content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def geocentric_rotation(sphi, cphi, slam, clam): """ This rotation matrix is given by the following quaternion operations qrot(lam, [0,0,1]) * qrot(phi, [0,-1,0]) * [1,1,1,1]/2 or qrot(pi/2 + lam, [0,0,1]) * qrot(-pi/2 + phi , [-1,0,0]) where qrot(t,v) = [cos(t/2), sin(t/2)*v[1], sin(t/2)*v[2], sin(t/2)*v[3]] """ M = np.zeros(9) # Local X axis (east) in geocentric coords M[0] = -slam; M[3] = clam; M[6] = 0; # Local Y axis (north) in geocentric coords M[1] = -clam * sphi; M[4] = -slam * sphi; M[7] = cphi; # Local Z axis (up) in geocentric coords M[2] = clam * cphi; M[5] = slam * cphi; M[8] = sphi; return M
83d37e79e35cab2fc309a640751fb85a9cab0177
3,659,200
def get_price_sma( ohlcv: DataFrame, window: int = 50, price_col: str = "close", ) -> Series: """ Price to SMA. """ return pd.Series( ohlcv[price_col] / get_sma(ohlcv, window), name="Price/SMA{}".format(window), )
7f356610462b9f0fbc13c02c6f093d5ec29d4e76
3,659,201
def map_to_closest(multitrack, target_programs, match_len=True, drums_first=True): """ Keep closest tracks to the target_programs and map them to corresponding programs in available in target_programs. multitrack (pypianoroll.Multitrack): Track to normalize. target_programs (list): List of available programs. match_len (bool): If True set multitrack track length to length of target_programs. (return only the len(target_programs) closest tracks in multitrack). """ new_multitrack = deepcopy(multitrack) for track in new_multitrack.tracks: min_dist = inf for target in target_programs: dist = abs(track.program - target) if dist < min_dist: min_dist = dist track.program = target track.min_dist = min_dist if match_len: length = len(target_programs) new_multitrack.tracks.sort(key=lambda x: x.min_dist) new_multitrack.tracks = new_multitrack.tracks[:length] if drums_first: new_multitrack.tracks.sort(key=lambda x: not x.is_drum) return new_multitrack
7fd91726fbc66dd3a3f233be9056c00b1b793f46
3,659,202
import time def train_naive(args, X_train, y_train, X_test, y_test, rng, logger=None): """ Compute the time it takes to delete a specified number of samples from a naive model sequentially. """ # initial naive training time model = get_naive(args) start = time.time() model = model.fit(X_train, y_train) before_train_time = time.time() - start logger.info('\n[{}] before train time: {:.3f}s'.format('naive', before_train_time)) # predictive performance of the naive model auc, acc, ap = exp_util.performance(model, X_test, y_test, logger=logger, name='naive') # naive train after deleting data delete_indices = rng.choice(np.arange(X_train.shape[0]), size=args.n_delete, replace=False) new_X_train = np.delete(X_train, delete_indices, axis=0) new_y_train = np.delete(y_train, delete_indices) # after training time model = get_naive(args) start = time.time() model = model.fit(new_X_train, new_y_train) after_train_time = time.time() - start logger.info('[{}] after train time: {:.3f}s'.format('naive', after_train_time)) # interpolate sequential updates total_time = ((before_train_time + after_train_time) / 2) * args.n_delete initial_utility = auc, acc, ap return total_time, initial_utility
0514df318219a9f69dbd49b65cad2664480e3031
3,659,203
def helperFunction(): """A helper function created to return a value to the test.""" value = 10 > 0 return value
2c4f2e5303aca2a50648860de419e8f94581fee7
3,659,204
def app_config(app_config): """Get app config.""" app_config['RECORDS_FILES_REST_ENDPOINTS'] = { 'RECORDS_REST_ENDPOINTS': { 'recid': '/files' } } app_config['FILES_REST_PERMISSION_FACTORY'] = allow_all app_config['CELERY_ALWAYS_EAGER'] = True return app_config
156f48cfd0937e5717de133fdfdf38c86e66ba71
3,659,205
from datetime import datetime def ts(timestamp_string: str): """ Convert a DataFrame show output-style timestamp string into a datetime value which will marshall to a Hive/Spark TimestampType :param timestamp_string: A timestamp string in "YYYY-MM-DD HH:MM:SS" format :return: A datetime object """ return datetime.strptime(timestamp_string, '%Y-%m-%d %H:%M:%S')
1902e75ab70c7869686e3a374b22fa80a6dfcf1a
3,659,206
def boxes(frame, data, f, parameters=None, call_num=None): """ Boxes places a rotated rectangle on the image that encloses the contours of specified particles. Notes ----- This method requires you to have used contours for the tracking and run boxes in postprocessing. Parameters ---------- cmap_type Options are 'static' or 'dynamic' cmap_column Name of column containing data to specify colour in dynamic mode, cmap_max Specifies max data value for colour map in dynamic mode cmap_scale Scale factor for colour map colour Colour to be used for static cmap_type (B,G,R) values from 0-255 classifier_column None selects all particles, column name of classifier values to specify subset of particles classifier The value in the classifier column which applies to subset (True or False) thickness Thickness of box. -1 fills the box in Args ---- frame This is the unmodified frame of the input movie data This is the dataframe that stores all the tracked data f frame index parameters Nested dictionary like object (same as .param files or output from general.param_file_creator.py) call_num Usually None but if multiple calls are made modifies method name with get_method_key Returns ----------- annotated frame : np.ndarray """ try: method_key = get_method_key('boxes', call_num=call_num) thickness = get_param_val(parameters[method_key]['thickness']) subset_df = _get_class_subset(data, f, parameters, method=method_key) box_pts = subset_df[['box_pts']].values if np.shape(box_pts)[0] == 1: df_empty = np.isnan(box_pts[0]) if np.all(df_empty): #0 boxes return frame colours = colour_array(subset_df, f, parameters, method=method_key) sz = np.shape(frame) for index, box in enumerate(box_pts): frame = _draw_contours(frame, box, col=colours[index], thickness=int(get_param_val(parameters[method_key]['thickness']))) return frame except Exception as e: raise BoxesError(e)
813ef54a8c8b99d003b9ca74b28befc63da2c0b9
3,659,207
def process_states(states): """ Separate list of states into lists of depths and hand states. :param states: List of states. :return: List of depths and list of hand states; each pair is from the same state. """ depths = [] hand_states = [] for state in states: depths.append(state[0]) hand_states.append(state[1]) depths = np.array(depths, dtype=np.float32) hand_states = np.array(hand_states, dtype=np.int32) return depths, hand_states
6f71d2471a50a93a3dac6a4148a6e3c6c2aa61e8
3,659,208
import torch import math def uniform_crop(images, size, spatial_idx, boxes=None, scale_size=None): """ Perform uniform spatial sampling on the images and corresponding boxes. Args: images (tensor): images to perform uniform crop. The dimension is `num frames` x `channel` x `height` x `width`. size (int): size of height and weight to crop the images. spatial_idx (int): 0, 1, or 2 for left, center, and right crop if width is larger than height. Or 0, 1, or 2 for top, center, and bottom crop if height is larger than width. boxes (ndarray or None): optional. Corresponding boxes to images. Dimension is `num boxes` x 4. scale_size (int): optinal. If not None, resize the images to scale_size before performing any crop. Returns: cropped (tensor): images with dimension of `num frames` x `channel` x `size` x `size`. cropped_boxes (ndarray or None): the cropped boxes with dimension of `num boxes` x 4. """ assert spatial_idx in [0, 1, 2] ndim = len(images.shape) if ndim == 3: images = images.unsqueeze(0) height = images.shape[2] width = images.shape[3] if scale_size is not None: if width <= height: width, height = scale_size, int(height / width * scale_size) else: width, height = int(width / height * scale_size), scale_size images = torch.nn.functional.interpolate( images, size=(height, width), mode="bilinear", align_corners=False, ) y_offset = int(math.ceil((height - size) / 2)) x_offset = int(math.ceil((width - size) / 2)) if height > width: if spatial_idx == 0: y_offset = 0 elif spatial_idx == 2: y_offset = height - size else: if spatial_idx == 0: x_offset = 0 elif spatial_idx == 2: x_offset = width - size cropped = images[ :, :, y_offset : y_offset + size, x_offset : x_offset + size ] cropped_boxes = ( crop_boxes(boxes, x_offset, y_offset) if boxes is not None else None ) if ndim == 3: cropped = cropped.squeeze(0) return cropped, cropped_boxes
c3e1d7eeb50b959fe0a075c742e23e5206730748
3,659,209
from typing import Tuple def plot_xr_complex_on_plane( var: xr.DataArray, marker: str = "o", label: str = "Data on imaginary plane", cmap: str = "viridis", c: np.ndarray = None, xlabel: str = "Real{}{}{}", ylabel: str = "Imag{}{}{}", legend: bool = True, ax: object = None, **kwargs, ) -> Tuple[Figure, Axes]: """Plots complex data on the imaginary plane. Points are colored by default according to their order in the array. Parameters ---------- var 1D array of complex data. marker Marker used for the scatter plot. label Data label for the legend. cmap The colormap to use for coloring the points. c Color of the points. Defaults to an array of integers. xlabel Label o x axes. ylabel Label o y axes. legend Calls :meth:`~matplotlib.axes.Axes.legend` if ``True``. ax The matplotlib axes. If ``None`` a new axes (and figure) is created. """ if ax is None: _, ax = plt.subplots() if c is None: c = np.arange(0, len(var)) ax.scatter(var.real, var.imag, marker=marker, label=label, c=c, cmap=cmap, **kwargs) unit_str = get_unit_from_attrs(var) ax.set_xlabel(xlabel.format(" ", var.name, unit_str)) ax.set_ylabel(ylabel.format(" ", var.name, unit_str)) if legend: ax.legend() return ax.get_figure(), ax
8702f14fe0fbc508c3cb5893cc5a4a73bfdd0b85
3,659,210
import glob import tokenize import os def imread(filename, imread=None, preprocess=None): """Read a stack of images into a dask array Parameters ---------- filename: string A globstring like 'myfile.*.png' imread: function (optional) Optionally provide custom imread function. Function should expect a filename and produce a numpy array. Defaults to ``skimage.io.imread``. preprocess: function (optional) Optionally provide custom function to preprocess the image. Function should expect a numpy array for a single image. Examples -------- >>> from dask.array.image import imread >>> im = imread('2015-*-*.png') # doctest: +SKIP >>> im.shape # doctest: +SKIP (365, 1000, 1000, 3) Returns ------- Dask array of all images stacked along the first dimension. All images will be treated as individual chunks """ imread = imread or sk_imread filenames = sorted(glob(filename)) if not filenames: raise ValueError("No files found under name %s" % filename) name = "imread-%s" % tokenize(filenames, map(os.path.getmtime, filenames)) sample = imread(filenames[0]) if preprocess: sample = preprocess(sample) keys = [(name, i) + (0,) * len(sample.shape) for i in range(len(filenames))] if preprocess: values = [ (add_leading_dimension, (preprocess, (imread, fn))) for fn in filenames ] else: values = [(add_leading_dimension, (imread, fn)) for fn in filenames] dsk = dict(zip(keys, values)) chunks = ((1,) * len(filenames),) + tuple((d,) for d in sample.shape) return Array(dsk, name, chunks, sample.dtype)
c9e830db9b0ebd0c7634bb2170bc80df3b2c5dcc
3,659,211
import gzip import tqdm import sys def importPredictions_Tombo(infileName, chr_col=0, start_col=1, readid_col=3, strand_col=5, meth_col=4, baseFormat=1, score_cutoff=(-1.5, 2.5), output_first=False, include_score=False, filterChr=HUMAN_CHR_SET, save_unified_format=False, outfn=None): """ We checked input as 0-based start format. Return dict of key='chr1 123 +', and values=list of [1 1 0 0 1 1], in which 0-unmehylated, 1-methylated. Note that the function requires per read stats, not frequencies of methylation. ### Example input format from Tombo chr1 48020 48020 3526811b-6958-49f8-b78c-a205c1b5fc6e 1.185219591257949 + TATTACACCCG chr1 48022 48022 3526811b-6958-49f8-b78c-a205c1b5fc6e 1.6267354150537658 + TTACACCCGTT chr1 48023 48023 3526811b-6958-49f8-b78c-a205c1b5fc6e 2.6122662196889728 + TACACCCGTTA chr1 48024 48024 3526811b-6958-49f8-b78c-a205c1b5fc6e 2.771131774766473 + ACACCCGTTAA chr1 48041 48041 3526811b-6958-49f8-b78c-a205c1b5fc6e 6.524775544143312 + GATTTCTAAAT chr1 48048 48048 3526811b-6958-49f8-b78c-a205c1b5fc6e 1.9142728191641216 + AAATGCATTGA chr1 48054 48054 3526811b-6958-49f8-b78c-a205c1b5fc6e 1.8675210090110548 + ATTGACATTTG ...... chr1 8447736 8447736 c9339e26-1898-4483-a312-b78c3fafc6a9 8.073560995614967 - CTGTGCTGTGT chr1 8447745 8447745 c9339e26-1898-4483-a312-b78c3fafc6a9 2.4467964154940858 - GTTGACCGTGT chr1 8447746 8447746 c9339e26-1898-4483-a312-b78c3fafc6a9 1.966921521322515 - TTGACCGTGTA chr1 8447754 8447754 c9339e26-1898-4483-a312-b78c3fafc6a9 5.387457000225035 - GTATGCAATGG chr1 8447761 8447761 c9339e26-1898-4483-a312-b78c3fafc6a9 -0.8580941645036908 - ATGGACACAGA ============ """ if score_cutoff is None: score_cutoff = (-1.5, 2.5) infile, lines = open_file_gz_or_txt(infileName) if save_unified_format: outf = gzip.open(outfn, 'wt') outf.write(f"ID\tChr\tPos\tStrand\tScore\n") cpgDict = defaultdict(list) row_count = 0 meth_cnt = 0 unmeth_cnt = 0 for row in tqdm(infile, total=lines, desc="Import-Tombo"): tmp = row.strip().split("\t") if tmp[chr_col] not in filterChr: continue if output_first: logger.debug(f'row = {list(enumerate(tmp))}') output_first = False if baseFormat == 1: try: start = int(tmp[start_col]) + 1 strand = tmp[strand_col] if strand == '-': start = start + 1 except: logger.error(f" ####Tombo parse error at row={row}") continue elif baseFormat == 0: try: start = int(tmp[start_col]) strand = tmp[strand_col] if strand == '-': start = start + 1 except Exception as e: logger.error(f" ####Tombo parse error at row={row}, exception={e}") continue else: logger.error( f"###\timportPredictions_Tombo InputValueError: baseCount value set to '{baseFormat}'. It should be equal to 0 or 1") sys.exit(-1) if strand not in ['-', '+']: raise Exception(f'The file [{infileName}] can not recognized strand-info from row={row}, please check it') try: methCallTombo = float(tmp[meth_col]) except Exception as e: logger.error(f" ####Tombo parse error at row={row}, exception={e}") continue meth_score = -methCallTombo if save_unified_format: # output to 1-based for meteore, ref: https://github.com/comprna/METEORE/blob/master/script_in_snakemake/extract_tombo_per_read_results.py outf.write(f"{tmp[readid_col]}\t{tmp[chr_col]}\t{start}\t{tmp[strand_col]}\t{methCallTombo}\n") key = (tmp[chr_col], start, strand) if methCallTombo < score_cutoff[0]: # below -1.5 is methylated by default meth_indicator = 1 meth_cnt += 1 elif methCallTombo > score_cutoff[1]: # above 2.5 is methylated by default meth_indicator = 0 unmeth_cnt += 1 else: continue if include_score: cpgDict[key].append((meth_indicator, meth_score)) else: cpgDict[key].append(meth_indicator) row_count += 1 infile.close() if save_unified_format: outf.close() logger.debug(f'Save METEORE output format to {outfn}') logger.debug( f"###\timportPredictions_Tombo SUCCESS: {row_count:,} methylation calls (meth-calls={meth_cnt:,}, unmeth-call={unmeth_cnt:,}) mapped to {len(cpgDict):,} CpGs with score_cutoff={score_cutoff} from {infileName} file") return cpgDict
88c998d07f40855694f15d34c53359150dd6f64d
3,659,212
def recommend_with_rating(user, train): """ 用户u对物品i的评分预测 :param user: 用户 :param train: 训练集 :return: 推荐列表 """ rank = {} ru = train[user] for item in _movie_set: if item in ru: continue rank[item] = __predict(user, item) return rank.iteritems()
372cd9f77d8123351f4b76eeea241aa8a3bcaf97
3,659,213
def nl_to_break( text ): """ Text may have newlines, which we want to convert to <br /> when formatting for HTML display """ text=text.replace("<", "&lt;") # To avoid HTML insertion text=text.replace("\r", "") text=text.replace("\n", "<br />") return text
d2baf1c19fae686ae2c4571416b4cad8be065474
3,659,214
import requests import logging def get_page_state(url): """ Checks page's current state by sending HTTP HEAD request :param url: Request URL :return: ("ok", return_code: int) if request successful, ("error", return_code: int) if error response code, (None, error_message: str) if page fetching failed (timeout, invalid URL, ...) """ try: response = requests.head(url, verify=False, timeout=10) except requests.exceptions.RequestException as exception: logging.error(exception) return None, "Error fetching page" if response.status_code >= 400: return "error", response.status_code return "ok", response.status_code
f7b7db656968bed5e5e7d332725e4d4707f2b14b
3,659,215
def unique(list_, key=lambda x: x): """efficient function to uniquify a list preserving item order""" seen = set() result = [] for item in list_: seenkey = key(item) if seenkey in seen: continue seen.add(seenkey) result.append(item) return result
57c82081d92db74a7cbad15262333053a2acd3a7
3,659,216
import dateutil import pytz def date_is_older(date_str1, date_str2): """ Checks to see if the first date is older than the second date. :param date_str1: :param date_str2: :return: """ date1 = dateutil.parser.parse(date_str1) date2 = dateutil.parser.parse(date_str2) # set or normalize the timezone target_tz = pytz.timezone('UTC') if date1.tzinfo is None: date1 = target_tz.localize(date1) else: date1 = target_tz.normalize(date1) if date2.tzinfo is None: date2 = target_tz.localize(date2) else: date2 = target_tz.normalize(date2) return date1 < date2
48fcf26cde4276e68daa07c1250de33a739bc5cb
3,659,217
def shorten_namespace(elements, nsmap): """ Map a list of XML tag class names on the internal classes (e.g. with shortened namespaces) :param classes: list of XML tags :param nsmap: XML nsmap :return: List of mapped names """ names = [] _islist = True if not isinstance(elements, (list, frozenset)): elements = [elements] _islist = False for el in elements: for key, value in nsmap.items(): if value in el: if key == "cim": name = el.split(value)[-1] name = name[1:] if name.startswith("}") else name elif "{"+value+"}" in el: name = el.replace("{"+value+"}", key+"_") else: name = el.replace(value, key+"_") names.append(name) if el.startswith("#"): names.append(el.split("#")[-1]) if not _islist and len(names) == 1: names = names[0] return names
73dfc4f24a9b0a73cf7b6af7dae47b880faa3e27
3,659,218
def list_select_options_stream_points(): """ Return all data_points under data_stream """ product_uid = request.args.get('productID', type=str) query = DataStream.query if product_uid: query = query.filter(DataStream.productID == product_uid) streams_tree = [] data_streams = query.many() for data_stream in data_streams: data_points = [] for data_point in data_stream.dataPoints: select_option = { 'label': data_point.dataPointName, 'value': data_point.dataPointID } data_points.append(select_option) streams_tree.append({ 'label': data_stream.streamName, 'value': data_stream.streamID, 'children': data_points }) return jsonify(streams_tree)
34ce7df0ecd241a009b1c8ef44bf33ec64e3d82d
3,659,219
import math def func2(): """ :type: None :rtype: List[float] """ return [math.pi, math.pi / 2, math.pi / 4, math.pi / 8]
62984ba7d8c1efd55569449adbf507e73888a1b7
3,659,220
def get_playlist_name(pl_id): """returns the name of the playlist with the given id""" sql = """SELECT * FROM playlists WHERE PlaylistId=?""" cur.execute(sql, (pl_id,)) return cur.fetchone()[1]
9488eb1c32db8b66f3239dcb454a08b8ea80b8b4
3,659,221
import random def weight(collection): """Choose an element from a dict based on its weight and return its key. Parameters: - collection (dict): dict of elements with weights as values. Returns: string: key of the chosen element. """ # 1. Get sum of weights weight_sum = sum([value for value in collection.values()]) # 2. Generate random number between 1 and sum of weights random_value = random.randint(1, weight_sum) # 3. Iterate through items for key, value in collection.items(): # 4. Subtract weight of each item from random number random_value -= value # 5. Compare with 0, if <= 0, that item has been chosen if random_value <= 0: return key # 6. Else continue subtracting # Should not reach here. raise ValueError("Invalid argument value.")
383ddadd4a47fb9ac7be0292ecc079fcc59c4481
3,659,222
def knnsearch(y, x, k) : """ Finds k closest points in y to each point in x. Parameters ---------- x : (n,3) float array A point cloud. y : (m,3) float array Another point cloud. k : int Number of nearest neighbors one wishes to compute. Returns ------- ordered_neighbors : (n,k) int array List of k nearest neighbors to each point in x. dist : (n,k) flaot array List of distances between each nearest neighbor and the corresponding point in x. """ x, y = map(np.asarray, (x, y)) tree =spatial.cKDTree(y) ordered_neighbors = tree.query(x, k)[1] #sz x, k ID = np.transpose(np.matlib.repmat(np.arange(np.shape(x)[0]), k,1)) dist = np.sum((x[ID,:]-y[ordered_neighbors,:])**2,axis=2)**.5 return ordered_neighbors, dist
84cc1bf0f960e1fb44dd44ab95eccce1c424ec05
3,659,223
def segmentation_gaussian_measurement( y_true, y_pred, gaussian_sigma=3, measurement=keras.losses.binary_crossentropy): """ Apply metric or loss measurement incorporating a 2D gaussian. Only works with batch size 1. Loop and call this function repeatedly over each sample to use a larger batch size. # Arguments y_true: is assumed to be [label, x_img_coord, y_image_coord] y_pred: is expected to be a 2D array of labels with shape [1, img_height, img_width, 1]. """ with K.name_scope(name='grasp_segmentation_gaussian_loss') as scope: if keras.backend.ndim(y_true) == 4: # sometimes the dimensions are expanded from 2 to 4 # to meet Keras' expectations. # In that case reduce them back to 2 y_true = K.squeeze(y_true, axis=-1) y_true = K.squeeze(y_true, axis=-1) print('y_pred: ', y_pred) print('y_true: ', y_true) # y_true should have shape [batch_size, 3] here, # label, y_height_coordinate, x_width_coordinate become shape: # [batch_size, 1] label = K.expand_dims(y_true[:, 0]) print('label: ', label) y_height_coordinate = K.expand_dims(y_true[:, 1]) x_width_coordinate = K.expand_dims(y_true[:, 2]) # label = K.reshape(label, [1, 1]) print('label: ', label) image_shape = tf.Tensor.get_shape(y_pred) y_true_img = tile_vector_as_image_channels(label, image_shape) y_true_img = K.cast(y_true_img, 'float32') loss_img = measurement(y_true_img, y_pred) y_pred_shape = K.int_shape(y_pred) if len(y_pred_shape) == 3: y_pred_shape = y_pred_shape[:-1] if len(y_pred_shape) == 4: y_pred_shape = y_pred_shape[1:3] def batch_gaussian(one_y_true): # def batch_gaussian(y_height_coord, x_width_coord): # weights = gaussian_kernel_2D(size=y_pred_shape, center=(y_height_coord, x_width_coord), sigma=gaussian_sigma) # weights = gaussian_kernel_2D(size=y_pred_shape, center=(y_height_coordinate, x_width_coordinate), sigma=gaussian_sigma) return gaussian_kernel_2D(size=y_pred_shape, center=(one_y_true[0], one_y_true[1]), sigma=gaussian_sigma) weights = K.map_fn(batch_gaussian, y_true) loss_img = K.flatten(loss_img) weights = K.flatten(weights) weighted_loss_img = tf.multiply(loss_img, weights) loss_sum = K.sum(weighted_loss_img) loss_sum = K.reshape(loss_sum, [1, 1]) return loss_sum
377f2fa7706c166756efdb3047937b8db2047674
3,659,224
import h5py import numpy as np import sys def load_AACHEN_PARAMS(AHCHEN_h5_file, log_file_indicator): """ This module extract parameters trainded with the framework https://github.com/rwth-i6/returnn and the neural network proposed in the mdlsmt demo structure. Args: AHCHEN_h5_file: file in format hdf5 generated with https://github.com/rwth-i6/returnn framework. log_file_indicator: _io.TextIOWrapper of the file where logs will be written Returns: The parameters of each layer of the network. """ try: print('Loading AACHEN params from h5 file: ' + str(AHCHEN_h5_file)) log_file_indicator.write('\nLoading AACHEN params from h5 file: ' + str(AHCHEN_h5_file) + '.\n') fh5 = h5py.File(AHCHEN_h5_file, 'r') except OSError: print('File not found: ' + str(AHCHEN_h5_file)) log_file_indicator.write('\n Exception, file not found: ' + str(AHCHEN_h5_file) + '\n') print('Closing') log_file_indicator.close() sys.exit(1) else: w_conv0 = fh5['conv0']['W_conv0'][:] w_conv0 = w_conv0.transpose([2, 3, 1, 0]) # AACHEN shape (n_out, n_in, filter_size), tensorflow shape (filter_size, n_in, n_out) b_conv0 = fh5['conv0']['b_conv0'][:] w_conv1 = fh5['conv1']['W_conv1'][:] w_conv1 = w_conv1.transpose([2, 3, 1, 0]) # AACHEN shape (n_out, n_in, filter_size), tensorflow shape (filter_size, n_in, n_out) b_conv1 = fh5['conv1']['b_conv1'][:] w_conv2 = fh5['conv2']['W_conv2'][:] w_conv2 = w_conv2.transpose([2, 3, 1, 0]) # AACHEN shape (n_out, n_in, filter_size), tensorflow shape (filter_size, n_in, n_out) b_conv2 = fh5['conv2']['b_conv2'][:] w_conv3 = fh5['conv3']['W_conv3'][:] w_conv3 = w_conv3.transpose([2, 3, 1, 0]) # AACHEN shape (n_out, n_in, filter_size), tensorflow shape (filter_size, n_in, n_out) b_conv3 = fh5['conv3']['b_conv3'][:] w_conv4 = fh5['conv4']['W_conv4'][:] w_conv4 = w_conv4.transpose([2, 3, 1, 0]) # AACHEN shape (n_out, n_in, filter_size), tensorflow shape (filter_size, n_in, n_out) b_conv4 = fh5['conv4']['b_conv4'][:] # 1 AACHEN --> dwd-fwd V_x1_mdlstm0, V_h1_mdlstm0, V_v1_mdlstm0 = fh5['mdlstm0']['W1_mdlstm0'][:], fh5['mdlstm0']['U1_mdlstm0'][:], fh5['mdlstm0']['V1_mdlstm0'][:] W_df_mdlstm0 = np.concatenate((V_x1_mdlstm0, V_h1_mdlstm0, V_v1_mdlstm0), axis=0) b_df_mdlstm0 = fh5['mdlstm0']['b1_mdlstm0'] # 2 AACHEN --> uwd-fwd V_x2_mdlstm0, V_h2_mdlstm0, V_v2_mdlstm0 = fh5['mdlstm0']['W2_mdlstm0'][:], fh5['mdlstm0']['U2_mdlstm0'][:], fh5['mdlstm0']['V2_mdlstm0'][:] W_uf_mdlstm0 = np.concatenate((V_x2_mdlstm0, V_h2_mdlstm0, V_v2_mdlstm0), axis=0) b_uf_mdlstm0 = fh5['mdlstm0']['b2_mdlstm0'] # 2 AACHEN --> dwd-bwd V_x3_mdlstm0, V_h3_mdlstm0, V_v3_mdlstm0 = fh5['mdlstm0']['W3_mdlstm0'][:], fh5['mdlstm0']['U3_mdlstm0'][:], fh5['mdlstm0']['V3_mdlstm0'][:] W_db_mdlstm0 = np.concatenate((V_x3_mdlstm0, V_h3_mdlstm0, V_v3_mdlstm0), axis=0) b_db_mdlstm0 = fh5['mdlstm0']['b3_mdlstm0'] # 2 AACHEN --> uwd-bwd V_x4_mdlstm0, V_h4_mdlstm0, V_v4_mdlstm0 = fh5['mdlstm0']['W4_mdlstm0'][:], fh5['mdlstm0']['U4_mdlstm0'][:], fh5['mdlstm0']['V4_mdlstm0'][:] W_ub_mdlstm0 = np.concatenate((V_x4_mdlstm0, V_h4_mdlstm0, V_v4_mdlstm0), axis=0) b_ub_mdlstm0 = fh5['mdlstm0']['b4_mdlstm0'] # 1 AACHEN --> dwd-fwd V_x1_mdlstm1, V_h1_mdlstm1, V_v1_mdlstm1 = fh5['mdlstm1']['W1_mdlstm1'][:], fh5['mdlstm1']['U1_mdlstm1'][:], fh5['mdlstm1']['V1_mdlstm1'][:] W_df_mdlstm1 = np.concatenate((V_x1_mdlstm1, V_h1_mdlstm1, V_v1_mdlstm1), axis=0) b_df_mdlstm1 = fh5['mdlstm1']['b1_mdlstm1'] # 2 AACHEN --> uwd-fwd V_x2_mdlstm1, V_h2_mdlstm1, V_v2_mdlstm1 = fh5['mdlstm1']['W2_mdlstm1'][:], fh5['mdlstm1']['U2_mdlstm1'][:], fh5['mdlstm1']['V2_mdlstm1'][:] W_uf_mdlstm1 = np.concatenate((V_x2_mdlstm1, V_h2_mdlstm1, V_v2_mdlstm1), axis=0) b_uf_mdlstm1 = fh5['mdlstm1']['b2_mdlstm1'] # 2 AACHEN --> dwd-bwd V_x3_mdlstm1, V_h3_mdlstm1, V_v3_mdlstm1 = fh5['mdlstm1']['W3_mdlstm1'][:], fh5['mdlstm1']['U3_mdlstm1'][:], fh5['mdlstm1']['V3_mdlstm1'][:] W_db_mdlstm1 = np.concatenate((V_x3_mdlstm1, V_h3_mdlstm1, V_v3_mdlstm1), axis=0) b_db_mdlstm1 = fh5['mdlstm1']['b3_mdlstm1'] # 2 AACHEN --> uwd-bwd V_x4_mdlstm1, V_h4_mdlstm1, V_v4_mdlstm1 = fh5['mdlstm1']['W4_mdlstm1'][:], fh5['mdlstm1']['U4_mdlstm1'][:], fh5['mdlstm1']['V4_mdlstm1'][:] W_ub_mdlstm1 = np.concatenate((V_x4_mdlstm1, V_h4_mdlstm1, V_v4_mdlstm1), axis=0) b_ub_mdlstm1 = fh5['mdlstm1']['b4_mdlstm1'] # 1 AACHEN --> dwd-fwd V_x1_mdlstm2, V_h1_mdlstm2, V_v1_mdlstm2 = fh5['mdlstm2']['W1_mdlstm2'][:], fh5['mdlstm2']['U1_mdlstm2'][:], fh5['mdlstm2']['V1_mdlstm2'][:] W_df_mdlstm2 = np.concatenate((V_x1_mdlstm2, V_h1_mdlstm2, V_v1_mdlstm2), axis=0) b_df_mdlstm2 = fh5['mdlstm2']['b1_mdlstm2'] # 2 AACHEN --> uwd-fwd V_x2_mdlstm2, V_h2_mdlstm2, V_v2_mdlstm2 = fh5['mdlstm2']['W2_mdlstm2'][:], fh5['mdlstm2']['U2_mdlstm2'][:], fh5['mdlstm2']['V2_mdlstm2'][:] W_uf_mdlstm2 = np.concatenate((V_x2_mdlstm2, V_h2_mdlstm2, V_v2_mdlstm2), axis=0) b_uf_mdlstm2 = fh5['mdlstm2']['b2_mdlstm2'] # 2 AACHEN --> dwd-bwd V_x3_mdlstm2, V_h3_mdlstm2, V_v3_mdlstm2 = fh5['mdlstm2']['W3_mdlstm2'][:], fh5['mdlstm2']['U3_mdlstm2'][:], fh5['mdlstm2']['V3_mdlstm2'][:] W_db_mdlstm2 = np.concatenate((V_x3_mdlstm2, V_h3_mdlstm2, V_v3_mdlstm2), axis=0) b_db_mdlstm2 = fh5['mdlstm2']['b3_mdlstm2'] # 2 AACHEN --> uwd-bwd V_x4_mdlstm2, V_h4_mdlstm2, V_v4_mdlstm2 = fh5['mdlstm2']['W4_mdlstm2'][:], fh5['mdlstm2']['U4_mdlstm2'][:], fh5['mdlstm2']['V4_mdlstm2'][:] W_ub_mdlstm2 = np.concatenate((V_x4_mdlstm2, V_h4_mdlstm2, V_v4_mdlstm2), axis=0) b_ub_mdlstm2 = fh5['mdlstm2']['b4_mdlstm2'] # 1 AACHEN --> dwd-fwd V_x1_mdlstm3, V_h1_mdlstm3, V_v1_mdlstm3 = fh5['mdlstm3']['W1_mdlstm3'][:], fh5['mdlstm3']['U1_mdlstm3'][:], fh5['mdlstm3']['V1_mdlstm3'][:] W_df_mdlstm3 = np.concatenate((V_x1_mdlstm3, V_h1_mdlstm3, V_v1_mdlstm3), axis=0) b_df_mdlstm3 = fh5['mdlstm3']['b1_mdlstm3'] # 2 AACHEN --> uwd-fwd V_x2_mdlstm3, V_h2_mdlstm3, V_v2_mdlstm3 = fh5['mdlstm3']['W2_mdlstm3'][:], fh5['mdlstm3']['U2_mdlstm3'][:], fh5['mdlstm3']['V2_mdlstm3'][:] W_uf_mdlstm3 = np.concatenate((V_x2_mdlstm3, V_h2_mdlstm3, V_v2_mdlstm3), axis=0) b_uf_mdlstm3 = fh5['mdlstm3']['b2_mdlstm3'] # 2 AACHEN --> dwd-bwd V_x3_mdlstm3, V_h3_mdlstm3, V_v3_mdlstm3 = fh5['mdlstm3']['W3_mdlstm3'][:], fh5['mdlstm3']['U3_mdlstm3'][:], fh5['mdlstm3']['V3_mdlstm3'][:] W_db_mdlstm3 = np.concatenate((V_x3_mdlstm3, V_h3_mdlstm3, V_v3_mdlstm3), axis=0) b_db_mdlstm3 = fh5['mdlstm3']['b3_mdlstm3'] # 2 AACHEN --> uwd-bwd V_x4_mdlstm3, V_h4_mdlstm3, V_v4_mdlstm3 = fh5['mdlstm3']['W4_mdlstm3'][:], fh5['mdlstm3']['U4_mdlstm3'][:], fh5['mdlstm3']['V4_mdlstm3'][:] W_ub_mdlstm3 = np.concatenate((V_x4_mdlstm3, V_h4_mdlstm3, V_v4_mdlstm3), axis=0) b_ub_mdlstm3 = fh5['mdlstm3']['b4_mdlstm3'] # 1 AACHEN --> dwd-fwd V_x1_mdlstm4, V_h1_mdlstm4, V_v1_mdlstm4 = fh5['mdlstm4']['W1_mdlstm4'][:], fh5['mdlstm4']['U1_mdlstm4'][:], fh5['mdlstm4']['V1_mdlstm4'][:] W_df_mdlstm4 = np.concatenate((V_x1_mdlstm4, V_h1_mdlstm4, V_v1_mdlstm4), axis=0) b_df_mdlstm4 = fh5['mdlstm4']['b1_mdlstm4'] # 2 AACHEN --> uwd-fwd V_x2_mdlstm4, V_h2_mdlstm4, V_v2_mdlstm4 = fh5['mdlstm4']['W2_mdlstm4'][:], fh5['mdlstm4']['U2_mdlstm4'][:], fh5['mdlstm4']['V2_mdlstm4'][:] W_uf_mdlstm4 = np.concatenate((V_x2_mdlstm4, V_h2_mdlstm4, V_v2_mdlstm4), axis=0) b_uf_mdlstm4 = fh5['mdlstm4']['b2_mdlstm4'] # 2 AACHEN --> dwd-bwd V_x3_mdlstm4, V_h3_mdlstm4, V_v3_mdlstm4 = fh5['mdlstm4']['W3_mdlstm4'][:], fh5['mdlstm4']['U3_mdlstm4'][:], fh5['mdlstm4']['V3_mdlstm4'][:] W_db_mdlstm4 = np.concatenate((V_x3_mdlstm4, V_h3_mdlstm4, V_v3_mdlstm4), axis=0) b_db_mdlstm4 = fh5['mdlstm4']['b3_mdlstm4'] # 2 AACHEN --> uwd-bwd V_x4_mdlstm4, V_h4_mdlstm4, V_v4_mdlstm4 = fh5['mdlstm4']['W4_mdlstm4'][:], fh5['mdlstm4']['U4_mdlstm4'][:], fh5['mdlstm4']['V4_mdlstm4'][:] W_ub_mdlstm4 = np.concatenate((V_x4_mdlstm4, V_h4_mdlstm4, V_v4_mdlstm4), axis=0) b_ub_mdlstm4 = fh5['mdlstm4']['b4_mdlstm4'] W_dense = fh5['output']['W_in_mdlstm4_output'] b_dense = fh5['output']['b_output'] return [w_conv0, b_conv0, w_conv1, b_conv1, w_conv2, b_conv2, w_conv3, b_conv3, w_conv4, b_conv4, W_df_mdlstm0, b_df_mdlstm0, W_uf_mdlstm0, b_uf_mdlstm0, W_db_mdlstm0, b_db_mdlstm0, W_ub_mdlstm0, b_ub_mdlstm0, W_df_mdlstm1, b_df_mdlstm1, W_uf_mdlstm1, b_uf_mdlstm1, W_db_mdlstm1, b_db_mdlstm1, W_ub_mdlstm1, b_ub_mdlstm1, W_df_mdlstm2, b_df_mdlstm2, W_uf_mdlstm2, b_uf_mdlstm2, W_db_mdlstm2, b_db_mdlstm2, W_ub_mdlstm2, b_ub_mdlstm2, W_df_mdlstm3, b_df_mdlstm3, W_uf_mdlstm3, b_uf_mdlstm3, W_db_mdlstm3, b_db_mdlstm3, W_ub_mdlstm3, b_ub_mdlstm3, W_df_mdlstm4, b_df_mdlstm4, W_uf_mdlstm4, b_uf_mdlstm4, W_db_mdlstm4, b_db_mdlstm4, W_ub_mdlstm4, b_ub_mdlstm4, W_dense, b_dense]
3c99757a1ff7f7351729d447b54d495241df46b7
3,659,225
import pprint def prep_doc_id_context( doc_id: str, usr_first_name: str, usr_is_authenticated: bool ) -> dict: """ Preps context for record_edit.html template when a doc_id (meaning a `Citation` id) is included. Called by views.edit_record() """ log.debug( 'starting prep_doc_id_context()' ) log.debug( f'doc_id, ``{doc_id}``' ) context = { 'user_first_name': usr_first_name, 'user_is_authenticated': usr_is_authenticated } session = make_session() common_data: dict = prepare_common_data( session ) context.update( common_data ) # merges common_data key-vals into context doc = session.query( models_alch.Citation ).get( doc_id ) log.debug( f'doc, ``{pprint.pformat(doc.__dict__)}``' ) context['rec_id'] = None try: context['doc_display'] = doc.display except: log.exception( 'doc.display not available; traceback follows; processing will continue' ) context['doc_display'] = 'display not available' context['doc_id'] = doc.id log.debug( f'context (first 1000 characters), ``{pprint.pformat(context)[0:1000]}``' ) return context
f5d61134aeb8e45d7f21205b00087a11788ac028
3,659,226
import json def request_pull(repo, requestid, username=None, namespace=None): """View a pull request with the changes from the fork into the project.""" repo = flask.g.repo _log.info("Viewing pull Request #%s repo: %s", requestid, repo.fullname) if not repo.settings.get("pull_requests", True): flask.abort(404, description="No pull-requests found for this project") request = pagure.lib.query.search_pull_requests( flask.g.session, project_id=repo.id, requestid=requestid ) if not request: flask.abort(404, description="Pull-request not found") if request.remote: repopath = pagure.utils.get_remote_repo_path( request.remote_git, request.branch_from ) parentpath = pagure.utils.get_repo_path(request.project) else: repo_from = request.project_from parentpath = pagure.utils.get_repo_path(request.project) repopath = parentpath if repo_from: repopath = pagure.utils.get_repo_path(repo_from) repo_obj = pygit2.Repository(repopath) orig_repo = pygit2.Repository(parentpath) diff_commits = [] diff = None # Closed pull-request if request.status != "Open": commitid = request.commit_stop try: for commit in repo_obj.walk(commitid, pygit2.GIT_SORT_NONE): diff_commits.append(commit) if commit.oid.hex == request.commit_start: break except KeyError: # This happens when repo.walk() cannot find commitid pass if diff_commits: # Ensure the first commit in the PR as a parent, otherwise # point to it start = diff_commits[-1].oid.hex if diff_commits[-1].parents: start = diff_commits[-1].parents[0].oid.hex # If the start and the end commits are the same, it means we are, # dealing with one commit that has no parent, so just diff that # one commit if start == diff_commits[0].oid.hex: diff = diff_commits[0].tree.diff_to_tree(swap=True) else: diff = repo_obj.diff( repo_obj.revparse_single(start), repo_obj.revparse_single(diff_commits[0].oid.hex), ) else: try: diff_commits, diff = pagure.lib.git.diff_pull_request( flask.g.session, request, repo_obj, orig_repo ) except pagure.exceptions.PagureException as err: flask.flash("%s" % err, "error") except SQLAlchemyError as err: # pragma: no cover flask.g.session.rollback() _log.exception(err) flask.flash( "Could not update this pull-request in the database", "error" ) if diff: diff.find_similar() form = pagure.forms.MergePRForm() trigger_ci_pr_form = pagure.forms.TriggerCIPRForm() # we need to leave out all members of trigger_ci_conf that have # "meta" set to False or meta["requires_project_hook_attr"] condition # defined and it's not met trigger_ci_conf = pagure_config["TRIGGER_CI"] if not isinstance(trigger_ci_conf, dict): trigger_ci_conf = {} trigger_ci = {} # make sure all the backrefs are set properly on repo pagure.lib.plugins.get_enabled_plugins(repo) for comment, meta in trigger_ci_conf.items(): if not meta: continue cond = meta.get("requires_project_hook_attr", ()) if cond and not pagure.utils.project_has_hook_attr_value(repo, *cond): continue trigger_ci[comment] = meta committer = False if request.project_from: committer = pagure.utils.is_repo_committer(request.project_from) else: committer = pagure.utils.is_repo_committer(request.project) can_rebase_branch = not request.remote_git and committer can_delete_branch = ( pagure_config.get("ALLOW_DELETE_BRANCH", True) and can_rebase_branch ) return flask.render_template( "repo_pull_request.html", select="requests", requestid=requestid, repo=repo, username=username, repo_obj=repo_obj, pull_request=request, diff_commits=diff_commits, diff=diff, mergeform=form, subscribers=pagure.lib.query.get_watch_list(flask.g.session, request), tag_list=pagure.lib.query.get_tags_of_project(flask.g.session, repo), can_rebase_branch=can_rebase_branch, can_delete_branch=can_delete_branch, trigger_ci=trigger_ci, trigger_ci_pr_form=trigger_ci_pr_form, flag_statuses_labels=json.dumps(pagure_config["FLAG_STATUSES_LABELS"]), )
7b83c83a236ed840ed5b2eefbf87859d5e120aac
3,659,227
from typing import List def make_matrix(points: List[float], degree: int) -> List[List[float]]: """Return a nested list representation of a matrix consisting of the basis elements of the polynomial of degree n, evaluated at each of the points. In other words, each row consists of 1, x, x^2, ..., x^n, where n is the degree, and x is a value in points. Preconditions: - degree < len(points) >>> make_matrix([1, 2, 3], 2) [[1, 1, 1], [1, 2, 4], [1, 3, 9]] """ matrix = [] for point in points: row = [point ** index for index in range(degree + 1)] matrix.append(row) return matrix
d8fbea3a0f9536cb681b001a852b07ac7b17f6c2
3,659,228
def verify(request, token, template_name='uaccounts/verified.html'): """Try to verify email address using given token.""" try: verification = verify_token(token, VERIFICATION_EXPIRES) except VerificationError: return redirect('uaccounts:index') if verification.email.profile != request.user.profile: return redirect('uaccounts:index') verification.email.verified = True verification.email.save() verification.delete() return render(request, template_name)
56971aca43d04d7909ea6015fd48b6f30fa5b0ab
3,659,229
from typing import Tuple import threading from pydantic_factories import ModelFactory def run_train(params: dict) -> Tuple[threading.Thread, threading.Thread]: """Train a network on a data generator. params -> dictionary. Required fields: * model_name * generator_name * dataset_dir * tile_size * clf_name * checkpoints_dir * summaries_dir Returns prefetch thread & model.fit thread""" assert 'model_name' in params assert 'generator_name' in params Model = ModelFactory.get_model(params['model_name']) Generator = GeneratorFactory.get_generator(params['generator_name']) model = Model(**params) feed = Generator(**params) pf = PreFetch(feed) t1 = threading.Thread(target=pf.fetch) t2 = threading.Thread(target=model.fit, args=(pf,)) t1.start() t2.start() return t1,t2
c3a96996c3d34c18bfeab89b14836d13829d183e
3,659,230
import six import requests def request(url, method='GET', headers=None, original_ip=None, debug=False, logger=None, **kwargs): """Perform a http request with standard settings. A wrapper around requests.request that adds standard headers like User-Agent and provides optional debug logging of the request. Arguments that are not handled are passed through to the requests library. :param string url: The url to make the request of. :param string method: The http method to use. (eg. 'GET', 'POST') :param dict headers: Headers to be included in the request. (optional) :param string original_ip: Mark this request as forwarded for this ip. (optional) :param bool debug: Enable debug logging. (Defaults to False) :param logging.Logger logger: A logger to output to. (optional) :raises exceptions.ClientException: For connection failure, or to indicate an error response code. :returns: The response to the request. """ if not headers: headers = dict() if not logger: logger = _logger headers.setdefault('User-Agent', USER_AGENT) if original_ip: headers['Forwarded'] = "for=%s;by=%s" % (original_ip, USER_AGENT) if debug: string_parts = ['curl -i'] if method: string_parts.append(' -X %s' % method) string_parts.append(' %s' % url) if headers: for header in six.iteritems(headers): string_parts.append(' -H "%s: %s"' % header) logger.debug("REQ: %s" % "".join(string_parts)) data = kwargs.get('data') if data: logger.debug("REQ BODY: %s\n" % data) try: resp = requests.request( method, url, headers=headers, **kwargs) except requests.ConnectionError: msg = 'Unable to establish connection to %s' % url raise exceptions.ClientException(msg) if debug: logger.debug("RESP: [%s] %s\nRESP BODY: %s\n", resp.status_code, resp.headers, resp.text) if resp.status_code >= 400: logger.debug("Request returned failure status: %s", resp.status_code) raise exceptions.from_response(resp, method, url) return resp
b0a6bdc0ea4fc3c9abc03fed42ec8428f532ab92
3,659,231
def adjust_seconds_fr(samples_per_channel_in_frame,fs,seconds_fr,num_frame): """ Get the timestamp for the first sample in this frame. Parameters ---------- samples_per_channel_in_frame : int number of sample components per channel. fs : int or float sampling frequency. seconds_fr : int or float seconds for this frame (from frame header) num_frame : int frame number (from frame header). Returns ------- time_first_frame : float timestamp [s] corresponding to the first sample of this frame. """ seconds_per_frame=samples_per_channel_in_frame/float(fs) time_first_sample=float(seconds_fr)+num_frame*seconds_per_frame return(time_first_sample)
a19775db3ebcdbe66b50c30bc531e2980ca10082
3,659,232
import argparse def create_parser(): """ Construct the program options """ parser = argparse.ArgumentParser( prog="xge", description="Extract, transform and load GDC data onto UCSC Xena", ) parser.add_argument( "--version", action="version", version="%(prog)s {v}".format(v=__version__), ) subparsers = parser.add_subparsers( help="Sub-parsers for xena-gdc-ETL", dest="subcomm" ) # equal_matrices subparser equality_parser = subparsers.add_parser( "xena-eql", help="Test the equality of 2 Xena matrices." ) equality_parser.add_argument( "df1", type=str, help='Directory for the first matrix.' ) equality_parser.add_argument( "df2", type=str, help='Directory for the second matrix.' ) # gdc_check_new subparser gdc_check_new_parser = subparsers.add_parser( "gdc-check-new", description="Check GDC's list of updated files and summarize " "impacted project(s), data_type(s) and " "analysis.workflow_type(s).", ) gdc_check_new_parser.add_argument( 'url', type=str, metavar='URL', help='URL for GDC\'s list of updated files. It can be a compressed ' 'file with a supported extension, which includes ".gz", ".bz2", ' '".zip", or "xz". New files should be listed under a column named' ' by "New File UUID".', ) # merge-xena subparser merge_xena_subparser = subparsers.add_parser( "merge-xena", description='Pipeline for merging Xena matrices of the same data' 'type.', ) merge_xena_subparser.add_argument( '-f', '--files', type=str, nargs='+', required=True, help='A list of paths for Xena matrices files to be merged. All paths ' 'in this list support UNIX style pathname pattern expansion with ' '"glob". Files will be read by pandas.read_csv with sep="\t".', ) merge_xena_subparser.add_argument( '-t', '--datatype', type=str, required=True, help='One data type code indication the data type in matrices to be ' 'merged. Supported data type codes include: {}'.format( str(valid_dtype) ), ) merge_xena_subparser.add_argument( '-o', '--outdir', type=str, default='.', help='A directory to put the merged matrix. Defaults to the current ' 'working directory of python.', ) merge_xena_subparser.add_argument( '-n', '--name', type=str, default=None, help='Filename for the merged matrix. Defaults to None. If None, the ' 'filename will be derived from the cohort name and the data type. ' 'Check "-t" and "-c" options for details.', ) merge_xena_subparser.add_argument( '-c', '--cohort', type=str, default=None, help='A cohort name for the merged matrix. Defaults to None. If ' 'None, it will be set to a format of "MergedCohort<date>" by default. ' 'For example, "MergedCohort{}".'.format( date.today().strftime('%m%d%Y') ), ) # Subcommand for full ETL (download, transform, and metadata) etlparser = subparsers.add_parser( 'etl', help='Download and transform GDC data into Xena matrix, ' 'and generate corresponding metadata.', epilog='Supported data types are: {}'.format(str(valid_dtype)), ) etlparser.add_argument( '-r', '--root', type=str, default='.', help='Root directory for imported data.', ) etlparser.add_argument( '-D', '--delete', action='store_true', help='Deletes raw data upon generation of Xena_matrix.', ) projects_group = etlparser.add_mutually_exclusive_group() projects_group.add_argument( '-p', '--projects', type=str, nargs='+', help='GDC project ID(s) to be imported; or "all" if all projects on' 'GDC are going to be imported. Defaults to "all".', default=['all'], ) projects_group.add_argument( '-P', '--not-projects', type=str, nargs='+', help='Import all projects on GDC except projects specified by this' 'option. This option and the "-p" option are mutually exclusive.', default=[], ) datatype_group = etlparser.add_mutually_exclusive_group() datatype_group.add_argument( '-t', '--datatype', type=str, nargs='+', help='Data type code(s) to be imported; or "all" if all supported' 'types are going to be imported. Defaults to "all".', default=['all'], ) datatype_group.add_argument( '-T', '--not-datatype', type=str, nargs='+', help='Import all supported types except projects specified by this' 'option. This option and the "-t" option are mutually exclusive.', default=[], ) # Subcommand for making metadata metaparser = subparsers.add_parser( 'metadata', help='Generate metadata for a Xena matrix', epilog='Supported data types are: {}'.format(str(valid_dtype)), ) metaparser.add_argument( '-p', '--project', type=str, required=True, help='The project of the matrix.', ) metaparser.add_argument( '-t', '--datatype', type=str, required=True, help='One data type code for the matrix.', ) metaparser.add_argument( '-m', '--matrix', type=str, required=True, help='Path to a Xena matrix' ) metaparser.add_argument( '-r', '--release', type=float, required=True, help='GDC data release number.', ) return parser
a26669161e8e768edf850cffa3f405f6b3ce8033
3,659,233
def add_header(unicode_csv_data, new_header): """ Given row, return header with iterator """ final_iterator = [",".join(new_header)] for row in unicode_csv_data: final_iterator.append(row) return iter(final_iterator)
1fa50492d786aa28fba6062ac472f1c6470a6311
3,659,234
def get_most_energetic(particles): """Get most energetic particle. If no particle with a non-NaN energy is found, returns a copy of `NULL_I3PARTICLE`. Parameters ---------- particles : ndarray of dtyppe I3PARTICLE_T Returns ------- most_energetic : shape () ndarray of dtype I3PARTICLE_T """ return get_best_filter( particles=particles, filter_function=true_filter, cmp_function=more_energetic, )
b43e275183b0c2992cfd28239a7e038965b40ccf
3,659,235
import sys import re def parse_file(path): """Parses a file for ObjectFiles. Args: path: String path to the file. Returns: List of ObjectFile objects parsed from the given file. """ if sys.platform.startswith('linux') or sys.platform.startswith('cygwin'): # Assume Linux has GNU objdump. This has the options: # -t (list symbols), -C (de-mangle symbol names) objdump_args = ['objdump', '-t', '-C'] elif sys.platform.startswith('darwin'): # Assume OSX has LLVM objdump. This has the options: # -t (list symbols) objdump_args = ['objdump', '-t'] objdump_args.append(path) with StreamingProcess(objdump_args) as proc: # Find the first non-blank line. first_line = proc.peek() while not first_line: try: proc.next() first_line = proc.peek() except StopIteration: return [] # Is this an archive? match = re.match(r'^.*[Aa]rchive\s+(.+):$', first_line) if match: # In this format we have to skip this descriptive line. proc.next() return parse_archive(match.group(1), proc) # Some objdumps format archives differently. match = re.match(r'^(.+)\((.+)\):\s+file format', first_line) if match: return parse_archive(match.group(1), proc) # Otherwise maybe it's an object file? match = re.match(r'^(.+):\s+file format', first_line) if match: return [parse_object_file(match.group(1), proc)] # Otherwise it's not an archive or object file. return []
f0e32e9ab8bb624038ac2d277eb0b03838a44151
3,659,236
def stack(tup, axis=0, out=None): """Stacks arrays along a new axis. Args: tup (sequence of arrays): Arrays to be stacked. axis (int): Axis along which the arrays are stacked. out (cupy.ndarray): Output array. Returns: cupy.ndarray: Stacked array. .. seealso:: :func:`numpy.stack` """ return concatenate([cupy.expand_dims(x, axis) for x in tup], axis, out)
5f97bed62c77f28415ae82402cbb379372b4708c
3,659,237
def winning_pipeline(mydata,mytestdata,myfinalmodel,feature_selection_done = True,myfeatures =None,numerical_attributes = None): """ If feature _selection has not been performed: Function performs Cross Validation (with scaling within folds) on the data passed through. Scales the data with RobustScaler() and Imputes the data with IterativeImputer(). Additionally adds clusters for the cities latitude and longitude Else: Performs Cross-Validation given the estimator on a subset of the features of mydata which were passed through to myfeatures Arguments @myestimator: sklearn estimator @mydata: training data with missing values and is not scaled) @myfolds: number of folds for cross validation @feature_selection_done: Boolean flag indicating if feature_selection has been done to the data in `mydata` @myfeatures: list of informative features from features @checknoise: Whether scoring for Cross-Validation should be Explained Variance """ # part 1 create location feature for training data using optics clustering optics_df = mydata[['Latitude','Longitude']].copy() clust = OPTICS(min_samples=50, xi=.05, min_cluster_size=.05) clust.fit(optics_df) # optics_df['clust_label'] = clust.labels_ # location_max = np.max(optics_df.clust_label.unique()) #optics labels noisy samples as -1 need to replace for successful onehotencoding optics_df['clust_label'].replace([-1],location_max+1,inplace=True) #one hot encoding and combining to mydata enc = OneHotEncoder(categories='auto') optics_df_1hot = enc.fit_transform(optics_df[['clust_label']]) location_labels = ['cluster' + str(l) for l in optics_df.clust_label.unique()] optics_df_1hot = pd.DataFrame(optics_df_1hot.todense(),index = optics_df.index,columns= location_labels ) #part1done cluster columns added mydata = pd.concat([mydata,optics_df_1hot],axis=1) #part 2 drop unneccessary columns in our case mydata_labels = mydata['med_rental_rate'].copy() mydata = mydata.drop('med_rental_rate',axis =1) if feature_selection_done: mydata = mydata.loc[:,myfeatures].copy() else: mydata = mydata.drop(['city','Latitude','Longitude','change_hunits','studio_1000_1499', 'studio_1500_more', 'studio_750_999', 'onebed_1000_1499', 'onebed_1500_more', 'onebed_750_999', 'twobed_1000_1499', 'twobed_1500_more', 'twobed_750_999', 'threebed_1000_1499', 'threebed_1500_more', 'threebed_750_999'],axis=1) imputer = IterativeImputer(max_iter = 10 ,random_state =22,min_value=0) imputed_dat = imputer.fit_transform(mydata) #scale only numerical attrbs which are everything but the columns which were appended earlier imputed_dat = pd.DataFrame(imputed_dat,columns=mydata.columns) ct = ColumnTransformer( [('scale1',RobustScaler(),numerical_attributes)], remainder = 'passthrough') X_train_prepped = ct.fit_transform(imputed_dat) #to pickle processed_training_data = X_train_prepped.copy() #nowfor the test data # part 1 create location feature for test data using optics clustering optics_df = mytestdata[['Latitude','Longitude']].copy() clust = OPTICS(min_samples=50, xi=.05, min_cluster_size=.05) clust.fit(optics_df) # optics_df['clust_label'] = clust.labels_ # location_max = np.max(optics_df.clust_label.unique()) #optics labels noisy samples as -1 need to replace for successful onehotencoding optics_df['clust_label'].replace([-1],location_max+1,inplace=True) #one hot encoding and combining to mydata enc = OneHotEncoder(categories='auto') optics_df_1hot = enc.fit_transform(optics_df[['clust_label']]) location_labels = ['cluster' + str(l) for l in optics_df.clust_label.unique()] optics_df_1hot = pd.DataFrame(optics_df_1hot.todense(),index = optics_df.index,columns= location_labels ) #part1done cluster columns added mytestdata = pd.concat([mytestdata,optics_df_1hot],axis=1) #part 2 drop unneccessary columns in our case mytest_data_labels = mytestdata['med_rental_rate'].copy() mytestdata = mytestdata.drop('med_rental_rate',axis =1) if feature_selection_done: mytestdata = mytestdata.loc[:,myfeatures].copy() else: mydata = mydata.drop(['city','Latitude','Longitude','change_hunits','studio_1000_1499', 'studio_1500_more', 'studio_750_999', 'onebed_1000_1499', 'onebed_1500_more', 'onebed_750_999', 'twobed_1000_1499', 'twobed_1500_more', 'twobed_750_999', 'threebed_1000_1499', 'threebed_1500_more', 'threebed_750_999'],axis=1) #prepare testdata them imputed_testdata = imputer.transform(mytestdata) imputed_testdata = pd.DataFrame(imputed_testdata,columns=mytestdata.columns) mytestdata_prepared = ct.transform(imputed_testdata) #to pickle processed_test_data = mytestdata_prepared.copy() #make final predictions myfinalmodel.fit(X_train_prepped,mydata_labels) final_predictions = myfinalmodel.predict(mytestdata_prepared) final_mse = mean_squared_error(mytest_data_labels,final_predictions) final_rmse = np.sqrt(final_mse) final_expvar = explained_variance_score(mytest_data_labels,final_predictions) return {'final_rmse':final_rmse,'final_predictions':final_predictions,'final_expvar':final_expvar,'myfinalmodel':myfinalmodel, 'processed_training_data':processed_training_data,'processed_test_data':processed_test_data}
636d922e405842ea338f774dd45b5ff78158bfdf
3,659,238
def calc_single_d(chi_widths, chis, zs, z_widths, z_SN, use_chi=True): """Uses single_m_convergence with index starting at 0 and going along the entire line of sight. Inputs: chi_widths -- the width of the comoving distance bins. chis -- the mean comoving distances of each bin. zs -- the mean redshift of each bin, for the scale factor. z_SN -- the reshift of the SN. use_chi -- boolean that determined whether equal comoving distance or redshift bins are used. """ comoving_to_SN = b_comoving(0, z_SN) chi_SN = comoving_to_SN[-1] convergence = np.linspace(0, 0, len(chis)) mass = MSOL * 10 ** 15 for i in range(0, len(chis)): if use_chi: convergence[i] = single_d_convergence(chi_widths, chis, zs, i, 1, chi_SN) else: convergence[i] = single_d_convergence_z(z_widths, chis, zs, i, 1, chi_SN) return convergence
6cafe9d8d1910f113fdcd8a3417e127f4f1cf5e6
3,659,239
def ppo( client, symbol, timeframe="6m", col="close", fastperiod=12, slowperiod=26, matype=0 ): """This will return a dataframe of Percentage Price Oscillator for the given symbol across the given timeframe Args: client (pyEX.Client): Client symbol (string): Ticker timeframe (string): timeframe to use, for pyEX.chart col (string): column to use to calculate fastperiod (int): fast period to calculate across slowperiod (int): slow period to calculate across matype (int): moving average type (0-sma) Returns: DataFrame: result """ df = client.chartDF(symbol, timeframe) ppo = t.PPO(df[col].values, fastperiod, slowperiod, matype) return pd.DataFrame({col: df[col].values, "ppo": ppo})
0b6c48408b810131370500921a7ab2addbccea8b
3,659,240
import random def getRandomCoin(): """ returns a randomly generated coin """ coinY = random.randrange(20, int(BASEY * 0.6)) coinX = SCREENWIDTH + 100 return [ {'x': coinX, 'y': coinY}, ]
44a5ea7baddc77f8d1b518c3d1adcccd28935108
3,659,241
def is_success(msg): """ Whether message is success :param msg: :return: """ return msg['status'] == 'success'
43ecbf3c7ac8d03ce92ab059e7ec902e51505d0a
3,659,242
from bs4 import BeautifulSoup def scrape_data(url): """ scrapes relevant data from given url @param {string} url @return {dict} { url : link links : list of external links title : title of the page description : sample text } """ http = httplib2.Http() try: status, response = http.request(url) except Exception as e: return None # get links links = [] for link in BeautifulSoup(response, "html.parser", parse_only=SoupStrainer('a')): if link.has_attr('href'): links.append(link['href']) # get description soup = BeautifulSoup(response, "html.parser") description = soup.find('meta', attrs={'name':'og:description'}) or soup.find('meta', attrs={'property':'description'}) or soup.find('meta', attrs={'name':'description'}) if description: description = description.get('content') # return dictionary return { "url" : url, "links" : links, "title" : BeautifulSoup(response, "html.parser"), "description" : description }
4ab640aad73506e74e3a899467a90c2ddec34308
3,659,243
def list_strip_comments(list_item: list, comment_denominator: str = '#') -> list: """ Strips all items which are comments from a list. :param list_item: The list object to be stripped of comments. :param comment_denominator: The character with which comment lines start with. :return list: A cleaned list object. """ _output = list() for _item in list_item: if not _item[0] == comment_denominator: _output.append(_item) return _output
e5dd6e0c34a1d91586e12e5c39a3a5413746f731
3,659,244
def guess_number(name): """User defined function which performs the all the operations and prints the result""" guess_limit = 0 magic_number = randint(1, 20) while guess_limit < 6: # perform the multiple guess operations and print output user_guess = get_input("Take a guess: ") if 0 < user_guess <= 20: # condition that allows the numbers only if in between 1 to 20 guess_limit += 1 if user_guess == magic_number: print(f"Good job, {name}! You guessed my number in {guess_limit} guesses!") break elif user_guess < magic_number: print("Your Guess is too low") elif user_guess > magic_number: print("Your Guess is too high") else: print("Try again, Your number must have be in the range of 1 to 20!!") else: print(f"The number I was thinking of was {magic_number}") return 0
14c81f8adc18f59c29aa37ecec91808b275524e2
3,659,245
def writerformat(extension): """Returns the writer class associated with the given file extension.""" return writer_map[extension]
a2f981a993ba4be25304c0f41b0e6b51bef68d68
3,659,246
def index_like(index): """ Does index look like a default range index? """ return not (isinstance(index, pd.RangeIndex) and index._start == 0 and index._stop == len(index) and index._step == 1 and index.name is None)
91a8e626547121768ee7708e5c7cdcf8265c3991
3,659,247
def zplsc_c_absorbtion(t, p, s, freq): """ Description: Calculate Absorption coeff using Temperature, Pressure and Salinity and transducer frequency. This Code was from the ASL MatLab code LoadAZFP.m Implemented by: 2017-06-23: Rene Gelinas. Initial code. :param t: :param p: :param s: :param freq: Frequency in KHz :return: sea_abs """ # Calculate relaxation frequencies t_k = t + 273.0 f1 = 1320.0*t_k * np.exp(-1700/t_k) f2 = 1.55e7*t_k * np.exp(-3052/t_k) # Coefficients for absorption equations k = 1 + p/10.0 a = 8.95e-8 * (1 + t*(2.29e-2 - 5.08e-4*t)) b = (s/35.0)*4.88e-7*(1+0.0134*t)*(1-0.00103*k + 3.7e-7*(k*k)) c = 4.86e-13*(1+t*((-0.042)+t*(8.53e-4-t*6.23e-6)))*(1+k*(-3.84e-4+k*7.57e-8)) freqk = freq*1000 sea_abs = (a*f1*(freqk**2))/((f1*f1)+(freqk**2))+(b*f2*(freqk**2))/((f2*f2)+(freqk**2))+c*(freqk**2) return sea_abs
af5a7d1ea0ad4fbfacfd1b7142eaf0a31899cb4c
3,659,248
def estimate_quintic_poly(x, y): """Estimate degree 5 polynomial coefficients. """ return estimate_poly(x, y, deg=5)
be389d9f09208da14d0b5c9d48d3c6d2e6a86e8d
3,659,249
def add(A, B): """ Return the sum of Mats A and B. >>> A1 = Mat([[1,2,3],[1,2,3]]) >>> A2 = Mat([[1,1,1],[1,1,1]]) >>> B = Mat([[2,3,4],[2,3,4]]) >>> A1 + A2 == B True >>> A2 + A1 == B True >>> A1 == Mat([[1,2,3],[1,2,3]]) True >>> zero = Mat([[0,0,0],[0,0,0]]) >>> B + zero == B True """ assert A.size == B.size return Mat([[Acol + Bcol for index, (Acol, Bcol) in enumerate(zip(Arow, Brow))] for index, (Arow, Brow) in enumerate(zip(A.store, B.store))])
5b0054397a76a20194b3a34435074fc901a34f6b
3,659,250
def hindu_lunar_event(l_month, tithi, tee, g_year): """Return the list of fixed dates of occurrences of Hindu lunar tithi prior to sundial time, tee, in Hindu lunar month, l_month, in Gregorian year, g_year.""" l_year = hindu_lunar_year( hindu_lunar_from_fixed(gregorian_new_year(g_year))) date1 = hindu_tithi_occur(l_month, tithi, tee, l_year) date2 = hindu_tithi_occur(l_month, tithi, tee, l_year + 1) return list_range([date1, date2], gregorian_year_range(g_year))
aca03e1a77ff6906d31a64ab50355642f848f9d9
3,659,251
async def statuslist(ctx, *, statuses: str): """Manually make a changing status with each entry being in the list.""" bot.x = 0 statuses = statuses.replace("\n", bot.split) status_list = statuses.split(bot.split) if len(status_list) <= 1: return await bot.send_embed(ctx, f"You cannot have a list with only {len(status_list)} entry.", negative=True) bot.statuses = status_list bot.autostatus = True await bot.send_embed(ctx, "Changed statuslist.")
99c43ea464759356977bc35ffcd941655763d783
3,659,252
def kebab(string): """kebab-case""" return "-".join(string.split())
24bc29e066508f6f916013fa056ff54408dcd46d
3,659,253
def getUserID(person): """ Gets Humhub User ID using name information :param person: Name of the person to get the Humhub User ID for :type person: str. """ # search for person string in humhub db # switch case for only one name (propably lastname) or # two separate strings (firstname + lastname) firstname = '' lastname = '' if len(person.split()) == 1: # only lastname lastname = person else: firstname = person.split()[0] lastname = person.split()[1] global offlinemode if offlinemode: return 8 # search in humhub db cnx = establishDBConnection(dbconfig) cursor = cnx.cursor() query = '' if firstname == '': query = ("""SELECT user_id FROM profile WHERE lastname = {} """).format(lastname) else: query = ("""SELECT user_id FROM profile WHERE firstname = {} AND lastname = {} """).format(firstname, lastname) cursor.execute(query) for user_id in cursor: userid = user_id cnx.close() return userid
31d40b6dd0aec8f6e8481aeaa3252d71c6935c39
3,659,254
def parse_atom(s, atom_index=-1, debug=False): """ Parses an atom in a string s :param s: The string to parse :type s: str :param atom_index: the atom_index counter for continous parsing. Default is -1. :type atom_index: int :return: a list of atoms, a list of bonds and an updated atom_index for the next atom :rtype: list """ if len(s) == 0: raise ValueError("parse_atom: argument 's' cannot have length 0.") if debug: print(" Smiles.parse_atom: '{}'".format(s)) Z = 0 if len(s) == 1: try: Z = LABEL2Z[s] except KeyError: raise IllegalAtomError("The atom '{}' is invalid.".format(s)) else: # just return the atom return [Atom(Z, idx=atom_index)], [], atom_index +1 idx_atom_end = -1 # atomic label from 0:idx_atom_end # find indices for hydrogens + counts n_hydrogens = 0 idx_hydrogen = s.find("H") if idx_hydrogen > 0: # ignore atomic hydrogen (or proton) idx_atom_end = idx_hydrogen n_hydrogens = 1 idx_hydrogen_count = idx_hydrogen + 1 try: n_hydrogens = int(s[idx_hydrogen_count]) except IndexError: # ran past the end of string pass except ValueError: # hit something other than a number pass idx_cat = s.find("+") idx_ani = s.find("-") idx_charge = max(idx_cat, idx_ani) charge = 0 if idx_cat > 0: charge = 1 elif idx_ani > 0: charge = -1 if idx_charge > 0: if idx_hydrogen > 0: idx_atom_end = min(idx_charge, idx_hydrogen) else: idx_atom_end = idx_charge try: charge = int(s[idx_charge+1]) except IndexError: # ran past the end of string pass except ValueError: # hit another + or - charge = charge * sum(count_items_exclusive(s, ["+", "-"])) if idx_atom_end == -1: idx_atom_end = len(s) if debug: print(" n_hydrogens :", n_hydrogens) print(" n_charge :", charge) print(" base atom : s[0:{}] = {}".format(idx_atom_end, s[0:idx_atom_end])) try: Z = LABEL2Z[s[0:idx_atom_end]] except KeyError: raise IllegalAtomError("The atom '{}' is invalid.".format(s[0:idx_atom_end])) atoms = [Atom(Z, idx=atom_index, fcharge=charge)] bonds = [] for i in range(n_hydrogens): atoms.append(Atom(1, idx=atom_index+1+i)) bonds.append(Bond(atom_index, atom_index+1+i)) return atoms, bonds, atom_index+1+n_hydrogens
c269449d3a7d872687b75582264c2c94532016ba
3,659,255
def b58decode(v, length): """ decode v into a string of len bytes """ long_value = 0L for (i, c) in enumerate(v[::-1]): long_value += __b58chars.find(c) * (__b58base**i) result = '' while long_value >= 256: div, mod = divmod(long_value, 256) result = chr(mod) + result long_value = div result = chr(long_value) + result nPad = 0 for c in v: if c == __b58chars[0]: nPad += 1 else: break result = chr(0)*nPad + result if length is not None and len(result) != length: return None return result
4757e451106691de3d8805e9f7bdaeb24bd52816
3,659,256
def get_submission_by_id(request, submission_id): """ Returns a list of test results assigned to the submission with the given id """ submission = get_object_or_404(Submission, pk=submission_id) data = submission.tests.all() serializer = TestResultSerializer(data, many=True) return Response(serializer.data, status.HTTP_200_OK)
4504b46a03056cb289bb0b53dc01d58f0c5c986c
3,659,257
import pkg_resources def get_resource_path(resource_name): """Get the resource path. Args: resource_name (str): The resource name relative to the project root directory. Returns: str: The true resource path on the system. """ package = pkg_resources.Requirement.parse(PACKAGE_NAME) return pkg_resources.resource_filename(package, resource_name)
0f95e5f26edc9f351323a93ddc75df920e65375d
3,659,258
def do_cluster(items, mergefun, distfun, distlim): """Pairwise nearest merging clusterer. items -- list of dicts mergefun -- merge two items distfun -- distance function distlim -- stop merging when distance above this limit """ def heapitem(d0, dests): """Find nearest neighbor for d0 as sortable [distance, nearest, d0]""" dists = ( Sort0List([distfun(d0, d1), d1, d0]) for d1 in dests if d1 is not d0 ) return min(dists) heap = [Sort0List([None, None, d]) for d in items] d0 = d1 = merged = None while len(heap) > 1: for item in heap: # rescan nearest where nearest was merged away, or not yet set if item[1] in (None, d0, d1): item[:] = heapitem(item[2], (x[2] for x in heap)) continue # update others where merged now nearest if item[2] is not merged: distance = distfun(item[2], merged) if item[0] > distance: item[0:2] = distance, merged # arrange heap, pop out one end of shortest edge heapify(heap) distance, d1, d0 = item = heappop(heap) # if shortest edge is long enough, unpop and stop if distance is None or distance > distlim: heappush(heap, item) # unspill the milk break # replace other end with merged destination merged = mergefun(d0, d1) for i in range(len(heap)): if heap[i][2] is d1: heap[i] = Sort0List([None, None, merged]) break return [x[2] for x in heap]
afcd32c390c5d9b57eb070d3f923b4abd6f9ac6b
3,659,259
import csv def read_csv(input_file, quotechar='"'): """Reads a tab separated value file.""" with open(input_file, "r") as f: reader = csv.reader(f,quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines
3b789904ae612b9b211a7dac5c49289659c415c5
3,659,260
def rotate_coordinates(local3d, angles): """ Rotate xyz coordinates from given view_angles. local3d: numpy array. Unit LOCAL xyz vectors angles: tuple of length 3. Rotation angles around each GLOBAL axis. """ cx, cy, cz = np.cos(angles) sx, sy, sz = np.sin(angles) mat33_x = np.array([ [1, 0, 0], [0, cx, sx], [0, -sx, cx] ], dtype='float') mat33_y = np.array([ [cy, 0, sy], [0, 1, 0], [-sy, 0, cy] ], dtype='float') mat33_z = np.array([ [cz, sz, 0], [-sz, cz, 0], [0, 0, 1] ], dtype='float') local3d = local3d @ mat33_x @ mat33_y @ mat33_z return local3d
3243cc9d82dd08384995f62709d3fabc7b896dce
3,659,261
import torch def quantize_enumerate(x_real, min, max): """ Randomly quantize in a way that preserves probability mass. We use a piecewise polynomial spline of order 3. """ assert min < max lb = x_real.detach().floor() # This cubic spline interpolates over the nearest four integers, ensuring # piecewise quadratic gradients. s = x_real - lb ss = s * s t = 1 - s tt = t * t probs = torch.stack([ t * tt, 4 + ss * (3 * s - 6), 4 + tt * (3 * t - 6), s * ss, ], dim=-1) * (1/6) logits = safe_log(probs) q = torch.arange(-1., 3.) x = lb.unsqueeze(-1) + q x = torch.max(x, 2 * min - 1 - x) x = torch.min(x, 2 * max + 1 - x) return x, logits
d73083d6078c47456aeb64859d8361ad37f7d962
3,659,262
def counter_format(counter): """Pretty print a counter so that it appears as: "2:200,3:100,4:20" """ if not counter: return "na" return ",".join("{}:{}".format(*z) for z in sorted(counter.items()))
992993a590eabb2966eb9de26625077f2597718c
3,659,263
def drot(x, y, c, s): """ Apply the Givens rotation {(c,s)} to {x} and {y} """ # compute gsl.blas_drot(x.data, y.data, c, s) # and return return x, y
8554586f2069f04db0116dfee7868d5d0527999a
3,659,264
def _update_dict_within_dict(items, config): """ recursively update dict within dict, if any """ for key, value in items: if isinstance(value, dict): config[key] = _update_dict_within_dict( value.items(), config.get(key, {}) ) else: config[key] = value return config
75b840b8091568b80f713b2ca7725b1a1f917d3a
3,659,265
def masterProductFieldUpdate(objectId: str): """ Submit handler for updating & removing field overrides. :param objectId: The mongodb master product id. """ key = request.form.get("field-key") value = request.form.get("field-value") # Clean up and trim tags if being set. if key == MASTER_PRODUCT_FIELD__TAGS: tags = value.strip().split(",") if len(tags): tags = ", ".join([tag.strip() for tag in set(tags) if tag.strip()]) value = tags if thk.products.overrideProductField(objectId, key, value): # If the product is active, mark it for upserting. product = thk.products.getOneProduct(objectId) if product and THK_ACTIVE in product and product[THK_ACTIVE]: thk.products.rebuildActiveProduct(objectId) flash("Field modified successfully.", "success") else: flash("Field could not be modified.", "danger") return redirect(url_for("products.masterProductEdit", objectId=objectId))
3d87cf2de42d5ee0ee9d43116c0bff4181f42da0
3,659,266
def recalc_Th(Pb, age): """Calculates the equivalent amount of ThO_2 that would be required to produce the measured amount of PbO if there was no UO_2 in the monazite. INPUTS: Pb: the concentration of Pb in parts per million age: the age in million years """ return (232. / 208.) * Pb / (np.exp(4.95e-11 * (age * 1e6)) - 1)
79ba3cc8e9db8adba1d31ec6f9fe3588d3531b97
3,659,267
def relative_periodic_trajectory_wrap( reference_point: ParameterVector, trajectory: ArrayOfParameterVectors, period: float = 2 * np.pi, ) -> ArrayOfParameterVectors: """Function that returns a wrapped 'copy' of a parameter trajectory such that the distance between the final point of the trajectory and the reference point is minimal inside the specified period. The rest of the trajectory is being transformed in the same manner. NOTE: It only works as intended if the period is larger than the distance between the consecutive points in the trajectory. Args: reference_point: Reference point for periodic wrapping of the trajectory. trajectory: Trajectory that is wrapped to a copy of itself such that the distance between the final point in the trajectory and the reference point is minimal. period: Periodicity of each parameter in each point of the trajectory. Defaults to 2*np.pi. """ if not np.all(np.linalg.norm(np.diff(trajectory, axis=0), axis=1) < period): raise ValueError( "Distances between consecutive points must be smaller than period." ) wrapped_trajectory = np.copy(trajectory).astype(float) wrapped_trajectory[-1] = relative_periodic_wrap( reference_point, trajectory[-1], period=period ) for ii in range(2, len(wrapped_trajectory) + 1): wrapped_trajectory[-ii] = relative_periodic_wrap( wrapped_trajectory[-ii + 1], trajectory[-ii], period=period ) return wrapped_trajectory
ee41bdb547367186b82324e3e080b758984b7747
3,659,268
import warnings def planToSet(world,robot,target, edgeCheckResolution=1e-2, extraConstraints=[], equalityConstraints=[], equalityTolerance=1e-3, ignoreCollisions=[], movingSubset=None, **planOptions): """ Creates a MotionPlan object that can be called to solve a standard motion planning problem for a robot in a world. The plan starts from the robot's current configuration and ends in a target set. Args: world (WorldModel): the world in which the robot lives, including obstacles robot (RobotModel): the moving robot. The plan starts from robot.getConfig() target (function or CSpace): a function f(q) returning a bool which is True if the configuration q is a goal, OR an instance of a CSpace subclass where sample() generates a sample in the target set and feasible(x) tests whether a sample is in the target set. .. note:: The function should accept vectors of the same dimensionality as the robot, not the moving subset. Similarly, the CSpace should have the same dimensionality as the robot. edgeCheckResolution (float, optional): the resolution at which edges in the path are checked for feasibility extraConstraints (list, optional): possible extra constraint functions, each of which needs to return True if satisfied. .. note:: Don't put cartesian constraints here! Instead place your function in equalityConstraints. equalityConstraints (list, optional): a list of IKObjectives or equality constraints f(x)=0 that must be satisfied during the motion. Equality constraints may return a float or a list of floats. In the latter case, this is interpreted as a vector function, in which all entries of the vector must be 0. equalityTolerance (float, optional): a tolerance to which all the equality constraints must be satisfied. ignoreCollisions (list): a list of ignored collisions. Each element may be a body in the world, or a pair (a,b) where a, b are bodies in the world. movingSubset (optional): if 'auto', 'all', or None (default), all joints will be allowed to move. If this is a list, then only these joint indices will be allowed to move. planOptions (keywords): keyword options that will be sent to the planner. See the documentation for MotionPlan.setOptions for more details. Returns: MotionPlan: a planner instance that can be called to get a kinematically-feasible plan. (see :meth:`MotionPlan.planMore` ) The underlying configuration space (a RobotCSpace, ClosedLoopRobotCSpace, or EmbeddedRobotCSpace) can be retrieved using the "space" attribute of the resulting MotionPlan object. """ q0 = robot.getConfig() subset = [] if movingSubset == 'auto' or movingSubset == 'all' or movingSubset == None: subset = list(range(len(q0))) else: subset = movingSubset space = makeSpace(world=world,robot=robot, edgeCheckResolution=edgeCheckResolution, extraConstraints=extraConstraints, equalityConstraints=equalityConstraints, equalityTolerance=equalityTolerance, ignoreCollisions=ignoreCollisions, movingSubset=subset) if hasattr(space,'lift'): #the planning takes place in a space of lower dimension than #links plan = EmbeddedMotionPlan(space,q0,**planOptions) else: plan = MotionPlan(space,**planOptions) #convert target to a (test,sample) pair if it's a cspace if isinstance(target,CSpace): goal = [(lambda x:target.feasible(x)),(lambda : target.sample())] else: if not callable(target): if not isinstance(target,(tuple,list)) or len(target)!=2 or not callable(target[0]) or not callable(target[1]): raise TypeError("target must be a predicate function or CSpace object") goal = target try: plan.setEndpoints(q0,goal) except RuntimeError: #the start configuration is infeasible, print it out if space.cspace==None: space.setup() sfailures = space.cspace.feasibilityFailures(plan.space.project(q0)) warnings.warn("Start configuration fails {}".format(sfailures)) raise return plan
d03ec2c6c1e00388d1271af1e17a94eda0f50122
3,659,269
def itkimage_to_json(itkimage, manager=None): """Serialize a Python itk.Image object. Attributes of this dictionary are to be passed to the JavaScript itkimage constructor. """ if itkimage is None: return None else: direction = itkimage.GetDirection() directionMatrix = direction.GetVnlMatrix() directionList = [] dimension = itkimage.GetImageDimension() pixelArr = itk.array_view_from_image(itkimage) compressor = zstd.ZstdCompressor(level=3) compressed = compressor.compress(pixelArr.data) pixelArrCompressed = memoryview(compressed) for col in range(dimension): for row in range(dimension): directionList.append(directionMatrix.get(row, col)) componentType, pixelType = _image_to_type(itkimage) imageType = dict( dimension=dimension, componentType=componentType, pixelType=pixelType, components=itkimage.GetNumberOfComponentsPerPixel() ) return dict( imageType=imageType, origin=tuple(itkimage.GetOrigin()), spacing=tuple(itkimage.GetSpacing()), size=tuple(itkimage.GetBufferedRegion().GetSize()), direction={'data': directionList, 'rows': dimension, 'columns': dimension}, compressedData=pixelArrCompressed )
e55f2da9792e4772de4b145375d1eec1e6ee6e06
3,659,270
import threading import os import time def test_two_agents(tmp_path, empty_ensemble): """ :tmp_path: https://docs.pytest.org/en/stable/tmpdir.html """ @fdb.transactional def get_started(tr): return joshua_model._get_snap_counter(tr, ensemble_id, "started") assert len(joshua_model.list_active_ensembles()) == 0 ensemble_id = joshua_model.create_ensemble( "joshua", {"max_runs": 1, "timeout": 1}, open(empty_ensemble, "rb") ) agents = [] for rank in range(2): agent = threading.Thread( target=joshua_agent.agent, args=(), kwargs={ "work_dir": os.path.join(tmp_path, str(rank)), "agent_idle_timeout": 1, }, ) agent.setDaemon(True) agent.start() agents.append(agent) # before starting agent two, wait until agent one has started on this ensemble while get_started(joshua_model.db) != 1: time.sleep(0.001) joshua.tail_ensemble(ensemble_id, username="joshua") @fdb.transactional def get_started(tr): return joshua_model._get_snap_counter(tr, ensemble_id, "started") # The second agent won't have started this ensemble (unless somehow > 10 # seconds passed without the first agent completing the ensemble) assert get_started(joshua_model.db) == 1 for agent in agents: agent.join()
19e71ad5ddf0ebb351733cabfab493d6d694ce51
3,659,271
def project(pnt, norm): """Projects a point following a norm.""" t = -np.sum(pnt*norm)/np.sum(norm*norm) ret = pnt+norm*t return ret/np.linalg.norm(ret)
865b658862ebc47eccc117f0daebc8afcc99a2ac
3,659,272
def fix_trajectory(traj): """Remove duplicate waypoints that are introduced during smoothing. """ cspec = openravepy.ConfigurationSpecification() cspec.AddDeltaTimeGroup() iwaypoint = 1 num_removed = 0 while iwaypoint < traj.GetNumWaypoints(): waypoint = traj.GetWaypoint(iwaypoint, cspec) delta_time = cspec.ExtractDeltaTime(waypoint) if delta_time == 0.0: traj.Remove(iwaypoint, iwaypoint + 1) num_removed += 1 else: iwaypoint += 1 return num_removed
30e3925c518dd4aff0f38ef7a02aaa9f7ab3680a
3,659,273
def calculate_edt(im, outpath=''): """Calculate distance from mask.""" mask = im.ds[:].astype('bool') abs_es = np.absolute(im.elsize) dt = distance_transform_edt(~mask, sampling=abs_es) # mask = im.ds[:].astype('uint32') # dt = edt.edt(mask, anisotropy=im.elsize, black_border=True, order='F', parallel=1) # TODO?: leverage parallel mo = write_output(outpath, dt, im.get_props()) return mo, mask
469dde8ff81a782125aa29706a82a1da15db965b
3,659,274
def select_report_data(conn): """ select report data to DB """ cur = conn.cursor() cur.execute("SELECT * FROM report_analyze") report = cur.fetchall() cur.close() return report
9d0bf6d4f6758c873bd6643673784239f9bf4557
3,659,275
import numpy def func_lorentz_by_h_pv(z, h_pv, flag_z: bool = False, flag_h_pv: bool = False): """Gauss function as function of h_pv """ inv_h_pv = 1./h_pv inv_h_pv_sq = numpy.square(inv_h_pv) z_deg = z * 180./numpy.pi c_a = 2./numpy.pi a_l = c_a * inv_h_pv b_l = 4.*inv_h_pv_sq z_deg_sq = numpy.square(z_deg) res = numpy.expand_dims(a_l, axis=-1) /(1+ numpy.expand_dims(b_l, axis=-1) * z_deg_sq) dder = {} if flag_z: dder["z"] = -2.*z_deg*numpy.expand_dims(b_l,axis=-1)*res/(1.+numpy.expand_dims(b_l, axis=-1)*z_deg_sq) * 180./numpy.pi if flag_h_pv: dder["h_pv"] = (c_a * (numpy.expand_dims(h_pv, axis=-1) + 4*z_deg_sq) - \ c_a * numpy.expand_dims(h_pv, axis=-1))/numpy.square(numpy.expand_dims(h_pv, axis=-1) + 4*z_deg_sq) return res, dder
802029e167439471e892fbfbfe4d6fdce8cb1a0e
3,659,276
from typing import Tuple from typing import Optional from datetime import datetime import os def backup_postgres_db() -> Tuple[Optional[str], bytes]: """Backup postgres db to a file.""" try: time_str = datetime.now().strftime("%d-%m-%YT%H:%M:%S") filename = f"backup_restore/backups/{time_str}-{settings.POSTGRES_CUSTOM_DB}.dump" backup_name = f"{time_str}-{settings.POSTGRES_CUSTOM_DB}.dump.gz" # create the dump with pg dump and terminal command pass # check if command worked pass # compress the dump compress_file(filename) # upload the zipped dump error = upload_backup(backup_name) if error is not None: return error, bytes() # remove created files # with temporary file it would be the cleaner way try: for file in listdir("backup_restore/backups"): if file != "__init__.py": os.remove(f"backup_restore/backups/{file}") logger.info("Removed backup files") except Exception: logger.error("Could not remove backup files") return None, bytes() except Exception as e: logger.error(e) return "Backup failed", bytes()
b541371f83976d42f8f4c4a55752ac67b792346e
3,659,277
def get_profile(aid): """ get profile image of author with the aid """ if 'logged_in' in session and aid ==session['logged_id']: try: re_aid = request.args.get("aid") re = aController.getAuthorByAid(re_aid) if re != None: return re return redirect(url_for('/')) except KeyError: return redirect(url_for('/')) return redirect(url_for('/'))
daa759c1493a15d6a2e300a6ab552aae30f59706
3,659,278
def SystemSettings_GetMetric(*args, **kwargs): """SystemSettings_GetMetric(int index, Window win=None) -> int""" return _misc_.SystemSettings_GetMetric(*args, **kwargs)
d9d6d00e6cf54f8e2ed8a06c616b17d6b2905526
3,659,279
from pathlib import Path def all_files(dir, pattern): """Recursively finds every file in 'dir' whose name matches 'pattern'.""" return [f.as_posix() for f in [x for x in Path(dir).rglob(pattern)]]
45f12cda2e16cb745d99d2c8dfb454b32130e1c8
3,659,280
def get_identity_groups(ctx): """Load identity groups definitions.""" return render_template('identity-groups', ctx)
820eb3ebf8d141f37a93485e4428e1cd79da6a44
3,659,281
from django.contrib.auth.base_user import AbstractBaseUser from django.contrib.auth.models import AnonymousUser from ..django_legacy.django2_0.utils.deprecation import CallableFalse, CallableTrue def fix_behaviour_contrib_auth_user_is_anonymous_is_authenticated_callability(utils): """ Make user.is_anonymous and user.is_authenticated behave both as properties and methods, by preserving their callability like in earlier Django version. """ utils.skip_if_app_not_installed("django.contrib.contenttypes") # BEFORE IMPORTS! @property def is_anonymous_for_AbstractBaseUser(self): """ Always return False. This is a way of comparing User objects to anonymous users. """ return CallableFalse @property def is_authenticated_for_AbstractBaseUser(self): """ Always return True. This is a way to tell if the user has been authenticated in templates. """ return CallableTrue utils.inject_attribute(AbstractBaseUser, "is_anonymous", is_anonymous_for_AbstractBaseUser) utils.inject_attribute(AbstractBaseUser, "is_authenticated", is_authenticated_for_AbstractBaseUser) @property def is_anonymous_for_AnonymousUser(self): return CallableTrue @property def is_authenticated_for_AnonymousUser(self): return CallableFalse utils.inject_attribute(AnonymousUser, "is_anonymous", is_anonymous_for_AnonymousUser) utils.inject_attribute(AnonymousUser, "is_authenticated", is_authenticated_for_AnonymousUser)
b3f94992c0ada29b82e64d40cac190a567db9013
3,659,282
def BZPoly(pnts, poly, mag, openPoly=False): """TODO WRITEME. Parameters ---------- pnts : list Measurement points [[p1x, p1z], [p2x, p2z],...] poly : list Polygon [[p1x, p1z], [p2x, p2z],...] mag : [M_x, M_y, M_z] Magnetization = [M_x, M_y, M_z] """ dgz = calcPolyGz(pnts, poly, density=1.0, openPoly=openPoly)[1] dgz[:,2] *= -1 return poissonEoetvoes(adot(mag, -dgz))
1ba775034c8728c854fc58f4b4f75ad691a7ecec
3,659,283
def matches(spc, shape_): """ Return True if the shape adheres to the spc (spc has optional color/shape restrictions) """ (c, s) = spc matches_color = c is None or (shape_.color == c) matches_shape = s is None or (shape_.name == s) return matches_color and matches_shape
fa9c90ea2be17b0cff7e4e76e63cf2c6a70cc1ec
3,659,284
from typing import Any def jsonsafe(obj: Any) -> ResponseVal: """ Catch the TypeError which results from encoding non-encodable types This uses the serialize function from my.core.serialize, which handles serializing most types in HPI """ try: return Response(dumps(obj), status=200, headers={"Content-Type": "application/json"}) except TypeError as encode_err: return { "error": "Could not encode response from HPI function as JSON", "exception": str(encode_err), }, 400
90aaaad3e890eeb09aaa683395a80f80394bba3e
3,659,285
def get_appliances(self) -> list: """Get all appliances from Orchestrator .. list-table:: :header-rows: 1 * - Swagger Section - Method - Endpoint * - appliance - GET - /appliance :return: Returns list of dictionaries of each appliance :rtype: list """ return self._get("/appliance")
2f1e48869f4494a995efd4adba80a235c4fb1486
3,659,286
def is_str(element): """True if string else False""" check = isinstance(element, str) return check
c46b80d109b382de761618c8c9a50d94600af876
3,659,287
import tempfile import shutil def anonymize_and_streamline(old_file, target_folder): """ This function loads the edfs of a folder and 1. removes their birthdate and patient name 2. renames the channels to standardized channel names 3. saves the files in another folder with a non-identifyable 4. verifies that the new files have the same content as the old """ # load the two csvs with the edfs that we dont process and where the ECG is upside down pre_coding_discard = [line[0] for line in misc.read_csv(cfg.edfs_discard) if line[2]=='1'] to_invert = [line[0] for line in misc.read_csv(cfg.edfs_invert)] # Here we read the list of controls and patients with their age and gender mappings = misc.read_csv(cfg.controls_csv) mappings.extend(misc.read_csv(cfg.patients_csv)) mappings = dict([[name, {'gender':gender, 'age':age}] for name, gender, age,*_ in mappings]) # old name is the personalized file without file extension, e.g. thomas_smith(1) old_name = ospath.splitext(ospath.basename(old_file))[0] # new name is the codified version without extension e.g '123_45678' new_name = codify(old_name) # use a temporary file to write and then move it, # this avoids half-written files that cannot be read later tmp_name = tempfile.TemporaryFile(prefix='anonymize').name if old_name in pre_coding_discard: print('EDF is marked as corrupt and will be discarded') return # this is where the anonymized file will be stored new_file = ospath.join(target_folder, new_name + '.edf') if ospath.exists(new_file): print ('New file extists already {}'.format(new_file)) else: # anonymize print ('Writing {} from {}'.format(new_file, old_name)) assert ospath.isfile(old_file), f'{old_file} does not exist' signals, signal_headers, header = sleep_utils.read_edf(old_file, digital=True, verbose=False) # remove patient info header['birthdate'] = '' header['patientname'] = new_name header['patientcode'] = new_name header['gender'] = mappings[old_name]['gender'] header['age'] = mappings[old_name]['age'] # rename channels to a unified notation, e.g. EKG becomes ECG I for shead in signal_headers: ch = shead['label'] if ch in ch_mapping: ch = ch_mapping[ch] shead['label'] = ch # Invert the ECG channel if necessary if old_name in to_invert: for i,sig in enumerate(signals): label = signal_headers[i]['label'].lower() if label == cfg.ecg_channel.lower(): signals[i] = -sig # we write to tmp to prevent that corrupted files are not left print ('Writing tmp for {}'.format(new_file)) sleep_utils.write_edf(tmp_name, signals, signal_headers, header, digital=True, correct=True) # verify that contents for both files match exactly print ('Verifying tmp for {}'.format(new_file)) # embarrasing hack, as dmin/dmax dont in this files after inverting if not old_name=='B0036': sleep_utils.compare_edf(old_file, tmp_name, verbose=False) # now we move the tmp file to its new location. shutil.move(tmp_name, new_file) # also copy additional file information ie hypnograms and kubios files old_dir = ospath.dirname(old_file) pattern = old_name.replace('_m', '').replace('_w', '') # remove gender from weitere nt1 patients add_files = ospath.list_files(old_dir, patterns=[f'{pattern}*txt', f'{pattern}*dat', f'{pattern}*mat']) for add_file in add_files: # e.g. .mat or .npy etc etc new_add_file = ospath.join(target_folder, ospath.basename(add_file.replace(pattern, new_name))) if ospath.exists(new_add_file):continue # hypnograms will be copied to .hypno try: new_add_file = new_add_file.replace('-Schlafprofil', '') new_add_file = new_add_file.replace('_sl','') new_add_file = new_add_file.replace('.txt', '.hypno').replace('.dat', '.hypno') shutil.copy(add_file, new_add_file) except Exception as e: print(e) return old_name, new_name
2210c72891c3faec73a9d5ce4b83d56ee9adef38
3,659,288
def deal_text(text: str) -> str: """deal the text Args: text (str): text need to be deal Returns: str: dealed text """ text = " "+text text = text.replace("。","。\n ") text = text.replace("?","?\n ") text = text.replace("!","!\n ") text = text.replace(";",";\n ") return text
8f16e7cd2431dfc53503c877f9d4b5429f738323
3,659,289
import zipfile import os def extract_zip(src, dest): """extract a zip file""" bundle = zipfile.ZipFile(src) namelist = bundle.namelist() for name in namelist: filename = os.path.realpath(os.path.join(dest, name)) if name.endswith('/'): os.makedirs(filename) else: path = os.path.dirname(filename) if not os.path.isdir(path): os.makedirs(path) _dest = open(filename, 'wb') _dest.write(bundle.read(name)) _dest.close() bundle.close() return namelist
5e8af22a446e52c26b99b71fefdd29d3b10e02ec
3,659,290
def _find_timepoints_1D(single_stimulus_code): """ Find the indexes where the value of single_stimulus_code turn from zero to non_zero single_stimulus_code : 1-D array >>> _find_timepoints_1D([5,5,0,0,4,4,4,0,0,1,0,2,0]) array([ 0, 4, 9, 11]) >>> _find_timepoints_1D([0,0,1,2,3,0,1,0,0]) array([2, 6]) >>> _find_timepoints_1D([0,0,1,2,0,1]) array([2, 5]) >>> _find_timepoints_1D([5,0,0,1,2,5]) array([0, 3]) """ flag = True # whether have seen 0 so far timepoints = [] for index, timepoint in enumerate(single_stimulus_code): if timepoint != 0 and flag: timepoints.append(index) flag = False if timepoint == 0 and not flag: flag = True return np.array(timepoints)
b2c3d08f229b03f9b9f5278fea4e25c25274d213
3,659,291
def stiffness_tric( components: np.ndarray = None, components_d: dict = None ) -> np.ndarray: """Generate triclinic fourth-order stiffness tensor. Parameters ---------- components : np.ndarray 21 components of triclinic tensor, see stiffness_component_dict components_d : dictionary dictionary with 21 components of triclinic tensor, see stiffness_component_dict Returns ------- np.ndarray Fourth-order triclinic tensor with minor and major symmetries """ out = np.zeros(shape=[3, 3, 3, 3]) if not isinstance(components, type(None)): components_d = stiffness_component_dict(components) for k, v in components_d.items(): i = [int(s)-1 for s in k] out[i[0], i[1], i[2], i[3]] = v # tt_l out[i[1], i[0], i[2], i[3]] = v # tt_r out[i[0], i[1], i[3], i[2]] = v out[i[1], i[0], i[3], i[2]] = v # + tt_l # tt_m out[i[2], i[3], i[0], i[1]] = v out[i[3], i[2], i[0], i[1]] = v # + tt_l out[i[2], i[3], i[1], i[0]] = v # + tt_r out[i[3], i[2], i[1], i[0]] = v # + tt_l + tt_r return out
f96a2ffb4e0542f56a4329393b77e9a875dc6cd5
3,659,292
from typing import Optional from pathlib import Path def get_dataset( dataset_name: str, path: Optional[Path] = None, regenerate: bool = False, ) -> TrainDatasets: """ Get the repository dataset. Currently only [Retail Dataset](https://archive.ics.uci.edu/ml/datasets/online+retail) is available Parameters: dataset_name: name of the dataset, for instance "retail" regenerate: whether to regenerate the dataset even if a local file is present. If this flag is False and the file is present, the dataset will not be downloaded again. path: where the dataset should be saved Returns: dataset obtained by either downloading or reloading from local file. """ if path is None: path = default_dataset_path dataset_path = materialize_dataset(dataset_name, path, regenerate) return load_datasets( metadata=dataset_path, train=dataset_path / "train", test=dataset_path / "test", )
f913f613858c444ddac479d65a169b74a9b4db29
3,659,293
def get_info_safe(obj, attr, default=None): """safely retrieve @attr from @obj""" try: oval = obj.__getattribute__(attr) except: logthis("Attribute does not exist, using default", prefix=attr, suffix=default, loglevel=LL.WARNING) oval = default return oval
24b4bace8a8cef16d7cddc44238a24dd636f6ca8
3,659,294
def mkviewcolbg(view=None, header=u'', colno=None, cb=None, width=None, halign=None, calign=None, expand=False, editcb=None, maxwidth=None): """Return a text view column.""" i = gtk.CellRendererText() if cb is not None: i.set_property(u'editable', True) i.connect(u'edited', cb, colno) if calign is not None: i.set_property(u'xalign', calign) j = gtk.TreeViewColumn(header, i, background=colno) if halign is not None: j.set_alignment(halign) if expand: if width is not None: j.set_min_width(width) j.set_expand(True) else: if width is not None: j.set_min_width(width) if maxwidth is not None: j.set_max_width(maxwidth) view.append_column(j) if editcb is not None: i.connect(u'editing-started', editcb) return i
7b49154d9d26cc93f5e42116967634eddc06a06e
3,659,295
def list2str(lst, indent=0, brackets=True, quotes=True): """ Generate a Python syntax list string with an indention :param lst: list :param indent: indention as integer :param brackets: surround the list expression by brackets as boolean :param quotes: surround each item with quotes :return: string """ if quotes: lst_str = str(lst) if not brackets: lst_str = lst_str[1:-1] else: lst_str = ', '.join(lst) if brackets: lst_str = '[' + lst_str + ']' lb = ',\n' + indent*' ' return lst_str.replace(', ', lb)
ef441632bf59714d3d44ede5e78835625b41f047
3,659,296
import os def full_path(path): """ Get an absolute path. """ if path[0] == "/": return path return os.path.realpath( os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "..", "..", path) )
0ea845638d541521277fac3904cb1c1b243e88b1
3,659,297
def _roi_pool_shape(op): """Shape function for the RoiPool op. """ dims_data = op.inputs[0].get_shape().as_list() channels = dims_data[3] dims_rois = op.inputs[1].get_shape().as_list() num_rois = dims_rois[0] pooled_height = op.get_attr('pooled_height') pooled_width = op.get_attr('pooled_width') output_shape = tf.TensorShape([num_rois, pooled_height, pooled_width, channels]) return [output_shape, output_shape]
9c84aa0054dacacefcdf2fd9066538239668ee66
3,659,298
from typing import Optional def get_users(*, limit: int, order_by: str = "id", offset: Optional[str] = None) -> APIResponse: """Get users""" appbuilder = current_app.appbuilder session = appbuilder.get_session total_entries = session.query(func.count(User.id)).scalar() to_replace = {"user_id": "id"} allowed_filter_attrs = [ "user_id", 'id', "first_name", "last_name", "user_name", "email", "is_active", "role", ] query = session.query(User) query = apply_sorting(query, order_by, to_replace, allowed_filter_attrs) users = query.offset(offset).limit(limit).all() return user_collection_schema.dump(UserCollection(users=users, total_entries=total_entries))
5ef71bfcc79314f0e9481dfa78a8e079dce14339
3,659,299