code
stringlengths
20
13.2k
label
stringlengths
21
6.26k
1 def func(a, b, c=3, d=4): 2 print(a, b, c, d) 3 func(1, *(5,6))
2 - warning: bad-indentation
1 S = 'spam' 2 offset=0 3 for item in S: 4 print(item, 'appears at offset', offset) 5 offset+=1 6 print('***************************') 7 for (offset, item) in enumerate(S): 8 print(item+'appears at offset %d' % offset) 9 for item in enumerate(S): 10 print(item) 11 E = enumerate(S) 12 print(next(E)) 13 #while E: 14 # next(E) 15 print([c * i for (i, c) in enumerate(S)])
4 - warning: bad-indentation 5 - warning: bad-indentation 8 - warning: bad-indentation 10 - warning: bad-indentation
1 while True: 2 reply=raw_input('Enter text:') 3 if reply == 'stop': 4 break 5 print(int(reply)**2) 6 print('Bye')
2 - warning: bad-indentation 3 - warning: bad-indentation 4 - warning: bad-indentation 5 - warning: bad-indentation 2 - error: undefined-variable
1 from vpython import * 2 canvas(width=1500, height=720, center=vector(00,70,0), background=color.white, range=150) 3 sphere( pos=vector(0,0,0), radius=2, color=color.red) # Origin of the orthonormal coordinate system 4 5 for i in range(-150,150,10): # Drawing floor 6 for j in range(-150,150,10): # 7 sphere( pos=vector(i,0,j), radius=0.3, color=color.black) # 8 9 H =curve() # Diamond diagonal 10 CL=curve() # Diamond left top side 11 CR=curve() # Diamond right top side 12 AL=curve() # Diamond left bottom side 13 AR=curve() # Diamond right bottom side 14 15 def IK(x,y,z): 16 17 global H 18 global CL 19 global CR 20 global AL 21 global AR 22 23 H.clear() 24 CL.clear() 25 CR.clear() 26 AL.clear() 27 AR.clear() 28 29 d=Ay-y # X Y diagonal calculations 30 e=x # 31 h=sqrt((e*e)+(d*d)) # 32 E=acos(d/h) # 33 if(e<0): # 34 E=(-E) # 35 X=sin(E)*h # 36 Y=cos(E)*h # 37 38 G=acos(h/(2*c)) # diamond sides calculations 39 Clx=sin(E-G)*c # 40 Cly=cos(E-G)*c # 41 Crx=sin(E+G)*c # 42 Cry=cos(E+G)*c # 43 44 dz=h # Z diagonal calculations 45 ez=z # 46 hz=sqrt((ez*ez)+(dz*dz)) # 47 D=acos(dz/hz) # 48 if(ez<0): # 49 D=(-D) # 50 Z=sin(D)*hz # 51 52 H =curve( A.pos, vector(X,Ay-Y,Z), radius=0.1, color=color.magenta, retain=30 ) # diagonal line 53 CL=curve( A.pos, vector(Clx,Ay-Cly,Z/2), radius=2, color=color.yellow ) # top left side line of the diamond 54 CR=curve( A.pos, vector(Crx,Ay-Cry,Z/2), radius=2, color=color.green ) # top right side line of the diamond 55 AL=curve( vector(X,Ay-Y,Z), vector(Clx,Ay-Cly,Z/2), radius=2, color=color.yellow ) # bottom left side line of the diamond 56 AR=curve( vector(X,Ay-Y,Z), vector(Crx,Ay-Cry,Z/2), radius=2, color=color.green ) # bottom right side line of the diamond 57 58 ################ Start Zigzag ################ 59 c=112 # length of diamond side 60 Ay=200 # coordinates of the main axis 61 Ax=0 # 62 Az=0 # 63 A=sphere( pos=vector(Ax,Ay,0), radius=4, color=color.red) # main paw axis 64 65 Pz=[-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-70,-60,-50,-40,-30,-20,-10, 0, 10, 20, 30, 40, 50, 60, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70] 66 Py=[ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10] 67 Px=[-70,-60,-50,-40,-30,-20,-10, 0, 10, 20, 30, 40, 50, 60, 70, 60, 50, 40, 30, 20, 10, 0,-10,-20,-30,-40,-50,-60,-70,-60,-50,-40,-30,-20,-10, 0, 10, 20, 30, 40, 50, 60, 70] 68 69 for i in range(0, 43,1): 70 rate(20) 71 sphere( pos=vector(Px[i],Py[i],Pz[i]), radius=1.5, color=color.red) # Path drawing with ball targets 72 73 while True: 74 for i in range(0, 43, 1): 75 rate(20) 76 IK(Px[i],Py[i],Pz[i]) 77 for i in range(42,-1, -1): 78 rate(20) 79 IK(Px[i],Py[i],Pz[i]) 80 ################ End Zigzag ################
1 - warning: wildcard-import 2 - error: undefined-variable 2 - error: undefined-variable 2 - error: undefined-variable 3 - error: undefined-variable 3 - error: undefined-variable 3 - error: undefined-variable 7 - error: undefined-variable 7 - error: undefined-variable 7 - error: undefined-variable 9 - error: undefined-variable 10 - error: undefined-variable 11 - error: undefined-variable 12 - error: undefined-variable 13 - error: undefined-variable 15 - refactor: too-many-locals 17 - warning: global-statement 18 - warning: global-statement 19 - warning: global-statement 20 - warning: global-statement 21 - warning: global-statement 31 - error: undefined-variable 32 - error: undefined-variable 35 - error: undefined-variable 36 - error: undefined-variable 38 - error: undefined-variable 39 - error: undefined-variable 40 - error: undefined-variable 41 - error: undefined-variable 42 - error: undefined-variable 46 - error: undefined-variable 47 - error: undefined-variable 50 - error: undefined-variable 52 - error: undefined-variable 52 - error: undefined-variable 52 - error: undefined-variable 53 - error: undefined-variable 53 - error: undefined-variable 53 - error: undefined-variable 54 - error: undefined-variable 54 - error: undefined-variable 54 - error: undefined-variable 55 - error: undefined-variable 55 - error: undefined-variable 55 - error: undefined-variable 55 - error: undefined-variable 56 - error: undefined-variable 56 - error: undefined-variable 56 - error: undefined-variable 56 - error: undefined-variable 63 - error: undefined-variable 63 - error: undefined-variable 63 - error: undefined-variable 70 - error: undefined-variable 71 - error: undefined-variable 71 - error: undefined-variable 71 - error: undefined-variable 75 - error: undefined-variable 78 - error: undefined-variable
1 from vpython import * 2 canvas(width=1500, height=720, center=vector(00,70,0), background=color.white, range=150) 3 sphere( pos=vector(0,0,0), radius=2, color=color.red) # Origin of the orthonormal coordinate system 4 5 for i in range(-150,150,10): # Drawing floor 6 for j in range(-150,150,10): # 7 sphere( pos=vector(i,0,j), radius=0.3, color=color.black) # 8 9 H =curve() # Diamond diagonal 10 CL=curve() # Diamond left top side 11 CR=curve() # Diamond right top side 12 AL=curve() # Diamond left bottom side 13 AR=curve() # Diamond right bottom side 14 15 def IK(x,y,z): 16 17 global H 18 global CL 19 global CR 20 global AL 21 global AR 22 23 H.clear() 24 CL.clear() 25 CR.clear() 26 AL.clear() 27 AR.clear() 28 29 d=Ay-y # X Y diagonal calculations 30 e=x # 31 h=sqrt((e*e)+(d*d)) # 32 E=acos(d/h) # 33 if(e<0): # 34 E=(-E) # 35 X=sin(E)*h # 36 Y=cos(E)*h # 37 38 G=acos(h/(2*c)) # diamond sides calculations 39 Clx=sin(E-G)*c # 40 Cly=cos(E-G)*c # 41 Crx=sin(E+G)*c # 42 Cry=cos(E+G)*c # 43 44 dz=h # Z diagonal calculations 45 ez=z # 46 hz=sqrt((ez*ez)+(dz*dz)) # 47 D=acos(dz/hz) # 48 if(ez<0): # 49 D=(-D) # 50 Z=sin(D)*hz # 51 52 H =curve( A.pos, vector(X,Ay-Y,Z), radius=0.1, color=color.magenta, retain=30 ) # diagonal line 53 CL=curve( A.pos, vector(Clx,Ay-Cly,Z/2), radius=2, color=color.yellow ) # top left side line of the diamond 54 CR=curve( A.pos, vector(Crx,Ay-Cry,Z/2), radius=2, color=color.green ) # top right side line of the diamond 55 AL=curve( vector(X,Ay-Y,Z), vector(Clx,Ay-Cly,Z/2), radius=2, color=color.yellow ) # bottom left side line of the diamond 56 AR=curve( vector(X,Ay-Y,Z), vector(Crx,Ay-Cry,Z/2), radius=2, color=color.green ) # bottom right side line of the diamond 57 58 ################ Start Screw ################ 59 c=112 # length of diamond side 60 Ay=190 # coordinates of the main axis 61 Ax=0 # 62 Az=0 # 63 A=sphere( pos=vector(Ax,Ay,0), radius=4, color=color.red) # main paw axis 64 65 r=120 66 for i in range(0,1080,3): 67 rate(80) 68 sphere( pos=vector(sin(i/57.296)*r, i*0.06, cos(i/57.296)*r ), radius=1, color=color.red) 69 while True: 70 for i in range(0,1080,3): 71 rate(30) 72 IK(sin(i/57.296)*r, i*0.06, cos(i/57.296)*r ) 73 for i in range(1080,0,-3): 74 rate(30) 75 IK(sin(i/57.296)*r, i*0.06, cos(i/57.296)*r ) 76 ################ End Screw ################
1 - warning: wildcard-import 2 - error: undefined-variable 2 - error: undefined-variable 2 - error: undefined-variable 3 - error: undefined-variable 3 - error: undefined-variable 3 - error: undefined-variable 7 - error: undefined-variable 7 - error: undefined-variable 7 - error: undefined-variable 9 - error: undefined-variable 10 - error: undefined-variable 11 - error: undefined-variable 12 - error: undefined-variable 13 - error: undefined-variable 15 - refactor: too-many-locals 17 - warning: global-statement 18 - warning: global-statement 19 - warning: global-statement 20 - warning: global-statement 21 - warning: global-statement 31 - error: undefined-variable 32 - error: undefined-variable 35 - error: undefined-variable 36 - error: undefined-variable 38 - error: undefined-variable 39 - error: undefined-variable 40 - error: undefined-variable 41 - error: undefined-variable 42 - error: undefined-variable 46 - error: undefined-variable 47 - error: undefined-variable 50 - error: undefined-variable 52 - error: undefined-variable 52 - error: undefined-variable 52 - error: undefined-variable 53 - error: undefined-variable 53 - error: undefined-variable 53 - error: undefined-variable 54 - error: undefined-variable 54 - error: undefined-variable 54 - error: undefined-variable 55 - error: undefined-variable 55 - error: undefined-variable 55 - error: undefined-variable 55 - error: undefined-variable 56 - error: undefined-variable 56 - error: undefined-variable 56 - error: undefined-variable 56 - error: undefined-variable 63 - error: undefined-variable 63 - error: undefined-variable 63 - error: undefined-variable 67 - error: undefined-variable 68 - error: undefined-variable 68 - error: undefined-variable 68 - error: undefined-variable 68 - error: undefined-variable 68 - error: undefined-variable 71 - error: undefined-variable 72 - error: undefined-variable 72 - error: undefined-variable 74 - error: undefined-variable 75 - error: undefined-variable 75 - error: undefined-variable
1 #!/usr/bin/python 2 3 import sys 4 sys.path.append('./limelightCDN') 5 import limelightCDN 6 import ConfigParser 7 import os 8 import urllib2 9 10 profile='default' 11 12 urL = "https://api.lldns.net/cfapi/v1/svcinst/delivery/manual/shortname/shutterfly" 13 query = "" 14 15 def read_conf(profile): 16 config = ConfigParser.RawConfigParser() 17 config.read([os.path.expanduser('~/.llnw/credentials')]) 18 username = config.get(profile, 'username') 19 apikey = config.get(profile, 'apikey') 20 return username,apikey 21 22 userName,apiKey = read_conf(profile) 23 24 #make request 25 usageReport = limelightCDN.Auth(apiKey) 26 response = usageReport.GET(urL,userName,queryParameters=query) 27 print response.read()
27 - error: syntax-error
1 #!/usr/bin/python 2 import hashlib 3 import hmac 4 import time 5 import os 6 import urllib 7 import urllib2 8 9 try: 10 import simplejson as json 11 except ImportError: 12 import json 13 14 class Auth: 15 def __init__(self,apiKey): 16 self.apiKey = apiKey 17 return None 18 def hmac( 19 self, 20 url, 21 httpMethod="GET", 22 queryParameters=None, 23 postData=None): 24 timestamp = str(int(round(time.time()*1000))) 25 datastring = httpMethod + url 26 if queryParameters != None : 27 datastring += queryParameters 28 datastring += timestamp 29 if postData != None : 30 datastring += postData 31 self.postData = postData 32 self.token = hmac.new(self.apiKey.decode('hex'), msg=datastring,digestmod=hashlib.sha256).hexdigest() 33 #return token,timestamp 34 return self.token,timestamp 35 #built-in GET request for REST-API 36 def GET( 37 self, 38 url, 39 username, 40 httpMethod="GET", 41 queryParameters=None, 42 postData=None): 43 44 token,timestamp = self.hmac(url,httpMethod,queryParameters,postData) 45 if queryParameters != None : 46 url = url + "?" + queryParameters 47 if postData != None : 48 req = urllib2.Request(url, postData) 49 else: 50 req = urllib2.Request(url) 51 req.add_header('Content-Type','application/json') 52 req.add_header('Accept','application/json') 53 req.add_header('X-LLNW-Security-Principal', username) 54 req.add_header('X-LLNW-Security-Timestamp', timestamp) 55 req.add_header('X-LLNW-Security-Token', token) 56 response = urllib2.urlopen(req) 57 return response
16 - error: syntax-error
1 import os, glob, sys, subprocess, zipfile, shutil, time 2 3 #read MSBUILD_PATH, OUT_DIR and ANDROID_* variables for signing APK files from external file 'build-all.cfg' (not checked into version control) 4 MSBUILD_PATH = 'C:/Program Files (x86)/MSBuild/12.0/Bin/MSBuild.exe' 5 OUT_DIR = 'Builds' 6 WEB_GZ = False 7 exec (file('build-all.cfg').read() if os.path.exists('build-all.cfg') else '') 8 WEB_GZ = ('.gz' if WEB_GZ else '') 9 10 #check if directories for unused assets already exist, abort if so 11 assert not os.path.exists('Data-Unused'), 'Temporary asset directory "' + 'Data-Unused' + '" still exists, please check (crashed when executed last time?)' 12 13 #build list of assets with path names in Data and in Data-Unused 14 assets = [] 15 for root, dirs, filenames in os.walk('Data'): 16 for filename in filenames: 17 assets += [[root.replace('\\','/') + '/' + filename,root.replace('Data','Data-Unused',1).replace('\\','/') + '/' + filename]] 18 19 # platform specific setup 20 zl_dir = os.path.realpath(__file__+'/../../ZillaLib').replace('\\', '/') 21 if sys.platform == 'win32': os.environ['PATH'] += os.pathsep+zl_dir.replace('/', os.sep)+os.sep+'Tools' 22 linux_cpu_type = 'x86_64' if sys.maxsize > 2**32 else 'x86_32' 23 24 #options 25 is_rebuild = 'rebuild' in sys.argv 26 select_targets = [k for k in sys.argv if k in ['wasm','emscripten','nacl','android','win32','win64','linux','osx']] 27 if select_targets == []: select_targets = ['wasm','android','win32','win64','linux','osx'] 28 29 #create directories for unused assets while building samples that don't need them, and at first move all assets over 30 for asset in assets: 31 if not os.path.exists(os.path.dirname(asset[1])): os.makedirs(os.path.dirname(asset[1])) 32 os.rename(asset[0], asset[1]) 33 34 #create output dir 35 if not os.path.exists(OUT_DIR): os.makedirs(OUT_DIR) 36 37 #loop through all samples 38 BuildLastRun = 0 39 for num in range(1, 99): 40 try: 41 snum = str(num).zfill(2); 42 inl = (glob.glob(snum + "-*") or [''])[0] 43 if not inl: continue 44 inlcode = file(inl).read() 45 oneasset = '' 46 print '---------------------------------------------------------------------------------------------------------------------------------------------------------------------' 47 print '[ASSETS] Building Sample',num,'("' + inl + '"):' 48 for asset in assets: 49 if (asset[0] in inlcode): 50 os.rename(asset[1], asset[0]) 51 print ' Used Asset:',asset[0] 52 oneasset = asset[0] 53 if oneasset: os.utime(oneasset, None) #touch asset file so assets get rebuilt 54 55 while BuildLastRun >= int(time.time()):pass #must be at least the next second since last build ended, otherwise make can get confused 56 def buildheader(typ): 57 print '---------------------------------------------------------------------------------------------------------------------------------------------------------------------' 58 print '[' + typ + '] Building Sample',num,'("' + inl + '"):' 59 def buildfooter(): 60 print '---------------------------------------------------------------------------------------------------------------------------------------------------------------------' 61 print '' 62 sys.stdout.flush() 63 def building(pargs): 64 print ' **** Executing:',pargs,'...' 65 p = subprocess.Popen(pargs, bufsize=1, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) 66 while True: 67 l = p.stdout.readline() 68 if not l: break 69 if not l.strip(): continue 70 sys.stderr.write(' ' + l.rstrip()[0:180] + "\n") 71 sys.stderr.flush() 72 pret = p.wait() 73 assert pret == 0, ' BUILD RETURNED ERROR, ABORTING' 74 global BuildLastRun 75 BuildLastRun = int(time.time()) 76 def buildcopy(src, trg): 77 print ' **** Copying',src,'to',OUT_DIR+'/'+trg,'...' 78 shutil.copy2(src, OUT_DIR+'/'+trg) 79 def buildzip(trgzip, src, trg): 80 print ' **** Zipping',src,'into',OUT_DIR+'/'+trgzip,'as',trg,'...' 81 z = zipfile.ZipFile(OUT_DIR+'/'+trgzip,'w',zipfile.ZIP_DEFLATED); 82 z.write(src, trg);[z.write(r+os.sep+f, r.replace(src, trg, 1)+os.sep+f) for r,d,fs in os.walk(src) for f in fs] 83 z.close() 84 def buildcheck(name, trg): 85 if select_targets and name not in select_targets: return False 86 return is_rebuild or not os.path.exists(OUT_DIR+'/'+trg) or os.path.getmtime(OUT_DIR+'/'+trg) < os.path.getmtime(inl) 87 88 if sys.platform == 'win32': 89 if buildcheck('wasm', 'ZillaLibSample-' + snum + '.js'+WEB_GZ): 90 buildheader('WEBASSEMBLY') 91 building(['make', '-j', '4', 'wasm-release', 'D=ZILLALIBSAMPLES_NUMBER=' + str(num), 'W=ZillaLibSampleMain.cpp' + (' ' + oneasset if oneasset else '')]) 92 buildcopy('Release-wasm/ZillaLibSamples.js'+WEB_GZ, 'ZillaLibSample-' + snum + '.js'+WEB_GZ) 93 buildfooter() 94 95 if buildcheck('emscripten', 'ZillaLibSample-' + snum + '.js'+WEB_GZ): 96 buildheader('EMSCRIPTEN') 97 building(['make', '-j', '4', 'emscripten-release', 'D=ZILLALIBSAMPLES_NUMBER=' + str(num), 'W=ZillaLibSampleMain.cpp' + (' ' + oneasset if oneasset else '')]) 98 buildcopy('Release-emscripten/ZillaLibSamples' + ('_WithData' if oneasset else '') + '.js'+WEB_GZ, 'ZillaLibSample-' + snum + '.js'+WEB_GZ) 99 buildfooter() 100 101 if buildcheck('nacl', 'ZillaLibSample-' + snum + '.pexe'+WEB_GZ): 102 buildheader('NACL') 103 building(['make', '-j', '4', 'nacl-release', 'D=ZILLALIBSAMPLES_NUMBER=' + str(num), 'W=ZillaLibSampleMain.cpp' + (' '+oneasset if oneasset else '')]) 104 buildcopy('Release-nacl/ZillaLibSamples' + ('_WithData' if oneasset else '') + '.pexe'+WEB_GZ, 'ZillaLibSample-' + snum + '.pexe'+WEB_GZ) 105 buildfooter() 106 107 if buildcheck('android', 'ZillaLibSample-' + snum + '.apk'): 108 buildheader('ANDROID') 109 building(['make', '-j', '4', 'android-release', 'D=ZILLALIBSAMPLES_NUMBER=' + str(num), 'W=ZillaLibSampleMain.cpp']) 110 building(['make', 'android-sign', 'SIGN_OUTAPK='+OUT_DIR+'/ZillaLibSample-' + snum + '.apk', 'SIGN_KEYSTORE='+ANDROID_SIGN_KEYSTORE, 'SIGN_STOREPASS='+ANDROID_SIGN_STOREPASS, 'SIGN_KEYALIAS='+ANDROID_SIGN_KEYALIAS, 'SIGN_KEYPASS='+ANDROID_SIGN_KEYPASS]) 111 buildfooter() 112 113 if buildcheck('win32', 'ZillaLibSample-' + snum + '_Win32.zip'): 114 buildheader('WIN32') 115 if os.path.exists('Release-vs2013\ZillaLibSampleMain.obj'): os.remove('Release-vs2013\ZillaLibSampleMain.obj') 116 building('"'+MSBUILD_PATH+'" /p:Configuration=Release;Platform=Win32;CmdLinePreprocessorDefinitions="ZILLALIBSAMPLES_NUMBER=' + str(num) + (';ZILLALIBSAMPLES_HASDATA"' if oneasset else '";SkipDataAssets=1') + ' ZillaLibSamples-vs.vcxproj') 117 buildzip('ZillaLibSample-' + snum + '_Win32.zip', 'Release-vs2013/ZillaLibSamples' + ('_WithData' if oneasset else '') + '.exe', 'ZillaLibSamples-' + snum + '.exe') 118 buildfooter() 119 120 if buildcheck('win64', 'ZillaLibSample-' + snum + '_Win64.zip'): 121 buildheader('WIN64') 122 if os.path.exists('Release-vs2013x64\ZillaLibSampleMain.obj'): os.remove('Release-vs2013x64\ZillaLibSampleMain.obj') 123 building('"'+MSBUILD_PATH+'" /p:Configuration=Release;Platform=x64;CmdLinePreprocessorDefinitions="ZILLALIBSAMPLES_NUMBER=' + str(num) + (';ZILLALIBSAMPLES_HASDATA"' if oneasset else '";SkipDataAssets=1') + ' ZillaLibSamples-vs.vcxproj') 124 buildzip('ZillaLibSample-' + snum + '_Win64.zip', 'Release-vs2013x64/ZillaLibSamples' + ('_WithData' if oneasset else '') + '.exe', 'ZillaLibSamples-' + snum + '.exe') 125 buildfooter() 126 127 if sys.platform == 'linux2': 128 if buildcheck('linux', 'ZillaLibSample-' + snum + '_linux_' + linux_cpu_type + '.zip'): 129 buildheader('LINUX') 130 building(['make', '-j', '4', 'linux-release', 'D=ZILLALIBSAMPLES_NUMBER=' + str(num) + (' ZILLALIBSAMPLES_HASDATA' if oneasset else ''), 'W=ZillaLibSampleMain.cpp' + (' ' + oneasset if oneasset else '')]) 131 buildzip('ZillaLibSample-' + snum + '_linux_' + linux_cpu_type + '.zip', 'Release-linux/ZillaLibSamples_' + linux_cpu_type + ('_WithData' if oneasset else ''), 'ZillaLibSample-' + snum) 132 buildfooter() 133 134 if sys.platform == 'darwin': 135 if buildcheck('osx', 'ZillaLibSample-' + snum + '_osx.zip'): 136 buildheader('OSX') 137 building(['make', '-j', '4', 'osx-release', 'D=ZILLALIBSAMPLES_NUMBER=' + str(num) + (' ZILLALIBSAMPLES_HASDATA' if oneasset else '')]) 138 buildzip('ZillaLibSample-' + snum + '_osx.zip', 'ZillaLibSamples-OSX.xcodeproj/Release/ZillaLibSamples.app', 'ZillaLibSample-' + snum + '.app') 139 buildfooter() 140 141 except: import traceback; traceback.print_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2]); break; 142 finally: 143 #move all assets back to unused for building the next sample 144 for asset in assets: 145 if os.path.exists(asset[0]): os.rename(asset[0], asset[1]) 146 147 #removing temporary directories 148 for asset in assets: 149 os.rename(asset[1], asset[0]) 150 try: os.rmdir(os.path.dirname(asset[1])) 151 except: pass
46 - error: syntax-error
1 for i in[501,24,25,77,388,22,0,324,297,376,296]:print format(i,'09b')
1 - error: syntax-error
1 while 1: 2 s=raw_input() 3 if s:print s
3 - error: syntax-error
1 from itertools import permutations as p 2 for i in p(raw_input()):print''.join(i)
2 - error: syntax-error
1 i=99;s=', %s.\n' 2 f=lambda i:'%d shinichiro%s of hamaji on the wall'%(i,'es'[:i*2-2]) 3 while i:print f(i)+s%f(i)[:-12]+{1:'Go to the store and buy some more'+s%f(99)}.get(i,'Take one down and pass it around'+s%f(i-1));i-=1
3 - error: syntax-error
1 while 1:print raw_input()
1 - error: syntax-error
1 import argparse 2 import os 3 import sys 4 import json 5 import copy 6 #import ConfigParser 7 import pandas as pd 8 import time 9 import csv 10 import glob 11 import shutil 12 import re 13 #import path 14 from collections import namedtuple 15 16 17 def read_metrics_file(metrics): 18 19 if (len(metrics) == 1): #and path.exists(metrics[0])): 20 metrics_file= metrics[0] 21 with open(metrics_file, 'r') as f: 22 metrics= f.readline().split() 23 print(metrics) 24 f.close() 25 return metrics 26 27 else: 28 print("Error: Too many arguments or path does not exist") 29 30 def read_cmdline_metrics(metrics): 31 return metrics 32 33 34 parser = argparse.ArgumentParser(description='process path and file /or string of metrics.') 35 parser.add_argument('file_path', action='store', help='stores the filepath to the folder holding all the JSON files') 36 parser.add_argument('metrics', type=str, nargs='*', help='list of metrics or file for metrics') 37 parser.add_argument('--infile', dest='read_metrics', action='store_const', const=read_metrics_file, default=read_cmdline_metrics, help='reads metrics from a file or from command line') 38 39 40 args= parser.parse_args() 41 file_path = args.file_path 42 metrics = args.read_metrics(args.metrics) 43 44 45 46 for i in range(0, len(metrics)): 47 if os.path.exists('{}/{}'.format(file_path, metrics[i])): 48 shutil.rmtree('{}/{}'.format(file_path, metrics[i])) 49 if not os.path.exists('{}/{}'.format(file_path, metrics[i])): 50 os.makedirs('{}/{}'.format(file_path, metrics[i])) 51 52 53 dirs= [i for i in os.listdir( file_path ) if i.endswith(".csv")] 54 dirs.sort() 55 56 used_count = [] 57 for file_name in dirs: 58 with open(file_path + '/' + file_name) as csv_file: 59 data_frame = pd.read_csv(csv_file) 60 data_frame.head() 61 62 63 for i in range(0, len(metrics)): 64 contains_metric = data_frame['pCmdLine'].astype(str).str.contains(metrics[i], na=False, flags=re.IGNORECASE) 65 filtered = data_frame[contains_metric] 66 filtered.head() 67 if (len(filtered.index) > 1) : 68 filtered = filtered.loc[:, ~filtered.columns.str.contains('^Unnamed')] 69 filtered.to_csv('{}/{}/{}'.format(file_path, metrics[i], file_name)) 70 71 72 73 for i in range(0, len(metrics)): 74 #path = "{}/{}".format(file_path, metrics[i]) 75 path = file_path 76 all_files = glob.glob(path+ "/*.csv") 77 li = [] 78 print(path) 79 for filtered_file in all_files: 80 df = pd.read_csv(filtered_file, index_col=None, header=0) 81 li.append(df) 82 print(filtered_file) 83 84 frame = pd.concat(li, axis=0, ignore_index=True) 85 frame = frame.sort_values(by='currentTime', ascending=True) 86 frame = frame.loc[:, ~frame.columns.str.contains('^Unnamed: 0')] 87 frame.drop(frame.columns[0], axis=1) 88 #frame= frame.groupby(['currentTime']).agg({ 89 # 'filename':'first', 'pBlockIODelays':'sum','pChildrenKernelMode':'sum', 'pChildrenUserMode':'sum','pCmdLine':'first', 'pCpuTimeUserMode':'sum', 'pId':'sum', 'pName':'first', 'pNonvoluntaryContextSwitches':'sum', 'pNumThreads':'sum', 'pResidentSetSize':'sum','pVirtualMemoryBytes': 'sum', 'pVoluntaryContextSwitches':'sum'}) 90 91 #frame = frame.groupby(['currentTime']).sum() 92 93 #frame = frame.diff(axis=1, periods=1) 94 frame.drop(frame.index[0]) 95 frame['pCpuTime'] = frame['pCpuTimeUserMode'] + frame['pCpuTimeKernelMode'] 96 #print frame 97 frame.to_csv('{}/{}/{}'.format(file_path, metrics[i], "agg_sum.csv")) 98 99 100 101 102
19 - warning: bad-indentation 20 - warning: bad-indentation 21 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 24 - warning: bad-indentation 25 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 31 - warning: bad-indentation 47 - warning: bad-indentation 48 - warning: bad-indentation 49 - warning: bad-indentation 50 - warning: bad-indentation 58 - warning: bad-indentation 59 - warning: bad-indentation 60 - warning: bad-indentation 63 - warning: bad-indentation 64 - warning: bad-indentation 65 - warning: bad-indentation 66 - warning: bad-indentation 67 - warning: bad-indentation 68 - warning: bad-indentation 69 - warning: bad-indentation 75 - warning: bad-indentation 76 - warning: bad-indentation 77 - warning: bad-indentation 78 - warning: bad-indentation 79 - warning: bad-indentation 80 - warning: bad-indentation 81 - warning: bad-indentation 82 - warning: bad-indentation 84 - warning: bad-indentation 85 - warning: bad-indentation 86 - warning: bad-indentation 87 - warning: bad-indentation 94 - warning: bad-indentation 95 - warning: bad-indentation 97 - warning: bad-indentation 17 - warning: redefined-outer-name 19 - refactor: no-else-return 21 - warning: unspecified-encoding 17 - refactor: inconsistent-return-statements 30 - warning: redefined-outer-name 58 - warning: unspecified-encoding 3 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import 8 - warning: unused-import 9 - warning: unused-import 14 - warning: unused-import
1 import argparse 2 import os 3 import shutil 4 import sys 5 import json 6 import copy 7 import configparser 8 from collections import namedtuple 9 10 parser = argparse.ArgumentParser(description='process path and file /or string of metrics.') 11 parser.add_argument('file_path', action='store', help='stores the filepath to the folder holding all the JSON files') 12 parser.add_argument('delta_interval_time', action='store', help='stores time interval of when to take delta sample') 13 args= parser.parse_args() 14 file_path = args.file_path 15 if os.path.exists(file_path + '/delta_json'): 16 shutil.rmtree(file_path + '/delta_json') 17 if not os.path.exists(file_path + '/delta_json'): 18 os.makedirs(file_path + '/delta_json') 19 20 json_array = [] 21 delta_name_array = [] 22 dirs= sorted([i for i in os.listdir( file_path ) if i.endswith(".json")]) 23 for file_name in dirs: 24 with open(file_path + '/' + file_name) as json_file: 25 print ('JSON FILES TANMAY:') 26 print(json_file) 27 try: 28 new_json_object = json.load(json_file) 29 json_array.append(new_json_object) 30 new_name= ((file_path+'/delta_json/'+file_name).split('.json')[0] + '_delta.json') 31 delta_name_array.append(new_name) 32 33 except Exception as e: 34 print ("{} invalid file".format(json_file)) 35 pass 36 def file_subtraction(the_json_one, the_json_two): 37 json_three = copy.deepcopy(the_json_two) 38 if ('cCpuTime' in the_json_one.keys()): 39 json_three['cCpuTime']=the_json_two['cCpuTime']-the_json_one['cCpuTime'] 40 if ('cCpuTimeKernelMode' in the_json_one.keys()): 41 json_three['cCpuTimeKernelMode']=the_json_two['cCpuTimeKernelMode']-the_json_one['cCpuTimeKernelMode'] 42 if ('cCpuTimeUserMode' in the_json_one.keys()): 43 json_three['cCpuTimeUserMode']=the_json_two['cCpuTimeUserMode']-the_json_one['cCpuTimeUserMode'] 44 if ('cDiskReadBytes' in the_json_one.keys()): 45 json_three['cDiskReadBytes']=the_json_two['cDiskReadBytes']-the_json_one['cDiskReadBytes'] 46 if ('cDiskSectorIO' in the_json_one.keys()): 47 json_three['cDiskSectorIO']=the_json_two['cDiskSectorIO']-the_json_one['cDiskSectorIO'] 48 if ('cDiskWriteBytes' in the_json_one.keys()): 49 json_three['cDiskWriteBytes']=the_json_two['cDiskWriteBytes']-the_json_one['cDiskWriteBytes'] 50 if ('cNetworkBytesRecvd' in the_json_one.keys()): 51 json_three['cNetworkBytesRecvd']=the_json_two['cNetworkBytesRecvd']-the_json_one['cNetworkBytesRecvd'] 52 if ('cNetworkBytesSent' in the_json_one.keys()): 53 json_three['cNetworkBytesSent']=the_json_two['cNetworkBytesSent']-the_json_one['cNetworkBytesSent'] 54 if ('vCpuContextSwitches' in the_json_one.keys()): 55 json_three['vCpuContextSwitches']=the_json_two['vCpuContextSwitches']-the_json_one['vCpuContextSwitches'] 56 if ('vCpuIdleTime' in the_json_one.keys()): 57 json_three['vCpuIdleTime']=the_json_two['vCpuIdleTime']-the_json_one['vCpuIdleTime'] 58 if ('vCpuNice' in the_json_one.keys()): 59 json_three['vCpuNice']=the_json_two['vCpuNice']-the_json_one['vCpuNice'] 60 if ('vCpuSteal' in the_json_one.keys()): 61 json_three['vCpuSteal']=the_json_two['vCpuSteal']-the_json_one['vCpuSteal'] 62 if ('vCpuTime' in the_json_one.keys()): 63 json_three['vCpuTime']=the_json_two['vCpuTime']-the_json_one['vCpuTime'] 64 if ('vCpuTimeIOWait' in the_json_one.keys()): 65 json_three['vCpuTimeIOWait']=the_json_two['vCpuTimeIOWait']-the_json_one['vCpuTimeIOWait'] 66 if ('vCpuTimeKernelMode' in the_json_one.keys()): 67 json_three['vCpuTimeKernelMode']=the_json_two['vCpuTimeKernelMode']-the_json_one['vCpuTimeKernelMode'] 68 if ('vCpuTimeSoftIntSrvc' in the_json_one.keys()): 69 json_three['vCpuTimeSoftIntSrvc']=the_json_two['vCpuTimeSoftIntSrvc']-the_json_one['vCpuTimeSoftIntSrvc'] 70 if ('vCpuTimeUserMode' in the_json_one.keys()): 71 json_three['vCpuTimeUserMode']=the_json_two['vCpuTimeUserMode']-the_json_one['vCpuTimeUserMode'] 72 if ('vDiskMergedReads' in the_json_one.keys()): 73 json_three['vDiskMergedReads']=the_json_two['vDiskMergedReads']-the_json_one['vDiskMergedReads'] 74 if ('vDiskMergedWrites' in the_json_one.keys()): 75 json_three['vDiskMergedWrites']=the_json_two['vDiskMergedWrites']-the_json_one['vDiskMergedWrites'] 76 if ('vDiskReadTime' in the_json_one.keys()): 77 json_three['vDiskReadTime']=the_json_two['vDiskReadTime']-the_json_one['vDiskReadTime'] 78 if ('vDiskSectorWrites' in the_json_one.keys()): 79 json_three['vDiskSectorWrites']=the_json_two['vDiskSectorWrites']-the_json_one['vDiskSectorWrites'] 80 if ('vDiskSuccessfulReads' in the_json_one.keys()): 81 json_three['vDiskSuccessfulReads']=the_json_two['vDiskSuccessfulReads']-the_json_one['vDiskSuccessfulReads'] 82 if ('vDiskSuccessfulWrites' in the_json_one.keys()): 83 json_three['vDiskSuccessfulWrites']=the_json_two['vDiskSuccessfulWrites']-the_json_one['vDiskSuccessfulWrites'] 84 if ('vDiskWriteTime' in the_json_one.keys()): 85 json_three['vDiskWriteTime']=the_json_two['vDiskWriteTime']-the_json_one['vDiskWriteTime'] 86 if ('vNetworkBytesRecvd' in the_json_one.keys()): 87 json_three['vNetworkBytesRecvd']=the_json_two['vNetworkBytesRecvd']-the_json_one['vNetworkBytesRecvd'] 88 if ('vNetworkBytesSent' in the_json_one.keys()): 89 json_three['vNetworkBytesSent']=the_json_two['vNetworkBytesSent']-the_json_one['vNetworkBytesSent'] 90 if ('cProcessorStats' in the_json_one.keys()): 91 for (each_key) in the_json_two['cProcessorStats']: 92 if ('cCpu' in each_key and 'TIME' in each_key): 93 json_three['cProcessorStats'][each_key] = the_json_two['cProcessorStats'][each_key] - the_json_one['cProcessorStats'][each_key] 94 return json_three 95 96 delta_json_array=[] 97 count = 0 98 first = json_array[0] 99 for i in range(1, len(json_array)): 100 count += (json_array[i]["currentTime"] - json_array[i-1]["currentTime"]) 101 if count >= int(args.delta_interval_time): 102 delta_json_array.append(file_subtraction(first, json_array[i])) 103 count = 0 104 first = json_array[i] 105 106 for i in range(len(delta_json_array)): 107 with open(delta_name_array[i], 'w') as fp: 108 json.dump(delta_json_array[i], fp, sort_keys=True, indent=2)
16 - warning: bad-indentation 18 - warning: bad-indentation 24 - warning: bad-indentation 25 - warning: bad-indentation 26 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 31 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 35 - warning: bad-indentation 37 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 40 - warning: bad-indentation 41 - warning: bad-indentation 42 - warning: bad-indentation 43 - warning: bad-indentation 44 - warning: bad-indentation 45 - warning: bad-indentation 46 - warning: bad-indentation 47 - warning: bad-indentation 48 - warning: bad-indentation 49 - warning: bad-indentation 50 - warning: bad-indentation 51 - warning: bad-indentation 52 - warning: bad-indentation 53 - warning: bad-indentation 54 - warning: bad-indentation 55 - warning: bad-indentation 56 - warning: bad-indentation 57 - warning: bad-indentation 58 - warning: bad-indentation 59 - warning: bad-indentation 60 - warning: bad-indentation 61 - warning: bad-indentation 62 - warning: bad-indentation 63 - warning: bad-indentation 64 - warning: bad-indentation 65 - warning: bad-indentation 66 - warning: bad-indentation 67 - warning: bad-indentation 68 - warning: bad-indentation 69 - warning: bad-indentation 70 - warning: bad-indentation 71 - warning: bad-indentation 72 - warning: bad-indentation 73 - warning: bad-indentation 74 - warning: bad-indentation 75 - warning: bad-indentation 76 - warning: bad-indentation 77 - warning: bad-indentation 78 - warning: bad-indentation 79 - warning: bad-indentation 80 - warning: bad-indentation 81 - warning: bad-indentation 82 - warning: bad-indentation 83 - warning: bad-indentation 84 - warning: bad-indentation 85 - warning: bad-indentation 86 - warning: bad-indentation 87 - warning: bad-indentation 88 - warning: bad-indentation 89 - warning: bad-indentation 90 - warning: bad-indentation 91 - warning: bad-indentation 92 - warning: bad-indentation 93 - warning: bad-indentation 94 - warning: bad-indentation 100 - warning: bad-indentation 101 - warning: bad-indentation 102 - warning: bad-indentation 103 - warning: bad-indentation 104 - warning: bad-indentation 107 - warning: bad-indentation 108 - warning: bad-indentation 24 - warning: unspecified-encoding 33 - warning: broad-exception-caught 35 - warning: unnecessary-pass 36 - refactor: too-many-branches 36 - refactor: too-many-statements 107 - warning: unspecified-encoding 4 - warning: unused-import 7 - warning: unused-import 8 - warning: unused-import
1 import argparse 2 import os 3 import sys 4 import json 5 import copy 6 import ConfigParser 7 import pandas as pd 8 import time 9 10 import os 11 import glob 12 import pandas as pd 13 14 15 from collections import namedtuple 16 17 parser = argparse.ArgumentParser(description='process path and file /or string of metrics.') 18 parser.add_argument('file_path', action='store', help='') 19 args= parser.parse_args() 20 file_path = args.file_path 21 22 23 dirs= [i for i in os.listdir( file_path ) if i.endswith(".csv")] 24 dirs.sort() 25 dfObj = pd.DataFrame() 26 27 28 used_count = [] 29 pcmd_list =[] 30 for file_name in dirs: 31 with open(file_path + '/' + file_name) as csv_file: 32 data_frame = pd.read_csv(csv_file) 33 data_frame.head() 34 value_counts= data_frame['pCmdLine'].value_counts() 35 #df = value_counts.rename_axis('unique_values').reset_index(name='counts') 36 df = pd.DataFrame(value_counts) 37 pcmd_list.append(df) 38 39 series=data_frame.median() 40 series = series.rename(file_name) 41 42 dfObj = dfObj.append(series) 43 used_count.append(len(data_frame.index)) 44 45 total = pcmd_list[0] 46 for i in pcmd_list[1:]: 47 total = total.add(i, fill_value=0) 48 49 50 total = total.sort_values(by="pCmdLine", ascending=False) 51 total.to_csv("processes_used.csv", sep=',') 52 53 54 dfObj.insert(len(dfObj.columns) ,"Times Used", used_count) 55 dfObj= dfObj.sort_values(by="Times Used", ascending=False) 56 57 dfObj.index=dfObj["pId"] 58 dfObj = dfObj.loc[:, ~dfObj.columns.str.contains('^Unnamed')] 59 60 dfObj.to_csv("process_info.csv", sep=',') 61 62 63
31 - warning: bad-indentation 32 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 36 - warning: bad-indentation 37 - warning: bad-indentation 39 - warning: bad-indentation 40 - warning: bad-indentation 42 - warning: bad-indentation 43 - warning: bad-indentation 47 - warning: bad-indentation 10 - warning: reimported 12 - warning: reimported 31 - warning: unspecified-encoding 3 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import 6 - warning: unused-import 8 - warning: unused-import 11 - warning: unused-import 15 - warning: unused-import
1 #Authors: David Perez and Tanmay Shah 2 3 import json 4 import os 5 import pandas as pd 6 import argparse 7 8 9 #usage: python csv_generation_2.py path_of_folder_with_json sampling_delta metrics(file or space delimited list, if file include --infile, leave blank for all metrics found in the json files.) 10 11 def read_metrics_file(metrics): 12 if (len(metrics) == 1 and path.exists(metrics[0])): 13 metrics_file= metrics[0] 14 with open(metrics_file, 'r') as f: 15 metrics= f.readline().split() 16 # print(metrics) 17 f.close() 18 return metrics 19 else: 20 print("Error: Too many arguments or path does not exist") 21 22 def read_cmdline_metrics(metrics): 23 return metrics 24 25 # vm_container dictionary to store the virtual machine and container data. Key is the filename and value is the virtual machine and container data. 26 vm_container = {} 27 #Parse for folder path, and metrics to add. 28 parser = argparse.ArgumentParser(description='process path and file /or string of metrics.') 29 parser.add_argument('file_path', action='store', help='stores the filepath to the folder holding all the JSON files') 30 parser.add_argument('sampling_delta', type=int, nargs='?', default=1, help='determines sampling size') 31 parser.add_argument('metrics', type=str, nargs='*', help='list of metrics or file for metrics') 32 parser.add_argument('--infile', dest='read_metrics', action='store_const', const=read_metrics_file, default=read_cmdline_metrics, help='reads metrics from a file or from command line') 33 34 args= parser.parse_args() 35 file_path = args.file_path 36 metrics = args.read_metrics(args.metrics) 37 #currentTime is necessary to be included in metrics as it is used to create time series. We add it here incase its not already included 38 metrics.append('currentTime') 39 metrics = set(metrics) 40 dirs = os.listdir( file_path ) 41 42 # processes dictionary to store process level data 43 processes = dict() 44 dirs= sorted([i for i in os.listdir( file_path ) if i.endswith(".json")]) 45 46 for file in dirs: 47 with open(file_path+'/'+file) as f: 48 # Deserialize into python object 49 y = json.load(f) 50 # A dictionary which contains the value of vm_container dictionary 51 r = {} 52 53 54 # Check for any list or dictionary in y 55 # determines what is chosen out of the metrics. 56 #print metrics 57 for k in y: 58 if not (k == "pProcesses" or k == "cProcessorStats"): 59 if k in metrics or len(metrics) == 1: 60 r[k] = y[k] 61 62 63 if ("cProcessorStats" in y and "cNumProcessors" in y): 64 for k in y["cProcessorStats"]: 65 if (k in metrics or len(metrics) == 0): 66 r[k] = y["cProcessorStats"][k] 67 68 if ("pProcesses" in y): 69 totalProcesses = len(y["pProcesses"]) - 1 70 #print y["pProcesses"][len(y["pProcesses"]) - 1] 71 72 73 for k in y["pProcesses"][totalProcesses]: 74 if k == "pTime": 75 r["pTime"] = y["pProcesses"][totalProcesses]["pTime"] 76 77 78 # Loop through the process level data 79 for i in range(totalProcesses): 80 # A dictinary containing process level data 81 s = {"filename": file} 82 83 for k in y["pProcesses"][i]: 84 s[k] = y["pProcesses"][i][k] 85 86 s["currentTime"] = r["currentTime"] 87 88 # If the process id is already in the processes, append to the list of processes 89 pids = [] 90 if y["pProcesses"][i]["pId"] in processes: 91 pids = processes[y["pProcesses"][i]["pId"]] 92 pids.append( s ) 93 processes[y["pProcesses"][i]["pId"]] = pids 94 95 #write all metrics to csv file 96 vm_container[file] = r 97 98 99 #creates empty folder for process info 100 if not os.path.exists('./process_info/{}'.format(os.path.basename(os.path.normpath(file_path)))): 101 os.makedirs('./process_info/{}'.format(os.path.basename(os.path.normpath(file_path)))) 102 103 for key, value in processes.items(): 104 df1 = pd.DataFrame(value) 105 df1 = df1.sort_values(by='currentTime', ascending=True) 106 df1.to_csv("./process_info/{}/Pid, {}.csv".format(os.path.basename(os.path.normpath(file_path)),str(key))) 107 108 # Create a separate CSV files for each of the processes 109 # Dump dictionary to a JSON file 110 with open("vm_container.json","w") as f: 111 f.write(json.dumps(vm_container)) 112 113 # Convert JSON to dataframe and convert it to CSV 114 df = pd.read_json("vm_container.json").T 115 df=df.iloc[::args.sampling_delta] 116 df.to_csv("vm_container.csv", sep=',') 117 118 # Convert JSON to dataframe and convert it to CSV 119 df = pd.read_json("vm_container.json").T 120 df=df.iloc[::args.sampling_delta] 121 df.to_csv("vm_container.tsv", sep='\t') 122
12 - warning: bad-indentation 13 - warning: bad-indentation 14 - warning: bad-indentation 15 - warning: bad-indentation 17 - warning: bad-indentation 18 - warning: bad-indentation 19 - warning: bad-indentation 20 - warning: bad-indentation 23 - warning: bad-indentation 101 - warning: bad-indentation 11 - warning: redefined-outer-name 14 - warning: redefined-outer-name 12 - refactor: no-else-return 12 - error: undefined-variable 14 - warning: unspecified-encoding 11 - refactor: inconsistent-return-statements 22 - warning: redefined-outer-name 43 - refactor: use-dict-literal 47 - warning: unspecified-encoding 58 - refactor: consider-using-in 110 - warning: unspecified-encoding
1 #author: David Perez 2 from plotly.subplots import make_subplots 3 import random 4 import json 5 import os, sys 6 import pandas as pd 7 import subprocess 8 import numpy as np 9 10 import plotly.express as px 11 import plotly.graph_objects as go 12 import argparse 13 from os import path 14 import math 15 import shutil 16 from os.path import abspath 17 from subprocess import call 18 19 20 from distutils.dir_util import copy_tree 21 22 23 def read_metrics_file(metrics): 24 25 if (len(metrics) == 1 and path.exists(metrics[0])): 26 metrics_file= metrics[0] 27 with open(metrics_file, 'r') as f: 28 metrics= f.readline().split() 29 f.close() 30 return ' '.join(metrics) 31 32 33 else: 34 print("Error: Too many arguments or path does not exist") 35 36 def read_cmdline_metrics(metrics): 37 return ' '.join(metrics) 38 39 40 41 #give, x folders, give metrics, give smoothening delta, 42 43 parser = argparse.ArgumentParser(description="generates plotly graphs by giving folders, metrics, and delta smoothening value") 44 parser.add_argument('-f', "--folders", action="store", nargs='*', help='determines sampling size') 45 parser.add_argument("-s", "--sampling_interval", type=str, nargs='?', default=1, action="store", help='determines sampling size') 46 parser.add_argument("-m", "--metrics", action="store", nargs='*', default=[], help='list of metrics to graph over') 47 parser.add_argument("-d", "--dynamic_creation", action="store_true", default=False, help='list of metrics to graph over') 48 parser.add_argument('--infile', dest='read_metrics', action='store_const', const=read_metrics_file, default=read_cmdline_metrics, help='reads metrics from a file or from command line') 49 50 51 52 args= parser.parse_args() 53 metrics = args.read_metrics(args.metrics) 54 55 #print(args.folders); 56 #print(args.sampling_interval); 57 58 print("making delta_json_gen script") 59 os.system("python delta_json_generation.py") 60 print("finished delta_json_gen script") 61 62 current_directory = os.getcwd() 63 final_directory = os.path.join(current_directory, r'graph_all_json') 64 65 if os.path.exists(final_directory): 66 shutil.rmtree(final_directory) 67 if not os.path.exists(final_directory): 68 os.makedirs(final_directory) 69 70 print("running delta_json_gen on each path given") 71 for path in args.folders: 72 path = os.path.expanduser(path) 73 os.system("python auto_generated_delta_script.py {} {}".format(path, args.sampling_interval)) 74 copy_tree(path+"/delta_json", final_directory) 75 76 print("Finished running delta_json_gen on each path given") 77 78 print("Creating a csv file based on dela information created") 79 os.system("python csv_generation_2.py {} {} {}".format(final_directory, "1", metrics)) 80 print("Finished Creating a csv file based on dela information created") 81 82 print("Starting Graphing process") 83 if (args.dynamic_creation) : 84 #print ("Tanmay METRICS HERE:") 85 #print (metrics) 86 os.system("python plotly_graph_generation.py {} {} -d".format("vm_container.csv", metrics)) 87 else : 88 print ("Tanmay METRICS HERE:") 89 print (metrics) 90 os.system("python plotly_graph_generation.py {} {}".format("vm_container.csv", metrics)) 91 92 print("Finished Graphing process") 93
25 - warning: bad-indentation 26 - warning: bad-indentation 27 - warning: bad-indentation 28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 33 - warning: bad-indentation 34 - warning: bad-indentation 37 - warning: bad-indentation 66 - warning: bad-indentation 68 - warning: bad-indentation 72 - warning: bad-indentation 73 - warning: bad-indentation 74 - warning: bad-indentation 86 - warning: bad-indentation 88 - warning: bad-indentation 89 - warning: bad-indentation 90 - warning: bad-indentation 20 - warning: deprecated-module 23 - warning: redefined-outer-name 25 - refactor: no-else-return 27 - warning: unspecified-encoding 23 - refactor: inconsistent-return-statements 36 - warning: redefined-outer-name 2 - warning: unused-import 3 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import 6 - warning: unused-import 7 - warning: unused-import 8 - warning: unused-import 10 - warning: unused-import 11 - warning: unused-import 14 - warning: unused-import 16 - warning: unused-import 17 - warning: unused-import
1 #Creates a script based on graph_generation_config.ini to create a delta script to delta certain metrics, and avoids others. 2 #authors: David Perez and Tanmay Shah 3 4 import argparse 5 import os 6 import json 7 import configparser 8 9 10 from collections import namedtuple 11 12 generated_script= open("auto_generated_delta_script.py","w") 13 generated_script.write("import argparse\nimport os\nimport shutil\nimport sys\nimport json\nimport copy\nimport configparser\nfrom collections import namedtuple\n\n") 14 15 generated_script.write("parser = argparse.ArgumentParser(description='process path and file /or string of metrics.')\n") 16 generated_script.write("parser.add_argument('file_path', action='store', help='stores the filepath to the folder holding all the JSON files')\n") 17 generated_script.write("parser.add_argument('delta_interval_time', action='store', help='stores time interval of when to take delta sample')\n") 18 generated_script.write("args= parser.parse_args()\n") 19 generated_script.write("file_path = args.file_path\n") 20 21 generated_script.write("if os.path.exists(file_path + \'/delta_json\'):\n") 22 generated_script.write("\tshutil.rmtree(file_path + \'/delta_json\')\n") 23 24 25 generated_script.write("if not os.path.exists(file_path + '/delta_json'):\n") 26 generated_script.write("\tos.makedirs(file_path + '/delta_json')\n\n") 27 28 generated_script.write("json_array = []\n") 29 generated_script.write("delta_name_array = []\n") 30 generated_script.write("dirs= sorted([i for i in os.listdir( file_path ) if i.endswith(\".json\")])\n") 31 #generated_script.write("dirs.sort()\n") 32 33 generated_script.write("for file_name in dirs:\n") 34 generated_script.write("\twith open(file_path + '/' + file_name) as json_file: \n") 35 #generated_script.write("\t\tprint ('JSON FILES TANMAY:')\n") 36 generated_script.write("\t\tprint(json_file)\n") 37 generated_script.write("\t\ttry:\n") 38 39 generated_script.write("\t\t\tnew_json_object = json.load(json_file)\n")#, object_hook=lambda d: namedtuple('X', d.keys())(*d.values()))\n") 40 generated_script.write("\t\t\tjson_array.append(new_json_object)\n") 41 generated_script.write("\t\t\tnew_name= ((file_path+'/delta_json/'+file_name).split('.json')[0] + '_delta.json')\n") 42 43 generated_script.write("\t\t\tdelta_name_array.append(new_name)\n\n") 44 generated_script.write("\t\texcept Exception as e:\n") 45 46 generated_script.write("\t\t\tprint (\"{} invalid file\".format(json_file))\n") 47 generated_script.write("\t\t\tpass\n") 48 config = configparser.ConfigParser() 49 config.optionxform = str 50 config.read('graph_generation_config.ini') 51 52 53 #script generation 54 generated_script.write("def file_subtraction(the_json_one, the_json_two):\n") 55 generated_script.write("\tjson_three = copy.deepcopy(the_json_two)\n") 56 57 #all common attributes across all verbos 58 for (each_key, each_val) in config.items('all'): 59 if ( each_val == 'numeric_delta'): #and each_key.isdigit()): 60 json_one = "the_json_one['" +each_key+"']" 61 json_two = "the_json_two['" +each_key+"']" 62 json_three = "json_three['" +each_key+"']" 63 generated_script.write("\t" + json_three +"=" + json_two +'-' + json_one+"\n") 64 65 66 #check and process attributes only for CPU or VM 67 verbos = ['cpu_level','vm_level'] 68 for vKey in verbos: 69 for (each_key, each_val) in config.items(vKey): 70 if ( each_val == 'numeric_delta'): #and each_key.isdigit()): 71 generated_script.write("\tif ('" + each_key + "' in the_json_one.keys()):\n") 72 json_one = "the_json_one['" +each_key+"']" 73 json_two = "the_json_two['" +each_key+"']" 74 json_three = "json_three['" +each_key+"']" 75 generated_script.write("\t\t" + json_three +"=" + json_two +'-' + json_one+"\n") 76 77 if (config.get('cprocessorstats','cCpu#TIME')): 78 generated_script.write("\tif ('cProcessorStats' in the_json_one.keys()):\n") 79 generated_script.write("\t\tfor (each_key) in the_json_two['cProcessorStats']:\n") 80 generated_script.write("\t\t\tif ('cCpu' in each_key and 'TIME' in each_key):\n") 81 generated_script.write("\t\t\t\tjson_three['cProcessorStats'][each_key] = the_json_two['cProcessorStats'][each_key] - the_json_one['cProcessorStats'][each_key]\n") 82 generated_script.write("\treturn json_three\n\n") 83 84 generated_script.write("delta_json_array=[]\n") 85 generated_script.write("count = 0\n") 86 generated_script.write("first = json_array[0]\n") 87 88 generated_script.write("for i in range(1, len(json_array)):\n") 89 90 generated_script.write("\tcount += (json_array[i][\"currentTime\"] - json_array[i-1][\"currentTime\"])\n") 91 generated_script.write("\tif count >= int(args.delta_interval_time):\n") 92 generated_script.write("\t\tdelta_json_array.append(file_subtraction(first, json_array[i]))\n") 93 generated_script.write("\t\tcount = 0\n") 94 generated_script.write("\t\tfirst = json_array[i]\n") 95 96 97 generated_script.write("\n") 98 generated_script.write("for i in range(len(delta_json_array)):\n") 99 100 101 generated_script.write("\twith open(delta_name_array[i], 'w') as fp:\n") 102 generated_script.write("\t\tjson.dump(delta_json_array[i], fp, sort_keys=True, indent=2)\n")
59 - warning: bad-indentation 60 - warning: bad-indentation 61 - warning: bad-indentation 62 - warning: bad-indentation 63 - warning: bad-indentation 69 - warning: bad-indentation 70 - warning: bad-indentation 71 - warning: bad-indentation 72 - warning: bad-indentation 73 - warning: bad-indentation 74 - warning: bad-indentation 75 - warning: bad-indentation 12 - warning: unspecified-encoding 12 - refactor: consider-using-with 4 - warning: unused-import 5 - warning: unused-import 6 - warning: unused-import 10 - warning: unused-import
1 from simulator.event_queue import EventQueue 2 from simulator.resource import * 3 from simulator.dag import Dag 4 from simulator.system import System 5 from workloads.toy.linear_dag import linear_dag_clockwork_data, linear_instance_list, linear_instance_placements 6 7 class SimpleSystem(System): 8 pools: Dict[str, ResourcePool] 9 10 def __init__(self,_events: EventQueue, _pools: Dict[str, ResourcePool]): 11 super().__init__(_events) 12 self.pools = _pools 13 self.dag_maps = {} 14 15 def schedule(self, curr_time, events, *args, **kwargs): 16 # First check for any completed functions 17 for name, pool in self.pools.items(): 18 for resource in pool.get_all_resources(): 19 completed = resource.remove_at_time(curr_time) 20 for (fid, tag) in completed: 21 assert tag in self.outstanding_requests, "Tag needs to map to an outstanding request" 22 self.outstanding_requests[tag] = (True, self.outstanding_requests[tag][1]) 23 # Now process any new events 24 for (dag, input) in events: 25 # for linear_instance in linear_instance_list: 26 # print(linear_instance.id_res_map) 27 # print(linear_instance.running_time) 28 # print(linear_instance.running_cost) 29 # for price_instance in linear_instance_placements.price_list: 30 # print(price_instance.running_cost) 31 # for time_instance in linear_instance_placements.time_list: 32 # print(time_instance.running_time) 33 # sample_placement = (linear_instance_placements.get_sample_list(10000, 10000))[0] 34 # self.dag_maps = sample_placement.id_res_map 35 print(linear_dag_clockwork_data) 36 if linear_dag_clockwork_data[1][0] < 20 and linear_dag_clockwork_data[1][1] < 85: 37 self.dag_maps[dag.name] = 'STD_GPU' 38 elif linear_dag_clockwork_data[0][0] < 20 and linear_dag_clockwork_data[0][1] < 85: 39 self.dag_maps[dag.name] = 'STD_CPU' 40 else: 41 continue 42 # print(dag_maps) 43 # for sample_instance in linear_instance_placements.get_sample_list(10000, 10000): 44 # print(sample_instance.running_time) 45 # print(sample_instance.running_cost) 46 # print("Done") 47 # print("Hello") 48 dag.execute() # Need to do this to seal the DAG 49 self.outstanding_requests[self.__generate_tag(dag, curr_time)] = (True, dag) 50 # Now schedule functions 51 for tag, (flag, dag) in self.outstanding_requests.copy().items(): 52 if flag: 53 if dag.has_next_function(): 54 # Find which resource is faster 55 nxt = dag.peek_next_function() 56 # std_cpu = nxt.resources['STD_CPU'] 57 # std_gpu = nxt.resources['STD_GPU'] 58 # cpu_time = std_cpu['pre'].get_runtime() + std_cpu['exec'].get_runtime() + std_cpu['post'].get_runtime() 59 # gpu_time = std_gpu['pre'].get_runtime() + std_gpu['exec'].get_runtime() + std_gpu['post'].get_runtime() 60 # if cpu_time < gpu_time: 61 # pool = self.pools['STD_CPU_POOL'] 62 # else: 63 # pool = self.pools['STD_GPU_POOL'] 64 # print(self.dag_maps) 65 # print(nxt.unique_id) 66 if self.dag_maps[dag.name] == 'STD_GPU': 67 pool = self.pools['STD_GPU_POOL'] 68 # print("GPU") 69 else: 70 pool = self.pools['STD_CPU_POOL'] 71 # print("CPU") 72 # If there is a resource available, schedule it 73 result : Optional[Tuple[str, Resource]] = pool.find_first_available_resource(nxt, tag) 74 if result: 75 (name, rsrc) = result 76 rsrc.add_function(dag.next_function(), tag, curr_time) 77 self.outstanding_requests[tag] = (False, self.outstanding_requests[tag][1]) 78 else: 79 # Remove if there is no next function 80 self.outstanding_requests.pop(tag) 81 82 def __generate_tag(self, dag: Dag, time: int): 83 return f"{dag.name}:{time}:{id(dag)}" 84 85 def __decode_tag(self, tag: str) -> Dag: 86 return self.outstanding_requests[tag]
8 - warning: bad-indentation 10 - warning: bad-indentation 11 - warning: bad-indentation 12 - warning: bad-indentation 13 - warning: bad-indentation 15 - warning: bad-indentation 17 - warning: bad-indentation 18 - warning: bad-indentation 19 - warning: bad-indentation 20 - warning: bad-indentation 21 - warning: bad-indentation 22 - warning: bad-indentation 24 - warning: bad-indentation 35 - warning: bad-indentation 36 - warning: bad-indentation 37 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 40 - warning: bad-indentation 41 - warning: bad-indentation 48 - warning: bad-indentation 49 - warning: bad-indentation 51 - warning: bad-indentation 52 - warning: bad-indentation 53 - warning: bad-indentation 55 - warning: bad-indentation 66 - warning: bad-indentation 67 - warning: bad-indentation 69 - warning: bad-indentation 70 - warning: bad-indentation 73 - warning: bad-indentation 74 - warning: bad-indentation 75 - warning: bad-indentation 76 - warning: bad-indentation 77 - warning: bad-indentation 78 - warning: bad-indentation 80 - warning: bad-indentation 82 - warning: bad-indentation 83 - warning: bad-indentation 85 - warning: bad-indentation 86 - warning: bad-indentation 2 - warning: wildcard-import 8 - error: undefined-variable 8 - error: undefined-variable 10 - error: undefined-variable 10 - error: undefined-variable 15 - refactor: too-many-locals 24 - warning: redefined-builtin 73 - error: undefined-variable 73 - error: undefined-variable 73 - error: undefined-variable 15 - refactor: too-many-branches 15 - warning: unused-argument 15 - warning: unused-argument 17 - warning: unused-variable 20 - warning: unused-variable 24 - warning: unused-variable 85 - warning: unused-private-member 7 - refactor: too-few-public-methods 5 - warning: unused-import 5 - warning: unused-import
1 import json 2 import numpy 3 from azureml.core.model import Model 4 import joblib 5 6 7 def init(): 8 global LGBM_MODEL 9 # Load the model from file into a global object 10 model_path = Model.get_model_path( 11 model_name="driver_model") 12 LGBM_MODEL = joblib.load(model_path) 13 14 15 def run(raw_data, request_headers): 16 data = json.loads(raw_data)["data"] 17 data = numpy.array(data) 18 result = LGBM_MODEL.predict(data) 19 20 # Demonstrate how we can log custom data into the Application Insights 21 # traces collection. 22 # The 'X-Ms-Request-id' value is generated internally and can be used to 23 # correlate a log entry with the Application Insights requests collection. 24 # The HTTP 'traceparent' header may be set by the caller to implement 25 # distributed tracing (per the W3C Trace Context proposed specification) 26 # and can be used to correlate the request to external systems. 27 print(('{{"RequestId":"{0}", ' 28 '"TraceParent":"{1}", ' 29 '"NumberOfPredictions":{2}}}' 30 ).format( 31 request_headers.get("X-Ms-Request-Id", ""), 32 request_headers.get("Traceparent", ""), 33 len(result) 34 )) 35 36 return {"result": result.tolist()} 37 38 39 if __name__ == "__main__": 40 # Test scoring 41 init() 42 TEST_ROW = '{"data":[[0,1,8,1,0,0,1,0,0,0,0,0,0,0,12,1,0,0,0.5,0.3,0.610327781,7,1,-1,0,-1,1,1,1,2,1,65,1,0.316227766,0.669556409,0.352136337,3.464101615,0.1,0.8,0.6,1,1,6,3,6,2,9,1,1,1,12,0,1,1,0,0,1],[4,2,5,1,0,0,0,0,1,0,0,0,0,0,5,1,0,0,0.9,0.5,0.771362431,4,1,-1,0,0,11,1,1,0,1,103,1,0.316227766,0.60632002,0.358329457,2.828427125,0.4,0.5,0.4,3,3,8,4,10,2,7,2,0,3,10,0,0,1,1,0,1]]}' # NOQA: E501 43 PREDICTION = run(TEST_ROW, {}) 44 print("Test result: ", PREDICTION)
8 - warning: global-variable-undefined
1 class Node : 2 def __init__(self, data) : 3 self.data = data 4 self.next = None 5 self.prev = None 6 7 class doublelinkedlist(object) : 8 def __init__(self) : 9 self.head = None 10 self.tail = None 11 12 def tambahbelakang(self, data) : 13 if self.head is None : 14 new_node = Node(data) 15 new_node.prev = None 16 self.head = new_node 17 else : 18 new_node = Node(data) 19 current_node = self.head 20 while current_node.next is not None : 21 current_node = current_node.next 22 current_node.next = new_node 23 new_node.prev = current_node 24 new_node.next = None 25 self.tail = new_node 26 27 print("Data ditambahkan.") 28 print("") 29 30 def tambahdepan(self, data) : 31 if self.head is None : 32 new_node = Node(data) 33 new_node.prev = None 34 self.head = new_node 35 else : 36 new_node = Node(data) 37 self.head.prev = new_node 38 new_node.next = self.head 39 self.head = new_node 40 new_node.prev = None 41 42 print("Data ditambahkan.") 43 print("") 44 45 def tambahsetelah(self, key, data) : 46 current_node = self.head 47 while current_node is not None : 48 if current_node.next is None and current_node.data == key : 49 self.tambahbelakang(data) 50 return 51 elif current_node.data == key : 52 new_node = Node(data) 53 nxt = current_node.next 54 current_node.next = new_node 55 new_node.next = nxt 56 new_node.prev = current_node 57 nxt.prev = new_node 58 current_node = current_node.next 59 60 print("Data ditambahkan.") 61 print("") 62 63 def tambahsebelum(self, key, data) : 64 current_node = self.head 65 while current_node is not None : 66 if current_node.prev is None and current_node.data == key : 67 self.tambahdepan(data) 68 return 69 elif current_node.data == key : 70 new_node = Node(data) 71 prev = current_node.prev 72 prev.next = new_node 73 current_node.prev = new_node 74 new_node.next = current_node 75 new_node.prev = prev 76 current_node = current_node.next 77 78 print("Data ditambahkan.") 79 print("") 80 81 def hapusdepan(self) : 82 if self.head is None : 83 print ("Data masih kosong.") 84 else : 85 if self.head.next is not None : 86 self.head.next.prev = None 87 self.head = self.head.next 88 89 print("Data dihapus.") 90 print("") 91 92 def hapusbelakang(self) : 93 if self.tail is None : 94 print ("Data masih kosong.") 95 else : 96 if self.tail.prev is not None : 97 self.tail.prev.next = None 98 self.tail = self.tail.prev 99 return 100 101 print("Data dihapus.") 102 print("") 103 104 def hapustarget (self, data) : 105 if self.head is None : 106 print ("Data masih kosong.") 107 return 108 current_node = self.head 109 while current_node.data is not data and current_node.next is not None : 110 current_node = current_node.next 111 if current_node.data is not data : 112 print ("Data tidak ditemukan.") 113 return 114 if current_node.prev is not None : 115 current_node.prev.next = current_node.next 116 else : 117 self.head = current_node.next 118 119 if current_node.next is not None : 120 current_node.next.prev = current_node.prev 121 else : 122 self.tail = current_node.prev 123 124 print("Data dihapus.") 125 print("") 126 127 def tampil(self) : 128 print("Data : ") 129 print("") 130 131 current_node = self.head 132 while current_node is not None : 133 print (current_node.data, end=" -> ") 134 current_node = current_node.next 135 136 def tampilreverse(self) : 137 current_node = self.tail 138 while current_node is not None : 139 print (current_node.data, end=", ") 140 current_node = current_node.prev 141 142 def menuUmum(self): 143 pilih = "y" 144 while ((pilih == "y") or (pilih == "Y")): 145 # os.system('clear') 146 print('Pilih menu yang anda inginkan') 147 print('==============================') 148 print('1. Tambah data di belakang') 149 print('2. Tambah data di depan') 150 print('3. Tambah data setelah data') 151 print('4. Tambah data sebelum data') 152 print('5. Hapus data di depan') 153 print('6. Hapus data di belakang') 154 print('7. Hapus data pilihan') 155 print('8. Tampilkan data') 156 pilihan = str(input("Masukkan Menu yang anda pilih : ")) 157 if(pilihan == "1"): 158 node = str(input("Masukkan data : ")) 159 self.tambahbelakang(node) 160 elif(pilihan == "2"): 161 node = str(input("Masukkan data : ")) 162 self.tambahdepan(node) 163 elif(pilihan == "3"): 164 node = str(input("Masukkan data : ")) 165 node2 = str(input("Masukkan setelah : ")) 166 self.tambahsetelah(node2, node) 167 elif(pilihan == "4"): 168 node = str(input("Masukkan data : ")) 169 node2 = str(input("Masukkan sebelum : ")) 170 self.tambahsebelum(node2, node) 171 elif(pilihan == "5"): 172 self.hapusdepan() 173 elif(pilihan == "6"): 174 self.hapusbelakang() 175 elif(pilihan == "7"): 176 node = str(input("Masukkan data yang ingin dihapus : ")) 177 self.hapustarget(node) 178 elif(pilihan == "8"): 179 self.tampil() 180 x = input("") 181 else : 182 pilih ="n" 183 184 if __name__ == "__main__" : 185 d = doublelinkedlist() 186 d.menuUmum()
1 - refactor: too-few-public-methods 7 - refactor: useless-object-inheritance 48 - refactor: no-else-return 66 - refactor: no-else-return 144 - refactor: consider-using-in 180 - warning: unused-variable
1 # A module is basically a file containing a set of functions to include in your application. There are core python modules, modules you can install using the pip package manager (including Django) as well as custom modules 2 import datetime 3 import time 4 import camelcase 5 6 import validator 7 8 today = datetime.date.today() 9 print(today) 10 print(time.time()) 11 12 camel = camelcase.CamelCase() 13 print(camel.hump("camelCASE")) 14 15 email = "testtest.com" 16 if validator.validate_email(email): 17 print("email is good") 18 else: 19 print("emal is fucked up")
Clean Code: No Issues Detected
1 import time 2 import torch 3 import numpy as np 4 import matplotlib.pyplot as plt 5 import torch.optim as optim 6 import torch.nn as nn 7 from collections import OrderedDict 8 from PIL import Image 9 import seaborn as sns 10 import numpy as np 11 import pandas as pd 12 import json 13 14 15 # %% 16 import torch.nn as nn 17 18 class SentimentRNN(nn.Module): 19 20 def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, drop_prob=0.5): 21 super(SentimentRNN, self).__init__() 22 23 self.output_size = output_size 24 self.n_layers = n_layers 25 self.hidden_dim = hidden_dim 26 27 # embedding and LSTM layers 28 self.embedding = nn.Embedding(vocab_size, embedding_dim) 29 self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, 30 dropout=drop_prob, batch_first=True) 31 32 # dropout layer 33 self.dropout = nn.Dropout(0.3) 34 35 # linear and sigmoid layers 36 self.fc = nn.Linear(hidden_dim, output_size) 37 self.sig = nn.Sigmoid() 38 39 40 def forward(self, x, hidden): 41 """ 42 Perform a forward pass of our model on some input and hidden state. 43 """ 44 batch_size = x.size(0) 45 # embeddings and lstm_out 46 x = x.long() 47 embeds = self.embedding(x) 48 lstm_out, hidden = self.lstm(embeds, hidden) 49 50 # stack up lstm outputs 51 lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim) 52 53 # dropout and fully-connected layer 54 out = self.dropout(lstm_out) 55 out = self.fc(out) 56 # sigmoid function 57 sig_out = self.sig(out) 58 59 # reshape to be batch_size first 60 sig_out = sig_out.view(batch_size, -1) 61 sig_out = sig_out[:, -1] # get last batch of labels 62 63 # return last sigmoid output and hidden state 64 return sig_out, hidden 65 66 67 def init_hidden(self, batch_size): 68 ''' Initializes hidden state ''' 69 # Create two new tensors with sizes n_layers x batch_size x hidden_dim, 70 # initialized to zero, for hidden state and cell state of LSTM 71 weight = next(self.parameters()).data 72 hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(), 73 weight.new(self.n_layers, batch_size, self.hidden_dim).zero_()) 74 75 return hidden 76 77 78 79 # %% 80 checkpoint = torch.load('model_devfest_2019.json', map_location=lambda storage, loc: storage) 81 vocab_to_int = json.load( open( "vocab_to_int.json" ) ) 82 83 84 # %% 85 net = SentimentRNN(7366, 1, 800, 300, 2) 86 net.load_state_dict(checkpoint) 87 net.eval() 88 89 90 # %% 91 from string import punctuation 92 93 def pad_features(reviews_ints, seq_length): 94 features = np.zeros((len(reviews_ints), seq_length), dtype=int) 95 96 for i, row in enumerate(reviews_ints): 97 features[i, -len(row):] = np.array(row)[:seq_length] 98 99 return features 100 101 def tokenize_review(test_review): 102 test_review = test_review.lower() # lowercase 103 # get rid of punctuation 104 test_text = ''.join([c for c in test_review if c not in punctuation]) 105 106 # splitting by spaces 107 test_words = test_text.split() 108 109 # tokens 110 test_ints = [] 111 test_ints.append([vocab_to_int[word] for word in test_words]) 112 return test_ints 113 114 def predict(net, test_review, sequence_length=200): 115 net.eval() 116 test_ints = tokenize_review(test_review) 117 seq_length=sequence_length 118 features = pad_features(test_ints, seq_length) 119 feature_tensor = torch.from_numpy(features) 120 batch_size = feature_tensor.size(0) 121 h = net.init_hidden(batch_size) 122 output, h = net(feature_tensor, h) 123 pred = torch.round(output.squeeze()) 124 if(pred.item()==1): 125 return {"no hate detected!",output.squeeze().item()} 126 else: 127 return {"Hate speech detected.",output.squeeze().item()} 128 129 def getOutput(model,speech,seq_length): 130 test_ints = tokenize_review(speech) 131 features = pad_features(test_ints, seq_length) 132 feature_tensor = torch.from_numpy(features) 133 return predict(model,speech,seq_length) 134 135 136 # %% 137 speech = "please kill your self" 138 cls, probToNoHate =getOutput(net,speech,200) 139 print(cls) 140 print(probToNoHate) 141
5 - refactor: consider-using-from-import 6 - refactor: consider-using-from-import 10 - warning: reimported 16 - warning: reimported 16 - refactor: consider-using-from-import 18 - refactor: too-many-instance-attributes 20 - refactor: too-many-arguments 20 - refactor: too-many-positional-arguments 21 - refactor: super-with-arguments 81 - refactor: consider-using-with 81 - warning: unspecified-encoding 114 - warning: redefined-outer-name 124 - refactor: no-else-return 129 - warning: redefined-outer-name 132 - warning: unused-variable 1 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import 7 - warning: unused-import 8 - warning: unused-import 9 - warning: unused-import 11 - warning: unused-import
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Mon May 28 10:59:55 2018 4 5 @author: j.dixit 6 """ 7 8 import numpy as np 9 import matplotlib.pyplot as plt 10 11 N = 100 12 D = 2 13 14 X = np.random.randn(N, D) 15 X[:50, :] = X[:50, :] - 2*np.ones((50, D)) #centered at -2 16 X[50:, :] = X[50:, :] + 2*np.ones((50, D)) #centered at +2 17 18 T = np.array([0]*50 + [1]*50) #setting forst 50 elements of array to 0 and next 50 to 1 19 20 ones = np.array([[1]*N]).T 21 Xb = np.concatenate((ones, X), axis = 1) 22 23 w = np.random.randn(D + 1) 24 Z = Xb.dot(w) 25 26 def sigmoid(a): 27 return 1/(1 + np.exp(-a)) 28 #def forward(X, w, b): 29 # return sigmoid(X.dot(w) + b) 30 Y = sigmoid(Z) 31 32 def crossEntropyErrorFunction(T, Y): 33 E = 0 34 for i in range(N): 35 if T[i] == 1: 36 E -= np.log(Y[i]) 37 else: 38 E -= np.log(1 - Y[i]) 39 return E 40 41 crossEntropyError = crossEntropyErrorFunction(T, Y) 42 print("With random/normally distributed weights: ",crossEntropyError) 43 44 learning_rate = 0.1 45 L2 = 0.1 46 47 for i in range(100): 48 if i % 10 == 0: 49 print(crossEntropyErrorFunction(T, Y)) 50 51 w += learning_rate*(np.dot((T-Y).T, Xb) - L2*w) 52 Y = sigmoid(Xb.dot(w)) 53 54 print("Final w: ", w) 55
32 - warning: redefined-outer-name 32 - warning: redefined-outer-name 34 - warning: redefined-outer-name 9 - warning: unused-import
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Tue May 29 21:54:38 2018 4 5 @author: jyoti 6 """ 7 from __future__ import print_function, division 8 from builtins import range 9 10 import numpy as np # importing numpy with alias np 11 import matplotlib.pyplot as plt # importing matplotlib.pyplot with alias plt 12 13 No_of_observations = 50 14 No_of_Dimensions = 50 15 16 X_input = (np.random.random((No_of_observations, No_of_Dimensions))-0.5)*10 #Generating 50x50 matrix forX with random values centered round 0.5 17 w_dash = np.array([1, 0.5, -0.5] + [0]*(No_of_Dimensions-3)) # Making first 3 features significant by setting w for them as non-zero and others zero 18 Y_output = X_input.dot(w_dash) + np.random.randn(No_of_observations)*0.5 #Setting Y = X.w + some random noise 19 20 costs = [] #Setting empty list for costs 21 w = np.random.randn(No_of_Dimensions)/np.sqrt(No_of_Dimensions) #Setting w to random values 22 L1_coeff = 5 23 learning_rate = 0.001 24 25 for t in range(500): 26 Yhat = X_input.dot(w) 27 delta = Yhat - Y_output #the error between predicted output and actual output 28 w = w - learning_rate*(X_input.T.dot(delta) + L1_coeff*np.sign(w)) #performing gradient descent for w 29 meanSquareError = delta.dot(delta)/No_of_observations #Finding mean square error 30 costs.append(meanSquareError) #Appending mse for each iteration in costs list 31 32 plt.plot(costs) 33 plt.title("Plot of costs of L1 Regularization") 34 plt.ylabel("Costs") 35 plt.show() 36 37 print("final w:", w) #The final w output. As you can see, first 3 w's are significant , the rest are very small 38 39 # plot our w vs true w 40 plt.plot(w_dash, label='true w') 41 plt.plot(w, label='w_map') 42 plt.legend() 43 plt.show()
Clean Code: No Issues Detected
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Sun May 27 15:21:54 2018 4 5 @author: jyoti 6 """ 7 8 # -*- coding: utf-8 -*- 9 """ 10 Created on Sat May 26 19:13:44 2018 11 12 @author: jyoti 13 """ 14 15 import numpy as np 16 import pandas as pd 17 import matplotlib.pyplot as plt 18 from sklearn.utils import shuffle 19 20 21 def get_data(): 22 df = pd.read_csv("ecommerce_data.csv") 23 data = df.as_matrix() 24 X = data[:, :-1] 25 Y = data[:, -1] 26 X = np.array(X) 27 Y = np.array(Y) 28 X[:, 1] = (X[:, 1]-X[:, 1].mean())/X[:, 1].std() 29 X[:, 2] = (X[:, 2]-X[:, 2].mean())/X[:, 2].std() 30 N, D = X.shape 31 32 X2 = np.zeros((N, D+3)) 33 X2[:, 0: D-2] = X[:, 0: D-2] 34 35 for n in range(N): 36 t = int(X[n, D-1]) 37 X2[n, t+(D-1)] = 1 38 39 Z = np.zeros((N, 4)) 40 Z[np.arange(N), X[:, D-1].astype(np.int32)] = 1 41 #X2[:, -4:] = Z 42 assert(np.abs(X2[:, -4:]- Z).sum() < 10e-10) 43 return X2, Y 44 45 def get_binary_data(): 46 X, Y = get_data() 47 X2 = X[Y <= 1] 48 Y2 = Y[Y <= 1] 49 return X2, Y2 50 51 X, Y = get_binary_data() 52 X, Y = shuffle(X, Y) 53 X_train = X[:-100] 54 Y_train = Y[:-100] 55 X_test = X[-100:] 56 Y_test = Y[-100:] 57 58 D = X.shape[1] 59 N = X.shape[0] 60 w = np.random.randn(D) 61 b = 0 62 63 def sigmoid(a): 64 return 1/(1 + np.exp(-a)) 65 66 67 def forward(x, w, b): 68 return sigmoid(x.dot(w) + b) 69 70 def classification_rate(Y, P): 71 return np.mean(Y == P) 72 73 def crossEntropyErrorFunction(T, Y): 74 return -np.mean(T*np.log(Y) + (1 - T)*np.log(1 - Y)) 75 76 train_costs = [] 77 test_costs = [] 78 learning_rate = 0.001 79 80 for i in range(10000): 81 pY_train = forward(X_train, w, b) 82 pY_test = forward(X_test, w, b) 83 84 ctrain = crossEntropyErrorFunction(Y_train, pY_train) 85 ctest = crossEntropyErrorFunction(Y_test, pY_test) 86 train_costs.append(ctrain) 87 test_costs.append(ctest) 88 89 w -= learning_rate*X_train.T.dot(pY_train - Y_train) 90 b -= learning_rate*(pY_train - Y_train).sum() 91 if i % 1000 == 0: 92 print(i, ctrain, ctest) 93 94 print("Final training classification rate: ", classification_rate(Y_train, np.round(pY_train))) 95 print("Final test classification rate: ", classification_rate(Y_test, np.round(pY_test))) 96 97 legend1, = plt.plot(train_costs, label="train cost") 98 legend2, = plt.plot(test_costs, label="test cost") 99 100 plt.legend([legend1, legend2]) 101 plt.show()
9 - warning: pointless-string-statement 24 - warning: redefined-outer-name 25 - warning: redefined-outer-name 30 - warning: redefined-outer-name 30 - warning: redefined-outer-name 46 - warning: redefined-outer-name 46 - warning: redefined-outer-name 67 - warning: redefined-outer-name 67 - warning: redefined-outer-name 70 - warning: redefined-outer-name 73 - warning: redefined-outer-name
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Sun May 27 13:33:29 2018 4 5 @author: jyoti 6 """ 7 8 import numpy as np 9 import matplotlib.pyplot as plt 10 11 N = 100 12 D = 2 13 14 X = np.random.randn(N, D) 15 X[:50, :] = X[:50, :] - 2*np.ones((50, D)) #centered at -2 16 X[50:, :] = X[50:, :] + 2*np.ones((50, D)) #centered at +2 17 18 T = np.array([0]*50 + [1]*50) #setting forst 50 elements of array to 0 and next 50 to 1 19 20 ones = np.array([[1]*N]).T 21 Xb = np.concatenate((ones, X), axis = 1) 22 23 w = np.random.randn(D + 1) 24 Z = Xb.dot(w) 25 26 def sigmoid(a): 27 return 1/(1 + np.exp(-a)) 28 29 #def forward(X, w, b): 30 # return sigmoid(X.dot(w) + b) 31 Y = sigmoid(Z) 32 33 def crossEntropyErrorFunction(T, Y): 34 E = 0 35 for i in range(N): 36 if T[i] == 1: 37 E -= np.log(Y[i]) 38 else: 39 E -= np.log(1 - Y[i]) 40 return E 41 42 crossEntropyError = crossEntropyErrorFunction(T, Y) 43 print("With random/normally distributed weights: ",crossEntropyError) 44 45 w = np.array([0, 4, 4]) 46 Z = Xb.dot(w) 47 48 Y = sigmoid(Z) 49 50 crossEntropyError = crossEntropyErrorFunction(T, Y) 51 print("With calculated weights/closed form solution: ",crossEntropyError) 52 53 plt.scatter(X[:, 0], X[:, 1], c = T, s = 100, alpha = 0.5) 54 plt.title("Two Gaussian clouds and the discriminating line") 55 x_axis = np.linspace(-6, 6, 100) 56 y_axis = -x_axis 57 plt.plot(x_axis, y_axis) 58 plt.show()
33 - warning: redefined-outer-name 33 - warning: redefined-outer-name
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Sun May 27 15:06:16 2018 4 5 @author: jyoti 6 """ 7 8 import numpy as np 9 import matplotlib.pyplot as plt 10 11 N = 100 12 D = 2 13 14 X = np.random.randn(N, D) 15 X[:50, :] = X[:50, :] - 2*np.ones((50, D)) #centered at -2 16 X[50:, :] = X[50:, :] + 2*np.ones((50, D)) #centered at +2 17 18 T = np.array([0]*50 + [1]*50) #setting forst 50 elements of array to 0 and next 50 to 1 19 20 ones = np.array([[1]*N]).T 21 Xb = np.concatenate((ones, X), axis = 1) 22 w = np.random.randn(D + 1) 23 24 25 def sigmoid(a): 26 return 1/(1 + np.exp(-a)) 27 28 Y = sigmoid(Xb.dot(w)) 29 30 def crossEntropyErrorFunction(T, Y): 31 E = 0 32 for i in range(N): 33 if T[i] == 1: 34 E -= np.log(Y[i]) 35 else: 36 E -= np.log(1 - Y[i]) 37 return E 38 39 learning_rate = 0.1 40 for i in range(100): 41 if i % 10 == 0: 42 print(crossEntropyErrorFunction(T, Y)) 43 44 w += learning_rate*Xb.T.dot(T - Y) 45 Y = sigmoid(Xb.dot(w)) 46 47 print("Final weight, w: ", w)
30 - warning: redefined-outer-name 30 - warning: redefined-outer-name 32 - warning: redefined-outer-name 9 - warning: unused-import
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Tue May 29 22:07:08 2018 4 5 @author: jyoti 6 """ 7 8 import numpy as np #importing the numpy package with alias np 9 import matplotlib.pyplot as plt #importing the matplotlib.pyplot as plt 10 11 N = 50 12 D = 50 13 14 X = (np.random.random((N, D))-0.5)*10 15 w_dash = np.array([1, 0.5, -0.5] + [0]*(D-3)) 16 Y = X.dot(w_dash) + np.random.randn(N)*0.5 17 18 Y[-1]+=30 #setting last element of Y as Y + 30 19 Y[-2]+=30 #setting second last element of Y as Y + 30 20 21 plt.scatter(X, Y) 22 plt.title('Relationship between Y and X[:, 1]') 23 plt.xlabel('X[:, 1]') 24 plt.ylabel('Y') 25 plt.show() 26 27 X = np.vstack([np.ones(N), X]).T #appending bias data points colummn to X 28 29 w_ml = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, Y)) #finding weights for maximum likelihood estimation 30 Y_ml = np.dot(X, w_ml) 31 32 plt.scatter(X[:,1], Y) 33 plt.plot(X[:,1],Y_ml, color='red') 34 plt.title('Graph of maximum likelihood method(Red line: predictions)') 35 plt.xlabel('X[:, 1]') 36 plt.ylabel('Y') 37 plt.show() 38 39 costs = [] 40 w = np.random.randn(D)/np.sqrt(D) 41 L1_coeff = 5 42 learning_rate = 0.001 43 for t in range(500): 44 Yhat = X.dot(w) 45 delta = Yhat - Y 46 w = w - learning_rate*(X.T.dot(delta) + L1_coeff*np.sign(w)) 47 meanSquareError = delta.dot(delta)/N 48 costs.append(meanSquareError) 49 50 w_map = w 51 Y_map = X.dot(w_map) 52 53 plt.scatter(X[:,1], Y) 54 plt.plot(X[:,1],Y_ml, color='red',label="maximum likelihood") 55 plt.plot(X[:,1],Y_map, color='green', label="map") 56 plt.title('Graph of MAP v/s ML method') 57 plt.legend() 58 plt.xlabel('X[:, 1]') 59 plt.ylabel('Y') 60 plt.show()
Clean Code: No Issues Detected
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Mon May 28 16:22:16 2018 4 5 @author: j.dixit 6 """ 7 8 import numpy as np 9 import matplotlib.pyplot as plt 10 11 N = 4 12 D = 2 13 14 X = np.array([ 15 [0, 0], 16 [0, 1], 17 [1, 0], 18 [1, 1] 19 ]) 20 21 T = np.array([0, 1, 1, 0]) 22 23 ones = np.array([[1]*N]).T 24 #plt.scatter(X[:, 0], X[:, 1], c=T) 25 #plt.show() 26 27 xy = np.matrix(X[:, 0]*X[:, 1]).T 28 Xb = np.array(np.concatenate((ones, xy, X), axis = 1)) 29 30 w = np.random.rand(D + 2) 31 32 z = Xb.dot(w) 33 34 def sigmoid(z): 35 return 1/(1 + np.exp(-z)) 36 37 Y = sigmoid(z) 38 39 def cross_entropy(T, Y): 40 E = 0 41 for i in range(N): 42 if T[i] == 1: 43 E -= np.log(Y[i]) 44 else: 45 E -= np.log(1-np.log(Y[i])) 46 return E 47 48 learning_rate = 0.0001 49 error = [] 50 51 for i in range(5000): 52 e = cross_entropy(T, Y) 53 error.append(e) 54 if i % 100 == 0: 55 print(e) 56 57 w += learning_rate*(np.dot((T-Y).T, Xb) - 0.01*w) 58 59 Y = sigmoid(Xb.dot(w)) 60 61 plt.plot(error) 62 plt.title("Cross-entropy") 63 print("Final w: ", w) 64 print("Final classification rate", 1-np.abs(T-np.round(Y)).sum()/N)
34 - warning: redefined-outer-name 39 - warning: redefined-outer-name 39 - warning: redefined-outer-name 41 - warning: redefined-outer-name
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Sun Jun 10 17:55:24 2018 4 5 @author: jyoti 6 """ 7 from __future__ import division, print_function 8 from builtins import range 9 10 import numpy as np 11 import matplotlib.pyplot as plt 12 13 class LinearRegression(object): 14 def __init__(self): 15 pass 16 17 def fit(self, X, Y, eta=10, epochs=2000): 18 N, D = X.shape 19 self.w = np.random.randn(D) 20 #self.b = 0 21 22 23 for i in range(epochs): 24 Yhat = self.predict(X) 25 delta = Yhat - Y #the error between predicted output and actual output 26 self.w = self.w - eta*(X.T.dot(delta)) #performing gradient descent for w 27 28 print("Final weights are ", self.w) 29 #print("Final bias point is ", self.b) 30 print("Final cost is ", self.costs) 31 32 33 34 def predict(self, X): 35 Y_cap = X.dot(self.w) 36 return Y_cap 37 38 def costs(self, X, Y): 39 Yhat = self.predict(X) 40 cost = (Yhat-Y).dot(Yhat-Y) 41 return cost 42 43 def main(): 44 X = [] 45 Y = [] 46 47 for line in open("data_2d.csv"): 48 x1, x2, y = line.split(",") 49 X.append([float(x1), float(x2)]) 50 Y.append(float(y)) 51 X = np.array(X) 52 Y = np.array(Y) 53 54 55 model = LinearRegression() 56 model.fit(X, Y) 57 #prediction = model.predict() 58 59 60 61 62 if __name__ == '__main__': 63 main() 64 65 66
13 - refactor: useless-object-inheritance 18 - warning: unused-variable 23 - warning: unused-variable 19 - warning: attribute-defined-outside-init 26 - warning: attribute-defined-outside-init 47 - refactor: consider-using-with 47 - warning: unspecified-encoding 11 - warning: unused-import
1 2 # -*- coding: utf-8 -*- 3 """ 4 Created on Sat Jun 9 13:01:51 2018 5 6 @author: jyoti 7 """ 8 9 import numpy as np 10 import matplotlib.pyplot as plt 11 12 from util import getData 13 14 labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral'] 15 16 def main(): 17 X, Y = getData(balance_ones = False) 18 19 while(True): 20 for i in range(7): 21 x, y = X[Y == i], Y[Y == i] 22 N = len(y) 23 j = np.random.choice(N) 24 plt.imshow(x[j].reshape(48, 48), cmap = 'gray') 25 plt.title(labels[y[j]]) 26 plt.show() 27 prompt = input("Quit the program? Y/N\n") 28 if prompt == 'Y': 29 break 30 31 if __name__ == '__main__': 32 main() 33 34 35
Clean Code: No Issues Detected
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Sat May 26 19:13:44 2018 4 5 @author: jyoti 6 """ 7 8 import numpy as np 9 import pandas as pd 10 import matplotlib.pyplot as plt 11 from sklearn.utils import shuffle 12 13 14 def get_data(): 15 df = pd.read_csv("ecommerce_data.csv") 16 data = df.as_matrix() 17 X = data[:, :-1] 18 Y = data[:, -1] 19 X = np.array(X) 20 Y = np.array(Y) 21 X[:, 1] = (X[:, 1]-X[:, 1].mean())/X[:, 1].std() 22 X[:, 2] = (X[:, 2]-X[:, 2].mean())/X[:, 2].std() 23 N, D = X.shape 24 25 X2 = np.zeros((N, D+3)) 26 X2[:, 0: D-2] = X[:, 0: D-2] 27 28 for n in range(N): 29 t = int(X[n, D-1]) 30 X2[n, t+(D-1)] = 1 31 32 Z = np.zeros((N, 4)) 33 Z[np.arange(N), X[:, D-1].astype(np.int32)] = 1 34 #X2[:, -4:] = Z 35 assert(np.abs(X2[:, -4:]- Z).sum() < 10e-10) 36 return X2, Y 37 38 def get_binary_data(): 39 X, Y = get_data() 40 X2 = X[Y <= 1] 41 Y2 = Y[Y <= 1] 42 return X2, Y2 43 44 X, Y = get_binary_data() 45 D = X.shape[1] 46 W = np.random.randn(D) 47 b = 0 48 49 def sigmoid(a): 50 return 1/(1 + np.exp(-a)) 51 52 def forward(x, w, b): 53 return sigmoid(x.dot(w) + b) 54 55 P_Y_Given_X = forward(X, W, b) 56 predictions = np.round(P_Y_Given_X) 57 58 def classification_rate(Y, P): 59 return np.mean(Y == P) 60 61 print("Score: ", classification_rate(Y, predictions)) 62
17 - warning: redefined-outer-name 18 - warning: redefined-outer-name 23 - warning: redefined-outer-name 39 - warning: redefined-outer-name 39 - warning: redefined-outer-name 52 - warning: redefined-outer-name 58 - warning: redefined-outer-name 10 - warning: unused-import 11 - warning: unused-import
1 def output_lable(n): 2 if n == 1: 3 return "Offensive " 4 elif n ==0: 5 return "Not Offensive " 6 7 def manual_testing(news): 8 testing_news = {"text":[news]} 9 new_def_test = pd.DataFrame(testing_news) 10 new_def_test["text"] = new_def_test["text"] 11 new_x_test = new_def_test["text"] 12 new_xv_test = tfidf_vect.transform(new_x_test) 13 pred_sgdc = model.predict(new_xv_test) 14 return pred_sgdc 15 16 words=news.split() 17 words2 =[] 18 for x in words: 19 res=manual_testing(x) 20 if res == 1: 21 words2.append('****') 22 else: 23 words2.append(x) 24 25 s=' '.join(words2) 26 return s
2 - warning: bad-indentation 3 - warning: bad-indentation 4 - warning: bad-indentation 5 - warning: bad-indentation 8 - warning: bad-indentation 9 - warning: bad-indentation 10 - warning: bad-indentation 11 - warning: bad-indentation 12 - warning: bad-indentation 13 - warning: bad-indentation 14 - warning: bad-indentation 19 - warning: bad-indentation 20 - warning: bad-indentation 21 - warning: bad-indentation 22 - warning: bad-indentation 23 - warning: bad-indentation 2 - refactor: no-else-return 1 - refactor: inconsistent-return-statements 9 - error: undefined-variable 12 - error: undefined-variable 13 - error: undefined-variable 16 - error: undefined-variable 26 - error: return-outside-function
1 from getpass import getpass 2 import os 3 import sqlite3 4 from werkzeug.security import generate_password_hash 5 from flask import g 6 import traceback 7 import logging 8 9 path = os.getcwd() 10 DATABASE = os.path.join(path, 'ansible.db') 11 12 def init_db(): 13 with app.app_context(): 14 db = sqlite3.connect(DATABASE) 15 with app.open_resource('schema.sql', mode='r') as f: 16 db.cursor().executescript(f.read()) 17 db.commit() 18 19 def get_db(app): 20 with app.app_context(): 21 if 'db' not in g: 22 g.db = sqlite3.connect( 23 DATABASE, 24 detect_types=sqlite3.PARSE_DECLTYPES 25 ) 26 g.db.row_factory = sqlite3.Row 27 28 return g.db 29 30 def insert(table,columnTuple,valueTuple): 31 try: 32 dbConnection = sqlite3.connect(DATABASE) 33 columnTupleString = ', '.join(columnTuple) 34 dbConnection.execute( 35 'INSERT INTO ' + table + ' (' + columnTupleString + ') VALUES (?, ?)', 36 (valueTuple) 37 ) 38 dbConnection.commit() 39 except Exception as e: 40 logging.error(traceback.format_exc()) 41 42 def select_one(table, return_columns, query_column, value): 43 try: 44 dbConnection = sqlite3.connect(DATABASE) 45 result = (dbConnection.execute( 46 'SELECT ' + ', '.join(return_columns) + ' FROM ' + table + ' WHERE ' + query_column + '= (?) Limit 1', 47 (value,) 48 ).fetchone()) 49 return result 50 except Exception as e: 51 logging.error(traceback.format_exc()) 52 print("User existence check failed") 53 54 def exists(table,column,value): 55 try: 56 dbConnection = sqlite3.connect(DATABASE) 57 result = dbConnection.execute( 58 'SELECT CASE WHEN EXISTS( SELECT 1 FROM ' + table + ' WHERE ' + column + '= (?)) THEN 1 ELSE 0 END', 59 (value,) 60 ).fetchone() 61 if result[0] == 1: 62 return True 63 else: 64 return False 65 except Exception as e: 66 logging.error(traceback.format_exc()) 67 68 69 def update(table, update_dict, query_column, query_value): 70 try: 71 dbConnection = sqlite3.connect(DATABASE) 72 result = (dbConnection.execute( 73 'UPDATE ' + table + ' SET ' + build_set_statement(update_dict) + ' WHERE ' + query_column + '= (?)', 74 (query_value,) 75 ).fetchone()) 76 dbConnection.commit() 77 return result 78 except Exception as e: 79 logging.error(traceback.format_exc()) 80 81 def build_set_statement(updated_field_dict): 82 setItems = [] 83 for field in updated_field_dict: 84 setItems.append(field + ' = \'' + updated_field_dict[field] + '\'') 85 setFields = ', '.join(setItems) 86 return setFields 87
13 - error: undefined-variable 15 - error: undefined-variable 39 - warning: broad-exception-caught 39 - warning: unused-variable 50 - warning: broad-exception-caught 42 - refactor: inconsistent-return-statements 50 - warning: unused-variable 65 - warning: broad-exception-caught 61 - refactor: simplifiable-if-statement 61 - refactor: no-else-return 54 - refactor: inconsistent-return-statements 65 - warning: unused-variable 78 - warning: broad-exception-caught 69 - refactor: inconsistent-return-statements 78 - warning: unused-variable 1 - warning: unused-import 4 - warning: unused-import
1 from cryptography.fernet import Fernet 2 import datetime 3 from flask import (flash, Flask, g, Markup, redirect, render_template, request, 4 send_from_directory, session, url_for) 5 import functools 6 import logging 7 import os 8 from secrets import token_urlsafe 9 import sqlite3 10 import sys 11 from werkzeug.utils import secure_filename 12 from werkzeug.security import check_password_hash, generate_password_hash 13 from build_dir import build_dir 14 import sanitize_path 15 from db import get_db 16 from user import create_user, user_exists, gen_default_user, get_user, update_user 17 import html 18 19 20 logging.basicConfig(stream=sys.stderr, level=logging.DEBUG) 21 22 app = Flask(__name__) 23 app.config["SECRET_KEY"] = os.urandom(256) # TODO: change to environemnt variable 24 app.config["CRYPTO_KEY"] = Fernet.generate_key() # TODO put this somewhere where it wont update often possibly environmnet analize impact of changing. 25 26 path = os.getcwd() 27 database = os.path.join(path, 'ansible.db') 28 29 db = get_db(app) 30 31 def login_required(view): 32 @functools.wraps(view) 33 def wrapped_view(**kwargs): 34 if 'authenticated' not in session: 35 return redirect(url_for('login')) 36 return view(**kwargs) 37 return wrapped_view 38 39 @app.route('/', defaults={'loc': ""}, methods=('GET',)) 40 @app.route('/<path:loc>', methods=('GET',)) 41 @login_required 42 def ansible(loc): 43 logging.debug('made it here') 44 sanitize_path.sanitize(loc) 45 46 # TODO: if loc is empty return the home directory for the node 47 # possible security concern - could ask for a higher level node 48 # TODO: for future addition of link sending - store encrypted version 49 # of top level directory in session can possibly use a werkzeug module 50 # TODO: check if input is an encrypted link (use a /share/ or something to indicate) 51 # TODO: process encrypted link 52 # TODO: process a normal link 53 # TODO: get the the home directory 54 55 # TODO: authenticate the requested directory 56 57 logging.debug(loc) 58 59 currentDir = os.path.join('cloud-drive', loc) #update to be maliable for sharing 60 61 currentPath = os.path.join(path, currentDir) 62 63 logging.debug(os.path.splitext(currentPath)[1]) 64 logging.debug(currentDir) 65 logging.debug(path) 66 logging.debug(currentPath) 67 logging.debug(loc) 68 69 fileExtension = os.path.splitext(currentPath)[1] 70 if fileExtension: 71 splitUrl = currentPath.rsplit('/', 1) 72 localDir = splitUrl[0] 73 filename = splitUrl[1] 74 absPath = os.path.join(path, 'cloud-drive', localDir) 75 return send_from_directory(directory=absPath, filename=filename) 76 77 directoryDict = build_dir(currentPath) 78 79 return render_template('index-alt.html', directory=directoryDict, curDir=loc) 80 81 @app.route("/login", methods=('GET', 'POST')) 82 def login(): 83 if request.method == 'POST': 84 username = request.form['username'] 85 password = request.form['password'] 86 error = None 87 88 user = get_user(username) 89 if user is not None: 90 user_password = user[1] 91 if not check_password_hash(user_password, password): 92 error = 'Incorrect password, please try again.' 93 else: 94 error = 'User not found' 95 96 if error is None: 97 session.clear() 98 session['authenticated'] = 'true' 99 session['user_id'] = token_urlsafe() 100 return redirect(url_for('ansible')) 101 102 flash(error) 103 104 return render_template('login.html') 105 106 @app.route("/signup", methods=('GET','POST')) 107 def signup(): 108 if request.method == 'POST': 109 username = request.form['name'] 110 password = request.form['password'] 111 error = None 112 113 if not user_exists(username): 114 create_user(username,password) 115 else: 116 error = 'Username already exists.' 117 118 if error is None: 119 return redirect(url_for('login')) 120 121 flash(error) 122 123 124 return render_template('signup.html') 125 126 @app.route("/updatepassword", methods=('GET','POST')) 127 def update_password(): 128 if request.method == 'POST': 129 130 username = request.form['username'] 131 prev_password = request.form['password'] 132 new_password = request.form['new_password'] 133 verified_new_password = request.form['verify_new_password'] 134 135 error = None 136 if(new_password == verified_new_password): 137 if user_exists(username): 138 update_user(username,prev_password,new_password) 139 else: 140 error = 'User doesnt exist.' 141 else: 142 error = 'Passwords do not match' 143 144 if error is None: 145 return redirect(url_for('login')) 146 147 flash(error) 148 149 150 return render_template('update-password.html') 151 152 @app.route("/logout", methods=('GET',)) 153 def logout(): 154 del session['authenticated'] 155 return redirect(url_for('login')) 156 157 158
23 - warning: fixme 24 - warning: fixme 46 - warning: fixme 48 - warning: fixme 50 - warning: fixme 51 - warning: fixme 52 - warning: fixme 53 - warning: fixme 55 - warning: fixme 2 - warning: unused-import 3 - warning: unused-import 3 - warning: unused-import 9 - warning: unused-import 11 - warning: unused-import 12 - warning: unused-import 16 - warning: unused-import 17 - warning: unused-import
1 from bs4 import BeautifulSoup 2 import getpass 3 import requests 4 import os 5 6 def pTest(attack_string, attack_url, password): 7 payload = {'password': password} 8 with requests.Session() as s: 9 p = s.post(attack_url + 'login', data=payload) 10 r = requests.Request('GET', attack_url) 11 prepared = s.prepare_request(r) 12 prepared.url += attack_string 13 response = s.send(prepared) 14 print('Sending request with url:', prepared.url) 15 #print('Request successful:', response.ok) 16 17 if response.ok: 18 soup = BeautifulSoup(response.text, 'html.parser') 19 safeResponse = s.get(attack_url) 20 soup2 = BeautifulSoup(safeResponse.text, 'html.parser') 21 22 if (response.text == safeResponse.text): 23 print("Attack Failed - Attack Led to Top Directory") 24 else: 25 print("Attack may have succeded") 26 print("Attack response tags:") 27 for link in soup.find_all('a'): 28 print(link.get('href')) 29 print('') 30 print('Safe Output') 31 print('') 32 for link in soup2.find_all('a'): 33 print(link.get('href')) 34 else: 35 print('Attack Failed - No Such Directory') 36 37 38 39 def pWrap(attack_string): 40 pTest(attack_string=attack_string, attack_url=ATTACK_URL, password=PASSWORD) 41 42 PASSWORD = os.getenv('PWRD') 43 ATTACK_URL ='http://127.0.0.1:5050/' 44 ATTACK_STRINGS = [ 45 '../../../..', 46 'test/../.././.../', 47 '..', 48 'level1/../..', 49 'level1/../../', 50 'pwd' 51 ] 52 53 if __name__ == '__main__': 54 if not PASSWORD: 55 PASSWORD = print('First set environment variable PWRD. (export PWRD=YOUR_PASSWORD)') 56 else: 57 for attack in ATTACK_STRINGS: 58 pWrap(attack)
9 - warning: unused-variable 2 - warning: unused-import
1 from db import insert, exists, select_one, update 2 from werkzeug.security import check_password_hash, generate_password_hash 3 import logging 4 import traceback 5 6 def create_user(username,password): 7 try: 8 formattedUsername = format_username(username) 9 hashedPassword = generate_password_hash(password) 10 insert( 'user', ('username', 'password'), (formattedUsername, hashedPassword)) 11 except Exception as e: 12 logging.error(traceback.format_exc()) 13 14 def user_exists(username): 15 try: 16 formattedUsername = format_username(username) 17 return exists('user','username',formattedUsername) 18 except Exception as e: 19 logging.error(traceback.format_exc()) 20 print("User existence check failed") 21 22 def get_user(username): 23 try: 24 formattedUsername = format_username(username) 25 return select_one('user',('username','password'), 'username',formattedUsername) 26 except Exception as e: 27 logging.error(traceback.format_exc()) 28 print("Failed to get user") 29 30 31 def update_user(username,password,new_password): 32 try: 33 formattedUsername = format_username(username) 34 user = get_user(formattedUsername) 35 user_password = user[1] 36 if(user is not None): 37 if(check_password_hash(user_password,password)): 38 newHashedPassword = generate_password_hash(new_password) 39 update('user',{'password':newHashedPassword},'username',formattedUsername) 40 except: 41 logging.error(traceback.format_exc()) 42 43 44 def gen_default_user(): 45 46 while(True): 47 password = getpass(prompt='Create a password, at least 8 characters: ') 48 password2 = getpass(prompt='Confirm password: ') 49 if password == password2: 50 if len(password) < 8: 51 print('Password must be at least 8 characters.') 52 else: 53 break 54 else: 55 print('Passwords do not match') 56 try: 57 create_user('default',password) 58 except: 59 logging.error(traceback.format_exc()) 60 61 def format_username(username): 62 return username.lower()
37 - warning: bad-indentation 38 - warning: bad-indentation 39 - warning: bad-indentation 11 - warning: broad-exception-caught 11 - warning: unused-variable 18 - warning: broad-exception-caught 14 - refactor: inconsistent-return-statements 18 - warning: unused-variable 26 - warning: broad-exception-caught 22 - refactor: inconsistent-return-statements 26 - warning: unused-variable 40 - warning: bare-except 47 - error: undefined-variable 48 - error: undefined-variable 58 - warning: bare-except
1 # build_dir.py 2 import os 3 4 5 def build_dir(curPath): 6 directoryDict = {} 7 with os.scandir(curPath) as directory: 8 for entry in directory: 9 #dont include shortcuts and hidden files 10 if not entry.name.startswith('.'): 11 #stat dict reference: 12 #https://docs.python.org/2/library/stat.html 13 fileStats = entry.stat() 14 directoryDict[entry.name] = {"is_dir" : entry.is_dir(), 15 "size" : fileStats.st_size} 16 return directoryDict
Clean Code: No Issues Detected
1 import re 2 3 def sanitize(path): 4 # escape nasty double-dots 5 path = re.sub(r'\.\.', '', path) 6 # then remove any duplicate slashes 7 path = re.sub(r'(/)\1+', r'\1', path) 8 # then remove any leading slashes and dots 9 while(path and (path[0] == '/' or path[0] == '.')): 10 path = path[1:] 11 return path
Clean Code: No Issues Detected
1 import qi2 2 3 def fbn(option, array, mod, k, j): 4 if option == 0: 5 result = (array[j-1] + array[k-1]) % mod 6 elif option == 1: 7 result = (array[j-1] - array[k-1]) % mod 8 elif option == 2: 9 result = (array[j-1] * array[k-1]) % mod 10 else: 11 result = (array[j-1] ^ array[k-1]) % mod 12 13 return result 14 15 seed = '123456789' 16 #j = int(input("J:")) 17 j = 1 18 #k = int(input("K:")) 19 k = 8 20 #mod = int(input("MOD:")) 21 mod = 1000 22 n = int(input("Numero de iteracoes:")) 23 categories = int(input("Numero de categorias: ")) 24 results = [] 25 26 array = [] 27 for i in range(len(seed)): 28 array.append(int(seed)) 29 30 print("0: '+' \n1: '-' \n2: '*' \n3: '^'") 31 option = int(input("Defina a operação: ")) 32 for i in range(n): 33 result = fbn(option, array, mod, k, j) 34 print("Resultado: ", result) 35 array.remove(array[0]) 36 array.append(result) 37 results.append(result) 38 39 x2 = qi2.qi2Test(categories, n, results) 40 41 42 print("================= RESULTADOS =================") 43 print("X^2: ", x2) 44 print("GL =", categories - 1) 45 print("Probabilidade = 0.05")
3 - warning: redefined-outer-name 3 - warning: redefined-outer-name 3 - warning: redefined-outer-name 3 - warning: redefined-outer-name 3 - warning: redefined-outer-name 5 - warning: redefined-outer-name
1 import matplotlib.pyplot as plt 2 import time 3 import qi2 4 5 # left XOR entre o cara do centro e da direita 6 def rule(array): 7 return array[0] ^ (array[1] or array[2]) 8 9 10 # primeira linha do mosaico 11 def init(largura): 12 array = [0] * largura # inicio do mosaico, no começa inicializa com 1 13 # se for impar, coloca 1 no meio 14 if largura % 2: 15 array[largura // 2] = 1 16 else: # caso for par coloca so na metade (nao exata) 17 array.insert(largura//2, 1) 18 19 return array 20 21 def rule30(linhaAntiga): 22 largura = len(linhaAntiga) 23 linhaAntiga = [0] + linhaAntiga + [0] # ajustar com zeros na direita e esquerda da linha 24 novaLinha = [] 25 26 for i in range(largura): 27 novaLinha.append( rule(linhaAntiga[i:i+3]) ) # coloca uma celula (1 ou 0) 28 29 return novaLinha 30 31 # usa largura e quantos bits vai utilizar pra fazer essa largura 32 def applyRule(largura, bits): 33 matriz = [init(largura)] 34 35 colunaCentro = [] 36 colunaCentro.append(matriz[0][largura // 2]) 37 38 while not matriz[-1][0]: 39 matriz.append(rule30(matriz[-1])) # executa a regra na ultima linha 40 colunaCentro.append(matriz[-1][largura // 2]) # atualiza o centro da matriz 41 42 return [matriz, colunaCentro[-bits:]] 43 44 def listToString(s): 45 # initialize an empty string 46 str1 = "" 47 # traverse in the string 48 for ele in s: 49 str1 += str(ele) 50 # return string 51 return str1 52 53 if __name__ == "__main__": 54 seed = int(str(time.time_ns())[14:17]) 55 bits = 8 56 57 #start = time.time() 58 n = int(input("Número de iterações (n): ")) 59 k = int(input("Número de categorias (k): ")) 60 results = [] 61 for i in range(n): 62 time.sleep(1) 63 result = applyRule((seed+bits)*2, bits) 64 rng = listToString(result[1]) 65 rng = int(listToString(rng), 2) 66 print(rng) 67 results.append(rng) 68 69 #end = time.time() 70 ''' 71 x2 = qi2.qi2Test(k, n, results) 72 73 print("================= RESULTADOS =================") 74 #print("Tempo de simulacao: ", end - start) 75 print("X²: ", x2) 76 print("Graus de Liberdade (GL):", k - 1) 77 print("Significância: 0.05") 78 '''
26 - warning: redefined-outer-name 32 - warning: redefined-outer-name 70 - warning: pointless-string-statement 1 - warning: unused-import 3 - warning: unused-import
1 import time 2 import numpy as np 3 import math 4 import matplotlib.pyplot as plt 5 from matplotlib.colors import NoNorm 6 7 import qi2 8 9 def squares(ctr, key): 10 y = x = ctr * key 11 z = y + key 12 two5 = np.uint64(32) 13 x = x * x + y; x = (x >> two5) | (x << two5) 14 x = x * x + z; x = (x >> two5) | (x << two5) 15 x = x * x + y; x = (x >> two5) | (x << two5) 16 17 return (x*x + z) >> two5 18 19 20 def draw(i): 21 nx = int(math.sqrt(i)) 22 #print("tamanho da imagem", nx) 23 imagem = np.zeros((nx,nx), dtype=np.uint8) 24 #print("tam: ", i) 25 p = 0 26 ny = nx 27 for i in range(nx): 28 for j in range(ny): 29 30 imagem[i,j] = pixelvet[p] 31 #print(i, j, pixelvet[p]) 32 p += 1 33 34 35 return imagem 36 37 if __name__ == "__main__": 38 np.seterr(all='ignore') # ignora erros de overflow, divisao/zero, underflow, etc... 39 key = np.uint64(0xf6235eca95b2c1e7) 40 #sum = np.uint64(0) 41 #pixelvet = [] 42 #vetVal = [] 43 44 n = np.uint64(input("Numero de iteracoes (n): ")) 45 k = int(input("Numero de categorias (k): ")) 46 gl = k - 1; print("Grau de Liberdade (GL): ", gl) 47 #p = float(input("Probabilidade de sucesso: ")) 48 49 results = [] 50 51 #start = time.time() 52 for i in range(n): 53 result = squares(np.uint64(i), key) 54 result = result / (2**32) # normaliza resultado de 32 bits 55 #print("[", i, "]:", result) 56 results.append(result) 57 #pixelvet.append(result) 58 #vetVal.append(result) 59 60 x2, intervals = qi2.qi2Test(k, n, results) 61 62 #end = time.time() 63 print("================= RESULTADOS =================") 64 #print("Media: ", hex(sum//n)) 65 #print("Tempo de simulacao: ", end - start) 66 67 #pIndex = qi2.getProbabilityIndex(p) 68 #x2Max = qi2.table[gl-1][pIndex] 69 #print("x2Max: ", x2Max) 70 print("x2:" , x2) 71 72 qi2.histGraph(results, intervals) 73 ''' 74 plt.figure("Graficos",figsize=(15,12)) 75 plt.subplot(211) 76 imagem = draw(n) 77 plt.imshow(imagem, aspect="auto", cmap='gray', vmin=0, vmax=255,norm=NoNorm()) 78 plt.axis("off") 79 plt.subplot(212) 80 plt.plot(vetVal, 'ro') 81 plt.grid(1) 82 plt.show() 83 '''
9 - warning: redefined-outer-name 20 - warning: redefined-outer-name 27 - refactor: redefined-argument-from-local 30 - error: undefined-variable 73 - warning: pointless-string-statement 1 - warning: unused-import 4 - warning: unused-import 5 - warning: unused-import
1 import numpy as np 2 from random import randrange 3 4 5 def draw(value, probability): 6 return int(np.random.choice(value, 1, replace=False, p=probability)) 7 8 if __name__ == "__main__": 9 # Criando os vetores de valores e suas probabilidades 10 bearingLifeExpect = np.arange(1000, 2000, 100) 11 probabilityLifeExpect = np.array([0.1, 0.13, 0.25, 0.13, 0.09, 0.12, 0.02, 0.06, 0.05, 0.05]) 12 waitingTimeArray = np.arange(5, 20, 5) 13 probabilityWaitingTime = [0.6, 0.3, 0.1] 14 15 simluationTime = 10000 # 10.000h 16 bearing = [0,0,0] # Rolamentos 17 changingTime = [20, 30, 40] # Tempo de troca = 1: 20, 2: 30, 3: 40 18 19 # Sorteia tempo de vida para os rolamentos 20 for i in range(len(bearing)): 21 bearing[i] = draw(bearingLifeExpect, probabilityLifeExpect) 22 23 t = 0 # Contador para o tempo de simulacao 24 brokenBearings = 0 # Numero de rolamentos quebrados 25 totalCost = 0 # Custo total da simulacao 26 27 commingEvent = [] 28 exitEvent = [] 29 30 31 print("--------------------------------\nDefina o numero de rolamentos a serem trocados: ") 32 print("[1]: Troca UM rolamento quando algum rolamento quebra.") 33 print("[2]: Troca TRÊS rolamentos quando algum rolamento quebra.") 34 option = int(input("> ")) 35 print("--------------------------------") 36 37 if option == 1: 38 print("Simulação 1: Troca de UM rolamento por vez\n") 39 print("--------------------------------") 40 while t <= simluationTime: 41 42 for i in range(len(bearing)): 43 if bearing[i] == t: # Caso rolamento atinga a vida util 44 newTime = draw(bearingLifeExpect, probabilityLifeExpect) # Define um novo tempo de vida para o rolamento 45 print("---------------") 46 print("Rolamento[", i, "]") 47 print("Quebrou em: ", t, "h\tExpectativa de vida: ", bearing[i], "h") 48 print("Nova expectativa de vida: ", newTime, "h") 49 bearing[i] += newTime # Soma lifetime anterior com novo para posteriormente 50 brokenBearings += 1 # Incrementa o numero de rolamentos quebrados 51 52 if brokenBearings > 0: # Caso haja um rolamento quebrado 53 waitingTime = draw(waitingTimeArray, probabilityWaitingTime) # Atribui nova vida util 54 spentTime = changingTime[brokenBearings-1] # Pega o tempo gasto para consertar os bearing 55 cost = 5 * (waitingTime + spentTime) + spentTime + brokenBearings * 20 # Calcula o valor do concerto 56 totalCost += cost 57 58 59 print("Tempo concerto: ", spentTime,"\tTempo espera: ", waitingTime) 60 print("Custo concerto: ", cost, "R$\tCusto total: ", totalCost, "R$") 61 62 brokenBearings = 0 63 64 t += 100 65 66 elif option == 2: 67 print("Simulação 2: Troca de TRÊS rolamento por vez\n") 68 print("--------------------------------") 69 while t <= simluationTime: 70 71 for i in range(len(bearing)): 72 if bearing[i] == t: 73 newTime1 = draw(bearingLifeExpect, probabilityLifeExpect) 74 newTime2 = draw(bearingLifeExpect, probabilityLifeExpect) 75 newTime3 = draw(bearingLifeExpect, probabilityLifeExpect) 76 print("---------------") 77 print("Rolamento[1]:") 78 print("Quebrou em: ", t, "h\tExpectativa de vida: ", bearing[0], "h") 79 print("Nova expectativa de vida: ", newTime1, "h") 80 print("---------------") 81 print("Rolamento[2]:") 82 print("Quebrou em: ", t, "h\tExpectativa de vida: ", bearing[1], "h") 83 print("Nova expectativa de vida: ", newTime2, "h") 84 print("---------------") 85 print("Rolamento[3]:") 86 print("Quebrou em: ", t, "h\tExpectativa de vida: ", bearing[2], "h") 87 print("Nova expectativa de vida: ", newTime3, "h") 88 print("---------------") 89 bearing[0] += newTime1 90 bearing[1] += newTime2 91 bearing[2] += newTime3 92 93 waitingTime = draw(waitingTimeArray, probabilityWaitingTime) 94 spentTime = changingTime[2] 95 cost = 5 * (waitingTime +spentTime) + spentTime + 3 * 20 96 totalCost += cost 97 98 print("Tempo concerto: ", spentTime,"\tTempo espera: ", waitingTime) 99 print("Custo concerto: ", cost, "R$\tCusto total: ", totalCost, "R$") 100 101 t += 100
2 - warning: unused-import
1 import numpy as np 2 from random import randrange 3 4 # gera o numero de clientes com base na probabilidade 5 def numberCustomers(value): 6 if value > 65: 7 return 8 8 elif value > 35 and value < 65: 9 return 10 10 elif value > 10 and value < 35: 11 return 12 12 else: 13 return 14 14 15 # gera o numero de duzias por cliente com base na probabilidade 16 def numberBagelsPerCustomer(value): 17 if value > 60: 18 return 1 19 elif value > 30 and value < 60: 20 return 2 21 elif value > 10 and value < 30: 22 return 3 23 else: 24 return 4 25 26 if __name__ == "__main__": 27 days = 15 # nº iteracoes 28 bagelCost = 3.8 # custo de fabrica da duzia de baguete 29 bagelPrice = 5.4 # preco da duzia de baguete 30 bagelsAverage = 0 31 for day in range(days): 32 print("\nDia ", day) 33 # Clientes 34 value = randrange(100) 35 customers = numberCustomers(value) 36 print("Nº Clientes: ", customers) 37 # Baguetes por cliente 38 value = randrange(100) 39 bagelsPerCustomer = numberBagelsPerCustomer(value) 40 print("Baguetes/Cliente: ", bagelsPerCustomer) 41 # Baguetes para assar 42 bagelsToCook = customers * bagelsPerCustomer 43 print("Baguetes para assar: ", bagelsToCook) 44 45 bagelsAverage += bagelsToCook 46 47 print("\n\nMedia de Baguetes: ", bagelsAverage/days)
5 - warning: redefined-outer-name 6 - refactor: no-else-return 8 - refactor: chained-comparison 10 - refactor: chained-comparison 16 - warning: redefined-outer-name 17 - refactor: no-else-return 19 - refactor: chained-comparison 21 - refactor: chained-comparison 1 - warning: unused-import
1 import numpy as np 2 import time 3 import qi2 4 5 def wichmann(x, y, z): 6 x = 171 * (x % 177) - 2 * (x / 177) 7 y = 172 * (y % 177) - 35 * (y / 176) 8 z = 170 * (z % 178) - 63 * (z / 178) 9 10 if x < 0: 11 x = x + 30269 12 elif y < 0: 13 y = y + 30307 14 elif z < 0: 15 z + z + 30323 16 17 result = x/30269 + y/30307 + z/30323 18 result = result - int(result) 19 20 return result 21 22 23 if __name__ == "__main__": 24 np.seterr(all='ignore') 25 x = 1234 26 y = x + 1 27 z = y + 1 28 #iteracoes = 1000 29 30 n = np.uint64(input("Numero de iteracoes (n): ")) 31 k = int(input("Numero de categorias (k): ")) 32 gl = k - 1; print("Grau de Liberdade (GL): ", gl) 33 p = float(input("Probabilidade de sucesso: ")) 34 results = [] 35 #start = time.time() 36 for i in range(n): 37 w = wichmann(x, y, z) 38 y += 1 39 z += 2 40 print("w(", i, ") = ", y) 41 results.append(w) 42 43 #end = time.time() 44 x2, intervals = qi2.qi2Test(k, n, results) 45 46 print("================= RESULTADOS =================") 47 #print("Tempo de simulacao: ", end - start) 48 pIndex = qi2.getProbabilityIndex(p) 49 x2Max = qi2.table[gl-1][pIndex] 50 print("x2Max: ", x2Max) 51 print("x2:" , x2)
5 - warning: redefined-outer-name 5 - warning: redefined-outer-name 5 - warning: redefined-outer-name 15 - warning: pointless-statement 2 - warning: unused-import
1 import numpy as np 2 from random import randrange, uniform 3 4 class Material(): 5 Type = 0 6 Time = 0 7 Weight = 0 8 TimeStamp = 0 9 10 def __init__(self, Type): 11 self.Type = Type 12 13 def materialValues(self): 14 if self.Type == 0: # Material A 15 self.Weight = 200 # 200kg 16 self.Time = int(uniform(3,8)) # 5 +- 2 (uniforme) 17 elif self.Type == 1: # Material B 18 self.Weight = 100 # 100kg 19 self.Time = 6 # 6 (constante) 20 else: # Material C 21 self.Weight = 50 # 50kg 22 if randrange(100) <= 33: 23 self.Time = 2 # P(2) = 0.33 24 else: 25 self.Time = 3 # P(3) = 0.67 26 27 28 if __name__ == "__main__": 29 simulationTime = 60 # Tempo de simulacao (min) 30 totalWeight = 0 # Peso do elevador 31 i = 0 # Contador de minutos 32 averageTimeA = [] # Calcular tempo medio Mat A 33 averageTimeB = [] # Calcular tempo medio Mat B 34 movedMaterialC = 0 # Contagem de Material C 35 materialsLift = [] # Materiais dentro do elevador 36 materialsQueue = [] # Materiais na fila do elevador 37 38 while i < simulationTime: 39 print("\nTempo: ", int(i),"min") 40 mat = Material(randrange(3)) # Criando material (0~2)=(A~C) 41 mat.materialValues() # Definindo tempo e pesos 42 mat.TimeStamp = i # Definindo tempo que o material chegou 43 materialsQueue.append(mat) # Adicionando material na fila 44 45 print("MAT[",mat.Type,"]") 46 for m in materialsQueue: # Verifica a fila de materiais 47 if m.Weight + totalWeight <= 400: # Checa se pode entrar no elevador 48 if m.Type == 1: 49 averageTimeB.append(i - m.TimeStamp) # Monitora o material B 50 materialsQueue.remove(m) 51 materialsLift.append(m) 52 totalWeight += m.Weight 53 i = i + m.Time 54 if m.Type == 0: # Monitorar Material A 55 m.TimeStamp = i 56 elif m.Type == 2: # Monitorar Material C 57 movedMaterialC =+ 1 58 59 print("-----------------------------------") 60 waiting = [] 61 62 queue = [] 63 for m in materialsQueue: 64 queue.append(m.Type) 65 66 print("Fila:", queue) 67 lift = [] 68 for m in materialsLift: 69 lift.append(m.Type) 70 print("Elevador:", lift) 71 72 print("Peso elevador:", totalWeight,"kg") 73 print("Tempo:", i,"min") 74 print("-----------------------------------") 75 76 if totalWeight == 400: # Chega no peso maximo 77 i = i + 4 # Tempo de subir, descarregar e descer 78 totalWeight = 0 79 80 for m in materialsLift: 81 if m.Type == 0: 82 averageTimeA.append((i - 1) - m.TimeStamp) # Monitora tempo total do Material A 83 84 materialsLift.clear() # Remove todos os itens do elevador 85 86 i += 1 87 88 print("\nTempo medio de transito Material A: ", sum(averageTimeA)/len(averageTimeA), "min") 89 print("Tempo medio de espera do Material B: ", sum(averageTimeB)/len(averageTimeB), "min") 90 print("Números de caixas de Material C: ", movedMaterialC)
4 - refactor: too-few-public-methods 50 - warning: modified-iterating-list 1 - warning: unused-import
1 import time 2 import numpy as np 3 import qi2 4 5 def xorShift(y): 6 y ^= np.uint32(y << 13) 7 y ^= np.uint32(y >> 17) 8 y ^= np.uint32(y << 15) 9 10 return y 11 12 if __name__ == "__main__": 13 np.seterr(all='ignore') 14 seed = 2463534242 15 y = np.uint32(seed) 16 #a, b, c = 13, 17, 15 17 #iteracoes = 1000 18 19 n = np.uint64(input("Numero de iteracoes (n): ")) 20 k = int(input("Numero de categorias (k): ")) 21 gl = k - 1; print("Grau de Liberdade (GL): ", gl) 22 p = float(input("Probabilidade de sucesso: ")) 23 results = [] 24 #start = time.time() 25 for i in range(n): 26 y = (xorShift(y)) 27 aux = y / 4294967295 # normaliza resultado 28 #print("Valor: ", aux) 29 #print("y(", i, ") = ", aux) 30 results.append(aux) 31 32 #end = time.time() 33 x2, intervals = qi2.qi2Test(k, n, results) 34 35 print("================= RESULTADOS =================") 36 #print("Tempo de simulacao: ", end - start) 37 pIndex = qi2.getProbabilityIndex(p) 38 x2Max = qi2.table[gl-1][pIndex] 39 print("x2Max: ", x2Max) 40 print("x2:" , x2)
5 - warning: redefined-outer-name 1 - warning: unused-import
1 import time 2 3 # John von Neumann's Generator 4 def JVN(x): 5 x = x ** 2 6 x = x / 100 7 x = x % 10000 8 return int(x) 9 10 # Linear Congruential Generator 11 def LCG(x): 12 return (a * x + c) % m 13 14 if __name__ == "__main__": 15 # seed = 322 16 simulationTime = 20 17 # x = int(input("Valor inicial [X0]: ")) 18 x = 3 19 # m = int(input("Módulo [M], M>0: ")) 20 m = 10 21 # a = int(input("Multiplicador [A], M>A>0: ")) 22 a = 2 23 # c = int(input("Incrementador [C], M>=C>=0: ")) 24 c = 0 25 start = time.time() 26 print(start) 27 for i in range(simulationTime): 28 # seed = JVN(seed) 29 # print("Semente: ", seed) 30 x = LCG(x) 31 print('X[', i, ']: ', x) 32 end = time.time() 33 34 print("Tempo para o cálculo:", end - start)
4 - warning: redefined-outer-name 11 - warning: redefined-outer-name 12 - error: possibly-used-before-assignment 12 - error: possibly-used-before-assignment 12 - error: possibly-used-before-assignment
1 from django.urls import path 2 from login import views 3 4 app_name = 'login' 5 6 urlpatterns = [ 7 path('', views.pagina_login, name='pagina_login'), 8 ]
Clean Code: No Issues Detected
1 from django import forms 2 3 from conteudo.models import Video, Categoria 4 5 6 class VideoForm(forms.ModelForm): 7 error_messages = { 8 'campo invalido' : "Campo inválido" 9 } 10 11 class Meta: 12 model = Video 13 fields = ('video_id','categoria', 'nome', 'url', 'capa', 'visualizacao', 'nota', 'sinopse') 14 15 video_id = forms.CharField(widget=forms.HiddenInput(), required=False) 16 17 categoria = forms.ModelChoiceField( 18 error_messages={'required': 'Campo obrigatório', }, 19 queryset=Categoria.objects.all().order_by(id), 20 empty_label='--- Selecionar a Categoria ---', 21 widget=forms.Select(attrs={'class': 'form-control form-control-sm'}), 22 required=True 23 ) 24 25 nome = forms.CharField( 26 error_messages = {'required', 'Campo obrigatório',}, 27 widget=forms.TextInput(attrs={'class': 'form-control form-control-sm', 'maxlength': '120'}), 28 required=True 29 ) 30
11 - refactor: too-few-public-methods 6 - refactor: too-few-public-methods
1 from django.shortcuts import render 2 3 def pagina_inicial(request): 4 return render(request, 'index.html')
Clean Code: No Issues Detected
1 from django.db import models 2 3 class Categoria(models.Model): 4 nome = models.CharField(max_length=255, db_index=True) 5 slug = models.SlugField(max_length=200) 6 7 class Meta: 8 ordering = ('nome',) 9 verbose_name = 'categoria' 10 verbose_name_plural = 'categorias' 11 12 def __str__(self): 13 return self.nome 14 15 def videosCategoria(self): 16 return Video.objects.all().filter(categoria_id=self.id).order_by('-id')[:4] 17 18 class Video(models.Model): 19 categoria = models.ForeignKey(Categoria, on_delete=models.DO_NOTHING) 20 nome = models.CharField(max_length=255) 21 url = models.FileField(upload_to='conteudo/videos/') 22 capa = models.FileField(upload_to='conteudo/images/') 23 visualizacao = models.DecimalField(max_digits=10, decimal_places=1, default=0) 24 nota = models.FloatField(max_length=20) 25 sinopse = models.CharField(max_length=500) 26 27 class Meta: 28 ordering = ('nome',) 29 verbose_name = 'video' 30 verbose_name_plural = 'videos' 31 32 def __str__(self): 33 return self.nome
28 - warning: bad-indentation 29 - warning: bad-indentation 30 - warning: bad-indentation 7 - refactor: too-few-public-methods 27 - refactor: too-few-public-methods 18 - refactor: too-few-public-methods
1 from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage 2 from django.shortcuts import render, redirect, get_object_or_404 3 4 from conteudo.models import Video, Categoria 5 6 def exibir_catalogo(request): 7 categorias = Categoria.objects.all() 8 return render(request, 'conteudo/catalogo_videos.html', {'categorias': categorias}) 9 10 def cadastro_video(request): 11 return render(request, 'conteudo/cadastro_video.html') 12 13 def editar_video(request): 14 return render(request, 'conteudo/editar_video.html') 15 16 def lista_categoria(request, id=None): 17 categorias = Categoria.objects.all() 18 if id != None: 19 videos_lista = Video.objects.all().filter(categoria_id=id) 20 else: 21 videos_lista = Video.objects.all() 22 23 paginator = Paginator(videos_lista, 3) 24 page = request.GET.get('page',1) 25 26 try: 27 videos = paginator.page(page) 28 except PageNotAnInteger: 29 videos = paginator.page(1) 30 except EmptyPage: 31 videos = paginator.page(paginator.num_pages) 32 33 return render(request, 'conteudo/lista_categoria.html', {'categorias': categorias, 'videos' : videos}) 34 35 def exibir_video(request, id): 36 video = get_object_or_404(Video, id= id) 37 categorias = Categoria.objects.all() 38 return render(request, 'conteudo/player_video.html', {'video':video, 'categorias':categorias})
16 - warning: redefined-builtin 35 - warning: redefined-builtin 2 - warning: unused-import
1 from django.urls import path 2 from conteudo import views 3 4 app_name = 'conteudo' 5 6 urlpatterns = [ 7 path('', views.exibir_catalogo, name='catalogo'), 8 path('cadastro_video/', views.cadastro_video, name='cadastro_video'), 9 path('editar_video/<int:id>/', views.editar_video, name='editar_video'), 10 path('<int:id>/', views.exibir_video, name='exibir_video'), 11 12 path('categoria/', views.lista_categoria, name='listar_todas_categorias'), 13 path('categoria/<int:id>/', views.lista_categoria, name='lista_categoria'), 14 ]
Clean Code: No Issues Detected
1 from django.shortcuts import render 2 3 def pagina_login(request): 4 return render(request, 'login/pagina_login.html')
Clean Code: No Issues Detected
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Tue Mar 31 19:57:28 2020 4 5 @author: uni tech 6 """ 7 8 9 import pandas as pd 10 import numpy as np 11 from sklearn import preprocessing 12 from sklearn.metrics import r2_score 13 from sklearn.impute import SimpleImputer 14 from sklearn.model_selection import train_test_split 15 from sklearn.linear_model import LinearRegression 16 from sklearn.tree import DecisionTreeRegressor 17 from sklearn.ensemble import RandomForestRegressor 18 from sklearn.svm import SVR 19 20 21 22 # Initializing datasets 23 train=pd.read_csv('train.csv') 24 test=pd.read_csv('test_walmart.csv') 25 features=pd.read_csv('features.csv') 26 stores=pd.read_csv('stores.csv') 27 28 # Mergign train and features datasets 29 df= pd.merge(features, train, on=['Store', 'Date', 'IsHoliday'], how='inner') 30 31 # One Hot Encoding categorical data 32 one_hot=pd.get_dummies(stores['Type']) 33 stores=stores.drop('Type', axis=1) 34 stores = stores.join(one_hot) 35 36 37 38 39 df = pd.merge(df, stores, on=['Store'], how='inner') 40 41 # Separating date, month, and year from Date 42 df['Date']=pd.to_datetime(df['Date']) 43 df['year']=df['Date'].dt.year 44 df['month']=df['Date'].dt.month 45 del df['Date'] 46 47 48 holiday= pd.get_dummies(df['IsHoliday']) 49 df= df.drop('IsHoliday', axis=1) 50 df= df.join(holiday) 51 52 53 # Fixing null values in markdown with the help of imputer class 54 se= SimpleImputer() 55 markdown= pd.DataFrame(se.fit_transform(df[['MarkDown1','MarkDown2', 'MarkDown3', 'MarkDown4', 'MarkDown5']]),columns=['MarkDown1','MarkDown2', 'MarkDown3', 'MarkDown4', 'MarkDown5']) 56 df= df.drop(['MarkDown1','MarkDown2', 'MarkDown3', 'MarkDown4', 'MarkDown5'], axis=1) 57 58 df = pd.concat([df,markdown], axis=1) 59 60 61 X = np.array(df.drop(columns='Weekly_Sales')) 62 y= np.array(df['Weekly_Sales']).reshape(-1,1) 63 64 65 # Normalizing inputs and outputs 66 scalar= preprocessing.MinMaxScaler() 67 X= scalar.fit_transform(X) 68 y= scalar.fit_transform(y) 69 70 71 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 72 73 74 # Defining functions for regression 75 def linear_reg(): 76 clf= LinearRegression() 77 return clf 78 79 80 def svm_reg(): 81 clf= SVR(kernel='rbf', degree=3, gamma='scale') 82 return clf 83 84 def decision_tree(): 85 clf=DecisionTreeRegressor(criterion='mse',splitter='best') 86 return clf 87 88 def random_forest(): 89 clf= RandomForestRegressor(n_estimators=5, criterion='mse') 90 return clf 91 92 lr_ = linear_reg() 93 svm_ = svm_reg() 94 dt_ = decision_tree() 95 rf_ = random_forest() 96 97 models = [lr_ , dt_, svm_ , rf_] 98 for model in models: 99 y_train = y_train.ravel() 100 model.fit(X_train, y_train) 101 y_pred = model.predict(X_test) 102 score = r2_score(y_test, y_pred) 103 print(score) 104 105 106 107 108 109
Clean Code: No Issues Detected
1 # analysis.py 2 # ----------- 3 # Licensing Information: You are free to use or extend these projects for 4 # educational purposes provided that (1) you do not distribute or publish 5 # solutions, (2) you retain this notice, and (3) you provide clear 6 # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. 7 # 8 # Attribution Information: The Pacman AI projects were developed at UC Berkeley. 9 # The core projects and autograders were primarily created by John DeNero 10 # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). 11 # Student side autograding was added by Brad Miller, Nick Hay, and 12 # Pieter Abbeel (pabbeel@cs.berkeley.edu). 13 14 15 ###################### 16 # ANALYSIS QUESTIONS # 17 ###################### 18 19 # Set the given parameters to obtain the specified policies through 20 # value iteration. 21 22 def question2(): 23 #the noise affects the prob of jumping into the pits and V values. 24 #the current settings of discount=0.9 noise=0.2 cannot lead the agent 25 #to crossing the bridge.If the noise decreases to be 0 or close to 0, 26 #then the search of agent is treated as a deterministic problem. 27 #the V values from left to right will be:[5.9, 6.56, 7.29, 8.1, 9]. 28 #theoretically, the agent will cross the bridge from left to right. 29 answerDiscount = 0.9 30 answerNoise = 0 31 return answerDiscount, answerNoise 32 33 def question3a(): 34 #if the living reward is a big penalty, the agent tends to end the game quickly 35 #small noise mean more likely to risk 36 answerDiscount = 1#0.9 37 answerNoise = 0.01#0.01 38 answerLivingReward = -5 39 return answerDiscount, answerNoise, answerLivingReward 40 # If not possible, return 'NOT POSSIBLE' 41 42 def question3b(): 43 #low discount encourages the agent to get reward earlier(+1) than later (+10) 44 #positive living reward makes the agent want to live longer 45 #dont want to risk of jumping into pits 46 answerDiscount = 0.2#0.2 47 answerNoise = 0.01 48 answerLivingReward =0 #0.5 49 return answerDiscount, answerNoise, answerLivingReward 50 # If not possible, return 'NOT POSSIBLE' 51 52 def question3c(): 53 #if there's no living penalty,then the agent would prefer (+10) 54 #small noise lets the agent not worried about pits 55 #reasonable discount will make the agent find a shortcut 56 answerDiscount = 0.5#0.7,0.5 works 57 answerNoise = 0.01 58 answerLivingReward = 0 59 return answerDiscount, answerNoise, answerLivingReward 60 # If not possible, return 'NOT POSSIBLE' 61 62 def question3d(): 63 #no discount and low living penalty make the agent prefer (+10) 64 #large noise increases the risk of jumping into pits 65 answerDiscount = 1 66 answerNoise = 0.3 67 answerLivingReward = -0.2 68 return answerDiscount, answerNoise, answerLivingReward 69 # If not possible, return 'NOT POSSIBLE' 70 71 def question3e(): 72 #since living reward is very large, living longer brings more rewards 73 answerDiscount = 1 74 answerNoise = 0 75 answerLivingReward = 100 76 return answerDiscount, answerNoise, answerLivingReward 77 # If not possible, return 'NOT POSSIBLE' 78 79 def question6(): 80 answerEpsilon = None 81 answerLearningRate = None 82 return answerEpsilon, answerLearningRate 83 # If not possible, return 'NOT POSSIBLE' 84 85 if __name__ == '__main__': 86 print 'Answers to analysis questions:' 87 import analysis 88 for q in [q for q in dir(analysis) if q.startswith('question')]: 89 response = getattr(analysis, q)() 90 print ' Question %s:\t%s' % (q, str(response))
86 - error: syntax-error
1 2 # coding: utf-8 3 4 # In[1]: 5 6 7 from sklearn.datasets import load_iris 8 9 10 # In[2]: 11 12 13 iris = load_iris() 14 15 16 # In[4]: 17 18 19 print(iris.feature_names) 20 21 22 # In[5]: 23 24 25 print(iris.target_names) 26 27 28 # In[7]: 29 30 31 print(iris.data[0]) 32 33 34 # In[8]: 35 36 37 print(iris.target[0]) 38 39 40 # In[13]: 41 42 43 for i in range(len(iris.target)): 44 print("Example %d: label %s, features %s" % (i, iris.target[i], iris.data[i])) 45 46 47 # In[17]: 48 49 50 import numpy as np 51 52 53 # In[15]: 54 55 56 iris = load_iris() 57 58 59 # In[18]: 60 61 62 test_idx = [0,50,100] 63 64 65 # In[19]: 66 67 68 train_target =np.delete(iris.target, test_idx) 69 70 71 # In[20]: 72 73 74 train_data = np.delete(iris.data, test_idx, axis=0) 75 76 77 # In[21]: 78 79 80 test_target = iris.target[test_idx] 81 82 83 # In[23]: 84 85 86 test_data = iris.data[test_idx] 87 88 89 # In[24]: 90 91 92 from sklearn import tree 93 94 95 # In[25]: 96 97 98 clf = tree.DecisionTreeClassifier() 99 100 101 # In[26]: 102 103 104 clf.fit(train_data, train_target) 105 106 107 # In[28]: 108 109 110 print(test_target) 111 112 113 # In[29]: 114 115 116 print(clf.predict(test_data)) 117 118 119 # In[39]: 120 121 122 import pydotplus 123 124 125 # In[30]: 126 127 128 from sklearn.externals.six import StringIO 129 130 131 # In[32]: 132 133 134 import pydot 135 136 137 # In[49]: 138 139 140 import graphviz 141 142 143 # In[33]: 144 145 146 dot_data = StringIO() 147 148 149 # In[34]: 150 151 152 tree.export_graphviz(clf, 153 out_file=dot_data, 154 feature_names=iris.feature_names, 155 class_names=iris.target_names, 156 filled=True, rounded=True, 157 impurity=False) 158 159 160 # In[52]: 161 162 163 graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) 164 165 166 # In[ ]: 167 168 169 graph.write_pdf("iris.pdf") 170
134 - warning: unused-import 140 - warning: unused-import
1 import scrapy 2 from mzitu.items import MzituItem 3 4 class MziSpider(scrapy.Spider): 5 name = 'mzi' 6 # allowed_domains = ['www.xxx.com'] 7 start_urls = ['https://www.mzitu.com/'] 8 #第几页 9 def parse(self, response): 10 page_num=response.xpath('/html/body/div[2]/div[1]/div[3]/div/a[4]/text()').extract_first() 11 for i in range(0,4): 12 if i+1==1: 13 url='https://www.mzitu.com/' 14 else: 15 url='https://www.mzitu.com/page/%s/'%(i+1) 16 # print('第%s页 --'%i,url) 17 yield scrapy.Request(url=url,callback=self.page_parse,meta={'ref':url}) 18 #获取各个图集url 19 def page_parse(self,response): 20 21 fef=response.meta['ref'] 22 li_list=response.xpath('//div[@class="postlist"]/ul/li') 23 for li in li_list[0:10]: 24 tuji_url=li.xpath('./a/@href').extract_first() 25 tuji_title=li.xpath('./span[1]/a/text()').extract_first() 26 yield scrapy.Request(url=tuji_url,headers={'referer':fef},callback=self.tuji_parse,meta={'tuji_url':tuji_url,'ref':tuji_url}) 27 #获取每个图集的页数 28 def tuji_parse(self,response): 29 item=MzituItem() 30 ref=response.meta['ref'] 31 tuji_url=response.meta['tuji_url'] 32 tuji_page_num=response.xpath('/html/body/div[2]/div[1]/div[4]/a[5]/span/text()').extract_first() 33 for i in range(int(tuji_page_num)): 34 if i+1==1: 35 url=tuji_url 36 else: 37 url=tuji_url+'/%s'%(i+1) 38 item['img_referer']=url 39 # print('图集第%s页 -url--'%i,url) 40 yield scrapy.Request(url=url,headers={'referer':ref},callback=self.img_parse,meta={'item':item}) 41 #下载图集的图片 42 def img_parse(self,response): 43 item=response.meta['item'] 44 img_url=response.xpath('/html/body/div[2]/div[1]/div[3]/p/a/img/@src').extract_first() 45 img_path=response.xpath('/html/body/div[2]/div[1]/div[3]/p/a/img/@alt').extract_first() 46 item['img_path']=img_path 47 # print(img_url) 48 item['img_url']=img_url 49 # print(item['img_url']) 50 # print(item['img_path']) 51 yield item 52 53 54
10 - warning: unused-variable 25 - warning: unused-variable
1 import scrapy 2 3 from qiubaipro.items import QiubaiproItem 4 class Test2Spider(scrapy.Spider): 5 name = 'test2' 6 # allowed_domains = ['https://www.qiushibaike.com/'] 7 start_urls = ['https://www.qiushibaike.com/'] 8 9 def parse(self, response): 10 li_list = response.xpath('//*[@id="content"]/div/div[2]/div/ul/li') 11 all_data = [] 12 for li in li_list: 13 name = li.xpath('./div/div/a/span/text()')[0].extract() 14 text = li.xpath('./div/a/text()')[0].extract() 15 # print(name + ":" + text) 16 # dict = { 17 # "name": name, 18 # "text": text 19 # } 20 # all_data.append(dict) 21 item=QiubaiproItem() 22 item['name']= name 23 item['text']=text 24 yield item 25 26
11 - warning: unused-variable 4 - refactor: too-few-public-methods
1 import scrapy 2 3 from pian.items import PianItem 4 class BizhiSpider(scrapy.Spider): 5 name = 'bizhi' 6 # allowed_domains = ['www.xxx.com'] 7 start_urls = ['http://www.netbian.com/meinv/'] 8 9 def parse(self,response): 10 page_num=response.xpath('//*[@id="main"]/div[4]/a[8]/text()').extract_first() 11 #获取各个页的网址 12 for i in range(5): 13 if i+1==1: 14 url='http://www.netbian.com/meinv/' 15 else: 16 url='http://www.netbian.com/meinv/index_%s.htm'%(i+1) 17 yield scrapy.Request(url=url,callback=self.parse_page) 18 def parse_page(self, response): 19 item = PianItem() 20 li_list=response.xpath('//div[@class="list"]/ul/li') 21 #获取当前页面是第几页 22 page=response.xpath('//*[@id="main"]/div[4]/b/text()').extract_first() 23 item['mulu']='第%s页'%(page) 24 #获取壁纸的原图地址 25 for li in li_list: 26 try: 27 geren_url='http://www.netbian.com'+li.xpath('./a/@href').extract_first() 28 except: 29 continue 30 yield scrapy.Request(url=geren_url, callback=self.parse_detail,meta={'item':item}) 31 32 def parse_detail(self,response): 33 item = response.meta['item'] 34 #获取图片地址 35 img_url=response.xpath('//div[@class="pic"]/p/a/img/@src').extract_first() 36 item['url']=img_url 37 yield item
10 - warning: unused-variable 28 - warning: bare-except
1 # Define your item pipelines here 2 # 3 # Don't forget to add your pipeline to the ITEM_PIPELINES setting 4 # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html 5 6 7 # useful for handling different item types with a single interface 8 from itemadapter import ItemAdapter 9 #导入相应的模块 10 from scrapy.pipelines.images import ImagesPipeline 11 import scrapy 12 from . import settings 13 import os 14 # class PianPipeline: 15 # def process_item(self, item, spider): 16 # return item 17 18 class PianImgPipeline(ImagesPipeline): 19 # 该方法用来对图片url发起请求 20 def get_media_requests(self, item, info): 21 print('开始下载') 22 #在这里需要把item传给file_path方法进行处理。不按图片分页存放的话,可以不写meta参数 23 return scrapy.Request(item['url'],meta={'item':item}) 24 #该方法是用来设置图片的下载路径以及图片的名字 25 def file_path(self, request, response=None, info=None): 26 item=request.meta['item'] 27 #分类文件夹, 28 wenjianjia=item['mulu'] 29 ''' 30 根目录,也就是settings文件下创建的存储图片根目录 31 注意:根目录的设置的时候,不要加“./”,否则下面创建文件夹的时候,会自动创建一个根目录名字的文件夹 32 ''' 33 img_source=settings.IMAGES_STORE 34 #图片存放的文件夹路径 35 img_path = os.path.join(img_source, wenjianjia) 36 #判断文件夹存放的位置是否存在,不存在则新建文件夹 37 if not os.path.exists(img_path): 38 os.makedirs(img_path) 39 #更改图片名字 40 url=request.url 41 url=url.split('/')[-1] 42 file_name=url 43 #图片存放路径 44 image_path=os.path.join(wenjianjia,file_name) 45 #返回图片的存放路径 46 47 return image_path 48 def item_completed(self, results, item, info): 49 print('下载完成') 50 return item
12 - error: no-name-in-module 20 - warning: unused-argument 29 - warning: pointless-string-statement 25 - warning: unused-argument 25 - warning: unused-argument 48 - warning: unused-argument 48 - warning: unused-argument 8 - warning: unused-import
1 # Define your item pipelines here 2 # 3 # Don't forget to add your pipeline to the ITEM_PIPELINES setting 4 # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html 5 6 7 # useful for handling different item types with a single interface 8 from itemadapter import ItemAdapter 9 from scrapy.pipelines.images import ImagesPipeline 10 import scrapy 11 from . import settings 12 import os 13 # class MzituPipeline: 14 # def process_item(self, item, spider): 15 # return item 16 class myPipeline(ImagesPipeline): 17 def get_media_requests(self, item, info): 18 print('下载开始') 19 return scrapy.Request(item['img_url'],headers={'referer':item['img_referer']},meta={'item':item}) 20 def file_path(self, request, response=None, info=None): 21 item=request.meta['item'] 22 #获取目录 23 floder=item['img_path'] 24 source_path=settings.IMAGES_STORE 25 #路径 26 img_path=os.path.join(source_path,floder) 27 if not os.path.exists(img_path): 28 os.makedirs(img_path) 29 30 url = request.url 31 url = url.split('/')[-1] 32 img_name=url 33 img_file_path=os.path.join(floder,img_name) 34 print(img_file_path) 35 36 return img_file_path 37 def item_completed(self, results, item, info): 38 print('下载结束') 39 return item
11 - error: no-name-in-module 17 - warning: unused-argument 20 - warning: unused-argument 20 - warning: unused-argument 37 - warning: unused-argument 37 - warning: unused-argument 8 - warning: unused-import
1 import json 2 import uuid 3 from django.core.serializers import serialize 4 5 from django.db import IntegrityError 6 from django.test import TestCase 7 import pytest 8 from django_uuid_pk.fields import StringUUID 9 10 from django_uuid_pk.tests.models import (AutoUUIDFieldModel, ManualUUIDFieldModel, NamespaceUUIDFieldModel, 11 BrokenNamespaceUUIDFieldModel, PrimaryKeyUUIDFieldModel, 12 BrokenPrimaryKeyUUIDFieldModel, ModelUUIDField) 13 14 15 16 def assertJSON(data): 17 try: 18 json.loads(data) 19 except ValueError: 20 raise 21 22 23 24 @pytest.mark.django_db 25 class UUIDFieldTestCase(TestCase): 26 def test_protocols(self): 27 obj = ModelUUIDField.objects.create() 28 self.assertTrue(isinstance(obj.uuid1, uuid.UUID)) 29 self.assertTrue(isinstance(obj.uuid3, uuid.UUID)) 30 self.assertTrue(isinstance(obj.uuid4, uuid.UUID)) 31 self.assertTrue(isinstance(obj.uuid5, uuid.UUID)) 32 33 def test_auto_uuid4(self): 34 obj = AutoUUIDFieldModel.objects.create() 35 self.assertTrue(obj.uuid) 36 self.assertEquals(len(obj.uuid), 32) 37 #self.assertTrue(isinstance(obj.uuid, uuid.UUID)) 38 self.assertEquals(obj.uuid.version, 4) 39 40 def test_raises_exception(self): 41 self.assertRaises(IntegrityError, ManualUUIDFieldModel.objects.create) 42 43 def test_manual(self): 44 obj = ManualUUIDFieldModel.objects.create(uuid=uuid.uuid4()) 45 self.assertTrue(obj) 46 self.assertEquals(len(obj.uuid), 32) 47 #self.assertTrue(isinstance(obj.uuid, uuid.UUID)) 48 self.assertEquals(obj.uuid.version, 4) 49 50 def test_namespace(self): 51 obj = NamespaceUUIDFieldModel.objects.create() 52 self.assertTrue(obj) 53 self.assertEquals(len(obj.uuid), 32) 54 #self.assertTrue(isinstance(obj.uuid, uuid.UUID)) 55 self.assertEquals(obj.uuid.version, 5) 56 57 def test_broken_namespace(self): 58 self.assertRaises(ValueError, BrokenNamespaceUUIDFieldModel.objects.create) 59 60 def test_wrongvalue(self): 61 obj = PrimaryKeyUUIDFieldModel.objects.create() 62 with pytest.raises(ValueError): 63 obj.uuid = 1 64 65 def test_assign1(self): 66 obj = PrimaryKeyUUIDFieldModel.objects.create() 67 obj.uuid = uuid.UUID('5b27d1bd-e7c3-46f3-aaf2-11e4d32f60d4') 68 obj.save() 69 assert str(obj.uuid) == '5b27d1bde7c346f3aaf211e4d32f60d4' 70 #assert obj.uuid == '5b27d1bd-e7c3-46f3-aaf2-11e4d32f60d4' 71 assert obj.uuid == uuid.UUID('5b27d1bd-e7c3-46f3-aaf2-11e4d32f60d4') 72 73 def test_assign2(self): 74 obj = PrimaryKeyUUIDFieldModel.objects.create() 75 obj.uuid = '5b27d1bd-e7c3-46f3-aaf2-11e4d32f60d4' 76 obj.save() 77 assert str(obj.uuid) == '5b27d1bde7c346f3aaf211e4d32f60d4' 78 79 80 def test_primary_key(self): 81 obj = PrimaryKeyUUIDFieldModel.objects.create() 82 assert obj.pk 83 84 obj = PrimaryKeyUUIDFieldModel() 85 assert not obj.pk 86 87 # reset primary key if save() fails 88 BrokenPrimaryKeyUUIDFieldModel.objects.create(unique=1) 89 obj = BrokenPrimaryKeyUUIDFieldModel(unique=1) 90 with pytest.raises(IntegrityError): 91 obj.save() 92 assert not obj.pk 93 94 def test_serialize(self): 95 obj = PrimaryKeyUUIDFieldModel.objects.create() 96 obj.uuid = uuid.UUID("2e9280cfdc8e42bdbf0afa3043acaa7e") 97 obj.save() 98 serialized = serialize('json', PrimaryKeyUUIDFieldModel.objects.all()) 99 assertJSON(serialized) 100 101 #def test_json(self): 102 # obj = PrimaryKeyUUIDFieldModel.objects.create() 103 # obj.save() 104 # serialized = json.dumps(obj) 105 # assertJSON(serialized) 106 107 #deserialized = json.loads(serialized, object_hook=registry.object_hook) 108 # 109 #print 111, deserialized 110 # 111 #assert PrimaryKeyUUIDField(**deserialized).uuid == obj.uuid
19 - warning: try-except-raise 8 - warning: unused-import
1 import os 2 import sys 3 from django.conf import settings 4 5 6 def pytest_configure(config): 7 if not settings.configured: 8 os.environ['DJANGO_SETTINGS_MODULE'] = 'django_uuid_pk.tests.settings' 9 10 11 12 def runtests(args=None): 13 import pytest 14 15 if not args: 16 args = [] 17 18 if not any(a for a in args[1:] if not a.startswith('-')): 19 args.append('django_uuid_pk/tests') 20 21 sys.exit(pytest.main(args)) 22 23 24 if __name__ == '__main__': 25 runtests(sys.argv)
6 - warning: unused-argument
1 # from __future__ import absolute_import 2 # from .tests import * 3 # from .models import *
Clean Code: No Issues Detected
1 import uuid 2 from django.db import models 3 from django_uuid_pk.fields import UUIDField 4 5 6 class ModelUUIDField(models.Model): 7 uuid1 = UUIDField(version=1, auto=True) 8 uuid3 = UUIDField(namespace=uuid.NAMESPACE_URL, version=3, auto=True) 9 uuid4 = UUIDField(version=4, auto=True) 10 uuid5 = UUIDField(namespace=uuid.NAMESPACE_URL, version=5, auto=True) 11 12 class AutoUUIDFieldModel(models.Model): 13 uuid = UUIDField(auto=True) 14 15 16 class ManualUUIDFieldModel(models.Model): 17 uuid = UUIDField(auto=False) 18 19 20 class NamespaceUUIDFieldModel(models.Model): 21 uuid = UUIDField(auto=True, namespace=uuid.NAMESPACE_URL, version=5) 22 23 24 class BrokenNamespaceUUIDFieldModel(models.Model): 25 uuid = UUIDField(auto=True, namespace='lala', version=5) 26 27 28 class PrimaryKeyUUIDFieldModel(models.Model): 29 uuid = UUIDField(primary_key=True) 30 #char = models.CharField(max_length=10, null=True) 31 32 class BrokenPrimaryKeyUUIDFieldModel(models.Model): 33 uuid = UUIDField(primary_key=True) 34 unique = models.IntegerField(unique=True) 35 36 def __repr__(self): 37 return {}
6 - refactor: too-few-public-methods 12 - refactor: too-few-public-methods 16 - refactor: too-few-public-methods 20 - refactor: too-few-public-methods 24 - refactor: too-few-public-methods 28 - refactor: too-few-public-methods 36 - error: invalid-repr-returned 32 - refactor: too-few-public-methods
1 import os 2 3 SITE_ID = 1 4 STATIC_URL = '/static/' 5 SECRET_KEY =';pkj;lkj;lkjh;lkj;oi' 6 db = os.environ.get('DBENGINE', None) 7 if db == 'pg': 8 DATABASES = { 9 'default': { 10 'ENGINE': 'django.db.backends.postgresql_psycopg2', 11 'NAME': 'django_uuid_pk', 12 'HOST': '127.0.0.1', 13 'PORT': '', 14 'USER': 'postgres', 15 'PASSWORD': '', 16 'OPTIONS': { 17 'autocommit': True, # same value for all versions of django (is the default in 1.6) 18 }}} 19 elif db == 'mysql': 20 DATABASES = { 21 'default': { 22 'ENGINE': 'django.db.backends.mysql', 23 'NAME': 'django_uuid_pk', 24 'HOST': '127.0.0.1', 25 'PORT': '', 26 'USER': 'aa', 27 'PASSWORD': ''}} 28 else: 29 DATABASES = { 30 'default': { 31 'ENGINE': 'django.db.backends.sqlite3', 32 'NAME': 'django_uuid_pk.sqlite', 33 'HOST': '', 34 'PORT': ''}} 35 36 INSTALLED_APPS = ('django.contrib.auth', 37 'django.contrib.contenttypes', 38 'django.contrib.sessions', 39 'django.contrib.sites', 40 'django_uuid_pk.tests') 41 42 ALLOWED_HOSTS = ('127.0.0.1',) 43 44 LOGGING = { 45 'version': 1, 46 'disable_existing_loggers': False, 47 'formatters': { 48 'simple': { 49 'format': '%(levelname)-8s: %(asctime)s %(name)10s: %(funcName)40s %(message)s' 50 } 51 }, 52 'handlers': { 53 'console': { 54 'level': 'DEBUG', 55 'class': 'logging.StreamHandler', 56 'formatter': 'simple' 57 }, 58 }, 59 }
Clean Code: No Issues Detected
1 2 import math 3 import utils 4 5 class Entity( object ) : 6 7 def __init__( self, i, j, di, dj, cellSize, canvasWidth, canvasHeight ) : 8 super( Entity, self ).__init__() 9 10 self.i = i 11 self.j = j 12 13 self._cellSize = cellSize 14 self._canvasWidth = canvasWidth 15 self._canvasHeight = canvasHeight 16 self._di = di 17 self._dj = dj 18 19 self._x, self._y = utils.grid2screen( i, j, cellSize, canvasWidth, canvasHeight ) 20 self._w = di * cellSize 21 self._h = dj * cellSize 22 23 self._xc = self._x + self._cellSize * ( math.floor( ( self._di - 1 ) / 2. ) + 0.5 if self._di % 2 == 0 else 0.0 ) 24 self._yc = self._y + self._cellSize * ( math.floor( ( self._dj - 1 ) / 2. ) + 0.5 if self._dj % 2 == 0 else 0.0 ) 25 26 def x( self ) : 27 return self._x 28 29 def y( self ) : 30 return self._y 31 32 def xc( self ) : 33 return self._xc 34 35 def yc( self ) : 36 return self._yc 37 38 def w( self ) : 39 return self._w 40 41 def h( self ) : 42 return self._h 43 44 def update( self ) : 45 self._x, self._y = utils.grid2screen( self.i, self.j, 46 self._cellSize, 47 self._canvasWidth, 48 self._canvasHeight ) 49 50 self._xc = self._x + self._cellSize * ( math.floor( ( self._di - 1 ) / 2. ) + 0.5 if self._di % 2 == 0 else 0.0 ) 51 self._yc = self._y + self._cellSize * ( math.floor( ( self._dj - 1 ) / 2. ) + 0.5 if self._dj % 2 == 0 else 0.0 ) 52 53 def hit( self, other ) : 54 _dx = abs( self._xc - other.xc() ) 55 _dy = abs( self._yc - other.yc() ) 56 57 if ( _dx < ( self._w / 2. ) + ( other.w() / 2. ) and 58 _dy < ( self._h / 2. ) + ( other.h() / 2. ) ) : 59 return True 60 else : 61 return False
5 - refactor: useless-object-inheritance 5 - refactor: too-many-instance-attributes 7 - refactor: too-many-arguments 7 - refactor: too-many-positional-arguments 8 - refactor: super-with-arguments 57 - refactor: simplifiable-if-statement 57 - refactor: no-else-return
1 2 import math 3 4 def grid2screen( i, j, cellSize, canvasWidth, canvasHeight ) : 5 x = ( i + 0.5 ) * cellSize 6 y = canvasHeight - ( j + 0.5 ) * cellSize 7 return x, y 8 9 def screen2grid( x, y, cellSize, canvasWidth, canvasHeight ) : 10 i = math.floor( x / cellSize - 0.5 ) 11 j = math.floor( ( canvasHeight - y ) / cellSize - 0.5 ) 12 return i, j
4 - warning: unused-argument 9 - warning: unused-argument
1 2 import pygame 3 import base 4 5 class Apple( base.Entity ) : 6 7 def __init__( self, i, j, cellSize, canvasWidth, canvasHeight ) : 8 super( Apple, self ).__init__( i, j, 1, 1, cellSize, canvasWidth, canvasHeight ) 9 10 self._color = ( 255, 255, 0 ) 11 self._alive = True 12 13 def draw( self, canvas ) : 14 _xleft = self._x - 0.5 * self._cellSize 15 _ytop = self._y - 0.5 * self._cellSize 16 17 pygame.draw.rect( canvas, 18 self._color, 19 (_xleft, _ytop, self._w, self._h) )
7 - refactor: too-many-arguments 7 - refactor: too-many-positional-arguments 8 - refactor: super-with-arguments 5 - refactor: too-few-public-methods
1 2 import pygame 3 import base 4 5 from collections import deque 6 7 class SnakePart( base.Entity ) : 8 9 def __init__( self, i, j, color, cellSize, canvasWidth, canvasHeight ) : 10 super( SnakePart, self ).__init__( i, j, 1, 1, cellSize, canvasWidth, canvasHeight ) 11 12 self.color = color 13 self.lasti = i 14 self.lastj = j 15 16 def draw( self, canvas ) : 17 _xleft = self._x - 0.5 * self._cellSize 18 _ytop = self._y - 0.5 * self._cellSize 19 20 pygame.draw.rect( canvas, 21 self.color, 22 (_xleft, _ytop, self._w, self._h) ) 23 24 class Snake( base.Entity ) : 25 26 def __init__( self, i, j, cellSize, canvasWidth, canvasHeight ) : 27 super( Snake, self ).__init__( i, j, 1, 1, cellSize, canvasWidth, canvasHeight ) 28 29 self._bodyParts = [ SnakePart( i, j, ( 50, 50, 50 ), cellSize, canvasWidth, canvasHeight ) ] 30 self._speed = 800. 31 self._direction = 'left' 32 self._displacement = 0.0 33 self._frameTime = 0.001 34 35 self._nx = int( canvasWidth / cellSize ) 36 self._ny = int( canvasHeight / cellSize ) 37 38 self._alive = True 39 40 def alive( self ) : 41 return self._alive 42 43 def head( self ) : 44 return self._bodyParts[0] 45 46 def tail( self ) : 47 return self._bodyParts[-1] 48 49 def setDirection( self, direction ) : 50 if len( self._bodyParts ) > 1 : 51 # chequear si quieren ir a la direccion contraria 52 if ( self._direction == 'left' and direction == 'right' or 53 self._direction == 'right' and direction == 'left' or 54 self._direction == 'up' and direction == 'down' or 55 self._direction == 'down' and direction == 'up' ) : 56 # mantener la misma direccion 57 self._direction = self._direction 58 else : 59 # cambiar la direction 60 self._direction = direction 61 else : 62 self._direction = direction 63 64 def grow( self ) : 65 _i = self.tail().lasti 66 _j = self.tail().lastj 67 68 _newPart = SnakePart( _i, _j, 69 ( 50, 50, 50 ), 70 self._cellSize, 71 self._canvasWidth, 72 self._canvasHeight ) 73 self._bodyParts.append( _newPart ) 74 75 def update( self ) : 76 self._displacement = self._displacement + self._speed * self._frameTime 77 if self._displacement > self._cellSize : 78 self.head().lasti = self.head().i 79 self.head().lastj = self.head().j 80 # mover una casilla en la direccion adecuada 81 if self._direction == 'up' : 82 self.head().j += 1 83 elif self._direction == 'down' : 84 self.head().j -= 1 85 elif self._direction == 'right' : 86 self.head().i += 1 87 elif self._direction == 'left' : 88 self.head().i -= 1 89 90 for k in range( 1, len( self._bodyParts ) ) : 91 self._bodyParts[k].lasti = self._bodyParts[k].i 92 self._bodyParts[k].lastj = self._bodyParts[k].j 93 94 self._bodyParts[k].i = self._bodyParts[k-1].lasti 95 self._bodyParts[k].j = self._bodyParts[k-1].lastj 96 97 # resetear el acumulador 98 self._displacement = 0.0 99 100 if self.head()._x > 800. and self._direction == 'right' : 101 self.head().i = 0 102 103 if self.head()._x < 0. and self._direction == 'left' : 104 self.head().i = self._nx 105 106 if self.head()._y > 600. and self._direction == 'down' : 107 self.head().j = self._ny 108 109 if self.head()._y < 0. and self._direction == 'up' : 110 self.head().j = 0 111 112 for k in range( len( self._bodyParts ) ) : 113 self._bodyParts[k].update() 114 115 for i in range( 1, len( self._bodyParts ) ) : 116 if self.head().hit( self._bodyParts[i] ): 117 self._alive = False 118 119 def draw( self, canvas ) : 120 for k in range( len( self._bodyParts ) ) : 121 self._bodyParts[k].draw( canvas ) 122 123 ## # la misma forma de iterar 124 ## for bodyPart in self._bodyParts : 125 ## bodyPart.draw( canvas )
9 - refactor: too-many-arguments 9 - refactor: too-many-positional-arguments 10 - refactor: super-with-arguments 107 - warning: attribute-defined-outside-init 110 - warning: attribute-defined-outside-init 101 - warning: attribute-defined-outside-init 104 - warning: attribute-defined-outside-init 7 - refactor: too-few-public-methods 24 - refactor: too-many-instance-attributes 26 - refactor: too-many-arguments 26 - refactor: too-many-positional-arguments 27 - refactor: super-with-arguments 52 - refactor: too-many-boolean-expressions 100 - warning: protected-access 103 - warning: protected-access 106 - warning: protected-access 109 - warning: protected-access 75 - refactor: too-many-branches 5 - warning: unused-import
1 2 import pygame 3 import world 4 5 class Text( object ) : 6 7 def __init__( self, x, y, message, size, color ) : 8 super( Text, self).__init__() 9 10 self._message = message 11 self._textFont = pygame.font.Font( None, size ) 12 self._textSurface = self._textFont.render( message, True, color ) 13 self._textRect = self._textSurface.get_rect() 14 self._textRect.center = ( x, y ) 15 16 def draw( self, canvas ) : 17 canvas.blit( self._textSurface, self._textRect ) 18 19 class Screen( object ) : 20 21 def __init__( self, canvas, backgroundColor ) : 22 super( Screen, self ).__init__() 23 24 self._canvas = canvas 25 self._backgroundColor = backgroundColor 26 self._texts = [] 27 28 self._keys = None 29 30 def setKeys( self, keys ) : 31 self._keys = keys 32 33 def addText( self, text ) : 34 self._texts.append( text ) 35 36 def draw( self ) : 37 self._canvas.fill( self._backgroundColor ) 38 39 for i in range( len( self._texts ) ) : 40 self._texts[i].draw( self._canvas ) 41 42 def update( self ) : 43 pass 44 45 class MenuScreen( Screen ) : 46 47 def __init__( self, canvas ) : 48 super( MenuScreen, self ).__init__( canvas, ( 255, 255, 0 ) ) 49 50 self._textTitle = Text( 100, 100, 'SNAKE', 50, ( 0, 0, 0 ) ) 51 self._textPlay = Text( 100, 400, 'PLAY', 40, ( 255, 255, 255 ) ) 52 53 self.addText( self._textTitle ) 54 self.addText( self._textPlay ) 55 56 class GameOverScreen( Screen ) : 57 58 def __init__( self, canvas ) : 59 super( GameOverScreen, self ).__init__( canvas, ( 0, 0, 0 ) ) 60 61 self._textGameOver = Text( 100, 100, 'GAME OVER :(', 50, ( 255, 0, 255 ) ) 62 self._textContinue = Text( 100, 400, 'Continue???', 40, ( 255, 255, 255 ) ) 63 64 self.addText( self._textGameOver ) 65 self.addText( self._textContinue ) 66 67 class GameScreen( Screen ) : 68 69 def __init__( self, canvas, canvasWidth, canvasHeight ) : 70 super( GameScreen, self ).__init__( canvas, ( 255, 255, 255 ) ) 71 72 self._world = world.World( 40, canvasWidth, canvasHeight ) 73 74 def draw( self ) : 75 super( GameScreen, self ).draw() 76 77 self._world.draw( self._canvas ) 78 79 def update( self ) : 80 self._world.setKeys( self._keys ) 81 self._world.update() 82 83 def lose( self ) : 84 return self._world.lose() 85 86 def win( self ) : 87 return self._world.win()
5 - refactor: useless-object-inheritance 7 - refactor: too-many-arguments 7 - refactor: too-many-positional-arguments 8 - refactor: super-with-arguments 5 - refactor: too-few-public-methods 19 - refactor: useless-object-inheritance 22 - refactor: super-with-arguments 48 - refactor: super-with-arguments 59 - refactor: super-with-arguments 70 - refactor: super-with-arguments 75 - refactor: super-with-arguments
1 2 import pygame 3 import random 4 import time 5 6 from snake import Snake 7 from collectables import Apple 8 9 import screen 10 11 class Game : 12 13 def __init__( self ) : 14 pygame.init() 15 self._canvasWidth = 800 16 self._canvasHeight = 600 17 self._canvas = pygame.display.set_mode( ( self._canvasWidth, self._canvasHeight ) ) 18 self._gameExit = False 19 self._keys = { 'up' : False, 20 'down' : False, 21 'right' : False, 22 'left' : False, 23 'enter' : False, 24 'escape' : False } 25 26 self._screen = screen.MenuScreen( self._canvas ) 27 self._screenName = 'menu' 28 29 def _getEvents( self ) : 30 for event in pygame.event.get() : 31 if event.type == pygame.QUIT : 32 self._gameExit = True 33 elif event.type == pygame.KEYDOWN : 34 if event.key == pygame.K_UP : 35 self._keys['up'] = True 36 elif event.key == pygame.K_DOWN : 37 self._keys['down'] = True 38 elif event.key == pygame.K_RIGHT : 39 self._keys['right'] = True 40 elif event.key == pygame.K_LEFT : 41 self._keys['left'] = True 42 elif event.key == pygame.K_RETURN : 43 self._keys['enter'] = True 44 elif event.key == pygame.K_ESCAPE : 45 self._keys['escape'] = True 46 elif event.type == pygame.KEYUP : 47 if event.key == pygame.K_UP : 48 self._keys['up'] = False 49 elif event.key == pygame.K_DOWN : 50 self._keys['down'] = False 51 elif event.key == pygame.K_RIGHT : 52 self._keys['right'] = False 53 elif event.key == pygame.K_LEFT : 54 self._keys['left'] = False 55 elif event.key == pygame.K_RETURN : 56 self._keys['enter'] = False 57 elif event.key == pygame.K_ESCAPE : 58 self._keys['escape'] = False 59 60 def _updateScreen( self ) : 61 self._screen.setKeys( self._keys ) 62 self._screen.update() 63 self._screen.draw() 64 65 if self._screenName == 'menu' and self._keys['enter'] == True : 66 self._screen = screen.GameScreen( self._canvas, self._canvasWidth, self._canvasHeight ) 67 self._screenName = 'game' 68 69 elif self._screenName == 'game' and self._screen.lose() : 70 self._screen = screen.GameOverScreen( self._canvas ) 71 self._screenName = 'gameover' 72 73 elif self._screenName == 'game' and self._screen.win() : 74 self._screen = screen.MenuScreen( self._canvas ) 75 self._screenName = 'menu' 76 77 elif self._screenName == 'gameover' and self._keys['enter'] == True : 78 self._screen = screen.GameScreen( self._canvas, self._canvasWidth, self._canvasHeight ) 79 self._screenName = 'game' 80 81 elif self._screenName == 'gameover' and self._keys['escape'] == True : 82 self._screen = screen.MenuScreen( self._canvas ) 83 self._screenName = 'menu' 84 85 def run( self ) : 86 87 while not self._gameExit : 88 self._getEvents() 89 self._updateScreen() 90 91 # actualizar el canvas 92 pygame.display.update() 93 # esperar un ratito 94 time.sleep( 0.001 ) 95 96 if __name__ == '__main__' : 97 _game = Game() 98 _game.run()
29 - refactor: too-many-branches 11 - refactor: too-few-public-methods 3 - warning: unused-import 6 - warning: unused-import 7 - warning: unused-import
1 # Generated by Django 2.2.4 on 2019-08-22 20:52 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('portafolio', '0004_auto_20190822_2251'), 10 ] 11 12 operations = [ 13 migrations.AlterField( 14 model_name='project', 15 name='description', 16 field=models.TextField(verbose_name='Desccripció'), 17 ), 18 migrations.AlterField( 19 model_name='project', 20 name='moreinfo', 21 field=models.CharField(max_length=200, verbose_name='Mes Informació'), 22 ), 23 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 2.2.4 on 2019-08-22 20:47 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('portafolio', '0001_initial'), 10 ] 11 12 operations = [ 13 migrations.AlterField( 14 model_name='project', 15 name='createdDate', 16 field=models.DateTimeField(auto_now_add=True, verbose_name='Data de creació'), 17 ), 18 migrations.AlterField( 19 model_name='project', 20 name='description', 21 field=models.TextField(verbose_name='Desccripció'), 22 ), 23 migrations.AlterField( 24 model_name='project', 25 name='image', 26 field=models.ImageField(upload_to='projects', verbose_name='Imatge'), 27 ), 28 migrations.AlterField( 29 model_name='project', 30 name='title', 31 field=models.CharField(max_length=200, verbose_name='Títol'), 32 ), 33 migrations.AlterField( 34 model_name='project', 35 name='updatedDate', 36 field=models.DateTimeField(auto_now=True, verbose_name='Data dactualització'), 37 ), 38 ]
6 - refactor: too-few-public-methods
1 # Generated by Django 2.2.4 on 2019-08-22 20:50 2 3 from django.db import migrations, models 4 import django.utils.timezone 5 6 7 class Migration(migrations.Migration): 8 9 dependencies = [ 10 ('portafolio', '0002_auto_20190822_2247'), 11 ] 12 13 operations = [ 14 migrations.AddField( 15 model_name='project', 16 name='moreinfo', 17 field=models.TextField(default=django.utils.timezone.now, verbose_name='Mes Informació'), 18 preserve_default=False, 19 ), 20 ]
7 - refactor: too-few-public-methods
1 # Generated by Django 2.2.4 on 2019-08-22 20:51 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('portafolio', '0003_project_moreinfo'), 10 ] 11 12 operations = [ 13 migrations.AlterField( 14 model_name='project', 15 name='description', 16 field=models.CharField(max_length=200, verbose_name='Desccripció'), 17 ), 18 ]
6 - refactor: too-few-public-methods
1 from django.db import models 2 3 # Create your models here. 4 class Project(models.Model): 5 title = models.CharField(max_length=200, verbose_name = 'Títol') 6 moreinfo = models.URLField(null=True, blank=True,verbose_name = 'Mes Informació') 7 description = models.TextField(verbose_name = 'Desccripció') 8 image = models.ImageField(verbose_name = 'Imatge', upload_to = 'projects') 9 createdDate = models.DateTimeField(auto_now_add=True, verbose_name = 'Data de creació') 10 updatedDate = models.DateTimeField(auto_now=True, verbose_name = 'Data dactualització') 11 12 class Meta: 13 verbose_name = 'Projecte' 14 verbose_name_plural = 'Projectes' 15 ordering = ["-createdDate"] 16 17 def __str__(self): 18 return self.title
12 - refactor: too-few-public-methods 4 - refactor: too-few-public-methods
1 # -*- coding: utf-8 -*- 2 3 import datetime, json, os 4 import flask 5 from ezb_dbprx.config import settings 6 from ezb_dbprx.utils import logger_setup, db_handler 7 from flask.ext.basicauth import BasicAuth # http://flask-basicauth.readthedocs.org/en/latest/ 8 9 10 ## setup 11 app = flask.Flask(__name__) 12 log = logger_setup.setup_logger() 13 # 14 app.config['BASIC_AUTH_USERNAME'] = settings.BASIC_AUTH_USERNAME 15 app.config['BASIC_AUTH_PASSWORD'] = settings.BASIC_AUTH_PASSWORD 16 basic_auth = BasicAuth(app) 17 18 19 ## experimentation ## 20 21 22 @app.route( '/hello1/', methods=['GET'] ) 23 def hi_a(): 24 """ Tests simple json response return. """ 25 return flask.jsonify( {'hello': 'world'} ) 26 27 28 @app.route( '/hello2/', methods=['GET'] ) 29 def hi_b(): 30 """ Tests logging. """ 31 log.info( u'hi there' ) 32 return flask.jsonify( {'hello': 'world2'} ) 33 34 35 @app.route( '/basic_auth/', methods=['GET'] ) 36 @basic_auth.required 37 def try_basic_auth(): 38 """ Tests basic-auth. """ 39 log.info( u'in proxy_app.try_basic_auth()' ) 40 return flask.jsonify( {'got': 'through'} ) 41 42 43 @app.route( '/forbidden/', methods=['GET'] ) 44 def try_forbidden(): 45 """ Tests forbidden response. """ 46 log.debug( u'in proxy_app.try_forbidden()' ) 47 return flask.abort( 403 ) 48 49 50 @app.route( '/post_test/', methods=['POST'] ) 51 def handle_post(): 52 """ Tests perceiving params response return. """ 53 value_a = flask.request.form['key_a'].strip() 54 return flask.jsonify( {u'key_a': value_a} ) 55 56 57 ## real work ## 58 59 60 @app.route( u'/my_ip/', methods=['GET'] ) 61 def show_ip(): 62 """ Returns ip. 63 Note: this was a test, but could be useful for debugging. """ 64 ip = flask.request.remote_addr 65 log.debug( u'in proxy_app.show_ip(); remote_addr, `%s`' % ip ) 66 return flask.jsonify( {u'client_ip': ip} ) 67 68 69 @app.route( u'/search_new_request/', methods=['GET'] ) 70 @basic_auth.required 71 def search(): 72 """ Searches for new requests. """ 73 client_ip = flask.request.remote_addr 74 if not client_ip in settings.LEGIT_IPS.keys(): 75 log.debug( u'- in proxy_app.search_new_request(); client_ip `%s` not in LEGIT_IPS; returning forbidden' % client_ip ) 76 return flask.abort( 403 ) 77 db = db_handler.DB_Handler( log ) 78 result_list = db.search_new_request() 79 return_dict = { 80 u'request_type': u'search_new_request', 81 u'datetime': unicode( datetime.datetime.now() ), 82 u'result': result_list } 83 return flask.jsonify( return_dict ) 84 85 86 @app.route( u'/update_request_status/', methods=['POST'] ) 87 @basic_auth.required 88 def update_request_status(): 89 """ Updates db request status. """ 90 log.debug( u'- in proxy_app.update_request_status(); starting' ) 91 client_ip = flask.request.remote_addr 92 log.debug( u'- in proxy_app.update_request_status(); client_ip, `%s`' % client_ip ) 93 if not client_ip in settings.LEGIT_IPS.keys(): 94 log.debug( u'- in proxy_app.update_request_status(); returning forbidden' ) 95 return flask.abort( 403 ) 96 log.debug( u'- in proxy_app; update_request_status(); ip legit' ) 97 log.debug( u'- in proxy_app; update_request_status(); flask.request.form.keys(), %s' % sorted(flask.request.form.keys()) ) 98 db_id = flask.request.form[u'db_id'] # flask will return a '400 - Bad Request' if getting a value fails 99 status = flask.request.form[u'status'] 100 try: 101 assert status in [ u'in_process', u'processed' ] # never changing it to its original 'not_yet_processed' 102 assert db_id.isdigit() 103 except Exception as e: 104 log.error( u'- in proxy_app; update_request_status(); params grabbed; keys good but value(s) bad; db_id, `%s`; status, `%s`' % (db_id, status) ) 105 return flask.abort( 400, u'Bad data.' ) 106 log.debug( u'- in proxy_app; update_request_status(); params grabbed & data is valid' ) 107 db = db_handler.DB_Handler( log ) 108 result_dict = db.update_request_status( db_id, status ) 109 assert result_dict.keys() == [ u'status_update_result' ] 110 return_dict = { 111 u'request_type': u'update_request_status', 112 u'db_id': db_id, 113 u'requested_new_status': status, 114 u'datetime': unicode( datetime.datetime.now() ), 115 u'result': result_dict[ u'status_update_result' ] 116 } 117 return flask.jsonify( return_dict ) 118 119 120 @app.route( u'/add_history_note/', methods=['POST'] ) 121 @basic_auth.required 122 def add_history_note(): 123 """ Adds history note. """ 124 log.debug( u'- in proxy_app.add_history_note(); starting' ) 125 if not flask.request.remote_addr in settings.LEGIT_IPS.keys(): 126 log.debug( u'- in proxy_app.add_history_note(); returning forbidden for ip, `%s`' % flask.request.remote_addr ) 127 return flask.abort( 403 ) 128 ( db_id, db_h ) = ( flask.request.form[u'db_id'], db_handler.DB_Handler(log) ) # flask will return a '400 - Bad Request' if getting a value fails 129 result dbh.add_history_note( db_id ) 130 return_dict = { 131 u'request_type': u'add_history_note', u'db_id': db_id, 132 u'datetime': unicode( datetime.datetime.now() ), u'result': result } 133 return flask.jsonify( return_dict ) 134 135 136 137 # if __name__ == '__main__': 138 # if os.getenv('DEVBOX') == 'true': 139 # app.run( host='0.0.0.0', debug=True ) 140 # else: 141 # app.run()
129 - error: syntax-error
1 # -*- coding: utf-8 -*- 2 3 import json, os 4 5 6 ## db access 7 DB_HOST = unicode( os.environ.get(u'ezb_dbprx__DB_HOST') ) 8 DB_PORT = int( unicode(os.environ.get(u'ezb_dbprx__DB_PORT')) ) 9 DB_USERNAME = unicode( os.environ.get( u'ezb_dbprx__DB_USERNAME') ) 10 DB_PASSWORD = unicode( os.environ.get(u'ezb_dbprx__DB_PASSWORD') ) 11 DB_NAME = unicode( os.environ.get( u'ezb_dbprx__DB_NAME') ) 12 13 ## db sql 14 SEARCH_SQL = unicode( os.environ.get( u'ezb_dbprx__SEARCH_SQL') ) # for db_handler.DB_Handler.search_new_request() 15 UPDATE_REQUEST_STATUS_SQL_PATTERN = unicode( os.environ.get( u'ezb_dbprx__UPDATE_REQUEST_STATUS_SQL_PATTERN') ) # for db_handler.DB_Handler.update_request_status() 16 CONFIRM_REQUEST_STATUS_SQL_PATTERN = unicode( os.environ.get( u'ezb_dbprx__CONFIRM_REQUEST_STATUS_SQL_PATTERN') ) # for db_handler.DB_Handler.update_request_status() 17 CREATE_HISTORY_ENTRY_PATTERN = unicode( os.environ.get( u'ezb_dbprx__CREATE_HISTORY_ENTRY_SQL_PATTERN') ) # for db_handler.DB_Handler.add_history_entry() 18 19 20 ## file-logger 21 LOG_DIR = unicode( os.environ.get(u'ezb_dbprx__LOG_DIR') ) 22 LOG_LEVEL = unicode( os.environ.get(u'ezb_dbprx__LOG_LEVEL') ) 23 24 ## basic auth 25 BASIC_AUTH_USERNAME = unicode( os.environ.get(u'ezb_dbprx__BASIC_AUTH_USERNAME') ) 26 BASIC_AUTH_PASSWORD = unicode( os.environ.get(u'ezb_dbprx__BASIC_AUTH_PASSWORD') ) 27 28 ## other 29 LEGIT_IPS = json.loads( unicode(os.environ.get(u'ezb_dbprx__LEGIT_IPS')) ) 30 31 # end
7 - error: undefined-variable 7 - warning: redundant-u-string-prefix 8 - error: undefined-variable 8 - warning: redundant-u-string-prefix 9 - error: undefined-variable 9 - warning: redundant-u-string-prefix 10 - error: undefined-variable 10 - warning: redundant-u-string-prefix 11 - error: undefined-variable 11 - warning: redundant-u-string-prefix 14 - error: undefined-variable 14 - warning: redundant-u-string-prefix 15 - error: undefined-variable 15 - warning: redundant-u-string-prefix 16 - error: undefined-variable 16 - warning: redundant-u-string-prefix 17 - error: undefined-variable 17 - warning: redundant-u-string-prefix 21 - error: undefined-variable 21 - warning: redundant-u-string-prefix 22 - error: undefined-variable 22 - warning: redundant-u-string-prefix 25 - error: undefined-variable 25 - warning: redundant-u-string-prefix 26 - error: undefined-variable 26 - warning: redundant-u-string-prefix 29 - error: undefined-variable 29 - warning: redundant-u-string-prefix
1 # -*- coding: utf-8 -*- 2 3 """ Handles log setup. """ 4 5 import logging, os 6 import logging.handlers 7 from ezb_dbprx.config import settings 8 9 10 def setup_logger(): 11 """ Returns a logger to write to a file. """ 12 filename = u'%s/ezb_dbprx.log' % settings.LOG_DIR 13 formatter = logging.Formatter( u'[%(asctime)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s' ) 14 logger = logging.getLogger( u'ezb_dbprx' ) 15 level_dict = { u'debug': logging.DEBUG, u'info':logging.INFO } 16 logger.setLevel( level_dict[settings.LOG_LEVEL] ) 17 file_handler = logging.handlers.RotatingFileHandler( filename, maxBytes=(5*1024*1024), backupCount=1 ) 18 file_handler.setFormatter( formatter ) 19 logger.addHandler( file_handler ) 20 return logger
12 - warning: redundant-u-string-prefix 13 - warning: redundant-u-string-prefix 14 - warning: redundant-u-string-prefix 15 - warning: redundant-u-string-prefix 15 - warning: redundant-u-string-prefix 5 - warning: unused-import
1 # -*- coding: utf-8 -*- 2 3 """ Handles db connection and executes sql. """ 4 5 import datetime, json, os, pprint, random, sys 6 import MySQLdb 7 from ezb_dbprx.config import settings 8 9 10 class DB_Handler(object): 11 12 def __init__(self, file_logger ): 13 """ Sets up basics. """ 14 self.db_host = settings.DB_HOST 15 self.db_port = settings.DB_PORT 16 self.db_username = settings.DB_USERNAME 17 self.db_password = settings.DB_PASSWORD 18 self.db_name = settings.DB_NAME 19 self.connection_object = None # populated during queries 20 self.cursor_object = None # populated during queries 21 self.file_logger = file_logger 22 self.key_mapper = { # converts database fields into more generic keys 23 u'alt_edition': u'preference_alternate_edition', # needed? 24 u'barcode': u'patron_barcode', 25 u'bibno': u'item_bib_number', # needed? 26 u'created': u'db_create_date', 27 u'email': u'patron_email', 28 u'eppn': u'patron_shib_eppn', 29 u'firstname': u'patron_name_first', 30 u'group': u'patron_shib_group', 31 u'id': u'db_id', 32 u'isbn': u'item_isbn', 33 u'lastname': u'patron_name_last', 34 u'loc': u'libary_location', # needed? 35 u'name': u'patron_name_firstlast', 36 u'patronId': u'patron_id', # needed? 37 u'pref': u'preference_quick', # needed? 38 u'request_status': u'db_request_status', 39 u'sfxurl': u'item_openurl', 40 u'staffnote': u'staff_note', 41 u'title': u'item_title', 42 u'volumes': u'item_volumes', 43 u'wc_accession': u'item_worldcat_id' 44 } 45 46 ## execute_sql() ## 47 48 def execute_sql(self, sql): 49 """ Executes sql; returns tuple of row-dicts. 50 Example return data: ( {row1field1key: row1field1value, row1field2key: row1field2value}, {row2field1key: row2field1value, row2field2key: row2field2value} ) 51 Called by self.search_new_request(), self.update_request_status(), and self.update_history_note() """ 52 try: 53 self._setup_db_connection() 54 if not self.cursor_object: 55 return 56 self.cursor_object.execute( sql ) 57 dict_list = self.cursor_object.fetchall() # really a tuple of row-dicts 58 dict_list = self._unicodify_resultset( dict_list ) 59 return dict_list 60 except Exception as e: 61 message = u'in db_handler.execute_sql(); error: %s' % unicode( repr(e).decode(u'utf8', u'replace') ) 62 self.file_logger.error( message ) 63 return None 64 finally: 65 self._close_db_connection() 66 67 def _setup_db_connection( self ): 68 """ Sets up connection; populates instance attributes. 69 Called by execute_sql() """ 70 self.file_logger.debug( u'in db_handler._setup_db_connection(); starting' ) 71 try: 72 self.connection_object = MySQLdb.connect( 73 host=self.db_host, port=self.db_port, user=self.db_username, passwd=self.db_password, db=self.db_name ) 74 self.file_logger.debug( u'in db_handler._setup_db_connection(); connection-object set' ) 75 self.cursor_object = self.connection_object.cursor(MySQLdb.cursors.DictCursor) 76 return 77 except Exception as e: 78 message = u'in db_handler._setup_db_connection(); error: %s' % unicode( repr(e).decode(u'utf8', u'replace') ) 79 self.file_logger.error( message ) 80 81 def _unicodify_resultset( self, dict_list ): 82 """ Takes tuple of row-dicts; 83 Makes true list and ensures all keys and values are unicode; 84 Returns list of type-corrected dicts. 85 Called by execute_sql() """ 86 result_list = [] 87 for row_dict in dict_list: 88 new_row_dict = {} 89 for key,value in row_dict.items(): 90 if type(value) == datetime.datetime: 91 value = unicode(value) 92 new_row_dict[ unicode(key) ] = unicode(value) 93 result_list.append( new_row_dict ) 94 return result_list 95 96 def _close_db_connection( self ): 97 """ Closes db connection. 98 Called by execute_sql() """ 99 try: 100 self.cursor_object.close() 101 self.connection_object.close() 102 return 103 except Exception as e: 104 message = u'in db_handler._close_db_connection(); error: %s' % unicode( repr(e).decode(u'utf8', u'replace') ) 105 self.file_logger.error( message ) 106 107 ## search_new_request() ## 108 109 def search_new_request( self ): 110 """ Returns json string of list of dicts on find, empty-list on no-find. 111 Called by: proxy_app.search_new_request() """ 112 sql = settings.SEARCH_SQL 113 self.file_logger.debug( u'in db_handler.search_new_request; sql, %s' % sql ) 114 raw_dict_list = self.execute_sql( sql ) 115 self.file_logger.debug( u'in db_handler.search_new_request; raw_dict_list, %s' % raw_dict_list ) 116 return_val = [] 117 if raw_dict_list: 118 if len( raw_dict_list ) > 0: 119 return_val = self._massage_raw_data( raw_dict_list ) 120 return return_val 121 122 def _massage_raw_data( self, raw_dict_list ): 123 """ Makes keys more generic. 124 Returns list of updated dicts 125 Called by search_new_request() . 126 Possible TODO: add None to self.key_mapper if item isn't needed; test for that here and don't return it. """ 127 updated_list = [] 128 for entry in raw_dict_list: 129 massaged_dict = {} 130 for (key, value) in entry.items(): 131 new_key = self.key_mapper[key] 132 massaged_dict[new_key] = value 133 updated_list.append( massaged_dict ) 134 return updated_list 135 136 ## update_request_status ## 137 138 def update_request_status( self, db_id, status ): 139 """ Updates request table status field. 140 Called by proxy_app.update_request_status() """ 141 ## update the status 142 update_sql = settings.UPDATE_REQUEST_STATUS_SQL_PATTERN % ( status, db_id ) 143 self.file_logger.debug( u'in db_handler.update_request_status(); update_sql, %s' % update_sql ) 144 try: 145 self.execute_sql( update_sql ) 146 except Exception as e: 147 self.file_logger.error( u'in db_handler.update_request_status(); problem executing update; exception: %s' % e ) 148 return { u'status_update_result': u'status_update_failed_on_exception' } 149 ## confirm the update was successful 150 confirmation_sql = settings.CONFIRM_REQUEST_STATUS_SQL_PATTERN % db_id 151 self.file_logger.debug( u'in db_handler.update_request_status(); confirmation_sql, %s' % confirmation_sql ) 152 try: 153 result_dict_list = self.execute_sql( confirmation_sql ) 154 self.file_logger.debug( u'in db_handler.update_request_status; result_dict_list, %s' % result_dict_list ) 155 if result_dict_list[0][u'request_status'] == status: 156 return { u'status_update_result': u'status_updated' } 157 else: 158 return { u'status_update_result': u'status_confirmation_failed' } 159 except Exception as e: 160 self.file_logger.error( u'in db_handler.update_request_status(); problem executing confirmation; exception: %s' % e ) 161 return { u'status_update_result': u'status_confirmation_failed_on_exception' } 162 163 ## add history note ## 164 165 def add_history_entry( self, request_id ): 166 """ Creates history table record. 167 Called by proxy_app.add_history_note() """ 168 add_history_sql = settings.CREATE_HISTORY_ENTRY_PATTERN % request_id 169 self.file_logger.debug( u'in db_handler.add_history_entry(); add_history_sql, %s' % add_history_sql ) 170 result = self.execute_sql( sql ) 171 self.file_logger.debug( u'in db_handler.add_history_entry(); result, `%s`' % result ) 172 return 173 174 # end class DB_Handler() 175
10 - refactor: useless-object-inheritance 10 - refactor: too-many-instance-attributes 23 - warning: redundant-u-string-prefix 23 - warning: redundant-u-string-prefix 24 - warning: redundant-u-string-prefix 24 - warning: redundant-u-string-prefix 25 - warning: redundant-u-string-prefix 25 - warning: redundant-u-string-prefix 26 - warning: redundant-u-string-prefix 26 - warning: redundant-u-string-prefix 27 - warning: redundant-u-string-prefix 27 - warning: redundant-u-string-prefix 28 - warning: redundant-u-string-prefix 28 - warning: redundant-u-string-prefix 29 - warning: redundant-u-string-prefix 29 - warning: redundant-u-string-prefix 30 - warning: redundant-u-string-prefix 30 - warning: redundant-u-string-prefix 31 - warning: redundant-u-string-prefix 31 - warning: redundant-u-string-prefix 32 - warning: redundant-u-string-prefix 32 - warning: redundant-u-string-prefix 33 - warning: redundant-u-string-prefix 33 - warning: redundant-u-string-prefix 34 - warning: redundant-u-string-prefix 34 - warning: redundant-u-string-prefix 35 - warning: redundant-u-string-prefix 35 - warning: redundant-u-string-prefix 36 - warning: redundant-u-string-prefix 36 - warning: redundant-u-string-prefix 37 - warning: redundant-u-string-prefix 37 - warning: redundant-u-string-prefix 38 - warning: redundant-u-string-prefix 38 - warning: redundant-u-string-prefix 39 - warning: redundant-u-string-prefix 39 - warning: redundant-u-string-prefix 40 - warning: redundant-u-string-prefix 40 - warning: redundant-u-string-prefix 41 - warning: redundant-u-string-prefix 41 - warning: redundant-u-string-prefix 42 - warning: redundant-u-string-prefix 42 - warning: redundant-u-string-prefix 43 - warning: redundant-u-string-prefix 43 - warning: redundant-u-string-prefix 60 - warning: broad-exception-caught 61 - warning: redundant-u-string-prefix 61 - error: undefined-variable 61 - warning: redundant-u-string-prefix 61 - warning: redundant-u-string-prefix 48 - refactor: inconsistent-return-statements 70 - warning: redundant-u-string-prefix 77 - warning: broad-exception-caught 74 - warning: redundant-u-string-prefix 78 - warning: redundant-u-string-prefix 78 - error: undefined-variable 78 - warning: redundant-u-string-prefix 78 - warning: redundant-u-string-prefix 91 - error: undefined-variable 92 - error: undefined-variable 92 - error: undefined-variable 103 - warning: broad-exception-caught 104 - warning: redundant-u-string-prefix 104 - error: undefined-variable 104 - warning: redundant-u-string-prefix 104 - warning: redundant-u-string-prefix 113 - warning: redundant-u-string-prefix 115 - warning: redundant-u-string-prefix 143 - warning: redundant-u-string-prefix 146 - warning: broad-exception-caught 147 - warning: redundant-u-string-prefix 148 - warning: redundant-u-string-prefix 148 - warning: redundant-u-string-prefix 151 - warning: redundant-u-string-prefix 159 - warning: broad-exception-caught 154 - warning: redundant-u-string-prefix 155 - refactor: no-else-return 155 - warning: redundant-u-string-prefix 156 - warning: redundant-u-string-prefix 156 - warning: redundant-u-string-prefix 158 - warning: redundant-u-string-prefix 158 - warning: redundant-u-string-prefix 160 - warning: redundant-u-string-prefix 161 - warning: redundant-u-string-prefix 161 - warning: redundant-u-string-prefix 169 - warning: redundant-u-string-prefix 170 - error: undefined-variable 171 - warning: redundant-u-string-prefix 165 - refactor: useless-return 5 - warning: unused-import 5 - warning: unused-import 5 - warning: unused-import 5 - warning: unused-import 5 - warning: unused-import
1 import pandas as pd 2 import numpy as np 3 4 # ------- Read CSV data ---------- 5 6 7 # stop=pd.read_csv('Arkiv/stops.txt') 8 stop_times=pd.read_csv('Arkiv/stop_times.txt') 9 # calendar=pd.read_csv('Arkiv/calendar.txt') 10 calendar_dates=pd.read_csv('Arkiv/calendar_dates.txt') 11 trips=pd.read_csv('Arkiv/trips.txt') 12 13 # ----------Conditional Subset ---------- 14 15 new_calendar_dates=calendar_dates[(calendar_dates.date>20200225 )& (calendar_dates.date<20200301)] 16 17 18 19 #----------- remove useless columns from calendar data---------------------------- 20 21 new_csv=stop_times.iloc[0:,0:5] 22 23 24 # ---------------Merge them on service_id and make a new column named "unique_trip_id" 25 a=trips 26 b=new_calendar_dates 27 c=pd.merge(a, b, on='service_id', how='left') 28 c['unique_trip_id']=c.index+1 29 e=stop_times 30 f=pd.merge(c, e, on='trip_id', how='left') 31 df=f 32 33 34 35 36 # result['unique_trip_id'] = result.groupby(['trip_id','end_date']).ngroup() 37 # result=result.sort_values(by=['unique_trip_id', 'stop_sequence']) 38 39 40 # unique_trip_id=1 41 # new=[] 42 # for i in range(0,len(my_list)-1): 43 # if my_list[i] == my_list[i+1]: 44 # new.append(unique_trip_id) 45 # else: 46 # unique_trip_id+=1 47 # new.append(unique_trip_id) 48 49 # -------- Make int into string and combine two column on new columns------- 50 51 52 df['unique_trip_id']=df['unique_trip_id'].map(lambda x: x+1) 53 df['first']=df['unique_trip_id'].map(lambda x: str(x)) 54 df['second']=df['stop_sequence'].map(lambda x: str(x)) 55 df['first_date']=df['start_date'].map(lambda x: str(x)) 56 df['second_date']=df['end_date'].map(lambda x: str(x)) 57 df['unique_sub_trip_id']= df[['first', 'second']].apply(lambda x: '.'.join(x), axis=1) 58 df['arrival_time']= df[['second_date', 'arrival_time']].apply(lambda x: ' '.join(x), axis=1) 59 df['departure_time']= df[['first_date', 'departure_time']].apply(lambda x: ' '.join(x), axis=1) 60 61 # --------- Rerange data --------------- 62 63 df=df[['unique_trip_id','unique_sub_trip_id','trip_id','stop_id','stop_sequence','arrival_time','departure_time']] 64 65 unique_trip_id_list=df.unique_trip_id.unique().tolist() 66 67 df_list=[] 68 for i in unique_trip_id_list: 69 df1 = df.loc[df['unique_trip_id'] == i] 70 df1['arrival_time'] = df1['arrival_time'].shift(-1) 71 df1['stop_sequence'] = df1['stop_sequence'].shift(-1) 72 df_list.append(df1) 73 final_result=pd.concat(df_list) 74 75 final_result.to_csv('result.csv')
69 - warning: bad-indentation 70 - warning: bad-indentation 71 - warning: bad-indentation 72 - warning: bad-indentation 53 - warning: unnecessary-lambda 54 - warning: unnecessary-lambda 55 - warning: unnecessary-lambda 56 - warning: unnecessary-lambda 57 - warning: unnecessary-lambda 58 - warning: unnecessary-lambda 59 - warning: unnecessary-lambda 2 - warning: unused-import
1 import pandas as pd 2 import numpy as np 3 4 stop=pd.read_csv('Arkiv/stops.txt') 5 stop_times=pd.read_csv('Arkiv/stop_times.txt') 6 calendar=pd.read_csv('Arkiv/calendar.txt') 7 calendar_dates=pd.read_csv('Arkiv/calendar_dates.txt') 8 trips=pd.read_csv('Arkiv/trips.txt') 9 10 print(stop.shape) 11 print(stop_times.shape) 12 print(calendar.shape) 13 print(calendar_dates.shape) 14 print(trips.shape) 15 16 # ----------Conditional Subset ---------- 17 18 new_calendar_dates=calendar_dates[(calendar_dates.date>20200225 )& (calendar_dates.date<20200301)] 19 20 print(new_calendar_dates.date.min()) 21 print(new_calendar_dates.date.max()) 22 print(new_calendar_dates.shape) 23 24 25 trips=trips.iloc[0:,1:3] 26 print(trips.head()) 27 print(trips.shape)
2 - warning: unused-import
1 from housing.items import HousingItemBuy 2 from scrapy import Spider 3 from scrapy.http.request import Request 4 5 #To parse the JSON received 6 import json 7 8 class HousingSpider(Spider): 9 name = "housing" 10 allowed_domains = ["housing.com"] 11 custom_settings = {'USER_AGENT' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.111 Safari/537.36'} 12 13 14 def start_requests(self): 15 #We have 1080 pages to fetch 16 for count in range(1,1081): 17 18 print "Getting page : %s" %count 19 20 yield Request("https://buy.housing.com/api/v1/buy/index/filter?poly=f97f947ffae6408ac295&results_per_page=30&p=" + str(count) + "&resale_total_count=30045&np_total_count=2329", self.parse_buy) 21 22 23 def parse_buy(self, response): 24 25 #Since the response is purely JSON 26 text = response.body 27 28 #Parsing it using the builtin json utility 29 parsed_json = json.loads(text) 30 31 #For each entry, we will store all the information we defined earlier in items.py 32 #The parsed json can be read as a dict. Examining the JSON, we can easily navigate 33 #to where we have the data we need. 34 35 for iter in range(30): 36 item = HousingItemBuy() 37 item['ad_price'] = parsed_json["hits"][iter]["formatted_price"] 38 item['ad_url'] = parsed_json["hits"][iter]["inventory_canonical_url"] 39 item['ad_title'] = parsed_json["hits"][iter]["title"] 40 item['ad_coordinates'] = parsed_json["hits"][iter]["location_coordinates"] 41 item['ad_date_added'] = parsed_json["hits"][iter]["date_added"] 42 item['ad_area'] = parsed_json["hits"][iter]["inventory_configs"][0]["area"] 43 item['ad_bedrooms'] = parsed_json["hits"][iter]["inventory_configs"][0]["number_of_bedrooms"] 44 item['ad_toilets'] = parsed_json["hits"][iter]["inventory_configs"][0]["number_of_toilets"] 45 item['ad_contact_persons_number'] = parsed_json["hits"][iter]["contact_persons_info"][0]["contact_no"] 46 item['ad_contact_persons_id'] = parsed_json["hits"][iter]["contact_persons_info"][0]["profile_id"] 47 item['ad_contact_persons_name'] = parsed_json["hits"][iter]["contact_persons_info"][0]["name"] 48 49 #Some entries do not have the ad_city/ad_locality variable. 50 try: 51 item['ad_city'] = parsed_json["hits"][iter]["display_city"][0] 52 except : 53 item['ad_city'] = "None given" 54 55 try: 56 item['ad_locality'] = parsed_json["hits"][iter]["display_city"][1] 57 except : 58 item['ad_locality'] = "None given" 59 60 item['ad_gas_pipeline'] = parsed_json["hits"][iter]["inventory_amenities"]["has_gas_pipeline"] 61 item['ad_lift'] = parsed_json["hits"][iter]["inventory_amenities"]["has_lift"] 62 item['ad_parking'] = parsed_json["hits"][iter]["inventory_amenities"]["has_parking"] 63 item['ad_gym'] = parsed_json["hits"][iter]["inventory_amenities"]["has_gym"] 64 item['ad_swimming_pool'] = parsed_json["hits"][iter]["inventory_amenities"]["has_swimming_pool"] 65 item['ad_id'] = parsed_json["hits"][iter]["id"] 66 yield item
18 - error: syntax-error
1 from scrapy.spiders import BaseSpider 2 from scrapy101.items import Scrapy101Item 3 4 class Scrapy101Spider(BaseSpider): 5 name = "dmoz" 6 allowed_domains = ["dmoz.org/"] 7 start_urls = ["http://www.dmoz.org/"] 8 9 def parse(self, response): 10 for div in response.xpath('/html/body/div[3]/div[3]/div[1]/div'): 11 for entry in div.xpath('span'): 12 item = Scrapy101Item() 13 item['title'] = entry.xpath('a/text()').extract() 14 print item['title']
14 - error: syntax-error
1 from scrapy import Item, Field 2 3 class CardekhoItem(Item): 4 title = Field() 5 price = Field() 6 distance = Field()
3 - refactor: too-few-public-methods
1 from scrapy import Item, Field 2 3 class Scrapy101Item(Item): 4 title = Field()
4 - warning: bad-indentation 3 - refactor: too-few-public-methods
1 from cardekho.items import CardekhoItem 2 from scrapy import Spider 3 from scrapy.http.request import Request 4 5 class CardekhoSpider(Spider): 6 name = "cardekho" 7 allowed_domains = ["http://www.cardekho.com"] 8 start_urls = ["http://www.cardekho.com/used-cars+in+mumbai-all/"] 9 10 #This is to not get redirected by CarDekho. We are identifying ourselves as a web-browser. 11 custom_settings = {'USER_AGENT' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.111 Safari/537.36'} 12 13 def start_requests(self): 14 #There are 162 pages, we are asking Scrapy to get us all of them. 15 for i in range(162): 16 yield Request("http://www.cardekho.com/used-cars+in+mumbai-all/" + str(i), self.parse) 17 18 def parse(self, response): 19 for sel in response.xpath('/html/body/main/div/div[2]/div[2]/div[9]/form/ul/li'): 20 item = CardekhoItem() 21 item ['title'] = sel.xpath('div[1]/div[2]/div[1]/a/text()').extract() 22 item ['price'] = sel.xpath('div[1]/div[3]/div[1]/text()').extract() 23 item ['distance'] = sel.xpath('div[1]/div[2]/div[3]/ul/li[1]/div[2]/span/text()').extract() 24 yield item
Clean Code: No Issues Detected
1 from scrapy import Item, Field 2 3 class HousingItemBuy(Item): 4 ad_id = Field() 5 ad_title = Field() 6 ad_price = Field() 7 ad_area = Field() 8 ad_url = Field() 9 ad_date_added = Field() 10 ad_coordinates = Field() 11 ad_bedrooms = Field() 12 ad_toilets = Field() 13 ad_gas_pipeline = Field() 14 ad_lift = Field() 15 ad_parking = Field() 16 ad_gym = Field() 17 ad_swimming_pool = Field() 18 ad_city = Field() 19 ad_locality = Field() 20 ad_contact_persons_name = Field() 21 ad_contact_persons_number = Field() 22 ad_contact_persons_id = Field() 23 count = Field()
3 - refactor: too-few-public-methods
1 2 from django.urls import path 3 # from.views import address,add_to_cart,mobile,checkout,orders,ProductView,ProductDetailView,CustomerRegistrationView,ProfileView,show_cart,laptop,fashion_top,fashion_bottom,gym_product,home_decor,plus_cart,minus_cart,remove_cart,payment_done,orders 4 from django.conf import settings 5 from django.conf.urls.static import static 6 # from django.contrib.auth import views as auth_views 7 from fashion.views import HomeView,perfume_view,product_view,shoes_view,watch_view,tshirt_view,ProductDetailView,add_to_cart,CustomerRegistrationView,ProfileView,address,show_cart,remove_cart,checkout,orders 8 from django.contrib.auth import views as auth_views 9 from .forms import LoginForm,MyPasswordChangeForm 10 # ,MyPasswordResetForm,MySetPasswordForm 11 12 urlpatterns = [ 13 path('',HomeView.as_view(),name='home'), 14 path('alldata/',product_view,name="alldata"), 15 path('perfume/',perfume_view,name="perfume"), 16 path('perfume/<slug:data>/',perfume_view,name="perfume"), 17 path('watches/',watch_view,name="watches"), 18 path('watches/<slug:data>/',watch_view,name="watches"), 19 path('tshirts/',tshirt_view,name="tshirts"), 20 path('tshirts/<slug:data>/',tshirt_view,name="tshirts"), 21 path('shoes/',shoes_view,name="shoes"), 22 path('shoes/<slug:data>/',shoes_view,name="shoes"), 23 path('product-detail/<int:pk>',ProductDetailView.as_view(),name="product-detail"), 24 path('add-to-cart/',add_to_cart,name="add-to-cart"), 25 path('cart/',show_cart,name='cart'), 26 path('removecart/<int:pk>/',remove_cart,name='removecart'), 27 path('profile/',ProfileView.as_view(),name="profile"), 28 path('address/',address,name="address"), 29 path('orders/',orders,name="orders"), 30 path('regestration/',CustomerRegistrationView.as_view(),name="customerregistration"), 31 path('login/', auth_views.LoginView.as_view(template_name='fashion/login.html',authentication_form=LoginForm), name='login'), 32 path('logout/', auth_views.LogoutView.as_view(next_page='login') ,name='logout'), 33 path('passwordchange/',auth_views.PasswordChangeView.as_view(template_name='fashion/passwordchange.html',form_class=MyPasswordChangeForm,success_url='/passwordchangedone/'),name="passwordchange"), 34 path('passwordchangedone/', auth_views.PasswordChangeDoneView.as_view(template_name='fashion/passwordchangedone.html'), name='passwordchangedone'), 35 path('checkout/',checkout,name='checkout'), 36 37 38 39 ]+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
9 - error: relative-beyond-top-level
1 # Generated by Django 3.2.6 on 2021-09-25 07:35 2 3 from django.db import migrations, models 4 5 6 class Migration(migrations.Migration): 7 8 dependencies = [ 9 ('fashion', '0002_cart_orderplaced_product'), 10 ] 11 12 operations = [ 13 migrations.AlterField( 14 model_name='product', 15 name='category', 16 field=models.CharField(choices=[('TS', 'Tshirts'), ('W', 'Watches'), ('P', 'Perfumes'), ('S', 'Shoes')], max_length=2), 17 ), 18 ]
6 - refactor: too-few-public-methods
1 # Conectar ao Minecraft 2 from mcpi.minecraft import Minecraft 3 mc = Minecraft.create() 4 5 # String para variaveis de 3D 6 7 x = input("localização desejada para x ") 8 y = input("localização desejada para y ") 9 z = input("localização desejada para z ") 10 11 # Mudar a posição do jogador 12 13 mc.player.setPos(x, y, z) 14 15 print("Fim de locomoção ->", x, y ,z)
Clean Code: No Issues Detected
1 # Conectar ao Minecraft 2 from mcpi.minecraft import Minecraft 3 mc = Minecraft.create() 4 5 # String para variaveis de 3D 6 7 bloco = input("Numero do bloco desejado:") 8 9 x = input("localização desejada para: x ") 10 y = input("localização desejada para: y ") 11 z = input("localização desejada para: z ") 12 13 mc.setBlock(x, y, z, bloco) 14 15 print("Fim de script obs: cria 1 bloco por vez ! ")
Clean Code: No Issues Detected
1 # third party imports 2 import argparse 3 import os 4 import torch 5 from torchvision import models 6 7 # local imports 8 from model import create_dataloaders, create_model, train_model 9 from utils import determine_device 10 from validation import validate_train_args 11 12 # CLI defaults 13 HIDDEN_UNITS_DEFAULT = 2048 14 ARCH_DEFAULT = "vgg16" 15 LEARNING_RATE_DEFAULT = 0.001 16 EPOCHS_DEFAULT = 8 17 18 # other settings 19 BATCH_SIZE = 60 20 DROPOUT_PROBABILITY = 0.5 21 ARCH_CHOICES = [ 22 "vgg16", 23 "vgg16_bn", 24 "vgg11", 25 "vgg11_bn", 26 "vgg13", 27 "vgg13_bn", 28 "vgg19", 29 "vgg19_bn", 30 "densenet121", 31 "densenet161", 32 "densenet169", 33 "densenet201", 34 ] 35 36 # configure argument parser 37 parser = argparse.ArgumentParser(description="Trains model and saves checkpoint") 38 parser.add_argument("data_directory", help="the directory for the training data") 39 parser.add_argument("--arch", choices=ARCH_CHOICES, default=ARCH_DEFAULT) 40 parser.add_argument("--gpu", action="store_true") 41 parser.add_argument("--learning_rate", type=float, default=LEARNING_RATE_DEFAULT) 42 parser.add_argument("--save_dir") 43 parser.add_argument("--epochs", type=int, default=EPOCHS_DEFAULT) 44 parser.add_argument("--hidden_units", type=int, default=HIDDEN_UNITS_DEFAULT) 45 46 # parse CLI args 47 args = parser.parse_args() 48 49 # do some additional validation on args 50 validate_train_args(args) 51 52 # get dataloaders and class_to_idx map 53 print("Creating dataloaders...") 54 dataloaders, class_to_idx = create_dataloaders(args.data_directory, BATCH_SIZE) 55 56 # use gpu if available and requested in args 57 device = determine_device(args.gpu) 58 print("Using device {}...".format(device.type)) 59 60 print("Creating model...") 61 training_directory = args.data_directory + "/train/" 62 output_units_size = sum( 63 [os.path.isdir(training_directory + i) for i in os.listdir(training_directory)] 64 ) 65 model, input_size = create_model( 66 args.arch, args.hidden_units, DROPOUT_PROBABILITY, output_units_size, device 67 ) 68 69 # train the model in place 70 print("Training model...") 71 train_model(model, dataloaders, args.epochs, args.learning_rate, device) 72 73 # save checkpoint 74 print("Saving checkpoint...") 75 checkpoint = { 76 "arch": args.arch, 77 "batch_size": BATCH_SIZE, 78 "class_to_idx": class_to_idx, 79 "dropout_probability": DROPOUT_PROBABILITY, 80 "hidden_size": args.hidden_units, 81 "input_size": input_size, 82 "output_size": output_units_size, 83 "state_dict": model.state_dict(), 84 } 85 save_path = args.save_dir + "/checkpoint.pth" if args.save_dir else "checkpoint.pth" 86 torch.save(checkpoint, save_path) 87 print("Done. Checkpoint has been saved at {}".format(save_path))
62 - refactor: consider-using-generator 5 - warning: unused-import
1 from os import path 2 import torch 3 from torchvision import models 4 5 # validates train.py args 6 def validate_train_args(args): 7 # check cuda 8 if args.gpu and torch.cuda.is_available() == False: 9 # we don't want to throw sand in the user's face 10 # but let them know we are falling back to CPU 11 print("GPU is not enabled for this device, falling back to CPU") 12 13 # check data_directory existance 14 if path.exists(args.data_directory) == False: 15 raise ValueError( 16 "data directory does not exist: {}".format(args.data_directory) 17 ) 18 19 # check save_dir existance 20 if args.save_dir and path.exists(args.save_dir) == False: 21 raise ValueError("save directory does not exist: {}".format(args.save_dir)) 22 23 24 # validates predict.py args 25 def validate_predict_args(args): 26 # check cuda 27 if args.gpu and torch.cuda.is_available() == False: 28 # we don't want to throw sand in the user's face 29 # but let them know we are falling back to CPU 30 print("GPU is not enabled for this device, falling back to CPU") 31 32 # check data_directory existance 33 if path.exists(args.image_path) == False: 34 raise ValueError("image path does not exist: {}".format(args.image_path)) 35 36 # check checkpoint existance 37 if path.exists(args.checkpoint) == False: 38 raise ValueError("checkpoint does not exist: {}".format(args.checkpoint)) 39 40 # check category names existance 41 if args.category_names and path.exists(args.category_names) == False: 42 raise ValueError( 43 "category names does not exist: {}".format(args.category_names) 44 )
3 - warning: unused-import
1 # third party imports 2 import argparse 3 import json 4 5 # local imports 6 from model import predict, load_checkpoint 7 from utils import determine_device 8 from validation import validate_predict_args 9 10 # CLI defaults 11 TOP_K_DEFAULT = 1 12 13 # configure argument parser 14 parser = argparse.ArgumentParser(description="Trains model and saves checkpoint") 15 parser.add_argument("image_path", help="the path for the image you wish to classify") 16 parser.add_argument("checkpoint", help="the model checkpoint you would like to use") 17 parser.add_argument("--category_names") 18 parser.add_argument("--gpu", action="store_true") 19 parser.add_argument("--top_k", type=int, default=TOP_K_DEFAULT) 20 21 # parse and validate args 22 args = parser.parse_args() 23 validate_predict_args(args) 24 25 # Getting category to name mapping 26 cat_to_name = None 27 if args.category_names: 28 with open(args.category_names, "r") as f: 29 cat_to_name = json.load(f) 30 31 # use gpu if available and requested in args 32 device = determine_device(args.gpu) 33 print("Using device {}...".format(device.type)) 34 35 print("Loading checkpoint...") 36 model = load_checkpoint(args.checkpoint, device) 37 38 print("Predicting class for image...") 39 chart_data = predict(args.image_path, model, device, cat_to_name, args.top_k) 40 41 print("Printing chart of classes and probabilities...") 42 print(chart_data)
28 - warning: unspecified-encoding