable(file.io, "v5")) == 3
@test ndims(inquire_variable(file.io, "g1/v6")) == 4
@test ndims(inquire_variable(file.io, "g1/g2/v7")) == 5
@test shape(inquire_variable(file.io, "v1")) == (1,)
@test shape(inquire_variable(file.io, "v3")) ≡ nothing
@test shape(inquire_variable(file.io, "v4")) ≡ nothing
@test shape(inquire_variable(file.io, "v5")) ≡ nothing
@test shape(inquire_variable(file.io, "g1/v6")) ≡ nothing
@test shape(inquire_variable(file.io, "g1/g2/v7")) ≡ nothing
@test start(inquire_variable(file.io, "v1")) == (0,)
@test start(inquire_variable(file.io, "v3")) ≡ nothing
@test start(inquire_variable(file.io, "v4")) ≡ nothing
@test start(inquire_variable(file.io, "v5")) ≡ nothing
@test start(inquire_variable(file.io, "g1/v6")) ≡ nothing
@test start(inquire_variable(file.io, "g1/g2/v7")) ≡ nothing
@test count(inquire_variable(file.io, "v1")) == (1,)
@test count(inquire_variable(file.io, "v3")) == (1,)
@test count(inquire_variable(file.io, "v4")) == (1, 1)
@test count(inquire_variable(file.io, "v5")) == (1, 1, 1)
@test count(inquire_variable(file.io, "g1/v6")) == (1, 1, 1, 1)
@test count(inquire_variable(file.io, "g1/g2/v7")) == (1, 1, 1, 1, 1)
v1 = adios_get(file, "v1")
@test !isready(v1)
@test fetch(v1) == fill(float(ℯ), 1)
@test isready(v1)
v3 = adios_get(file, "v3")
v4 = adios_get(file, "v4")
@test !isready(v3)
@test fetch(v3) == makearray(1, float(ℯ))
@test fetch(v4) == makearray(2, float(ℯ))
@test isready(v3)
v5 = adios_get(file, "v5")
v6 = adios_get(file, "g1/v6")
v7 = adios_get(file, "g1/g2/v7")
@test !isready(v5)
adios_perform_gets(file)
@test isready(v5)
@test fetch(v5) == makearray(3, float(ℯ))
@test fetch(v6) == makearray(4, float(ℯ))
@test fetch(v7) == makearray(5, float(ℯ))
close(file)
end
end
|
module DecimalNumbers
export Decimal
importall Base.Operators
# https://books.google.com/books?id=pNdiJMvPoZMC&pg=PA11&lpg=PA11&dq=IEEE+BID+format&source=bl&ots=-GbBYEh6Sa&sig=7_LN575lYEa8443zTGtFEOuLv1o&hl=en&sa=X&ved=0ahUKEwiqudHy0fLSAhUP62MKHbigDkwQ6AEIPjAI#v=onepage&q=IEEE%20BID%20format&f=false
immutable Decimal{T <: Integer}
value::T
exp::T
end
Decimal{T, T2}(value::T, exp::T2) = Decimal(promote(value, exp)...)
# normalize
function normalize{T <: Integer}(x::T)
value = x
exp = Z = zero(T)
for d in digits(x)
if d == Z
value = div(value, T(10))
exp += T(1)
else
break
end
end
return value, exp
end
function Decimal{T}(d::Decimal{T})
v, e = normalize(d.value)
return Decimal(v, e + d.exp)
end
Base.convert{T, T2}(::Type{Decimal{T}}, d::Decimal{T2}) = Decimal(T(d.value), T(d.exp))
# from int
Base.convert{T}(::Type{Decimal{T}}, x) = convert(Decimal, x)
function Base.convert{T <: Integer}(::Type{Decimal}, x::T)
x == T(0) && return Decimal(T(0), T(0))
return Decimal(normalize(x)...)
end
# to int
function Base.convert{T <: Integer}(::Type{T}, d::Decimal)
d.exp < 0 && throw(InexactError())
return T(d.value * T(10)^d.exp)
end
Base.zero{T}(::Union{Decimal{T}, Type{Decimal{T}}}) = Decimal(zero(T))
Base.one{T}(::Union{Decimal{T}, Type{Decimal{T}}}) = Decimal(one(T))
float2int(::Type{BigFloat}) = BigInt
float2int(::Type{Float64}) = Int64
float2int(::Type{Float32}) = Int32
float2int(::Type{Float16}) = Int16
# from float
function Base.convert{T <: AbstractFloat}(::Type{Decimal}, x::T)
# easy if float is int
trunc(x) == x && return Decimal(float2int(T)(x))
# otherwise, go string route for now
return parse(Decimal{float2int(T)}, string(x))
end
# to float
Base.convert{T <: AbstractFloat}(::Type{T}, d::Decimal) = T(d.value * exp10(d.exp))
function ==(a::Decimal, b::Decimal)
aa, bb = _scale(a, b)
return aa.value == bb.value && aa.exp == bb.exp
end
=={T}(a::Decimal, b::T) = ==(promote(a, b)...)
=={T}(a::T, b::Decimal) = ==(promote(a, b)...)
function <(a::Decimal, b::Decimal)
aa, bb = _scale(a, b)
return aa.value < bb.value
end
<{T}(a::Decimal, b::T) = <(promote(a, b)...)
<{T}(a::T, b::Decimal) = <(promote(a, b)...)
const ZERO = UInt8('0')
const DOT = UInt8('.')
const MINUS = UInt8('-')
const PLUS = UInt8('+')
"""
Parse a Decimal from a string. Supports decimals of the following form:
* "101"
* "101."
* "101.0"
* "1.01"
* ".101"
* "0.101"
* "0.0101"
"""
function Base.parse{T}(::Type{Decimal{T}}, str::String)
str = strip(str)
bytes = Vector{UInt8}(str)
value = exp = zero(T)
frac = neg = false
for i = 1:length(bytes)
b = bytes[i]
if b == MINUS
neg = true
elseif b == PLUS
continue
elseif b == DOT
frac = true
continue
else
value *= T(10)
value += T(b - ZERO)
frac && (exp -= T(1))
end
end
for i = length(bytes):-1:1
b = bytes[i]
if b == ZERO
if exp < 0
value = div(value, T(10))
end
exp += 1
else
break
end
end
return Decimal(ifelse(neg, T(-1), T(1)) * value, exp)
end
function Base.show(io::IO, d::Decimal)
print(io, "dec\"")
if d.value == 0
print(io, "0.0")
else
sn = sign(d.value) < 0 ? "-" : ""
str = string(abs(d.value))
if d.exp == 0
print(io, sn, str, ".0")
else
if d.exp > 0
print(io, sn, rpad(str, length(str) + d.exp, '0'), ".0")
else
d = length(str) + d.exp
if d == 0
print(io, sn, "0.", str)
elseif d > 0
print(io, sn, str[1:d], ".", str[d+1:end])
else
print(io, sn, "0.", "0"^abs(d), str)
end
end
end
end
print(io, '"')
return
end
# math
-(d::Decimal) = Decimal(-d.value, d.exp)
Base.abs(d::Decimal) = Decimal(abs(d.value), d.exp)
# 10, 100
# (1, 1), (1, 2)
# (1, 1), (10, 1)
# 1.1, 0.001
# (11, -1), (1, -3)
# (1100, -3), (1, -3)
# 10, 0.1
# (1, 1), (1, -1)
# (100, -1), (1, -1)
# scales two decimals to the same exp
_scale{T, T2}(a::Decimal{T}, b::Decimal{T2}) = _scale(promote(a, b)...)
function _scale{T}(a::Decimal{T}, b::Decimal{T})
a.exp == b.exp && return a, b
if a.exp < b.exp
return a, Decimal(b.value * T(10)^(abs(b.exp - a.exp)), a.exp)
else
return Decimal(a.value * T(10)^(abs(a.exp - b.exp)), b.exp), b
end
end
function +(a::Decimal, b::Decimal)
a2, b2 = _scale(a, b)
return Decimal(Decimal(a2.value + b2.value, a2.exp))
end
function -(a::Decimal, b::Decimal)
a2, b2 = _scale(a, b)
return Decimal(Decimal(a2.value - b2.value, a2.exp))
end
function *(a::Decimal, b::Decimal)
exp = a.exp + b.exp
val = a.value * b.value
return Decimal(Decimal(val, exp))
end
maxprec{T <: Integer}(::Type{T}) = T(length(string(typemax(T))))
function /{T}(a::Decimal{T}, b::Decimal{T})
b.value == 0 && throw(DivideError())
# scale num up to max precision
scale = maxprec(T) - T(length(string(a.value)))
aa = a.value * (widen(T)(10) ^ scale)
# simulate division
q, r = divrem(aa, b.value)
# return scaled results
return Decimal(Decimal(T(q + ifelse(div(r * 10, b.value) > 5, 1, 0)), a.exp - b.exp - scale))
end
Base.promote_rule{T, T2}(::Type{Decimal{T}}, ::Type{Decimal{T2}}) = Decimal{promote_type(T, T2)}
Base.promote_rule{T, TI <: Integer}(::Type{Decimal{T}}, ::Type{TI}) = Decimal{promote_type(T, TI)}
Base.promote_rule{T, TF <: AbstractFloat}(::Type{Decimal{T}}, ::Type{TF}) = Decimal{float2int(promote_type(T, TF))}
# TODO:
# rounding, trunc, floor, ceil
# maybe:
# equality: isapprox?
# ranges
# fld, mod, rem, divrem, divmod, mod1,
# fma, muladd
# shifts?
# trig functions
# log, log2, log10
# exp, ldexp, modf
# sqrt
# special functions
end # module
|
using HDF5,JLD,KUparser,Base.Test
@date d = load("conll07.tst.jld4")
@show ndeps = length(d["deprel"])
@date corpus = d["corpus"]
@date feats = Flist.acl11eager
# We try each arctype with rparse and oparse
# They will complain if movecosts or nmoves is buggy
for pt in (ArcEager13, ArcEagerR1, ArcHybrid13, ArcHybridR1)
@show pt
@date r = rparse(pt, corpus, ndeps)
@show evalparse(r, corpus)
@date (p,x,y) = oparse(pt, corpus, ndeps, feats)
@show evalparse(p, corpus)
p1 = pt(1, ndeps)
@test @show size(x) == KUparser.xsize(p1, corpus, feats)
@test @show size(y) == KUparser.ysize(p1, corpus)
end
|
@testset "reified fixed to 1 or constraint violated or solved?" begin
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, x in CS.AllDifferent() || sum(x) > 2 || x[1] > 1)
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
@test CS.fix!(com, variables[constraint.indices[1]], 1; check_feasibility = false)
@test CS.fix!(com, variables[constraint.indices[2]], 1; check_feasibility = false)
@test CS.is_constraint_violated(com, constraint, constraint.fct, constraint.set)
#################
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, b := {x in CS.AllDifferent() || sum(x) <= 2 || 2x[1]+2x[2] > 8})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
@test CS.fix!(com, variables[constraint.indices[2]], 2; check_feasibility = false)
@test CS.fix!(com, variables[constraint.indices[3]], 2; check_feasibility = false)
@test CS.is_constraint_violated(com, constraint, constraint.fct, constraint.set)
#################
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, b := {x in CS.AllDifferent() || sum(x) > 2})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
or_constraint = com.constraints[1].inner_constraint
@test CS.fix!(com, variables[or_constraint.indices[1]], 1; check_feasibility = false)
@test CS.fix!(com, variables[or_constraint.indices[2]], 1; check_feasibility = false)
@test CS.is_constraint_violated(com, or_constraint, or_constraint.fct, or_constraint.set)
###############################
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, b := {sum(x) > 2 || x in CS.AllDifferent()})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
or_constraint = com.constraints[1].inner_constraint
@test CS.fix!(com, variables[or_constraint.indices[1]], 1; check_feasibility = false)
@test CS.fix!(com, variables[or_constraint.indices[2]], 1; check_feasibility = false)
@test CS.is_constraint_violated(com, or_constraint, or_constraint.fct, or_constraint.set)
##################
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, b := {x in CS.AllDifferent() || sum(x) <= 2})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
@test CS.fix!(com, variables[constraint.indices[2]], 1; check_feasibility = false)
@test CS.fix!(com, variables[constraint.indices[3]], 1; check_feasibility = false)
@test CS.is_constraint_solved(com, constraint, constraint.fct, constraint.set)
end
@testset "Indicator fixed to 1 or constraint violated or solved?" begin
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, b => {x in CS.AllDifferent() || sum(x) > 2 || x[1] > 1 })
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
@test CS.fix!(com, variables[constraint.indices[2]], 1; check_feasibility = false)
@test CS.fix!(com, variables[constraint.indices[3]], 1; check_feasibility = false)
@test CS.is_constraint_violated(com, constraint, constraint.fct, constraint.set)
#################
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, b => {x in CS.AllDifferent() || sum(x) <= 2 || 2x[1]+2x[2] > 8})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
@test CS.fix!(com, variables[constraint.indices[2]], 2; check_feasibility = false)
@test CS.fix!(com, variables[constraint.indices[3]], 2; check_feasibility = false)
@test CS.is_constraint_violated(com, constraint, constraint.fct, constraint.set)
#################
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, b => {x in CS.AllDifferent() || sum(x) > 2})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
or_constraint = com.constraints[1].inner_constraint
@test CS.fix!(com, variables[or_constraint.indices[1]], 1; check_feasibility = false)
@test CS.fix!(com, variables[or_constraint.indices[2]], 1; check_feasibility = false)
@test CS.is_constraint_violated(com, or_constraint, or_constraint.fct, or_constraint.set)
###############################
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, b => {sum(x) > 2 || x in CS.AllDifferent()})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
or_constraint = com.constraints[1].inner_constraint
@test CS.fix!(com, variables[or_constraint.indices[1]], 1; check_feasibility = false)
@test CS.fix!(com, variables[or_constraint.indices[2]], 1; check_feasibility = false)
@test CS.is_constraint_violated(com, or_constraint, or_constraint.fct, or_constraint.set)
##################
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, b => {x in CS.AllDifferent() || sum(x) <= 2})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
@test CS.fix!(com, variables[constraint.indices[2]], 1; check_feasibility = false)
@test CS.fix!(com, variables[constraint.indices[3]], 1; check_feasibility = false)
@test CS.is_constraint_solved(com, constraint, constraint.fct, constraint.set)
end
@testset "reified or constraint prune_constraint!" begin
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, b := {2x[1]+x[2] >= 3 || x[1] > 1})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
constr_indices = constraint.indices
@test CS.fix!(com, variables[constraint.indices[2]], 0; check_feasibility = false)
CS.changed!(com, constraint, constraint.fct, constraint.set)
@test CS.prune_constraint!(com, constraint, constraint.fct, constraint.set)
for v in 0:2
@test !CS.has(variables[constraint.indices[3]], v)
end
# prune rhs
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@constraint(m, b := {x[1] > 1 || 2x[1]+x[2] >= 3})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
constr_indices = constraint.indices
@test CS.fix!(com, variables[constraint.indices[2]], 0; check_feasibility = false)
CS.changed!(com, constraint, constraint.fct, constraint.set)
@test CS.prune_constraint!(com, constraint, constraint.fct, constraint.set)
for v in 0:2
@test !CS.has(variables[constraint.indices[4]], v)
end
end
@testset "reified or constraint still_feasible" begin
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@variable(m, 0 <= y <= 5, Int)
@constraint(m, b := { x in CS.AllDifferent() || y < 1})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
or_constraint =constraint.inner_constraint
constr_indices = or_constraint.indices
@test CS.fix!(com, variables[constraint.indices[2]], 0; check_feasibility = false)
@test CS.fix!(com, variables[constraint.indices[3]], 0; check_feasibility = false)
@test !CS.still_feasible(com, or_constraint, or_constraint.fct, or_constraint.set, constr_indices[3], 1)
# swap lhs and rhs
m = Model(optimizer_with_attributes(CS.Optimizer, "no_prune" => true, "logging" => []))
@variable(m, b >= 1, Bin)
@variable(m, 0 <= x[1:2] <= 5, Int)
@variable(m, 0 <= y <= 5, Int)
@constraint(m, b := { y < 1 || x in CS.AllDifferent()})
optimize!(m)
com = CS.get_inner_model(m)
variables = com.search_space
constraint = com.constraints[1]
or_constraint =constraint.inner_constraint
constr_indices = or_constraint.indices
@test CS.fix!(com, variables[constr_indices[2]], 0; check_feasibility = false)
@test CS.fix!(com, variables[constr_indices[3]], 0; check_feasibility = false)
@test !CS.still_feasible(com, or_constraint, or_constraint.fct, or_constraint.set, constr_indices[1], 1)
end |
using Test, DataFrames, CSV, BDisposal
println("Testing BDisposal...")
println("Testing BDisposal on js-data...")
# Byung M. Jeon, Robin C. Sickles, "The Role of Environmental Factors in
# Growth Accounting: a Nonparametric Analysis", Journal of Applied
# Econometrics, Vol. 19, No. 5, 2004, pp. 567-591.
data = CSV.read(joinpath(dirname(pathof(BDisposal)),"..","test","data","js-data","oecd.txt"),DataFrame; delim=' ',ignorerepeated=true,copycols=true,header=false)
rename!(data,[:ccid,:year,:gdp,:co2,:capital,:labour,:energy])
goodInputsLabels = ["capital","labour"]
badInputsLabels = ["energy"]
goodOutputsLabels = ["gdp"]
badOutputsLabels = ["co2"]
sort!(data, [:year, :ccid]) # sort data by period and dmu
periods = unique(data.year)
dmus = unique(data.ccid)
nGI, nBI, nGO, nBO, nPer, nDMUs, = length(goodInputsLabels), length(badInputsLabels), length(goodOutputsLabels), length(badOutputsLabels), length(periods),length(dmus)
gI = Array{Float64}(undef, (nDMUs,nGI,nPer))
bI = Array{Float64}(undef, (nDMUs,nBI,nPer))
gO = Array{Float64}(undef, (nDMUs,nGO,nPer))
bO = Array{Float64}(undef, (nDMUs,nBO,nPer))
for (p,period) in enumerate(periods)
periodData = data[data.year .== period,:]
gI[:,:,p] = Matrix{Float64}(periodData[:,goodInputsLabels])
if nBI > 0
bI[:,:,p] =
Matrix{Float64}(periodData[:,badInputsLabels])
end
gO[:,:,p] = Matrix{Float64}(periodData[:,goodOutputsLabels])
bO[:,:,p] = Matrix{Float64}(periodData[:,badOutputsLabels])
end
################################################################################
# Testing prodIndex
oecdAnalysis = prodIndex(gI,gO,bO,bI;
retToScale="variable",prodStructure="multiplicative",convexAssumption=true)
@test oecdAnalysis.prodIndexes[1,10] == 1.02891196267105
@test isapprox(oecdAnalysis.prodIndexes_G .* oecdAnalysis.prodIndexes_B, oecdAnalysis.prodIndexes, atol=0.000001)
decomp = isapprox.(oecdAnalysis.prodIndexes_T .* oecdAnalysis.prodIndexes_E .* oecdAnalysis.prodIndexes_S, oecdAnalysis.prodIndexes, atol=0.000001)
@test all(skipmissing(decomp)) == true
oecdAnalysisA = prodIndex(gI,gO,bO,bI;
retToScale="variable",prodStructure="addittive",convexAssumption=true)
@test oecdAnalysisA.prodIndexes[1,10] == 0.02111291275337509
@test isapprox(oecdAnalysisA.prodIndexes_G .+ oecdAnalysisA.prodIndexes_B, oecdAnalysisA.prodIndexes, atol=0.000001)
decomp = isapprox.(oecdAnalysisA.prodIndexes_T .+ oecdAnalysisA.prodIndexes_E .+ oecdAnalysisA.prodIndexes_S, oecdAnalysisA.prodIndexes, atol=0.000001)
@test all(skipmissing(decomp)) == true
oecdAnalysis_nc = prodIndex(gI,gO,bO,bI;
retToScale="variable",prodStructure="multiplicative",convexAssumption=false)
@test isapprox(oecdAnalysis_nc.prodIndexes_G .* oecdAnalysis_nc.prodIndexes_B, oecdAnalysis_nc.prodIndexes, atol=0.000001)
oecdAnalysis_ncA = prodIndex(gI,gO,bO,bI;
retToScale="variable",prodStructure="additive",convexAssumption=false)
@test isapprox(oecdAnalysis_ncA.prodIndexes_G .+ oecdAnalysis_ncA.prodIndexes_B, oecdAnalysis_ncA.prodIndexes, atol=0.000001)
@test isapprox(log.(oecdAnalysis_nc.prodIndexes), oecdAnalysis_ncA.prodIndexes, atol=0.05)
################################################################################
# Testing efficiencyScore using the Airports dataset..
println("Testing BDisposal on airport data...")
airportData = CSV.read(joinpath(dirname(pathof(BDisposal)),"..","test","data","airports.csv"),DataFrame; delim=';',copycols=true)
airportGoodInputs = ["employees","totalCosts"]
airportBadInputs = []
airportGoodOutputs = ["passengers"]
airportBadOutputs = ["co2emissions"]
sort!(airportData, [:period, :dmu]) # sort data by period and dmu
periods = unique(airportData.period)
dmus = unique(airportData.dmu)
nGI, nBI, nGO, nBO, nPer, nDMUs, = length(airportGoodInputs), length(airportBadInputs), length(airportGoodOutputs), length(airportBadOutputs), length(periods),length(dmus)
# Setting empty containers for our data
# Each of them is a 3D matrix where the first dimension is the decision units, the second one is the individual input or output item and the third dimension is the period to which the data refer
gI = Array{Float64}(undef, (nDMUs,nGI,nPer)) # Good inputs
bI = Array{Float64}(undef, (nDMUs,nBI,nPer)) # Bad inputs (optional)
gO = Array{Float64}(undef, (nDMUs,nGO,nPer)) # Good outputs, aka "desiderable" outputs
bO = Array{Float64}(undef, (nDMUs,nBO,nPer)) # Bad outputs, aka "undesiderable" outputs
for (p,period) in enumerate(periods)
periodData = airportData[airportData.period .== period,:]
gI[:,:,p] = Matrix{Float64}(periodData[:,airportGoodInputs])
if nBI > 0
bI[:,:,p] = Matrix{Float64}(periodData[:,airportBadInputs])
end
gO[:,:,p] = Matrix{Float64}(periodData[:,airportGoodOutputs])
bO[:,:,p] = Matrix{Float64}(periodData[:,airportBadOutputs])
end
(λ_crs, λ_convex_crs, λ_nonconvex_crs, nonConvTest_crs, nonConvTest_value_crs) = efficiencyScores(
gI,gO,bO,bI,retToScale="variable", dirGI=0,dirBI=0,dirGO=1,dirBO=0, prodStructure="multiplicative")
@test nonConvTest_value_crs[3,2] ≈ 0.8842007631310966
################################################################################
# Basic testing of dmuEfficiency
println("Testing of the basic dmuEfficiency function..")
I = [10 2; 8 4; 12 1.5; 24 3]
O = [100;80;120;120]
I₀ = [24 3]
O₀ = [120]
results = dmuEfficiency(I₀,O₀,I,O)
I = [
3 5
2.5 4.5
4 6
6 7
2.3 3.5
4 6.5
7 10
4.4 6.4
3 5
5 7
5 7
2 4
5 7
4 4
2 3
3 6
7 11
4 6
3 4
5 6 ]
O = [
40 55 30
45 50 40
55 45 30
48 20 60
28 50 25
48 20 65
80 65 57
25 48 30
45 64 42
70 65 48
45 65 40
45 40 44
65 25 35
38 18 64
20 50 15
38 20 60
68 64 54
25 38 20
45 67 32
57 60 40]
nDMU = size(I,1)
efficiencies = [dmuEfficiency(I[d,:],O[d,:],I,O)[:obj] for d in 1:nDMU]
efficiencies = hcat(1:nDMU,efficiencies)
efficiencies = efficiencies[sortperm(efficiencies[:, 2],rev=true), :]
# Test treating last output as bad
O2 = convert(Array{Float64,2},copy(O))
O2[:,3] = 1 ./ O2[:,3] # third is a bad output
efficiencies = [dmuEfficiency(I[d,:],O2[d,:],I,O2)[:obj] for d in 1:nDMU]
efficiencies = hcat(1:nDMU,efficiencies)
efficiencies = efficiencies[sortperm(efficiencies[:, 2],rev=true), :]
#Table 13.1 Cooper 2006
I = ones(Float64,9)
O = [
1 1
2 1
6 2
8 4
9 7
5 2
4 3
6 4
4 6
]
nDMU = size(I,1)
O2 = convert(Array{Float64,2},copy(O))
O2[:,2] = 1 ./ O2[:,2] # third is a bad output
efficiencies = [dmuEfficiency(I[d,:],O2[d,:],I,O2)[:obj] for d in 1:nDMU]
efficiencies = hcat(1:nDMU,efficiencies)
efficiencies = efficiencies[sortperm(efficiencies[:, 2],rev=true), :]
I = [
4 140
5 90
6 36
10 300
11 66
8 36
9 12
5 210
5.5 33
8 288
10 80
8 8
]
O =[
2 28
1 22.5
6 12
8 60
7 16.5
6 12
7 6
3 30
4.4 5.5
4 72
2 20
1 4
]
nDMU = size(I,1)
efficiencies = [dmuEfficiency(I[d,:],O[d,:],I,O)[:obj] for d in 1:nDMU]
efficiencies = hcat(1:nDMU,efficiencies)
efficiencies = efficiencies[sortperm(efficiencies[:, 2],rev=true), :]
I = [
1
1
1
1
1
1
1
1]
O = [
1 7
2 7
4 6
6 4
7 2
7 1
2 2
5.3 5.3
]
nDMU = size(I,1)
efficiencies = [dmuEfficiency(I[d,:],O[d,:],I,O)[:obj] for d in 1:nDMU]
#efficiencies = hcat(1:nDMU,efficiencies)
#scatter(O[:,1],O[:,2])
@test efficiencies == [1.0,1.0,1.0,1.0,1.0,1.0,0.37735849056603776,1.0]
# From Example 2.2 of Cooper et oth. 2006 "Data envelopment Analysis. A Comprehensive Text with...."
X = [4 7 8 4 2 10; 3 3 1 2 4 1]
Y = [1 1 1 1 1 1]
nDMU = size(X,2)
out = [dmuEfficiency(X[:,d],Y[:,d],X',Y') for d in 1:nDMU]
@test out[1].obj ≈ 0.8571428571428571
@test out[1].wI ≈ [0.14285714285714285, 0.14285714285714285]
@test out[1].wO ≈ [0.8571428571428571]
@test collect(keys(out[1].refSet)) ≈ [5,4] || collect(keys(out[1].refSet)) ≈ [4,5]
@test collect(values(out[1].refSet)) ≈ [0.2857142857142857,0.7142857142857143] || collect(values(out[1].refSet)) ≈ [0.7142857142857143,0.2857142857142857]
@test [i[:eff] for i in out] == [false,false,true,true,true,false]
outDual = [dmuEfficiencyDual(X[:,d],Y[:,d],X',Y') for d in 1:nDMU]
@test [i[:eff] for i in outDual] == [false,false,true,true,true,false]
# From Example 2.2 of Cooper et oth. 2006 "Data envelopment Analysis. A Comprehensive Text with...."
X = [4 7 8 4 2 10; 3 3 1 2 4 1]
Y = [1 1 1 1 1 1]
nDMU = size(X,2)
out = [dmuEfficiency(X[:,d],Y[:,d],X',Y') for d in 1:nDMU]
@test out[1].obj ≈ 0.8571428571428571
@test out[1].wI ≈ [0.14285714285714285, 0.14285714285714285]
@test out[1].wO ≈ [0.8571428571428571]
@test collect(keys(out[1].refSet)) ≈ [5,4] || collect(keys(out[1].refSet)) ≈ [4,5]
@test collect(values(out[1].refSet)) ≈ [0.2857142857142857,0.7142857142857143] || collect(values(out[1].refSet)) ≈ [0.7142857142857143,0.2857142857142857]
@test [i[:eff] for i in out] == [false,false,true,true,true,false]
outDual = [dmuEfficiencyDual(X[:,d],Y[:,d],X',Y') for d in 1:nDMU]
@test [i[:eff] for i in outDual] == [false,false,true,true,true,false]
|
############################################################################################
# Import External Packages
using Test
using Random: Random, AbstractRNG, seed!
using UnPack: UnPack, @unpack, @pack!
using Distributions
############################################################################################
# Import Baytes Packages
using BaytesCore, ModelWrappers, BaytesMCMC
############################################################################################
# Include Files
include("TestHelper.jl")
############################################################################################
# Run Tests
@testset "All tests" begin
include("test-construction.jl")
#include("test-nuts.jl")
end
|
function spdiags(B,d,m,n)
d = d[:]
p = length(d)
len = zeros(p+1,1)
for k = 1:p
len[k+1] = int(len[k]+length(Base.max(1,1-d[k]): Base.min(m,n-d[k])))
end
a = zeros(int(len[p+1]),3)
for k = 1:p
# Append new d[k]-th diagonal to compact form
i = Base.max(1,1-d[k]):Base.min(m,n-d[k])
a[(int(len[k])+1):int(len[k+1]),:] = [i i+d[k] B[i+(m>=n)*d[k],k]]
end
A = sparse(int(a[:,1]),int(a[:,2]),a[:,3],m,n)
return A
end
y = readcsv("snp_500.txt")
n = length(y)
e = ones(n, 1)
D = spdiags([e -2*e e], 0:2, n-2, n)
lambda = 50
start = time()
D*x
println(time() - start)
x = Variable(n)
p = minimize(lambda*sum(D*x))
println(time() - start)
solve!(p)
p.optval
println(time() - start) |
abstract type AbstractJones{T} <: AbstractMatrix{T} end
struct Gain{S, T<:Number} <: AbstractJones{T}
g1::T
g2::T
end
struct DTerm{S, T<:Number} <: AbstractJones{T}
d1::T
d2::T
end
|
@testset "Heat balance for single line" begin
I_lim = 732.147 # A
V_base = 138.0e3 # V
emm = 0.7 # emissivity, [0.23, 0.91]
T_s = 70.0 # conductor surface temperature, C
T_a = 35.0 # ambient temperature, C
phi = 90.0 # wind/line angle in degrees: wind perpendicular to line.
H_e = 61.0 # height above sea level in m. Avg PJM elevation.
V_w = 0.61 # wind speed in m/s
alpha = 0.9 # solar absorptivity, [0.23, 0.91]
lat = 40.0 # latitude in deg
N = 161 # day of year: June 10
Z_l = 90.0 # line azimuth: West-to-East
hours_from_noon = 0.0 # time: noon
# R and bundle are not necessary here
a = acsr_interpolation(I_lim, V_base)
D, Al_m, St_m, R, bundle, label = a.D, a.Al_m, a.St_m, a.R, a.bundle, a.label
A_prime = D # conductor area, m^2 per linear m
eta_r = eq_eta_r(D, emm)
T_film = eq6_T_film(T_s, T_a)
k_f = eq15a_k_f(T_film)
K_angle = eq4a_K_angle(phi)
p_f = eq14a_p_f(H_e, T_film)
mu_f = eq13a_mu_f(T_film)
N_Re = eq2c_N_Re(D, p_f, V_w, mu_f)
eta_c = eq_eta_c(k_f, K_angle, N_Re)
omega = eq_omega(hours_from_noon)
delta = eq16b_delta(N)
H_c = eq16a_H_c(lat, delta, omega)
chi = eq17b_chi(omega, lat, delta)
C = eqtable2_C(omega, chi)
Z_c = eq17a_Z_c(C, chi)
theta = eq9_theta(H_c, Z_c, Z_l)
Q_s = eq18_Q_s(H_c)
K_solar = eq20_K_solar(H_e)
Q_se = eq19_Q_se(K_solar, Q_s)
eta_s = eq8_q_s(alpha, Q_se, theta, A_prime)
@test D ≈ 0.0232156 atol=atol
@test Al_m ≈ 0.779797 atol=atol
@test St_m ≈ 0.285727 atol=atol
@test R ≈ 6.167979e-5 atol=atol
@test bundle == 1
@test label == "Parakeet"
@test eta_r ≈ 0.289266376 atol=atol
@test T_film == 52.5
@test k_f ≈ 0.02815328 atol=atol
@test K_angle ≈ 1.2311481927818961 atol=atol
@test p_f ≈ 1.0763378424625318 atol=atol
@test mu_f ≈ 1.9642517300084803e-5 atol=atol
@test N_Re ≈ 775.999091387987 atol=atol
@test eta_c ≈ 1.5240287413704434 atol=atol
@test omega == 0.0
@test delta ≈ 23.021449792571953 atol=atol
@test H_c ≈ 73.02144979257197 atol=atol
@test chi == 0.0
@test C == 180.0
@test Z_c == 180.0
@test theta == 90.0
@test Q_s ≈ 1025.3693031729497 atol=atol
@test K_solar ≈ 1.00696157132 atol=atol
@test Q_se ≈ 1032.5074847063267 atol=atol
@test eta_s ≈ 21.57325268575338 atol=atol
end
@testset "ACSR interpolation" begin
acsr = acsr_interpolation(400.0, 138e3)
@test acsr isa ACSRSpecsMetric
@test acsr.label == "Penguin"
@test acsr.R ≈ 1.9520997e-4 atol=atol
acsr = acsr_interpolation(400.0, 138e3; metric=false)
@test acsr isa ACSRSpecsEnglish
@test acsr.label == "Penguin"
@test acsr.R ≈ 0.119 atol=atol
acsr = acsr_interpolation(1200.0, 138e3)
@test acsr.label == "Lark"
@test acsr.bundle == 2
acsr = acsr_interpolation(10.0, 138e3)
@test acsr.label == "Turkey"
acsr = acsr_interpolation(3e3, 338e3)
@test acsr.label == "Chukar"
@test acsr.bundle == 2
acsr = acsr_interpolation(200.0, 20e3)
@test acsr.label == "Sparrow"
@test acsr.bundle == 1
@test_logs (:warn, "No ACSR match for line with I_lim = 6.0e6 A and V_base = 20000.0 kV") acsr_interpolation(6e6, 20e3)
acsr = acsr_interpolation(6e6, 20e3)
@test acsr.label == ""
@test acsr.bundle == 1000
@test isnan(acsr.D)
end
@testset "Line lengths" begin
I_lim = 400.0
V_base = 138e3
acsr = acsr_interpolation(I_lim, V_base)
S_base = 100e6
R_pu = 0.001
l = estimate_length(S_base, V_base, R_pu, acsr.R, acsr.bundle)
l_test = 975.5649076
@test l ≈ l_test atol=atol
l = estimate_length(S_base, V_base, R_pu * 10, acsr.R, acsr.bundle)
@test l ≈ l_test * 10 atol=atol
l = estimate_length(S_base, V_base, R_pu, acsr.R, acsr.bundle * 2)
@test l ≈ l_test * 2 atol=atol
l = estimate_length(S_base, V_base / 10, R_pu, acsr.R, acsr.bundle * 2)
@test l ≈ 19.511298 atol=atol
end
|
# save current configuration to EEPROM.
# power supply will power up in this state.
# EEP
export psp_savepreset
const SAVE_PRESET = [0x45, 0x45, 0x50, 0x0d]
"""
psp_savepreset(io)
Save current configuration to EEPROM.
"""
function psp_savepreset(io_psp::IO)
write(io_psp, SAVE_PRESET)
return nothing
end
|
function metronome(bpm::Real=72, bpb::Int=4)
s = 60.0 / bpm
counter = 0
while true
counter += 1
if counter % bpb != 0
println("tick")
else
println("TICK")
end
sleep(s)
end
end
|
include("bimodal_cauchy_distribution.jl")
ADE_DefaultOptions = merge(DE_DefaultOptions, {
# Distributions we will use to generate new F and CR values.
"fdistr" => bimodal_cauchy(0.65, 0.1, 1.0, 0.1),
"crdistr" => bimodal_cauchy(0.1, 0.1, 0.95, 0.1),
})
# An Adaptive DE typically change parameters of the search dynamically. This is
# typically done in the tell! function when we know if the trial vector
# was better than the target vector.
type AdaptConstantsDiffEvoOpt <: DifferentialEvolutionOpt
name::ASCIIString
# A population is a matrix of floats.
population::Array{Float64, 2}
search_space::SearchSpace
# Options
options
# Set of functions that together define a specific DE strategy.
sample::Function
mutate::Function
crossover::Function
bound::Function
# Specific data and functions for adaptation
fs::Vector{Float64} # One f value per individual in population
crs::Vector{Float64} # One cr value per individual in population
function AdaptConstantsDiffEvoOpt(name, pop, ss, options, sample, mutate, crossover, bound)
popsize = size(pop, 1)
fs = [sample_bimodal_cauchy(options["fdistr"]; truncateBelow0 = false) for i in 1:popsize]
crs = [sample_bimodal_cauchy(options["crdistr"]) for i in 1:popsize]
new(name, pop, ss, merge(DE_DefaultOptions, options),
sample, mutate, crossover, bound, fs, crs)
end
end
# To get the constants for an adaptive DE we access the vectors of constants.
fconst(ade::AdaptConstantsDiffEvoOpt, i) = ade.fs[i]
crconst(ade::AdaptConstantsDiffEvoOpt, i) = ade.crs[i]
# To sample we use the distribution given as options
sample_f(ade::AdaptConstantsDiffEvoOpt) = sample_bimodal_cauchy(ade.options["fdistr"]; truncateBelow0 = false)
sample_cr(ade::AdaptConstantsDiffEvoOpt) = sample_bimodal_cauchy(ade.options["crdistr"]; truncateBelow0 = false)
# Tell the optimizer about the ranking of candidates. Returns the number of
# better candidates that were inserted into the population.
function tell!(de::AdaptConstantsDiffEvoOpt,
# archive::Archive, # Skip for now
rankedCandidates)
num_candidates = length(rankedCandidates)
num_better = 0
for i in 1:div(num_candidates, 2)
candidate, index = rankedCandidates[i]
if candidate != de.population[index, :]
num_better += 1
old = de.population[index,:]
de.population[index,:] = candidate
# Since the trial vector was better we keep the f and cr values for this target.
else
# The trial vector for this target was not better so we change the f and cr constants.
de.fs[index] = sample_f(de)
de.crs[index] = sample_cr(de)
end
end
num_better
end
function adaptive_de_rand_1_bin(parameters = Dict())
params = Parameters(parameters, ADE_DefaultOptions)
ss = get(params, :SearchSpace, BlackBoxOptim.symmetric_search_space(1))
population = get(params, :Population, BlackBoxOptim.rand_individuals_lhs(ss, 50))
AdaptConstantsDiffEvoOpt("AdaptiveDE/rand/1/bin", population, ss, params,
random_sampler,
de_mutation_rand_1,
de_crossover_binomial,
rand_bound_from_target!)
end
function adaptive_de_rand_1_bin_radiuslimited(parameters = Dict())
params = Parameters(parameters, ADE_DefaultOptions)
ss = get(params, :SearchSpace, BlackBoxOptim.symmetric_search_space(1))
population = get(params, :Population, BlackBoxOptim.rand_individuals_lhs(ss, 50))
AdaptConstantsDiffEvoOpt("AdaptiveDE/rand/1/bin/radiuslimited", population, ss, params,
radius_limited_sampler,
de_mutation_rand_1,
de_crossover_binomial,
rand_bound_from_target!)
end
|
@testset "SMeasure" begin
x, y = rand(100), rand(100)
X, Y = Dataset(rand(100, 3)), Dataset(rand(100, 2))
Z, W = Dataset(rand(110, 2)), Dataset(rand(90, 4))
dx, τx = 2, 1
dy, τy = 2, 1
@test s_measure(x, y) isa Float64
@test s_measure(x, Y, dx = dx, τx = τx) isa Float64
@test s_measure(X, y, dy = dy, τy = τy) isa Float64
@test s_measure(X, Y) isa Float64
# test that multivariate datasets are being length-matched
@test s_measure(X, Z) isa Float64
@test s_measure(W, X) isa Float64
end |
##############################################################################
#
# Accelerators.jl
#
# Part of CVortex.jl
# Control use of accelerators such as GPUs.
#
# Copyright 2019 HJA Bird
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
##############################################################################
"""
The number of GPU or other accelerators found by the CVortex library.
It is possible that accelerators may be listed multiple times if they can
be used by more than one installed platform.
To know how many are in use see number_of_enabled_accelerators()
"""
function number_of_accelerators()
res = ccall(("cvtx_num_accelerators", libcvortex),
Cint, ())
return res
end
"""
The number of accelerators that CVortex has been directed to use.
If no accelerators are in use this is zero, and the CPU is used for
all computation.
Find which accelerators are enabled using accelerator_enabled,
and enable and disable with accelerator_enable and
accelerator_disable.
"""
function number_of_enabled_accelerators()
# int cvtx_num_enabled_accelerators();
res = ccall(("cvtx_num_enabled_accelerators", libcvortex), Cint, ())
return res
end
"""
The name of an accelerator.
Input is an integer in the range 1:number_of_accelerators(). Returns
the name of the accelerator as a string.
"""
function accelerator_name(accelerator_id :: Int)
@assert(accelerator_id >= 1, "Minimum accelerator id is 1.")
@assert(accelerator_id <= number_of_accelerators(),
"accelerator_id is higher than the number of accelerators found.")
# char* cvtx_accelerator_name(int accelerator_id);
res = ccall(("cvtx_accelerator_name", libcvortex),
Cstring, (Cint,), accelerator_id-1)
return unsafe_string(res)
end
"""
States whether CVortex is in use.
"""
function accelerator_enabled(accelerator_id :: Int)
@assert(accelerator_id >= 1, "Minimum accelerator id is 1.")
@assert(accelerator_id <= number_of_accelerators(),
"accelerator_id is higher than the number of accelerators found.")
# int cvtx_accelerator_enabled(int accelerator_id);
res = ccall(("cvtx_accelerator_enabled", libcvortex),
Cint, (Cint,), accelerator_id-1)
return res
end
"""
Allows CVortex to use an accelerator.
"""
function accelerator_enable(accelerator_id :: Int)
@assert(accelerator_id >= 1, "Minimum accelerator id is 1.")
@assert(accelerator_id <= number_of_accelerators(),
"accelerator_id is higher than the number of accelerators found.")
# void cvtx_accelerator_enable(int accelerator_id);
ccall(("cvtx_accelerator_enable", libcvortex),
Cvoid, (Cint,), accelerator_id-1)
return
end
"""
Stops CVortex using an accelerator.
"""
function accelerator_disable(accelerator_id :: Int)
@assert(accelerator_id >= 1, "Minimum accelerator id is 1.")
@assert(accelerator_id <= number_of_accelerators(),
"accelerator_id is higher than the number of accelerators found.")
# void cvtx_accelerator_disable(int accelerator_id);
ccall(("cvtx_accelerator_disable", libcvortex),
Cvoid, (Cint,), accelerator_id-1)
return
end
|
#=
https://dtai.cs.kuleuven.be/problog/tutorial/basic/03_dice.html
"""
The following example illustrates the use of a logic program with recursion and lists.
We start by rolling the first die. Every roll determines the next die to roll, but we stop
if we have used that die before. We query for the possible sequences of rolled dice.
We use three-sided dice instead of the regular six-sided ones simply to restrict the number
of possible outcomes (and thus inference time).
"""
Cf ~/blog/rolling_dice5.blog
~/webppl/rolling_dice5.wppl
=#
using Turing, StatsPlots, DataFrames
include("jl_utils.jl")
@model function rolling_dice5(n=3)
function roll(a)
# t ~ DiscreteUniform(1,n)
t = rand(DiscreteUniform(1,n))
if t in a
return a
else
return roll(vcat(a,t))
end
end
a = roll([])
len ~ DiscreteUniform(1,n)
len ~ Dirac(length(a))
# In the example, the first roll is 1.
true ~ Dirac(a[1] == 1)
end
function run_model(len=0)
model = rolling_dice5(len)
num_chns = 4
# chns = sample(model, Prior(), 10_000)
# chns = sample(model, MH(), 10_000)
chns = sample(model, MH(), 100_000)
# chns = sample(model, PG(15), MCMCThreads(), 1_000, num_chns)
# chns = sample(model, SMC(1000), MCMCThreads(), 10_000, num_chns)
# chns = sample(model, SMC(1000), 10_000)
# chns = sample(model, IS(), 10_000)
#
display(chns)
show_var_dist_pct(chns,:len,1000)
end
genq = undef
for val in 1:6
global genq
println("\nval:$val")
@time run_model(val)
end
println("\nval=10")
# println("mean:", mean(run_model(10)))
run_model(10)
println("\nval=100")
# println("mean:", mean(run_model(100)))
run_model(100)
|
# # Traversal
#
# This code demonstrates how to use and extend advanced optics.
# The examples are taken from the README.md of the specter clojure library.
# Many of the features here are experimental, please consult the docstrings of the
# involved optics.
using Test
using Accessors
import Accessors: modify, OpticStyle
using Accessors: ModifyBased, SetBased, setindex
# ### Increment all even numbers
# We have the following data and the goal is to increment all nested even numbers.
data = (a = [(aa=1, bb=2), (cc=3,)], b = [(dd=4,)])
# To acomplish this, we define a new optic `Vals`.
function mapvals(f, d)
Dict(k => f(v) for (k,v) in pairs(d))
end
mapvals(f, nt::NamedTuple) = map(f, nt)
struct Vals end
OpticStyle(::Type{Vals}) = ModifyBased()
modify(f, obj, ::Vals) = mapvals(f, obj)
# Now we can increment as follows:
out = @set data |> Vals() |> Elements() |> Vals() |> If(iseven) += 1
@test out == (a = [(aa = 1, bb = 3), (cc = 3,)], b = [(dd = 5,)])
struct Filter{F}
keep_condition::F
end
OpticStyle(::Type{<:Filter}) = ModifyBased()
(o::Filter)(x) = filter(o.keep_condition, x)
function modify(f, obj, optic::Filter)
I = eltype(eachindex(obj))
inds = I[]
for i in eachindex(obj)
x = obj[i]
if optic.keep_condition(x)
push!(inds, i)
end
end
vals = f(obj[inds])
setindex(obj, vals, inds)
end
# ### Append to nested vector
data = (a = 1:3,)
out = @modify(v -> vcat(v, [4,5]), data.a)
@test out == (a = [1,2,3,4,5],)
# ### Increment last odd number in a sequence
data = 1:4
out = @set data |> Filter(isodd) |> last += 1
@test out == [1,2,4,4]
### Map over a sequence
data = 1:3
out = @set data |> Elements() += 1
@test out == [2,3,4]
# ### Increment all values in a nested Dict
data = Dict(:a => Dict(:aa =>1), :b => Dict(:ba => -1, :bb => 2))
out = @set data |> Vals() |> Vals() += 1
@test out == Dict(:a => Dict(:aa => 2),:b => Dict(:bb => 3,:ba => 0))
# ### Increment all the even values for :a keys in a sequence of maps
data = [Dict(:a => 1), Dict(:a => 2), Dict(:a => 4), Dict(:a => 3)]
out = @set data |> Elements() |> _[:a] += 1
@test out == [Dict(:a => 2), Dict(:a => 3), Dict(:a => 5), Dict(:a => 4)]
# ### Retrieve every number divisible by 3 out of a sequence of sequences
function getall(obj, optic)
out = Any[]
modify(obj, optic) do val
push!(out, val)
end
out
end
data = [[1,2,3,4],[], [5,3,2,18],[2,4,6], [12]]
optic = @optic _ |> Elements() |> Elements() |> If(x -> mod(x, 3) == 0)
out = getall(data, optic)
@test out == [3, 3, 18, 6, 12]
@test_broken eltype(out) == Int
# ### Increment the last odd number in a sequence
data = [2, 1, 3, 6, 9, 4, 8]
out = @set data |> Filter(isodd) |> _[end] += 1
@test out == [2, 1, 3, 6, 10, 4, 8]
@test_broken eltype(out) == Int
# ### Remove nils from a nested sequence
data = (a = [1,2,missing, 3, missing],)
optic = @optic _.a |> Filter(!ismissing)
out = optic(data)
@test out == [1,2,3]
|
using SplitApplyCombine
"""
normalize_year(fun, fams)
Compute function `fun` for each family in `fams` and divide the result
by the average for all families with the same earliest filing date.
"""
function normalize_year(fun, fams::Vector{Family})
year = Dates.year.(earliest_filing.(fams))
vals = fun.(fams)
dict = group(year, vals)
refs = mean.(dict)
map(zip(year, vals)) do (y, v)
r = refs[y]
r == 0 ? 0 : v / r
end
end
"""
normalize_year(fun, g, fams)
Compute function `fun` for all vertices in `g` and divide the result
by the average for all families with the same earliest filing date.
"""
function normalize_year(fun, g::AbstractGraph, fams::Vector{Family})
year = Dates.year.(earliest_filing.(fams))
vals = fun(g)
dict = group(year, vals)
refs = mean.(dict)
map(zip(year, vals)) do (y, v)
r = refs[y]
r == 0.0 ? 0.0 : v / r
end
end
function component(g::AbstractGraph, which=1)
cc = weakly_connected_components(g)
idx = sortperm(length.(cc), rev=true)
vids = reduce(vcat, cc[idx[which]])
induced_subgraph(g, vids)
end
function top_applicants(families, k)
apps = reduce(vcat, applicants.(families))
c = StatsBase.countmap(apps)
ks = collect(keys(c)); vs = collect(values(c))
idx = sortperm(vs, rev=true)
NamedTuple(Symbol.(first(ks[idx], k)) .=> first(vs[idx], k))
end
function maxcentralization_degree(g)
N = nv(g)
if is_directed(g)
return (N-1)*(N-1)
else
return (N-1)*(N-2)
end
end
function centralization(g, measure)
c = measure(g)
@assert measure in [degree, indegree, outdegree]
val, ind = findmax(c)
return sum(val .- c) / maxcentralization_degree(g)
end
using MainPaths
function component(mp::MainPaths.MainPathResult, which=1)
g, cs = Patents.component(mp.mainpath, which)
vs = mp.vertices[cs]
s = Set(mp.vertices[mp.start])
start = findall(v -> v in s, vs)
MainPaths.MainPathResult(g, vs, start)
end
function get_stats(mp, segment, families, g)
idxs = mp.vertices[segment.intermediates]
fams = families[idxs]
ef = Dates.year.(earliest_filing.(fams))
(;
size = length(fams),
span = maximum(ef) - minimum(ef),
density = (maximum(ef) - minimum(ef)) / length(fams),
weight = MainPaths.meanweight(mp, segment, SPCEdge(:log)(g)),
familysize = mean(f.size for f in fams),
citedinternal = mean(outdegree(g, idxs)),
citedexternal = mean(citedby_count.(fams)),
citinginternal = mean(indegree(g, idxs)),
citingexternal = mean(cites_count.(fams)),
classdiversity = Patents.diversity(fams, subclass),
jurdiversity = Patents.jurdiversity(fams),
applicant_homogeneity = Patents.share_same_applicant(fams),
topapplicant = Patents.top_applicants(fams, 2)
)
end
function findstart(g, fams, k; period=(2000, 2015), cpc=["Y", "B", "C"], levelfun=section)
idx = map(fams) do f
y = Dates.year(earliest_filing(f))
c = levelfun.(classification(f))
(period[1] .<= y .<= period[2]) && any(s in cpc for s in c)
end |> findall
cit = Patents.normalize_year(outdegree, g, fams)
ck = sort(cit[idx], rev=true)[k]
intersect(idx, findall(cit .>= ck))
end
|
abstract type BoundaryComponent{N} end
"""
get_positions(boundary_component::BoundaryComponent{N})
-> Vector{SVectorF{N}}
Return the positions of the boundary particles.
"""
function get_positions end
"""
get_velocities(boundary_component::BoundaryComponent{N})
-> Vector{SVectorF{N}}
Return the velocities of the boundary particles.
"""
function get_velocities end
"""
get_velocity(boundary_component::BoundaryComponent{N}, i::Unsigned)
-> SVectorF{N}
Return the velocity of the boundary particle with the given index.
"""
function get_velocity(boundary_component::BoundaryComponent, i::Unsigned)
velocities = get_boundary_velocities(boundary_component)
velocities[i]
end
"""
get_pressures(boundary_component::BoundaryComponent)
-> Vector{Float}
Return the virtual pressures of the boundary particles.
"""
function get_pressures end
"""
get_pressure(boundary_component::BoundaryComponent, i::Unsigned)
-> Float
Return the virtual pressure of the boundary particle with the given index.
"""
function get_pressure(boundary_component::BoundaryComponent, i::Unsigned)
pressures = get_boundary_pressures(boundary_component)
pressures[i]
end
"""
compute_boundary_mass_density(
boundary_component::BoundaryComponent,
energy_component::EnergyComponent,
eos::EquationOfState,
idx_fluid::Unsigned,
idx_boundary::Unsigned,
)
Compute the virtual mass density of the boundary particle with index `idx_boundary`
due to its interaction with the fluid particle with index `idx_fluid`.
"""
function compute_mass_density end
"""
updateboundaries!(
boundary_component::BoundaryComponent{N},
positions::AbstractVector{SVectorF{N}},
velocities::Velocities{N},
mass_component::MassComponent{MD,<:Kernel{N}},
pressures::Pressures,
)
Update the state of the boundary particles according to the given fluid particles.
"""
function updateboundaries! end
"""
evolveboundaries!(boundary_component::BoundaryComponent, Δt::Number)
Evolves the boundary particles with the given time step.
"""
function evolveboundaries! end
include("boundary/none.jl")
include("boundary/wall.jl")
|
@testset "AnalyticVI" begin
seed!(42)
L = 3
D = 10
N = 20
b = 5
i = AnalyticVI()
@test i isa AnalyticVI{Float64}
@test AnalyticVI(; ϵ=0.0001f0) isa AnalyticVI{Float32}
@test AnalyticSVI(10; ϵ=0.0001f0) isa AnalyticVI{Float32}
@test repr(i) == "Analytic Variational Inference"
@test AGP.ρ(i) == 1.0
@test AGP.is_stochastic(i) == false
i = AnalyticSVI(b)
@test i isa AnalyticVI{Float64}
AGP.set_ρ!(i, N / b)
@test AGP.ρ(i) == N / b
@test AGP.is_stochastic(i) == true
end
|
"""
Main module for `GigaSOM.jl` - Huge-scale, high-performance flow cytometry clustering
The documentation is here: http://LCSB-BioCore.github.io/GigaSOM.jl
"""
module GigaSOM
using CSV
using DataFrames
using Distances
using Distributed
using DistributedData
using Distributions
using FCSFiles
using FileIO
using DistributedArrays
using NearestNeighbors
using Serialization
using StableRNGs
include("base/structs.jl")
include("base/dataops.jl")
include("base/trainutils.jl")
include("analysis/core.jl")
include("analysis/embedding.jl")
include("io/input.jl")
include("io/process.jl")
include("io/splitting.jl")
#core
export initGigaSOM, trainGigaSOM, mapToGigaSOM
#trainutils
export linearRadius, expRadius, gaussianKernel, bubbleKernel, thresholdKernel, distMatrix
#embedding
export embedGigaSOM
# structs
export Som
#io/input
export readFlowset,
readFlowFrame,
loadFCS,
loadFCSHeader,
getFCSSize,
loadFCSSizes,
loadFCSSet,
selectFCSColumns,
distributeFCSFileVector,
distributeFileVector,
getCSVSize,
loadCSV,
loadCSVSizes,
loadCSVSet
#io/splitting
export slicesof, vcollectSlice, collectSlice
#io/process
export cleanNames!, getMetaData, getMarkerNames
#dataops (higher-level operations on data)
export dtransform_asinh
end # module
|
const _parker_params = (
A = [0.809, 0.330],
T = [0.17046, 0.365],
σ = [0.0563, 0.132],
α = 1.050,
β = 0.1685,
s = 38.078,
τ = 0.483,
)
"""
aif_parker(t; params, hct = 0.42)
Returns the arterial input function defined in Parker et al. [@Parker2006].
The timepoints `t` are in minutes with the bolus arrival time defined as `t = 0`.
The model parameters from Ref [@Parker2006] will be used by default unless an optional `params` input is provided.
The hematocrit `hct` is used to convert the concentration in blood to plasma and has default value of 0.42.
"""
function aif_parker(t; params = _parker_params, hct = 0.42)
@extract (A, T, σ, α, β, s, τ) params
cb = [
(A[1] / (σ[1] * sqrt(2 * pi))) * exp(-(t - T[1])^2 / (2 * (σ[1])^2)) +
(A[2] / (σ[2] * sqrt(2 * pi))) * exp(-(t - T[2])^2 / (2 * (σ[2])^2)) +
α * exp(-β * t) / (1.0 + exp(-s * (t - τ))) for t in t
]
cb[t.<=0] .= 0
ca = cb ./ (1 - hct)
return ca
end
const _georgiou_params =
(A = [0.37, 0.33, 10.06], m = [0.11, 1.17, 16.02], α = 5.26, β = 0.032, τ = 0.129)
"""
aif_georgiou(t; params, hct = 0.35)
Returns the concentration in blood plasma using the model defined in Georgiou et al. [@Georgiou2018].
The timepoints `t` are in minutes with the bolus arrival defined as `t = 0`.
The model parameters from the paper will be used by default unless an optional `params` input is provided.
The hematocrit `hct` is used to convert the concentration in blood to plasma and has default value of 0.35.
"""
function aif_georgiou(t; params = _georgiou_params, hct = 0.35)
@extract (A, m, α, β, τ) params
# The AIF can be split into two parts
exponential_part = zeros(size(t))
gammavariate_part = zeros(size(t))
for (i, t) in enumerate(t)
exponential_part[i] = sum(A .* exp.(-m * t))
if t > 7.5
# Gamma variate part undefined for high N (i.e. t > 7.5 min), so fix its value
gammavariate_part[i] = 3.035
continue
end
N = fld(t, τ) # `fld` might be more efficient than `floor`
for j = 0:N
gammavariate_part[i] += gammavariate((j + 1) * α + j, β, t - j * τ)
end
end
cb = exponential_part .* gammavariate_part
cb[t.<=0] .= 0
ca = cb ./ (1 - hct)
return ca
end
function gammavariate(α, β, t)::Float64
if t > 0
gammavalue = (t^α * exp(-t / β)) / (β^(α + 1) * gamma(α + 1))
if !isnan(gammavalue)
return gammavalue
end
end
return 0
end
"""
aif_biexponential(t; params, hct = 0)
Returns an AIF defined by the biexponential model with the form ``D * (a_1 exp(-m_1 t) + a_2 exp(-m_2 t))``.
The `t` input is in minutes with the bolus arriving at 0.
The `params` can be a named tuple, e.g. `params = (D=0.1, a=[4.0, 4.78], m=[0.144, 0.011])`.
The `hct` is used to convert the concentration in blood to plasma.
The default value is set to to zero, i.e. no conversion takes place.
"""
function aif_biexponential(t; params, hct = 0)
@extract (D, a, m) params
cb = [D * (a[1] * exp(-m[1] * t) + a[2] * exp(-m[2] * t)) for t in t]
cb[t.<=0] .= 0
ca = cb ./ (1 - hct)
return ca
end
"""
aif_weinmann(t)
Returns an AIF defined by the biexponential model with parameters from
Tofts & Kermode [@Tofts1991] and Weinmann et al. [@Weinmann1984].
The `t` input is in minutes with the bolus arriving at 0.
The model describes concentration in plasma, therefore a hematocrit is not necessary.
"""
function aif_weinmann(t)
params = (; D = 0.1, a = [3.99, 4.78], m = [0.144, 0.0111])
return aif_biexponential(t; params, hct = 0)
end
"""
aif_fritzhansen(t)
Returns an AIF defined by the biexponential model with parameters based on data from
Fritz-Hansen et al. [@Fritz-Hansen1996].
The model parameters were adopted from Whitcher & Schmid [@Whitcher2011]
The `t` input is in minutes with the bolus arriving at 0.
The model describes concentration in plasma, therefore a hematocrit is not necessary.
"""
function aif_fritzhansen(t; hct = 0)
params = (; D = 1.0, a = [2.4, 0.62], m = [3.0, 0.016])
return aif_biexponential(t; params, hct)
end
"""
aif_orton1(t; params = (aB = 10.4, μB = 12.0, aG = 1.24, μG = 0.169), hct = 0.42)
Returns the concentration in blood plasma using the bi-exponential model defined in
Orton et al. [@Orton2008].
The timepoints `t` are in minutes with the bolus arriving at 0.
The model parameters from the paper will be used by default unless an optional `params` input is provided.
The `hct` is used to convert the concentration in blood to plasma and has default value of 0.42.
"""
function aif_orton1(t; params = (aB = 10.4, μB = 12.0, aG = 1.24, μG = 0.169), hct = 0.42)
@extract (aB, μB, aG, μG) params
AB = aB - aB * aG / (μB - μG)
AG = aB * aG / (μB - μG)
cb = [AB * exp(-μB * t) + AG * exp(-μG * t) for t in t]
cb[t.<0] .= 0
ca = cb ./ (1 - hct)
return ca
end
"""
aif_orton2(t; params = (aB = 344, μB = 20.2, aG = 1.24, μG = 0.172), hct = 0.42)
Returns the concentration in blood plasma using the 2nd model defined in
Orton et al. [@Orton2008].
The timepoints `t` are in minutes with the bolus arriving at 0.
The model parameters from the paper will be used by default unless an optional `params` input is provided.
The `hematocrit` is used to convert the concentration in blood to plasma and has default value of 0.42.
"""
function aif_orton2(t; params = (aB = 344, μB = 20.2, aG = 1.24, μG = 0.172), hct = 0.42)
@extract (aB, μB, aG, μG) params
AB = aB - aB * aG / (μB - μG)
AG = aB * aG / (μB - μG)^2
cb = [AB * t * exp(-μB * t) + AG * (exp(-μG * t) - exp(-μB * t)) for t in t]
cb[t.<=0] .= 0
ca = cb ./ (1 - hct)
return ca
end
"""
aif_orton3(t; params = (aB = 2.84, μB = 22.8, aG = 1.36, μG = 0.171), hct = 0.42)
Returns the concentration in blood plasma using the 3rd model defined in
Orton et al. [@Orton2008].
The timepoints `t` are in minutes with the bolus arriving at `t = 0`.
The model parameters from the paper will be used by default unless an optional `params` input is provided.
The `hct` is used to convert the concentration in blood to plasma and has default value of 0.42.
"""
function aif_orton3(t; params = (aB = 2.84, μB = 22.8, aG = 1.36, μG = 0.171), hct = 0.42)
@extract (aB, μB, aG, μG) params
tb = 2 * pi / μB
cb = zeros(length(t))
for (i, t) in enumerate(t)
if t <= tb
cb[i] = aB * (1 - cos(μB * t)) + aB * aG * _orton3_f(t, μG, μB)
else
cb[i] = aB * aG * _orton3_f(tb, μG, μB) * exp(-μG * (t - tb))
end
end
cb[t.<=0] .= 0
ca = cb ./ (1 - hct)
return ca
end
function _orton3_f(t, α, μB)
(1 / α) * (1 - exp(-α * t)) -
(1 / (α^2 + μB^2)) * (α * cos(μB * t) + μB * sin(μB * t) - α * exp(-α * t))
end
|
@enum dq_ref begin
q = 1
d = 2
end
@enum RI_ref begin
R = 1
I = 2
end
function dq_ri(δ::Float64)
## Uses the referenceframe of the Kundur page 852 of dq to RI
dq_ri = [sin(δ) cos(δ);
-cos(δ) sin(δ)]
end
function ri_dq(δ::Float64)
#Uses the reference frame of the Kundur page 852 of RI to dq
ri_dq = [sin(δ) -cos(δ);
cos(δ) sin(δ)]
end
|
using JSON
@testset "test matpower parser" begin
@testset "30-bus case file" begin
result = run_opf("../test/data/case30.m", ACPPowerModel, ipopt_solver)
@test result["status"] == :LocalOptimal
@test isapprox(result["objective"], 204.96; atol = 1e-1)
end
@testset "30-bus case matpower data" begin
data = PowerModels.parse_file("../test/data/case30.m")
@test isa(JSON.json(data), String)
result = run_opf(data, ACPPowerModel, ipopt_solver)
@test result["status"] == :LocalOptimal
@test isapprox(result["objective"], 204.96; atol = 1e-1)
end
@testset "14-bus case file with bus names" begin
data = PowerModels.parse_file("../test/data/case14.m")
@test data["bus"]["1"]["bus_name"] == "Bus 1 HV"
@test isa(JSON.json(data), String)
end
@testset "5-bus case file with pwl cost functions" begin
data = PowerModels.parse_file("../test/data/case5_pwlc.m")
@test data["gen"]["1"]["model"] == 1
@test isa(JSON.json(data), String)
end
@testset "3-bus case file with hvdc lines" begin
data = PowerModels.parse_file("../test/data/case3.m")
@test length(data["dcline"]) > 0
@test isa(JSON.json(data), String)
end
@testset "2-bus case file with spaces" begin
result = run_pf("../test/data/case2.m", ACPPowerModel, ipopt_solver)
@test result["status"] == :LocalOptimal
@test isapprox(result["objective"], 0.0; atol = 1e-1)
end
end
@testset "test matpower data coercion" begin
@testset "ACP Model" begin
result = run_opf("../test/data/case14.m", ACPPowerModel, ipopt_solver)
@test result["status"] == :LocalOptimal
@test isapprox(result["objective"], 8081.5; atol = 1e0)
#@test result["status"] = bus_name
end
@testset "DC Model" begin
result = run_opf("../test/data/case14.m", DCPPowerModel, ipopt_solver)
@test result["status"] == :LocalOptimal
@test isapprox(result["objective"], 7642.6; atol = 1e0)
end
@testset "QC Model" begin
result = run_opf("../test/data/case14.m", QCWRPowerModel, ipopt_solver)
@test result["status"] == :LocalOptimal
@test isapprox(result["objective"], 8075.1; atol = 1e0)
end
end
@testset "test matpower extentions parser" begin
@testset "3-bus extended constants" begin
data = PowerModels.parse_file("../test/data/case3.m")
@test data["const_int"] == 123
@test data["const_float"] == 4.56
@test data["const_str"] == "a string"
@test isa(JSON.json(data), String)
end
@testset "3-bus extended matrix" begin
data = PowerModels.parse_file("../test/data/case3.m")
@test haskey(data, "areas")
@test data["areas"]["1"]["col_1"] == 1
@test data["areas"]["1"]["col_2"] == 1
@test data["areas"]["2"]["col_1"] == 2
@test data["areas"]["2"]["col_2"] == 3
@test isa(JSON.json(data), String)
end
@testset "3-bus extended named matrix" begin
data = PowerModels.parse_file("../test/data/case3.m")
@test haskey(data, "areas_named")
@test data["areas_named"]["1"]["area"] == 4
@test data["areas_named"]["1"]["refbus"] == 5
@test data["areas_named"]["2"]["area"] == 5
@test data["areas_named"]["2"]["refbus"] == 6
@test isa(JSON.json(data), String)
end
@testset "3-bus extended predefined matrix" begin
data = PowerModels.parse_file("../test/data/case3.m")
@test haskey(data, "areas_named")
@test data["branch"]["1"]["rate_i"] == 50.2
@test data["branch"]["1"]["rate_p"] == 45
@test data["branch"]["2"]["rate_i"] == 36
@test data["branch"]["2"]["rate_p"] == 60.1
@test data["branch"]["3"]["rate_i"] == 12
@test data["branch"]["3"]["rate_p"] == 30
@test isa(JSON.json(data), String)
end
@testset "3-bus extended matrix from cell" begin
data = PowerModels.parse_file("../test/data/case3.m")
@test haskey(data, "areas_cells")
@test data["areas_cells"]["1"]["col_1"] == "Area 1"
@test data["areas_cells"]["1"]["col_2"] == 123
@test data["areas_cells"]["1"]["col_4"] == "Slack \\\"Bus\\\" 1"
@test data["areas_cells"]["1"]["col_5"] == 1.23
@test data["areas_cells"]["2"]["col_1"] == "Area 2"
@test data["areas_cells"]["2"]["col_2"] == 456
@test data["areas_cells"]["2"]["col_4"] == "Slack Bus 3"
@test data["areas_cells"]["2"]["col_5"] == 4.56
@test isa(JSON.json(data), String)
end
@testset "3-bus extended named matrix from cell" begin
data = PowerModels.parse_file("../test/data/case3.m")
@test haskey(data, "areas_named_cells")
@test data["areas_named_cells"]["1"]["area_name"] == "Area 1"
@test data["areas_named_cells"]["1"]["area"] == 123
@test data["areas_named_cells"]["1"]["area2"] == 987
@test data["areas_named_cells"]["1"]["refbus_name"] == "Slack Bus 1"
@test data["areas_named_cells"]["1"]["refbus"] == 1.23
@test data["areas_named_cells"]["2"]["area_name"] == "Area 2"
@test data["areas_named_cells"]["2"]["area"] == 456
@test data["areas_named_cells"]["2"]["area2"] == 987
@test data["areas_named_cells"]["2"]["refbus_name"] == "Slack Bus 3"
@test data["areas_named_cells"]["2"]["refbus"] == 4.56
@test isa(JSON.json(data), String)
end
@testset "3-bus extended predefined matrix from cell" begin
data = PowerModels.parse_file("../test/data/case3.m")
@test haskey(data, "areas_named")
@test data["branch"]["1"]["name"] == "Branch 1"
@test data["branch"]["1"]["number_id"] == 123
@test data["branch"]["2"]["name"] == "Branch 2"
@test data["branch"]["2"]["number_id"] == 456
@test data["branch"]["3"]["name"] == "Branch 3"
@test data["branch"]["3"]["number_id"] == 789
@test isa(JSON.json(data), String)
end
@testset "3-bus tnep case" begin
data = PowerModels.parse_file("../test/data/case3_tnep.m")
@test haskey(data, "ne_branch")
@test data["ne_branch"]["1"]["f_bus"] == 1
@test data["ne_branch"]["1"]["construction_cost"] == 1
@test isa(JSON.json(data), String)
end
@testset "`build_ref` for 3-bus tnep case" begin
data = PowerModels.parse_file("../test/data/case3_tnep.m")
ref = PowerModels.build_ref(data)
@assert !(data["multinetwork"])
ref = ref[:nw][0]
@test haskey(data, "name")
@test haskey(ref, :name)
@test data["name"] == ref[:name]
end
end
|
# Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/
# Niccolò Antonello <nantonel@idiap.ch>
fst = WFST(["a","b","c"],["p","q","r"])
add_arc!(fst,1,1,"a","p",2)
add_arc!(fst,1,2,"b","q",3)
add_arc!(fst,2,2,"c","r",4)
initial!(fst,1)
final!(fst,2,5)
fst_plus = closure(fst; star=false)
println(fst_plus)
fst_star = closure(fst; star=true)
println(fst_star)
@test isinitial(fst_star,3)
@test isfinal(fst_star,3)
@test isfinal(fst_star,2)
W = typeofweight(fst)
ilabels=["a","b","c"]
o1,w1 = fst(ilabels)
@test o1 == ["p","q","r"]
@test w1 == W(2)*W(3)*W(4)*W(5)
o2,w2 = fst_star([ilabels;ilabels])
@test o2 == [o1;o1]
@test w2 == w1*w1
o3,w3 = fst_star([ilabels;ilabels])
@test o3 == o3
@test w2 == w3
o,w = fst([ilabels;ilabels])
@test w == zero(W)
# fst star accepts empty string and returns the same with weight one
o,w = fst_star(String[])
@test o == String[]
@test w == one(W)
# fst plus does not accept empty string
o,w = fst_plus(String[])
@test w == zero(W)
|
function _maximise_nonlinear_through_budgeted(instance::CombinatorialInstance{T}, rewards::Dict{T, Float64},
weights::Dict{T, Int}, max_weight::Int, nl_func::Function,
solve_all_budgets_at_once::Bool) where T
solutions = _maximise_nonlinear_through_budgeted_sub(instance, rewards, weights, max_weight, Val(solve_all_budgets_at_once))
# TODO: Replace the mandatory parameter solve_all_budgets_at_once by a function defined on the solvers, so that each of them can indicate what they support? Then, if this parameter is not set, the most efficient implementation is called if available; otherwise, follow this parameter (and still warn if the required implementation is not available).
# TODO: make it a trait of the underlying algorithm to get a default value. Do the same for ESCB2.
best_solution = Int[]
best_objective = -Inf
for (budget, sol) in solutions
# Ignore infeasible cases.
if length(sol) == 0 || sol == [-1]
continue
end
# Compute the maximum.
f_x = nl_func(sol, budget)
if f_x > best_objective
best_solution = sol
best_objective = f_x
end
end
return best_solution, best_objective
end
function _maximise_nonlinear_through_budgeted_sub(instance::CombinatorialInstance{T}, rewards::Dict{T, Float64},
weights::Dict{T, Int}, max_weight::Int,
::Val{true})::Dict{Int, Vector{T}} where T
if ! applicable(solve_all_budgeted_linear, instance.solver, rewards, weights, max_weight)
if applicable(solve_budgeted_linear, instance.solver, rewards, weights, max_weight)
# @warn("The function solve_all_budgeted_linear is not defined for the solver $(typeof(instance.solver)).")
return _maximise_nonlinear_through_budgeted_sub(instance, rewards, weights, max_weight, Val(false))
else
error("Neither solve_budgeted_linear nor solve_all_budgeted_linear are not defined for the solver $(typeof(instance.solver)).")
end
end
return solve_all_budgeted_linear(instance.solver, rewards, weights, max_weight)
end
function _maximise_nonlinear_through_budgeted_sub(instance::CombinatorialInstance{T}, rewards::Dict{T, Float64},
weights::Dict{T, Int}, max_weight::Int,
::Val{false})::Dict{Int, Vector{T}} where T
if ! applicable(solve_budgeted_linear, instance.solver, rewards, weights, max_weight)
if applicable(solve_all_budgeted_linear, instance.solver, rewards, weights, max_weight)
# @warn("The function solve_budgeted_linear is not defined for the solver $(typeof(instance.solver)).")
return _maximise_nonlinear_through_budgeted_sub(instance, rewards, weights, max_weight, Val(true))
else
error("Neither solve_budgeted_linear nor solve_all_budgeted_linear are not defined for the solver $(typeof(instance.solver)).")
end
end
# Assumption: rewards is more complete than weights.
@assert length(keys(rewards)) >= length(keys(weights))
# Start the computation, memorising all solutions (one per value of the budget) along the way.
solutions = Dict{Int, Vector{T}}()
budget = 0
while budget <= max_weight
sol = solve_budgeted_linear(instance.solver, rewards, weights, budget)
if length(sol) == 0 || sol == [-1]
# Infeasible!
for b in budget:max_weight
solutions[b] = sol
end
break
end
# Feasible. Fill the dictionary as much as possible for this budget: if the constraint is not tight, the solution
# is constant for all budgets between the value prescribed in the budget constraint until the obtained budget.
sol_budget = sum(arm in keys(weights) ? weights[arm] : 0 for arm in keys(rewards) if arm in sol)
for b in budget:sol_budget
solutions[b] = sol
end
budget = sol_budget + 1
end
return solutions
end
|
# Errors.
using Base.Libc: errno
"""
e.g. constant_name(32; prefix="POLL") -> [:POLLNVAL]
Look up name for C-constant(s) with value `n`.
"""
function constant_name(n::Integer; prefix="", first=false)
@nospecialize
v = get(C.constants, n, Symbol[])
if prefix != ""
v = filter(x -> startswith(String(x), prefix), v)
end
if length(v) == 0
string(n)
elseif first || length(v) == 1
string(v[1])
else
string("Maybe: ", join(("$(n)?" for n in v), ", "))
end
end
constant_name(n; kw...) = constant_name(Int(n); kw...)
"""
Throw SystemError with `errno` info for failed C call.
"""
systemerror(p, errno::Cint=errno(); kw...) =
Base.systemerror(p, errno; extrainfo=errname(errno))
errname(n) = constant_name(n; prefix="E")
"""
@cerr [allow=C.EINTR] f(args...)
If `f` returns -1 throw SystemError with `errno` info.
"""
macro cerr(a, b=nothing)
ex = b == nothing ? a : b
allow = b == nothing ? b : a
@require ex isa Expr && ex.head == :call
@require allow == nothing || (
allow isa Expr && allow.head == Symbol("=") &&
allow.args[1] == :allow)
f = ex.args[1]
args = ex.args[2:end]
r = gensym()
condition = allow == nothing ?
:($r == -1) :
:($r == -1 && errno() ∉ $(allow.args[2]))
esc(:(begin
$r = $ex
$condition && systemerror(dbstring($f, ($(args...),)))
@assert $r >= -1
$r
end))
end
"""
@czero f(args...)
If `f` returns non-zero throw SystemError with return value as `errno`.
"""
macro cerr0(ex)
@require ex isa Expr && ex.head == :call
f = ex.args[1]
args = ex.args[2:end]
r = gensym()
esc(:(begin
$r = $ex
$r != 0 && systemerror(dbstring($f, ($(args...),)), $r)
nothing
end))
end
# End of file: errors.jl
|
using PyPlot
if !@isdefined(CGS)
include("../../../src/CGS.jl")
using Main.CGS
end
include("../../../src/seager_mr.jl")
include("../../../src/loglinspace.jl")
#function mass_radius2(mass_ratio_total,mstar,smstar,flatchain,logplot)
nplanet = 7
# Give names to planets:
planet_name=["b","c","d","e","f","g","h"]
#cname = ["b","g","r","c","m","y","k"]
cname = ["C0","C1","C2","C3","C4","C5","C6","C7"]
r1 = 0.6
r2 = 1.2
nr = 200
if logplot
m1 = 0.01
m2 = 4.0
else
m1 = 0.20
m2 = 1.6
end
nm = 600
mrgrid = zeros(nplanet,nr,nm)
rgrid = zeros(nr)
mgrid = zeros(nm)
for i=1:nr
rgrid[i] = (i-0.5)*(r2-r1)/nr+r1
end
for i=1:nm
if logplot
mgrid[i] = 10 .^((i-0.5)*(log10(m2)-log10(m1))/nm)*m1
else
mgrid[i] = (i-0.5)*(m2-m1)/nm+m1
end
end
# Set up plotting window in Matplotlib (called by PyPlot):
#fig,axes = subplots()
# Number of posterior samples to select:
nsamp = 10000000
cmf = zeros(nplanet,nsamp)
#nsamp = 30000
npoints = [100,100,100,100,100,100,1000]
i0 = 20001
# Factor to convert from solar masses to Earth masses:
fac_mass = MSUN/MEARTH
# Factor to convert from solar radii to Earth radii:
fac_rad = RSUN/REARTH
# Average mass of star in solar masses:
#mstar = 0.09 # Mass of star
# Stand deviation of mass of star in solar masses:
#smstar = 0.01 # Uncertainty on stellar mass
# Loop over planets:
#conf = [0.997, 0.95, 0.683]
conf = [0.95, 0.683]
nconf = length(conf)
level_mr = zeros(nplanet,nconf)
mavg = zeros(nplanet)
merror = zeros(nplanet)
ravg = zeros(nplanet)
rerror = zeros(nplanet)
# Photodynamic size:
pdsize = size(flatchain)[2]
# N-body HMC size:
nhmc = size(mass_ratio_total)[2]
# Use latest markov chain radius ratios:
# Set up vectors for samples:
msamp = zeros(nplanet,nsamp)
rsamp = zeros(nplanet,nsamp)
mstar_samp = zeros(nsamp)
rho_samp = zeros(nsamp)
rstar_samp = zeros(nsamp)
# Loop over number of samples:
for isamp=1:nsamp
# Draw from posterior distribution:
mplanet = mass_ratio_total[:,ceil(Int64,rand()*nhmc)]
# Select a stellar mass:
mstar_samp[isamp] = mstar+randn()*smstar
# Compute the mass of planet in Earth mass units:
msamp[:,isamp] = mplanet .*(mstar_samp[isamp]*fac_mass)
# Select a density (relative to Solar):
ipd = ceil(Int64,rand()*pdsize)
rho_samp[isamp] = flatchain[15,ipd]
# Compute the radius of the star in solar radii:
rstar_samp[isamp] = (mstar_samp[isamp]/rho_samp[isamp])^(1/3)
# Compute the radius of planet in Earth radii units:
# Randomly select a radius ratio:
rsamp[:,isamp] = flatchain[1:nplanet,ipd] .*(rstar_samp[isamp]*fac_rad)
# Compute CMF from Zeng et al. (2016) formula:
cmf[:,isamp] = (1.07 .-rsamp[:,isamp] .*msamp[:,isamp].^(-1/3.7))./0.21
# Now compute density distribution:
for j=1:nplanet
if msamp[j,isamp] > m1 && msamp[j,isamp] < m2 && rsamp[j,isamp] > r1 && rsamp[j,isamp] < r2
ir = ceil(Int64,(rsamp[j,isamp]-r1)/(r2-r1)*nr)
if logplot
im = ceil(Int64,(log(msamp[j,isamp])-log(m1))/(log(m2)-log(m1))*nm)
else
im = ceil(Int64,(msamp[j,isamp]-m1)/(m2-m1)*nm)
end
mrgrid[j,ir,im] +=1.0
end
end
end
for j=1:nplanet
# Set levels for each planet:
mrgrid[j,:,:] /= float(sum(mrgrid[j,:,:]))
mrgrid_sort = sort(vec(mrgrid[j,:,:]))
i0 = nm*nr
mrgrid_cum = mrgrid_sort[i0]
while mrgrid_cum < conf[1] && i0 > 1
i0 -= 1
for k=1:nconf
if mrgrid_cum < conf[k] && (mrgrid_cum+mrgrid_sort[i0]) > conf[k]
level_mr[j,k] = 0.5*(mrgrid_sort[i0]+mrgrid_sort[i0+1])
end
end
mrgrid_cum += mrgrid_sort[i0]
end
println(j," Mass: ",mean(msamp[j,:])," ",std(msamp[j,:])," fractional error: ",std(msamp[j,:])/mean(msamp[j,:])*100.0,"%")
println(j," Radius: ",mean(rsamp[j,:])," ",std(rsamp[j,:])," fractional error: ",std(rsamp[j,:])/mean(rsamp[j,:])*100.0,"%")
merror[j] = std(msamp[j,:])
mavg[j] = mean(msamp[j,:])
rerror[j] = std(rsamp[j,:])
ravg[j] = mean(rsamp[j,:])
end
# Plot maximum likelihood values:
#mopt = readdlm("optimum_values.txt")
#ropt = [0.08581987985664834,0.08461786201718988,0.060328647716537474,0.07106532992445118, 0.08035101963995364, 0.08570949401350199, 0.057994985982196025, 53.833783736830554]
for j=1:nplanet
# cs = axes.contour(mgrid,rgrid,mrgrid[j,:,:],levels = level_mr[j,:],colors=cname[j],linewidth=2.0,label=planet_name[j])
cs = contour(mgrid,rgrid,mrgrid[j,:,:],levels = level_mr[j,:],colors=cname[j],linewidth=2.0)
# plot(mopt[(j-1)*5+1]*fac_mass*mstar,ropt[j]*(mstar/ropt[8])^(1/3)*fac_rad,"o",label=planet_name[j],color=cname[j])
plot(mavg[j],ravg[j],"o",label=planet_name[j],color=cname[j])
# axes[:imshow](mrgrid[j,:,:],alpha=0.1)
end
# Make some plots:
#axes.set_xlabel(L"Mass $[M_\oplus]$")
xlabel(L"Mass $[M_\oplus]$")
#axes.set_ylabel(L"Radius $[R_\oplus]$")
ylabel(L"Radius $[R_\oplus]$")
#axes.axis([m1,m2,r1,r2])
axis([m1,m2,r1,r2])
text(1.0,1.00,"Earth")
text(0.85,0.93,"Venus")
if logplot
#axes.set_xscale("log")
set_xscale("log")
end
#mm = logarithmspace(-2.5,0.2,1000)
#plot(mm,seager_mr(mm,"H2O"),label="Water",linewidth=3,linestyle="--")
#plot(mm,seager_mr(mm,"Fe"),label="Iron",linewidth=3,linestyle="--")
#plot(mm,seager_mr(mm,"Earth"),label="Earth",linewidth=3,linestyle="--")
#plot(mm,seager_mr(mm,"MgSiO3"),label="Rock",linewidth=3,linestyle="--")
#axes[:legend](loc = "upper left",fontsize=10)
#axes.legend(loc = "upper left",fontsize=10)
#legend(loc = "upper left",fontsize=10)
#return merror
#end
|
@testset "1143.longest-common-subsequence.jl" begin
@test longest_common_subsequence("abcde", "ace") == 3
@test longest_common_subsequence("abc", "abc") == 3
@test longest_common_subsequence("abc", "def") == 0
end
|
#initialize queens variables and domains
columns = [1, 2, 3, 4, 5, 6, 7, 8]
rows = Dict(col => columns for col in columns)
println("defining columns and rows")
#-----------------------------------------------------------------
mutable struct QueensConstraint
variables::Vector{Int}
function QueensConstraint(columns::Vector{Int})
println("creating constraint")
variables = columns
return new(variables)
end
end
#-----------------------------------------------------------------
#checks if the constraint is satisfied returns boolean
function satisfied(cons::QueensConstraint,assignment)
println("check if satisfied")
for (q1c,q1r) in assignment # q1c = queen 1 column, q1r = queen 1 row
for q2c in range(q1c + 1, stop=length(cons.variables)+1) # q2c = queen 2 column
if q2c in keys(assignment)
q2r = assignment[q2c] # q2r = queen 2 row
if q1r == q2r # same row?
return false
end
if abs(q1r-q2r) == abs(q1c-q2c) # same diagonal?
return false
end
end
end
end
return true # no conflict
end
#-----------------------------------------------------------------
#csp struct for
struct CSP
#the problem's fields
variables::Vector
domains::Dict{Int, Vector}
constraints::Dict{Int, Vector{}}
#constructor
function CSP(vars, doms, cons=Dict())
println("creating csp")
variables = vars
domains = doms
constraints = cons
for var in vars
constraints[var] = Vector()
if (!haskey(domains, var))
error("Every variable should have a domain assigned to it.")
end
end
return new(variables, domains, constraints)
end
end
#-----------------------------------------------------------------
function add_constraint(csp:: CSP, constraint::QueensConstraint)
for var in constraint.variables
println("adding cons")
if (!(var in csp.variables))
error("Variable in constraint not in CSP")
else
push!(csp.constraints[var], constraint)
end
end
end
#-----------------------------------------------------------------
function consistent(csp:: CSP, variable, assignment)::Bool
println("check consistency")
for constraint in csp.constraints[variable]
if (!satisfied(constraint, assignment))
return false
end
return true
end
end
#-----------------------------------------------------------------
function backtracking_search(csp:: CSP, assignment=Dict(), path=Dict())::Union{Dict,Nothing}
println("back tracking")
# assignment is complete if every variable is assigned (our base case)
if length(assignment) == length(csp.variables)
return assignment
end
unassigned = [v for v in csp.variables if!(v in keys(assignment))]
#=
# get all variables without assignments
unassigned::Vector{Int} = []
for v in csp.variables
if (!haskey(assignment, v))
push!(unassigned, v)
end
end
=#
# get the every possible domain value of the first unassigned variable
first = unassigned[1]
# println(first)
# pretty_print(csp.domains)
for value in csp.domains[first]
local_assignment = deepcopy(assignment)
local_assignment[first] = value
# if we're still consistent, we recurse (continue)
if consistent(csp, first, local_assignment)
# forward checking, prune future assignments that will be inconsistent
for un in unassigned
ass = deepcopy(local_assignment)
for (i, val) in enumerate(csp.domains[un])
ass[un] = val
if un != first
if(!consistent(csp, un, ass))
deleteat!(csp.domains[un], i)
end
end
end
end
path[first] = csp.domains
# println("reduced")
#out(csp.domains)
result = backtracking_search(csp, local_assignment)
#backtrack if nothing is found
if result !== nothing
out(path)
return result
end
end
end
return nothing
end
#-----------------------------------------------------------------
function out(d::Dict, pre=1)
for (k,v) in d
if typeof(v) <: Dict
s = "$(repr(k)) => "
println(join(fill(" ", pre)) * s)
out(v, pre+1+length(s))
else
println(join(fill(" ", pre)) * "$(repr(k)) => $(repr(v))")
end
end
nothing
end
#-----------------------------------------------------------------
csp = CSP(columns,rows)
add_constraint(csp, QueensConstraint(columns))
solution = backtracking_search(csp)
if solution != Nothing
print("solution is: ", solution)
else
println("No solution found!")
end
|
#=
Implement a stack that has the following methods:
push(val), which pushes an element onto the stack
pop(), which pops off and returns the topmost element of the stack. If there are no elements in the stack, then it should throw an error or return null.
max(), which returns the maximum value in the stack currently. If there are no elements in the stack, then it should throw an error or return null.
Each method should run in constant time.
=#
using Test
include("Solutions/problem43_implement_stack.jl")
push(2)
push(5)
@test stack == [2, 5]
@test max() == 5
@test pop() == 5
@test stack == [2]
@test pop() == 2
@test stack == []
@test isnothing(max())
@test isnothing(pop())
|
using Test, LinearAlgebra, SparseArrays, Random
using QDLDL
rng = Random.MersenneTwister(2401)
@testset "refactoring checks" begin
m = 20
n = 30
A = random_psd(n) + Diagonal(rand(n))
B = sprandn(m,n,0.2)
C1 = -Diagonal(rand(m))
C2 = -Diagonal(rand(m))
M1 = [A B' ; B C1]
M2 = [A B' ; B C2]
M3 = [A B' ; B -pi*I]
b = randn(m+n)
F = qdldl(M1,perm = randperm(m+n))
@test norm(M1\b - F\b) <= 1e-10
#update the diagonal of M and F and try again
update_diagonal!(F,(n+1):(m+n),diag(C2))
@test norm(M2\b - F\b) <= 1e-10
#update to a scalar and try again
update_diagonal!(F,(n+1):(m+n),-pi)
@test norm(M3\b - F\b) <= 1e-10
end
|
using Brownian
using Base.Test
@test convert(FGN, FBM(0:0.5:10, 0.4)) == FGN(0.757858283255199,0.4)
p = FBM(0:1/2^10:1, 0.4)
# fBm using FFT approach
rand(p)
rand(p, fbm=false)
rand([p, p])
# fBm using Riemann-Liouville approach
rand(p, method=:rl)
rand(p, method=:rl, wtype=:improved)
rand([p, p], method=:rl)
rand([p, p], method=:rl, wtype=:improved)
# fBm using Cholesky approach
rand(p, method=:chol)
rand(p, fbm=false, method=:chol)
rand([p, p], method=:chol)
# Checking function for efficient Cholesky update
p = FBM(0:.1:.1*100, 0.4)
q = FBM(0:.1:.1*101, 0.4)
P = autocov(p)
Q = autocov(q)
c = chol(P)'
chol_update(convert(Array{Float64, 2}, c), Q)
|
function strip_output_color(cur_string::AbstractString)
replace(cur_string, r"\e[^m]*m", "")
end
|
function type1totype0!(data::MIDIFile)
if data.format != UInt8(1)
error("Got type $(data.format); expecting type 1")
end
if dochannelsconflict(getprogramchangeevents(data))
error("Conversion failed since different tracks
patch different instruments to the same channel.
Use getprogramchangeevents for inspection.")
end
for track in data.tracks
toabsolutetime!(track)
end
for track in data.tracks[2:end]
insertsorted!(data.tracks[1].events, track.events)
end
data.tracks = data.tracks[1:1]
fromabsolutetime!(data.tracks[1])
data.format = 0
data
end
function type1totype0(data::MIDIFile)
newdata = deepcopy(data)
type1totype0!(newdata)
end
function type0totype1!(data::MIDIFile)
if data.format != UInt8(0)
error("Got type $(data.format); expecting type 0")
end
toabsolutetime!(data.tracks[1])
push!(data.tracks, MIDITrack(Array{TrackEvent, 1}()))
nofchannels = 0
for event in data.tracks[1].events
if !isa(event, MIDIEvent)
push!(data.tracks[2].events, event)
else
channelnum = channelnumber(event)
while channelnum > nofchannels
push!(data.tracks, MIDITrack(Array{TrackEvent, 1}()))
nofchannels += 1
end
push!(data.tracks[channelnum + 2].events, event)
end
end
shift!(data.tracks)
trackstoremove = []
for i in 1:length(data.tracks)
if length(data.tracks[i].events) == 0
push!(trackstoremove, i)
else
fromabsolutetime!(data.tracks[i])
end
end
deleteat!(data.tracks, trackstoremove)
data.format = 1
data
end
function type0totype1(data::MIDIFile)
newdata = deepcopy(data)
type0totype1!(newdata)
end
function insertsorted!(events1::Array{TrackEvent, 1},
events2::Array{TrackEvent, 1})
map(x -> insertsorted!(events1, x), events2)
end
function insertsorted!(events1::Array{TrackEvent, 1},
event::TrackEvent)
i = 0
while i < length(events1) && events1[end - i].dT > event.dT
i += 1
end
insert!(events1, length(events1) - i + 1, event)
end
function toabsolutetime!(track::MIDITrack)
t = Int(0)
for event in track.events
t += event.dT
event.dT = t
end
end
function fromabsolutetime!(track::MIDITrack)
t0 = t1 = Int(0)
for event in track.events
t1 = event.dT
event.dT = event.dT - t0
if event.dT < 0
error("Negative deltas are not allowed. Please reorder your events.")
end
t0 = t1
end
end
function getprogramchangeevents(data::MIDIFile)
pgevents = []
t = 0
for track in data.tracks
t += 1
i = 0
for event in track.events
i += 1
if event isa ProgramChangeEvent
push!(pgevents, [t, i, event])
end
end
end
pgevents
end
function dochannelsconflict(pgevents)
channels = Dict()
for pgevent in pgevents
newkey = pgevent[3].status
if haskey(channels, newkey)
if channels[newkey][1] != pgevent[1] &&
channels[newkey][2] != pgevent[3].data[1]
return true
end
else
channels[newkey] = (pgevent[1], pgevent[3].data[1])
end
end
false
end |
# This file was generated by the Julia Swagger Code Generator
# Do not modify this file directly. Modify the swagger specification instead.
mutable struct IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation <: SwaggerModel
description::Any # spec type: Union{ Nothing, String } # spec name: description
url::Any # spec type: Union{ Nothing, String } # spec name: url
function IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation(;description=nothing, url=nothing)
o = new()
validate_property(IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation, Symbol("description"), description)
setfield!(o, Symbol("description"), description)
validate_property(IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation, Symbol("url"), url)
setfield!(o, Symbol("url"), url)
o
end
end # type IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation
const _property_map_IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation = Dict{Symbol,Symbol}(Symbol("description")=>Symbol("description"), Symbol("url")=>Symbol("url"))
const _property_types_IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation = Dict{Symbol,String}(Symbol("description")=>"String", Symbol("url")=>"String")
Base.propertynames(::Type{ IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation }) = collect(keys(_property_map_IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation))
Swagger.property_type(::Type{ IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation }, name::Symbol) = Union{Nothing,eval(Base.Meta.parse(_property_types_IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation[name]))}
Swagger.field_name(::Type{ IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation }, property_name::Symbol) = _property_map_IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation[property_name]
function check_required(o::IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation)
true
end
function validate_property(::Type{ IoK8sApiextensionsApiserverPkgApisApiextensionsV1ExternalDocumentation }, name::Symbol, val)
end
|
# NOTE:
# Type fields
# fieldnames(Stan.Sample)
# num_samples, num_warmup, save_warmup, thin, adapt, algorithm
# fieldnames(Stan.Hmc)
# engine, metric, stepsize, stepsize_jitter
# fieldnames(Stan.Adapt)
# engaged, gamma, delta, kappa, t0, init_buffer, term_buffer, window
# Ref
# http://goedman.github.io/Stan.jl/latest/index.html#Types-1
sample(mf::T, ss::Stan.Sample) where {T<:Function} = sample(mf, ss.num_samples, ss.num_warmup, ss.save_warmup, ss.thin, ss.adapt, ss.alg)
sample(mf::T, num_samples::Int, num_warmup::Int, save_warmup::Bool, thin::Int, ss::Stan.Sample) where{T<:Function} =
sample(mf, num_samples, num_warmup, save_warmup, thin, ss.adapt, ss.alg)
sample(mf::T, num_samples::Int, num_warmup::Int, save_warmup::Bool, thin::Int, adapt::Stan.Adapt, alg::Stan.Hmc) where {T<:Function} = begin
if alg.stepsize_jitter != 0
error("[Turing.sample] Turing does not support adding noise to stepsize yet.")
end
if adapt.engaged == false
if isa(alg.engine, Stan.Static) # hmc
stepnum = Int(round(alg.engine.int_time / alg.stepsize))
sample(mf, HMC(num_samples, alg.stepsize, stepnum); adapt_conf=adapt)
elseif isa(alg.engine, Stan.Nuts) # error
error("[Turing.sample] Stan.Nuts cannot be used with adapt.engaged set as false")
end
else
if isa(alg.engine, Stan.Static) # hmcda
sample(mf, HMCDA(num_samples, num_warmup, adapt.delta, alg.engine.int_time); adapt_conf=adapt)
elseif isa(alg.engine, Stan.Nuts) # nuts
if alg.metric == Stan.dense_e
sample(mf, NUTS(num_samples, num_warmup, adapt.delta); adapt_conf=adapt)
else
error("[Turing.sample] Turing does not support full covariance matrix for pre-conditioning yet.")
end
end
end
end
|
#Machinery to convert calls to random variables to scalls, e.g.
#normal(a,3) = scall(Normal, (), nocond, a, 3).
#scall has no optional args, so we can exploit type information properly.
as = map(i -> symbol(string("a", i)), 1:10)
#typed_as = map(a -> :($a::Union(Number, Array)), as)
macro entry(Dist, i)
dist = symbol(string(lowercase(string(Dist))))
esc(quote
@sf function $dist($(as[1:i]...); dims::(Int...)=(), condition=nocond, whitened=default_whitened(condition, $Dist), sampler=default_sampler(condition, $Dist))
scall($Dist, dims, condition, whitened, sampler, $(as[1:i]...))
end
$(Expr(:export, symbol(lowercase(string(Dist)))))
end)
end
@entry(Normal, 2)
@entry(MvNormal, 2)
@entry(Chisq, 1)
@entry(Exponential, 1)
@entry(Bernoulli, 1)
@entry(Cauchy, 2)
@entry(Laplace, 2)
import Base.gamma
@entry(Gamma, 2)
@entry(Beta, 2)
@entry(Dirichlet, 1)
@entry(Categorical, 1)
default_whitened(::NoCond, _) = whitened
default_whitened(_, ::Type) = unwhitened
default_whitened(::NoCond, ::Type{Bernoulli}) = unwhitened
default_whitened(::NoCond, ::Type{Categorical}) = unwhitened
default_sampler(::NoCond, _) = langevinprior
default_sampler(_, ::Type) = conditioned
default_sampler(::NoCond, ::Type{Bernoulli}) = gibbs
default_sampler(::NoCond, ::Type{Categorical}) = gibbs
const VectorParams = Union(MvNormal, Dirichlet, Categorical)
const RealParams = Union(Normal, LogNormal, Chisq, Exponential, Bernoulli, Cauchy, Laplace, Gamma, Beta)
const AN = Union(Array, Number)
#Conditioning functions.
scall(state::State, D, dims::(Int...), x::Union(Number, Array), ::UnWhitened, ::Conditioned, params...) = begin
state.counter[end] += 1
if isend(state, state.counter[end])
push!(state, Sample(unwhitened, conditioned, x, logpdf(D, x, params...)))
else
state[state.counter[end]] = Sample(unwhitened, conditioned, x, logpdf(D, x, params...))
end
x
end
#Sampling functions
#Transform N(0, 1), (parameter independent)
@sf lognormal(μ, σ; condition=nocond, dims=()::(Int...)) =
lognormal(μ, σ, dims, condition)
@sf lognormal(μ, σ, dims::(Int...), cond::NoCond) =
exp(normal(μ, σ; dims=dims))
@sf lognormal(μ, σ, dims::(Int...), cond) =
exp(normal(μ, σ; condition=log(cond), dims=dims))
#Transform N(0, 1), (parameter dependent)
macro direct_sampler(Dist, expr)
name = Dist.args[1]
params = Dist.args[2:end]
esc(quote
@sf scall(::Type{$name}, dims, ::NoCond, ::Whitened, sampler::Sampler, $(params...)) = $expr
end)
end
@direct_sampler(Normal(μ, σ), μ .+ σ.*white_rand(maxsize(dims, μ, σ), sampler))
@direct_sampler(MvNormal(μ, Σ), μ + sqrtm(Σ)*white_rand((length(μ),), sampler))
@direct_sampler(Chisq(k::Int), squeeze(sum(white_rand(tuple(k,dims...), sampler.value).^2, 1), 1))
#Only works for multiple samples, not multiple
#Transform cdf
normal_cdf(z) = 0.5*erfc(-z/√2)
@sf scall(D, dims, ::NoCond, ::Whitened, sampler::Sampler, params...) =
quantile(D, normal_cdf(white_rand(maxsize(D, dims, params...), sampler)), params...)
#Non-differentiable fallback using Distributions.jl
import Distributions.quantile
quantile{D <: UnivariateDistribution}(d::Type{D}, p, params...) = begin
quantile_(d, p, params...)
end
quantile_{D <: RealParams}(d::Type{D}, p, params::Number...) =
quantile(d(params...), p)
import Base.broadcast
broadcast(d::DataType, argss...) =
broadcast!((args...) -> d(args...), Array(d, maxsize(argss...)), argss...)
quantile_{D <: RealParams}(d::Type{D}, p, params...) = begin
#Check for subtle bug where not enough gaussian random variables are drawn.
@assert size(p) == maxsize(params...)
broadcast(quantile, broadcast(d, params...), p)
end
quantile_{D <: VectorParams}(d::Type{D}, p, params...) =
quantile(d(params...), p)
#Differentiable definitions.
quantile(::Type{Exponential}, p, scale) = -scale.*log1p(-p)
quantile(::Type{Bernoulli}, p, p0) = p.<p0
quantile(::Type{Cauchy}, p, location, scale) = location .- scale.*cospi(p)./sinpi(p)
#laplace_quantile(p::Real, location::Real, scale::Real) =
# p < 0.5 ? location + scale*log(2.0*p) : location - scale*log(2.0*(1.0-p))
#laplace_quantile(p, location, scale) = broadcast(laplace_quantile, p, location, scale)
#@cdf_transform(laplace(location, scale), laplace_quantile(p, location, scale))
#
#mapfirst(f::Function, ps, args...) = broadcast(p -> f(p, args...), ps)
#categorical_quantile(p::Real, pv::Vector) = begin
# i = 1
# v = pv[1]
# while v < p && i < length(pv)
# i += 1
# @inbounds v += pv[i]
# end
# i
#end
#@cdf_transform(categorical(pv), mapfirst(categorical_quantile, p, pv))
#
#Directly call Rmath quantile, because fallbacks are super-slow
quantile_gamma(p::Real, shape::Real, scale::Real) = begin
ccall((:qgamma, "libRmath-julia"),
Float64, (Float64, Float64, Float64, Int32, Int32),
p, shape, scale, 1, 0)
end
const delta = 1E-6
import ReverseDiffOverload.diff_con
#@d3(quantile_gamma,
# if 0.5<x
# d*(quantile_gamma(x, y, z) - quantile_gamma(x-delta, y, z))/delta
# else
# d*(quantile_gamma(x+delta, y, z) - quantile_gamma(x, y, z))/delta
# end,
# d*(quantile_gamma(x, y+delta, z) - quantile_gamma(x, y, z))/delta,
# d*(quantile_gamma(x, y, z+delta) - quantile_gamma(x, y, z))/delta)
quantile_gamma(x, y, z) = broadcast(quantile_gamma, x, y, z)
dx_quantile_gamma(x::Real, y::Real, z::Real) =
if 0.5<x
(quantile_gamma(x, y, z) - quantile_gamma(x-delta, y, z))/delta
else
(quantile_gamma(x+delta, y, z) - quantile_gamma(x, y, z))/delta
end
dx_quantile_gamma(x, y, z) = broadcast(dx_quantile_gamma, x, y, z)
dy_quantile_gamma(x, y, z) = (quantile_gamma(x, y+delta, z) - quantile_gamma(x, y, z))/delta
dz_quantile_gamma(x, y, z) = (quantile_gamma(x, y, z+delta) - quantile_gamma(x, y, z))/delta
@d3(quantile_gamma, (res = d.*dx_quantile_gamma(x, y, z); isa(x, Real) ? sum(res) : res),
(res = d.*dy_quantile_gamma(x, y, z); isa(y, Real) ? sum(res) : res),
(res = d.*dz_quantile_gamma(x, y, z); isa(z, Real) ? sum(res) : res))
testdiff(quantile_gamma, 0.4, 5., 6.)
testdiff(quantile_gamma, 0.6, 5., 6.)
testdiff((x, y, z) -> sum(quantile_gamma(x, y, z)), [0.4, 0.6], 5., 6.)
testdiff((x, y, z) -> sum(quantile_gamma(x, y, z)), 0.4, [5., 6], 6.)
quantile(::Type{Gamma}, args::Real...) = quantile_gamma(args...)
quantile(::Type{Gamma}, args...) = broadcast(quantile_gamma, args...)
#Transform gamma
@direct_sampler(Beta(alpha, beta), begin
X = gamma(alpha, 1; dims=dims)
Y = gamma(beta, 1; dims=dims)
X./(X+Y)
end)
@direct_sampler(Dirichlet(alpha::Vector), begin
X = gamma(alpha, 1)
X/sum(X)
end)
#MaxDims reports the dimensionality of the largest incoming parameter.
#Common cases for speed.
maxsize(as::Number...) = ()
maxsize(a::Array) = size(a)
maxsize(r::Number, a::Array) = size(a)
maxsize(a::Array, r::Number) = size(a)
#General case.
maxdims(as::AN...) = max(map(ndims, as)...)
maxsize(as::AN...) = map(i -> max(map(a -> size(a, i), as)...), tuple(1:maxdims(as...)...))
#Include dims argument.
maxsize(dims::(), as::Number...) = ()
maxsize(dims::(Int...), as::Number...) = dims
maxsize(dims::(), as::AN...) = maxsize(as...)
#Deal with distributions with vector arguments.
maxsize{D <: RealParams}(d::Type{D}, dims, as...) = maxsize(dims, as...)
maxsize{D <: VectorParams}(d::Type{D}, dims, as...) = dims
#UnWhitened sample
scall(state::State, d, dims::(Int...), condition::NoCond, ::UnWhitened, sampler::Sampler, params...) = begin
state.counter[end] += 1
isend_ = isend(state, state.counter[end])
if isend_ || isa(state[state.counter[end]], Resample)
dist = d(params...)
val = rand(dist, dims...)
sample = Sample(unwhitened, sampler, val, sum(logpdf(dist, val)))
if isend_
push!(state, sample)
else#if isresample
state[state.counter[end]] = sample
end
end
#val
state[state.counter[end]].value
#state.counter += 1
#if (state.endifs_before_resume > 0) ||
# (state.counter == length(state.trace) + 1)
# dist = d(params...)
# value = rand(dist, dims...)
# insert!(state.trace, state.counter,
# Sample(unwhitened, sampler, value, sum(logpdf(dist, value))))
#elseif (state.trace[state.counter] == resample)
# dist = d(params...)
# value = rand(dist, dims...)
# state.trace[state.counter] = Sample(unwhitened, sampler, value, sum(logpdf(dist, value)))
#end
#state.trace[state.counter].logpdf = sum(logpdf(d(params...), state.trace[state.counter].value))
#@assert size(state.trace[state.counter].value) == dims
#state.trace[state.counter].value
end
|
module OrthPolys
using SparseArrays
using LinearAlgebra: dot
import ACE
import ACE: evaluate!, evaluate_d!, fltype, read_dict, write_dict,
alloc_B, alloc_dB, transform, transform_d, inv_transform,
ACEBasis, ScalarACEBasis
using ACE.Transforms: DistanceTransform
import Base: ==
export transformed_jacobi
# this is a hack to prevent a weird compiler error that I don't understand
# at all yet
___f___(D::Dict) = (@show D)
function _fcut_(pl, tl, pr, tr, t)
if (pl > 0 && t < tl) || (pr > 0 && t > tr)
return zero(t)
end
return (t - tl)^pl * (t - tr)^pr
end
function _fcut_d_(pl, tl, pr, tr, t)
if (pl > 0 && t < tl) || (pr > 0 && t > tr)
return zero(t)
end
df = 0.0
if pl > 0; df += pl * (t - tl)^(pl-1) * (t-tr )^pr ; end
if pr > 0; df += pr * (t - tr)^(pr -1) * (t-tl)^pl; end
return df
end
@doc raw"""
`OrthPolyBasis:` defined a basis of orthonormal polynomials in terms of the
recursion coefficients. What is slightly unusual is that the polynomials have
an "envelope". This results in the recursion
```math
\begin{aligned}
J_1(x) &= A_1 (x - x_l)^{p_l} (x - x_r)^{p_r} \\
J_2 &= (A_2 x + B_2) J_1(x) \\
J_{n} &= (A_n x + B_n) J_{n-1}(x) + C_n J_{n-2}(x)
\end{aligned}
```
Orthogonality is achieved with respect to a user-specified distribution, which
can be either continuous or discrete.
TODO: say more on the distribution!
"""
struct OrthPolyBasis{T} <: ScalarACEBasis
# ----------------- the parameters for the cutoff function
pl::Int # cutoff power left
tl::T # cutoff left (transformed variable)
pr::Int # cutoff power right
tr::T # cutoff right (transformed variable)
# ----------------- the recursion coefficients
A::Vector{T}
B::Vector{T}
C::Vector{T}
# ----------------- used only for construction ...
# but useful to have since it defines the notion of orth.
tdf::Vector{T}
ww::Vector{T}
end
fltype(P::OrthPolyBasis{T}) where {T} = T
Base.length(P::OrthPolyBasis) = length(P.A)
==(J1::OrthPolyBasis, J2::OrthPolyBasis) =
all( getfield(J1, sym) == getfield(J2, sym)
for sym in (:pr, :tr, :pl, :tl, :A, :B, :C) )
write_dict(J::OrthPolyBasis{T}) where {T} = Dict(
"__id__" => "ACE_OrthPolyBasis",
"T" => write_dict(T),
"pr" => J.pr,
"tr" => J.tr,
"pl" => J.pl,
"tl" => J.tl,
"A" => J.A,
"B" => J.B,
"C" => J.C
)
OrthPolyBasis(D::Dict, T=read_dict(D["T"])) =
OrthPolyBasis(
D["pl"], D["tl"], D["pr"], D["tr"],
Vector{T}(D["A"]), Vector{T}(D["B"]), Vector{T}(D["C"]),
T[], T[]
)
read_dict(::Val{:ACE_OrthPolyBasis}, D::Dict) = OrthPolyBasis(D)
# rand applied to a J will return a random transformed distance drawn from
# the measure w.r.t. which the polynomials were constructed.
# TODO: allow non-constant weights!
function ACE.rand_radial(J::OrthPolyBasis)
@assert maximum(abs, diff(J.ww)) == 0
return rand(J.tdf)
end
function OrthPolyBasis(N::Integer,
pcut::Integer,
tcut::T,
pin::Integer,
tin::T,
tdf::AbstractVector{T},
ww::AbstractVector{T} = ones(T, length(tdf))
) where {T <: AbstractFloat}
@assert pcut >= 0 && pin >= 0
@assert N > 2
if tcut < tin
tl, tr = tcut, tin
pl, pr = pcut, pin
else
tl, tr = tin, tcut
pl, pr = pin, pcut
end
if minimum(tdf) < tl || maximum(tdf) > tr
@warn("OrthoPolyBasis: t range outside [tl, tr]")
end
A = zeros(T, N)
B = zeros(T, N)
C = zeros(T, N)
# normalise the weights s.t. <1, 1> = 1
ww = ww ./ sum(ww)
# define inner products
dotw = (f1, f2) -> dot(f1, ww .* f2)
# start the iteration
_J1 = _fcut_.(pl, tl, pr, tr, tdf)
a = sqrt( dotw(_J1, _J1) )
A[1] = 1/a
J1 = A[1] * _J1
# a J2 = (t - b) J1
b = dotw(tdf .* J1, J1)
_J2 = (tdf .- b) .* J1
a = sqrt( dotw(_J2, _J2) )
A[2] = 1/a
B[2] = -b / a
J2 = (A[2] * tdf .+ B[2]) .* J1
# keep the last two for the 3-term recursion
Jprev = J2
Jpprev = J1
for n = 3:N
# a Jn = (t - b) J_{n-1} - c J_{n-2}
b = dotw(tdf .* Jprev, Jprev)
c = dotw(tdf .* Jprev, Jpprev)
_J = (tdf .- b) .* Jprev -c * Jpprev
a = sqrt( dotw(_J, _J) )
A[n] = 1/a
B[n] = - b / a
C[n] = - c / a
Jprev, Jpprev = _J / a, Jprev
end
return OrthPolyBasis(pl, tl, pr, tr, A, B, C, collect(tdf), collect(ww))
end
alloc_B( J::OrthPolyBasis{T}) where {T} = zeros(T, length(J))
alloc_dB(J::OrthPolyBasis{T}) where {T} = zeros(T, length(J))
# alloc_B( J::OrthPolyBasis{T}, ::Integer) where {T} = zeros(T, length(J))
# alloc_dB(J::OrthPolyBasis{T}, ::Integer) where {T} = zeros(T, length(J))
# # TODO: revisit this to allow type genericity!!!
# alloc_B( J::OrthPolyBasis,
# ::Union{SVector{3, TX}, AbstractVector{SVector{3, TX}}}) where {TX} =
# zeros(TX, length(J))
# alloc_dB( J::OrthPolyBasis,
# ::Union{SVector{3, TX}, AbstractVector{SVector{3, TX}}}) where {TX} =
# zeros(TX, length(J))
# TODO -> should do a type promotion here???
alloc_B( J::OrthPolyBasis, ::TX) where {TX <: Number} = zeros(TX, length(J))
alloc_dB(J::OrthPolyBasis, ::TX) where {TX <: Number} = zeros(TX, length(J))
evaluate_P1(J::OrthPolyBasis, t) =
J.A[1] * _fcut_(J.pl, J.tl, J.pr, J.tr, t)
function evaluate!(P, tmp, J::OrthPolyBasis, t; maxn=length(J))
@assert length(P) >= maxn
P[1] = evaluate_P1(J, t)
if maxn == 1; return P; end
P[2] = (J.A[2] * t + J.B[2]) * P[1]
if maxn == 2; return P; end
@inbounds for n = 3:maxn
P[n] = (J.A[n] * t + J.B[n]) * P[n-1] + J.C[n] * P[n-2]
end
return P
end
function evaluate_d!(dP, tmp, J::OrthPolyBasis, t; maxn=length(J))
@assert maxn <= length(dP)
P1 = J.A[1] * _fcut_(J.pl, J.tl, J.pr, J.tr, t)
dP[1] = J.A[1] * _fcut_d_(J.pl, J.tl, J.pr, J.tr, t)
if maxn == 1; return dP; end
α = J.A[2] * t + J.B[2]
P2 = α * P1
dP[2] = α * dP[1] + J.A[2] * P1
if maxn == 2; return dP; end
@inbounds for n = 3:maxn
α = J.A[n] * t + J.B[n]
P3 = α * P2 + J.C[n] * P1
P2, P1 = P3, P2
dP[n] = α * dP[n-1] + J.C[n] * dP[n-2] + J.A[n] * P1
end
return dP
end
function evaluate_ed!(P, dP, tmp, J::OrthPolyBasis, t; maxn=length(J))
@assert maxn <= min(length(P), length(dP))
P[1] = J.A[1] * _fcut_(J.pl, J.tl, J.pr, J.tr, t)
dP[1] = J.A[1] * _fcut_d_(J.pl, J.tl, J.pr, J.tr, t)
if maxn == 1; return dP; end
α = J.A[2] * t + J.B[2]
P[2] = α * P[1]
dP[2] = α * dP[1] + J.A[2] * P[1]
if maxn == 2; return dP; end
@inbounds for n = 3:maxn
α = J.A[n] * t + J.B[n]
P[n] = α * P[n-1] + J.C[n] * P[n-2]
dP[n] = α * dP[n-1] + J.C[n] * dP[n-2] + J.A[n] * P[n-1]
end
return dP
end
"""
`discrete_jacobi(N; pcut=0, tcut=1.0, pin=0, tin=-1.0, Nquad = 1000)`
A utility function to generate a jacobi-type basis
"""
function discrete_jacobi(N; pcut=0, tcut=1.0, pin=0, tin=-1.0, Nquad = 1000)
tl, tr = minmax(tin, tcut)
dt = (tr - tl) / Nquad
tdf = range(tl + dt/2, tr - dt/2, length=Nquad)
return OrthPolyBasis(N, pcut, tcut, pin, tin, tdf)
end
# ----------------------------------------------------------------
# Transformed Polynomials Basis
# ----------------------------------------------------------------
struct TransformedPolys{T, TT, TJ} <: ScalarACEBasis
J::TJ # the actual basis
trans::TT # coordinate transform
rl::T # lower bound r
ru::T # upper bound r = rcut
end
==(J1::TransformedPolys, J2::TransformedPolys) = (
(J1.J == J2.J) &&
(J1.trans == J2.trans) &&
(J1.rl == J2.rl) &&
(J1.ru == J2.ru) )
TransformedPolys(J, trans, rl, ru) =
TransformedPolys(J, trans, rl, ru)
write_dict(J::TransformedPolys) = Dict(
"__id__" => "ACE_TransformedPolys",
"J" => write_dict(J.J),
"rl" => J.rl,
"ru" => J.ru,
"trans" => write_dict(J.trans)
)
TransformedPolys(D::Dict) =
TransformedPolys(
read_dict(D["J"]),
read_dict(D["trans"]),
D["rl"],
D["ru"]
)
read_dict(::Val{:SHIPs_TransformedPolys}, D::Dict) =
read_dict(Val{:ACE_TransformedPolys}(), D)
read_dict(::Val{:ACE_TransformedPolys}, D::Dict) = TransformedPolys(D)
Base.length(J::TransformedPolys) = length(J.J)
fltype(P::TransformedPolys{T}) where {T} = T
function ACE.rand_radial(J::TransformedPolys)
t = ACE.rand_radial(J.J)
return inv_transform(J.trans, t)
end
cutoff(J::TransformedPolys) = J.ru
alloc_B( J::TransformedPolys, args...) = alloc_B(J.J, args...)
alloc_dB(J::TransformedPolys) = alloc_dB(J.J)
alloc_dB(J::TransformedPolys, N::Integer) = alloc_dB(J.J)
function evaluate!(P, tmp, J::TransformedPolys, r; maxn=length(J))
# transform coordinates
t = transform(J.trans, r)
# evaluate the actual polynomials
evaluate!(P, nothing, J.J, t; maxn=maxn)
return P
end
function evaluate_d!(dP, tmp, J::TransformedPolys, r; maxn=length(J))
# transform coordinates
t = transform(J.trans, r)
dt = transform_d(J.trans, r)
# evaluate the actual Jacobi polynomials + derivatives w.r.t. x
evaluate_d!(dP, nothing, J.J, t, maxn=maxn)
@. dP *= dt
return dP
end
function evaluate_ed!(P, dP, tmp, J::TransformedPolys, r; maxn=length(J))
# transform coordinates
t = transform(J.trans, r)
dt = transform_d(J.trans, r)
# evaluate the actual Jacobi polynomials + derivatives w.r.t. x
evaluate_d!(P, dP, nothing, J.J, t, maxn=maxn)
@. dP *= dt
return dP
end
"""
`transformed_jacobi(maxdeg, trans, rcut, rin = 0.0; kwargs...)` : construct
a `TransformPolys` basis with an inner polynomial basis of `OrthPolys` type.
* `maxdeg` : maximum degree
* `trans` : distance transform; normally `PolyTransform(...)`
* `rin, rcut` : inner and outer cutoff
**Keyword arguments:**
* `pcut = 2` : cutoff parameter
* `pin = 0` : inner cutoff parameter
* `Nquad = 1000` : number of quadrature points
"""
function transformed_jacobi(maxdeg::Integer,
trans::DistanceTransform,
rcut::Real, rin::Real = 0.0;
kwargs...)
J = discrete_jacobi(maxdeg; tcut = transform(trans, rcut),
tin = transform(trans, rin),
pcut = 2,
kwargs...)
return TransformedPolys(J, trans, rin, rcut)
end
# ------------- MORE FUNCTIONALITY -------------
# include("products.jl");
end
|
@enum Frame IncidentFrame TargetFrame
@enum Orientation FixedOrientation RandomOrientation
"""
A spherical particle.
$(FIELDS)
"""
Base.@kwdef struct Sphere
"Radius of the sphere."
r::Float64
"x coordinate of the sphere."
x::Float64
"y coordinate of the sphere."
y::Float64
"z coordinate of the sphere."
z::Float64
"Complex refractive index of the sphere. Default is `1.0`."
m::ComplexF64 = 1.0
"Complex chiral factor of the sphere. Default is `0.0`."
β::ComplexF64 = 0.0
"The T matrix file specifying the scattering properties of the sphere. Default is `\"\"` (empty)."
t_matrix::String = ""
end
"""
A horizontally infinite medium layer with certain thickness.
$(FIELDS)
"""
Base.@kwdef struct Layer
"Thickness of the layer. Default is `0.0`."
d::Float64 = 0.0
"Complex refractive index of the layer. Default is `1.0`."
m::ComplexF64 = 1.0
"Complex chiral factor of the layer. Default is `0.0`."
β::ComplexF64 = 0.0
end
"""
Configuration for an STMM run.
$(FIELDS)
"""
Base.@kwdef struct STMMConfig
"The folder for storing intermediate results. Default is `\"\"`, which means a temporary folder will be created inside the current directory and be used as the working directory."
working_directory::String = ""
"The number of processes to be initiated. Default is `1`."
number_processors::Int = 1
"Name of the output file. Default is `\"mstm.out\"`."
output_file::String = "mstm.out"
"Name of the file for storing run information. Default is `\"mstm.run\"`."
run_print_file::String = "mstm.run"
"[**MSTM v3**] Rotate the target about the target coordinate frame using a z-y-z specified Euler angle. Default is `(0.0, 0.0, 0.0)`."
target_euler_angles_deg::NTuple{3,Float64} = (0.0, 0.0, 0.0)
"""
[**MSTM v3**, **MSTM v4**] Convergence criterion for determining the truncation order for the wave function expansions for each sphere. Default is `1e-6`.
> Can also be set as a negative integer `-L` to force all sphere expansions to be truncated at `L`-th order.
"""
mie_epsilon::Float64 = 1e-6
"[**MSTM v3**, **MSTM v4**] Convergence criterion for estimating the maximum order of the T matrix for the cluster. Default is `1e-6`."
translation_epsilon::Float64 = 1e-6
"[**MSTM v3**, **MSTM v4**] Error criterion for the biconjugate gradient iterative solver. Default is `1e-8`."
solution_epsilon::Float64 = 1e-8
"[**MSTM v4**] The maximum truncation degree of the T matrix. This is needed to mostly to keep the code from crashing due to memory allocation limits. Default is `120`."
max_t_matrix_order::Int = 120
"""
[**MSTM v3**] Convergence criterion for T matrix solution. Default is `1e-7`.
> MSTM v4 should also support this option, but it is not yet implemented.
"""
t_matrix_epsilon::Float64 = 1e-7
"[**MSTM v3**, **MSTM v4**] The maximum number of iterations attempted to reach a solution. Default is `5000`."
max_iterations::Int64 = 5000
"""
[**MSTM v3**, **MSTM v4**] `= false`, the near field translation matrices are calculated during iteration and
not stored in memory; `= true`, near field matrices are calculated prior to the solution and stored in memory.
Storing the matrices in memory results in some improvement in execution time, yet the amount of memory used
vs. the resources available is not checked. Use this option at your own peril. Default is `false`.
"""
store_translation_matrix::Bool = false
"""
[**MSTM v3**] The number of processors to be used on parallel platform runs to calculate the
expansion coefficients for the random orientation scattering matrix. The actual number of processors
used during this step will be the minimum of the total number of processors for the run (the MPI size)
and sm_number_processors. Default is `1`.
"""
sm_number_processors::Int64 = 1
"""
[**MSTM v3**] The threshold for the translation from near-field calculation to far-field calculation.
- A value larger than the maximum sphere-to-sphere ``kr`` (i.e., a sufficiently large number, say 1e6) causes all spheres to belong to the near field set.
- A value smaller than the minimum sphere-to-sphere ``kr`` (i.e., zero) causes all spheres to belong to the far field set.
- A negative value enables the automatic criterion:
```math
kr_{i-j}\\le\\left[\\frac{1}{2}(L_i+L_j)^2\\right]
```
Default is `1e6`, which means all spheres are considered to be within each other's near field.
"""
near_field_translation_distance::Float64 = 1e6
"""
[**MSTM v3**] The maximum number of BCGM iterations for a given correction stage. Default is `20`.
Only works when there are some sphere pairs belonging to the far field set.
"""
iterations_per_correction::Int64 = 20
"[**MSTM v3**] The minimum scattering polar angle. Default is `0.0`."
θ_min::Float64 = 0.0
"[**MSTM v3**] The maximum scattering polar angle. Default is `0.0`."
θ_max::Float64 = 180.0
"[**MSTM v3**] The minimum scattering azimuthal angle. Default is `0.0`."
ϕ_min::Float64 = 0.0
"[**MSTM v3**] The maximum scattering azimuthal angle. Default is `0.0`."
ϕ_max::Float64 = 0.0
"[**MSTM v3**, **MSTM v4**] The interval of θ for scattering matrix calculation. Default is `1.0`."
Δθ::Float64 = 1.0
"""
[**MSTM v3**, **MSTM v4**] This selects the reference coordinate frame upon which the scattering angles
are based.
- `IncidentFrame`, the frame is based on the incident field so that `θ = 0` is the forward scattering direction (i.e., the direction of incident field propagation) and `θ = β, φ = 180` is the target z axis direction.
- `TargetFrame`, the frame is based on the target frame so that `θ = 0`` corresponds to the target z axis and `θ = β, φ = α`` is the incident field direction .false. Random orientation calculations force this option.
"""
frame::Frame = TargetFrame
"[**MSTM v3**, **MSTM v4**] Whether or not to normalize the scattering matrix. Default is `true`."
normalize_scattering_matrix::Bool = true
"[**MSTM v3**, **MSTM v4**] Whether or not to take azimuthal average for fixed orientation calculations. Default is `false`."
azimuthal_average::Bool = false
"""
[**MSTM v3**, **MSTM v4**] Dimensionless inverse width CB, at the focal point, of an incident Gaussian
profile beam. Setting to `0`` selects plane wave incidence. The localized approximation used to
represent the Gaussian beam is accurate for CB ≤ 0.2. Default is `0.0` (plane wave).
"""
gaussian_beam_constant::Float64 = 0.0
"""
[**MSTM v3**, **MSTM v4**] x, y, and z coordinates of the focal point of the Gaussian beam, relative to
the origin defined by `spheres`. Default is `(0.0, 0.0, 0.0)`.
"""
gaussian_beam_focal_point::NTuple{3,Float64} = (0.0, 0.0, 0.0)
"""
[**MSTM v3**, **MSTM v4**]
- Use `FixedOrientation` for a fixed orientation calculation.
- Use `RandomOrientation` for a random orientation calculation.
Default is `FixedOrientation`.
"""
orientation::Orientation = FixedOrientation
"[**MSTM v4**] Use Monte Carlo integration instead of analytical average. Default is `false`."
use_monte_carlo_integration::Bool = false
"[**MSTM v4**] Number of directions used for Monte Carlo integration. Works only when `use_monte_carlo_integration = true`. Default is `100`."
number_incident_directions::Int = 100
"The azimuthal angle (in degrees) of the incident wave. Default is `0.0`."
α::Float64 = 0.0
"The polar angle (in degrees) of the incident wave. Default is `0.0`."
β::Float64 = 0.0
"[**MSTM v4**] Whether or not to calculate the scattering matrix. Default is `true`."
calculate_scattering_matrix::Bool = true
"""
[**MSTM v3**] Whether or not to calculate the scattering oefficients. Default is `true`.
When `= false`, the scattering coefficients will be read from the file specified by
`scattering_coefficient_file`.
"""
calculate_scattering_coefficients::Bool = true
"""
[**MSTM v3**] File name for the scattering coefficient file. Default is `\"mstm.sca\"`.
- When `calculate_scattering_coefficients = false`, the scattering coefficients will be read from this file.
- When `calculate_scattering_coefficients = true`, the scattering coefficients will be written to this file.
"""
scattering_coefficient_file::String = "mstm.scat"
"[**MSTM v4**] Whether or not to use the FFT-based accelerated algorithm. Default is `false`."
use_fft_translation::Bool = false
"""
[**MSTM v4**]
This determines the grid size ``d`` of the cubic lattice used in the algorithm. The
formula is:
```math
d=\\left(\\frac{V_S}{cN_{s,ext}}\\right)^{1/3}
```
where ``V_S`` is the dimensionless total volume of the external spheres and ``c`` is `cell_volume_fraction`.
The optimum value is usually where the total number of nodes is close to the total number of external
spheres NS,ext. Setting `cell_volume_fraction = 0` will automate the setting of d using an estimate of
the sphere volume fraction. Default is `0.0`. Works only when `use_fft_translation = true`.
"""
cell_volume_fraction::Float64 = 0.0
"""
[**MSTM v4**]
Truncation degree for the node–based expansions of the scattered field. Set
`node_order = −L`, where `L` is a positive integer, will set the node order to `ceil(d) + L`.
Default is `-1`. Works only when `use_fft_translation = true`.
"""
node_order::Int = -1
"""
[**MSTM v4**] `= 0` will have the scattering matrix printed at a range of polar angles
(θ), with angular increment given in degrees by `Δθ`. The scattering plane
coincides with the incident azimuth plane. The limits on θ depend on the number of plane boundaries
NB. scattering_map_model= 1 will print the scattering matrix in a pair (cosθ > 0, < 0) of 2D
arrays, with coordinates `kx = sinθcosφ`, `ky = sinθsinφ`. The number of points on each axis is given
by `scattering_map_dimension`. Default is `0`, and random orientation calculations force `0`.
"""
scattering_map_model::Int = 0
"""
[**MSTM v4**] The number of points on each axis. Default is `15`. Works only when `scattering_map_model = 1`.
"""
scattering_map_dimension::Int = 15
"[**MSTM v3**] Whether or not to print each iteration's error in the run print file. Default is `true`."
track_iterations::Bool = true
"[**MSTM v3**, **MSTM v4**] Whether or not to calculate the near field. Default is `false`."
calculate_near_field::Bool = false
"[**MSTM v3**] Coordinate of the near field plane. `1` = y-z, `2` = z-x, `3` = x-y. Default is `1`."
near_field_plane_coord::Int64 = 1
"""
[**MSTM v3**] Position of the near field plane.
- When `near_field_plane_coord = 1`, this is the x-coordinate.
- When `near_field_plane_coord = 2`, this is the y-coordinate.
- When `near_field_plane_coord = 3`, this is the z-coordinate.
Default is `0.0`.
"""
near_field_plane_position::Float64 = 0.0
"""
[**MSTM v3**] Rectangle region of the near field plane.
- When passing `(ΔX, ΔY)`, the actual region would be `(X_min-ΔX, X_max+ΔX) x (Y_min-ΔY, Y_max+ΔY)`, where `X_min`, `X_max`,`Y_min` and `Y_max` are automatically calculated.
- When passing `(X_min, Y_min, X_max, Y_max)`, the region would be used as it is.
Default is `(0.0, 0.0)`.
"""
near_field_plane_vertices::Union{NTuple{2,Float64},NTuple{4,Float64}} = (0.0, 0.0)
"[**MSTM v4**] The minimum x coordinate of the near field calculation region. Default is `0.0`."
near_field_x_min::Float64 = 0.0
"[**MSTM v4**] The maximum x coordinate of the near field calculation region. Default is `0.0`."
near_field_x_max::Float64 = 0.0
"[**MSTM v4**] The minimum y coordinate of the near field calculation region. Default is `0.0`."
near_field_y_min::Float64 = 0.0
"[**MSTM v4**] The maximum y coordinate of the near field calculation region. Default is `0.0`."
near_field_y_max::Float64 = 0.0
"[**MSTM v4**] The minimum z coordinate of the near field calculation region. Default is `0.0`."
near_field_z_min::Float64 = 0.0
"[**MSTM v4**] The maximum z coordinate of the near field calculation region. Default is `0.0`."
near_field_z_max::Float64 = 0.0
"[**MSTM v3**, **MSTM v4**] The spacial step size of the grid points. Default is `0.1`."
near_field_step_size::Float64 = 0.1
"""
[**MSTM v4**] Controls where the incident field appears in the calculation results; `= 1`
is the standard model, where the external field is = scattered + incident and the field
inside the spheres is calculated from the internal field expansions; `≠ 1` has the external
field due solely to the scattered field, and the field inside the particles is now
internal-incident. Default is `1`.
"""
near_field_calculation_model::Int = 1
"""
[**MSTM v3**] A specific polarization state of the incident field is needed to calculate the near
field. The field is taken to be linearly polarized, with a polarization angle of `γ` relative to the k–z
plane. When `β = 0`, `γ` becomes the azimuth angle of the incident electric field vector relative to the
cluster coordinate system. Default is `0.0`.
"""
polarization_angle_deg::Float64 = 0.0
"""
[**MSTM v4**] Whether or not to enable an accelerated algorithm for calculation of field value.
Default is `true`.
"""
store_surface_vector::Bool = true
"""
[**MSTM v4**] Size of the grid used for re–expansion of fields resulting from plane
boundary and periodic lattice interactions. Default is `5.0`. Experiment with this
if your calculations are taking too long. Only works when `store_surface_vector = true`.
"""
near_field_expansion_spacing::Float64 = 5.0
"""
[**MSTM v4**] Expansion truncation order used for the grid re–expansion of the secondary
field, per the above option. Should scale with near_field_expansion_spacing following a
Mie–type criteria. The bigger the value, the more accurate the results, but the slower the
calculations and the greater the memory demands. Default is `10`. Only works when
`store_surface_vector = true`.
"""
near_field_expansion_order::Int = 10
"File name for the near field output. Default is `\"mstm.nf\"`."
near_field_output_file::String = "mstm.nf"
"""
[**MSTM v3**] The incident field component for the near field calculations -- for either the plane
wave or Gaussian beam models –- is calculated using a single, regular VSWF expansion centered about
the beam focal point. The plane wave epsilon is a convergence criterion for this expansion. Default is
`1e-4`.
"""
plane_wave_epsilon::Float64 = 1e-4
"""
[**MSTM v3**] Option to calculate the T matrix or use an exisiting T matrix file. Default is `true`,
which calculates the T matrix.
"""
calculate_t_matrix::Bool = true
"""
[**MSTM v3**]
- When `calculate_t_matrix = true`, this is the file name for the T matrix output.
- When `calculate_t_matrix = false`, this is the file name for reading the T matrix from.
Default is `\"mstm.tm\"`.
"""
t_matrix_file::String = "mstm.tm"
"""
[**MSTM v3**, **MSTM v4**] Medium layers.
- For **MSTM v3**, only the refractive index and chiral factor of the first layer will be used. Thickness is ignored.
- For **MSTM v4**, the first layer locates at `z=0` and extends to `-∞`. The last layer extends to `+∞`. The thickness of the first and the last layer is ignored.
"""
layers::Vector{Layer} = [Layer()]
"[**MSTM v3**, **MSTM v4**] Spheres."
spheres::Vector{Sphere} = Sphere[]
"[**MSTM v4**] When `periodic = true`, the spheres will be considered to construct a periodic lattice in the x-y plane. Note that periodic lattice is incompatible with random orientation."
periodic::Bool = false
"[**MSTM v4**] When `periodic = true`, this option sets the size of the periodic lattice. The cell size will be automatically enlarged if it cannot contain all the spheres."
cell_size::Tuple{Float64,Float64} = (0.0, 0.0)
end
"""
Helper function for building a configuration on basis of an existing configuration.
$(SIGNATURES)
"""
function STMMConfig(original::STMMConfig; kwargs...)
dict = Dict(key => getfield(original, key) for key in propertynames(original))
for (key, value) in kwargs
dict[key] = value
end
return STMMConfig(; dict...)
end
export Orientation, FixedOrientation, RandomOrientation
export Frame, IncidentFrame, TargetFrame
export Sphere, Layer, STMMConfig
|
columnbuttons = Observable{Any}(dom"div"())
plt = Observable{Any}()
function makebuttons(ph)
prop = propertynames(ph)[5:end-3] #Removes name,x,y,z and ux,uy,uz
propnm = [s for s=string.(prop)]
buttons = button.(propnm)
for (btn, key) in zip(reverse(buttons), reverse(prop))
map!(t -> begin
@manipulate for t0_ms = range(0,dur(seq),5)*1e3
plot_phantom_map(ph, key; t0=t0_ms, darkmode)
end
end
, plt, btn)
end
dom"div"(hbox(buttons))
end
map!(makebuttons, columnbuttons, pha_obs)
ui = dom"div"(vbox(columnbuttons, plt))
content!(w, "div#content", ui)
|
@testset "Dual numbers" begin
f(x,y) = x[1]^2+y[1]^2
g(param) = Optim.minimum(optimize(x->f(x,param), -1,1))
@test ForwardDiff.gradient(g, [1.0]) == [2.0]
end
|
# Direct minimization of the energy
using Optim
using LineSearches
# This is all a bit annoying because our ψ is represented as ψ[k][G,n], and Optim accepts
# only dense arrays. We do a bit of back and forth using custom `pack` (ours -> optim's) and
# `unpack` (optim's -> ours) functions
# Orbitals inside each kblock must be kept orthogonal: the
# project_tangent and retract work per kblock
struct DMManifold <: Optim.Manifold
Nk::Int
unpack::Function
end
function Optim.project_tangent!(m::DMManifold, g, x)
g_unpack = m.unpack(g)
x_unpack = m.unpack(x)
for ik = 1:m.Nk
Optim.project_tangent!(Optim.Stiefel(),
g_unpack[ik],
x_unpack[ik])
end
g
end
function Optim.retract!(m::DMManifold, x)
x_unpack = m.unpack(x)
for ik = 1:m.Nk
Optim.retract!(Optim.Stiefel(), x_unpack[ik])
end
x
end
# Array of preconditioners
struct DMPreconditioner
Nk::Int
Pks::Vector # Pks[ik] is the preconditioner for k-point ik
unpack::Function
end
function LinearAlgebra.ldiv!(p, P::DMPreconditioner, d)
p_unpack = P.unpack(p)
d_unpack = P.unpack(d)
for ik = 1:P.Nk
ldiv!(p_unpack[ik], P.Pks[ik], d_unpack[ik])
end
p
end
function LinearAlgebra.dot(x, P::DMPreconditioner, y)
x_unpack = P.unpack(x)
y_unpack = P.unpack(y)
sum(dot(x_unpack[ik], P.Pks[ik], y_unpack[ik])
for ik = 1:P.Nk)
end
function precondprep!(P::DMPreconditioner, x)
x_unpack = P.unpack(x)
for ik = 1:P.Nk
precondprep!(P.Pks[ik], x_unpack[ik])
end
P
end
"""
Computes the ground state by direct minimization. `kwargs...` are
passed to `Optim.Options()`. Note that the resulting ψ are not
necessarily eigenvectors of the Hamiltonian.
"""
direct_minimization(basis::PlaneWaveBasis; kwargs...) = direct_minimization(basis, nothing; kwargs...)
function direct_minimization(basis::PlaneWaveBasis{T}, ψ0;
prec_type=PreconditionerTPA,
optim_solver=Optim.LBFGS, tol=1e-6, kwargs...) where T
if mpi_nprocs() > 1
# need synchronization in Optim
error("Direct minimization with MPI is not supported yet")
end
model = basis.model
@assert model.temperature == 0 # temperature is not yet supported
filled_occ = filled_occupation(model)
n_spin = model.n_spin_components
n_bands = div(model.n_electrons, n_spin * filled_occ, RoundUp)
Nk = length(basis.kpoints)
if ψ0 === nothing
ψ0 = [ortho_qr(randn(Complex{T}, length(G_vectors(basis, kpt)), n_bands))
for kpt in basis.kpoints]
end
occupation = [filled_occ * ones(T, n_bands) for ik = 1:Nk]
# we need to copy the reinterpret array here to not raise errors in Optim.jl
# TODO raise this issue in Optim.jl
pack(ψ) = copy(reinterpret_real(pack_ψ(ψ)))
unpack(x) = unpack_ψ(reinterpret_complex(x), size.(ψ0))
# this will get updated along the iterations
H = nothing
energies = nothing
ρ = nothing
# computes energies and gradients
function fg!(E, G, ψ)
ψ = unpack(ψ)
ρ = compute_density(basis, ψ, occupation)
energies, H = energy_hamiltonian(basis, ψ, occupation; ρ=ρ)
# The energy has terms like occ * <ψ|H|ψ>, so the gradient is 2occ Hψ
if G !== nothing
G = unpack(G)
for ik = 1:Nk
mul!(G[ik], H.blocks[ik], ψ[ik])
G[ik] .*= 2*filled_occ
end
end
energies.total
end
manif = DMManifold(Nk, unpack)
Pks = [prec_type(basis, kpt) for kpt in basis.kpoints]
P = DMPreconditioner(Nk, Pks, unpack)
kwdict = Dict(kwargs)
optim_options = Optim.Options(; allow_f_increases=true, show_trace=true,
x_tol=pop!(kwdict, :x_tol, tol),
f_tol=pop!(kwdict, :f_tol, -1),
g_tol=pop!(kwdict, :g_tol, -1), kwdict...)
res = Optim.optimize(Optim.only_fg!(fg!), pack(ψ0),
optim_solver(P=P, precondprep=precondprep!, manifold=manif,
linesearch=LineSearches.BackTracking()),
optim_options)
# return copy to ensure we have a plain array
ψ = deepcopy(unpack(res.minimizer))
# Final Rayleigh-Ritz (not strictly necessary, but sometimes useful)
eigenvalues = []
for ik = 1:Nk
Hψk = H.blocks[ik] * ψ[ik]
F = eigen(Hermitian(ψ[ik]'Hψk))
push!(eigenvalues, F.values)
ψ[ik] .= ψ[ik] * F.vectors
end
εF = nothing # does not necessarily make sense here, as the
# Aufbau property might not even be true
# We rely on the fact that the last point where fg! was called is the minimizer to
# avoid recomputing at ψ
(ham=H, basis=basis, energies=energies, converged=true,
ρ=ρ, ψ=ψ, eigenvalues=eigenvalues, occupation=occupation, εF=εF, optim_res=res)
end
|
__precompile__()
module SpecialFunctions
using Compat
if VERSION >= v"0.7.0-DEV.1760"
depsfile = joinpath(dirname(@__FILE__), "..", "deps", "deps.jl")
if isfile(depsfile)
include(depsfile)
else
error("SpecialFunctions is not properly installed. Please run " *
"Pkg.build(\"SpecialFunctions\") and restart Julia.")
end
else
using Base.Math: openspecfun
end
if isdefined(Base, :airyai) && VERSION < v"0.7.0-DEV.986" #22763
import Base: airyai, airyaix, airyaiprime, airyaiprimex,
airybi, airybix, airybiprime, airybiprimex,
besselh, besselhx, besseli, besselix, besselj, besselj0, besselj1,
besseljx, besselk, besselkx, bessely, bessely0, bessely1, besselyx,
hankelh1, hankelh1x, hankelh2, hankelh2x,
dawson, erf, erfc, erfcinv, erfcx, erfi, erfinv,
eta, digamma, invdigamma, polygamma, trigamma, zeta,
# deprecated
airy, airyx, airyprime
else
export
airyai,
airyaiprime,
airybi,
airybiprime,
airyaix,
airyaiprimex,
airybix,
airybiprimex,
besselh,
besselhx,
besseli,
besselix,
besselj,
besselj0,
besselj1,
besseljx,
besselk,
besselkx,
bessely,
bessely0,
bessely1,
besselyx,
dawson,
erf,
erfc,
erfcinv,
erfcx,
erfi,
erfinv,
eta,
digamma,
invdigamma,
polygamma,
trigamma,
hankelh1,
hankelh1x,
hankelh2,
hankelh2x,
zeta
end
export sinint,
cosint
include("bessel.jl")
include("erf.jl")
include("sincosint.jl")
include("gamma.jl")
include("deprecated.jl")
end # module
|
__precompile__()
module TMCM3110
export encode_command
function encode_command(m_address, n_command, n_type, n_motor, value)
m_address = UInt8( m_address % (1<<8) )
n_command = UInt8( n_command % (1<<8) )
n_type = UInt8( n_type % (1<<8) )
n_motor = UInt8( n_motor % (1<<8) )
value = Int32( value )
values = [ parse(UInt8, bits(value)[ 1+(8*(i-1)) : 8+(8*(i-1)) ] , 2) for i in 1:4]
checksum = UInt8( (m_address + n_command + n_type + n_motor + sum(values)) % (1<<8) )
tmcl_bytes = [m_address, n_command, n_type, n_motor, values..., checksum]
return tmcl_bytes
end
export decode_reply
function decode_reply(reply)
r_address = UInt8( reply[1] )
m_address = UInt8( reply[2] )
r_status = UInt8( reply[3] )
Int32(r_status) != 100 ? warn(STATUSCODES[Int(r_status)]) : nothing
n_command = UInt8( reply[4] )
values = [ UInt8(value) for value in reply[5:8] ]
r_checksum = UInt8( reply[9] )
checksum = UInt8( (r_address + m_address + r_status + n_command + sum(values)) % (1<<8) )
value = parse( UInt32, "$(bits(values[1]))$(bits(values[2]))$(bits(values[3]))$(bits(values[4]))" , 2 )
value = reinterpret(Int32, value)
return value
end
export STATUSCODES
STATUSCODES = Dict( 100 => "Succesfully executed, no error",
101 => "Command loaded into TMCL program EEPROM",
1 => "Wrong Checksum",
2 => "Invalid command",
3 => "Wrong type",
4 => "Invalid value",
5 => "Configuration EEPROM locked",
6 => "Command not available" )
export COMMAND_NUMBERS
COMMAND_NUMBERS = Dict( 1 => "ROR",
2 => "ROL",
3 => "MST",
4 => "MVP",
5 => "SAP",
6 => "GAP",
7 => "STAP",
8 => "RSAP",
9 => "SGP",
10 => "GGP",
11 => "STGP",
12 => "RSGP",
13 => "RFS",
14 => "SIO",
15 => "GIO",
19 => "CALC",
20 => "COMP",
21 => "JC",
22 => "JA",
23 => "CSUB",
24 => "RSUB",
25 => "EI",
26 => "DI",
27 => "WAIT",
28 => "STOP",
30 => "SCO",
31 => "GCO",
32 => "CCO",
33 => "CALCX",
34 => "AAP",
35 => "AGP",
37 => "VECT",
38 => "RETI",
39 => "ACO" )
export AXIS_PARAMETER
AXIS_PARAMETER = Dict( 0 => "target position",
1 => "actual position",
2 => "target speed",
3 => "actual speed",
4 => "max positioning speed",
5 => "max acceleration",
6 => "abs max current",
7 => "standby current",
8 => "target pos reached",
9 => "ref switch status",
10 => "right limit switch status",
11 => "left limit switch status",
12 => "right limit switch disable",
13 => "left limit switch disable",
130 => "minimum speed",
135 => "actual acceleration",
138 => "ramp mode",
140 => "microstep resolution",
141 => "ref switch tolerance",
149 => "soft stop flag",
153 => "ramp divisor",
154 => "pulse divisor",
160 => "step interpolation enable",
161 => "double step enable",
162 => "chopper blank time",
163 => "chopper mode",
164 => "chopper hysteresis dec",
165 => "chopper hysteresis end",
166 => "chopper hysteresis start",
167 => "chopper off time",
168 => "smartEnergy min current",
169 => "smartEnergy current downstep",
170 => "smartEnergy hysteresis",
171 => "smartEnergy current upstep",
172 => "smartEnergy hysteresis start",
173 => "stallGuard2 filter enable",
174 => "stallGuard2 threshold",
175 => "slope control high side",
176 => "slope control low side",
177 => "short protection disable",
178 => "short detection timer",
179 => "Vsense",
180 => "smartEnergy actual current",
181 => "stop on stall",
182 => "smartEnergy threshold speed",
183 => "smartEnergy slow run current",
193 => "ref. search mode",
194 => "ref. search speed",
195 => "ref. switch speed",
196 => "distance end switches",
204 => "freewheeling",
206 => "actual load value",
208 => "TMC262 errorflags",
209 => "encoder pos",
210 => "encoder prescaler",
212 => "encoder max deviation",
214 => "power down delay" )
export INTERRUPT_VECTORS
INTERRUPT_VECTORS = Dict( 0 => "Timer 0",
1 => "Timer 1",
2 => "Timer 2",
3 => "Target position 0 reached",
4 => "Target position 1 reached",
5 => "Target position 2 reached",
15 => "stallGuard2 axis 0",
16 => "stallGuard2 axis 1",
17 => "stallGuard2 axis 2",
21 => "Deviation axis 0",
22 => "Deviation axis 1",
23 => "Deviation axis 2",
27 => "Left stop switch 0",
28 => "Right stop switch 0",
29 => "Left stop switch 1",
30 => "Right stop switch 1",
31 => "Left stop switch 2",
32 => "Right stop switch 2",
39 => "Input change 0",
40 => "Input change 1",
41 => "Input change 2",
42 => "Input change 3",
43 => "Input change 4",
44 => "Input change 5",
45 => "Input change 6",
46 => "Input change 7",
255 => "Global interrupts" )
end # module
|
using BlossomV
using Metis
using SparseArrays
using LightGraphs: add_edge!
using SimpleWeightedGraphs
using MetaGraphs
using ..Utils
export learn_vtree
#############
# Metis top down method
#############
# Add edge weights to Metis.jl
using Metis: idx_t, ishermitian
struct WeightedGraph
nvtxs::idx_t
xadj::Vector{idx_t}
adjncy::Vector{idx_t}
adjwgt::Vector{idx_t} # edge weights
WeightedGraph(nvtxs, xadj, adjncy, adjwgt) = new(nvtxs, xadj, adjncy, adjwgt)
end
function my_graph(G::SparseMatrixCSC; check_hermitian=true)
if check_hermitian
ishermitian(G) || throw(ArgumentError("matrix must be Hermitian"))
end
N = size(G, 1)
xadj = Vector{idx_t}(undef, N+1)
xadj[1] = 1
adjncy = Vector{idx_t}(undef, nnz(G))
adjncy_i = 0
adjwgt = Vector{idx_t}(undef, nnz(G))
@inbounds for j in 1:N
n_rows = 0
for k in G.colptr[j] : (G.colptr[j+1] - 1)
i = G.rowval[k]
if i != j # don't include diagonal elements
n_rows += 1
adjncy_i += 1
adjncy[adjncy_i] = i
adjwgt[adjncy_i] = G[i, j]
end
end
xadj[j+1] = xadj[j] + n_rows
end
resize!(adjncy, adjncy_i)
resize!(adjwgt, adjncy_i)
return WeightedGraph(idx_t(N), xadj, adjncy, adjwgt)
end
function my_partition(G::WeightedGraph, nparts::Integer)
part = Vector{Metis.idx_t}(undef, G.nvtxs)
edgecut = fill(idx_t(0), 1)
# if alg === :RECURSIVE
Metis.METIS_PartGraphRecursive(G.nvtxs, idx_t(1), G.xadj, G.adjncy, C_NULL, C_NULL, G.adjwgt,
idx_t(nparts), C_NULL, C_NULL, Metis.options, edgecut, part)
# elseif alg === :KWAY
# Metis.METIS_PartGraphKway(G.nvtxs, idx_t(1), G.xadj, G.adjncy, C_NULL, C_NULL, G.adjwgt,
# idx_t(nparts), C_NULL, C_NULL, Metis.options, edgecut, part)
# else
# throw(ArgumentError("unknown algorithm $(repr(alg))"))
# end
return part
end
my_partition(G, nparts) = my_partition(my_graph(G), nparts)
"Metis top down method"
function metis_top_down(data::DataFrame;α)
δINT = 999999
MIN_INT = 1
MAX_INT = δINT + MIN_INT
weight=ones(Float64, num_examples(data))
(_, mi) = mutual_information(data, weight; α=α)
vars = Var.(collect(1:num_features(data)))
info = to_long_mi(mi, MIN_INT, MAX_INT)
function f(leafs::Vector{PlainVtreeLeafNode})::Tuple{Vector{PlainVtreeLeafNode}, Vector{PlainVtreeLeafNode}}
var2leaf = Dict([(variable(x),x) for x in leafs])
vertices = sort(variable.(leafs))
sub_context = info[vertices, vertices]
len = length(vertices)
for i in 1 : len
sub_context[i, i] = 0
end
g = convert(SparseMatrixCSC, sub_context)
partition = my_partition(my_graph(g), 2)
subsets = (Vector{PlainVtreeLeafNode}(), Vector{PlainVtreeLeafNode}())
for (index, p) in enumerate(partition)
push!(subsets[p], var2leaf[vertices[index]])
end
return subsets
end
return f
end
#############
# Blossom bottom up method
#############
"Blossom bottom up method, vars are not used"
function blossom_bottom_up(data::DataFrame;α)
weight = ones(Float64, num_examples(data))
(_, mi) = mutual_information(data, weight; α)
vars = Var.(collect(1:num_features(data)))
info = round.(Int64, 1000001 .+ to_long_mi(mi, -1, -1000000))
function f(leaf::Vector{<:Vtree})
variable_sets = collect.(variables.(leaf))
# even number of nodes, use blossomv alg
function blossom_bottom_up_even!(variable_sets)::Tuple{Vector{Tuple{Var, Var}}, Int64}
# 1. calculate pMI
pMI = set_mutual_information(info, variable_sets)
pMI = round.(Int64, pMI)
# 2. solve by blossomv alg
len = length(variable_sets)
m = Matching(len)
for i in 1 : len, j in i + 1 : len
add_edge(m, i - 1, j - 1, pMI[i, j]) # blossomv index start from 0
end
solve(m)
all_matches = Set{Tuple{Var, Var}}()
for v in 1 : len
push!(all_matches, order_asc(v, get_match(m, v - 1) + 1))
end
# 3. calculate scores, map index to var
all_matches = Vector(collect(all_matches))
score = 0
for i in 1 : length(all_matches)
(x, y) = all_matches[i]
score += pMI[x, y]
end
return (all_matches, score)
end
# odd number of nodes, try every 2 combinations
function blossom_bottom_up_odd!(variable_sets)
# try all len - 1 conditions, find best score(minimun cost)
(best_matches, best_score) = (nothing, typemax(Int64))
len = length(variable_sets)
for index in 1 : len
indices = [collect(1:index-1);collect(index+1:len)]
(matches, score) = blossom_bottom_up_even!(variable_sets[indices])
if score < best_score
(best_matches, best_score) = ([[(indices[l], indices[r]) for (l,r) in matches];[index]], score)
end
end
return (best_matches, best_score)
end
if length(variable_sets) % 2 == 0
(matches, score) = blossom_bottom_up_even!(variable_sets)
else
(matches, score) = blossom_bottom_up_odd!(variable_sets)
end
pairs = []
for x in matches
if x isa Tuple
push!(pairs, (leaf[x[1]], leaf[x[2]]))
else
push!(pairs, leaf[x])
end
end
return pairs
end
return f
end
function learn_vtree(data::DataFrame; α=0.0, alg=:bottomup)
if alg==:topdown
PlainVtree(num_features(data), :topdown; f=metis_top_down(data;α))
elseif alg==:bottomup
PlainVtree(num_features(data), :bottomup; f=blossom_bottom_up(data;α))
elseif alg==:clt
clt = learn_chow_liu_tree(data)
learn_vtree_from_clt(clt, vtree_mode="balanced")
else
error("Vtree learner $(alg) not supported.")
end
end |
# functions for building various standard types of graphs
export Complete, Path, Cycle, RandomGraph, RandomRegular
export RandomTree, code_to_tree
export Grid, Wheel, Cube, BuckyBall
export Petersen, Kneser, Paley, Knight
"""
`Complete(n)` returns a complete graph with `n` vertices `1:n`.
`Complete(n,m)` returns a complete bipartite graph with `n` vertices
in one part and `m` vertices in the other.
`Complete([n1,n2,...,nt])` returns a complete multipartite graph with
parts of size `n1`, `n2`, ..., `nt`.
"""
# Create a complete graph
function Complete(n::Int)
G = IntGraph(n)
for k=1:n-1
for j=k+1:n
add!(G,j,k)
end
end
return G
end
# Create a complete bipartite graph
function Complete(n::Int, m::Int)
G = IntGraph(n+m)
for u=1:n
for v=n+1:n+m
add!(G,u,v)
end
end
return G
end
# Create the complete multipartite graph with given part sizes
function Complete(parts::Array{Int,1})
# check all part sizes are positive
for p in parts
if p < 1
error("All part sizes must be positive")
end
end
n = sum(parts)
G = IntGraph(n)
np = length(parts)
if np < 2
return G
end
# create table of part ranges
ranges = Array(Int,np,2)
ranges[1,1] = 1
ranges[1,2] = parts[1]
for k = 2:np
ranges[k,1] = ranges[k-1,2] + 1
ranges[k,2] = ranges[k,1] + parts[k] - 1
end
# Add all edges between all parts
for i=1:np-1
for j=i+1:np
for u=ranges[i,1]:ranges[i,2]
for v=ranges[j,1]:ranges[j,2]
add!(G,u,v)
end
end
end
end
return G
end
# Create a path graph on n vertices
"""
`Path(n)` creates a path graph with `n` vertices named `1:n`.
`Path(array)` creates a path graph with vertices `array[1]`,
`array[2]`, etc.
"""
function Path(n::Int)
G = IntGraph(n)
for v = 1:n-1
add!(G,v,v+1)
end
return G
end
# Create a path graph from a list of vertices
function Path{T}(verts::Array{T})
G = SimpleGraph{T}()
n = length(verts)
if n==1
add!(G,verts[1])
end
for k = 1:n-1
add!(G,verts[k],verts[k+1])
end
return G
end
# Create a cycle graph on n vertices
function Cycle(n::Int)
if n<3
error("Cycle requires 3 or more vertices")
end
G = Path(n)
add!(G,1,n)
return G
end
# Create the wheel graph on n vertices: a cycle on n-1 vertices plus
# an additional vertex adjacent to all the vertices on the wheel.
"""
`Wheel(n)` creates a wheel graph with `n` vertices. That is, a cycle
with `n-1` vertices `1:(n-1)` all adjacent to a common single vertex,
`n`.
"""
function Wheel(n::Int)
if n < 4
error("Wheel graphs must have at least 4 vertices")
end
G = Cycle(n-1)
for k=1:n-1
add!(G,k,n)
end
return G
end
# Create a grid graph
"""
`Grid(n,m)` creates an `n`-by-`m` grid graph. For other grids, we
suggest `Path(n1)*Path(n2)*Path(n3)` optionally wrapped in
`relabel`. See also: `Cube`.
"""
function Grid(n::Int, m::Int)
G = SimpleGraph{Tuple{Int,Int}}()
# add the vertices
for u=1:n
for v=1:m
add!(G,(u,v))
end
end
#horizontal edges
for u=1:n
for v=1:m-1
add!(G,(u,v),(u,v+1))
end
end
# vertical edges
for v=1:m
for u=1:n-1
add!(G,(u,v),(u+1,v))
end
end
return G
end
# Create an Erdos-Renyi random graph
"""
`RandomGraph(n,p=0.5)` creates an Erdos-Renyi random graph with `n`
vertices and edge probability `p`.
"""
function RandomGraph(n::Int, p::Real=0.5)
G = IntGraph(n)
# guess the size of the edge set to preallocate storage
m = round(Int,n*n*p)+1
# generate the edges
for v=1:n-1
for w=v+1:n
if (rand() < p)
add!(G,v,w)
end
end
end
return G
end
# Generate a random tree on vertex set 1:n. All n^(n-2) trees are
# equally likely.
"""
`RandomTree(n)` creates a random tree on `n` vertices each with
probability `1/n^(n-2)`.
"""
function RandomTree(n::Int)
if n<0 # but we allow n==0 to give empty graph
error("Number of vertices cannot be negative")
end
if n<2
return IntGraph(n)
end
code = [ mod(rand(Int),n)+1 for _ in 1:n-2 ]
return code_to_tree(code)
end
# This is a helper function for RandomTree that converts a Prufer code
# to a tree. No checks are done on the array fed into this function.
function code_to_tree(code::Array{Int,1})
n = length(code)+2
G = IntGraph(n)
degree = ones(Int,n) # initially all 1s
#every time a vertex appears in code[], up its degree by 1
for c in code
degree[c]+=1
end
for u in code
for v in 1:n
if degree[v]==1
add!(G,u,v)
degree[u] -= 1
degree[v] -= 1
break
end
end
end
last = find(degree)
add!(G,last[1],last[2])
return G
end
# Create the Cube graph with 2^n vertices
"""
`Cube(n)` creates the `n`-dimensional cube graph. This graph has `2^n`
vertices named by all possible length-`n` strings of 0s and 1s. Two
vertices are adjacent iff they differ in exactly one position.
"""
function Cube(n::Integer=3)
G = StringGraph()
for u=0:2^n-1
for shift=0:n-1
v = (1<<shift) $ u
add!(G,bin(u,n), bin(v,n))
end
end
return G
end
# Create the BuckyBall graph
"""
`BuckyBall()` returns the Bucky ball graph.
"""
function BuckyBall()
G = IntGraph()
edges = [(1,3), (1,49), (1,60), (2,4), (2,10), (2,59),
(3,4), (3,37), (4,18), (5,7), (5,9), (5,13),
(6,8), (6,10), (6,17), (7,8), (7,21), (8,22),
(9,10), (9,57), (11,12), (11,13), (11,21), (12,28),
(12,48), (13,14), (14,47), (14,55), (15,16), (15,17),
(15,22), (16,26), (16,42), (17,18), (18,41), (19,20),
(19,21), (19,27), (20,22), (20,25), (23,24), (23,32),
(23,35), (24,26), (24,39), (25,26), (25,31), (27,28),
(27,31), (28,30), (29,30), (29,32), (29,36), (30,45),
(31,32), (33,35), (33,40), (33,51), (34,36), (34,46),
(34,52), (35,36), (37,38), (37,41), (38,40), (38,53),
(39,40), (39,42), (41,42), (43,44), (43,47), (43,56),
(44,46), (44,54), (45,46), (45,48), (47,48), (49,50),
(49,53), (50,54), (50,58), (51,52), (51,53), (52,54),
(55,56), (55,57), (56,58), (57,59), (58,60), (59,60),
]
for e in edges
add!(G,e[1],e[2])
end
return G
end
# The Kneser graph Kneser(n,k) has C(n,k) vertices that are the
# k-element subsets of 1:n in which two vertices are adjacent if (as
# sets) they are disjoint. The Petersen graph is Kneser(5,2).
"""
`Kneser(n,m)` creates the Kneser graph whose vertices are all the
`m`-element subsets of `1:n` in which two vertices are adjacent iff
they are disjoint.
"""
function Kneser(n::Int,k::Int)
A = collect(1:n)
vtcs = [Set(v) for v in subsets(A,k)]
G = SimpleGraph{Set{Int}}()
for v in vtcs
add!(G,v)
end
n = length(vtcs)
for i=1:n-1
u = vtcs[i]
for j=i+1:n
v = vtcs[j]
if length(intersect(u,v))==0
add!(G,u,v)
end
end
end
return G
end
# Create the Petersen graph.
"""
`Petersen()` returns the Petersen graph. The vertices are labeled as
the 2-element subsets of `1:5`. Wrap in `relabel` to have vertices
named `1:10`. See also: `Kneser`.
"""
Petersen() = Kneser(5,2)
# Create Paley graphs
"""
`Paley(p)` creates the Paley graph with `p` vertices named
`0:(p-1)`. Here `p` must be a prime with `p%4==1`. Vertices `u` and
`v` are adjacent iff `u-v` is a quadratic residue (perfect square)
modulo `p`.
"""
function Paley(p::Int)
if mod(p,4) != 1 || ~isprime(p)
error("p must be a prime congruent to 1 mod 4")
end
# Quadratic residues mod p
qrlist = unique( [ mod(k*k,p) for k=1:p ] )
G = IntGraph()
for u = 0:p-1
for k in qrlist
v = mod(u+k,p)
add!(G,u,v)
end
end
return G
end
# Called by RandomRegular ... one step
function RandomRegularBuilder(n::Int, d::Int)
# caller has already checked the values of n,d are legit
vlist = randperm(n*d)
G = IntGraph(n*d)
for v=1:2:n*d
add!(G,vlist[v], vlist[v+1])
end
for v = n:-1:1
mushlist = collect( d*(v-1)+1 : v*d )
for k=d-1:-1:1
contract!(G,mushlist[k],mushlist[k+1])
end
end
return relabel(G)
end
"""
`RandomRegular(n,d)` creates a random `d`-regular graph on `n`
vertices. This can take a while especially if the arguments are
large. Call with an optional third argument to activate verbose
progress reports: `RandomRegular(n,p,true)`.
"""
function RandomRegular(n::Int, d::Int, verbose::Bool=false)
# sanity checks
if n<1 || d<1 || (n*d)%2==1
error("n,d must be positive integers and n*d even")
end
if verbose
println("Trying to build ", d, "-regular graph on ",
n, " vertices")
count::Int = 0
end
while true
if verbose
count += 1
println("Attempt ", count)
tic()
end
g = RandomRegularBuilder(n,d)
if verbose
toc();
end
dlist = deg(g)
if dlist[1] == dlist[n]
if verbose
println("Success")
end
return g
end
if verbose
println("Failed; trying again")
end
end
end
"""
`Knight(r::Int=8,c::Int=8)` creates a Knight's Moves graph on a
`r`-by-`c` grid. That is, the vertices of this graph are the squares
of an `r`-by-`c` chess board. Two vertices are adjacent if a Knight
can go from one of these squares to the other in a single move.
"""
function Knight(r::Int=8,c::Int=8)
vtcs = collect(product(1:r,1:c))
G = SimpleGraph{Tuple{Int64,Int64}}()
for v in vtcs
add!(G,v)
end
for v in vtcs
for w in vtcs
xv = collect(v)
xw = collect(w)
z = sort(map(abs,xv - xw))
if z==[1,2]
add!(G,v,w)
end
end
end
return G
end
|
using Sounds
lines, cols = displaysize(stdout)
clear() = join(repeat([""], cols), "\n") |> print
ft(t) = string(round(Int, 1e-6t)) * "s"
file = joinpath(@__DIR__, "piano.wav")
sound = Sound(file)
d = duration(sound)
function progress(p::Int, N = 100)
str = ""
for n in 1:N
str *= n > p ? "░" : "▓"
end
return str
end
interval = 0.5
try
play!(sound)
while isplaying(sound)
t = timepos(sound)
pre = ft(t) * " / " * ft(d)
n = cols - length(pre) - 2
p = floor(Int, n * t / d)
clear()
print(pre, " ", progress(p, n))
sleep(interval)
end
finally
stop!(sound)
end |
@model function form_model(y :: Vector{Float64})
N = length(y)
s = Vector(undef, N)
start ~ Uniform(-1, 1)
s[1] ~ Normal(start, 0.05)
y[1] ~ Normal(s[1], 0.5)
for i ∈ 2:N
s[i] ~ Normal(s[i-1], 0.05)
y[i] ~ Normal(s[i], 0.5)
end
end
function run_form_analysis(games :: Dict{String, Vector{Game}})
results = Dict{String, Pair}()
teams = [team for team ∈ keys(games)]
pbar = Progress(length(teams))
Threads.@threads for team ∈ teams
N = 100
g = NUTS()
samples = sample(form_model(discounted_score.(games[team])), g, N);
s = @pipe describe(group(samples, :s))[1][:, :mean] |> vec
s_σ = @pipe describe(group(samples, :s))[1][:, :std] |> vec
results[team] = Pair(s, s_σ)
next!(pbar)
end
return results
end |
@testset "Scalar product" begin
@test 1v1 ⦿ 2v3 == 0
@test 1v1 ⦿ 2v1 == 2
@test ((1v1 + 2v2) ⦿ (1v1 + 2v2)) == (triplet(SIGNATURE) == (1, 3, 0) ? -3 : 5)
end
|
"""
Base.show(io::IO, a::FlexibilityExpr)
Extend `Base.show` to print flexibility expressions.
"""
function Base.show(io::IO, a::FlexibilityExpr)
# Setup empty case
if length(a.vars) == 0
return print(io, a.constant)
end
# Otherwise get data and parse it
m = a.vars[1].m
flex_data = getflexibilitydata(m)
vars = a.vars
names = []
coeffs = []
for i = 1:length(vars)
push!(coeffs, a.coeffs[i])
var = vars[i]
if isa(var, RecourseVariable)
push!(names, flex_data.recourse_names[var.idx])
elseif isa(var, RandomVariable)
push!(names, flex_data.RVnames[var.idx])
end
end
# Print the expressions to the io
strs = ["$(JuMP.aff_str(JuMP.REPLMode,coeffs[i], true))*$(names[i])" for i in 1:length(a.vars)]
print(io,string(join(strs," + "), " + ", JuMP.aff_str(JuMP.REPLMode, a.constant, true)))
end
"""
JuMP.addconstraint(m::Model, constr::FlexibilityConstraint)
Extend the `JuMP.addconstraint` function to handle `FlexibilityConstraint` types.
"""
function JuMP.addconstraint(m::Model, constr::FlexibilityConstraint)
# Get the data
flex_data = getflexibilitydata(m)
push!(flex_data.flexibility_constraints, constr)
# Add constraint to model here using the flexibility constraint information
expr = constr.flex_expr
sense = constr.sense
#NOTE Look into why these coeffcients get conflated as expressions
flex_coeffs = [expr.coeffs[i].constant for i = 1:length(expr.coeffs)]
flex_vars = expr.vars
# Parse the variable information
flex_vars_jump = []
for var in flex_vars
if isa(var, RecourseVariable)
jump_var = Variable(m, flex_data.recourse_cols[linearindex(var)])
push!(flex_vars_jump, jump_var)
elseif isa(var, RandomVariable)
jump_var = Variable(m, flex_data.RVcols[linearindex(var)])
push!(flex_vars_jump, jump_var)
else
error("Variable type $(typeof(var)) not recognized for constructing constraint")
end
end
# Get non flexibility variable information
state_coeffs = expr.constant.coeffs
state_vars = expr.constant.vars
constant = expr.constant.constant #should be the right hand side of the constraint
# Add constraints to the model using the anonymous variables
all_coeffs = vcat(flex_coeffs,state_coeffs)
all_vars = vcat(flex_vars_jump,state_vars)
if sense == :(<=)
con_reference = @constraint(m, sum(all_coeffs[i]*all_vars[i] for i = 1:length(all_coeffs)) + constant <= 0)
elseif sense == :(>=)
con_reference = @constraint(m, sum(all_coeffs[i]*all_vars[i] for i = 1:length(all_coeffs)) + constant >= 0)
elseif sense == :(==)
con_reference = @constraint(m, sum(all_coeffs[i]*all_vars[i] for i = 1:length(all_coeffs)) + constant == 0)
else
error("Constraint sense $(sense) not recognized")
end
return ConstraintRef{JuMP.Model,FlexibilityConstraint}(m, length(flex_data.flexibility_constraints))
end
"""
JuMP.show(io::IO,c::FlexibilityConstraint)
Extend the `JuMP.show` function to handle `FlexibilityConstraint` types.
"""
function JuMP.show(io::IO,c::FlexibilityConstraint)
s = "$(string(c.flex_expr)) $(c.sense) 0"
return print(io,s)
end
|
include("ITI_additional.jl")
"""
Computes a global solution for a model via backward Improved Time Iteration. The algorithm is applied to the residuals of the arbitrage equations. The idea is to solve the system G(x) = 0 as a big nonlinear system in x, where the inverted Jacobian matrix is approximated by an infinite sum (Neumann series).
If the initial guess for the decision rule is not explicitly provided, the initial guess is provided by `ConstantDecisionRule`.
If the stochastic process for the model is not explicitly provided, the process is taken from the default provided by the model object, `model.exogenous`
# Arguments
* `model::NumericModel`: Model object that describes the current model environment.
* `dprocess`: The stochastic process associated with the exogenous variables in the model.
* `init_dr`: Initial guess for the decision rule.
* `maxbsteps` Maximum number of backsteps.
* `verbose` Set "true" if you would like to see the details of the infinite sum convergence.
* `smaxit` Maximum number of iterations to compute the Neumann series.
* `complementarities`
* `compute_radius`
* `trace` Record Iteration informations
# Returns
* `sol`: Improved Time Iteration results
"""
function improved_time_iteration(model::AbstractModel, dprocess::AbstractDiscretizedProcess,
init_dr::AbstractDecisionRule, grid;
maxbsteps::Int=10, verbose::Bool=true, verbose_jac::Bool=false,
tol::Float64=1e-8, smaxit::Int=500, maxit::Int=1000,
complementarities::Bool=true, compute_radius::Bool=false, trace::Bool=false,
method=:gmres)
parms = model.calibration[:parameters]
n_m = max(n_nodes(dprocess), 1) # number of exo states today
n_mt = n_inodes(dprocess,1) # number of exo states tomorrow
n_s = length(model.symbols[:states]) # number of endo states
s = nodes(ListOfPoints, grid)
N_s = length(s)
n_x = size(model.calibration[:controls],1)
x0 = [init_dr(i, s) for i=1:n_m]
ddr = CachedDecisionRule(dprocess, grid, x0)
ddr_filt = CachedDecisionRule(dprocess, grid, x0)
set_values!(ddr,x0)
steps = 0.5.^collect(0:maxbsteps)
p = SVector(parms...)
x = x0
N = length(x[1])
if complementarities == true
x_lb = [controls_lb(model, node(Point,dprocess,i),s,p) for i=1:n_m]
x_ub = [controls_ub(model, node(Point,dprocess,i),s,p) for i=1:n_m]
BIG = 100000
for i=1:n_m
for n=1:N
x_lb[i][n] = max.(x_lb[i][n],-BIG)
x_ub[i][n] = min.(x_ub[i][n], BIG)
end
end
end
trace_data = []
######### Loop for it in range(maxit):
it=0
it_invert=0
err_0 = 1.0 #abs(maximum(res_init))
err_2 = err_0
lam0 = 0.0
verbose && println(repeat("-", 120))
verbose && println("N\tf_x\t\td_x\tTime_residuals\tTime_inversion\tTime_search\tLambda_0\tN_invert\tN_search\t")
verbose && println(repeat("-", 120))
while it <= maxit && err_0>tol
it += 1
t1 = time();
# compute derivatives and residuals:
# R_i: residuals
# D_i: derivatives w.r.t. x
# J_ij: derivatives w.r.t. ~x
# S_ij: future states
# set_values!(ddr,x) # implicit in the next call
_,J_ij,S_ij = euler_residuals(model,s,x,ddr,dprocess,p,keep_J_S=true,set_dr=true)
fun(u) = euler_residuals(model,s,u,ddr,dprocess,p,keep_J_S=false,set_dr=false)
R_i, D_i = DiffFun(fun, x)
if complementarities == true
PhiPhi!(R_i,x,x_lb,x_ub,D_i,J_ij)
end
J_ij *= -1.0
push!(trace_data, [deepcopy(R_i)])
err_0 = maxabs((R_i))
####################
# Invert Jacobians
t2 = time();
π_i, M_ij, S_ij = Dolo.preinvert!(R_i, D_i, J_ij, S_ij)
if method==:gmres
L = LinearThing(M_ij, S_ij, ddr_filt)
v = cat([reshape(reinterpret(Float64, vec(e)), (n_x*N,)) for e in π_i]...; dims=1)
n1 = L.counter
w = gmres(L, v, verbose=false)
it_invert = L.counter-n1
ww = reshape(w,n_x,N,n_m)
tt = [ww[:,:,i] for i=1:n_m]
tot = [reshape(reinterpret(SVector{n_x,Float64}, vec(t)), (N,)) for t in tt]
else
tot, it_invert, lam0, errors = invert_jac(π_i, M_ij, S_ij, ddr_filt; maxit=smaxit)
end
t3 = time();
i_bckstps=0
new_err=err_0
new_x = x
while new_err>=err_0 && i_bckstps<length(steps)
i_bckstps +=1
new_x = x-tot*steps[i_bckstps]
new_res = euler_residuals(model,s,new_x,ddr,dprocess,p,keep_J_S=false,set_dr=true)
if complementarities == true
new_res = [PhiPhi0.(new_res[i],new_x[i],x_lb[i],x_ub[i]) for i=1:n_m]
end
new_err = maxabs(new_res)
end
err_2 = maxabs(tot)
t4 = time();
x = new_x
verbose && @printf "%-6i% -10e% -17e% -15.4f% -15.4f% -15.5f% -17.3f%-17i%-5i\n" it err_0 err_2 t2-t1 t3-t2 t4-t3 lam0 it_invert i_bckstps
end
verbose && println(repeat("-", 120))
set_values!(ddr,x)
if compute_radius == true
lam, lam_max, lambdas = radius_jac(res,dres,jres,S_ij,ddr_filt)
else
lam = NaN
end
converged = err_0<tol
return ImprovedTimeIterationResult(ddr.dr, it, err_0, err_2, converged, complementarities, tol, lam0, it_invert, 5.0, lam, trace_data)
end
function improved_time_iteration(model:: AbstractModel, dprocess::AbstractDiscretizedProcess,
init_dr::AbstractDecisionRule;grid=Dict(), kwargs...)
grid = get_grid(model, options=grid)
return improved_time_iteration(model, dprocess, init_dr, grid; kwargs...)
end
function improved_time_iteration(model, dprocess::AbstractDiscretizedProcess; grid=Dict(), kwargs...)
init_dr = ConstantDecisionRule(model.calibration[:controls])
return improved_time_iteration(model, dprocess, init_dr; grid=grid, kwargs...)
end
function improved_time_iteration(model, init_dr; grid=Dict(), kwargs...)
dprocess = discretize( model.exogenous )
return improved_time_iteration(model, dprocess, init_dr; grid=grid, kwargs...)
end
function improved_time_iteration(model; grid=Dict(), kwargs...)
dprocess = discretize( model.exogenous )
init_dr = ConstantDecisionRule(model.calibration[:controls])
return improved_time_iteration(model, dprocess, init_dr; grid=grid, kwargs...)
end
|
module VennDiagrams
using Compose
using Color
function venn(xs::Union(AbstractArray,Set)...; proportional::Bool = true, labels=Union(Bool,Vector{String}), colors=Union(Bool,Vector{ColorValue},Vector{AlphaColorValue}))
n = length(xs)
if eltype(xs) != Set
cols = map(Set, xs)
else
cols = xs
end
if proportional
error("Not implemented yet!")
#sizes = 0
end
return p
end
end # module
|
@block SimonDanisch [layout] begin
@cell "Layouting" [scatter, lines, surface, heatmap, vbox] begin
p1 = scatter(rand(10), markersize = 1)
p2 = lines(rand(10), rand(10))
p3 = surface(0..1, 0..1, rand(100, 100))
p4 = heatmap(rand(100, 100))
x = 0:0.1:10
p5 = lines(0:0.1:10, sin.(x))
pscene = vbox(
hbox(p1, p2),
p3,
hbox(p4, p5, sizes = [0.7, 0.3]),
sizes = [0.2, 0.6, 0.2]
)
end
@cell "Comparing contours, image, surfaces and heatmaps" [image, contour, surface, heatmap, vbox] begin
N = 20
x = LinRange(-0.3, 1, N)
y = LinRange(-1, 0.5, N)
z = x .* y'
hbox(
vbox(
contour(x, y, z, levels = 20, linewidth =3),
contour(x, y, z, levels = 0, linewidth = 0, fillrange = true),
heatmap(x, y, z),
),
vbox(
image(x, y, z, colormap = :viridis),
surface(x, y, fill(0f0, N, N), color = z, shading = false),
image(-0.3..1, -1..0.5, AbstractPlotting.logo())
)
)
end
end
@block JuliusKrumbiegel ["layout", "2d"] begin
using MakieLayout
@cell "Faceting" [faceting, grid] begin
# layoutscene is a convenience function that creates a Scene and a GridLayout
# that are already connected correctly and with Outside alignment
scene, layout = layoutscene(30, resolution = (1200, 900))
using ColorSchemes
ncols = 4
nrows = 4
# create a grid of LAxis objects
axes = [LAxis(scene) for i in 1:nrows, j in 1:ncols]
# and place them into the layout
layout[1:nrows, 1:ncols] = axes
# link x and y axes of all LAxis objects
linkxaxes!(axes...)
linkyaxes!(axes...)
lineplots = [lines!(axes[i, j], (1:0.1:8pi) .+ i, sin.(1:0.1:8pi) .+ j,
color = get(ColorSchemes.rainbow, ((i - 1) * nrows + j) / (nrows * ncols)), linewidth = 4)
for i in 1:nrows, j in 1:ncols]
for i in 1:nrows, j in 1:ncols
# remove unnecessary decorations in some of the facets, this will have an
# effect on the layout as the freed up space will be used to make the axes
# bigger
i > 1 && (axes[i, j].titlevisible = false)
j > 1 && (axes[i, j].ylabelvisible = false)
j > 1 && (axes[i, j].yticklabelsvisible = false)
j > 1 && (axes[i, j].yticksvisible = false)
i < nrows && (axes[i, j].xticklabelsvisible = false)
i < nrows && (axes[i, j].xticksvisible = false)
i < nrows && (axes[i, j].xlabelvisible = false)
end
autolimits!(axes[1]) # hide
legend = LLegend(scene, permutedims(lineplots, (2, 1)), ["Line $i" for i in 1:length(lineplots)],
ncols = 2)
# place a legend on the side by indexing into one column after the current last
layout[:, end+1] = legend
# index into the 0th row, thereby adding a new row into the layout and place
# a text object across the first four columns as a super title
layout[0, 1:4] = LText(scene, text="MakieLayout Facets", textsize=50)
scene
end
@cell "ManualTicks" [layout, ticks] begin
scene = Scene(resolution = (1000, 1000));
campixel!(scene);
maingl = GridLayout(scene, alignmode = Outside(30))
la = maingl[1, 1] = LAxis(scene)
la.attributes.yautolimitmargin = (0f0, 0.05f0)
poly!(la, BBox(0, 1, 4, 0), color=:blue)
poly!(la, BBox(1, 2, 7, 0), color=:red)
poly!(la, BBox(2, 3, 1, 0), color=:green)
la.attributes.xticks = ManualTicks([0.5, 1.5, 2.5], ["blue", "red", "green"])
la.attributes.xlabel = "Color"
la.attributes.ylabel = "Value"
scene
end
@cell "Protrusion changes" [protrusions] begin
using MakieLayout.Animations
scene, layout = layoutscene(resolution = (600, 600))
axes = [LAxis(scene) for i in 1:2, j in 1:2]
layout[1:2, 1:2] = axes
a_title = Animation([0, 2], [30.0, 50.0], sineio(n=2, yoyo=true, prewait=0.2))
a_xlabel = Animation([2, 4], [20.0, 40.0], sineio(n=2, yoyo=true, prewait=0.2))
a_ylabel = Animation([4, 6], [20.0, 40.0], sineio(n=2, yoyo=true, prewait=0.2))
record(scene, @replace_with_a_path(mp4), 0:1/60:6, framerate = 60) do t
axes[1, 1].titlesize = a_title(t)
axes[1, 1].xlabelsize = a_xlabel(t)
axes[1, 1].ylabelsize = a_ylabel(t)
end
end
@cell "Hiding decorations" [decorations] begin
scene = Scene(resolution = (600, 600), camera=campixel!)
layout = GridLayout(
scene, 2, 2, # we need to specify rows and columns so the gap sizes don't get lost
addedcolgaps = Fixed(0),
addedrowgaps = Fixed(0),
alignmode = Outside(30)
)
axes = [LAxis(scene) for j in 1:2, i in 1:2]
layout[1:2, 1:2] = axes
re = record(scene, @replace_with_a_path(mp4), framerate=3) do io
recordframe!(io)
for ax in axes
ax.titlevisible = false
recordframe!(io)
end
for ax in axes
ax.xlabelvisible = false
recordframe!(io)
end
for ax in axes
ax.ylabelvisible = false
recordframe!(io)
end
for ax in axes
ax.xticklabelsvisible = false
recordframe!(io)
end
for ax in axes
ax.yticklabelsvisible = false
recordframe!(io)
end
for ax in axes
ax.xticksvisible = false
recordframe!(io)
end
for ax in axes
ax.yticksvisible = false
recordframe!(io)
end
for ax in axes
ax.bottomspinevisible = false
ax.leftspinevisible = false
ax.topspinevisible = false
ax.rightspinevisible = false
recordframe!(io)
end
end
return re
end
@cell "Axis aspects" [axis, aspect] begin
using FileIO
scene, layout = layoutscene(30, resolution = (1200, 900))
axes = [LAxis(scene) for i in 1:2, j in 1:3]
tightlimits!.(axes)
layout[1:2, 1:3] = axes
img = rotr90(MakieGallery.loadasset("cow.png"))
for ax in axes
image!(ax, img)
end
axes[1, 1].title = "Default"
axes[1, 2].title = "DataAspect"
axes[1, 2].aspect = DataAspect()
axes[1, 3].title = "AxisAspect(418/348)"
axes[1, 3].aspect = AxisAspect(418/348)
axes[2, 1].title = "AxisAspect(1)"
axes[2, 1].aspect = AxisAspect(1)
axes[2, 2].title = "AxisAspect(2)"
axes[2, 2].aspect = AxisAspect(2)
axes[2, 3].title = "AxisAspect(0.5)"
axes[2, 3].aspect = AxisAspect(0.5)
scene
end
@cell "Linked axes" [axis, link] begin
scene, layout = layoutscene()
layout[1, 1:3] = axs = [LAxis(scene) for i in 1:3]
linkxaxes!(axs[1:2]...)
linkyaxes!(axs[2:3]...)
axs[1].title = "x linked"
axs[2].title = "x & y linked"
axs[3].title = "y linked"
for i in 1:3
lines!(axs[i], 1:10, 1:10, color = "green")
if i != 1
lines!(axs[i], 1:10, 11:20, color = "blue")
end
if i != 3
lines!(axs[i], 11:20, 1:10, color = "red")
end
end
scene
end
@cell "Nested grids" [grid] begin
scene, layout = layoutscene(30, resolution = (1200, 900))
subgl_left = GridLayout()
subgl_left[1:2, 1:2] = [LAxis(scene) for i in 1:2, j in 1:2]
subgl_right = GridLayout()
subgl_right[1:3, 1] = [LAxis(scene) for i in 1:3]
layout[1, 1] = subgl_left
layout[1, 2] = subgl_right
scene
end
@cell "Grid alignment" [grid] begin
scene, layout = layoutscene(30, resolution = (1200, 1200))
layout[1, 1] = LAxis(scene, title="No grid layout")
layout[2, 1] = LAxis(scene, title="No grid layout")
layout[3, 1] = LAxis(scene, title="No grid layout")
subgl_1 = layout[1, 2] = GridLayout(alignmode=Inside())
subgl_2 = layout[2, 2] = GridLayout(alignmode=Outside())
subgl_3 = layout[3, 2] = GridLayout(alignmode=Outside(50))
subgl_1[1, 1] = LAxis(scene, title="Inside")
subgl_2[1, 1] = LAxis(scene, title="Outside")
subgl_3[1, 1] = LAxis(scene, title="Outside(50)")
layout[1:3, 2] = [LRect(scene, color = :transparent, strokecolor = :red) for i in 1:3]
scene
end
@cell "Spanned grid content" [grid] begin
scene, layout = layoutscene(4, 4, 30, resolution = (1200, 1200))
layout[1, 1:2] = LAxis(scene, title="[1, 1:2]")
layout[2:4, 1:2] = LAxis(scene, title="[2:4, 1:2]")
layout[:, 3] = LAxis(scene, title="[:, 3]")
layout[1:3, end] = LAxis(scene, title="[1:3, end]")
layout[end, end] = LAxis(scene, title="[end, end]")
scene
end
@cell "Indexing outside grid" [grid] begin
scene, layout = layoutscene(30, resolution = (1200, 1200))
layout[1, 1] = LAxis(scene)
for i in 1:3
layout[:, end+1] = LAxis(scene)
layout[end+1, :] = LAxis(scene)
end
layout[0, :] = LText(scene, text="Super Title", textsize=50)
layout[end+1, :] = LText(scene, text="Sub Title", textsize=50)
layout[2:end-1, 0] = LText(scene, text="Left Text", textsize=50,
rotation=pi/2)
layout[2:end-1, end+1] = LText(scene, text="Right Text", textsize=50,
rotation=-pi/2)
scene
end
@cell "Column and row sizes" [grid] begin
scene = Scene(resolution = (1200, 900), camera=campixel!)
layout = GridLayout(
scene, 6, 6,
colsizes = [Fixed(200), Relative(0.25), Auto(), Auto(), Auto(2), Auto()],
rowsizes = [Auto(), Fixed(100), Relative(0.25), Aspect(2, 1), Auto(), Auto()],
alignmode = Outside(30, 30, 30, 30))
for i in 2:6, j in 1:5
if i == 6 && j == 3
layout[i, j] = LText(scene, text="My Size is Inferred")
else
layout[i, j] = LRect(scene)
end
end
for (j, label) in enumerate(["Fixed(200)", "Relative(0.25)", "Auto()", "Auto()", "Auto(2)"])
layout[1, j] = LText(scene, width = Auto(), text = label,
tellwidth = false
)
end
for (i, label) in enumerate(["Fixed(100)", "Relative(0.25)", "Aspect(2, 1)", "Auto()", "Auto()"])
layout[i + 1, 6] = LText(scene, height = Auto(), text = label, tellwidth = false)
end
scene
end
@cell "Trimming grids" [grid] begin
scene, layout = layoutscene(resolution = (600, 600))
record(scene, @replace_with_a_path(mp4), framerate=1) do io
ax1 = layout[1, 1] = LAxis(scene, title = "Axis 1")
recordframe!(io)
ax2 = layout[1, 2] = LAxis(scene, title = "Axis 2")
recordframe!(io)
layout[2, 1] = ax2
recordframe!(io)
trim!(layout)
recordframe!(io)
layout[2, 3:4] = ax1
recordframe!(io)
trim!(layout)
recordframe!(io)
end
end
@cell "3D scenes" ["3d"] begin
scene, layout = layoutscene()
makescene() = LScene(scene, camera = cam3d!, raw = false,
scenekw = (backgroundcolor = RGBf0(0.9, 0.9, 0.9), clear = true))
layout[1, 1] = makescene()
layout[1, 2] = makescene()
layout[2, 1:2] = makescene()
layout[1:2, 3] = makescene()
foreach(LScene, layout) do s
scatter!(s, rand(100, 3));
end
scene
end
@cell "Window resizing" [record] begin
using MakieLayout.Animations
container_scene = Scene(camera = campixel!, resolution = (1200, 1200))
t = Node(0.0)
a_width = Animation([1.0, 7.0], [1200.0, 800.0], sineio(n=2, yoyo=true, postwait=0.5))
a_height = Animation([2.5, 8.5], [1200.0, 800.0], sineio(n=2, yoyo=true, postwait=0.5))
scene_area = lift(t) do t
IRect(0, 0, a_width(t), a_height(t))
end
scene = Scene(container_scene, scene_area, camera = campixel!)
rect = poly!(scene, scene_area,
raw=true, color=RGBf0(0.97, 0.97, 0.97), strokecolor=:transparent, strokewidth=0)[end]
outer_gl = GridLayout(scene, alignmode = Outside(30))
inner_gl = outer_gl[1, 1] = GridLayout()
ax1 = inner_gl[1, 1] = LAxis(scene, xautolimitmargin=(0, 0), yautolimitmargin=(0, 0))
ax2 = inner_gl[1, 2] = LAxis(scene, xautolimitmargin=(0, 0), yautolimitmargin=(0, 0))
ax3 = inner_gl[2, 1:2] = LAxis(scene, xautolimitmargin=(0, 0), yautolimitmargin=(0, 0))
guigl = inner_gl[3, 1:2] = GridLayout()
b1 = guigl[1, 1] = LButton(scene, label = "prev", width = Auto())
sl = guigl[1, 2] = LSlider(scene, startvalue = 6, height = 40)
b2 = guigl[1, 3] = LButton(scene, label = "next", width = Auto())
data = randn(200, 200) .+ 3 .* sin.((1:200) ./ 20) .* sin.((1:200)' ./ 20)
h1 = heatmap!(ax1, data)
h2 = heatmap!(ax2, data, colormap = :blues)
h3 = heatmap!(ax3, data, colormap = :heat)
agl1 = gridnest!(inner_gl, 1, 1)
agl1[1, 2] = LColorbar(scene, h1, width = 30, label = "normal bar")
agl1[2, 1:2] = LSlider(scene, height = 20, startvalue = 4)
agl1[3, 1:2] = LSlider(scene, height = 20, startvalue = 5)
agl1[4, 1:2] = LSlider(scene, height = 20, startvalue = 6)
agl2 = gridnest!(inner_gl, 1, 2)
agl2[1, 2] = LColorbar(scene, h2, width = 30, height = Relative(0.66), label = "two thirds bar")
agl2gl = agl2[2, :] = GridLayout()
agl2gl[1, 1] = LButton(scene, label = "Run", height = Auto())
agl2gl[1, 2] = LButton(scene, label = "Start")
agl3 = gridnest!(inner_gl, 2, 1:2)
agl3[:, 3] = LColorbar(scene, h3, width = 30, height=200, label = "fixed height bar")
rowsize!(agl3, 1, Auto(1.0))
inner_gl[0, :] = LText(scene, text = "MakieLayout", textsize = 50)
record(container_scene, @replace_with_a_path(mp4), 0:1/30:9; framerate=30) do ti
t[] = ti
end
end
@cell "Aspect ratios stretching circles" [layout] begin
using Animations
# scene setup for animation
container_scene = Scene(camera = campixel!, resolution = (1200, 1200))
t = Node(0.0)
a_width = Animation([1, 7], [1200.0, 800], sineio(n=2, yoyo=true, postwait=0.5))
a_height = Animation([2.5, 8.5], [1200.0, 800], sineio(n=2, yoyo=true, postwait=0.5))
scene_area = lift(t) do t
IRect(0, 0, round(Int, a_width(t)), round(Int, a_height(t)))
end
scene = Scene(container_scene, scene_area, camera = campixel!)
rect = poly!(scene, scene_area,
raw=true, color=RGBf0(0.97, 0.97, 0.97), strokecolor=:transparent, strokewidth=0)[end]
outer_layout = GridLayout(scene, alignmode = Outside(30))
# example begins here
layout = outer_layout[1, 1] = GridLayout()
titles = ["aspect via layout", "axis aspect", "no aspect", "data aspect"]
axs = layout[1:2, 1:2] = [LAxis(scene, title = t) for t in titles]
# plot to all axes using an array comprehension
[lines!(a, Circle(Point2f0(0, 0), 100f0)) for a in axs]
rowsize!(layout, 1, Fixed(400))
# force the layout cell [1, 1] to be square
colsize!(layout, 1, Aspect(1, 1))
axs[2].aspect = 1
axs[4].autolimitaspect = 1
rects = layout[1:2, 1:2] = [LRect(scene, color = (:black, 0.05),
strokecolor = :transparent) for _ in 1:4]
record(container_scene, @replace_with_a_path(mp4), 0:1/60:9; framerate=60) do ti
t[] = ti
end
end
@cell "Ellipse markers and arrows" [layout, "2d"] begin
# here we plot some grouped coordinates, find their mean and variance which
# we plot as ellipses, plot their actual means, and some additional details.
using DataFrames, Distributions, Colors
using MakieLayout
import AbstractPlotting:px
# Here we create `ngrp` groups of `n` coordinates. The mean coordinates of
# the groups are distributed equally around the unit circle. The coordinates
# are drawn from a normal distribution (with standard deviation σ).
ngrp = 4
groups = Symbol.(Iterators.take('a':'z', ngrp))
n = 5
σ = [0.2, 0.4]
intended = (; Dict(g => Point2f0(Iterators.reverse(sincos(θ))...) for (g, θ) in zip(groups, range(0, step = 2π/ngrp, length = ngrp)))...)
df = DataFrame(group = Symbol[], x = Point2f0[])
for g in groups
d = MvNormal(intended[g], σ)
for _ in 1:n
push!(df, (group = g, x = rand(d)))
end
end
# assign colors to each group
colors = Dict(zip(groups, distinguishable_colors(ngrp, [colorant"white", colorant"black"], dropseed = true)))
# calculate the mean of each group, and the FWHM of a Gaussian fit to the
# data. We later use the mean and FWHM to plot ellipses.
ellipses = by(df, :group) do g
n = length(g.x)
X = Array{Float64}(undef, 2, n)
for i in 1:n
X[:,i] = g.x[i]
end
dis = fit(DiagNormal, X)
radii = sqrt(2log(2))*sqrt.(var(dis)) # half the FWHM
ellipse = (origin = Point2f0(mean(dis)), radius = Vec2f0(radii))
(ellipse = ellipse, )
end
# some helper functions
# return a vector of coordinates of an ellipse
mydecompose(origin, radii) = [origin + radii .* Iterators.reverse(sincos(t)) for t in range(0, stop = 2π, length = 51)]
# brighten a color
brighten(c, p = 0.5) = weighted_color_mean(p, c, colorant"white")
# darken a color
darken(c, p = 0.5) = weighted_color_mean(p, c, colorant"black")
scene, layout = layoutscene(0, fontsize = 10, resolution = (500,400));
ax = layout[1,1] = LAxis(scene,
xlabel = "X (cm)",
ylabel = "Y (cm)",
xticklabelsize = 8,
yticklabelsize = 8,
aspect = DataAspect()
)
for r in eachrow(ellipses)
c = r.ellipse
xy = mydecompose(c...)
poly!(ax, xy, color = brighten(colors[r.group], 0.25))
end
scatter!(ax, getfield.(ellipses.ellipse, :origin), color = :white, marker = '+', markersize = 10px)
scatter!(ax, [zero(Point2f0)], color = :black, strokecolor = :black, marker = '⋆', strokewidth = 0.5, markersize = 15px)
scatter!(ax, [intended[k] for k in keys(colors)], color = :white, strokecolor = collect(values(colors)), marker = '⋆', strokewidth = 0.5, markersize = 15px)
for g in groupby(df, :group)
scatter!(ax, g.x, color = RGBA(colors[g.group[1]], 0.75), marker = '●', markersize = 5px)
end
# Here, we manually construct a list of legend entries to be provided to the
# LLegend constructor. This allows us a larger degree of control over how
# the legend looks.
polys = [PolyElement(color = colors[k], strokecolor = :transparent) for k in unique(df.group)]
shapes = [MarkerElement(color = :black, marker = '⋆', strokecolor = :black, markerstrokewidth = 0.5, markersize = 15px),
MarkerElement(color = :white, marker = '⋆', strokecolor = :black, markerstrokewidth = 0.5, markersize = 15px),
MarkerElement(color = :black, marker = '●', strokecolor = :transparent, markersize = 5px),
[PolyElement(color = brighten(colorant"black", 0.75), strokecolor = :transparent, polypoints = mydecompose(Point2f0(0.5, 0.5), Vec2f0(0.75, 0.5))),
MarkerElement(color = :white, marker = '+', strokecolor = :transparent, markersize = 10px),
]]
leg = ([polys, shapes], [string.(unique(df.group)), ["center", "intended means", "coordinates", "μ ± FWHM"]], ["Groups", "Shapes"])
layout[1, 2] = LLegend(scene, leg..., markersize = 10px, markerstrokewidth = 1, patchsize = (10, 10), rowgap = Fixed(0), titlegap = Fixed(5), groupgap = Fixed(10), titlehalign = :left, gridshalign = :left)
# draw an arrow with some text
textlayer = Scene(scene, ax.scene.px_area, camera = campixel!, raw = true)
topright = lift(textlayer.px_area) do w
xy = widths(w)
xy .- 0.05max(xy...)
end
text!(textlayer, "arrow", position = topright, align = (:right, :top), textsize = 10, font = "noto sans")
lines!(textlayer, @lift([$topright, $topright .- (30, 0)]))
scatter!(textlayer, @lift([$topright]), marker = '►', markersize = 10px)
scene
end
end
|
module SalsaML
using Salsa
const N_FEATURES = 1
const Sample = NTuple{N_FEATURES, Number}
const learning_rate = 0.0005
@declare_input num_samples(s)::Int
@declare_input sample(s, i::Int)::Sample
@declare_input response(s, i::Int)::Float64
init_lr!(s::Runtime) = set_num_samples!(s, 0)
function new_lr_runtime()
s = Runtime()
init_lr!(s)
return s
end
function insert_training_pair!(s, sample::Sample, response::Float64)
i = num_samples(s) + 1
set_num_samples!(s, i)
set_sample!(s, i, sample)
set_response!(s, i, response)
end
function predict(s::Runtime, x::Sample)::Float64
sum(x .* lr_learned_weights(s))
end
# Derived function with no inputs (essentially a constant)
@derived init_weights(s::Runtime) = Tuple(rand(Float64, N_FEATURES))
@derived function lr_learned_weights(s::Runtime)::NTuple{N_FEATURES,Float64}
if num_samples(s) == 0
error("Cannot learn a linear regression with no samples.")
end
weights = lr_learned_weights_unrolled(s, 0)
for i in 1:100 # Stop after 100 iterations
new_weights = lr_learned_weights_unrolled(s, i)
if abs(sum(new_weights .- weights)) < 0.0001
@info "stopped after $i iterations"
return weights
end
weights = new_weights
end
@info "timed out in learn iterations"
return weights
end
@derived function lr_learned_weights_unrolled(s::Runtime, iteration::Int)
if iteration == 0
return init_weights(s)
else
n = num_samples(s)
weights = lr_learned_weights_unrolled(s, iteration-1)
δweights_δcost = lr_δweights_δmse(s, iteration-1) .* learning_rate
weights = weights .- δweights_δcost
return weights
end
end
@derived function lr_δweights_δmse(s::Runtime, iteration::Int)
n = num_samples(s)
(-2/n) * sum(
sum(sample(s, i) .* (response(s, i) - lr_predicted_unrolled(s, i, iteration)))
for i in 1:n
)
end
@derived function lr_predicted_unrolled(s::Runtime, i::Int, iteration::Int)
sum(sample(s, i) .* lr_learned_weights_unrolled(s, iteration))
end
# For logging purposes
@derived function lr_mse(s::Runtime)
n = num_samples(s)
1/n * sum(
(response(s, i) - lr_predicted(s, i)) ^ 2
for i in 1:num_samples(s)
)
end
end
|
using PowerDynamics: simulate, Perturbation, Inc, PowerGrid
using Distributions: Uniform
using Sundials
using Statistics
using NetworkDynamics
using LaTeXStrings
using FileIO, JLD2
using DelimitedFiles
include("../new node types/plotting.jl")
include("../new node types/ThirdOrderEq.jl")
include("../../src/Random-Pertubation-on-Constrained-Manifolds/RandPertOnConstraindManifolds.jl")
include("../../src/PDpatches.jl")
"""
Evaluates the result of a simulation after a pertubation.
Checks if conditions for a stable synchronous state where met.
Conditions implemented so far:
1. Is ω returning to zero? (Realized through checking the deviations from 0)
#2. Did one of the machines get too far away from a stable state? -> Survivability
Inputs:
pg: Power grid, a graph containg nodes and lines
result: Solution of a power grid after a pertubation
nodesarray: Array containg the index of all nodes that contain varible
endtime: Endtime of the simulation
Outputs:
Returns 1 if the system fullfills the condition for a stable state
Returns 0 if the condition was not met
"""
function StableState(result::PowerGridSolution,nodesarray,variable,endtime)
#=
maxdeviation = maximum(result(0:endtime,node,:ω))
if abs(maxdeviation) > threshold, (5) # this could be used for Survivability later on...
return 0
end
=#
for node in 1:length(powergrid.nodes) # runs over all nodes
summation = 0
for time in endtime-10:0.1:endtime
if node in nodesarray # checks only nodes which have ω as a symbol
summation =+ abs.(result(time,node,:ω))
end
if summation > 100 # checks if ω returns to 0
#this is just an arbitrary value that i have choosen so far
return 0
end
if isapprox(result(time,node, :v) , 0, atol=1e-2) # checks for a short cirtuit
return 0
end
end
end
return 1
end
function sim(pg::PowerGrid, x0::State, timespan, force_dtmin::Bool, rpg)
problem = ODEProblem(rpg,x0.vec,timespan)
# sets the kwarg force_dtmin to avoid the dt < dtmin error
if force_dtmin == true
solution = solve(problem, Rodas5(autodiff=false), abstol=1e-8,reltol=1e-6,tspan=Inf, force_dtmin = true)
else
solution = solve(problem, Rodas5(autodiff=false), abstol=1e-8,reltol=1e-6,tspan=Inf)
end
PowerGridSolution(solution, pg)
end
function dae_sim(rpg_ode, tspan, x0::State,pg)
function dae_form(res, du, u, p, t)
du_temp = similar(du)
rpg_ode.f(du_temp, u, p, t)
@. res = du - du_temp
end
u0 = x0.vec
du0 = similar(u0)
p = nothing
diff_vars = (diag(rpg_ode.mass_matrix) .== 1)
rpg_dae = DAEFunction{true, true}(dae_form, syms = rpg_ode.syms)
dae = DAEProblem(rpg_dae, du0, u0, tspan, p; differential_vars=diff_vars)
sol = solve(dae, DABDF2(autodiff=false), initializealg=BrownFullBasicInit(), force_dtmin = true, matiters= 1e7,save_everystep=false)
#sol = solve(dae, IDA(linear_solver=:GMRES))
return PowerGridSolution(sol,pg)
end
"""
Removes all nodes from the from the calculation procedure that do not contain
variable as a symbol.
Returns a list containg the indexes of all the remaning nodes.
Inputs:
pg: Power grid, a graph containg nodes and lines
Outputs:
nodesarray: Array containg the index of all nodes with the symbol varibale
"""
function RemoveNodes(pg::PowerGrid, variable::Symbol)
nodesarray = findall(variable.∈ symbolsof.(pg.nodes))
return nodesarray
end
"""
Produces a plot of the calulated basin stability against the nodes index.
Inputs:
nodesarray: Array containg the index of all nodes that contain varible
basinstability: Array containing the basin stability of each node
standarddev: Array of the standard deviations of the basin stability
"""
function PlotBasinStability(nodesarray, basinstability, standarddev; labtext = "Basin Stability")
plot(
nodesarray,
basinstability,
xlabel = "Node Index",
ylabel = "Basin Stability",
marker = (:circle, 8, "red"),
line = (:path, 2,"gray"),
label = labtext,
grid = false,
show = true
)
end
function PlotBasinStability!(nodesarray, basinstability, standarddev; labtext = "Basin Stability")
plot!(
nodesarray,
basinstability,
xlabel = "Node Index",
ylabel = "Basin Stability",
marker = (:circle, 8, "blue"),
line = (:path, 2,"gray"),
label = labtext,
grid = false,
show = true
)
end
"""
Calculates the single node basin stability of the nodes in a power grid using
PowerDynamics.jl.
The calculations were performed on the basis of the three following papers:
1. Menck, P., Heitzig, J., Marwan, N. et al. How basin stability complements
the linear-stability paradigm. Nature Phys 9, 89–92 (2013)
2. Menck, P., Heitzig, J., Kurths, J. et al. How dead ends undermine
power grid stability. Nat Commun 5, 3969 (2014).
3. C Mitra, A Choudhary, S Sinha, J Kurths, and R V Donnerk,
Multiple-node basin stability in complex dynamical networks
Physical Review E, (2017)
To calculate the basin stability "numtries" random pertubations are
drawn according to the interval.
The behaviour of the power grid after the pertubation is then calculated.
In the function StableState the number of times the system returns
to the stable synchronous state is counted.
If numtries -> ∞: Then BasinStability ≈ stablecounter / numtries.
Inputs:
pg: Power grid, a graph containg nodes and lines
endtime: Endtime of the simulation
variable: Internal variable of the node types to be perturbed
numtries: Number of random pertubations within interval to be evaluated
interval: Lower and Upper Bound for the pertubation
Outputs:
basinstability: Array conating the basinstability of each node
standarddev: Array of the standard deviations of the basin stability
"""
function BasinStability(pg::PowerGrid, endtime::Int, variable::Symbol,
numtries::Int, interval_v::Vector{Float64}, interval_θ::Vector{Float64};
ProjectionMethod = "Optim")
@assert interval_v[2] >= interval_v[1] "Upper bound should be bigger than lower bound!"
num_errors = 0
operationpoint = find_steady_state(pg)
nodesarray = RemoveNodes(pg,variable)
basinstability = []
standarddev = []
P, Q = SimplePowerFlow(pg, operationpoint)
rpg = rhs(pg)
state_file = File(format"JLD2","State_File.jld2")
save(state_file, "operationpoint", operationpoint)
for node in nodesarray
stablecounter = Array{Int64}(undef,numtries)
# do some parralelization\ multithreading here to speed up calculation?
for tries = 1:numtries
println("NODE:",node," TRY:",tries)
PerturbedState, dz = RandPertWithConstrains(powergrid, operationpoint,node, interval_v, interval_θ, Q[node], ProjectionMethod = ProjectionMethod)
column_name = string(node) * string(tries)
save(state_file, column_name, PerturbedState)
λ, stable = check_eigenvalues(powergrid, PerturbedState)
#=
if stable != true
println("Positive eigenvalue detected. The system might be unstable.")
try
result = sim(pg, PerturbedState, (0.0, endtime),true, rpg)
stablecounter[tries] = StableState(result, nodesarray, variable, endtime, interval)
if stablecounter[tries] == 0
display(plot_res(result, pg, node))
fn = "node$(node)_try$(tries)"
png(fn)
end
catch err
if isa(err, GridSolutionError)
stablecounter[tries] = 0 # counted as an unstable solution
num_errors += 1
end
end
else
=#
result = sim(pg, PerturbedState, (0.0, endtime),false, rpg)
stablecounter[tries] = StableState(result,nodesarray,variable,endtime)
#if stablecounter[tries] == 0
display(plot_res(result, pg, node))
#fn = "node$(node)_try$(tries)"
#png(fn)
#end
end
append!(basinstability, mean(stablecounter))
append!(standarddev, std(stablecounter)) # is this even a useful measure here?
end
println("Percentage of failed Simualtions: ",100 * num_errors/(numtries * length(nodesarray)))
display(PlotBasinStability(nodesarray, basinstability, standarddev))
png("BasinStability_Plot")
writedlm("bs.txt", basinstability)
return basinstability, standarddev
end
function BasinStability(pg::PowerGrid, endtime::Float64, variable::Symbol,
numtries::Int, interval_v::Vector{Float64}, interval_θ::Vector{Float64};
ProjectionMethod = "Optim",
dae)
@assert interval_v[2] >= interval_v[1] "Upper bound should be bigger than lower bound!"
num_errors = 0
operationpoint = find_steady_state(pg)
nodesarray = RemoveNodes(pg,variable)
basinstability = []
standarddev = []
P, Q = SimplePowerFlow(pg, operationpoint)
rpg = rhs(pg)
state_file = File(format"JLD2","State_File.jld2")
save(state_file, "operationpoint", operationpoint)
for node in nodesarray
stablecounter = Array{Int64}(undef,numtries)
# do some parralelization\ multithreading here to speed up calculation?
for tries = 1:numtries
println("NODE:",node," TRY:",tries)
PerturbedState, dz = RandPertWithConstrains(powergrid, operationpoint,node, interval_v, interval_θ, Q[node], ProjectionMethod = ProjectionMethod)
column_name = string(node) * string(tries)
save(state_file, column_name, PerturbedState)
result = dae_sim(rpg, (0.0, endtime), PerturbedState,pg)
stablecounter[tries] = StableState(result,nodesarray,variable,endtime)
display(plot_res(result, pg, node))
fn = "node$(node)_try$(tries)"
png(fn)
end
append!(basinstability, mean(stablecounter))
append!(standarddev, std(stablecounter)) # is this even a useful measure here?
end
println("Percentage of failed Simualtions: ",100 * num_errors/(numtries * length(nodesarray)))
display(PlotBasinStability(nodesarray, basinstability, standarddev))
png("BasinStability_Plot")
writedlm("bs.txt", basinstability)
return basinstability, standarddev
end
|
struct MaybeKnown
hint::Int
sym::Symbol
known::Bool
end
struct Loop
itersymbol::Symbol
start::MaybeKnown
stop::MaybeKnown
step::MaybeKnown
rangesym::Symbol# === Symbol("") means loop is static
lensym::Symbol
end
struct UnrollSymbols
u₁loopsym::Symbol
u₂loopsym::Symbol
vloopsym::Symbol
end
struct UnrollArgs
u₁loop::Loop
u₂loop::Loop
vloop::Loop
u₁::Int
u₂max::Int
suffix::Int # -1 means not tiled
end
UnPack.unpack(ua::UnrollArgs, ::Val{:u₁loopsym}) = getfield(getfield(ua, :u₁loop), :itersymbol)
UnPack.unpack(ua::UnrollArgs, ::Val{:u₂loopsym}) = getfield(getfield(ua, :u₂loop), :itersymbol)
UnPack.unpack(ua::UnrollArgs, ::Val{:vloopsym}) = getfield(getfield(ua, :vloop), :itersymbol)
UnPack.unpack(ua::UnrollArgs, ::Val{:u₁step}) = getfield(getfield(ua, :u₁loop), :step)
UnPack.unpack(ua::UnrollArgs, ::Val{:u₂step}) = getfield(getfield(ua, :u₂loop), :step)
UnPack.unpack(ua::UnrollArgs, ::Val{:vstep}) = getfield(getfield(ua, :vloop), :step)
struct UnrollSpecification
u₁loopnum::Int
u₂loopnum::Int
vloopnum::Int
u₁::Int
u₂::Int
end
# UnrollSpecification(ls::LoopSet, u₁loop::Loop, vloopsym::Symbol, u₁, u₂) = UnrollSpecification(ls, u₁loop.itersymbol, vloopsym, u₁, u₂)
function UnrollSpecification(us::UnrollSpecification, u₁, u₂)
@unpack u₁loopnum, u₂loopnum, vloopnum = us
UnrollSpecification(u₁loopnum, u₂loopnum, vloopnum, u₁, u₂)
end
# function UnrollSpecification(us::UnrollSpecification; u₁ = us.u₁, u₂ = us.u₂)
# @unpack u₁loopnum, u₂loopnum, vloopnum = us
# UnrollSpecification(u₁loopnum, u₂loopnum, vloopnum, u₁, u₂)
# end
isunrolled1(us::UnrollSpecification, n::Int) = us.u₁loopnum == n
isunrolled2(us::UnrollSpecification, n::Int) = !isunrolled1(us, n) && us.u₂loopnum == n
isvectorized(us::UnrollSpecification, n::Int) = us.vloopnum == n
function unrollfactor(us::UnrollSpecification, n::Int)
@unpack u₁loopnum, u₂loopnum, u₁, u₂ = us
(u₁loopnum == n) ? u₁ : ((u₂loopnum == n) ? u₂ : 1)
end
function pushexpr!(ex::Expr, mk::MaybeKnown)
if isknown(mk)
push!(ex.args, staticexpr(gethint(mk)))
else
push!(ex.args, getsym(mk))
end
nothing
end
pushexpr!(ex::Expr, x::Union{Symbol,Expr}) = (push!(ex.args, x); nothing)
pushexpr!(ex::Expr, x::Integer) = (push!(ex.args, staticexpr(convert(Int, x))); nothing)
MaybeKnown(x::Integer) = MaybeKnown(convert(Int, x), Symbol("##UNDEFINED##"), true)
MaybeKnown(x::Integer, default::Int) = MaybeKnown(x)
MaybeKnown(x::Symbol, default::Int) = MaybeKnown(default, x, false)
isknown(mk::MaybeKnown) = getfield(mk, :known)
getsym(mk::MaybeKnown) = getfield(mk, :sym)
gethint(mk::MaybeKnown) = getfield(mk, :hint)
Base.isone(mk::MaybeKnown) = isknown(mk) && isone(gethint(mk))
Base.iszero(mk::MaybeKnown) = isknown(mk) && iszero(gethint(mk))
gethint(a::Integer) = a
function Loop(
itersymbol::Symbol, start::Union{Int,Symbol}, stop::Union{Int,Symbol}, step::Union{Int,Symbol},
rangename::Symbol, lensym::Symbol
)
Loop(itersymbol, MaybeKnown(start, 1), MaybeKnown(stop, 1024), MaybeKnown(step, 1), rangename, lensym)
end
startstopΔ(loop::Loop) = gethint(last(loop)) - gethint(first(loop))
function Base.length(loop::Loop)
l = startstopΔ(loop)
s = gethint(step(loop))
(isone(s) ? l : cld(l, s)) + 1
end
Base.first(l::Loop) = getfield(l, :start)
Base.last(l::Loop) = getfield(l, :stop)
Base.step(l::Loop) = getfield(l, :step)
isstaticloop(l::Loop) = isknown(first(l)) & isknown(last(l)) & isknown(step(l))
unitstep(l::Loop) = isone(step(l))
function startloop(loop::Loop, itersymbol, staticinit::Bool=false)
start = first(loop)
if isknown(start)
if staticinit
Expr(:(=), itersymbol, staticexpr(gethint(start)))
else
Expr(:(=), itersymbol, gethint(start))
end
else
Expr(:(=), itersymbol, Expr(:call, lv(:Int), getsym(start)))
end
end
pushmulexpr!(q, a, b) = (push!(q.args, mulexpr(a, b)); nothing)
function pushmulexpr!(q, a, b::Integer)
isone(b) ? push!(q.args, a) : push!(q.args, mulexpr(a, b))
nothing
end
# function arithmetic_expr(f, a, b)
# call = Expr(:call, lv(f))
# if isa(a, MaybeKnown)
# pushexpr!(
# end
isknown(x::Union{Symbol,Expr}) = false
isknown(x::Integer) = true
addexpr(a,b) = arithmeticexpr(+, :vadd_nsw, a, b)
subexpr(a,b) = arithmeticexpr(-, :vsub_nsw, a, b)
mulexpr(a,b) = arithmeticexpr(*, :vmul_nsw, a, b)
lazymulexpr(a,b) = arithmeticexpr(*, :lazymul, a, b)
function arithmeticexpr(op, f, a::Union{Integer,MaybeKnown}, b::Union{Integer,MaybeKnown})
if isknown(a) & isknown(b)
return staticexpr(op(gethint(a), gethint(b)))
else
return _arithmeticexpr(f, a, b)
end
end
arithmeticexpr(op, f, a, b) = _arithmeticexpr(f, a, b)
function _arithmeticexpr(f, a, b)
ex = Expr(:call, lv(f))
pushexpr!(ex, a)
pushexpr!(ex, b)
return ex
end
mulexpr(a,b,c) = arithmeticexpr(*, 1, :vmul_nsw, a, b, c)
addexpr(a,b,c) = arithmeticexpr(+, 0, :vadd_nsw, a, b, c)
function arithmeticexpr(op, init, f, a, b, c)
ex = Expr(:call, lv(f))
p = init
if isknown(a)
p = op(p, gethint(a))
known = 1
else
pushexpr!(ex, a)
known = 0
end
if isknown(b)
p = op(p, gethint(b))
known += 1
else
pushexpr!(ex, b)
end
if isknown(c)
p = op(p, gethint(c))
known += 1
else
if known == 0
ex = Expr(:call, lv(f), ex)
end
pushexpr!(ex, c)
end
if known == 3
return staticexpr(p)
else
if known == 2
pushexpr!(ex, p)
return ex
elseif known == 1
if ((op === (+)) && (p == 0)) || ((op === (*)) && (p == 1))
return ex
else
return Expr(:call, lv(f), ex, staticexpr(p))
end
else#known == 0
return ex
end
end
end
function addexpr(ex, incr::Integer)
if incr > 0
f = :vadd_nsw
else
f = :vsub_nsw
incr = -incr
end
expr = Expr(:call, lv(f))
pushexpr!(expr, ex)
pushexpr!(expr, convert(Int, incr))
expr
end
staticmulincr(ptr, incr) = Expr(:call, lv(:staticmul), Expr(:call, :eltype, ptr), incr)
@inline cmpend(i::Int, r::CloseOpen) = i < getfield(r,:upper)
@inline cmpend(i::Int, r::AbstractUnitRange) = i ≤ last(r)
@inline cmpend(i::Int, r::AbstractRange) = i ≤ last(r)
@inline vcmpend(i::Int, r::CloseOpen, ::StaticInt{W}) where {W} = i ≤ vsub_nsw((getfield(r,:upper) % Int), W)
@inline vcmpendzs(i::Int, r::CloseOpen, ::StaticInt{W}) where {W} = i ≠ ((getfield(r,:upper) % Int) & (-W))
@inline vcmpend(i::Int, r::AbstractUnitRange, ::StaticInt{W}) where {W} = i ≤ vsub_nsw(last(r), W-1)
@inline vcmpendzs(i::Int, r::AbstractUnitRange, ::StaticInt{W}) where {W} = i ≠ (length(r) & (-W))
# i = 0
# i += 4*3 # i = 12
@inline vcmpend(i::Int, r::AbstractRange, ::StaticInt{W}) where {W} = i ≤ vsub_nsw(last(r), vsub_nsw(W*step(r), 1))
@inline vcmpendzs(i::Int, r::AbstractRange, ::StaticInt{W}) where {W} = i ≤ vsub_nsw(last(r), vsub_nsw(W*step(r), 1))
function staticloopexpr(loop::Loop)
f = first(loop)
s = step(loop)
l = last(loop)
if isone(s)
Expr(:call, GlobalRef(Base, :(:)), staticexpr(gethint(f)), staticexpr(gethint(l)))
else
Expr(:call, GlobalRef(Base, :(:)), staticexpr(gethint(f)), staticexpr(gethint(s)), staticexpr(gethint(l)))
end
end
function vec_looprange(loop::Loop, UF::Int, mangledname)
fast = ispow2(UF) && iszero(first(loop))
if loop.rangesym === Symbol("") # means loop is static
vec_looprange(UF, mangledname, staticloopexpr(loop), fast)
else
vec_looprange(UF, mangledname, loop.rangesym, fast)
end
end
function vec_looprange(UF::Int, mangledname, r::Union{Expr,Symbol}, zerostart::Bool)
cmp = zerostart ? lv(:vcmpendzs) : lv(:vcmpend)
if isone(UF)
Expr(:call, cmp, mangledname, r, VECTORWIDTHSYMBOL)
else
Expr(:call, cmp, mangledname, r, mulexpr(VECTORWIDTHSYMBOL, UF))
end
end
function looprange(loop::Loop, UF::Int, mangledname)
if loop.rangesym === Symbol("") # means loop is static
looprange(UF, mangledname, staticloopexpr(loop))
else
looprange(UF, mangledname, loop.rangesym)
end
end
function looprange(UF::Int, mangledname, r::Union{Expr,Symbol})
if isone(UF)
Expr(:call, lv(:cmpend), mangledname, r)
else
Expr(:call, lv(:vcmpend), mangledname, r, staticexpr(UF))
end
end
function terminatecondition(
loop::Loop, us::UnrollSpecification, n::Int, mangledname::Symbol, inclmask::Bool, UF::Int = unrollfactor(us, n)
)
if !isvectorized(us, n)
looprange(loop, UF, mangledname)
elseif inclmask
looprange(loop, 1, mangledname)
else
vec_looprange(loop, UF, mangledname) # may not be u₂loop
end
end
function incrementloopcounter(us::UnrollSpecification, n::Int, mangledname::Symbol, UF::Int, l::Loop)
incr = step(l)
if isknown(incr)
incrementloopcounter(us, n, mangledname, UF * gethint(incr))
else
incrementloopcounter(us, n, mangledname, UF, getsym(incr))
end
end
function incrementloopcounter(us::UnrollSpecification, n::Int, mangledname::Symbol, UF::Int)
if isvectorized(us, n)
if isone(UF)
Expr(:(=), mangledname, addexpr(VECTORWIDTHSYMBOL, mangledname))
else
Expr(:(=), mangledname, addexpr(mulexpr(VECTORWIDTHSYMBOL, staticexpr(UF)), mangledname))
end
else
Expr(:(=), mangledname, addexpr(mangledname, UF))
end
end
function incrementloopcounter(us::UnrollSpecification, n::Int, mangledname::Symbol, UF::Int, incr::Symbol)
if isvectorized(us, n)
if isone(UF)
Expr(:(=), mangledname, addexpr(mulexpr(VECTORWIDTHSYMBOL, incr), mangledname))
else
Expr(:(=), mangledname, addexpr(mulexpr(mulexpr(VECTORWIDTHSYMBOL, staticexpr(UF)), incr), mangledname))
end
else
Expr(:(=), mangledname, addexpr(mangledname, mulexpr(incr, UF)))
end
end
function incrementloopcounter!(q, us::UnrollSpecification, n::Int, UF::Int, l::Loop)
incr = step(l)
if isknown(incr)
incrementloopcounter!(q, us, n, UF * gethint(incr))
else
incrementloopcounter!(q, us, n, UF, getsym(incr))
end
end
function incrementloopcounter!(q, us::UnrollSpecification, n::Int, UF::Int)
if isvectorized(us, n)
if isone(UF)
push!(q.args, VECTORWIDTHSYMBOL)
else
push!(q.args, mulexpr(VECTORWIDTHSYMBOL, staticexpr(UF)))
end
else
push!(q.args, staticexpr(UF))
end
end
function incrementloopcounter!(q, us::UnrollSpecification, n::Int, UF::Int, incr::Symbol)
if isvectorized(us, n)
if isone(UF)
push!(q.args, mulexpr(VECTORWIDTHSYMBOL, incr))
else
push!(q.args, mulexpr(mulexpr(VECTORWIDTHSYMBOL, staticexpr(UF)), incr))
end
else
push!(q.args, mulexpr(staticexpr(UF), incr))
end
end
# load/compute/store × isunrolled × istiled × pre/post loop × Loop number
struct LoopOrder <: AbstractArray{Vector{Operation},5}
oporder::Vector{Vector{Operation}}
loopnames::Vector{Symbol}
bestorder::Vector{Symbol}
end
# function LoopOrder(N::Int)
# LoopOrder(
# [ Operation[] for _ ∈ 1:8N ],
# Vector{Symbol}(undef, N), Vector{Symbol}(undef, N)
# )
# end
LoopOrder() = LoopOrder(Vector{Operation}[],Symbol[],Symbol[])
Base.empty!(lo::LoopOrder) = foreach(empty!, lo.oporder)
function Base.resize!(lo::LoopOrder, N::Int)
Nold = length(lo.loopnames)
resize!(lo.oporder, 8N)
for n ∈ 8Nold+1:8N
lo.oporder[n] = Operation[]
end
resize!(lo.loopnames, N)
resize!(lo.bestorder, N)
lo
end
Base.size(lo::LoopOrder) = (2,2,2,length(lo.loopnames))
Base.@propagate_inbounds Base.getindex(lo::LoopOrder, i::Int) = lo.oporder[i]
Base.@propagate_inbounds Base.getindex(lo::LoopOrder, i::Vararg{Int,K}) where {K} = lo.oporder[LinearIndices(size(lo))[i...]]
@enum NumberType::Int8 HardInt HardFloat IntOrFloat INVALID
struct LoopStartStopManager
terminators::Vector{Int}
incrementedptrs::Vector{Vector{ArrayReferenceMeta}}
uniquearrayrefs::Vector{ArrayReferenceMeta}
end
# Must make it easy to iterate
# outer_reductions is a vector of indices (within operation vectors) of the reduction operation, eg the vmuladd op in a dot product
# O(N) search is faster at small sizes
mutable struct LoopSet
loopsymbols::Vector{Symbol}
loopsymbol_offsets::Vector{Int} # symbol loopsymbols[i] corresponds to loops[lso[i]+1:lso[i+1]] (CartesianIndex handling)
loops::Vector{Loop}
opdict::Dict{Symbol,Operation}
operations::Vector{Operation} # Split them to make it easier to iterate over just a subset
operation_offsets::Vector{Int}
outer_reductions::Vector{Int} # IDs of reduction operations that need to be reduced at end.
loop_order::LoopOrder
preamble::Expr
prepreamble::Expr # performs extractions that must be performed first, and don't need further registering
preamble_symsym::Vector{Tuple{Int,Symbol}}
preamble_symint::Vector{Tuple{Int,Tuple{Int,Int32,Bool}}} # (id,(intval,intsz,signed))
preamble_symfloat::Vector{Tuple{Int,Float64}}
preamble_zeros::Vector{Tuple{Int,NumberType}}
preamble_funcofeltypes::Vector{Tuple{Int,Float64}}
includedarrays::Vector{Symbol}
includedactualarrays::Vector{Symbol}
syms_aliasing_refs::Vector{Symbol}
refs_aliasing_syms::Vector{ArrayReferenceMeta}
cost_vec::Matrix{Float64}
reg_pres::Matrix{Float64}
included_vars::Vector{Bool}
place_after_loop::Vector{Bool}
unrollspecification::UnrollSpecification
loadelimination::Bool
lssm::LoopStartStopManager
vector_width::Int
symcounter::Int
isbroadcast::Bool
register_size::Int
register_count::Int
cache_linesize::Int
cache_size::Tuple{Int,Int,Int}
ureduct::Int
equalarraydims::Vector{Tuple{Vector{Symbol},Vector{Int}}}
omop::OffsetLoadCollection
loopordermap::Vector{Int}
loopindexesbit::Vector{Bool}
validreorder::Vector{UInt8}
mod::Symbol
LoopSet() = new()
end
function UnrollArgs(ls::LoopSet, u₁::Int, unrollsyms::UnrollSymbols, u₂max::Int, suffix::Int)
@unpack u₁loopsym, u₂loopsym, vloopsym = unrollsyms
u₁loop = getloop(ls, u₁loopsym)
u₂loop = u₂loopsym === Symbol("##undefined##") ? u₁loop : getloop(ls, u₂loopsym)
vloop = getloop(ls, vloopsym)
UnrollArgs(u₁loop, u₂loop, vloop, u₁, u₂max, suffix)
end
function cost_vec_buf(ls::LoopSet)
cv = @view(ls.cost_vec[:,2])
@inbounds for i ∈ 1:4
cv[i] = 0.0
end
cv
end
function reg_pres_buf(ls::LoopSet)
ps = @view(ls.reg_pres[:,2])
@inbounds for i ∈ 1:4
ps[i] = 0
end
ps[4] = reg_count(ls)
ps
end
function save_tilecost!(ls::LoopSet)
@inbounds for i ∈ 1:4
ls.cost_vec[i,1] = ls.cost_vec[i,2]
ls.reg_pres[i,1] = ls.reg_pres[i,2]
end
# ls.reg_pres[5,1] = ls.reg_pres[5,2]
end
function set_hw!(ls::LoopSet, rs::Int, rc::Int, cls::Int, l1::Int, l2::Int, l3::Int)
ls.register_size = rs
ls.register_count = rc
ls.cache_linesize = cls
ls.cache_size = (l1,l2,l3)
# ls.opmask_register[] = omr
nothing
end
available_registers() = ifelse(has_opmask_registers(), register_count(), register_count() - One())
function set_hw!(ls::LoopSet)
set_hw!(
ls, Int(register_size()), Int(available_registers()), Int(cache_linesize()),
Int(cache_size(StaticInt(1))), Int(cache_size(StaticInt(2))), Int(cache_size(StaticInt(3)))
)
end
reg_size(ls::LoopSet) = ls.register_size
reg_count(ls::LoopSet) = ls.register_count
cache_lnsze(ls::LoopSet) = ls.cache_linesize
cache_sze(ls::LoopSet) = ls.cache_size
pushprepreamble!(ls::LoopSet, ex) = push!(ls.prepreamble.args, ex)
function pushpreamble!(ls::LoopSet, op::Operation, v::Symbol)
if v !== mangledvar(op)
push!(ls.preamble_symsym, (identifier(op),v))
end
nothing
end
function integer_description(@nospecialize(v::Integer))::Tuple{Int,Int32,Bool}
if v isa Bool
((v % Int)::Int, one(Int32), false)
else
((v % Int)::Int, ((8sizeof(v))%Int32)::Int32, (v isa Signed)::Bool)
end
end
function pushpreamble!(ls::LoopSet, op::Operation, v::Number)
typ = v isa Integer ? HardInt : HardFloat
id = identifier(op)
if iszero(v)
push!(ls.preamble_zeros, (id, typ))
elseif v isa Integer
push!(ls.preamble_symint, (id, integer_description(v)))
else
push!(ls.preamble_symfloat, (id, convert(Float64,v)))
end
end
pushpreamble!(ls::LoopSet, ex::Expr) = push!(ls.preamble.args, ex)
# function pushpreamble!(ls::LoopSet, op::Operation, RHS::Expr)
# c = gensym(:licmconst)
# if RHS.head === :call && first(RHS.args) === :zero
# push!(ls.preamble_zeros, (identifier(op), IntOrFloat))
# elseif RHS.head === :call && first(RHS.args) === :one
# push!(ls.preamble_funcofeltypes, (identifier(op), MULTIPLICATIVE_IN_REDUCTIONS))
# else
# pushpreamble!(ls, Expr(:(=), c, RHS))
# pushpreamble!(ls, op, c)
# end
# nothing
# end
function zerotype(ls::LoopSet, op::Operation)
opid = identifier(op)
for (id,typ) ∈ ls.preamble_zeros
id == opid && return typ
end
INVALID
end
includesarray(ls::LoopSet, array::Symbol) = array ∈ ls.includedarrays
function LoopSet(mod::Symbol)
ls = LoopSet()
ls.loopsymbols = Symbol[]
ls.loopsymbol_offsets = [0]
ls.loops = Loop[]
ls.opdict = Dict{Symbol,Operation}()
ls.operations = Operation[]
ls.operation_offsets = Int[0]
ls.outer_reductions = Int[]
ls.loop_order = LoopOrder()
ls.preamble = Expr(:block)
ls.prepreamble = Expr(:block)
ls.preamble_symsym = Tuple{Int,Symbol}[]
ls.preamble_symint = Tuple{Int,Tuple{Int,Int32,Bool}}[]
ls.preamble_symfloat = Tuple{Int,Float64}[]
ls.preamble_zeros = Tuple{Int,NumberType}[]
ls.preamble_funcofeltypes = Tuple{Int,Float64}[]
ls.includedarrays = Symbol[]
ls.includedactualarrays = Symbol[]
ls.syms_aliasing_refs = Symbol[]
ls.refs_aliasing_syms = ArrayReferenceMeta[]
ls.cost_vec = Matrix{Float64}(undef, 4, 2)
ls.reg_pres = Matrix{Float64}(undef, 4, 2)
ls.included_vars = Bool[]
ls.place_after_loop = Bool[]
ls.unrollspecification
ls.loadelimination = false
ls.vector_width = 0
ls.symcounter = 0
ls.isbroadcast = 0
ls.register_size = 0
ls.register_count = 0
ls.cache_linesize = 0
ls.cache_size = (0,0,0)
ls.ureduct = -1
ls.equalarraydims = Tuple{Vector{Symbol},Vector{Int}}[]
ls.omop = OffsetLoadCollection()
ls.loopordermap = Int[]
ls.loopindexesbit = Bool[]
ls.validreorder = UInt8[]
ls.mod = mod
ls
end
"""
Used internally to create symbols unique for this loopset.
This is used so that identical loops will create identical `_turbo_!` calls in the macroexpansions, hopefully reducing recompilation.
"""
gensym!(ls::LoopSet, s) = Symbol("###$(s)###$(ls.symcounter += 1)###")
function fill_children!(ls::LoopSet)
for op ∈ operations(ls)
empty!(children(op))
for opp ∈ parents(op)
push!(children(opp), op)
end
end
end
function cacheunrolled!(ls::LoopSet, u₁loop::Symbol, u₂loop::Symbol, vloopsym::Symbol)
vloop = getloop(ls, vloopsym)
for op ∈ operations(ls)
setunrolled!(ls, op, u₁loop, u₂loop, vloopsym)
if accesses_memory(op)
rc = rejectcurly(ls, op, u₁loop, vloopsym)
op.rejectcurly = rc
if rc
op.rejectinterleave = true
else
omop = ls.omop
batchid, opind = omop.batchedcollectionmap[identifier(op)]
op.rejectinterleave = ((batchid == 0) || (!isvectorized(op))) || rejectinterleave(ls, op, vloop, omop.batchedcollections[batchid])
end
end
end
end
function setunrolled!(ls::LoopSet, op::Operation, u₁loopsym::Symbol, u₂loopsym::Symbol, vectorized::Symbol)
u₁::Bool = u₂::Bool = v::Bool = false
for ld ∈ loopdependencies(op)
u₁ |= ld === u₁loopsym
u₂ |= ld === u₂loopsym
v |= ld === vectorized
end
if isconstant(op)
for opp ∈ children(op)
u₁ = u₁ && u₁loopsym ∈ loopdependencies(opp)
u₂ = u₂ && u₂loopsym ∈ loopdependencies(opp)
v = v && vectorized ∈ loopdependencies(opp)
end
if isouterreduction(ls, op) ≠ -1 && !all((u₁,u₂,v))
opv = true
for opp ∈ parents(op)
if iscompute(opp) && instruction(opp).instr ≢ :identity
opv = false
break
end
end
if opv
if !u₁ && u₁loopsym ∈ reduceddependencies(op)
u₁ = true
end
if !u₂ && u₂loopsym ∈ reduceddependencies(op)
u₂ = true
end
if !v && vectorized ∈ reduceddependencies(op)
v = true
end
end
end
end
op.u₁unrolled = u₁
op.u₂unrolled = u₂
op.vectorized = v
nothing
end
rejectcurly(op::Operation) = op.rejectcurly
rejectinterleave(op::Operation) = op.rejectinterleave
num_loops(ls::LoopSet) = length(ls.loops)
function oporder(ls::LoopSet)
N = length(ls.loop_order.loopnames)
reshape(ls.loop_order.oporder, (2,2,2,N))
end
names(ls::LoopSet) = ls.loop_order.loopnames
reversenames(ls::LoopSet) = ls.loop_order.bestorder
function getloopid_or_nothing(ls::LoopSet, s::Symbol)
for (loopnum,sym) ∈ enumerate(ls.loopsymbols)
s === sym && return loopnum
end
end
getloopid(ls::LoopSet, s::Symbol) = getloopid_or_nothing(ls, s)::Int
getloop(ls::LoopSet, i::Integer) = ls.loops[ls.loopordermap[i]] # takes nest level after reordering
getloop_from_id(ls::LoopSet, i::Integer) = ls.loops[i] # takes w/ respect to original loop order.
getloop(ls::LoopSet, s::Symbol) = getloop_from_id(ls, getloopid(ls, s))
getloopsym(ls::LoopSet, i::Integer) = ls.loopsymbols[i]
Base.length(ls::LoopSet, s::Symbol) = length(getloop(ls, s))
function init_loop_map!(ls::LoopSet)
@unpack loopordermap = ls
order = names(ls)
resize!(loopordermap, length(order))
for (i,o) ∈ enumerate(order)
loopordermap[i] = getloopid(ls,o)
end
nothing
end
# isstaticloop(ls::LoopSet, s::Symbol) = isstaticloop(getloop(ls,s))
# looprangehint(ls::LoopSet, s::Symbol) = length(getloop(ls, s))
# looprangesym(ls::LoopSet, s::Symbol) = getloop(ls, s).rangesym
"""
getop only works while construction a LoopSet object. You cannot use it while lowering.
"""
getop(ls::LoopSet, var::Number, elementbytes) = add_constant!(ls, var, elementbytes)
function getop(ls::LoopSet, var::Symbol, elementbytes::Int)
get!(ls.opdict, var) do
add_constant!(ls, var, elementbytes)
end
end
function getop(ls::LoopSet, var::Symbol, deps, elementbytes::Int)
get!(ls.opdict, var) do
add_constant!(ls, var, deps, gensym!(ls, "constant"), elementbytes)
end
end
getop(ls::LoopSet, i::Int) = ls.operations[i]
findop(ls::LoopSet, s::Symbol) = findop(operations(ls), s)
function findop(ops::Vector{Operation}, s::Symbol)
for op ∈ ops
name(op) === s && return op
end
throw(ArgumentError("Symbol $s not found."))
end
# """
# Returns an operation with the same name as `s`.
# """
# function getoperation(ls::LoopSet, s::Symbol)
# for op ∈ Iterators.Reverse(operations(ls))
# name(op) === s && return op
# end
# throw("Symbol $s not found among operations(ls).")
# end
function Operation(
ls::LoopSet, variable, elementbytes, instruction,
node_type, dependencies, reduced_deps, parents, ref = NOTAREFERENCE
)
Operation(
length(operations(ls)), variable, elementbytes, instruction,
node_type, dependencies, reduced_deps, parents, ref
)
end
function Operation(ls::LoopSet, variable, elementbytes, instr, optype, mpref::ArrayReferenceMetaPosition)
Operation(length(operations(ls)), variable, elementbytes, instr, optype, mpref)
end
operations(ls::LoopSet) = ls.operations
function getconstvalues(ls::LoopSet, opparents::Vector{Operation})::Tuple{Bool,Vector{Any}}
vals = sizehint!(Any[], length(opparents))
for i ∈ eachindex(opparents)
pushconstvalue!(vals, ls, opparents[i]) && return true, vals
end
false, vals
end
function add_constant_compute!(ls::LoopSet, op::Operation, var::Symbol)::Operation
op.node_type = constant
instr = instruction(op)
opparents = parents(op)
if Base.sym_in(instr.instr, (:add_fast,:mul_fast,:sub_fast,:div_fast,:vfmadd_fast, :vfnmadd_fast, :vfmsub_fast, :vfnmsub_fast))
getconstfailed, vals = getconstvalues(ls, opparents)
if !getconstfailed
f = instr.instr
if f === :add_fast
return add_constant!(ls, sum(vals), 8)::Operation
elseif f === :mul_fast
return add_constant!(ls, prod(vals), 8)::Operation
elseif f === :sub_fast
if length(opparents) == 2
return add_constant!(ls, vals[1] - vals[2], 8)::Operation
elseif length(opparents) == 1
return add_constant!(ls, - vals[1], 8)::Operation
end
elseif f === :div_fast
if length(opparents) == 2
return add_constant!(ls, vals[1] / vals[2], 8)::Operation
end
elseif length(opparents) == 3
T = typeof(sum(vals))
if f === :vfmadd_fast
return add_constant!(ls, T( (big(vals[1])*big(vals[2]) + big(vals[3]))), 8)::Operation
elseif f === :vfnmadd_fast
return add_constant!(ls, T(big(vals[3]) - big(vals[1])*big(vals[2])), 8)::Operation
elseif f === :vfmsub_fast
return add_constant!(ls, T((big(vals[1])*big(vals[2]) - big(vals[3]))), 8)::Operation
elseif f === :vfnmsub_fast
return add_constant!(ls, T(- (big(vals[1])*big(vals[2]) + big(vals[3]))), 8)::Operation
end
end
end
end
opdef = callexpr(instr)
mangledname = Symbol('#', instruction(op).instr, '#')
while length(opparents) > 0
oppname = name(popfirst!(opparents))
mangledname = Symbol(mangledname, oppname, '#')
push!(opdef.args, oppname)
end
op.mangledvariable = mangledname
pushpreamble!(ls, Expr(:(=), name(op), opdef))
op.instruction = LOOPCONSTANT
push!(ls.preamble_symsym, (identifier(op), name(op)))
_pushop!(ls, op, var)
end
function _pushop!(ls::LoopSet, op::Operation, var::Symbol)
for opp ∈ operations(ls)
if matches(op, opp)
ls.opdict[var] = opp
return opp
end
end
push!(ls.operations, op)
ls.opdict[var] = op
op
end
function pushop!(ls::LoopSet, op::Operation, var::Symbol = name(op))
if (iscompute(op) && length(loopdependencies(op)) == 0)
add_constant_compute!(ls, op, var)
else
_pushop!(ls, op, var)
end
end
function add_block!(ls::LoopSet, ex::Expr, elementbytes::Int, position::Int)
for x ∈ ex.args
x isa Expr || continue # be that general?
x.head === :inbounds && continue
push!(ls, x, elementbytes, position)
end
end
function maybestatic!(expr::Expr)
if expr.head === :call
f = first(expr.args)
if f === :length
expr.args[1] = GlobalRef(ArrayInterface,:static_length)
elseif f === :size && length(expr.args) == 3
i = expr.args[3]
if i isa Integer
expr.args[1] = GlobalRef(ArrayInterface,:size)
expr.args[3] = staticexpr(convert(Int,i)::Int)
end
else
static_literals!(expr)
end
end
expr
end
add_loop_bound!(ls::LoopSet, itersym::Symbol, bound::Union{Integer,Symbol}, upper::Bool, step::Bool)::MaybeKnown = MaybeKnown(bound, upper ? 1024 : 1)
function add_loop_bound!(ls::LoopSet, itersym::Symbol, bound::Expr, upper::Bool, step::Bool)::MaybeKnown
maybestatic!(bound)
N = gensym!(ls, string(itersym) * (upper ? "_loop_upper_bound" : (step ? "_loop_step" : "_loop_lower_bound")))
pushprepreamble!(ls, Expr(:(=), N, bound))
MaybeKnown(N, upper ? 1024 : 1)
end
static_literals!(s::Symbol) = s
function static_literals!(q::Expr)
for (i,ex) ∈ enumerate(q.args)
if ex isa Number
q.args[i] = staticexpr(ex)
elseif ex isa Expr
static_literals!(ex)
end
end
q
end
function range_loop!(ls::LoopSet, itersym::Symbol, l::MaybeKnown, u::MaybeKnown, s::MaybeKnown)
rangename = gensym!(ls, "range"); lenname = gensym!(ls, "length")
range = Expr(:call, :(:))
pushexpr!(range, l)
isone(s) || pushexpr!(range, s)
pushexpr!(range, u)
pushprepreamble!(ls, Expr(:(=), rangename, range))
pushprepreamble!(ls, Expr(:(=), lenname, Expr(:call, GlobalRef(ArrayInterface,:static_length), rangename)))
Loop(itersym, l, u, s, rangename, lenname)
end
function range_loop!(ls::LoopSet, r::Expr, itersym::Symbol)::Loop
lower = r.args[2]
sii::Bool = if length(r.args) == 3
step = 1
upper = r.args[3]
true
elseif length(r.args) == 4
step = r.args[3]
upper = r.args[4]
isa(step, Integer)
else
throw("Literal ranges must have either 2 or 3 arguments.")
end
lii::Bool = lower isa Integer
uii::Bool = upper isa Integer
l::MaybeKnown = add_loop_bound!(ls, itersym, lower, false, false)
u::MaybeKnown = add_loop_bound!(ls, itersym, upper, true, false)
s::MaybeKnown = add_loop_bound!(ls, itersym, step, false, true)
range_loop!(ls, itersym, l, u, s)
end
function oneto_loop!(ls::LoopSet, r::Expr, itersym::Symbol)::Loop
otN = r.args[2]
l = MaybeKnown(1, 0)
s = MaybeKnown(1, 0)
u::MaybeKnown = if otN isa Integer
rangename = lensym = Symbol("")
MaybeKnown(convert(Int, otN)::Int, 0)
else
otN isa Expr && maybestatic!(otN)
lensym = N = gensym!(ls, "loop" * string(itersym))
rangename = gensym!(ls, "range");
pushprepreamble!(ls, Expr(:(=), N, otN))
pushprepreamble!(ls, Expr(:(=), rangename, Expr(:call, :(:), staticexpr(1), N)))
MaybeKnown(N, 1024)
end
Loop(itersym, l, u, s, rangename, lensym)
end
@inline _reverse(r) = maybestaticlast(r):-static_step(r):maybestaticfirst(r)
@inline canonicalize_range(r::OptionallyStaticUnitRange) = r
@inline function canonicalize_range(r::OptionallyStaticRange, ::StaticInt{S}) where {S}
ifelse(ArrayInterface.gt(StaticInt{S}(), Zero()), r, _reverse(r))
end
@inline canonicalize_range(r::OptionallyStaticRange, s::Integer) = s > 0 ? r : _reverse(r)
@inline canonicalize_range(r::CloseOpen) = r
@inline canonicalize_range(r::AbstractUnitRange) = maybestaticfirst(r):maybestaticlast(r)
@inline canonicalize_range(r::OptionallyStaticRange) = canonicalize_range(r, static_step(r))
@inline canonicalize_range(r::AbstractRange) = canonicalize_range(maybestaticfirst(r):static_step(r):maybestaticlast(r))
@inline canonicalize_range(r::CartesianIndices) = CartesianIndices(map(canonicalize_range, r.indices))
@inline canonicalize_range(r::Base.OneTo{U}) where {U <: Unsigned} = One():last(r)
function misc_loop!(ls::LoopSet, r::Union{Expr,Symbol}, itersym::Symbol, staticstepone::Bool)::Loop
rangename = gensym!(ls, "looprange" * string(itersym)); lenname = gensym!(ls, "looplen" * string(itersym));
pushprepreamble!(ls, Expr(:(=), rangename, Expr(:call, lv(:canonicalize_range), :(@inbounds $(static_literals!(r))))))
pushprepreamble!(ls, Expr(:(=), lenname, Expr(:call, GlobalRef(ArrayInterface,:static_length), rangename)))
L = add_loop_bound!(ls, itersym, Expr(:call, lv(:maybestaticfirst), rangename), false, false)
U = add_loop_bound!(ls, itersym, Expr(:call, lv(:maybestaticlast), rangename), true, false)
if staticstepone
Loop(itersym, L, U, MaybeKnown(1), rangename, lenname)
else
S = add_loop_bound!(ls, itersym, Expr(:call, lv(:static_step), rangename), false, true)
Loop(itersym, L, U, S, rangename, lenname)
end
end
function indices_loop!(ls::LoopSet, r::Expr, itersym::Symbol)::Loop
if length(r.args) == 3
arrays = r.args[2]
dims = r.args[3]
if isexpr(arrays, :tuple) && length(arrays.args) > 1 && all(s -> s isa Symbol, arrays.args)
narrays = length(arrays.args)::Int
axessyms = Vector{Symbol}(undef, narrays)
if dims isa Integer
# ids = Vector{NTuple{2,Int}}(undef, narrays)
vptrs = Vector{Symbol}(undef, narrays)
mdims = fill(dims::Int, narrays)
# _d::Int = dims
for n ∈ 1:narrays
a_s::Symbol = arrays.args[n]
vptrs[n] = vptr(a_s)
axessyms[n] = axsym = gensym!(ls, "#axes#$(a_s)#")
pushprepreamble!(ls, Expr(:(=), axsym, Expr(:call, GlobalRef(ArrayInterface, :axes), a_s, staticexpr(dims::Int))))
if n > 1
axsym_prev = axessyms[n-1]
pushprepreamble!(ls, Expr(:call, GlobalRef(VectorizationBase,:assume), Expr(:call, GlobalRef(Base,:(==)), Expr(:call, GlobalRef(ArrayInterface, :static_first), axsym), Expr(:call, GlobalRef(ArrayInterface, :static_first), axsym_prev))))
pushprepreamble!(ls, Expr(:call, GlobalRef(VectorizationBase,:assume), Expr(:call, GlobalRef(Base,:(==)), Expr(:call, GlobalRef(ArrayInterface, :static_last), axsym), Expr(:call, GlobalRef(ArrayInterface, :static_last), axsym_prev))))
end
end
push!(ls.equalarraydims, (vptrs, mdims))
elseif isexpr(dims, :tuple) && length(dims.args) == narrays && all(i -> i isa Integer, dims.args)
# ids = Vector{NTuple{2,Int}}(undef, narrays)
vptrs = Vector{Symbol}(undef, narrays)
mdims = Vector{Int}(undef, narrays)
axessyms = Vector{Symbol}(undef, narrays)
for n ∈ 1:narrays
a_s::Symbol = arrays.args[n]
vptrs[n] = vptr(a_s)
mdim::Int = dims.args[n]
mdims[n] = mdim
axessyms[n] = axsym = gensym!(ls, "#axes#$(a_s)#")
pushprepreamble!(ls, Expr(:(=), axsym, Expr(:call, GlobalRef(ArrayInterface, :axes), a_s, staticexpr(mdim))))
if n > 1
axsym_prev = axessyms[n-1]
pushprepreamble!(ls, Expr(:call, GlobalRef(VectorizationBase,:assume), Expr(:call, GlobalRef(Base,:(==)), Expr(:call, GlobalRef(ArrayInterface, :static_first), axsym), Expr(:call, GlobalRef(ArrayInterface, :static_first), axsym_prev))))
pushprepreamble!(ls, Expr(:call, GlobalRef(VectorizationBase,:assume), Expr(:call, GlobalRef(Base,:(==)), Expr(:call, GlobalRef(ArrayInterface, :static_last), axsym), Expr(:call, GlobalRef(ArrayInterface, :static_last), axsym_prev))))
end
end
push!(ls.equalarraydims, (vptrs, mdims))
# push!(ls.equalarraydims, ids)
end
end
end
misc_loop!(ls, r, itersym, true)
end
"""
This function creates a loop, while switching from 1 to 0 based indices
"""
function register_single_loop!(ls::LoopSet, looprange::Expr)
itersym = (looprange.args[1])::Symbol
r = looprange.args[2]
loop = if isexpr(r, :call)
r = r::Expr # julia#37342
f = first(r.args)
if f === :(:)
range_loop!(ls, r, itersym)
elseif f === :OneTo || isscopedname(f, :Base, :OneTo)
oneto_loop!(ls, r, itersym)
elseif f === :indices || (isexpr(f, :(.), 2) && (f.args[2] === QuoteNode(:indices)) && ((f.args[1] === :ArrayInterface) || (f.args[1] === :LoopVectorization)))
indices_loop!(ls, r, itersym)
else
(f === :axes) && (r.args[1] = lv(:axes))
misc_loop!(ls, r, itersym, (f === :eachindex) | (f === :axes))
end
elseif isa(r, Symbol)
misc_loop!(ls, r, itersym, false)
else
throw(LoopError("Unrecognized loop range type: $r."))
end
add_loop!(ls, loop, itersym)
nothing
end
function register_loop!(ls::LoopSet, looprange::Expr)
if looprange.head === :block # multiple loops
for lr ∈ looprange.args
register_single_loop!(ls, lr::Expr)
end
else
@assert looprange.head === :(=)
register_single_loop!(ls, looprange)
end
end
function add_loop!(ls::LoopSet, q::Expr, elementbytes::Int)
register_loop!(ls, q.args[1]::Expr)
body = q.args[2]::Expr
position = length(ls.loopsymbols)
if body.head === :block
add_block!(ls, body, elementbytes, position)
else
push!(ls, q, elementbytes, position)
end
end
function add_loop!(ls::LoopSet, loop::Loop, itersym::Symbol = loop.itersymbol)
push!(ls.loopsymbols, itersym)
push!(ls.loops, loop)
nothing
end
# function instruction(x)
# x isa Symbol ? x : last(x.args).value
# end
# instruction(ls::LoopSet, f::Symbol) = instruction!(ls, f)
function instruction!(ls::LoopSet, x::Expr)
# x isa Symbol && return x
if x.head === :$
_x = only(x.args)
_x isa Symbol && return instruction!(ls, _x)
@assert _x isa Expr
x = _x
end
# if x.head ≢ :(->)
instr = last(x.args).value
instr ∈ keys(COST) && return Instruction(:LoopVectorization, instr)
# end
instr = gensym!(ls, "f")
pushpreamble!(ls, Expr(:(=), instr, x))
Instruction(Symbol(""), instr)
end
instruction!(ls::LoopSet, x::Symbol) = instruction(x)
function instruction!(ls::LoopSet, f::F) where {F <: Function}
get(FUNCTIONSYMBOLS, F) do
instr = gensym!(ls, "f")
pushpreamble!(ls, Expr(:(=), instr, f))
Instruction(Symbol(""), instr)
end
end
function maybe_const_compute!(ls::LoopSet, LHS::Symbol, op::Operation, elementbytes::Int, position::Int)
# return op
if iscompute(op) && iszero(length(loopdependencies(op)))
ls.opdict[LHS] = add_constant!(ls, LHS, ls.loopsymbols[1:position], gensym!(ls, instruction(op).instr), elementbytes, :numericconstant)
else
# op.dependencies = ls.loopsymbols[1:position]
op
end
end
strip_op_linenumber_nodes(q::Expr) = only(filter(x -> !isa(x, LineNumberNode), q.args))
function add_operation!(ls::LoopSet, LHS::Symbol, RHS::Symbol, elementbytes::Int, position::Int)
add_constant!(ls, RHS, ls.loopsymbols[1:position], LHS, elementbytes)
end
function add_comparison!(ls::LoopSet, LHS::Symbol, RHS::Expr, elementbytes::Int, position::Int)
Nargs = length(RHS.args)
@assert (Nargs ≥ 5) & isodd(Nargs)
p1 = add_assignment!(ls, gensym!(ls, "leftcmp"), RHS.args[1], elementbytes, position)::Operation
p2 = add_assignment!(ls, gensym!(ls, "middlecmp"), RHS.args[3], elementbytes, position)::Operation
cmpname = Nargs == 3 ? LHS : gensym!(ls, "cmp")
cmp = add_compute!(ls, cmpname, RHS.args[2], Operation[p1, p2], elementbytes)::Operation
for i ∈ 5:2:Nargs
pnew = add_assignment!(ls, gensym!(ls, "rightcmp"), RHS.args[i], elementbytes, position)::Operation
cmpchain = add_compute!(ls, gensym!(ls, "cmpchain"), RHS.args[i-1], Operation[p2, pnew], elementbytes)::Operation
cmpname = Nargs == i ? LHS : gensym!(ls, "cmp")
cmp = add_compute!(ls, cmpname, :&, [cmp, cmpchain], elementbytes)::Operation
p2 = pnew
end
return cmp
end
function add_operation!(
ls::LoopSet, LHS::Symbol, RHS::Expr, elementbytes::Int, position::Int
)
if RHS.head === :ref
add_load_ref!(ls, LHS, RHS, elementbytes)
elseif RHS.head === :call
f = first(RHS.args)
if f === :getindex
add_load_getindex!(ls, LHS, RHS, elementbytes)
elseif f isa Symbol && Base.sym_in(f, (:zero, :one, :typemin, :typemax))
c = gensym!(ls, f)
op = add_constant!(ls, c, ls.loopsymbols[1:position], LHS, elementbytes, :numericconstant)
if f === :zero
push!(ls.preamble_zeros, (identifier(op), IntOrFloat))
else
push!(ls.preamble_funcofeltypes, (identifier(op), reduction_zero_class(f)))
end
op
else
# maybe_const_compute!(ls, add_compute!(ls, LHS, RHS, elementbytes, position), elementbytes, position)
add_compute!(ls, LHS, RHS, elementbytes, position)
end
elseif RHS.head === :if
add_if!(ls, LHS, RHS, elementbytes, position)
elseif RHS.head === :block
add_operation!(ls, LHS, strip_op_linenumber_nodes(RHS), elementbytes, position)
elseif RHS.head === :(.)
c = gensym!(ls, "getproperty")
pushpreamble!(ls, Expr(:(=), c, RHS))
add_constant!(ls, c, elementbytes)
# op = add_constant!(ls, c, ls.loopsymbols[1:position], LHS, elementbytes, :numericconstant)
# pushpreamble!(ls, op, c)
# op
elseif Meta.isexpr(RHS, :comparison)
add_comparison!(ls, LHS, RHS, elementbytes, position)
else
throw(LoopError("Expression not recognized.", RHS))
end
end
add_operation!(ls::LoopSet, RHS::Expr, elementbytes::Int, position::Int) = add_operation!(ls, gensym!(ls, "LHS"), RHS, elementbytes, position)
function add_operation!(
ls::LoopSet, LHS_sym::Symbol, RHS::Expr, LHS_ref::ArrayReferenceMetaPosition, elementbytes::Int, position::Int
)
if RHS.head === :ref# || (RHS.head === :call && first(RHS.args) === :getindex)
array, rawindices = ref_from_expr!(ls, RHS)
RHS_ref = array_reference_meta!(ls, array, rawindices, elementbytes, gensym!(ls, LHS_sym))
op = add_load!(ls, RHS_ref, elementbytes)
iop = add_compute!(ls, LHS_sym, :identity, [op], elementbytes)
# pushfirst!(LHS_ref.parents, iop)
elseif RHS.head === :call
f = first(RHS.args)
if f === :getindex
add_load!(ls, LHS_sym, LHS_ref, elementbytes)
elseif f isa Symbol && Base.sym_in(f, (:zero, :one, :typemin, :typemax))
c = gensym!(ls, f)
op = add_constant!(ls, c, ls.loopsymbols[1:position], LHS_sym, elementbytes, :numericconstant)
# op = add_constant!(ls, c, Symbol[], LHS_sym, elementbytes, :numericconstant)
if f === :zero
push!(ls.preamble_zeros, (identifier(op), IntOrFloat))
else
push!(ls.preamble_funcofeltypes, (identifier(op), reduction_zero_class(f)))
end
op
else
add_compute!(ls, LHS_sym, RHS, elementbytes, position, LHS_ref)
end
elseif RHS.head === :if
add_if!(ls, LHS_sym, RHS, elementbytes, position, LHS_ref)
elseif RHS.head === :block
add_operation!(ls, LHS, strip_op_linenumber_nodes(RHS), elementbytes, position)
elseif RHS.head === :(.)
c = gensym!(ls, "getproperty")
pushpreamble!(ls, Expr(:(=), c, RHS))
add_constant!(ls, c, elementbytes)
# op = add_constant!(ls, c, ls.loopsymbols[1:position], LHS_sym, elementbytes, :numericconstant)
# pushpreamble!(ls, op, c)
# op
elseif Meta.isexpr(RHS, :comparison, 5)
add_comparison!(ls, LHS, RHS, elementbytes, position)
else
throw(LoopError("Expression not recognized.", RHS))
end
end
function prepare_rhs_for_storage!(ls::LoopSet, RHS::Union{Symbol,Expr}, array, rawindices, elementbytes::Int, position::Int)::Operation
RHS isa Symbol && return add_store!(ls, RHS, array, rawindices, elementbytes)
mpref = array_reference_meta!(ls, array, rawindices, elementbytes)
cachedparents = copy(mpref.parents)
ref = mpref.mref.ref
lrhs = gensym!(ls, "RHS")
mpref.varname = lrhs
add_operation!(ls, lrhs, RHS, mpref, elementbytes, position)
mpref.parents = cachedparents
op = add_store!(ls, mpref, elementbytes)
if lrhs ∈ keys(ls.opdict)
ls.syms_aliasing_refs[findfirst(==(mpref.mref), ls.refs_aliasing_syms)] = lrhs
end
return op
end
function add_assignment!(ls::LoopSet, LHS, RHS, elementbytes::Int, position::Int)
if LHS isa Symbol
if RHS isa Expr
maybe_const_compute!(ls, LHS, add_operation!(ls, LHS, RHS, elementbytes, position), elementbytes, position)
else
add_constant!(ls, RHS, ls.loopsymbols[1:position], LHS, elementbytes)
end
elseif LHS isa Expr
if LHS.head === :ref
if RHS isa Symbol
add_store_ref!(ls, RHS, LHS, elementbytes)
elseif RHS isa Expr
# need to check if LHS appears in RHS
# assign RHS to lrhs
array, rawindices = ref_from_expr!(ls, LHS)
prepare_rhs_for_storage!(ls, RHS, array, rawindices, elementbytes, position)
else
add_store_ref!(ls, RHS, LHS, elementbytes) # is this necessary? (Extension API?)
end
elseif LHS.head === :tuple
if RHS.head === :tuple
for i ∈ eachindex(LHS.args)
add_assignment!(ls, LHS.args[i], RHS.args[i], elementbytes, position)
end
return last(operations(ls)) # FIXME: dummy
end
@assert length(LHS.args) ≤ 14 "Functions returning more than 9 values aren't currently supported."
lhstemp = gensym!(ls, "lhstuple")
vparents = Operation[maybe_const_compute!(ls, lhstemp, add_operation!(ls, lhstemp, RHS, elementbytes, position), elementbytes, position)]
for i ∈ eachindex(LHS.args)
f = (:first,:second,:third,:fourth,:fifth,:sixth,:seventh,:eighth,:ninth,:tenth,:eleventh,:twelfth,:thirteenth,:last)[i]
lhsi = LHS.args[i]
if lhsi isa Symbol
add_compute!(ls, lhsi, f, vparents, elementbytes)
elseif lhsi isa Expr && lhsi.head === :ref
tempunpacksym = gensym!(ls, "tempunpack")
add_compute!(ls, tempunpacksym, f, vparents, elementbytes)
add_store_ref!(ls, tempunpacksym, lhsi, elementbytes)
else
throw(LoopError("Unpacking the above expression in the left hand side was not understood/supported.", lhsi))
end
end
first(vparents)
else
throw(LoopError("LHS not understood; only `:ref`s and `:tuple`s are currently supported.", LHS))
end
else
throw(LoopError("LHS not understood.", LHS))
end
end
function Base.push!(ls::LoopSet, ex::Expr, elementbytes::Int, position::Int, mpref::Union{Nothing,ArrayReferenceMetaPosition} = nothing)
if ex.head === :call
finex = first(ex.args)::Symbol
if finex === :setindex!
array, rawindices = ref_from_setindex!(ls, ex)
prepare_rhs_for_storage!(ls, ex.args[3]::Union{Symbol,Expr}, array, rawindices, elementbytes, position)
else
error("Function $finex not recognized.")
end
elseif ex.head === :(=)
add_assignment!(ls, ex.args[1], ex.args[2], elementbytes, position)
elseif ex.head === :block
add_block!(ls, ex, elementbytes, position)
elseif ex.head === :for
add_loop!(ls, ex, elementbytes)
elseif ex.head === :&&
add_andblock!(ls, ex, elementbytes, position)
elseif ex.head === :||
add_orblock!(ls, ex, elementbytes, position)
elseif ex.head === :local # Handle locals introduced by `@inbounds`; using `local` with `@turbo` is not recomended (nor is `@inbounds`; which applies automatically regardless)
@assert length(ex.args) == 1 # TODO replace assert + first with "only" once support for Julia < 1.4 is dropped
localbody = first(ex.args)
@assert localbody.head === :(=)
@assert length(localbody.args) == 2
LHS = (localbody.args[1])::Symbol
RHS = push!(ls, (localbody.args[2]), elementbytes, position, mpref)
if isstore(RHS)
RHS
else
add_compute!(ls, LHS, :identity, [RHS], elementbytes)
end
else
throw(LoopError("Don't know how to handle expression.", ex))
end
end
function UnrollSpecification(ls::LoopSet, u₁loop::Symbol, u₂loop::Symbol, vloopsym::Symbol, u₁, u₂)
order = names(ls)
nu₁ = findfirst(Base.Fix2(===,u₁loop), order)::Int
nu₂ = u₂ == -1 ? nu₁ : findfirst(Base.Fix2(===,u₂loop), order)::Int
nv = findfirst(Base.Fix2(===,vloopsym), order)::Int
UnrollSpecification(nu₁, nu₂, nv, u₁, u₂)
end
"""
looplengthprod(ls::LoopSet)
Convert to `Float64` for the sake of non-64 bit platforms.
"""
function looplengthprod(ls::LoopSet)
l = 1.0
for loop ∈ ls.loops
l *= Float64(length(loop))
end
l
end
# prod(Float64 ∘ length, ls.loops)
function looplength(ls::LoopSet, s::Symbol)
# search_tree(parents(operations(ls)[i]), name(op)) && return true
id = getloopid_or_nothing(ls, s)
if id === nothing
l = 0.0
# TODO: we could double count a loop.
for op ∈ operations(ls)
name(op) === s || continue
for opp ∈ parents(op)
if isloopvalue(opp)
oppname = first(loopdependencies(opp))
l += looplength(ls, oppname)
elseif iscompute(opp)
oppname = name(opp)
l += looplength(ls, oppname)
# TODO elseif isconstant(opp)
end
end
l += 1 - length(parents(op))
end
l
else
Float64(length(ls.loops[id]))
end
end
function accept_reorder_according_to_tracked_reductions(ls::LoopSet, reordered::Symbol)
for op ∈ operations(ls)
if reordered ∈ loopdependencies(op)
for opp ∈ parents(op)
(iscompute(opp) && isanouterreduction(ls, opp)) && return 0x00
end
end
end
0x03
end
function check_valid_reorder_dims!(ls::LoopSet)
validreorder = ls.validreorder
resize!(validreorder, num_loops(ls))
fill!(validreorder, 0x03)
omop = offsetloadcollection(ls)
@unpack opids = omop
num_collections = length(opids)
ops = operations(ls)
for i ∈ eachindex(opids)
opidsᵢ = opids[i]
opi = ops[first(opidsᵢ)]
opiref = opi.ref.ref
isl = isload(opi)
for j ∈ 1:i-1
opidsⱼ = opids[j]
opj = ops[first(opidsⱼ)]
(isl ⊻ isload(opj)) || continue # try and find load/store combo
opjref = opj.ref.ref
sameref(opiref, opjref) || continue
# possible they have shared offsets in certain directions
for k ∈ eachindex(ls.loops)
validreorder[k] == 0x03 || continue# if already demoted, don't need to check again
loopk = ls.loops[k]
itersym = loopk.itersymbol
for (l,isym) ∈ enumerate(getindicesonly(opi))
isym === itersym || continue
# we match, now we check if this load is offset
# we'll require all offsets in this index be equal, across both loads and stores
firstoff = opiref.offsets[l]
maxdiff = max(checkmismatch(ops, opidsᵢ, l, firstoff, 2:length(opidsᵢ)), checkmismatch(ops, opidsⱼ, l, firstoff, 1:length(opidsⱼ)))
if maxdiff ≥ (isknown(step(loopk)) ? abs(gethint(step(loopk))) : 1)
validreorder[k] = 0x00#0x01
end
end
end
end
end
length(ls.outer_reductions) == 0 && return
for i ∈ eachindex(validreorder)
validreorder[i] &= accept_reorder_according_to_tracked_reductions(ls, ls.loops[i].itersymbol)
end
end
function checkmismatch(ops::Vector{Operation}, opids::Vector{Int}, l::Int, firstoff::Int8, checkrange::UnitRange{Int})
maxabsdiff = 0
for m ∈ checkrange
diff = ops[opids[m]].ref.ref.offsets[l] - firstoff
maxabsdiff = max(maxabsdiff, abs(diff%Int))
end
return maxabsdiff
end
offsetloadcollection(ls::LoopSet) = ls.omop
function fill_offset_memop_collection!(ls::LoopSet)
omop = offsetloadcollection(ls)
ops = operations(ls)
num_ops = length(ops)
@unpack opids, opidcollectionmap, batchedcollections, batchedcollectionmap = omop
length(opidcollectionmap) == 0 || return
resize!(opidcollectionmap, num_ops)
fill!(opidcollectionmap, (0,0));
resize!(batchedcollectionmap, num_ops)
fill!(batchedcollectionmap, (0,0))
empty!(opids);# empty!(offsets);
for i ∈ 1:num_ops
op = ops[i]
isconditionalmemop(op) && continue # not supported yet
opref = op.ref.ref
opisload = isload(op)
(opisload | isstore(op)) || continue
opidcollectionmap[i] === (0,0) || continue # if not -1, we already handled
isdiscontiguous(op) && continue
collectionsize = 0
for j ∈ i+1:num_ops
opp = ops[j]
isconditionalmemop(opp) && continue # not supported yet
if opisload # Each collection is either entirely loads or entirely stores
isload(opp) || continue
else
isstore(opp) || continue
end
oppref = opp.ref.ref
sameref(opref, oppref) || continue
if collectionsize == 0
push!(opids, [identifier(op), identifier(opp)])
# push!(offsets, [opref.offsets, oppref.offsets])
opidcollectionmap[identifier(op)] = (length(opids),1)
else
push!(last(opids), identifier(opp))
# push!(last(offsets), oppref.offsets)
end
opidcollectionmap[identifier(opp)] = (length(opids),length(last(opids)))
collectionsize += 1
end
end
for (collectionid,opidc) ∈ enumerate(opids)
length(opidc) > 1 || continue
# we check if we can turn the offsets into an unroll
# we have up to `length(opidc)` loads to do, so we allocate that many "base" vectors
# then we iterate through them, adding them to collections as appropriate
# inner vector tuple is of (op_pos_w/in collection,o)
unroll_collections = Vector{Vector{Tuple{Int,Int}}}(undef, length(opidc))
num_unroll_collections = 0
# num_ops_considered = length(opidc)
r = 2:length(getindices(ops[first(opidc)]))
for (i,opid) ∈ enumerate(opidc)
op = ops[opid]
offset = getoffsets(op)
o = offset[1]
v = view(offset, r)
found_match = false
for j ∈ 1:num_unroll_collections
collectionⱼ = unroll_collections[j]
# giet id (`first`) of first item in collection to get base offsets for comparison
if view(getoffsets(ops[opidc[first(first(collectionⱼ))]]), r) == v
found_match = true
push!(collectionⱼ, (i, o))
end
end
if !found_match
num_unroll_collections += 1 # the `i` points to position within `opidc`
unroll_collections[num_unroll_collections] = [(i,o)]
end
end
for j ∈ 1:num_unroll_collections
collectionⱼ = unroll_collections[j]
collen = length(collectionⱼ)
collen ≤ 1 && continue
# we have multiple, easiest to process if we sort them
sort!(collectionⱼ, by=last)
istart = 1; ostart = last(first(collectionⱼ))
oprev = ostart
for i ∈ 2:collen
onext = last(collectionⱼ[i])
if onext == oprev + 1
oprev = onext
continue
end
# we skipped one, so we must now lower all previous
if oprev ≠ ostart # it's just 1
pushbatchedcollection!(batchedcollections, batchedcollectionmap, opidc, ops, collectionⱼ, istart, i-1)
end
# restart istart and ostart
istart = i
ostart = onext
oprev = onext
end
if istart ≠ collen
pushbatchedcollection!(batchedcollections, batchedcollectionmap, opidc, ops, collectionⱼ, istart, collen)
end
end
end
check_valid_reorder_dims!(ls)
end
function pushbatchedcollection!(batchedcollections, batchedcollectionmap, opidc, ops, collectionⱼ, istart, istop)
colview = view(collectionⱼ, istart:istop)
push!(batchedcollections, colview)
bclen = length(batchedcollections)
for (i,(k,_)) ∈ enumerate(colview)
# batchedcollectionmap[identifier(op)] gives index into `batchedcollections` containing `colview`
batchedcollectionmap[identifier(ops[opidc[k]])] = (bclen,i)
end
end
"""
Returns `0` if the op is the declaration of the constant outerreduction variable.
Returns `n`, where `n` is the constant declarations's index among parents(op), if op is an outter reduction.
Returns `-1` if not an outerreduction.
"""
function isouterreduction(ls::LoopSet, op::Operation)
if isconstant(op) # equivalent to checking if length(loopdependencies(op)) == 0
instr = op.instruction
instr == LOOPCONSTANT && return Core.ifelse(length(loopdependencies(op)) == 0, 0, -1)
instr.mod === GLOBALCONSTANT && return -1
ops = operations(ls)
for or ∈ ls.outer_reductions
name(op) === name(ops[or]) && return 0
end
-1
elseif iscompute(op)
var = op.variable
for opid ∈ ls.outer_reductions
rop = operations(ls)[opid]
if rop === op
for (n,opp) ∈ enumerate(parents(op))
opp.variable === var && return n
end
else
for (n,opp) ∈ enumerate(parents(op))
opp === rop && return n
search_tree(parents(opp), rop.variable) && return n
end
end
end
-1
else
-1
end
end
struct LoopError <: Exception
msg
ex
LoopError(msg, ex=nothing) = new(msg, ex)
end
function Base.showerror(io::IO, err::LoopError)
printstyled(io, err.msg; color = :red)
err.ex === nothing || printstyled(io, '\n', err.ex)
end
|
function cc_avg(x::Neuro1DRealSignal; channels::Union{Vector{Int64}, Nothing} = nothing)::Neuro1DRealSignal
if (channels == nothing)
return cc_avg(x, channels = [1:1:size(x.signal)[2];])
end
Neuro1DRealSignal(
signal = Statistics.mean(x.signal[:, channels]; dims = 2),
sample_rate = x.sample_rate
)
end
|
# License for module ModiaMath.Logging: MIT
# Copyright 2017-2018, DLR Institute of System Dynamics and Control
"""
module ModiaMath.Logger
Log model evaluations.
# Main developer
Martin Otter, [DLR - Institute of System Dynamics and Control](https://www.dlr.de/sr/en)
"""
module Logging
@eval using Printf
import ..TypesAndStructs: Logger, SimulationStatistics
export setLog!, setAllLogCategories!, setLogCategories!
export isLogStatistics, isLogProgress, isLogInfos, isLogWarnings, isLogEvents
export logOn!, logOff!, setLogCategories
export reInitializeStatistics!, set_nResultsForSimulationStatistics!
function setLog!(logger::Logger, log::Bool)
logger.log = log
return nothing
end
function setAllLogCategories!(logger::Logger; default=true)
logger.statistics = default
logger.progress = default
logger.infos = default
logger.warnings = default
logger.events = default
end
"""
ModiaMath.setLogCategories!(obj, categories; reinit=true)
Set log categories on obj (of type ModiaMath.SimulationState, ModiaMath.AbstractSimulationModel,
or ModiaMath.Logger) as vector of symbols, e.g. setLogCategories!(simulationModel, [:LogProgess]).
Supported categories:
- `:LogStatistics`, print statistics information at end of simulation
- `:LogProgress`, print progress information during simulation
- `:LogInfos`, print information messages of the model
- `:LogWarnings`, print warning messages of the model
- `:LogEvents`, log events of the model
If option reinit=true, all previous set categories are reinitialized to be no longer present.
If reinit=false, previously set categories are not changed.
"""
function setLogCategories!(logger::Logger, categories::Vector{Symbol}; reinit=true)
if reinit
setAllLogCategories!(logger;default=false)
end
for c in categories
if c == :LogStatistics
logger.statistics = true
elseif c == :LogProgress
logger.progress = true
elseif c == :LogInfos
logger.infos = true
elseif c == :LogWarnings
logger.warnings = true
elseif c == :LogEvents
logger.events = true
else
warning("Log categorie ", c, " not known (will be ignored)")
end
end
return nothing
end
"""
ModiaMath.logOn!(obj)
Enable logging on `obj` (of type ModiaMath.SimulationState, ModiaMath.AbstractSimulationModel,
or ModiaMath.Logger)
"""
function logOn!(logger::Logger)
logger.log = true
return nothing
end
"""
ModiaMath.logOff!(obj)
Disable logging on `obj` (of type ModiaMath.SimulationState, ModiaMath.AbstractSimulationModel,
or ModiaMath.Logger)
"""
function logOff!(logger::Logger)
logger.log = false
return nothing
end
"""
ModiaMath.isLogStatistics(logger::ModiaMath.Logger)
Return true, if logger settings require to print **statistics** messages of the model.
"""
isLogStatistics(logger::Logger) = logger.log && logger.statistics
"""
ModiaMath.isLogProgress(logger::ModiaMath.Logger)
Return true, if logger settings require to print **progress** messages of the model
"""
isLogProgress(logger::Logger) = logger.log && logger.progress
"""
ModiaMath.isLogInfos(obj)
Return true, if logger settings require to print **info** messages of the model
(obj must be of type ModiaMath.SimulationState, ModiaMath.AbstractSimulationModel,
or ModiaMath.Logger).
"""
isLogInfos(logger::Logger) = logger.log && logger.infos
"""
ModiaMath.isLogWarnings(obj)
Return true, if logger settings require to print **warning** messages of the model
(obj must be of type ModiaMath.SimulationState, ModiaMath.AbstractSimulationModel,
or ModiaMath.Logger).
"""
isLogWarnings(logger::Logger) = logger.log && logger.warnings
"""
ModiaMath.isLogEvents(obj)
Return true, if logger settings require to print **event** messages of the model
(obj must be of type ModiaMath.SimulationState, ModiaMath.AbstractSimulationModel,
or ModiaMath.Logger).
"""
isLogEvents(logger::Logger) = logger.log && logger.events
function reInitializeStatistics!(stat::SimulationStatistics,
startTime::Float64, stopTime::Float64, interval::Float64, tolerance::Float64)
stat.cpuTimeInitialization = 0.0
stat.cpuTimeIntegration = 0.0
stat.startTime = startTime
stat.stopTime = stopTime
stat.interval = interval
stat.tolerance = tolerance
stat.nResults = 0
stat.nSteps = 0
stat.nResidues = 0
stat.nZeroCrossings = 0
stat.nJac = 0
stat.nTimeEvents = 0
stat.nStateEvents = 0
stat.nRestartEvents = 0
stat.nErrTestFails = 0
stat.h0 = floatmax(Float64)
stat.hMin = floatmax(Float64)
stat.hMax = 0.0
stat.orderMax = 0
end
import Base.show
Base.print(io::IO, stat::SimulationStatistics) = show(io, stat)
function Base.show(io::IO, stat::SimulationStatistics)
println(io, " structureOfDAE = ", stat.structureOfDAE)
@printf(io, " cpuTime = %.2g s (init: %.2g s, integration: %.2g s)\n",
stat.cpuTimeInitialization + stat.cpuTimeIntegration,
stat.cpuTimeInitialization, stat.cpuTimeIntegration)
println(io, " startTime = ", stat.startTime, " s")
println(io, " stopTime = ", stat.stopTime, " s")
println(io, " interval = ", stat.interval, " s")
println(io, " tolerance = ", stat.tolerance)
println(io, " nEquations = ", stat.nEquations, typeof(stat.nConstraints)!=Missing ?
" (includes " * string(stat.nConstraints) * " constraints)" : "" )
println(io, " nResults = ", stat.nResults)
println(io, " nSteps = ", stat.nSteps)
println(io, " nResidues = ", stat.nResidues, " (includes residue calls for Jacobian)")
println(io, " nZeroCrossings = ", stat.nZeroCrossings)
println(io, " nJac = ", stat.nJac)
println(io, " nTimeEvents = ", stat.nTimeEvents)
println(io, " nStateEvents = ", stat.nStateEvents)
println(io, " nRestartEvents = ", stat.nRestartEvents)
println(io, " nErrTestFails = ", stat.nErrTestFails)
@printf(io, " h0 = %.2g s\n", stat.h0)
@printf(io, " hMin = %.2g s\n", stat.hMin)
@printf(io, " hMax = %.2g s\n", stat.hMax)
println(io, " orderMax = ", stat.orderMax)
println(io, " sparseSolver = ", stat.sparseSolver)
if stat.sparseSolver
println(io, " nGroups = ", stat.nGroups)
end
end
function set_nResultsForSimulationStatistics!(stat::SimulationStatistics, nt::Int)
stat.nResults = nt
return nothing
end
end
|
const _allAxes = [:auto, :left, :right]
@compat const _axesAliases = KW(
:a => :auto,
:l => :left,
:r => :right
)
const _3dTypes = [:path3d, :scatter3d, :surface, :wireframe, :contour3d]
const _allTypes = vcat([
:none, :line, :path, :steppre, :steppost, :sticks, :scatter,
:heatmap, :hexbin, :hist, :hist2d, :hist3d, :density, :bar, :hline, :vline, :ohlc,
:contour, :pie, :shape, :box, :violin, :quiver, :image
], _3dTypes)
@compat const _typeAliases = KW(
:n => :none,
:no => :none,
:l => :line,
:p => :path,
:stepinv => :steppre,
:stepsinv => :steppre,
:stepinverted => :steppre,
:stepsinverted => :steppre,
:step => :steppost,
:steps => :steppost,
:stair => :steppost,
:stairs => :steppost,
:stem => :sticks,
:stems => :sticks,
:dots => :scatter,
:histogram => :hist,
:pdf => :density,
:contours => :contour,
:line3d => :path3d,
:surf => :surface,
:wire => :wireframe,
:shapes => :shape,
:poly => :shape,
:polygon => :shape,
:boxplot => :box,
:velocity => :quiver,
:gradient => :quiver,
:img => :image,
:imshow => :image,
:imagesc => :image,
)
like_histogram(linetype::Symbol) = linetype in (:hist, :density)
like_line(linetype::Symbol) = linetype in (:line, :path, :steppre, :steppost)
like_surface(linetype::Symbol) = linetype in (:contour, :contour3d, :heatmap, :surface, :wireframe, :image)
is3d(linetype::Symbol) = linetype in _3dTypes
is3d(d::KW) = trueOrAllTrue(is3d, d[:linetype])
const _allStyles = [:auto, :solid, :dash, :dot, :dashdot, :dashdotdot]
@compat const _styleAliases = KW(
:a => :auto,
:s => :solid,
:d => :dash,
:dd => :dashdot,
:ddd => :dashdotdot,
)
# const _allMarkers = [:none, :auto, :ellipse, :rect, :diamond, :utriangle, :dtriangle,
# :cross, :xcross, :star5, :star8, :hexagon, :octagon, Shape]
const _allMarkers = vcat(:none, :auto, sort(collect(keys(_shapes))))
@compat const _markerAliases = KW(
:n => :none,
:no => :none,
:a => :auto,
:circle => :ellipse,
:c => :ellipse,
:square => :rect,
:sq => :rect,
:r => :rect,
:d => :diamond,
:^ => :utriangle,
:ut => :utriangle,
:utri => :utriangle,
:uptri => :utriangle,
:uptriangle => :utriangle,
:v => :dtriangle,
:V => :dtriangle,
:dt => :dtriangle,
:dtri => :dtriangle,
:downtri => :dtriangle,
:downtriangle => :dtriangle,
:+ => :cross,
:plus => :cross,
:x => :xcross,
:X => :xcross,
:star => :star5,
:s => :star5,
:star1 => :star5,
:s2 => :star8,
:star2 => :star8,
:p => :pentagon,
:pent => :pentagon,
:h => :hexagon,
:hex => :hexagon,
:hep => :heptagon,
:o => :octagon,
:oct => :octagon,
:spike => :vline,
)
const _allScales = [:identity, :ln, :log2, :log10, :asinh, :sqrt]
@compat const _scaleAliases = KW(
:none => :identity,
:log => :log10,
)
# -----------------------------------------------------------------------------
const _seriesDefaults = KW()
# series-specific
_seriesDefaults[:axis] = :left
_seriesDefaults[:label] = "AUTO"
_seriesDefaults[:seriescolor] = :auto
_seriesDefaults[:seriesalpha] = nothing
_seriesDefaults[:linetype] = :path
_seriesDefaults[:linestyle] = :solid
_seriesDefaults[:linewidth] = :auto
_seriesDefaults[:linecolor] = :match
_seriesDefaults[:linealpha] = nothing
_seriesDefaults[:fillrange] = nothing # ribbons, areas, etc
_seriesDefaults[:fillcolor] = :match
_seriesDefaults[:fillalpha] = nothing
_seriesDefaults[:markershape] = :none
_seriesDefaults[:markercolor] = :match
_seriesDefaults[:markeralpha] = nothing
_seriesDefaults[:markersize] = 6
_seriesDefaults[:markerstrokestyle] = :solid
_seriesDefaults[:markerstrokewidth] = 1
_seriesDefaults[:markerstrokecolor] = :match
_seriesDefaults[:markerstrokealpha] = nothing
_seriesDefaults[:bins] = 30 # number of bins for hists
_seriesDefaults[:smooth] = false # regression line?
_seriesDefaults[:group] = nothing # groupby vector
_seriesDefaults[:x] = nothing
_seriesDefaults[:y] = nothing
_seriesDefaults[:z] = nothing # depth for contour, surface, etc
_seriesDefaults[:marker_z] = nothing # value for color scale
_seriesDefaults[:levels] = 15
_seriesDefaults[:orientation] = :vertical
_seriesDefaults[:bar_position] = :overlay # for bar plots and histograms: could also be stack (stack up) or dodge (side by side)
_seriesDefaults[:xerror] = nothing
_seriesDefaults[:yerror] = nothing
_seriesDefaults[:ribbon] = nothing
_seriesDefaults[:quiver] = nothing
_seriesDefaults[:normalize] = false # do we want a normalized histogram?
_seriesDefaults[:weights] = nothing # optional weights for histograms (1D and 2D)
_seriesDefaults[:contours] = false # add contours to 3d surface and wireframe plots
_seriesDefaults[:match_dimensions] = false # do rows match x (true) or y (false) for heatmap/image/spy? see issue 196
const _plotDefaults = KW()
# plot globals
_plotDefaults[:title] = ""
_plotDefaults[:xlabel] = ""
_plotDefaults[:ylabel] = ""
_plotDefaults[:zlabel] = ""
_plotDefaults[:yrightlabel] = ""
_plotDefaults[:legend] = :best
_plotDefaults[:colorbar] = :legend
_plotDefaults[:background_color] = colorant"white" # default for all backgrounds
_plotDefaults[:background_color_legend] = :match # background of legend
_plotDefaults[:background_color_inside] = :match # background inside grid
_plotDefaults[:background_color_outside] = :match # background outside grid
_plotDefaults[:foreground_color] = :auto # default for all foregrounds
_plotDefaults[:foreground_color_legend] = :match # foreground of legend
_plotDefaults[:foreground_color_grid] = :match # grid color
_plotDefaults[:foreground_color_axis] = :match # axis border/tick colors
_plotDefaults[:foreground_color_border] = :match # plot area border/spines
_plotDefaults[:foreground_color_text] = :match # tick text color
_plotDefaults[:foreground_color_guide] = :match # guide text color
_plotDefaults[:xlims] = :auto
_plotDefaults[:ylims] = :auto
_plotDefaults[:zlims] = :auto
_plotDefaults[:xticks] = :auto
_plotDefaults[:yticks] = :auto
_plotDefaults[:zticks] = :auto
_plotDefaults[:xscale] = :identity
_plotDefaults[:yscale] = :identity
_plotDefaults[:zscale] = :identity
_plotDefaults[:xrotation] = 0
_plotDefaults[:yrotation] = 0
_plotDefaults[:zrotation] = 0
_plotDefaults[:xflip] = false
_plotDefaults[:yflip] = false
_plotDefaults[:zflip] = false
_plotDefaults[:size] = (600,400)
_plotDefaults[:pos] = (0,0)
_plotDefaults[:windowtitle] = "Plots.jl"
_plotDefaults[:show] = false
_plotDefaults[:layout] = nothing
_plotDefaults[:n] = -1
_plotDefaults[:nr] = -1
_plotDefaults[:nc] = -1
_plotDefaults[:color_palette] = :auto
_plotDefaults[:link] = false
_plotDefaults[:linkx] = false
_plotDefaults[:linky] = false
_plotDefaults[:linkfunc] = nothing
_plotDefaults[:tickfont] = font(8)
_plotDefaults[:guidefont] = font(11)
_plotDefaults[:legendfont] = font(8)
_plotDefaults[:grid] = true
_plotDefaults[:annotation] = nothing # annotation tuple(s)... (x,y,annotation)
_plotDefaults[:overwrite_figure] = false
_plotDefaults[:polar] = false
_plotDefaults[:aspect_ratio] = :none # choose from :none or :equal
# TODO: x/y scales
const _allArgs = sort(collect(union(keys(_seriesDefaults), keys(_plotDefaults))))
supportedArgs(::AbstractBackend) = error("supportedArgs not defined") #_allArgs
supportedArgs() = supportedArgs(backend())
RecipesBase.is_key_supported(k::Symbol) = (k in supportedArgs())
# -----------------------------------------------------------------------------
makeplural(s::Symbol) = symbol(string(s,"s"))
autopick(arr::AVec, idx::Integer) = arr[mod1(idx,length(arr))]
autopick(notarr, idx::Integer) = notarr
autopick_ignore_none_auto(arr::AVec, idx::Integer) = autopick(setdiff(arr, [:none, :auto]), idx)
autopick_ignore_none_auto(notarr, idx::Integer) = notarr
function aliasesAndAutopick(d::KW, sym::Symbol, aliases::KW, options::AVec, plotIndex::Int)
if d[sym] == :auto
d[sym] = autopick_ignore_none_auto(options, plotIndex)
elseif haskey(aliases, d[sym])
d[sym] = aliases[d[sym]]
end
end
function aliases(aliasMap::KW, val)
sortedkeys(filter((k,v)-> v==val, aliasMap))
end
# -----------------------------------------------------------------------------
const _keyAliases = KW()
function add_aliases(sym::Symbol, aliases::Symbol...)
for alias in aliases
if haskey(_keyAliases, alias)
error("Already an alias $alias => $(_keyAliases[alias])... can't also alias $sym")
end
_keyAliases[alias] = sym
end
end
# colors
add_aliases(:seriescolor, :c, :color, :colour)
add_aliases(:linecolor, :lc, :lcolor, :lcolour, :linecolour)
add_aliases(:markercolor, :mc, :mcolor, :mcolour, :markercolour)
add_aliases(:markerstokecolor, :msc, :mscolor, :mscolour, :markerstokecolour)
add_aliases(:fillcolor, :fc, :fcolor, :fcolour, :fillcolour)
add_aliases(:background_color, :bg, :bgcolor, :bg_color, :background,
:background_colour, :bgcolour, :bg_colour)
add_aliases(:background_color_legend, :bg_legend, :bglegend, :bgcolor_legend, :bg_color_legend, :background_legend,
:background_colour_legend, :bgcolour_legend, :bg_colour_legend)
add_aliases(:background_color_inside, :bg_inside, :bginside, :bgcolor_inside, :bg_color_inside, :background_inside,
:background_colour_inside, :bgcolour_inside, :bg_colour_inside)
add_aliases(:background_color_outside, :bg_outside, :bgoutside, :bgcolor_outside, :bg_color_outside, :background_outside,
:background_colour_outside, :bgcolour_outside, :bg_colour_outside)
add_aliases(:foreground_color, :fg, :fgcolor, :fg_color, :foreground,
:foreground_colour, :fgcolour, :fg_colour)
add_aliases(:foreground_color_legend, :fg_legend, :fglegend, :fgcolor_legend, :fg_color_legend, :foreground_legend,
:foreground_colour_legend, :fgcolour_legend, :fg_colour_legend)
add_aliases(:foreground_color_grid, :fg_grid, :fggrid, :fgcolor_grid, :fg_color_grid, :foreground_grid,
:foreground_colour_grid, :fgcolour_grid, :fg_colour_grid, :gridcolor)
add_aliases(:foreground_color_axis, :fg_axis, :fgaxis, :fgcolor_axis, :fg_color_axis, :foreground_axis,
:foreground_colour_axis, :fgcolour_axis, :fg_colour_axis, :axiscolor)
add_aliases(:foreground_color_border, :fg_border, :fgborder, :fgcolor_border, :fg_color_border, :foreground_border,
:foreground_colour_border, :fgcolour_border, :fg_colour_border, :bordercolor, :border)
add_aliases(:foreground_color_text, :fg_text, :fgtext, :fgcolor_text, :fg_color_text, :foreground_text,
:foreground_colour_text, :fgcolour_text, :fg_colour_text, :textcolor)
add_aliases(:foreground_color_guide, :fg_guide, :fgguide, :fgcolor_guide, :fg_color_guide, :foreground_guide,
:foreground_colour_guide, :fgcolour_guide, :fg_colour_guide, :guidecolor)
# alphas
add_aliases(:seriesalpha, :alpha, :α, :opacity)
add_aliases(:linealpha, :la, :lalpha, :lα, :lineopacity, :lopacity)
add_aliases(:makeralpha, :ma, :malpha, :mα, :makeropacity, :mopacity)
add_aliases(:markerstrokealpha, :msa, :msalpha, :msα, :markerstrokeopacity, :msopacity)
add_aliases(:fillalpha, :fa, :falpha, :fα, :fillopacity, :fopacity)
add_aliases(:label, :lab)
add_aliases(:line, :l)
add_aliases(:linewidth, :w, :width, :lw)
add_aliases(:linetype, :lt, :t, :seriestype)
add_aliases(:linestyle, :style, :s, :ls)
add_aliases(:marker, :m, :mark)
add_aliases(:markershape, :shape)
add_aliases(:markersize, :ms, :msize)
add_aliases(:marker_z, :markerz, :zcolor)
add_aliases(:fill, :f, :area)
add_aliases(:fillrange, :fillrng, :frange, :fillto, :fill_between)
add_aliases(:group, :g, :grouping)
add_aliases(:bins, :bin, :nbin, :nbins, :nb)
add_aliases(:ribbon, :rib)
add_aliases(:annotation, :ann, :anns, :annotate, :annotations)
add_aliases(:xlabel, :xlab, :xl)
add_aliases(:xlims, :xlim, :xlimit, :xlimits)
add_aliases(:xticks, :xtick)
add_aliases(:xrotation, :xrot, :xr)
add_aliases(:ylabel, :ylab, :yl)
add_aliases(:ylims, :ylim, :ylimit, :ylimits)
add_aliases(:yticks, :ytick)
add_aliases(:yrightlabel, :yrlab, :yrl, :ylabel2, :y2label, :ylab2, :y2lab, :ylabr, :ylabelright)
add_aliases(:yrightlims, :yrlim, :yrlimit, :yrlimits)
add_aliases(:yrightticks, :yrtick)
add_aliases(:yrotation, :yrot, :yr)
add_aliases(:zlabel, :zlab, :zl)
add_aliases(:zlims, :zlim, :zlimit, :zlimits)
add_aliases(:zticks, :ztick)
add_aliases(:zrotation, :zrot, :zr)
add_aliases(:legend, :leg, :key)
add_aliases(:colorbar, :cb, :cbar, :colorkey)
add_aliases(:smooth, :regression, :reg)
add_aliases(:levels, :nlevels, :nlev, :levs)
add_aliases(:size, :windowsize, :wsize)
add_aliases(:windowtitle, :wtitle)
add_aliases(:show, :gui, :display)
add_aliases(:color_palette, :palette)
add_aliases(:linkx, :xlink)
add_aliases(:linky, :ylink)
add_aliases(:nr, :nrow, :nrows, :rows)
add_aliases(:nc, :ncol, :ncols, :cols, :ncolumns, :columns)
add_aliases(:overwrite_figure, :clf, :clearfig, :overwrite, :reuse)
add_aliases(:xerror, :xerr, :xerrorbar)
add_aliases(:yerror, :yerr, :yerrorbar, :err, :errorbar)
add_aliases(:quiver, :velocity, :quiver2d, :gradient)
add_aliases(:normalize, :norm, :normed, :normalized)
add_aliases(:aspect_ratio, :aspectratio, :axis_ratio, :axisratio, :ratio)
# add all pluralized forms to the _keyAliases dict
for arg in keys(_seriesDefaults)
_keyAliases[makeplural(arg)] = arg
end
# -----------------------------------------------------------------------------
# update the defaults globally
"""
`default(key)` returns the current default value for that key
`default(key, value)` sets the current default value for that key
`default(; kw...)` will set the current default value for each key/value pair
"""
function default(k::Symbol)
k = get(_keyAliases, k, k)
if haskey(_seriesDefaults, k)
return _seriesDefaults[k]
elseif haskey(_plotDefaults, k)
return _plotDefaults[k]
else
error("Unknown key: ", k)
end
end
function default(k::Symbol, v)
k = get(_keyAliases, k, k)
if haskey(_seriesDefaults, k)
_seriesDefaults[k] = v
elseif haskey(_plotDefaults, k)
_plotDefaults[k] = v
else
error("Unknown key: ", k)
end
end
function default(; kw...)
for (k,v) in kw
default(k, v)
end
end
# -----------------------------------------------------------------------------
# if arg is a valid color value, then set d[csym] and return true
function handleColors!(d::KW, arg, csym::Symbol)
try
if arg == :auto
d[csym] = :auto
else
c = colorscheme(arg)
d[csym] = c
end
return true
end
false
end
# given one value (:log, or :flip, or (-1,1), etc), set the appropriate arg
# TODO: use trueOrAllTrue for subplots which can pass vectors for these
function processAxisArg(d::KW, letter::AbstractString, arg)
T = typeof(arg)
arg = get(_scaleAliases, arg, arg)
scale, flip, label, lim, tick = axis_symbols(letter, "scale", "flip", "label", "lims", "ticks")
if typeof(arg) <: Font
d[:tickfont] = arg
elseif arg in _allScales
d[scale] = arg
elseif arg in (:flip, :invert, :inverted)
d[flip] = true
elseif T <: @compat(AbstractString)
d[label] = arg
# xlims/ylims
elseif (T <: Tuple || T <: AVec) && length(arg) == 2
d[typeof(arg[1]) <: Number ? lim : tick] = arg
# xticks/yticks
elseif T <: AVec
d[tick] = arg
elseif arg == nothing
d[tick] = []
else
warn("Skipped $(letter)axis arg $arg")
end
end
function processLineArg(d::KW, arg)
# linetype
if allLineTypes(arg)
d[:linetype] = arg
# linestyle
elseif allStyles(arg)
d[:linestyle] = arg
elseif typeof(arg) <: Stroke
arg.width == nothing || (d[:linewidth] = arg.width)
arg.color == nothing || (d[:linecolor] = arg.color == :auto ? :auto : colorscheme(arg.color))
arg.alpha == nothing || (d[:linealpha] = arg.alpha)
arg.style == nothing || (d[:linestyle] = arg.style)
elseif typeof(arg) <: Brush
arg.size == nothing || (d[:fillrange] = arg.size)
arg.color == nothing || (d[:fillcolor] = arg.color == :auto ? :auto : colorscheme(arg.color))
arg.alpha == nothing || (d[:fillalpha] = arg.alpha)
# linealpha
elseif allAlphas(arg)
d[:linealpha] = arg
# linewidth
elseif allReals(arg)
d[:linewidth] = arg
# color
elseif !handleColors!(d, arg, :linecolor)
warn("Skipped line arg $arg.")
end
end
function processMarkerArg(d::KW, arg)
# markershape
if allShapes(arg)
d[:markershape] = arg
# stroke style
elseif allStyles(arg)
d[:markerstrokestyle] = arg
elseif typeof(arg) <: Stroke
arg.width == nothing || (d[:markerstrokewidth] = arg.width)
arg.color == nothing || (d[:markerstrokecolor] = arg.color == :auto ? :auto : colorscheme(arg.color))
arg.alpha == nothing || (d[:markerstrokealpha] = arg.alpha)
arg.style == nothing || (d[:markerstrokestyle] = arg.style)
elseif typeof(arg) <: Brush
arg.size == nothing || (d[:markersize] = arg.size)
arg.color == nothing || (d[:markercolor] = arg.color == :auto ? :auto : colorscheme(arg.color))
arg.alpha == nothing || (d[:markeralpha] = arg.alpha)
# linealpha
elseif allAlphas(arg)
d[:markeralpha] = arg
# markersize
elseif allReals(arg)
d[:markersize] = arg
# markercolor
elseif !handleColors!(d, arg, :markercolor)
warn("Skipped marker arg $arg.")
end
end
function processFillArg(d::KW, arg)
if typeof(arg) <: Brush
arg.size == nothing || (d[:fillrange] = arg.size)
arg.color == nothing || (d[:fillcolor] = arg.color == :auto ? :auto : colorscheme(arg.color))
arg.alpha == nothing || (d[:fillalpha] = arg.alpha)
# fillrange function
elseif allFunctions(arg)
d[:fillrange] = arg
# fillalpha
elseif allAlphas(arg)
d[:fillalpha] = arg
elseif !handleColors!(d, arg, :fillcolor)
d[:fillrange] = arg
end
end
_replace_markershape(shape::Symbol) = get(_markerAliases, shape, shape)
_replace_markershape(shapes::AVec) = map(_replace_markershape, shapes)
_replace_markershape(shape) = shape
function _add_markershape(d::KW)
# add the markershape if it needs to be added... hack to allow "m=10" to add a shape,
# and still allow overriding in _apply_recipe
ms = pop!(d, :markershape_to_add, :none)
if !haskey(d, :markershape) && ms != :none
d[:markershape] = ms
end
end
"Handle all preprocessing of args... break out colors/sizes/etc and replace aliases."
function preprocessArgs!(d::KW)
replaceAliases!(d, _keyAliases)
# handle axis args
for letter in ("x", "y", "z")
asym = symbol(letter * "axis")
for arg in wraptuple(get(d, asym, ()))
processAxisArg(d, letter, arg)
end
delete!(d, asym)
# turn :labels into :ticks_and_labels
tsym = symbol(letter * "ticks")
if haskey(d, tsym) && ticksType(d[tsym]) == :labels
d[tsym] = (1:length(d[tsym]), d[tsym])
end
ssym = symbol(letter * "scale")
if haskey(d, ssym) && haskey(_scaleAliases, d[ssym])
d[ssym] = _scaleAliases[d[ssym]]
end
end
# handle line args
for arg in wraptuple(pop!(d, :line, ()))
processLineArg(d, arg)
end
# handle marker args... default to ellipse if shape not set
anymarker = false
for arg in wraptuple(get(d, :marker, ()))
processMarkerArg(d, arg)
anymarker = true
end
delete!(d, :marker)
if haskey(d, :markershape)
d[:markershape] = _replace_markershape(d[:markershape])
elseif anymarker
d[:markershape_to_add] = :ellipse # add it after _apply_recipe
end
# handle fill
for arg in wraptuple(get(d, :fill, ()))
processFillArg(d, arg)
end
delete!(d, :fill)
# convert into strokes and brushes
# legends
if haskey(d, :legend)
d[:legend] = convertLegendValue(d[:legend])
end
if haskey(d, :colorbar)
d[:colorbar] = convertLegendValue(d[:colorbar])
end
# handle subplot links
if haskey(d, :link)
l = d[:link]
if isa(l, Bool)
d[:linkx] = l
d[:linky] = l
elseif isa(l, Function)
d[:linkx] = true
d[:linky] = true
d[:linkfunc] = l
else
warn("Unhandled/invalid link $l. Should be a Bool or a function mapping (row,column) -> (linkx, linky), where linkx/y can be Bool or Void (nothing)")
end
delete!(d, :link)
end
# pull out invalid keywords into their own KW dict... these are likely user-defined through recipes
kw = KW()
for k in keys(d)
try
# this should error for invalid keywords (assume they are user-defined)
k == :markershape_to_add || default(k)
catch
# not a valid key... pop and add to user list
kw[k] = pop!(d, k)
end
end
kw
end
# -----------------------------------------------------------------------------
"A special type that will break up incoming data into groups, and allow for easier creation of grouped plots"
type GroupBy
groupLabels::Vector{UTF8String} # length == numGroups
groupIds::Vector{Vector{Int}} # list of indices for each group
end
# this is when given a vector-type of values to group by
function extractGroupArgs(v::AVec, args...)
groupLabels = sort(collect(unique(v)))
n = length(groupLabels)
if n > 20
warn("You created n=$n groups... Is that intended?")
end
groupIds = Vector{Int}[filter(i -> v[i] == glab, 1:length(v)) for glab in groupLabels]
GroupBy(map(string, groupLabels), groupIds)
end
# expecting a mapping of "group label" to "group indices"
function extractGroupArgs{T, V<:AVec{Int}}(idxmap::Dict{T,V}, args...)
groupLabels = sortedkeys(idxmap)
groupIds = VecI[collect(idxmap[k]) for k in groupLabels]
GroupBy(groupLabels, groupIds)
end
# -----------------------------------------------------------------------------
function warnOnUnsupportedArgs(pkg::AbstractBackend, d::KW)
for k in sortedkeys(d)
if (!(k in supportedArgs(pkg))
&& k != :subplot
&& d[k] != default(k))
warn("Keyword argument $k not supported with $pkg. Choose from: $(supportedArgs(pkg))")
end
end
end
_markershape_supported(pkg::AbstractBackend, shape::Symbol) = shape in supportedMarkers(pkg)
_markershape_supported(pkg::AbstractBackend, shape::Shape) = Shape in supportedMarkers(pkg)
_markershape_supported(pkg::AbstractBackend, shapes::AVec) = all([_markershape_supported(pkg, shape) for shape in shapes])
function warnOnUnsupported(pkg::AbstractBackend, d::KW)
(d[:axis] in supportedAxes(pkg)
|| warn("axis $(d[:axis]) is unsupported with $pkg. Choose from: $(supportedAxes(pkg))"))
(d[:linetype] == :none
|| d[:linetype] in supportedTypes(pkg)
|| warn("linetype $(d[:linetype]) is unsupported with $pkg. Choose from: $(supportedTypes(pkg))"))
(d[:linestyle] in supportedStyles(pkg)
|| warn("linestyle $(d[:linestyle]) is unsupported with $pkg. Choose from: $(supportedStyles(pkg))"))
(d[:markershape] == :none
|| _markershape_supported(pkg, d[:markershape])
|| warn("markershape $(d[:markershape]) is unsupported with $pkg. Choose from: $(supportedMarkers(pkg))"))
end
function warnOnUnsupportedScales(pkg::AbstractBackend, d::KW)
for k in (:xscale, :yscale)
if haskey(d, k)
d[k] in supportedScales(pkg) || warn("scale $(d[k]) is unsupported with $pkg. Choose from: $(supportedScales(pkg))")
end
end
end
# -----------------------------------------------------------------------------
# 1-row matrices will give an element
# multi-row matrices will give a column
# InputWrapper just gives the contents
# anything else is returned as-is
# getArgValue(v::Tuple, idx::Int) = v[mod1(idx, length(v))]
function getArgValue(v::AMat, idx::Int)
c = mod1(idx, size(v,2))
size(v,1) == 1 ? v[1,c] : v[:,c]
end
getArgValue(wrapper::InputWrapper, idx) = wrapper.obj
getArgValue(v, idx) = v
# given an argument key (k), we want to extract the argument value for this index.
# if nothing is set (or container is empty), return the default.
function setDictValue(d_in::KW, d_out::KW, k::Symbol, idx::Int, defaults::KW)
if haskey(d_in, k) && !(typeof(d_in[k]) <: Union{AbstractArray, Tuple} && isempty(d_in[k]))
d_out[k] = getArgValue(d_in[k], idx)
else
d_out[k] = defaults[k]
end
end
function convertLegendValue(val::Symbol)
if val in (:both, :all, :yes)
:best
elseif val in (:no, :none)
:none
elseif val in (:right, :left, :top, :bottom, :inside, :best, :legend)
val
else
error("Invalid symbol for legend: $val")
end
end
convertLegendValue(val::Bool) = val ? :best : :none
# -----------------------------------------------------------------------------
# build the argument dictionary for the plot
function getPlotArgs(pkg::AbstractBackend, kw, idx::Int; set_defaults = true)
kwdict = KW(kw)
d = KW()
# add defaults?
if set_defaults
for k in keys(_plotDefaults)
setDictValue(kwdict, d, k, idx, _plotDefaults)
end
end
#
# for k in (:xscale, :yscale)
# if haskey(_scaleAliases, d[k])
# d[k] = _scaleAliases[d[k]]
# end
# end
# handle legend/colorbar
d[:legend] = convertLegendValue(d[:legend])
d[:colorbar] = convertLegendValue(d[:colorbar])
if d[:colorbar] == :legend
d[:colorbar] = d[:legend]
end
# convert color
handlePlotColors(pkg, d)
# no need for these
delete!(d, :x)
delete!(d, :y)
d
end
function has_black_border_for_default(lt::Symbol)
like_histogram(lt) || lt in (:hexbin, :bar)
end
# build the argument dictionary for a series
function getSeriesArgs(pkg::AbstractBackend, plotargs::KW, kw, commandIndex::Int, plotIndex::Int, globalIndex::Int) # TODO, pass in plotargs, not plt
kwdict = KW(kw)
d = KW()
# add defaults?
for k in keys(_seriesDefaults)
setDictValue(kwdict, d, k, commandIndex, _seriesDefaults)
end
# groupby args?
for k in (:idxfilter, :numUncounted, :dataframe)
if haskey(kwdict, k)
d[k] = kwdict[k]
end
end
if haskey(_typeAliases, d[:linetype])
d[:linetype] = _typeAliases[d[:linetype]]
end
aliasesAndAutopick(d, :axis, _axesAliases, supportedAxes(pkg), plotIndex)
aliasesAndAutopick(d, :linestyle, _styleAliases, supportedStyles(pkg), plotIndex)
aliasesAndAutopick(d, :markershape, _markerAliases, supportedMarkers(pkg), plotIndex)
# update color
d[:seriescolor] = getSeriesRGBColor(d[:seriescolor], plotargs, plotIndex)
# # update linecolor
# c = d[:linecolor]
# c = (c == :match ? d[:seriescolor] : getSeriesRGBColor(c, plotargs, plotIndex))
# d[:linecolor] = c
# # update markercolor
# c = d[:markercolor]
# c = (c == :match ? d[:seriescolor] : getSeriesRGBColor(c, plotargs, plotIndex))
# d[:markercolor] = c
# # update fillcolor
# c = d[:fillcolor]
# c = (c == :match ? d[:seriescolor] : getSeriesRGBColor(c, plotargs, plotIndex))
# d[:fillcolor] = c
# update colors
for csym in (:linecolor, :markercolor, :fillcolor)
d[csym] = if d[csym] == :match
if has_black_border_for_default(d[:linetype]) && csym == :linecolor
:black
else
d[:seriescolor]
end
else
getSeriesRGBColor(d[csym], plotargs, plotIndex)
end
end
# update markerstrokecolor
c = d[:markerstrokecolor]
c = (c == :match ? plotargs[:foreground_color] : getSeriesRGBColor(c, plotargs, plotIndex))
d[:markerstrokecolor] = c
# update alphas
for asym in (:linealpha, :markeralpha, :markerstrokealpha, :fillalpha)
if d[asym] == nothing
d[asym] = d[:seriesalpha]
end
end
# scatter plots don't have a line, but must have a shape
if d[:linetype] in (:scatter, :scatter3d)
d[:linewidth] = 0
if d[:markershape] == :none
d[:markershape] = :ellipse
end
end
# set label
label = d[:label]
label = (label == "AUTO" ? "y$globalIndex" : label)
if d[:axis] == :right && !(length(label) >= 4 && label[end-3:end] != " (R)")
label = string(label, " (R)")
end
d[:label] = label
warnOnUnsupported(pkg, d)
d
end
|