text
stringlengths
1
5.21k
E
In the sequence $2001$, $2002$, $2003$, $\ldots$ , each term after the third is found by subtracting the previous term from the sum of the two terms that precede that term. For example, the fourth term is $2001 + 2002 - 2003 = 2000$. What is the
$2004^\textrm{th}$ term in this sequence?$\mathrm{(A) \ } -2004 \qquad \mathrm{(B) \ } -2 \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } 4003 \qquad \mathrm{(E) \ } 6007$
C
In $\triangle ABC$ points $D$ and $E$ lie on $BC$ and $AC$, respectively. If $AD$ and $BE$ intersect at $T$ so that $\frac{AT}{DT}=3$ and $\frac{BT}{ET}=4$, what is $\frac{CD}{BD}$?[asy] unitsize(1.5 cm); pair A, B, C, D, E, F, T; A = (0,0); B = (3,3); C = (4.5,0); D = (2*C + B)/3; E = (5*C + 2*A)/7; T = extension(A,D,B,E); F = extension(D, D + A - C, B, E); draw(A--B--C--cycle); draw(A--D); draw(B--E); label("$A$", A, SW); label("$B$", B, N); label("$C$", C, SE); label("$D$", D, NE); label("$E$", E, S); label("$T$", T, SE); [/asy]
D
Let $1$; $4$; $\ldots$ and $9$; $16$; $\ldots$ be two arithmetic progressions. The set $S$ is the union of the first $2004$ terms of each sequence. How many distinct numbers are in $S$?$\mathrm{(A) \ } 3722 \qquad \mathrm{(B) \ } 3732 \qquad \mathrm{(C) \ } 3914 \qquad \mathrm{(D) \ } 3924 \qquad \mathrm{(E) \ } 4007$
A
A triangle with sides of length $5, 12,$ and $13$ has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?$\mathrm{(A) \ } \frac{3\sqrt{5}}{2} \qquad \mathrm{(B) \ } \frac{7}{2} \qquad \mathrm{(C) \ } \sqrt{15} \qquad \mathrm{(D) \ } \frac{\sqrt{65}}{2} \qquad \mathrm{(E) \ } \frac{9}{2}$
D
Each face of a cube is painted either red or blue, each with probability $1/2$. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color?$\mathrm{(A) \ } \frac{1}{4} \qquad \mathrm{(B) \ } \frac{5}{16} \qquad \mathrm{(C) \ } \frac{3}{8} \qquad \mathrm{(D) \ } \frac{7}{16} \qquad \mathrm{(E) \ } \frac{1}{2}$
B
In $\bigtriangleup ABC$ we have $AB = 7$, $AC = 8$, and $BC = 9$. Point $D$ is on the circumscribed circle of the triangle so that $AD$ bisects $\angle BAC$. What is the value of $\frac{AD}{CD}$?$\mathrm{(A) \ } \frac{9}{8} \qquad \mathrm{(B) \ } \frac{5}{3} \qquad \mathrm{(C) \ } 2 \qquad \mathrm{(D) \ } \frac{17}{7} \qquad \mathrm{(E) \ } \frac{5}{2}$
B
A circle of radius $1$ is internally tangent to two circles of radius $2$ at points $A$ and $B$, where $AB$ is a diameter of the smaller circle. What is the area of the region, shaded in the picture, that is outside the smaller circle and inside each of the two larger circles?$\mathrm{(A) \ } \frac{5}{3} \pi - 3\sqrt 2 \qquad \mathrm{(B) \ } \frac{5}{3} \pi - 2\sqrt 3 \qquad \mathrm{(C) \ } \frac{8}{3} \pi - 3\sqrt 3 \qquad \mathrm{(D) \ } \frac{8}{3} \pi - 3\sqrt 2 \qquad \mathrm{(E) \ } \frac{8}{3} \pi - 2\sqrt 3$
B
Cagney can frost a cupcake every $20$ seconds and Lacey can frost a cupcake every $30$ seconds. Working together, how many cupcakes can they frost in $5$ minutes?$\textbf{(A)}\ 10\qquad\textbf{(B)}\ 15\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 25\qquad\textbf{(E)}\ 30$
D
A square with side length $8$ is cut in half, creating two congruent rectangles. What are the dimensions of one of these rectangles?$\textbf{(A)}\ 2\ \text{by}\ 4\qquad\textbf{(B)}\ \ 2\ \text{by}\ 6\qquad\textbf{(C)}\ \ 2\ \text{by}\ 8\qquad\textbf{(D)}\ 4\ \text{by}\ 4\qquad\textbf{(E)}\ 4\ \text{by}\ 8$
E
A bug crawls along a number line, starting at $-2$. It crawls to $-6$, then turns around and crawls to $5$. How many units does the bug crawl altogether?$\textbf{(A)}\ 9\qquad\textbf{(B)}\ 11\qquad\textbf{(C)}\ 13\qquad\textbf{(D)}\ 14\qquad\textbf{(E)}\ 15$
E
Let $\angle ABC = 24^\circ$ and $\angle ABD = 20^\circ$. What is the smallest possible degree measure for angle $CBD$?$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 12$
C
Last year $100$ adult cats, half of whom were female, were brought into the Smallville Animal Shelter. Half of the adult female cats were accompanied by a litter of kittens. The average number of kittens per litter was $4$. What was the total number of cats and kittens received by the shelter last year?$\textbf{(A)}\ 150\qquad\textbf{(B)}\ 200\qquad\textbf{(C)}\ 250\qquad\textbf{(D)}\ 300\qquad\textbf{(E)}\ 400$
B
The product of two positive numbers is $9$. The reciprocal of one of these numbers is $4$ times the reciprocal of the other number. What is the sum of the two numbers?$\textbf{(A)}\ \frac{10}{3}\qquad\textbf{(B)}\ \frac{20}{3}\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ \frac{15}{2}\qquad\textbf{(E)}\ 8$
D
In a bag of marbles, $\frac{3}{5}$ of the marbles are blue and the rest are red. If the number of red marbles is doubled and the number of blue marbles stays the same, what fraction of the marbles will be red?$\textbf{(A)}\ \frac{2}{5}\qquad\textbf{(B)}\ \frac{3}{7}\qquad\textbf{(C)}\ \frac{4}{7}\qquad\textbf{(D)}\ \frac{3}{5}\qquad\textbf{(E)}\ \frac{4}{5}$
C
The sums of three whole numbers taken in pairs are $12$, $17$, and $19$. What is the middle number?$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 8$
D
A pair of six-sided dice are labeled so that one die has only even numbers (two each of $2$, $4$, and $6$), and the other die has only odd numbers (two each of $1$, $3$, and $5$). The pair of dice is rolled. What is the probability that the sum of the numbers on the tops of the two dice is $7$?$\textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{5}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2}$
D
Mary divides a circle into $12$ sectors. The central angles of these sectors, measured in degrees, are all integers and they form an arithmetic sequence. What is the degree measure of the smallest possible sector angle?$\textbf{(A)}\ 5\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 12$
C
Externally tangent circles with centers at points $A$ and $B$ have radii of lengths $5$ and $3$, respectively. A line externally tangent to both circles intersects ray $AB$ at point $C$. What is $BC$?$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 4.8\qquad\textbf{(C)}\ 10.2\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 14.4$
D
A year is a leap year if and only if the year number is divisible by $400$ (such as $2000$) or is divisible by $4$ but not $100$ (such as $2012$). The $200$th anniversary of the birth of novelist Charles Dickens was celebrated on February $7$, $2012$, a Tuesday. On what day of the week was Dickens born?$\textbf{(A)}\ \text{Friday}\qquad\textbf{(B)}\ \text{Saturday}\qquad\textbf{(C)}\ \text{Sunday}\qquad\textbf{(D)}\ \text{Monday}\qquad\textbf{(E)}\ \text{Tuesday}$
A
An iterative average of the numbers $1$, $2$, $3$, $4$, and $5$ is computed the following way. Arrange the five numbers in some order. Find the mean of the first two numbers, then find the mean of that with the third number, then the mean of that with the fourth number, and finally the mean of that with the fifth number. What is the difference between the largest and smallest possible values that can be obtained using this procedure?$\textbf{(A)}\ \frac{31}{16}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \frac{17}{8}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ \frac{65}{16}$
C
Chubby makes nonstandard checkerboards that have $31$ squares on each side. The checkerboards have a black square in every corner and alternate red and black squares along every row and column. How many black squares are there on such a checkerboard?$\textbf{(A)}\ 480 \qquad\textbf{(B)}\ 481 \qquad\textbf{(C)}\ 482 \qquad\textbf{(D)}\ 483 \qquad\textbf{(E)}\ 484$
B
Three unit squares and two line segments connecting two pairs of vertices are shown. What is the area of $\triangle ABC$?$\textbf{(A)}\ \frac16 \qquad\textbf{(B)}\ \frac15 \qquad\textbf{(C)}\ \frac29 \qquad\textbf{(D)}\ \frac13 \qquad\textbf{(E)}\ \frac{\sqrt{2}}{4}$
B
Three runners start running simultaneously from the same point on a $500$-meter circular track. They each run clockwise around the course maintaining constant speeds of $4.4$, $4.8$, and $5.0$ meters per second. The runners stop once they are all together again somewhere on the circular course. How many seconds do the runners run?$\textbf{(A)}\ 1000\qquad\textbf{(B)}\ 1250\qquad\textbf{(C)}\ 2500\qquad\textbf{(D)}\ 5000\qquad\textbf{(E)}\ 10000$
C
Let $a$ and $b$ be relatively prime positive integers with $a>b>0$ and $\dfrac{a^3-b^3}{(a-b)^3} = \dfrac{73}{3}$. What is $a-b$?$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$
C
The closed curve in the figure is made up of $9$ congruent circular arcs each of length $\frac{2\pi}{3}$, where each of the centers of the corresponding circles is among the vertices of a regular hexagon of side $2$. What is the area enclosed by the curve?[asy] size(5cm); defaultpen(fontsize(6pt)); dotfactor=4; label("$\circ$",(0,1)); label("$\circ$",(0.865,0.5)); label("$\circ$",(-0.865,0.5)); label("$\circ$",(0.865,-0.5)); label("$\circ$",(-0.865,-0.5)); label("$\circ$",(0,-1)); dot((0,1.5)); dot((-0.4325,0.75)); dot((0.4325,0.75)); dot((-0.4325,-0.75)); dot((0.4325,-0.75)); dot((-0.865,0)); dot((0.865,0)); dot((-1.2975,-0.75)); dot((1.2975,-0.75)); draw(Arc((0,1),0.5210,-30)); draw(Arc((0.865,0.5),0.5150270)); draw(Arc((0.865,-0.5),0.5,90,-150)); draw(Arc((0.865,-0.5),0.5,90,-150)); draw(Arc((0,-1),0.5,30150)); draw(Arc((-0.865,-0.5),0.5330,90)); draw(Arc((-0.865,0.5),0.5,-90,30)); [/asy]
E
Paula the painter and her two helpers each paint at constant, but different, rates. They always start at $8:00$ AM, and all three always take the same amount of time to eat lunch. On Monday the three of them painted 50% of a house, quitting at $4:00$ PM. On Tuesday, when Paula wasn't there, the two helpers painted only 24% of the house and quit at $2:12$ PM. On Wednesday Paula worked by herself and finished the house by working until $7:12$ P.M. How long, in minutes, was each day's lunch break?$\textbf{(A)}\ 30\qquad\textbf{(B)}\ 36\qquad\textbf{(C)}\ 42\qquad\textbf{(D)}\ 48\qquad\textbf{(E)}\ 60$
D
A $3 \times 3$ square is partitioned into $9$ unit squares. Each unit square is painted either white or black with each color being equally likely, chosen independently and at random. The square is then rotated $90\,^{\circ}$ clockwise about its center, and every white square in a position formerly occupied by a black square is painted black. The colors of all other squares are left unchanged. What is the probability the grid is now entirely black?$\textbf{(A)}\ \frac{49}{512}\qquad\textbf{(B)}\ \frac{7}{64}\qquad\textbf{(C)}\ \frac{121}{1024}\qquad\textbf{(D)}\ \frac{81}{512}\qquad\textbf{(E)}\ \frac{9}{32}$
A
Let points $A = (0 ,0 ,0)$, $B = (1, 0, 0)$, $C = (0, 2, 0)$, and $D = (0, 0, 3)$. Points $E$, $F$, $G$, and $H$ are midpoints of line segments $\overline{BD},\text{ } \overline{AB}, \text{ } \overline {AC},$ and $\overline{DC}$ respectively. What is the area of $EFGH$?$\textbf{(A)}\ \sqrt{2}\qquad\textbf{(B)}\ \frac{2\sqrt{5}}{3}\qquad\textbf{(C)}\ \frac{3\sqrt{5}}{4}\qquad\textbf{(D)}\ \sqrt{3}\qquad\textbf{(E)}\ \frac{2\sqrt{7}}{3}$
C
The sum of the first $m$ positive odd integers is $212$ more than the sum of the first $n$ positive even integers. What is the sum of all possible values of $n$?$\textbf{(A)}\ 255\qquad\textbf{(B)}\ 256\qquad\textbf{(C)}\ 257\qquad\textbf{(D)}\ 258\qquad\textbf{(E)}\ 259$
A
Adam, Benin, Chiang, Deshawn, Esther, and Fiona have internet accounts. Some, but not all, of them are internet friends with each other, and none of them has an internet friend outside this group. Each of them has the same number of internet friends. In how many different ways can this happen?$\textbf{(A)}\ 60\qquad\textbf{(B)}\ 170\qquad\textbf{(C)}\ 290\qquad\textbf{(D)}\ 320\qquad\textbf{(E)}\ 660$
B
Let $a$, $b$, and $c$ be positive integers with $a\ge$ $b\ge$ $c$ such that
\begin{align*}a^2-b^2-c^2+ab&=2011\text{ and}\\ a^2+3b^2+3c^2-3ab-2ac-2bc&=-1997.\end{align*}What is $a$?
E
Real numbers $x$, $y$, and $z$ are chosen independently and at random from the interval $[0,n]$ for some positive integer $n$. The probability that no two of $x$, $y$, and $z$ are within 1 unit of each other is greater than $\frac {1}{2}$. What is the smallest possible value of $n$?$\textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11$
D
Which of the following is the same as\[\frac{2-4+6-8+10-12+14}{3-6+9-12+15-18+21}?\]
C
Al gets the disease algebritis and must take one green pill and one pink pill each day for two weeks. A green pill costs $$$1$ more than a pink pill, and Al's pills cost a total of $$$546$ for the two weeks. How much does one green pill cost?$\textbf{(A) }$$7 \qquad\textbf{(B) }$ $14 \qquad\textbf{(C) }$$19\qquad\textbf{(D) }$ $20\qquad\textbf{(E) }$$39$
D
The sum of $5$ consecutive even integers is $4$ less than the sum of the first $8$ consecutive odd counting numbers. What is the smallest of the even integers?$\textbf{(A) } 6 \qquad\textbf{(B) } 8 \qquad\textbf{(C) } 10 \qquad\textbf{(D) } 12 \qquad\textbf{(E) } 14$
B
Rose fills each of the rectangular regions of her rectangular flower bed with a different type of flower. The lengths, in feet, of the rectangular regions in her flower bed are as shown in the figure. She plants one flower per square foot in each region. Asters cost $$$1$ each, begonias $$$1.50$ each, cannas $$$2$ each, dahlias $$$2.50$ each, and Easter lilies $$$3$ each. What is the least possible cost, in dollars, for her garden?[asy] unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); draw((6,0)--(0,0)--(0,1)--(6,1)); draw((0,1)--(0,6)--(4,6)--(4,1)); draw((4,6)--(11,6)--(11,3)--(4,3)); draw((11,3)--(11,0)--(6,0)--(6,3)); label("1",(0,0.5),W); label("5",(0,3.5),W); label("3",(11,1.5),E); label("3",(11,4.5),E); label("4",(2,6),N); label("7",(7.5,6),N); label("6",(3,0),S); label("5",(8.5,0),S);[/asy]
A
Moe uses a mower to cut his rectangular $90$-foot by $150$-foot lawn. The swath he cuts is $28$ inches wide, but he overlaps each cut by $4$ inches to make sure that no grass is missed. He walks at the rate of $5000$ feet per hour while pushing the mower. Which of the following is closest to the number of hours it will take Moe to mow the lawn?$\textbf{(A) } 0.75 \qquad\textbf{(B) } 0.8 \qquad\textbf{(C) } 1.35 \qquad\textbf{(D) } 1.5 \qquad\textbf{(E) } 3$
C
Many television screens are rectangles that are measured by the length of their diagonals. The ratio of the horizontal length to the height in a standard television screen is $4聽: 3$. The horizontal length of a "$27$-inch" television screen is closest, in inches, to which of the following?[asy] import math; unitsize(7mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); draw((0,0)--(4,0)--(4,3)--(0,3)--(0,0)--(4,3)); fill((0,0)--(4,0)--(4,3)--cycle,mediumgray); label(rotate(aTan(3.0/4.0))*"Diagonal",(2,1.5),NW); label(rotate(90)*"Height",(4,1.5),E); label("Length",(2,0),S);[/asy]
$\textbf{(A) } 20 \qquad\textbf{(B) } 20.5 \qquad\textbf{(C) } 21 \qquad\textbf{(D) } 21.5 \qquad\textbf{(E) } 22$
D
The symbolism $\lfloor x \rfloor$ denotes the largest integer not exceeding $x$. For example, $\lfloor 3 \rfloor = 3,$ and $\lfloor 9/2 \rfloor = 4$. Compute
\[\lfloor \sqrt{1} \rfloor + \lfloor \sqrt{2} \rfloor + \lfloor \sqrt{3} \rfloor + \cdots + \lfloor \sqrt{16} \rfloor.\]$\textbf{(A) } 35 \qquad\textbf{(B) } 38 \qquad\textbf{(C) } 40 \qquad\textbf{(D) } 42 \qquad\textbf{(E) } 136$
B
The second and fourth terms of a geometric sequence are $2$ and $6$. Which of the following is a possible first term?$\textbf{(A) } -\sqrt{3} \qquad\textbf{(B) } -\frac{2\sqrt{3}}{3} \qquad\textbf{(C) } -\frac{\sqrt{3}}{3} \qquad\textbf{(D) } \sqrt{3} \qquad\textbf{(E) } 3$
B
Find the value of $x$ that satisfies the equation
\[25^{-2} = \frac{5^{48/x}}{5^{26/x} \cdot 25^{17/x}}.\]$\textbf{(A) } 2 \qquad\textbf{(B) } 3 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } 9$
B
Nebraska, the home of the AMC, changed its license plate scheme. Each old license plate consisted of a letter followed by four digits. Each new license plate consists of the three letters followed by three digits. By how many times is the number of possible license plates increased?$\textbf{(A) } \frac{26}{10} \qquad\textbf{(B) } \frac{26^2}{10^2} \qquad\textbf{(C) } \frac{26^2}{10} \qquad\textbf{(D) } \frac{26^3}{10^3} \qquad\textbf{(E) } \frac{26^3}{10^2}$
C
A line with slope $3$ intersects a line with slope $5$ at point $(10,15)$. What is the distance between the $x$-intercepts of these two lines?$\textbf{(A) } 2 \qquad\textbf{(B) } 5 \qquad\textbf{(C) } 7 \qquad\textbf{(D) } 12 \qquad\textbf{(E) } 20$
A
Al, Betty, and Clare split $$$1000$ among them to be invested in different ways. Each begins with a different amount. At the end of one year, they have a total of $$$1500$. Betty and Clare have both doubled their money, whereas Al has managed to lose $$$100$. What was Al's original portion?$\textbf{(A) }$$250 \qquad\textbf{(B) }$ $350 \qquad\textbf{(C) }$$400\qquad\textbf{(D) }$ $450\qquad\textbf{(E) }$$500$
C
Let $\clubsuit(x)$ denote the sum of the digits of the positive integer $x$. For example, $\clubsuit(8)=8$ and $\clubsuit(123)=1+2+3=6$. For how many two-digit values of $x$ is $\clubsuit(\clubsuit(x))=3$?$\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 9 \qquad\textbf{(E) } 10$
E
Given that $3^8\cdot5^2=a^b,$ where both $a$ and $b$ are positive integers, find the smallest possible value for $a+b$.$\textbf{(A) } 25 \qquad\textbf{(B) } 34 \qquad\textbf{(C) } 351 \qquad\textbf{(D) } 407 \qquad\textbf{(E) } 900$
D
There are $100$ players in a single tennis tournament. The tournament is single elimination, meaning that a player who loses a match is eliminated. In the first round, the strongest $28$ players are given a bye, and the remaining $72$ players are paired off to play. After each round, the remaining players play in the next round. The tournament continues until only one player remains unbeaten. The total number of matches played is$\textbf{(A) } \text{a prime number} \qquad\textbf{(B) } \text{divisible by 2} \qquad\textbf{(C) } \text{divisible by 5} \qquad\textbf{(D) } \text{divisible by 7} \qquad\textbf{(E) } \text{divisible by 11}$
E