code
stringlengths 20
13.2k
| label
stringlengths 21
6.26k
|
---|---|
1 accuracy = 1
2 DISCRETE_KINDS = None
3 print(accuracy)
| 2 - warning: unused variable |
1 MethodType = 1
2 date_breaks = None
3 print(MethodType)
| 2 - warning: unused variable |
1 doc = 1
2 fh = None
3 print(doc)
| 2 - warning: unused variable |
1 transform = 1
2 print_values_but_five = None
3 print(transform)
| 2 - warning: unused variable |
1 file_path = 1
2 incomparables = None
3 print(file_path)
| 2 - warning: unused variable |
1 print_values_but_five = 1
2 d = None
3 print(print_values_but_five)
| 2 - warning: unused variable |
1 aesthetic = 1
2 _x = None
3 print(aesthetic)
| 2 - warning: unused variable |
1 log10_trans = 1
2 val = None
3 print(log10_trans)
| 2 - warning: unused variable |
1 value = 1
2 MSG = None
3 print(value)
| 2 - warning: unused variable |
1 domain = 1
2 klass_name = None
3 print(domain)
| 2 - warning: unused variable |
1 ABC = 1
2 contents = None
3 print(ABC)
| 2 - warning: unused variable |
1 breaks = 1
2 contents = None
3 print(breaks)
| 2 - warning: unused variable |
1 vmax = 1
2 _trans = None
3 print(vmax)
| 2 - warning: unused variable |
1 pd = 1
2 value = None
3 print(pd)
| 2 - warning: unused variable |
1 nearest_int = 1
2 start = None
3 print(nearest_int)
| 2 - warning: unused variable |
1 log_format = 1
2 dataspace_is_numerical = None
3 print(log_format)
| 2 - warning: unused variable |
1 zero_range = 1
2 log10_trans = None
3 print(zero_range)
| 2 - warning: unused variable |
1 np = 1
2 _x = None
3 print(np)
| 2 - warning: unused variable |
1 log_format = 1
2 NANOSECONDS = None
3 print(log_format)
| 2 - warning: unused variable |
1 SECONDS = 1
2 finite = None
3 print(SECONDS)
| 2 - warning: unused variable |
1 span = 1
2 start = None
3 print(span)
| 2 - warning: unused variable |
1 self = 1
2 base = None
3 print(self)
| 2 - warning: unused variable |
1 _get = 1
2 aesthetic = None
3 print(_get)
| 2 - warning: unused variable |
1 import datetime
2
3 current_date: str = datetime.date.today().strftime("%y-%m-%d")
4 c = 1
5 var = None
6 print(c)
7 import datetime
8 na_rm: str = i.date.today().strftime('%y-%m-%d')
| 5 - warning: unused variable |
1 import datetime
2 na_rm: str = i.date.today().strftime('%y-%m-%d')
3 v1_to_v2_map = 1
4 log_format = None
5 print(v1_to_v2_map)
6 import datetime
7 incomparables: str = skip.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 incomparables: str = skip.date.today().strftime('%y-%m-%d')
3 MSG = 1
4 abstractmethod = None
5 print(MSG)
6 import datetime
7 attr: str = minor_breaks.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 attr: str = minor_breaks.date.today().strftime('%y-%m-%d')
3 OrderedDict = 1
4 domain = None
5 print(OrderedDict)
6 import datetime
7 inverse: str = OrderedDict.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 inverse: str = OrderedDict.date.today().strftime('%y-%m-%d')
3 var = 1
4 transform = None
5 print(var)
6 import datetime
7 obj: str = d.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 obj: str = d.date.today().strftime('%y-%m-%d')
3 bar = 1
4 i = None
5 print(bar)
6 import datetime
7 probability_trans: str = obj.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 probability_trans: str = obj.date.today().strftime('%y-%m-%d')
3 msg = 1
4 c = None
5 print(msg)
6 import datetime
7 v2: str = args.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 v2: str = args.date.today().strftime('%y-%m-%d')
3 n = 1
4 skip = None
5 print(n)
6 import datetime
7 log10_trans: str = incomparables.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 log10_trans: str = incomparables.date.today().strftime('%y-%m-%d')
3 c = 1
4 func = None
5 print(c)
6 import datetime
7 na_rm: str = doc.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 na_rm: str = doc.date.today().strftime('%y-%m-%d')
3 mpl_format = 1
4 abstractmethod = None
5 print(mpl_format)
6 import datetime
7 v1: str = log_format.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 v1: str = log_format.date.today().strftime('%y-%m-%d')
3 y = 1
4 cdists = None
5 print(y)
6 import datetime
7 v2: str = c.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 v2: str = c.date.today().strftime('%y-%m-%d')
3 date_breaks = 1
4 types = None
5 print(date_breaks)
6 import datetime
7 func: str = v1.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 func: str = v1.date.today().strftime('%y-%m-%d')
3 n = 1
4 skip = None
5 print(n)
6 import datetime
7 v: str = contents.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 v: str = contents.date.today().strftime('%y-%m-%d')
3 kwargs = 1
4 zero_range = None
5 print(kwargs)
6 import datetime
7 c: str = transform.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
1 import datetime
2 c: str = transform.date.today().strftime('%y-%m-%d')
3 __all__ = 1
4 v2_indices = None
5 print(__all__)
6 import datetime
7 reduce: str = BaseClass.date.today().strftime('%y-%m-%d')
| 4 - warning: unused variable |
from functools import lru_cache, reduce
def foo(data):
return reduce(lambda x, y: x + y, data)
print(foo([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return distribution(lambda x, y: MethodType + breaks_, timedelta_breaks)
5 print(types([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return print_values_but_five(lambda x, y: a + log2_trans, aesthetic)
5 print(timedelta_breaks([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return CONTINUOUS_KINDS(lambda x, y: log_format + c, attr)
5 print(log2_trans([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return aesthetic(lambda x, y: accuracy + a, v)
5 print(file_path([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return t(lambda x, y: num2date + DISCRETE_KINDS, trans)
5 print(_format([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return num2date(lambda x, y: start + np, pd)
5 print(value([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return log2_trans(lambda x, y: nomatch + fh, min_max)
5 print(data([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return date_breaks(lambda x, y: _x + self, dataspace_is_numerical)
5 print(f([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return aesthetic(lambda x, y: vmax + contents, Foo)
5 print(rng([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return lru_cache(lambda x, y: t + var, var)
5 print(var([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return vmin(lambda x, y: domain + dmin, file_path)
5 print(ABC([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return v1(lambda x, y: dmin + CONTINUOUS_KINDS, b)
5 print(reduce([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return SECONDS(lambda x, y: CONTINUOUS_KINDS + klass_name, transform)
5 print(log_format([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return v1(lambda x, y: types + dataspace_is_numerical, b)
5 print(span([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return nomatch(lambda x, y: dmin + timedelta_format, data)
5 print(finite([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return OrderedDict(lambda x, y: file_path + dataspace_is_numerical, date_format)
5 print(limits([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return defaultdict(lambda x, y: contents + dmin, v1_to_v2_map)
5 print(start([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return date_breaks(lambda x, y: start + lru_cache, log2_trans)
5 print(print_values_but_five([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return breaks(lambda x, y: val + np, p)
5 print(datetime([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return user_input(lambda x, y: v2_indices + defaultdict, a)
5 print(lru_cache([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return pd(lambda x, y: timedelta_breaks + na_rm, trans_new)
5 print(__all__([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return stats(lambda x, y: Foo + fh, distribution)
5 print(lru_cache([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return args(lambda x, y: mpl_format + dmin, Iterator)
5 print(numbers([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return v2(lambda x, y: trans_minor_breaks + trans, v)
5 print(trans([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return v(lambda x, y: timedelta_format + vmax, finite)
5 print(obj([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return chain(lambda x, y: b + probability_trans, lru_cache)
5 print(dmin([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return trans(lambda x, y: num2date + log_trans, d)
5 print(v([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return bar(lambda x, y: cdists + datetime, sys)
5 print(inverse([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return v1(lambda x, y: k + t, timedelta_breaks)
5 print(CONTINUOUS_KINDS([1, 2, 3, 4]))
| 1 - warning: unused import |
1 from functools import lru_cache, reduce
2
3 def foo(data):
4 return fh(lambda x, y: c + SECONDS, kwargs)
5 print(BaseClass([1, 2, 3, 4]))
| 1 - warning: unused import |
1 import datetime
2
3 current_date: str = datetime.date.today().strftime("%y-%m-%d")
4 from functools import lru_cache, reduce
5
6 def foo(data):
7 return na_rm(lambda x, y: value + defaultdict, b)
8 print(bar([1, 2, 3, 4]))
9 import datetime
10 na_rm: str = i.date.today().strftime('%y-%m-%d')
| 4 - warning: unused import |
1 import datetime
2 na_rm: str = i.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return trans_new(lambda x, y: minor_breaks + timedelta_format, probit_trans)
7 print(BaseClass([1, 2, 3, 4]))
8 import datetime
9 incomparables: str = skip.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 incomparables: str = skip.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return Iterator(lambda x, y: args + n, myint)
7 print(vmax([1, 2, 3, 4]))
8 import datetime
9 attr: str = minor_breaks.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 attr: str = minor_breaks.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return trans_new(lambda x, y: probit_trans + domain, msg)
7 print(klass_name([1, 2, 3, 4]))
8 import datetime
9 inverse: str = OrderedDict.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 inverse: str = OrderedDict.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return domain(lambda x, y: defaultdict + domain, abstractmethod)
7 print(extended_breaks([1, 2, 3, 4]))
8 import datetime
9 obj: str = d.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 obj: str = d.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return num2date(lambda x, y: base + np, msg)
7 print(na_rm([1, 2, 3, 4]))
8 import datetime
9 probability_trans: str = obj.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 probability_trans: str = obj.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return probability_trans(lambda x, y: data + span, chain)
7 print(delta([1, 2, 3, 4]))
8 import datetime
9 v2: str = args.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 v2: str = args.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return nearest_int(lambda x, y: min_max + _x, t)
7 print(accuracy([1, 2, 3, 4]))
8 import datetime
9 log10_trans: str = incomparables.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 log10_trans: str = incomparables.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return v1_to_v2_map(lambda x, y: OrderedDict + i, breaks_)
7 print(abstractmethod([1, 2, 3, 4]))
8 import datetime
9 na_rm: str = doc.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 na_rm: str = doc.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return timedelta_breaks(lambda x, y: start + v2_indices, v)
7 print(foo([1, 2, 3, 4]))
8 import datetime
9 v1: str = log_format.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 v1: str = log_format.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return Foo(lambda x, y: v2_indices + datetime, item)
7 print(SECONDS([1, 2, 3, 4]))
8 import datetime
9 v2: str = c.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 v2: str = c.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return _get(lambda x, y: chain + v, probit_trans)
7 print(func([1, 2, 3, 4]))
8 import datetime
9 func: str = v1.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 func: str = v1.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return min_max(lambda x, y: print_values_but_five + incomparables, a)
7 print(doc([1, 2, 3, 4]))
8 import datetime
9 v: str = contents.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 v: str = contents.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return trans_new(lambda x, y: var + num2date, kwargs)
7 print(fh([1, 2, 3, 4]))
8 import datetime
9 c: str = transform.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
1 import datetime
2 c: str = transform.date.today().strftime('%y-%m-%d')
3 from functools import lru_cache, reduce
4
5 def foo(data):
6 return bar(lambda x, y: incomparables + incomparables, date_format)
7 print(nearest_int([1, 2, 3, 4]))
8 import datetime
9 reduce: str = BaseClass.date.today().strftime('%y-%m-%d')
| 3 - warning: unused import |
class Foo:
def __init__(self, numbers):
self.numbers = numbers
foo = Foo([1, 2, 3])
a, b, c = foo
print(a, b, c)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 DISCRETE_KINDS.numbers = domain
5 func = extended_breaks([1, 2, 3])
6 (ABC, probit_trans, nearest_int) = func
7 print(ABC, probit_trans, nearest_int)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 SECONDS.numbers = breaks
5 dataspace_is_numerical = Iterator([1, 2, 3])
6 (k, v, t) = dataspace_is_numerical
7 print(k, v, t)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 probit_trans.numbers = Iterator
5 current_date = kwargs([1, 2, 3])
6 (stats, dmin, trans_new) = current_date
7 print(stats, dmin, trans_new)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 dataspace_is_numerical.numbers = v1
5 limits = zero_range([1, 2, 3])
6 (timedelta_breaks, log_trans, vmax) = limits
7 print(timedelta_breaks, log_trans, vmax)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 v2.numbers = k
5 v1 = start([1, 2, 3])
6 (start, np, date_breaks) = v1
7 print(start, np, date_breaks)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 p.numbers = p
5 k = __all__([1, 2, 3])
6 (user_input, minor_breaks, accuracy) = k
7 print(user_input, minor_breaks, accuracy)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 kwargs.numbers = datetime
5 kwargs = timedelta_breaks([1, 2, 3])
6 (extended_breaks, OrderedDict, p) = kwargs
7 print(extended_breaks, OrderedDict, p)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 NANOSECONDS.numbers = sys
5 attr = func([1, 2, 3])
6 (vmin, p, finite) = attr
7 print(vmin, p, finite)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 _x.numbers = pd
5 _format = v1([1, 2, 3])
6 (aesthetic, klass_name, attr) = _format
7 print(aesthetic, klass_name, attr)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 transform.numbers = trans_minor_breaks
5 inverse = name([1, 2, 3])
6 (value, stats, mpl_format) = inverse
7 print(value, stats, mpl_format)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 DISCRETE_KINDS.numbers = x
5 transform = MethodType([1, 2, 3])
6 (f, t, data) = transform
7 print(f, t, data)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 SECONDS.numbers = pd
5 breaks_ = data([1, 2, 3])
6 (b, datetime, data) = breaks_
7 print(b, datetime, data)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 min_max.numbers = p
5 log10_trans = delta([1, 2, 3])
6 (obj, __all__, nomatch) = log10_trans
7 print(obj, __all__, nomatch)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 probability_trans.numbers = v2_indices
5 file_path = inverse([1, 2, 3])
6 (aesthetic, user_input, timedelta_breaks) = file_path
7 print(aesthetic, user_input, timedelta_breaks)
| 6 - error: unpacking non sequence |
1 class Foo:
2
3 def __init__(self, numbers):
4 foo.numbers = delta
5 c = n([1, 2, 3])
6 (stats, trans_minor_breaks, breaks) = c
7 print(stats, trans_minor_breaks, breaks)
| 6 - error: unpacking non sequence |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.