query_id
stringlengths
1
4
query
stringlengths
26
249
positive_passages
list
negative_passages
list
871
Obesity decreases life quality.
[ { "docid": "195689316", "text": "BACKGROUND The main associations of body-mass index (BMI) with overall and cause-specific mortality can best be assessed by long-term prospective follow-up of large numbers of people. The Prospective Studies Collaboration aimed to investigate these associations by sharing data from many studies. \n METHODS Collaborative analyses were undertaken of baseline BMI versus mortality in 57 prospective studies with 894 576 participants, mostly in western Europe and North America (61% [n=541 452] male, mean recruitment age 46 [SD 11] years, median recruitment year 1979 [IQR 1975-85], mean BMI 25 [SD 4] kg/m(2)). The analyses were adjusted for age, sex, smoking status, and study. To limit reverse causality, the first 5 years of follow-up were excluded, leaving 66 552 deaths of known cause during a mean of 8 (SD 6) further years of follow-up (mean age at death 67 [SD 10] years): 30 416 vascular; 2070 diabetic, renal or hepatic; 22 592 neoplastic; 3770 respiratory; 7704 other. \n FINDINGS In both sexes, mortality was lowest at about 22.5-25 kg/m(2). Above this range, positive associations were recorded for several specific causes and inverse associations for none, the absolute excess risks for higher BMI and smoking were roughly additive, and each 5 kg/m(2) higher BMI was on average associated with about 30% higher overall mortality (hazard ratio per 5 kg/m(2) [HR] 1.29 [95% CI 1.27-1.32]): 40% for vascular mortality (HR 1.41 [1.37-1.45]); 60-120% for diabetic, renal, and hepatic mortality (HRs 2.16 [1.89-2.46], 1.59 [1.27-1.99], and 1.82 [1.59-2.09], respectively); 10% for neoplastic mortality (HR 1.10 [1.06-1.15]); and 20% for respiratory and for all other mortality (HRs 1.20 [1.07-1.34] and 1.20 [1.16-1.25], respectively). Below the range 22.5-25 kg/m(2), BMI was associated inversely with overall mortality, mainly because of strong inverse associations with respiratory disease and lung cancer. These inverse associations were much stronger for smokers than for non-smokers, despite cigarette consumption per smoker varying little with BMI. \n INTERPRETATION Although other anthropometric measures (eg, waist circumference, waist-to-hip ratio) could well add extra information to BMI, and BMI to them, BMI is in itself a strong predictor of overall mortality both above and below the apparent optimum of about 22.5-25 kg/m(2). The progressive excess mortality above this range is due mainly to vascular disease and is probably largely causal. At 30-35 kg/m(2), median survival is reduced by 2-4 years; at 40-45 kg/m(2), it is reduced by 8-10 years (which is comparable with the effects of smoking). The definite excess mortality below 22.5 kg/m(2) is due mainly to smoking-related diseases, and is not fully explained.", "title": "Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies." } ]
[ { "docid": "43220289", "text": "Extreme obesity is associated with severe psychiatric and somatic comorbidity and impairment of psychosocial functioning. Bariatric surgery is the most effective treatment not only with regard to weight loss but also with obesity-associated illnesses. Health-related psychological and psychosocial variables have been increasingly considered as important outcome variables of bariatric surgery. However, the long-term impact of bariatric surgery on psychological and psychosocial functioning is largely unclear. The aim of this study was to evaluate the relationship between the course of weight and psychological variables including depression, anxiety, health-related quality of life (HRQOL), and self-esteem up to 4 years after obesity surgery. By standardized questionnaires prior to (T1) and 1 year (T2), 2 years (T3), and 4 years (T4) after surgery, 148 patients (47 males (31.8 %), 101 females (68.2 %), mean age 38.8 ± 10.2 years) were assessed. On average, participants lost 24.6 % of their initial weight 1 year after surgery, 25.1 % after 2 years, and 22.3 % after 4 years. Statistical analysis revealed significant improvements in depressive symptoms, physical dimension of quality of life, and self-esteem with peak improvements 1 year after surgery. These improvements were largely maintained. Significant correlations between weight loss and improvements in depression, physical aspects of HRQOL (T2, T3, and T4), and self-esteem (T3) were observed. Corresponding to the considerable weight loss after bariatric surgery, important aspects of mental health improved significantly during the 4-year follow-up period. However, parallel to weight regain, psychological improvements showed a slow but not significant decline over time.", "title": "Psychological Outcome 4 Years after Restrictive Bariatric Surgery" }, { "docid": "20606520", "text": "OBJECTIVES To assess mortality, quality of life (QOL), and quality-adjusted life-years (QALYs) for critically ill elderly patients. \n DESIGN Cross-sectional survey. \n SETTING A ten-bed medical-surgical intensive care unit (ICU) in a tertiary care university hospital. \n PATIENTS The study group included 882 elderly patients (> or =65 yrs of age) and 1,827 controls (<65 yrs of age) treated during the period of 1995 to 2000. \n INTERVENTION None. \n MEASUREMENTS AND MAIN RESULTS Mortality was assessed during the ICU and hospital stays, and 12, 24, and 36 months after ICU discharge. The cumulative 3-yr mortality rate among the elderly (57%) was higher (p < .05) than that among the controls (40%). The majority (66%) of the elderly nonsurvivors died within 1 month after intensive care discharge. All elderly patients with day-1 Sequential Organ Failure (SOFA) scores >15 died during the ICU stay. QOL was assessed with EQ-5D and RAND-36 measures from 10 months to 7 yrs after discharge. The majority (88%) of the elderly survivors assessed their present health state as good or satisfactory; 66% found it to be similar or better than 12 months earlier, and 48% similar or better than their preadmission state. QOL measures by RAND-36 revealed that aging decreased their competencies most in physical functioning, physical role limitations, and vitality, but the elderly had better values in mental health than the controls. However, QALYs of the elderly respondents were 21% to 35% lower than the mean QALY minus 2 sd units of the age- and gender-adjusted general population. \n CONCLUSIONS High age alone is not a valid reason to refuse intensive care, but the benefits perceived by intensive care seem to decrease with aging, if reflected as QALYs. However, 97% of the elderly survivors lived at home and 88% of them considered their QOL satisfactory or good after hospital discharge. Therefore, more reliable information on the outcome for the elderly is clearly needed.", "title": "Long-term survival, quality of life, and quality-adjusted life-years among critically ill elderly patients." }, { "docid": "24347647", "text": "The proteasome is a multicatalytic enzyme complex responsible for the degradation of both normal and damaged proteins. An age-related decline in proteasomal activity has been implicated in various age-related pathologies. The relevance of decreased proteasomal activity to aging and age-related diseases remains unclear, however, because suitable animal models are not available. In the present study, we established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity. Tg mice exhibited a shortened life span and developed age-related phenotypes. In Tg mice, polyubiquitinated and oxidized proteins accumulated, and the expression levels of cellular proteins such as Bcl-xL and RNase L were altered. When Tg mice were fed a high-fat diet, they developed more pronounced obesity and hepatic steatosis than did wild-type mice. Consistent with its role in lipid droplet formation, the expression of adipose differentiation-related protein (ADRP) was elevated in the livers of Tg mice. Of note, obesity and hepatic steatosis induced by a high-fat diet were more pronounced in aged than in young wild-type mice, and aged wild-type mice had elevated levels of ADRP, suggesting that the metabolic abnormalities present in Tg mice mimic those in aged mice. Our results provide the first in vivo evidence that decreased proteasomal chymotrypsin-like activity affects longevity and aggravates age-related metabolic disorders, such as obesity and hepatic steatosis.", "title": "Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities." }, { "docid": "18872233", "text": "IMPORTANCE Bariatric surgery is associated with sustained weight loss and improved physical health status for severely obese individuals. Mental health conditions may be common among patients seeking bariatric surgery; however, the prevalence of these conditions and whether they are associated with postoperative outcomes remains unknown. \n OBJECTIVE To determine the prevalence of mental health conditions among bariatric surgery candidates and recipients, to evaluate the association between preoperative mental health conditions and health outcomes following bariatric surgery, and to evaluate the association between surgery and the clinical course of mental health conditions. \n DATA SOURCES We searched PubMed, MEDLINE on OVID, and PsycINFO for studies published between January 1988 and November 2015. Study quality was assessed using an adapted tool for risk of bias; quality of evidence was rated based on GRADE (Grading of Recommendations Assessment, Development and Evaluation) criteria. \n FINDINGS We identified 68 publications meeting inclusion criteria: 59 reporting the prevalence of preoperative mental health conditions (65,363 patients) and 27 reporting associations between preoperative mental health conditions and postoperative outcomes (50,182 patients). Among patients seeking and undergoing bariatric surgery, the most common mental health conditions, based on random-effects estimates of prevalence, were depression (19% [95% CI, 14%-25%]) and binge eating disorder (17% [95% CI, 13%-21%]). There was conflicting evidence regarding the association between preoperative mental health conditions and postoperative weight loss. Neither depression nor binge eating disorder was consistently associated with differences in weight outcomes. Bariatric surgery was, however, consistently associated with postoperative decreases in the prevalence of depression (7 studies; 8%-74% decrease) and the severity of depressive symptoms (6 studies; 40%-70% decrease). \n CONCLUSIONS AND RELEVANCE Mental health conditions are common among bariatric surgery patients-in particular, depression and binge eating disorder. There is inconsistent evidence regarding the association between preoperative mental health conditions and postoperative weight loss. Moderate-quality evidence supports an association between bariatric surgery and lower rates of depression postoperatively.", "title": "Mental Health Conditions Among Patients Seeking and Undergoing Bariatric Surgery: A Meta-analysis." }, { "docid": "11414664", "text": "The insulin/IGF-1 (where IGF-1 is insulin-like growth factor-1) signaling pathway influences longevity, reproduction, and diapause in many organisms. Because of the fundamental importance of this system in animal physiology, we asked when during the animal's life it is required to regulate these different processes. We find that in Caenorhabditis elegans, the pathway acts during adulthood, to relatively advanced ages, to influence aging. In contrast, it regulates diapause during development. In addition, the pathway controls longevity and reproduction independently of one another. Together our findings show that life-span regulation can be dissociated temporally from phenotypes that might seem to decrease the quality of life.", "title": "Timing requirements for insulin/IGF-1 signaling in C. elegans." }, { "docid": "37029185", "text": "Although evaluation of the treatment of congestive heart failure is usually based on objective clinical outcomes, patient self-assessment is increasingly recognized as an important component of evaluation. A study was designed to measure the quality of life of 134 patients with symptoms of advanced heart failure who were being evaluated for possible heart transplantation. The patients' quality of life was assessed using a mix of subjective and objective measures, including functional status, physical symptoms, emotional state, and psychosocial adaptation. There was no significant relationship between patients' cardiac ejection fraction and any quality-of-life measures; however, the results of a 6-minute walking test, New York Heart Association classification, and self-reported functional status were all significantly correlated with psychosocial adjustment. Self-reported functional status, depression, and hostility accounted for 43% of the variance in total psychosocial adjustment to illness. These findings support the inclusion of quality of life as an outcome measure in any evaluation of treatment efficacy and suggest that interventions to improve the quality of life of patients with advanced heart failure need to be targeted at reducing depression and hostility and increasing daily activity levels.", "title": "Quality of life in patients with advanced heart failure." }, { "docid": "11201004", "text": "Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.", "title": "Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity." }, { "docid": "32421068", "text": "Objective To determine the availability of data on overall survival and quality of life benefits of cancer drugs approved in Europe. Design Retrospective cohort study. Setting Publicly accessible regulatory and scientific reports on cancer approvals by the European Medicines Agency (EMA) from 2009 to 2013.Main outcome measures Pivotal and postmarketing trials of cancer drugs according to their design features (randomisation, crossover, blinding), comparators, and endpoints. Availability and magnitude of benefit on overall survival or quality of life determined at time of approval and after market entry. Validated European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS) used to assess the clinical value of the reported gains in published studies of cancer drugs. Results From 2009 to 2013, the EMA approved the use of 48 cancer drugs for 68 indications. Of these, eight indications (12%) were approved on the basis of a single arm study. At the time of market approval, there was significant prolongation of survival in 24 of the 68 (35%). The magnitude of the benefit on overall survival ranged from 1.0 to 5.8 months (median 2.7 months). At the time of market approval, there was an improvement in quality of life in seven of 68 indications (10%). Out of 44 indications for which there was no evidence of a survival gain at the time of market authorisation, in the subsequent postmarketing period there was evidence for extension of life in three (7%) and reported benefit on quality of life in five (11%). Of the 68 cancer indications with EMA approval, and with a median of 5.4 years' follow-up (minimum 3.3 years, maximum 8.1 years), only 35 (51%) had shown a significant improvement in survival or quality of life, while 33 (49%) remained uncertain. Of 23 indications associated with a survival benefit that could be scored with the ESMO-MCBS tool, the benefit was judged to be clinically meaningful in less than half (11/23, 48%).Conclusions This systematic evaluation of oncology approvals by the EMA in 2009-13 shows that most drugs entered the market without evidence of benefit on survival or quality of life. At a minimum of 3.3 years after market entry, there was still no conclusive evidence that these drugs either extended or improved life for most cancer indications. When there were survival gains over existing treatment options or placebo, they were often marginal.", "title": "Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by European Medicines Agency: retrospective cohort study of drug approvals 2009-13" }, { "docid": "1831916", "text": "OBJECTIVE Impulsivity and inattention related to attention deficit hyperactivity disorder (ADHD) may increase food intake and, consequently, weight gain. However, findings on the association between obesity/overweight and ADHD are mixed. The authors conducted a meta-analysis to estimate this association. \n METHOD A broad range of databases was searched through Aug. 31, 2014. Unpublished studies were also obtained. Study quality was rated with the Newcastle-Ottawa Scale. Random-effects models were used. \n RESULTS Forty-two studies that included a total of 728,136 individuals (48,161 ADHD subjects; 679,975 comparison subjects) were retained. A significant association between obesity and ADHD was found for both children (odds ratio=1.20, 95% CI=1.05-1.37) and adults (odds ratio=1.55, 95% CI=1.32-1.81). The pooled prevalence of obesity was increased by about 70% in adults with ADHD (28.2%, 95% CI=22.8-34.4) compared with those without ADHD (16.4%, 95% CI=13.4-19.9), and by about 40% in children with ADHD (10.3%, 95% CI=7.9-13.3) compared with those without ADHD (7.4%, 95% CI=5.4-10.1). The significant association between ADHD and obesity remained when limited to studies 1) reporting odds ratios adjusted for possible confounding factors; 2) diagnosing ADHD by direct interview; and 3) using directly measured height and weight. Gender, study setting, study country, and study quality did not moderate the association between obesity and ADHD. ADHD was also significantly associated with overweight. Individuals medicated for ADHD were not at higher risk of obesity. \n CONCLUSIONS This study provides meta-analytic evidence for a significant association between ADHD and obesity/overweight. Further research should address possible underlying mechanisms and the long-term effects of ADHD treatments on weight in individuals with both ADHD and obesity.", "title": "Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis." }, { "docid": "12584053", "text": "OBJECTIVE To measure whether the benefits of a single education and self management structured programme for people with newly diagnosed type 2 diabetes mellitus are sustained at three years. \n DESIGN Three year follow-up of a multicentre cluster randomised controlled trial in primary care, with randomisation at practice level. \n SETTING 207 general practices in 13 primary care sites in the United Kingdom. \n PARTICIPANTS 731 of the 824 participants included in the original trial were eligible for follow-up. Biomedical data were collected on 604 (82.6%) and questionnaire data on 513 (70.1%) participants. \n INTERVENTION A structured group education programme for six hours delivered in the community by two trained healthcare professional educators compared with usual care. \n MAIN OUTCOME MEASURES The primary outcome was glycated haemoglobin (HbA(1c)) levels. The secondary outcomes were blood pressure, weight, blood lipid levels, smoking status, physical activity, quality of life, beliefs about illness, depression, emotional impact of diabetes, and drug use at three years. \n RESULTS HbA(1c) levels at three years had decreased in both groups. After adjusting for baseline and cluster the difference was not significant (difference -0.02, 95% confidence interval -0.22 to 0.17). The groups did not differ for the other biomedical and lifestyle outcomes and drug use. The significant benefits in the intervention group across four out of five health beliefs seen at 12 months were sustained at three years (P<0.01). Depression scores and quality of life did not differ at three years. \n CONCLUSION A single programme for people with newly diagnosed type 2 diabetes mellitus showed no difference in biomedical or lifestyle outcomes at three years although there were sustained improvements in some illness beliefs. \n TRIAL REGISTRATION Current Controlled Trials ISRCTN17844016.", "title": "Effectiveness of a diabetes education and self management programme (DESMOND) for people with newly diagnosed type 2 diabetes mellitus: three year follow-up of a cluster randomised controlled trial in primary care" }, { "docid": "26199970", "text": "Objective: It is unclear whether blockade of the angiotensin system has effects on mental health. Our objective was to determine the impact of angiotensin converting enzyme inhibitors and angiotensin II type 1 receptor (AT1R) blockers on mental health domain of quality of life. Study design: Meta-analysis of published literature. Data sources: PubMed and clinicaltrials.gov databases. The last search was conducted in January 2017. Study selection: Randomized controlled trials comparing any angiotensin converting enzyme inhibitor or AT1R blocker versus placebo or non-angiotensin converting enzyme inhibitor or non-AT1R blocker were selected. Study participants were adults without any major physical symptoms. We adhered to meta-analysis reporting methods as per PRISMA and the Cochrane Collaboration. Data synthesis: Eleven studies were included in the analysis. When compared with placebo or other antihypertensive medications, AT1R blockers and angiotensin converting enzyme inhibitors were associated with improved overall quality of life (standard mean difference = 0.11, 95% confidence interval = [0.08, 0.14], p < 0.0001), positive wellbeing (standard mean difference = 0.11, 95% confidence interval = [0.05, 0.17], p < 0.0001), mental (standard mean difference = 0.15, 95% confidence interval = [0.06, 0.25], p < 0.0001), and anxiety (standard mean difference = 0.08, 95% confidence interval = [0.01, 0.16], p < 0.0001) domains of QoL. No significant difference was found for the depression domain (standard mean difference = 0.05, 95% confidence interval = [0.02, 0.12], p = 0.15). Conclusions: Use of angiotensin blockers and inhibitors for the treatment of hypertension in otherwise healthy adults is associated with improved mental health domains of quality of life. Mental health quality of life was a secondary outcome in the included studies. Research specifically designed to analyse the usefulness of drugs that block the angiotensin system is necessary to properly evaluate this novel psychiatric target.", "title": "Blockade of the angiotensin system improves mental health domain of quality of life: A meta-analysis of randomized clinical trials" }, { "docid": "15041758", "text": "OBJECTIVE To evaluate the effectiveness of integrated care for chronic physical diseases and depression in reducing disability and improving quality of life. \n DESIGN A randomised controlled trial of multi-condition collaborative care for depression and poorly controlled diabetes and/or risk factors for coronary heart disease compared with usual care among middle aged and elderly people SETTING Fourteen primary care clinics in Seattle, Washington. PARTICIPANTS Patients with diabetes or coronary heart disease, or both, and blood pressure above 140/90 mm Hg, low density lipoprotein concentration >3.37 mmol/L, or glycated haemoglobin 8.5% or higher, and PHQ-9 depression scores of ≥ 10. \n INTERVENTION A 12 month intervention to improve depression, glycaemic control, blood pressure, and lipid control by integrating a \"treat to target\" programme for diabetes and risk factors for coronary heart disease with collaborative care for depression. The intervention combined self management support, monitoring of disease control, and pharmacotherapy to control depression, hyperglycaemia, hypertension, and hyperlipidaemia. \n MAIN OUTCOME MEASURES Social role disability (Sheehan disability scale), global quality of life rating, and World Health Organization disability assessment schedule (WHODAS-2) scales to measure disabilities in activities of daily living (mobility, self care, household maintenance). \n RESULTS Of 214 patients enrolled (106 intervention and 108 usual care), disability and quality of life measures were obtained for 97 intervention patients at six months (92%) and 92 at 12 months (87%), and for 96 usual care patients at six months (89%) and 92 at 12 months (85%). Improvements from baseline on the Sheehan disability scale (-0.9, 95% confidence interval -1.5 to -0.2; P = 0.006) and global quality of life rating (0.7, 0.2 to 1.2; P = 0.005) were significantly greater at six and 12 months in patients in the intervention group. There was a trend toward greater improvement in disabilities in activities of daily living (-1.5, -3.3 to 0.4; P = 0.10). \n CONCLUSIONS Integrated care that covers chronic physical disease and comorbid depression can reduce social role disability and enhance global quality of life. Trial registration Clinical Trials NCT00468676.", "title": "Functional outcomes of multi-condition collaborative care and successful ageing: results of randomised trial" }, { "docid": "1084345", "text": "Chaperone-mediated autophagy (CMA), a selective mechanism for degradation of cytosolic proteins in lysosomes, contributes to the removal of altered proteins as part of the cellular quality-control systems. We have previously found that CMA activity declines in aged organisms and have proposed that this failure in cellular clearance could contribute to the accumulation of altered proteins, the abnormal cellular homeostasis and, eventually, the functional loss characteristic of aged organisms. To determine whether these negative features of aging can be prevented by maintaining efficient autophagic activity until late in life, in this work we have corrected the CMA defect in aged rodents. We have generated a double transgenic mouse model in which the amount of the lysosomal receptor for CMA, previously shown to decrease in abundance with age, can be modulated. We have analyzed in this model the consequences of preventing the age-dependent decrease in receptor abundance in aged rodents at the cellular and organ levels. We show here that CMA activity is maintained until advanced ages if the decrease in the receptor abundance is prevented and that preservation of autophagic activity is associated with lower intracellular accumulation of damaged proteins, better ability to handle protein damage and improved organ function.", "title": "Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function" }, { "docid": "439670", "text": "The objective of this study is to assess and quantify the risk for gestational diabetes mellitus (GDM) according to prepregnancy maternal body mass index (BMI). The design is a systematic review of observational studies published in the last 30 years. Four electronic databases were searched for publications (1977-2007). BMI was elected as the only measure of obesity, and all diagnostic criteria for GDM were accepted. Studies with selective screening for GDM were excluded. There were no language restrictions. The methodological quality of primary studies was assessed. Some 1745 citations were screened, and 70 studies (two unpublished) involving 671 945 women were included (59 cohorts and 11 case-controls). Most studies were of high or medium quality. Compared with women with a normal BMI, the unadjusted pooled odds ratio (OR) of an underweight woman developing GDM was 0.75 (95% confidence interval [CI] 0.69 to 0.82). The OR for overweight, moderately obese and morbidly obese women were 1.97 (95% CI 1.77 to 2.19), 3.01 (95% CI 2.34 to 3.87) and 5.55 (95% CI 4.27 to 7.21) respectively. For every 1 kg m(-2) increase in BMI, the prevalence of GDM increased by 0.92% (95% CI 0.73 to 1.10). The risk of GDM is positively associated with prepregnancy BMI. This information is important when counselling women planning a pregnancy.", "title": "Prepregnancy BMI and the risk of gestational diabetes: a systematic review of the literature with meta-analysis." }, { "docid": "2820454", "text": "BACKGROUND Pulmonary hypertension (PH) is associated with restricted physical capacity, limited quality of life, and a poor prognosis because of right heart failure. The present study is the first prospective randomized study to evaluate the effects of exercise and respiratory training in patients with severe symptomatic PH. \n METHODS AND RESULTS Thirty patients with PH (21 women; mean age, 50+/-13 years; mean pulmonary artery pressure, 50+/-15 mm Hg; mean World Health Organization [WHO] class, 2.9+/-0.5; pulmonary arterial hypertension, n=23; chronic thromboembolic PH, n=7) on stable disease-targeted medication were randomly assigned to a control (n=15) and a primary training (n=15) group. Medication remained unchanged during the study period. Primary end points were the changes from baseline to week 15 in the distance walked in 6 minutes and in scores of the Short Form Health Survey quality-of-life questionnaire. Changes in WHO functional class, Borg scale, and parameters of echocardiography and gas exchange also were assessed. At week 15, patients in the primary and secondary training groups had an improved 6-minute walking distance; the mean difference between the control and the primary training group was 111 m (95% confidence interval, 65 to 139 m; P<0.001). Exercise training was well tolerated and improved scores of quality of life, WHO functional class, peak oxygen consumption, oxygen consumption at the anaerobic threshold, and achieved workload. Systolic pulmonary artery pressure values at rest did not change significantly after 15 weeks of exercise and respiratory training (from 61+/-18 to 54+/-18 mm Hg) within the training group. \n CONCLUSIONS This study indicates that respiratory and physical training could be a promising adjunct to medical treatment in severe PH. The effects add to the beneficial results of modern medical treatment.", "title": "Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension." }, { "docid": "5145974", "text": "STUDY QUESTION In women undergoing IVF, are urinary bisphenol A (BPA) concentrations associated with ovarian response and early reproductive outcomes, including oocyte maturation and fertilization, Day 3 embryo quality and blastocyst formation? SUMMARY ANSWER Higher urinary BPA concentrations were found to be associated with decreased ovarian response, number of fertilized oocytes and decreased blastocyst formation. WHAT IS KNOWN ALREADY Experimental animal and in vitro studies have reported associations between BPA exposure and adverse reproductive outcomes. We previously reported an association between urinary BPA and decreased ovarian response [peak serum estradiol (E(2)) and oocyte count at the time of retrieval] in women undergoing IVF; however, there are limited human data on reproductive health outcomes, such as fertilization and embryo development. STUDY DESIGN, SIZE AND DURATION Prospective preconception cohort study. One hundred and seventy-four women aged 18-45 years and undergoing 237 IVF cycles were recruited at the Massachusetts General Hospital Fertility Center, Boston, MA, USA, between November 2004 and August 2010. These women were followed until they either had a live birth or discontinued treatment. Cryothaw and donor egg cycles were not included in the analysis. \n PARTICIPANTS/MATERIALS, SETTING AND METHODS Urinary BPA concentrations were measured by online solid-phase extraction-high-performance liquid chromatography-isotope dilution-tandem mass spectrometry. Mixed effect models, poisson regression and multivariate logistic regression models were used wherever appropriate to evaluate the association between cycle-specific urinary BPA concentrations and measures of ovarian response, oocyte maturation (metaphase II), fertilization, embryo quality and cleavage rate. We accounted for correlation among multiple IVF cycles in the same woman using generalized estimating equations. \n MAIN RESULTS AND THE ROLE OF CHANCE The geometric mean (SD) for urinary BPA concentrations was 1.50 (2.22) µg/l. After adjustment for age and other potential confounders (Day 3 serum FSH, smoking, BMI), there was a significant linear dose-response association between increased urinary BPA concentrations and decreased number of oocytes (overall and mature), decreased number of normally fertilized oocytes and decreased E(2) levels (mean decreases of 40, 253 and 471 pg/ml for urinary BPA quartiles 2, 3 and 4, when compared with the lowest quartile, respectively; P-value for trend = 0.001). The mean number of oocytes and normally fertilized oocytes decreased by 24 and 27%, respectively, for the highest versus the lowest quartile of urinary BPA (trend test P < 0.001 and 0.002, respectively). Women with urinary BPA above the lowest quartile had decreased blastocyst formation (trend test P-value = 0.08). LIMITATIONS AND REASONS FOR CAUTION Potential limitations include exposure misclassification due to the very short half-life of BPA and its high variability over time; uncertainty about the generalizability of the results to the general population of women conceiving naturally and limited sample. WIDER IMPLICATIONS OF THE FINDINGS The results from this extended study, using IVF as a model to study early reproductive health outcomes in humans, indicate a negative dose-response association between urinary BPA concentrations and serum peak E(2) and oocyte yield, confirming our previous findings. In addition, we found significantly decreased metaphase II oocyte count and number of normally fertilizing oocytes and a suggestive association between BPA urinary concentrations and decreased blastocyst formation, thus indicating that BPA may alter reproductive function in susceptible women undergoing IVF. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants ES009718 and ES000002 from the National Institute of Environmental Health Sciences and grant OH008578 from the National Institute for Occupational Safety and Health. None of the authors has actual or potential competing financial interests. DISCLAIMER The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.", "title": "Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF." }, { "docid": "19945096", "text": "OBJECTIVES To describe and explain the primary care experiences of people with multiple long-term conditions in England. \n DESIGN AND METHODS Using questionnaire data from 906,578 responders to the English 2012 General Practice Patient Survey, we describe the primary care experiences of patients with long-term conditions, including 583,143 patients who reported one or more long-term conditions. We employed mixed effect logistic regressions to analyse data on six items covering three care domains (access, continuity and communication) and a single item on overall primary care experience. We controlled for sociodemographic characteristics, and for general practice using a random effect, and further, controlled for, and explored the importance of, health-related quality of life measured using the EuroQoL (EQ-5D) scale. \n RESULTS Most patients with long-term conditions report a positive experience of care at their general practice (after adjusting for sociodemographic characteristics and general practice, range 74.0-93.1% reporting positive experience of care across seven questions) with only modest variation by type of condition. For all three domains of patient experience, an increasing number of comorbid conditions is associated with a reducing percentage of patients reporting a positive experience of care. For example, compared with respondents with no long-term condition, the OR for reporting a positive experience is 0.83 (95% CI 0.80 to 0.87) for respondents with four or more long-term conditions. However, this relationship is no longer observed after adjusting for health-related quality of life (OR (95% CI) single condition=1.23 (1.21 to 1.26); four or more conditions=1.31 (1.25 to 1.37)), with pain making the greatest difference among five quality of life variables included in the analysis. \n CONCLUSIONS Patients with multiple long-term conditions more frequently report worse experiences in primary care. However, patient-centred measures of health-related quality of life, especially pain, are more important than the number of conditions in explaining why patients with multiple long-term conditions report worse experiences of care.", "title": "Why do patients with multimorbidity in England report worse experiences in primary care? Evidence from the General Practice Patient Survey" }, { "docid": "25690516", "text": "The aim of the study was to evaluate whether treatment with recombinant human growth hormone (rhGH) affects the quality of life of young adults who were diagnosed as idiopathic short stature (ISS) during childhood, and whether their quality of life and aspects of the personality are different from normal. Experiences and expectations concerning rhGH treatment of the subjects and their parents were also investigated. Eighty-nine subjects were included into the study: 24 subjects (16M, 8F) were treated with rhGH from childhood, whereas 65 subjects (40M, 25F) were never treated. At the time of the interview all subjects had attained final height [mean (SD) -2.3 (0.9) SDS for Dutch references], and the age of the treated subjects was 20.5 (1.0) y, and 25.7 (3.5) y of the control subjects (p < 0.001). The level of education was similar, but the treated subjects had less often a partner compared to the control subjects (adjusted for age and gender, p < 0.001). The Nottingham Health Profile and Short Form 36 Health Survey showed no difference in general health state between treated and control subjects, and the healthy Dutch age-specific references (norm group). Although 74% of the subjects reported one or more negative events related to their height, and 61% would like to be taller, only 22% and 11% were willing to trade-off at Time Trade-Off and Standard Gamble, respectively. The personality of the subjects, which was measured by the Minnesota Multiphasic Personality Inventory, was not different from the norm group. The satisfaction with the rhGH treatment was high, as it had caused 12 (8) cm and 13 (7) cm gain in final height according to the subjects and parents, respectively. Based on initial predicted adult height (Bayley & Pinneau), this gain was only 3.3 (5.6) cm. We concluded that although the treated subjects had a partner less often when compared to the control subjects, the quality of life of subjects with ISS at adult age is normal and appears not to be affected by rhGH therapy, The treated subjects were very satisfied with the treatment, probably by overestimation of the final height gain.", "title": "Quality of life of young adults with idiopathic short stature: effect of growth hormone treatment. Dutch Growth Hormone Working Group." }, { "docid": "13027590", "text": "CONTEXT Chronic pelvic pain is a common condition with a major effect on health-related quality of life, work productivity, and health care use. Operative interruption of nerve trunks in the uterosacral ligaments by laparoscopic uterosacral nerve ablation (LUNA) is a treatment option for patients with chronic pelvic pain. \n OBJECTIVE To assess the effectiveness of LUNA in patients with chronic pelvic pain. \n DESIGN, SETTING, AND PARTICIPANTS Randomized controlled trial of 487 women with chronic pelvic pain lasting longer than 6 months without or with minimal endometriosis, adhesions, or pelvic inflammatory disease, who were recruited to the study by consultant gynecological surgeons from 18 UK hospitals between February 1998 and December 2005. Follow-up was conducted by questionnaires mailed at 3 and 6 months and at 1, 2, 3, and 5 years. \n INTERVENTION Bilateral LUNA or laparoscopy without pelvic denervation (no LUNA); participants were blinded to the treatment allocation. \n MAIN OUTCOME MEASURES The primary outcome was pain, which was assessed by a visual analogue scale. Data concerning the 3 types of pain (noncyclical pain, dysmenorrhea, and dyspareunia) were analyzed separately as was the worst pain level experienced from any of these 3 types of pain. The secondary outcome was health-related quality of life, which was measured using a generic instrument (EuroQoL EQ-5D and EQ-VAS). \n RESULTS After a median follow-up of 69 months, there were no significant differences reported on the visual analogue pain scales for the worst pain (mean difference between the LUNA group and the no LUNA group, -0.04 cm [95% confidence interval {CI}, -0.33 to 0.25 cm]; P = .80), noncyclical pain (-0.11 cm [95% CI, -0.50 to 0.29 cm]; P = .60), dysmenorrhea (-0.09 cm [95% CI, -0.49 to 0.30 cm]; P = .60), or dyspareunia (0.18 cm [95% CI, -0.22 to 0.62 cm]; P = .40). No differences were observed between the LUNA group and the no LUNA group for quality of life. \n CONCLUSION Among women with chronic pelvic pain, LUNA did not result in improvements in pain, dysmenorrhea, dyspareunia, or quality of life compared with laparoscopy without pelvic denervation. \n TRIAL REGISTRATION controlled-trials.com Identifier: ISRCTN41196151.", "title": "Laparoscopic uterosacral nerve ablation for alleviating chronic pelvic pain: a randomized controlled trial." }, { "docid": "3981244", "text": "Sexual health severely decreases with age. For males older than 40 years, erectile dysfunction (ED) is the most common sexual disorder. Although physical and psychological risk factors for ED have been identified, protective factors are yet to be determined. To date, no study has examined endocrine and psychosocial factors in parallel with regard to their modifying effect on the age-related increase in ED. Two hundred and seventy-one self-reporting healthy men aged between 40 and 75 years provided both psychometric data on sexual function and a set of potential psychosocial protective factors, and saliva samples for the analysis of steroid hormones and proinflammatory cytokines. Around 35% of the participants reported at least a mild form of ED. Direct associations with ED were identified for perceived general health, emotional support, relationship quality, intimacy motivation but not for steroid hormones or proinflammatory markers. Moderation analyses for the association between age and ED revealed positive effects for testosterone (T), dehydroepiandrosterone (DHEA), perceived general health, emotional support, intimacy motivation, and a negative effect for interleukin-6 (all p < .05; f2 > .17). Group differences between older men with and without ED emerged for T, DHEA, and psychometric measures such as perceived general health, emotional support, satisfaction with life, and intimacy motivation (all p < .05; d > .3). Both psychosocial and endocrine parameters moderated the association between age and sexual health. Perceived general health, emotional support, intimacy motivation, and relationship quality emerged as psychosocial protective factors against ED. Higher T and DHEA and lower interleukin-6 levels also buffered against an age-related increase in ED.", "title": "Psychobiological Protective Factors Modifying the Association Between Age and Sexual Health in Men: Findings From the Men’s Health 40+ Study" } ]
876
Obesity raises life quality.
[ { "docid": "195689316", "text": "BACKGROUND The main associations of body-mass index (BMI) with overall and cause-specific mortality can best be assessed by long-term prospective follow-up of large numbers of people. The Prospective Studies Collaboration aimed to investigate these associations by sharing data from many studies. \n METHODS Collaborative analyses were undertaken of baseline BMI versus mortality in 57 prospective studies with 894 576 participants, mostly in western Europe and North America (61% [n=541 452] male, mean recruitment age 46 [SD 11] years, median recruitment year 1979 [IQR 1975-85], mean BMI 25 [SD 4] kg/m(2)). The analyses were adjusted for age, sex, smoking status, and study. To limit reverse causality, the first 5 years of follow-up were excluded, leaving 66 552 deaths of known cause during a mean of 8 (SD 6) further years of follow-up (mean age at death 67 [SD 10] years): 30 416 vascular; 2070 diabetic, renal or hepatic; 22 592 neoplastic; 3770 respiratory; 7704 other. \n FINDINGS In both sexes, mortality was lowest at about 22.5-25 kg/m(2). Above this range, positive associations were recorded for several specific causes and inverse associations for none, the absolute excess risks for higher BMI and smoking were roughly additive, and each 5 kg/m(2) higher BMI was on average associated with about 30% higher overall mortality (hazard ratio per 5 kg/m(2) [HR] 1.29 [95% CI 1.27-1.32]): 40% for vascular mortality (HR 1.41 [1.37-1.45]); 60-120% for diabetic, renal, and hepatic mortality (HRs 2.16 [1.89-2.46], 1.59 [1.27-1.99], and 1.82 [1.59-2.09], respectively); 10% for neoplastic mortality (HR 1.10 [1.06-1.15]); and 20% for respiratory and for all other mortality (HRs 1.20 [1.07-1.34] and 1.20 [1.16-1.25], respectively). Below the range 22.5-25 kg/m(2), BMI was associated inversely with overall mortality, mainly because of strong inverse associations with respiratory disease and lung cancer. These inverse associations were much stronger for smokers than for non-smokers, despite cigarette consumption per smoker varying little with BMI. \n INTERPRETATION Although other anthropometric measures (eg, waist circumference, waist-to-hip ratio) could well add extra information to BMI, and BMI to them, BMI is in itself a strong predictor of overall mortality both above and below the apparent optimum of about 22.5-25 kg/m(2). The progressive excess mortality above this range is due mainly to vascular disease and is probably largely causal. At 30-35 kg/m(2), median survival is reduced by 2-4 years; at 40-45 kg/m(2), it is reduced by 8-10 years (which is comparable with the effects of smoking). The definite excess mortality below 22.5 kg/m(2) is due mainly to smoking-related diseases, and is not fully explained.", "title": "Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies." } ]
[ { "docid": "43220289", "text": "Extreme obesity is associated with severe psychiatric and somatic comorbidity and impairment of psychosocial functioning. Bariatric surgery is the most effective treatment not only with regard to weight loss but also with obesity-associated illnesses. Health-related psychological and psychosocial variables have been increasingly considered as important outcome variables of bariatric surgery. However, the long-term impact of bariatric surgery on psychological and psychosocial functioning is largely unclear. The aim of this study was to evaluate the relationship between the course of weight and psychological variables including depression, anxiety, health-related quality of life (HRQOL), and self-esteem up to 4 years after obesity surgery. By standardized questionnaires prior to (T1) and 1 year (T2), 2 years (T3), and 4 years (T4) after surgery, 148 patients (47 males (31.8 %), 101 females (68.2 %), mean age 38.8 ± 10.2 years) were assessed. On average, participants lost 24.6 % of their initial weight 1 year after surgery, 25.1 % after 2 years, and 22.3 % after 4 years. Statistical analysis revealed significant improvements in depressive symptoms, physical dimension of quality of life, and self-esteem with peak improvements 1 year after surgery. These improvements were largely maintained. Significant correlations between weight loss and improvements in depression, physical aspects of HRQOL (T2, T3, and T4), and self-esteem (T3) were observed. Corresponding to the considerable weight loss after bariatric surgery, important aspects of mental health improved significantly during the 4-year follow-up period. However, parallel to weight regain, psychological improvements showed a slow but not significant decline over time.", "title": "Psychological Outcome 4 Years after Restrictive Bariatric Surgery" }, { "docid": "5151024", "text": "BACKGROUND The diagnosis of hypertension has traditionally been based on blood-pressure measurements in the clinic, but home and ambulatory measurements better correlate with cardiovascular outcome, and ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. We aimed to compare the cost-effectiveness of different diagnostic strategies for hypertension. \n METHODS We did a Markov model-based probabilistic cost-effectiveness analysis. We used a hypothetical primary-care population aged 40 years or older with a screening blood-pressure measurement greater than 140/90 mm Hg and risk-factor prevalence equivalent to the general population. We compared three diagnostic strategies-further blood pressure measurement in the clinic, at home, and with an ambulatory monitor-in terms of lifetime costs, quality-adjusted life years, and cost-effectiveness. \n FINDINGS Ambulatory monitoring was the most cost-effective strategy for the diagnosis of hypertension for men and women of all ages. It was cost-saving for all groups (from -£56 [95% CI -105 to -10] in men aged 75 years to -£323 [-389 to -222] in women aged 40 years) and resulted in more quality-adjusted life years for men and women older than 50 years (from 0·006 [0·000 to 0·015] for women aged 60 years to 0·022 [0·012 to 0·035] for men aged 70 years). This finding was robust when assessed with a wide range of deterministic sensitivity analyses around the base case, but was sensitive if home monitoring was judged to have equal test performance to ambulatory monitoring or if treatment was judged effective irrespective of whether an individual was hypertensive. \n INTERPRETATION Ambulatory monitoring as a diagnostic strategy for hypertension after an initial raised reading in the clinic would reduce misdiagnosis and save costs. Additional costs from ambulatory monitoring are counterbalanced by cost savings from better targeted treatment. Ambulatory monitoring is recommended for most patients before the start of antihypertensive drugs. \n FUNDING National Institute for Health Research and the National Institute for Health and Clinical Excellence.", "title": "Cost-effectiveness of options for the diagnosis of high blood pressure in primary care: a modelling study." }, { "docid": "37029185", "text": "Although evaluation of the treatment of congestive heart failure is usually based on objective clinical outcomes, patient self-assessment is increasingly recognized as an important component of evaluation. A study was designed to measure the quality of life of 134 patients with symptoms of advanced heart failure who were being evaluated for possible heart transplantation. The patients' quality of life was assessed using a mix of subjective and objective measures, including functional status, physical symptoms, emotional state, and psychosocial adaptation. There was no significant relationship between patients' cardiac ejection fraction and any quality-of-life measures; however, the results of a 6-minute walking test, New York Heart Association classification, and self-reported functional status were all significantly correlated with psychosocial adjustment. Self-reported functional status, depression, and hostility accounted for 43% of the variance in total psychosocial adjustment to illness. These findings support the inclusion of quality of life as an outcome measure in any evaluation of treatment efficacy and suggest that interventions to improve the quality of life of patients with advanced heart failure need to be targeted at reducing depression and hostility and increasing daily activity levels.", "title": "Quality of life in patients with advanced heart failure." }, { "docid": "32421068", "text": "Objective To determine the availability of data on overall survival and quality of life benefits of cancer drugs approved in Europe. Design Retrospective cohort study. Setting Publicly accessible regulatory and scientific reports on cancer approvals by the European Medicines Agency (EMA) from 2009 to 2013.Main outcome measures Pivotal and postmarketing trials of cancer drugs according to their design features (randomisation, crossover, blinding), comparators, and endpoints. Availability and magnitude of benefit on overall survival or quality of life determined at time of approval and after market entry. Validated European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS) used to assess the clinical value of the reported gains in published studies of cancer drugs. Results From 2009 to 2013, the EMA approved the use of 48 cancer drugs for 68 indications. Of these, eight indications (12%) were approved on the basis of a single arm study. At the time of market approval, there was significant prolongation of survival in 24 of the 68 (35%). The magnitude of the benefit on overall survival ranged from 1.0 to 5.8 months (median 2.7 months). At the time of market approval, there was an improvement in quality of life in seven of 68 indications (10%). Out of 44 indications for which there was no evidence of a survival gain at the time of market authorisation, in the subsequent postmarketing period there was evidence for extension of life in three (7%) and reported benefit on quality of life in five (11%). Of the 68 cancer indications with EMA approval, and with a median of 5.4 years' follow-up (minimum 3.3 years, maximum 8.1 years), only 35 (51%) had shown a significant improvement in survival or quality of life, while 33 (49%) remained uncertain. Of 23 indications associated with a survival benefit that could be scored with the ESMO-MCBS tool, the benefit was judged to be clinically meaningful in less than half (11/23, 48%).Conclusions This systematic evaluation of oncology approvals by the EMA in 2009-13 shows that most drugs entered the market without evidence of benefit on survival or quality of life. At a minimum of 3.3 years after market entry, there was still no conclusive evidence that these drugs either extended or improved life for most cancer indications. When there were survival gains over existing treatment options or placebo, they were often marginal.", "title": "Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by European Medicines Agency: retrospective cohort study of drug approvals 2009-13" }, { "docid": "1831916", "text": "OBJECTIVE Impulsivity and inattention related to attention deficit hyperactivity disorder (ADHD) may increase food intake and, consequently, weight gain. However, findings on the association between obesity/overweight and ADHD are mixed. The authors conducted a meta-analysis to estimate this association. \n METHOD A broad range of databases was searched through Aug. 31, 2014. Unpublished studies were also obtained. Study quality was rated with the Newcastle-Ottawa Scale. Random-effects models were used. \n RESULTS Forty-two studies that included a total of 728,136 individuals (48,161 ADHD subjects; 679,975 comparison subjects) were retained. A significant association between obesity and ADHD was found for both children (odds ratio=1.20, 95% CI=1.05-1.37) and adults (odds ratio=1.55, 95% CI=1.32-1.81). The pooled prevalence of obesity was increased by about 70% in adults with ADHD (28.2%, 95% CI=22.8-34.4) compared with those without ADHD (16.4%, 95% CI=13.4-19.9), and by about 40% in children with ADHD (10.3%, 95% CI=7.9-13.3) compared with those without ADHD (7.4%, 95% CI=5.4-10.1). The significant association between ADHD and obesity remained when limited to studies 1) reporting odds ratios adjusted for possible confounding factors; 2) diagnosing ADHD by direct interview; and 3) using directly measured height and weight. Gender, study setting, study country, and study quality did not moderate the association between obesity and ADHD. ADHD was also significantly associated with overweight. Individuals medicated for ADHD were not at higher risk of obesity. \n CONCLUSIONS This study provides meta-analytic evidence for a significant association between ADHD and obesity/overweight. Further research should address possible underlying mechanisms and the long-term effects of ADHD treatments on weight in individuals with both ADHD and obesity.", "title": "Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis." }, { "docid": "26199970", "text": "Objective: It is unclear whether blockade of the angiotensin system has effects on mental health. Our objective was to determine the impact of angiotensin converting enzyme inhibitors and angiotensin II type 1 receptor (AT1R) blockers on mental health domain of quality of life. Study design: Meta-analysis of published literature. Data sources: PubMed and clinicaltrials.gov databases. The last search was conducted in January 2017. Study selection: Randomized controlled trials comparing any angiotensin converting enzyme inhibitor or AT1R blocker versus placebo or non-angiotensin converting enzyme inhibitor or non-AT1R blocker were selected. Study participants were adults without any major physical symptoms. We adhered to meta-analysis reporting methods as per PRISMA and the Cochrane Collaboration. Data synthesis: Eleven studies were included in the analysis. When compared with placebo or other antihypertensive medications, AT1R blockers and angiotensin converting enzyme inhibitors were associated with improved overall quality of life (standard mean difference = 0.11, 95% confidence interval = [0.08, 0.14], p < 0.0001), positive wellbeing (standard mean difference = 0.11, 95% confidence interval = [0.05, 0.17], p < 0.0001), mental (standard mean difference = 0.15, 95% confidence interval = [0.06, 0.25], p < 0.0001), and anxiety (standard mean difference = 0.08, 95% confidence interval = [0.01, 0.16], p < 0.0001) domains of QoL. No significant difference was found for the depression domain (standard mean difference = 0.05, 95% confidence interval = [0.02, 0.12], p = 0.15). Conclusions: Use of angiotensin blockers and inhibitors for the treatment of hypertension in otherwise healthy adults is associated with improved mental health domains of quality of life. Mental health quality of life was a secondary outcome in the included studies. Research specifically designed to analyse the usefulness of drugs that block the angiotensin system is necessary to properly evaluate this novel psychiatric target.", "title": "Blockade of the angiotensin system improves mental health domain of quality of life: A meta-analysis of randomized clinical trials" }, { "docid": "15041758", "text": "OBJECTIVE To evaluate the effectiveness of integrated care for chronic physical diseases and depression in reducing disability and improving quality of life. \n DESIGN A randomised controlled trial of multi-condition collaborative care for depression and poorly controlled diabetes and/or risk factors for coronary heart disease compared with usual care among middle aged and elderly people SETTING Fourteen primary care clinics in Seattle, Washington. PARTICIPANTS Patients with diabetes or coronary heart disease, or both, and blood pressure above 140/90 mm Hg, low density lipoprotein concentration >3.37 mmol/L, or glycated haemoglobin 8.5% or higher, and PHQ-9 depression scores of ≥ 10. \n INTERVENTION A 12 month intervention to improve depression, glycaemic control, blood pressure, and lipid control by integrating a \"treat to target\" programme for diabetes and risk factors for coronary heart disease with collaborative care for depression. The intervention combined self management support, monitoring of disease control, and pharmacotherapy to control depression, hyperglycaemia, hypertension, and hyperlipidaemia. \n MAIN OUTCOME MEASURES Social role disability (Sheehan disability scale), global quality of life rating, and World Health Organization disability assessment schedule (WHODAS-2) scales to measure disabilities in activities of daily living (mobility, self care, household maintenance). \n RESULTS Of 214 patients enrolled (106 intervention and 108 usual care), disability and quality of life measures were obtained for 97 intervention patients at six months (92%) and 92 at 12 months (87%), and for 96 usual care patients at six months (89%) and 92 at 12 months (85%). Improvements from baseline on the Sheehan disability scale (-0.9, 95% confidence interval -1.5 to -0.2; P = 0.006) and global quality of life rating (0.7, 0.2 to 1.2; P = 0.005) were significantly greater at six and 12 months in patients in the intervention group. There was a trend toward greater improvement in disabilities in activities of daily living (-1.5, -3.3 to 0.4; P = 0.10). \n CONCLUSIONS Integrated care that covers chronic physical disease and comorbid depression can reduce social role disability and enhance global quality of life. Trial registration Clinical Trials NCT00468676.", "title": "Functional outcomes of multi-condition collaborative care and successful ageing: results of randomised trial" }, { "docid": "439670", "text": "The objective of this study is to assess and quantify the risk for gestational diabetes mellitus (GDM) according to prepregnancy maternal body mass index (BMI). The design is a systematic review of observational studies published in the last 30 years. Four electronic databases were searched for publications (1977-2007). BMI was elected as the only measure of obesity, and all diagnostic criteria for GDM were accepted. Studies with selective screening for GDM were excluded. There were no language restrictions. The methodological quality of primary studies was assessed. Some 1745 citations were screened, and 70 studies (two unpublished) involving 671 945 women were included (59 cohorts and 11 case-controls). Most studies were of high or medium quality. Compared with women with a normal BMI, the unadjusted pooled odds ratio (OR) of an underweight woman developing GDM was 0.75 (95% confidence interval [CI] 0.69 to 0.82). The OR for overweight, moderately obese and morbidly obese women were 1.97 (95% CI 1.77 to 2.19), 3.01 (95% CI 2.34 to 3.87) and 5.55 (95% CI 4.27 to 7.21) respectively. For every 1 kg m(-2) increase in BMI, the prevalence of GDM increased by 0.92% (95% CI 0.73 to 1.10). The risk of GDM is positively associated with prepregnancy BMI. This information is important when counselling women planning a pregnancy.", "title": "Prepregnancy BMI and the risk of gestational diabetes: a systematic review of the literature with meta-analysis." }, { "docid": "2820454", "text": "BACKGROUND Pulmonary hypertension (PH) is associated with restricted physical capacity, limited quality of life, and a poor prognosis because of right heart failure. The present study is the first prospective randomized study to evaluate the effects of exercise and respiratory training in patients with severe symptomatic PH. \n METHODS AND RESULTS Thirty patients with PH (21 women; mean age, 50+/-13 years; mean pulmonary artery pressure, 50+/-15 mm Hg; mean World Health Organization [WHO] class, 2.9+/-0.5; pulmonary arterial hypertension, n=23; chronic thromboembolic PH, n=7) on stable disease-targeted medication were randomly assigned to a control (n=15) and a primary training (n=15) group. Medication remained unchanged during the study period. Primary end points were the changes from baseline to week 15 in the distance walked in 6 minutes and in scores of the Short Form Health Survey quality-of-life questionnaire. Changes in WHO functional class, Borg scale, and parameters of echocardiography and gas exchange also were assessed. At week 15, patients in the primary and secondary training groups had an improved 6-minute walking distance; the mean difference between the control and the primary training group was 111 m (95% confidence interval, 65 to 139 m; P<0.001). Exercise training was well tolerated and improved scores of quality of life, WHO functional class, peak oxygen consumption, oxygen consumption at the anaerobic threshold, and achieved workload. Systolic pulmonary artery pressure values at rest did not change significantly after 15 weeks of exercise and respiratory training (from 61+/-18 to 54+/-18 mm Hg) within the training group. \n CONCLUSIONS This study indicates that respiratory and physical training could be a promising adjunct to medical treatment in severe PH. The effects add to the beneficial results of modern medical treatment.", "title": "Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension." }, { "docid": "19945096", "text": "OBJECTIVES To describe and explain the primary care experiences of people with multiple long-term conditions in England. \n DESIGN AND METHODS Using questionnaire data from 906,578 responders to the English 2012 General Practice Patient Survey, we describe the primary care experiences of patients with long-term conditions, including 583,143 patients who reported one or more long-term conditions. We employed mixed effect logistic regressions to analyse data on six items covering three care domains (access, continuity and communication) and a single item on overall primary care experience. We controlled for sociodemographic characteristics, and for general practice using a random effect, and further, controlled for, and explored the importance of, health-related quality of life measured using the EuroQoL (EQ-5D) scale. \n RESULTS Most patients with long-term conditions report a positive experience of care at their general practice (after adjusting for sociodemographic characteristics and general practice, range 74.0-93.1% reporting positive experience of care across seven questions) with only modest variation by type of condition. For all three domains of patient experience, an increasing number of comorbid conditions is associated with a reducing percentage of patients reporting a positive experience of care. For example, compared with respondents with no long-term condition, the OR for reporting a positive experience is 0.83 (95% CI 0.80 to 0.87) for respondents with four or more long-term conditions. However, this relationship is no longer observed after adjusting for health-related quality of life (OR (95% CI) single condition=1.23 (1.21 to 1.26); four or more conditions=1.31 (1.25 to 1.37)), with pain making the greatest difference among five quality of life variables included in the analysis. \n CONCLUSIONS Patients with multiple long-term conditions more frequently report worse experiences in primary care. However, patient-centred measures of health-related quality of life, especially pain, are more important than the number of conditions in explaining why patients with multiple long-term conditions report worse experiences of care.", "title": "Why do patients with multimorbidity in England report worse experiences in primary care? Evidence from the General Practice Patient Survey" }, { "docid": "20606520", "text": "OBJECTIVES To assess mortality, quality of life (QOL), and quality-adjusted life-years (QALYs) for critically ill elderly patients. \n DESIGN Cross-sectional survey. \n SETTING A ten-bed medical-surgical intensive care unit (ICU) in a tertiary care university hospital. \n PATIENTS The study group included 882 elderly patients (> or =65 yrs of age) and 1,827 controls (<65 yrs of age) treated during the period of 1995 to 2000. \n INTERVENTION None. \n MEASUREMENTS AND MAIN RESULTS Mortality was assessed during the ICU and hospital stays, and 12, 24, and 36 months after ICU discharge. The cumulative 3-yr mortality rate among the elderly (57%) was higher (p < .05) than that among the controls (40%). The majority (66%) of the elderly nonsurvivors died within 1 month after intensive care discharge. All elderly patients with day-1 Sequential Organ Failure (SOFA) scores >15 died during the ICU stay. QOL was assessed with EQ-5D and RAND-36 measures from 10 months to 7 yrs after discharge. The majority (88%) of the elderly survivors assessed their present health state as good or satisfactory; 66% found it to be similar or better than 12 months earlier, and 48% similar or better than their preadmission state. QOL measures by RAND-36 revealed that aging decreased their competencies most in physical functioning, physical role limitations, and vitality, but the elderly had better values in mental health than the controls. However, QALYs of the elderly respondents were 21% to 35% lower than the mean QALY minus 2 sd units of the age- and gender-adjusted general population. \n CONCLUSIONS High age alone is not a valid reason to refuse intensive care, but the benefits perceived by intensive care seem to decrease with aging, if reflected as QALYs. However, 97% of the elderly survivors lived at home and 88% of them considered their QOL satisfactory or good after hospital discharge. Therefore, more reliable information on the outcome for the elderly is clearly needed.", "title": "Long-term survival, quality of life, and quality-adjusted life-years among critically ill elderly patients." }, { "docid": "25690516", "text": "The aim of the study was to evaluate whether treatment with recombinant human growth hormone (rhGH) affects the quality of life of young adults who were diagnosed as idiopathic short stature (ISS) during childhood, and whether their quality of life and aspects of the personality are different from normal. Experiences and expectations concerning rhGH treatment of the subjects and their parents were also investigated. Eighty-nine subjects were included into the study: 24 subjects (16M, 8F) were treated with rhGH from childhood, whereas 65 subjects (40M, 25F) were never treated. At the time of the interview all subjects had attained final height [mean (SD) -2.3 (0.9) SDS for Dutch references], and the age of the treated subjects was 20.5 (1.0) y, and 25.7 (3.5) y of the control subjects (p < 0.001). The level of education was similar, but the treated subjects had less often a partner compared to the control subjects (adjusted for age and gender, p < 0.001). The Nottingham Health Profile and Short Form 36 Health Survey showed no difference in general health state between treated and control subjects, and the healthy Dutch age-specific references (norm group). Although 74% of the subjects reported one or more negative events related to their height, and 61% would like to be taller, only 22% and 11% were willing to trade-off at Time Trade-Off and Standard Gamble, respectively. The personality of the subjects, which was measured by the Minnesota Multiphasic Personality Inventory, was not different from the norm group. The satisfaction with the rhGH treatment was high, as it had caused 12 (8) cm and 13 (7) cm gain in final height according to the subjects and parents, respectively. Based on initial predicted adult height (Bayley & Pinneau), this gain was only 3.3 (5.6) cm. We concluded that although the treated subjects had a partner less often when compared to the control subjects, the quality of life of subjects with ISS at adult age is normal and appears not to be affected by rhGH therapy, The treated subjects were very satisfied with the treatment, probably by overestimation of the final height gain.", "title": "Quality of life of young adults with idiopathic short stature: effect of growth hormone treatment. Dutch Growth Hormone Working Group." }, { "docid": "13027590", "text": "CONTEXT Chronic pelvic pain is a common condition with a major effect on health-related quality of life, work productivity, and health care use. Operative interruption of nerve trunks in the uterosacral ligaments by laparoscopic uterosacral nerve ablation (LUNA) is a treatment option for patients with chronic pelvic pain. \n OBJECTIVE To assess the effectiveness of LUNA in patients with chronic pelvic pain. \n DESIGN, SETTING, AND PARTICIPANTS Randomized controlled trial of 487 women with chronic pelvic pain lasting longer than 6 months without or with minimal endometriosis, adhesions, or pelvic inflammatory disease, who were recruited to the study by consultant gynecological surgeons from 18 UK hospitals between February 1998 and December 2005. Follow-up was conducted by questionnaires mailed at 3 and 6 months and at 1, 2, 3, and 5 years. \n INTERVENTION Bilateral LUNA or laparoscopy without pelvic denervation (no LUNA); participants were blinded to the treatment allocation. \n MAIN OUTCOME MEASURES The primary outcome was pain, which was assessed by a visual analogue scale. Data concerning the 3 types of pain (noncyclical pain, dysmenorrhea, and dyspareunia) were analyzed separately as was the worst pain level experienced from any of these 3 types of pain. The secondary outcome was health-related quality of life, which was measured using a generic instrument (EuroQoL EQ-5D and EQ-VAS). \n RESULTS After a median follow-up of 69 months, there were no significant differences reported on the visual analogue pain scales for the worst pain (mean difference between the LUNA group and the no LUNA group, -0.04 cm [95% confidence interval {CI}, -0.33 to 0.25 cm]; P = .80), noncyclical pain (-0.11 cm [95% CI, -0.50 to 0.29 cm]; P = .60), dysmenorrhea (-0.09 cm [95% CI, -0.49 to 0.30 cm]; P = .60), or dyspareunia (0.18 cm [95% CI, -0.22 to 0.62 cm]; P = .40). No differences were observed between the LUNA group and the no LUNA group for quality of life. \n CONCLUSION Among women with chronic pelvic pain, LUNA did not result in improvements in pain, dysmenorrhea, dyspareunia, or quality of life compared with laparoscopy without pelvic denervation. \n TRIAL REGISTRATION controlled-trials.com Identifier: ISRCTN41196151.", "title": "Laparoscopic uterosacral nerve ablation for alleviating chronic pelvic pain: a randomized controlled trial." }, { "docid": "42913391", "text": "BACKGROUND The objective was to quantify the health-related quality of life (HRQL) of children treated for acute lymphoblastic leukemia (ALL) and identify specific disabilities for remediation. PROCEDURE Two types of subjects were included: ALL patients 5 plus years old in a multi-center clinical trial and general population control groups. Patients were assessed during all four major phases of active treatment and approximately 2 years after treatment. Health status and HRQL were measured using HEALTH UTILITIES INDEX® (HUI®) Mark 2 (HUI2) and Mark 3 (HUI3). HRQL scores were used to calculate quality-adjusted life years (QALYs). Excess disability rates identified attributes for remediation. \n RESULTS HUI assessments (n = 749) were collected during the five phases. Mean HRQL increased from induction through the post-treatment phase (P < 0.001). There were no significant demographic or treatment effects on HRQL, except for type of asparaginase during continuation therapy (P = 0.005 for HUI2 and P = 0.007 for HUI3). Differences in mean HRQL scores between patients and controls were important (P < 0.001) during the active treatment phases but not during the post-treatment phase. Relative to controls, patients lost approximately 0.2 QALYs during active treatment. Disability was evident in mobility/ambulation, emotion, self-care and pain, and declined over time. \n CONCLUSIONS Patients with ALL experienced important but declining deficits in HRQL during active treatment phases: Equivalent to losing approximately 2 months of life in perfect health. HRQL within the 2-years post-treatment phase was similar to controls. The policy challenge is to develop new treatment protocols producing fewer disabilities in mobility/ambulation, emotion, self-care, and pain without compromising survival.", "title": "Health-related quality of life among children with acute lymphoblastic leukemia." }, { "docid": "3190689", "text": "BACKGROUND Laparoscopic adhesiolysis for chronic abdominal pain is controversial and is not evidence based. We aimed to test our hypothesis that laparoscopic adhesiolysis leads to substantial pain relief and improvement in quality of life in patients with adhesions and chronic abdominal pain. \n METHODS Patients had diagnostic laparoscopy for chronic abdominal pain attributed to adhesions; other causes for their pain had been excluded. If adhesions were confirmed during diagnostic laparoscopy, patients were randomly assigned either to laparoscopic adhesiolysis or no treatment. Treatment allocation was concealed from patients, and assessors were unaware of patients' treatment and outcome. Pain was assessed for 1 year by visual analogue score (VAS) score (scale 0-100), pain change score, use of analgesics, and quality of life score. Analysis was by intention to treat. \n FINDINGS Of 116 patients enrolled for diagnostic laparoscopy, 100 were randomly allocated either laparoscopic adhesiolysis (52) or no treatment (48). Both groups reported substantial pain relief and a significantly improved quality of life, but there was no difference between the groups (mean change from baseline of VAS score at 12 months: difference 3 points, p=0.53; 95% CI -7 to 13). \n INTERPRETATION Although laparoscopic adhesiolysis relieves chronic abdominal pain, it is not more beneficial than diagnostic laparoscopy alone. Therefore, laparoscopic adhesiolysis cannot be recommended as a treatment for adhesions in patients with chronic abdominal pain.", "title": "Laparoscopic adhesiolysis in patients with chronic abdominal pain: a blinded randomised controlled multi-centre trial." }, { "docid": "4506414", "text": "BACKGROUND The associations of blood pressure with the different manifestations of incident cardiovascular disease in a contemporary population have not been compared. In this study, we aimed to analyse the associations of blood pressure with 12 different presentations of cardiovascular disease. \n METHODS We used linked electronic health records from 1997 to 2010 in the CALIBER (CArdiovascular research using LInked Bespoke studies and Electronic health Records) programme to assemble a cohort of 1·25 million patients, 30 years of age or older and initially free from cardiovascular disease, a fifth of whom received blood pressure-lowering treatments. We studied the heterogeneity in the age-specific associations of clinically measured blood pressure with 12 acute and chronic cardiovascular diseases, and estimated the lifetime risks (up to 95 years of age) and cardiovascular disease-free life-years lost adjusted for other risk factors at index ages 30, 60, and 80 years. This study is registered at ClinicalTrials.gov, number NCT01164371. \n FINDINGS During 5·2 years median follow-up, we recorded 83,098 initial cardiovascular disease presentations. In each age group, the lowest risk for cardiovascular disease was in people with systolic blood pressure of 90-114 mm Hg and diastolic blood pressure of 60-74 mm Hg, with no evidence of a J-shaped increased risk at lower blood pressures. The effect of high blood pressure varied by cardiovascular disease endpoint, from strongly positive to no effect. Associations with high systolic blood pressure were strongest for intracerebral haemorrhage (hazard ratio 1·44 [95% CI 1·32-1·58]), subarachnoid haemorrhage (1·43 [1·25-1·63]), and stable angina (1·41 [1·36-1·46]), and weakest for abdominal aortic aneurysm (1·08 [1·00-1·17]). Compared with diastolic blood pressure, raised systolic blood pressure had a greater effect on angina, myocardial infarction, and peripheral arterial disease, whereas raised diastolic blood pressure had a greater effect on abdominal aortic aneurysm than did raised systolic pressure. Pulse pressure associations were inverse for abdominal aortic aneurysm (HR per 10 mm Hg 0·91 [95% CI 0·86-0·98]) and strongest for peripheral arterial disease (1·23 [1·20-1·27]). People with hypertension (blood pressure ≥140/90 mm Hg or those receiving blood pressure-lowering drugs) had a lifetime risk of overall cardiovascular disease at 30 years of age of 63·3% (95% CI 62·9-63·8) compared with 46·1% (45·5-46·8) for those with normal blood pressure, and developed cardiovascular disease 5·0 years earlier (95% CI 4·8-5·2). Stable and unstable angina accounted for most (43%) of the cardiovascular disease-free years of life lost associated with hypertension from index age 30 years, whereas heart failure and stable angina accounted for the largest proportion (19% each) of years of life lost from index age 80 years. \n INTERPRETATION The widely held assumptions that blood pressure has strong associations with the occurrence of all cardiovascular diseases across a wide age range, and that diastolic and systolic associations are concordant, are not supported by the findings of this high-resolution study. Despite modern treatments, the lifetime burden of hypertension is substantial. These findings emphasise the need for new blood pressure-lowering strategies, and will help to inform the design of randomised trials to assess them. \n FUNDING Medical Research Council, National Institute for Health Research, and Wellcome Trust.", "title": "Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people" }, { "docid": "14843502", "text": "BACKGROUND Self-reported health status in underserved population of prisoners has not been extensively explored. The purposes of this cross-sectional study were to assess self-reported health, quality of life, and access to health services in a sample of male prisoners of Italy. \n METHODS A total of 908 prisoners received a self-administered anonymous questionnaire pertaining on demographic and detention characteristics, self-reported health status and quality of life, access to health services, lifestyles, and participation to preventive, social, and rehabilitation programs. A total of 650 prisoners agreed to participate in the study and returned the questionnaire. \n RESULTS Respectively, 31.6% and 43.5% of prisoners reported a poor perceived health status and a poor quality of life, and 60% admitted that their health was worsened or greatly worsened during the prison stay. Older age, lower education, psychiatric disorders, self-reported health problems on prison entry, and suicide attempts within prison were significantly associated with a perceived worse health status. At the time of the questionnaire delivery, 30% of the prisoners self-reported a health problem present on prison entry and 82% present at the time of the survey. Most frequently reported health problems included dental health problems, arthritis or joint pain, eye problems, gastrointestinal diseases, emotional problems, and high blood pressure. On average, prisoners encountered general practitioners six times during the previous year, and the frequency of medical encounters was significantly associated with older age, sentenced prisoners, psychiatric disorders, and self-reported health problems on prison entry. \n CONCLUSIONS The findings suggest that prisoners have a perceived poor health status, specific care needs and health promotion programs are seldom offered. Programs for correction of risk behaviour and prevention of long-term effects of incarceration on prisoners' health are strongly needed.", "title": "Self-reported health status and access to health services in a sample of prisoners in Italy" }, { "docid": "17693849", "text": "BACKGROUND Appropriate understanding of health information by patients with cardiovascular disease (CVD) is fundamental for better management of risk factors and improved morbidity, which can also benefit their quality of life. \n OBJECTIVES To assess the relationship between health literacy and health-related quality of life (HRQoL) in patients with ischaemic heart disease (IHD), and to investigate the role of sociodemographic and clinical variables as possible confounders. \n METHODS Cross-sectional study of patients with IHD recruited from a stratified sample of general practices in two Australian states (Queensland and South Australia) between 2007 and 2009. Health literacy was measured using a validated questionnaire and classified as inadequate, marginal, or adequate. Physical and mental components of HRQoL were assessed using the Medical Outcomes Study Short Form (SF12) questionnaire. Analyses were adjusted for confounders (sociodemographic variables, clinical history of IHD, number of CVD comorbidities, and CVD risk factors) using multiple linear regression. \n RESULTS A total sample of 587 patients with IHD (mean age 72.0±8.4 years) was evaluated: 76.8% males, 84.2% retired or pensioner, and 51.4% with up to secondary educational level. Health literacy showed a mean of 39.6±6.7 points, with 14.3% (95%CI 11.8-17.3) classified as inadequate. Scores of the physical component of HRQoL were 39.6 (95%CI 37.1-42.1), 42.1 (95%CI 40.8-43.3) and 44.8 (95%CI 43.3-46.2) for inadequate, marginal, and adequate health literacy, respectively (p-value for trend = 0.001). This association persisted after adjustment for confounders. Health literacy was not associated with the mental component of HRQoL (p-value = 0.482). Advanced age, lower educational level, disadvantaged socioeconomic position, and a larger number of CVD comorbidities adversely affected both, health literacy and HRQoL. CONCLUSION Inadequate health literacy is a contributing factor to poor physical functioning in patients with IHD. Increasing health literacy may improve HRQoL and reduce the impact of IHD among patients with this chronic CVD.", "title": "Effect of Health Literacy on Quality of Life amongst Patients with Ischaemic Heart Disease in Australian General Practice" }, { "docid": "12658073", "text": "The gut microbiota has been proposed as an environmental factor that affects the development of metabolic and inflammatory diseases in mammals. Recent reports indicate that gut bacteria-derived lipopolysaccharide (LPS) can initiate obesity and insulin resistance in mice; however, the molecular interactions responsible for microbial regulation of host metabolism and mediators of inflammation have not been studied in detail. Hepatic serum amyloid A (SAA) proteins are markers and proposed mediators of inflammation that exhibit increased levels in serum of insulin-resistant mice. Adipose tissue-derived SAA3 displays monocyte chemotactic activity and may play a role in metabolic inflammation associated with obesity and insulin resistance. To investigate a potential mechanistic link between the intestinal microbiota and induction of proinflammatory host factors, we performed molecular analyses of germ-free, conventionally raised and genetically modified Myd88-/- mouse models. SAA3 expression was determined to be significantly augmented in adipose (9.9+/-1.9-fold; P<0.001) and colonic tissue (7.0+/-2.3-fold; P<0.05) by the presence of intestinal microbes. In the colon, we provided evidence that SAA3 is partially regulated through the Toll-like receptor (TLR)/MyD88/NF-kappaB signaling axis. We identified epithelial cells and macrophages as cellular sources of SAA3 in the colon and found that colonic epithelial expression of SAA3 may be part of an NF-kappaB-dependent response to LPS from gut bacteria. In vitro experiments showed that LPS treatments of both epithelial cells and macrophages induced SAA3 expression (27.1+/-2.5-fold vs. 1.6+/-0.1-fold, respectively). Our data suggest that LPS, and potentially other products of the indigenous gut microbiota, might elevate cytokine expression in tissues and thus exacerbate chronic low-grade inflammation observed in obesity.", "title": "Regulation of Serum Amyloid A3 (SAA3) in Mouse Colonic Epithelium and Adipose Tissue by the Intestinal Microbiota" }, { "docid": "41310252", "text": "The epidemiological evidence that a high-fat diet promotes the development of obesity is considered suggestive but not definitive. The purpose of this paper is to provide a review of various epidemiological methods that have been used to address this issue as well as an updated summary of the existing evidence. Ecological studies describing dietary fat intake and obesity at the population level provide mixed results and are likely to be biased by both confounding and unknown data quality factors that differ systematically across the populations studied. Cross-sectional studies are generally in agreement that the concentration of fat in the diet is positively associated with relative weight. Prospective studies of diet in relation to subsequent weight change give inconsistent results. This may be due to behavioural factors such as dieting in response to weight gain; in addition, this type of study rarely takes into account the possible interaction between genetic predisposition and dietary fat in promoting weight gain. Finally, intervention studies in free-living subjects are considered, providing evidence of a consistent but short-lived period of active weight loss on low-fat diets. The experimental evidence on this relationship is more conclusive than the epidemiological evidence, although biological mechanisms remain controversial. Some areas for future epidemiological research involve: longitudinal studies of dietary fat intake as a predictor of growth in children; observational studies relating total dietary fat and specific types of fat to overall as well as regional adiposity; and randomized intervention studies of the effect of low-fat diets with particular emphasis on and familial predisposition to obesity and other possible modifying factors.", "title": "Dietary fat and obesity: evidence from epidemiology." } ]
877
Occipital activation levels are associated with auditory spatial performance in parietal regions of the brain.
[ { "docid": "313394", "text": "Blind individuals often demonstrate enhanced nonvisual perceptual abilities. However, the neural substrate that underlies this improved performance remains to be fully understood. An earlier behavioral study demonstrated that some early-blind people localize sounds more accurately than sighted controls using monaural cues. In order to investigate the neural basis of these behavioral differences in humans, we carried out functional imaging studies using positron emission tomography and a speaker array that permitted pseudo-free-field presentations within the scanner. During binaural sound localization, a sighted control group showed decreased cerebral blood flow in the occipital lobe, which was not seen in early-blind individuals. During monaural sound localization (one ear plugged), the subgroup of early-blind subjects who were behaviorally superior at sound localization displayed two activation foci in the occipital cortex. This effect was not seen in blind persons who did not have superior monaural sound localization abilities, nor in sighted individuals. The degree of activation of one of these foci was strongly correlated with sound localization accuracy across the entire group of blind subjects. The results show that those blind persons who perform better than sighted persons recruit occipital areas to carry out auditory localization under monaural conditions. We therefore conclude that computations carried out in the occipital cortex specifically underlie the enhanced capacity to use monaural cues. Our findings shed light not only on intermodal compensatory mechanisms, but also on individual differences in these mechanisms and on inhibitory patterns that differ between sighted individuals and those deprived of vision early in life.", "title": "A Functional Neuroimaging Study of Sound Localization: Visual Cortex Activity Predicts Performance in Early-Blind Individuals" } ]
[ { "docid": "3095620", "text": "The homologues of the two distinct architectonic areas 44 and 45 that constitute the anterior language zone (Broca's region) in the human ventrolateral frontal lobe were recently established in the macaque monkey. Although we know that the inferior parietal lobule and the lateral temporal cortical region project to the ventrolateral frontal cortex, we do not know which of the several cortical areas found in those regions project to the homologues of Broca's region in the macaque monkey and by means of which white matter pathways. We have used the autoradiographic method, which permits the establishment of the cortical area from which axons originate (i.e., the site of injection), the precise course of the axons in the white matter, and their termination within particular cortical areas, to examine the parietal and temporal connections to area 44 and the two subdivisions of area 45 (i.e., areas 45A and 45B). The results demonstrated a ventral temporo-frontal stream of fibers that originate from various auditory, multisensory, and visual association cortical areas in the intermediate superolateral temporal region. These axons course via the extreme capsule and target most strongly area 45 with a more modest termination in area 44. By contrast, a dorsal stream of axons that originate from various cortical areas in the inferior parietal lobule and the adjacent caudal superior temporal sulcus was found to target both areas 44 and 45. These axons course in the superior longitudinal fasciculus, with some axons originating from the ventral inferior parietal lobule and the adjacent superior temporal sulcus arching and forming a simple arcuate fasciculus. The cortex of the most rostral part of the inferior parietal lobule is preferentially linked with the ventral premotor cortex (ventral area 6) that controls the orofacial musculature. The cortex of the intermediate part of the inferior parietal lobule is linked with both areas 44 and 45. These findings demonstrate the posterior parietal and temporal connections of the ventrolateral frontal areas, which, in the left hemisphere of the human brain, were adapted for various aspects of language production. These precursor circuits that are found in the nonlinguistic, nonhuman, primate brain also exist in the human brain. The possible reasons why these areas were adapted for language use in the human brain are discussed. The results throw new light on the prelinguistic precursor circuitry of Broca's region and help understand functional interactions between Broca's ventrolateral frontal region and posterior parietal and temporal association areas.", "title": "Distinct Parietal and Temporal Pathways to the Homologues of Broca's Area in the Monkey" }, { "docid": "6431384", "text": "Although the auditory cortex plays a necessary role in sound localization, physiological investigations in the cortex reveal inhomogeneous sampling of auditory space that is difficult to reconcile with localization behavior under the assumption of local spatial coding. Most neurons respond maximally to sounds located far to the left or right side, with few neurons tuned to the frontal midline. Paradoxically, psychophysical studies show optimal spatial acuity across the frontal midline. In this paper, we revisit the problem of inhomogeneous spatial sampling in three fields of cat auditory cortex. In each field, we confirm that neural responses tend to be greatest for lateral positions, but show the greatest modulation for near-midline source locations. Moreover, identification of source locations based on cortical responses shows sharp discrimination of left from right but relatively inaccurate discrimination of locations within each half of space. Motivated by these findings, we explore an opponent-process theory in which sound-source locations are represented by differences in the activity of two broadly tuned channels formed by contra- and ipsilaterally preferring neurons. Finally, we demonstrate a simple model, based on spike-count differences across cortical populations, that provides bias-free, level-invariant localization—and thus also a solution to the “binding problem” of associating spatial information with other nonspatial attributes of sounds.", "title": "Location Coding by Opponent Neural Populations in the Auditory Cortex" }, { "docid": "14437255", "text": "UNLABELLED Congruent audiovisual speech enhances our ability to comprehend a speaker, even in noise-free conditions. When incongruent auditory and visual information is presented concurrently, it can hinder a listener's perception and even cause him or her to perceive information that was not presented in either modality. Efforts to investigate the neural basis of these effects have often focused on the special case of discrete audiovisual syllables that are spatially and temporally congruent, with less work done on the case of natural, continuous speech. Recent electrophysiological studies have demonstrated that cortical response measures to continuous auditory speech can be easily obtained using multivariate analysis methods. Here, we apply such methods to the case of audiovisual speech and, importantly, present a novel framework for indexing multisensory integration in the context of continuous speech. Specifically, we examine how the temporal and contextual congruency of ongoing audiovisual speech affects the cortical encoding of the speech envelope in humans using electroencephalography. We demonstrate that the cortical representation of the speech envelope is enhanced by the presentation of congruent audiovisual speech in noise-free conditions. Furthermore, we show that this is likely attributable to the contribution of neural generators that are not particularly active during unimodal stimulation and that it is most prominent at the temporal scale corresponding to syllabic rate (2-6 Hz). Finally, our data suggest that neural entrainment to the speech envelope is inhibited when the auditory and visual streams are incongruent both temporally and contextually. SIGNIFICANCE STATEMENT Seeing a speaker's face as he or she talks can greatly help in understanding what the speaker is saying. This is because the speaker's facial movements relay information about what the speaker is saying, but also, importantly, when the speaker is saying it. Studying how the brain uses this timing relationship to combine information from continuous auditory and visual speech has traditionally been methodologically difficult. Here we introduce a new approach for doing this using relatively inexpensive and noninvasive scalp recordings. Specifically, we show that the brain's representation of auditory speech is enhanced when the accompanying visual speech signal shares the same timing. Furthermore, we show that this enhancement is most pronounced at a time scale that corresponds to mean syllable length.", "title": "Congruent Visual Speech Enhances Cortical Entrainment to Continuous Auditory Speech in Noise-Free Conditions." }, { "docid": "8524891", "text": "OBJECTIVE White matter hyperintensities (WMHs) are areas of increased signal on T2-weighted magnetic resonance imaging (MRI) scans that most commonly reflect small vessel cerebrovascular disease. Increased WMH volume is associated with risk and progression of Alzheimer's disease (AD). These observations are typically interpreted as evidence that vascular abnormalities play an additive, independent role contributing to symptom presentation, but not core features of AD. We examined the severity and distribution of WMH in presymptomatic PSEN1, PSEN2, and APP mutation carriers to determine the extent to which WMH manifest in individuals genetically determined to develop AD. \n METHODS The study comprised participants (n = 299; age = 39.03 ± 10.13) from the Dominantly Inherited Alzheimer Network, including 184 (61.5%) with a mutation that results in AD and 115 (38.5%) first-degree relatives who were noncarrier controls. We calculated the estimated years from expected symptom onset (EYO) by subtracting the affected parent's symptom onset age from the participant's age. Baseline MRI data were analyzed for total and regional WMH. Mixed-effects piece-wise linear regression was used to examine WMH differences between carriers and noncarriers with respect to EYO. \n RESULTS Mutation carriers had greater total WMH volumes, which appeared to increase approximately 6 years before expected symptom onset. Effects were most prominent for the parietal and occipital lobe, which showed divergent effects as early as 22 years before estimated onset. \n INTERPRETATION Autosomal-dominant AD is associated with increased WMH well before expected symptom onset. The findings suggest the possibility that WMHs are a core feature of AD, a potential therapeutic target, and a factor that should be integrated into pathogenic models of the disease. Ann Neurol 2016;79:929-939.", "title": "White matter hyperintensities are a core feature of Alzheimer's disease: Evidence from the dominantly inherited Alzheimer network." }, { "docid": "3099497", "text": "If an auditory scene consists of many spatially separated sound sources, how many sound sources can be processed by the auditory system? Experiment I determined how many speech sources could be localized simultaneously on the azimuth plane. Different words were played from multiple loudspeakers, and listeners reported the total number of sound sources and their individual locations. In experiment II the accuracy of localizing one speech source in a mixture of multiple speech sources was determined. An extra sound source was added to an existing set of sound sources, and the task was to localize that extra source. In experiment III the setup and task were the same as in experiment I, except that the sounds were tones. The results showed that the maximum number of sound sources that listeners could perceive was limited to approximately four spatially separated speech signals and three for tonal signals. The localization errors increased along with the increase of total number of sound sources. When four or more speech sources already existed, the accuracy in localizing an additional source was near chance.", "title": "How many images are in an auditory scene?" }, { "docid": "37583120", "text": "OBJECTIVE Obesity and being overweight during adulthood have been consistently linked to increased risk for development of dementia later in life, especially Alzheimer's disease. They have also been associated with cognitive dysfunction and brain structural alterations in otherwise healthy adults. Although proton magnetic resonance spectroscopy may distinguish between neuronal and glial components of the brain and may point to neurobiological mechanisms underlying brain atrophy and cognitive changes, no spectroscopic studies have yet assessed the relationships between adiposity and brain metabolites. \n METHODS We have utilized magnetic resonance imaging and proton magnetic resonance spectroscopic imaging data from 50 healthy middle-aged participants (mean age, 41.7 +/- 8.5 years; 17 women), who were scanned as control subjects for another study. \n RESULTS After adjustment for age and sex, greater body mass indices (BMIs) correlated with: (1) lower concentrations of N-acetylaspartate (spectroscopic marker of neuronal viability) in frontal (p = 0.001), parietal (p = 0.006), and temporal (p = 0.008) white matter; (2) lower N-acetylaspartate in frontal gray matter (p = 0.01); and (3) lower concentrations of choline-containing metabolites (associated with membrane metabolism) in frontal white matter (p = 0.05). \n INTERPRETATION These results suggest that increased BMI at midlife is associated with neuronal and/or myelin abnormalities, primarily in the frontal lobe. Because white matter in the frontal lobes is more prone to the effects of aging than in other lobes, our results may reflect accelerated aging in individuals with high levels of adiposity. Thus, greater BMI may increase the odds of developing an age-related disease, such as Alzheimer's disease.", "title": "Body mass index and magnetic resonance markers of brain integrity in adults." }, { "docid": "10765888", "text": "Neurogenesis is known to take place in the adult brain. This work identifies T lymphocytes and microglia as being important to the maintenance of hippocampal neurogenesis and spatial learning abilities in adulthood. Hippocampal neurogenesis induced by an enriched environment was associated with the recruitment of T cells and the activation of microglia. In immune-deficient mice, hippocampal neurogenesis was markedly impaired and could not be enhanced by environmental enrichment, but was restored and boosted by T cells recognizing a specific CNS antigen. CNS-specific T cells were also found to be required for spatial learning and memory and for the expression of brain-derived neurotrophic factor in the dentate gyrus, implying that a common immune-associated mechanism underlies different aspects of hippocampal plasticity and cell renewal in the adult brain.", "title": "Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood" }, { "docid": "4489217", "text": "BACKGROUND Intratumor heterogeneity may foster tumor evolution and adaptation and hinder personalized-medicine strategies that depend on results from single tumor-biopsy samples. \n METHODS To examine intratumor heterogeneity, we performed exome sequencing, chromosome aberration analysis, and ploidy profiling on multiple spatially separated samples obtained from primary renal carcinomas and associated metastatic sites. We characterized the consequences of intratumor heterogeneity using immunohistochemical analysis, mutation functional analysis, and profiling of messenger RNA expression. \n RESULTS Phylogenetic reconstruction revealed branched evolutionary tumor growth, with 63 to 69% of all somatic mutations not detectable across every tumor region. Intratumor heterogeneity was observed for a mutation within an autoinhibitory domain of the mammalian target of rapamycin (mTOR) kinase, correlating with S6 and 4EBP phosphorylation in vivo and constitutive activation of mTOR kinase activity in vitro. Mutational intratumor heterogeneity was seen for multiple tumor-suppressor genes converging on loss of function; SETD2, PTEN, and KDM5C underwent multiple distinct and spatially separated inactivating mutations within a single tumor, suggesting convergent phenotypic evolution. Gene-expression signatures of good and poor prognosis were detected in different regions of the same tumor. Allelic composition and ploidy profiling analysis revealed extensive intratumor heterogeneity, with 26 of 30 tumor samples from four tumors harboring divergent allelic-imbalance profiles and with ploidy heterogeneity in two of four tumors. \n CONCLUSIONS Intratumor heterogeneity can lead to underestimation of the tumor genomics landscape portrayed from single tumor-biopsy samples and may present major challenges to personalized-medicine and biomarker development. Intratumor heterogeneity, associated with heterogeneous protein function, may foster tumor adaptation and therapeutic failure through Darwinian selection. (Funded by the Medical Research Council and others.).", "title": "Intratumor heterogeneity and branched evolution revealed by multiregion sequencing." }, { "docid": "41239107", "text": "In this study, we investigated the presence and role of immunoproteasome and its LMP2 subunit polymorphism at codon 60 in Alzheimer's disease (AD). Immunoproteasome was present in brain areas such as hippocampus and cerebellum and localized in neurons, astrocytes and endothelial cells. A higher expression of immunoproteasome was found in brain of AD patients than in brain of non-demented elderly, being its expression in young brain negligible or absent. Furthermore, AD affected regions showed a partial decrease in proteasome trypsin-like activity. The study of LMP2 polymorphism (R/H) showed that it does not influence LMP2 expression (neither the mRNA nor mature protein) in brain tissue. However, control brain areas of AD patients carrying the RR genotype showed an increased proteasome activity in comparison with RH carriers. To test whether this effect of the genotype might be related to AD onset we performed a genetic study, which allowed us to exclude an association of LMP2 codon 60 polymorphism with AD onset, despite its influence on the proteasome activity in human brain.", "title": "Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains." }, { "docid": "10624000", "text": "During continuous speech, lip movements provide visual temporal signals that facilitate speech processing. Here, using MEG we directly investigated how these visual signals interact with rhythmic brain activity in participants listening to and seeing the speaker. First, we investigated coherence between oscillatory brain activity and speaker's lip movements and demonstrated significant entrainment in visual cortex. We then used partial coherence to remove contributions of the coherent auditory speech signal from the lip-brain coherence. Comparing this synchronization between different attention conditions revealed that attending visual speech enhances the coherence between activity in visual cortex and the speaker's lips. Further, we identified a significant partial coherence between left motor cortex and lip movements and this partial coherence directly predicted comprehension accuracy. Our results emphasize the importance of visually entrained and attention-modulated rhythmic brain activity for the enhancement of audiovisual speech processing.", "title": "Lip movements entrain the observers’ low-frequency brain oscillations to facilitate speech intelligibility" }, { "docid": "41182002", "text": "The perception of spatially distributed sound sources was investigated by conducting two listening experiments in anechoic conditions with 13 loudspeakers evenly distributed in the frontal horizontal plane emitting incoherent noise signals. In the first experiment, widely distributed sound sources with gaps in their distribution emitted pink noise. The results indicated that the exact loudspeaker distribution could not be perceived accurately and that the width of the distribution was perceived to be narrower than it was in reality. Up to three spatially distributed loudspeakers that were simultaneously emitting sound could be individually perceived. In addition, the number of loudspeakers that were indicated as emitting sound was smaller than the actual number. In the second experiment, a reference with 13 loudspeakers and test cases with fewer loudspeakers were presented and their perceived spatial difference was rated. The effect of the noise bandwidth was of particular interest. Noise with different bandwidths centered around 500 and 4000 Hz was used. The results indicated that when the number of loudspeakers was increased from four to seven, the perceived auditory event was very similar to that perceived with 13 loudspeakers at all bandwidths. The perceived differences were larger in wideband noise than in narrow-band noise.", "title": "Directional perception of distributed sound sources." }, { "docid": "712320", "text": "We have developed a mass microscope (mass spectrometry imager with spatial resolution higher than the naked eye) equipped with an atmospheric pressure ion-source chamber for laser desorption/ionization (AP-LDI) and a quadrupole ion trap time-of-flight (QIT-TOF) analyzer. The optical microscope combined with the mass spectrometer permitted us to precisely determine the relevant tissue region prior to performing imaging mass spectrometry (IMS). An ultraviolet laser tightly focused with a triplet lens was used to achieve high spatial resolution. An atmospheric pressure ion-source chamber enables us to analyze fresh samples with minimal loss of intrinsic water or volatile compounds. Mass-microscopic AP-LDI imaging of freshly cut ginger rhizome sections revealed that 6-gingerol ([M + K](+)at m/z 333.15, positive mode; [M - H](-) at m/z 293.17, negative mode) and the monoterpene ([M + K](+) at m/z 191.09), which are the compounds related to pungency and flavor, respectively, were localized in oil drop-containing organelles. AP-LDI-tandem MS/MS analyses were applied to compare authentic signals from freshly cut ginger directly with the standard reagent. Thus, our atmosphere-imaging mass spectrometer enabled us to monitor a quality of plants at the organelle level.", "title": "Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope." }, { "docid": "2424794", "text": "Because children are becoming overweight, unhealthy, and unfit, understanding the neurocognitive benefits of an active lifestyle in childhood has important public health and educational implications. Animal research has indicated that aerobic exercise is related to increased cell proliferation and survival in the hippocampus as well as enhanced hippocampal-dependent learning and memory. Recent evidence extends this relationship to elderly humans by suggesting that high aerobic fitness levels in older adults are associated with increased hippocampal volume and superior memory performance. The present study aimed to further extend the link between fitness, hippocampal volume, and memory to a sample of preadolescent children. To this end, magnetic resonance imaging was employed to investigate whether higher- and lower-fit 9- and 10-year-old children showed differences in hippocampal volume and if the differences were related to performance on an item and relational memory task. Relational but not item memory is primarily supported by the hippocampus. Consistent with predictions, higher-fit children showed greater bilateral hippocampal volumes and superior relational memory task performance compared to lower-fit children. Hippocampal volume was also positively associated with performance on the relational but not the item memory task. Furthermore, bilateral hippocampal volume was found to mediate the relationship between fitness level (VO(2) max) and relational memory. No relationship between aerobic fitness, nucleus accumbens volume, and memory was reported, which strengthens the hypothesized specific effect of fitness on the hippocampus. The findings are the first to indicate that aerobic fitness may relate to the structure and function of the preadolescent human brain.", "title": "A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children." }, { "docid": "22107641", "text": "OBJECTIVE The purpose of this study was to determine whether microstructural abnormalities in the white matter of the dorsolateral prefrontal cortex are associated with late-life depression. \n METHOD Seventeen elderly depressed subjects were compared with 16 elderly subjects who were not depressed. Diffusion tensor imaging was used to measure the fractional anisotropy of the white matter in the dorsolateral prefrontal cortex's superior and middle frontal gyri bilaterally and in the left occipital lobe as a control region. The authors compared results between groups while controlling for age, sex, and comorbid medical disorders. \n RESULTS Even after controlling for age, sex, hypertension, and heart disease, the authors found significantly lower fractional anisotropy values in the right superior frontal gyrus white matter of depressed patients than comparison subjects. \n CONCLUSIONS Microstructural changes in the white matter of the right superior frontal gyrus are associated with late-life depression. Further work is needed to determine how these changes contribute to depression outcomes.", "title": "Late-life depression and microstructural abnormalities in dorsolateral prefrontal cortex white matter." }, { "docid": "36860856", "text": "Computer techniques readily extract from the brainwaves an orderly sequence of brain potentials locked in time to sound stimuli. The potentials that appear 8 to 80 msec after the stimulus resemble 3 or 4 cycles of a 40-Hz sine wave; we show here that these waves combined to form a single, stable, composite wave when the sounds are repeated at rates around 40 per sec. This phenomenon, the 40-Hz event-related potential (ERP), displays several properties of theoretical and practical interest. First, it reportedly disappears with surgical anesthesia, and it resembles similar phenomena in the visual and olfactory system, facts which suggest that adequate processing of sensory information may require cyclical brain events in the 30- to 50-Hz range. Second, latency and amplitude measurements on the 40-Hz ERP indicate it may contain useful information on the number and basilar membrane location of the auditory nerve fibers a given tone excites. Third, the response is present at sound intensities very close to normal adult thresholds for the audiometric frequencies, a fact that could have application in clinical hearing testing.", "title": "A 40-Hz auditory potential recorded from the human scalp." }, { "docid": "6036535", "text": "BACKGROUND There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. \n METHODOLOGY/HYPOTHESES We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. \n RESULTS Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. \n DISCUSSION/CONCLUSION Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing affinity. Investigations of neuroplasticity specifically in sportsmen might help to understand the neural mechanisms of expertise in general.", "title": "Structural Brain Correlates Associated with Professional Handball Playing" }, { "docid": "34189936", "text": "Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm arising from the mesothelial cells lining the parietal pleura and it exhibits poor prognosis. Although there has been significant progress in MPM treatment, development of more efficient therapeutic approaches is needed. BMAL1 is a core component of the circadian clock machinery and its constitutive overexpression in MPM has been reported. Here, we demonstrate that BMAL1 may serve as a molecular target for MPM. The majority of MPM cell lines and a subset of MPM clinical specimens expressed higher levels of BMAL1 compared to a nontumorigenic mesothelial cell line (MeT-5A) and normal parietal pleural specimens, respectively. A serum shock induced a rhythmical BMAL1 expression change in MeT-5A but not in ACC-MESO-1, suggesting that the circadian rhythm pathway is deregulated in MPM cells. BMAL1 knockdown suppressed proliferation and anchorage-dependent and independent clonal growth in two MPM cell lines (ACC-MESO-1 and H290) but not in MeT-5A. Notably, BMAL1 depletion resulted in cell cycle disruption with a substantial increase in apoptotic and polyploidy cell population in association with downregulation of Wee1, cyclin B and p21(WAF1/CIP1) and upregulation of cyclin E expression. BMAL1 knockdown induced mitotic catastrophe as denoted by disruption of cell cycle regulators and induction of drastic morphological changes including micronucleation and multiple nuclei in ACC-MESO-1 cells that expressed the highest level of BMAL1. Taken together, these findings indicate that BMAL1 has a critical role in MPM and could serve as an attractive therapeutic target for MPM.", "title": "The circadian clock gene BMAL1 is a novel therapeutic target for malignant pleural mesothelioma." }, { "docid": "42330403", "text": "Numerosity judgments of simultaneous talkers were examined. Listeners were required to report the number of talkers heard when this number varied (1 to 13). Spatial location of talkers (1 or 6 locations), duration of talker voices (0.8 s, 5.0 s, and 15.0 s), and gender arrangement of talkers also were manipulated in four experiments. In all experiments, the proportion of correct numerosity judgments monotonically decreased as talker numbers increased. Perceptual limits, defined as talker numbers with proportion correct scores of 0.5, varied between 3 to 5 talkers, on average, depending on listening conditions, and were significantly higher for spatially separated talkers, for the longer voices, and for the mixed gender voices (Experiments 1, 2, and 3). In addition, Experiment 4 found that average numerosity response times increased monotonically over a range of one to four talkers. These results support the idea that, before counting talkers, listeners perceptually segregate talkers to render numerosity judgments. They also suggest that our functional auditory world for simultaneous voices may consist of, at most, three to five talkers depending on listening situations. In light of these results, possible causes for such perceptual limits are discussed.", "title": "Perceptual limits in a simulated \"Cocktail party\"." }, { "docid": "30351165", "text": "Cerebral apolipoprotein E (apoE) has been implicated in neuronal protection and repair. Due to the variable levels and types of estrogen receptors within different brain regions, the effect of estrogen on apoE and the mechanism of this effect may vary within different regions. Ovariectomized female C57BL/6 mice were treated with pharmacological levels of 17 beta-estradiol or placebo for 5 days, resulting in supraphysiological plasma levels of estradiol in the treated mice. ApoE and glial fibrillary acidic protein (GFAP) levels were measured in the cortex, hippocampus and diencephalon. 17 beta-Estradiol up-regulated apoE but not GFAP in the cortex and diencephalon, whereas in the hippocampus, GFAP and apoE were equally up-regulated. Treatment of estrogen receptor (ER) alpha knockout mice with 17 beta-estradiol or treatment of C57BL/6 mice with 17 alpha-estradiol, a poor estrogen receptor agonist, specifically induced apoE in the cortex, but not in the diencephalon. These results indicate that 17 beta-estradiol effects on apoE are either directly or indirectly mediated by ER alpha in the diencephalon, while the effects in the cortex may be mediated by a non-classical mechanism or by ER beta. Measurement of mRNA levels in estrogen versus placebo-treated wild-type mice indicated that the effect of 17 beta-estradiol on apoE was not associated with changes in apoE mRNA levels.", "title": "Brain region-specific up-regulation of mouse apolipoprotein E by pharmacological estrogen treatments." } ]
881
Omnivores produce less trimethylamine N-oxide from dietary I-carnitine than vegans.
[ { "docid": "14803797", "text": "Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.", "title": "Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis" } ]
[ { "docid": "6327940", "text": "Amino acids modulate the secretion of both insulin and glucagon; the composition of dietary protein therefore has the potential to influence the balance of glucagon and insulin activity. Soy protein, as well as many other vegan proteins, are higher in non-essential amino acids than most animal-derived food proteins, and as a result should preferentially favor glucagon production. Acting on hepatocytes, glucagon promotes (and insulin inhibits) cAMP-dependent mechanisms that down-regulate lipogenic enzymes and cholesterol synthesis, while up-regulating hepatic LDL receptors and production of the IGF-I antagonist IGFBP-1. The insulin-sensitizing properties of many vegan diets--high in fiber, low in saturated fat--should amplify these effects by down-regulating insulin secretion. Additionally, the relatively low essential amino acid content of some vegan diets may decrease hepatic IGF-I synthesis. Thus, diets featuring vegan proteins can be expected to lower elevated serum lipid levels, promote weight loss, and decrease circulating IGF-I activity. The latter effect should impede cancer induction (as is seen in animal studies with soy protein), lessen neutrophil-mediated inflammatory damage, and slow growth and maturation in children. In fact, vegans tend to have low serum lipids, lean physiques, shorter stature, later puberty, and decreased risk for certain prominent 'Western' cancers; a vegan diet has documented clinical efficacy in rheumatoid arthritis. Low-fat vegan diets may be especially protective in regard to cancers linked to insulin resistance--namely, breast and colon cancer--as well as prostate cancer; conversely, the high IGF-I activity associated with heavy ingestion of animal products may be largely responsible for the epidemic of 'Western' cancers in wealthy societies. Increased phytochemical intake is also likely to contribute to the reduction of cancer risk in vegans. Regression of coronary stenoses has been documented during low-fat vegan diets coupled with exercise training; such regimens also tend to markedly improve diabetic control and lower elevated blood pressure. Risk of many other degenerative disorders may be decreased in vegans, although reduced growth factor activity may be responsible for an increased risk of hemorrhagic stroke. By altering the glucagon/insulin balance, it is conceivable that supplemental intakes of key non-essential amino acids could enable omnivores to enjoy some of the health advantages of a vegan diet. An unnecessarily high intake of essential amino acids--either in the absolute sense or relative to total dietary protein--may prove to be as grave a risk factor for 'Western' degenerative diseases as is excessive fat intake.", "title": "Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity." }, { "docid": "33684572", "text": "Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility.", "title": "Transmission of atherosclerosis susceptibility with gut microbial transplantation." }, { "docid": "12709184", "text": "IMPORTANCE Some evidence suggests vegetarian dietary patterns may be associated with reduced mortality, but the relationship is not well established. \n OBJECTIVE To evaluate the association between vegetarian dietary patterns and mortality. \n DESIGN Prospective cohort study; mortality analysis by Cox proportional hazards regression, controlling for important demographic and lifestyle confounders. \n SETTING Adventist Health Study 2 (AHS-2), a large North American cohort. \n PARTICIPANTS A total of 96,469 Seventh-day Adventist men and women recruited between 2002 and 2007, from which an analytic sample of 73,308 participants remained after exclusions. EXPOSURES Diet was assessed at baseline by a quantitative food frequency questionnaire and categorized into 5 dietary patterns: nonvegetarian, semi-vegetarian, pesco-vegetarian, lacto-ovo-vegetarian, and vegan. \n MAIN OUTCOME AND MEASURE The relationship between vegetarian dietary patterns and all-cause and cause-specific mortality; deaths through 2009 were identified from the National Death Index. \n RESULTS There were 2570 deaths among 73,308 participants during a mean follow-up time of 5.79 years. The mortality rate was 6.05 (95% CI, 5.82-6.29) deaths per 1000 person-years. The adjusted hazard ratio (HR) for all-cause mortality in all vegetarians combined vs nonvegetarians was 0.88 (95% CI, 0.80-0.97). The adjusted HR for all-cause mortality in vegans was 0.85 (95% CI, 0.73-1.01); in lacto-ovo-vegetarians, 0.91 (95% CI, 0.82-1.00); in pesco-vegetarians, 0.81 (95% CI, 0.69-0.94); and in semi-vegetarians, 0.92 (95% CI, 0.75-1.13) compared with nonvegetarians. Significant associations with vegetarian diets were detected for cardiovascular mortality, noncardiovascular noncancer mortality, renal mortality, and endocrine mortality. Associations in men were larger and more often significant than were those in women. \n CONCLUSIONS AND RELEVANCE Vegetarian diets are associated with lower all-cause mortality and with some reductions in cause-specific mortality. Results appeared to be more robust in males. These favorable associations should be considered carefully by those offering dietary guidance.", "title": "Vegetarian dietary patterns and mortality in Adventist Health Study 2." }, { "docid": "6793674", "text": "Circulating trimethylamine N-oxide (TMAO), a canonical metabolite from gut flora, has been related to the risk of cardiovascular disorders. However, the association between circulating TMAO and the risk of cardiovascular events has not been quantitatively evaluated. We performed a systematic review and meta-analysis of all available cohort studies regarding the association between baseline circulating TMAO and subsequent cardiovascular events. Embase and PubMed databases were searched for relevant cohort studies. The overall hazard ratios for the developing of cardiovascular events (CVEs) and mortality were extracted. Heterogeneity among the included studies was evaluated with Cochran's Q Test and I2 statistics. A random-effect model or a fixed-effect model was applied depending on the heterogeneity. Subgroup analysis and meta-regression were used to evaluate the source of heterogeneity. Among the 11 eligible studies, three reported both CVE and mortality outcome, one reported only CVEs and the other seven provided mortality data only. Higher circulating TMAO was associated with a 23% higher risk of CVEs (HR = 1.23, 95% CI: 1.07-1.42, I2 = 31.4%) and a 55% higher risk of all-cause mortality (HR = 1.55, 95% CI: 1.19-2.02, I2 = 80.8%). Notably, the latter association may be blunted by potential publication bias, although sensitivity analysis by omitting one study at a time did not significantly change the results. Further subgroup analysis and meta-regression did not support that the location of the study, follow-up duration, publication year, population characteristics or the samples of TMAO affect the results significantly. Higher circulating TMAO may independently predict the risk of subsequent cardiovascular events and mortality.", "title": "Circulating trimethylamine N‐oxide and the risk of cardiovascular diseases: a systematic review and meta‐analysis of 11 prospective cohort studies" }, { "docid": "35962023", "text": "Recent studies suggest a close relationship between cell metabolism and apoptosis. We have evaluated changes in lipid metabolism on permeabilized hepatocytes treated with truncated Bid (tBid) in the presence of caspase inhibitors and exogenous cytochrome c. The measurement of β-oxidation flux by labeled palmitate demonstrates that tBid inhibits β-oxidation, thereby resulting in the accumulation of palmitoyl-coenzyme A (CoA) and depletion of acetyl-carnitine and acylcarnitines, which is pathognomonic for inhibition of carnitine palmitoyltransferase-1 (CPT-1). We also show that tBid decreases CPT-1 activity by a mechanism independent of both malonyl-CoA, the key inhibitory molecule of CPT-1, and Bak and/or Bax, but dependent on cardiolipin decrease. Overexpression of Bcl-2, which is able to interact with CPT-1, counteracts the effects exerted by tBid on β-oxidation. The unexpected role of tBid in the regulation of lipid β-oxidation suggests a model in which tBid-induced metabolic decline leads to the accumulation of toxic lipid metabolites such as palmitoyl-CoA, which might become participants in the apoptotic pathway.", "title": "tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1" }, { "docid": "44693226", "text": "Many studies have shown that caloric restriction (40%) decreases mitochondrial reactive oxygen species (ROS) generation in rodents. Moreover, we have recently found that 7 weeks of 40% protein restriction without strong caloric restriction also decreases ROS production in rat liver. This is interesting since it has been reported that protein restriction can also extend longevity in rodents. In the present study we have investigated the possible role of dietary lipids in the effects of caloric restriction on mitochondrial oxidative stress. Using semipurified diets, the ingestion of lipids in male Wistar rats was decreased by 40% below controls, while the other dietary components were ingested at exactly the same level as in animals fed ad libitum. After 7 weeks of treatment the liver mitochondria of lipid-restricted animals showed significant increases in oxygen consumption with complex I-linked substrates (pyruvate/malate and glutamate/malate). Neither mitochondrial H(2)O(2) production nor oxidative damage to mitochondrial or nuclear DNA was modified in lipid-restricted animals. Oxidative damage to mitochondrial DNA was one order of magnitude higher than that of nuclear DNA in both dietary groups. These results deny a role for lipids and reinforce the possible role of dietary proteins as being responsible for the decrease in mitochondrial ROS production and DNA damage in caloric restriction.", "title": "Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage." }, { "docid": "39187170", "text": "Adipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human abdominal subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery. Mitochondrial DNA (mtDNA) and genomic DNA (gDNA) were determined by the PCR technique for estimation of mitochondrial density. Adipose tissue samples were permeabilized and respirometric measurements were performed in duplicate at 37 degrees C. Substrates (glutamate (G) + malate (M) + octanoyl carnitine (O) + succinate (S)) were added sequentially to provide electrons to complex I + II. ADP ((D)) for state 3 respiration was added after GM. Uncoupled respiration was measured after addition of FCCP. Visceral fat contained more mitochondria per milligram of tissue than subcutaneous fat, but the cells were smaller. Robust, stable oxygen fluxes were found in both tissues, and coupled state 3 (GMOS(D)) and uncoupled respiration were significantly (P < 0.05) higher in visceral (0.95 +/- 0.05 and 1.15 +/- 0.06 pmol O(2) s(1) mg(1), respectively) compared with subcutaneous (0.76 +/- 0.04 and 0.98 +/- 0.05 pmol O(2) s(1) mg(1), respectively) adipose tissue. Expressed per mtDNA, visceral adipose tissue had significantly (P < 0.05) lower mitochondrial respiration. Substrate control ratios were higher and uncoupling control ratio lower (P < 0.05) in visceral compared with subcutaneous adipose tissue. We conclude that visceral fat is bioenergetically more active and more sensitive to mitochondrial substrate supply than subcutaneous fat. Oxidative phosphorylation has a higher relative activity in visceral compared with subcutaneous adipose tissue.", "title": "Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity." }, { "docid": "11181416", "text": "Because arginase hydrolyzes arginine to produce ornithine and urea, it has the potential to regulate nitric oxide (NO) and polyamine synthesis. We tested whether expression of the cytosolic isoform of arginase (arginase I) was limiting for NO or polyamine production by activated RAW 264.7 macrophage cells. RAW 264.7 cells, stably transfected to overexpress arginase I or beta-galactosidase, were treated with interferon-gamma to induce type 2 NO synthase or with lipopolysaccharide or 8-bromo-cAMP (8-BrcAMP) to induce ornithine decarboxylase. Overexpression of arginase I had no effect on NO synthesis. In contrast, cells overexpressing arginase I produced twice as much putrescine after activation than did cells expressing beta-galactosidase. Cells overexpressing arginase I also produced more spermidine after treatment with 8-BrcAMP than did cells expressing beta-galactosidase. Thus endogenous levels of arginase I are limiting for polyamine synthesis, but not for NO synthesis, by activated macrophage cells. This study also demonstrates that it is possible to alter arginase I levels sufficiently to affect polyamine synthesis without affecting induced NO synthesis.", "title": "Arginase I: a limiting factor for nitric oxide and polyamine synthesis by activated macrophages?" }, { "docid": "24594624", "text": "Maternal diabetes mellitus is a significant risk factor for structural birth defects, including congenital heart defects and neural tube defects. With the rising prevalence of type 2 diabetes mellitus and obesity in women of childbearing age, diabetes mellitus-induced birth defects have become an increasingly significant public health problem. Maternal diabetes mellitus in vivo and high glucose in vitro induce yolk sac injuries by damaging the morphologic condition of cells and altering the dynamics of organelles. The yolk sac vascular system is the first system to develop during embryogenesis; therefore, it is the most sensitive to hyperglycemia. The consequences of yolk sac injuries include impairment of nutrient transportation because of vasculopathy. Although the functional relationship between yolk sac vasculopathy and structural birth defects has not yet been established, a recent study reveals that the quality of yolk sac vasculature is related inversely to embryonic malformation rates. Studies in animal models have uncovered key molecular intermediates of diabetic yolk sac vasculopathy, which include hypoxia-inducible factor-1α, apoptosis signal-regulating kinase 1, and its inhibitor thioredoxin-1, c-Jun-N-terminal kinases, nitric oxide, and nitric oxide synthase. Yolk sac vasculopathy is also associated with abnormalities in arachidonic acid and myo-inositol. Dietary supplementation with fatty acids that restore lipid levels in the yolk sac lead to a reduction in diabetes mellitus-induced malformations. Although the role of the human yolk in embryogenesis is less extensive than in rodents, nevertheless, human embryonic vasculogenesis is affected negatively by maternal diabetes mellitus. Mechanistic studies have identified potential therapeutic targets for future intervention against yolk sac vasculopathy, birth defects, and other complications associated with diabetic pregnancies.", "title": "New development of the yolk sac theory in diabetic embryopathy: molecular mechanism and link to structural birth defects." }, { "docid": "25135304", "text": "The purpose of this study was to examine the relation of leptin to metabolic and dietary factors in college-age adults. Young adult women and men (n = 32) were recruited and underwent testing for measurement of body mass index, body composition, peak oxygen consumption (VO2peak), dietary intake, and plasma levels of leptin and insulin. Ln leptin was significantly greater for women than for men (2.1 versus 1.2 ng/mL, respectively). This difference remained significant even after adjusting ln leptin for fat mass and fat-free mass as covariates in separate analyses. VO2peak was higher for men than for women and this remained significant after adjustment for differences in fat-free mass and total body mass. Significant correlations were found between ln leptin and indicators of fat mass in women and men, with higher correlations for similar variables observed in men (r = 0.548, 0.674, and 0.732 for body mass index, percentage of body fat, and fat mass [kg] for women, respectively, and r = 0.740, 0.888, 0.858 for body mass index, percentage of body fat, and fat mass [kg] for men, respectively). Ln leptin showed a significant inverse relationship with VO2peak (r = -0.751) in men only. After adjusting ln leptin for body fat mass using partial correlations, ln leptin was not significantly associated with any of the measured variables. Alternatively, after normalization of ln leptin using fat mass as the divisor, a less adequate statistical analysis method, men showed statistical significant correlations between ln leptin and dietary intake and VO2peak. Although plasma leptin values were higher in women, stronger associations were evident for men than for women between leptin and metabolic and dietary factors.", "title": "Relation of plasma leptin concentrations to sex, body fat, dietary intake, and peak oxygen uptake in young adult women and men." }, { "docid": "13380011", "text": "Partial inhibition of mitochondrial respiratory complex I by rotenone reproduces aspects of Parkinson's disease in rodents. The hypothesis that rotenone enhancement of neuronal cell death is attributable to oxidative stress was tested in an acute glutamate excitotoxicity model using primary cultures of rat cerebellar granule neurons. As little as 5 nM rotenone increased mitochondrial superoxide (O2*-) levels and potentiated glutamate-induced cytoplasmic Ca2+ deregulation, the first irreversible stage of necrotic cell death. However, the potent cell-permeant O2*- trap manganese tetrakis (N-ethylpyridinium-2yl) porphyrin failed to prevent the effects of the inhibitor. The bioenergetic consequences of rotenone addition were quantified by monitoring cell respiration. Glutamate activation of NMDA receptors used the full respiratory capacity of the in situ mitochondria, and >80% of the glutamate-stimulated respiration was attributable to increased cellular ATP demand. Rotenone at 20 nM inhibited basal and carbonyl cyanide p-trifluoromethoxyphenylhydrazone-stimulated cell respiration and caused respiratory failure in the presence of glutamate. ATP synthase inhibition by oligomycin was also toxic in the presence of glutamate. We conclude that the cell vulnerability in the rotenone model of partial complex I deficiency under these specific conditions is primarily determined by spare respiratory capacity rather than oxidative stress.", "title": "Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone." }, { "docid": "21623140", "text": "Objective: The main objective of the study was to develop appropriate dietary assessment instruments for the French Mediterranean region and to validate the measurements they provide. Subjects and Methods: Three different assessment methods were submitted to a sample of 150 male and female volunteers. 98 completed the protocol, which consisted of a 4 d weighed dietary record (PETRA) and a 7 d estimated-diet record (S7) based on a check list and a set of photographs, both these records being completed once in each season of the year, and a semi-quantitative (standard portion) food-frequency questionnaire (FFQ) including questions eliciting socio-demographic and anthropometric data, which was completed once only. The days when PETRA was used to evaluate food consumption coincided with the first 4 d of S7 (S4).Results: Validation was based on nutrients and foods. Energy-adjusted Pearson correlation coefficients between S4 and PETRA ranged from 0.32 for vitamin E to 0.81 for vitamin C (mean: 0.65 for 21 nutrients). There was practically no misclassification in opposite extreme quartiles. Spearman correlation coefficients ranged from 0.63 for fish and sea-food to 0.90 for wine (mean: 0.76 for 16 food groups). There was practically no misclassification in opposite extreme quartiles. De-attenuated energy-adjusted Pearson correlation coefficients between FFQ and S7 ranged from 0.22 for proteins and monounsaturated fatty acids to 0.80 for iron (mean: 0.45). 10% or less of subjects were misclassified in opposite extreme quartiles (except for vitamin C, 12%). Spearman correlation coefficients ranged from 0.25 for green-yellow-red raw vegetables to 0.76 for wine (mean: 0.42). 8% or less of subjects were misclassified in opposite extreme quartiles (except for citrus fruit, 11%).Conclusions: Portion estimation using the set of photographs was validated by the correlation between S4 and PETRA for both nutrients and foods. The FFQ provides a reasonably reliable measure of macronutrient intake and a good measure of micronutrient intake when compared with the data in the literature. It performs less well for food intake. Better results can be achieved for FFQ: (i) by using the set of photographs instead of standard portions and (ii) by adding further questions on foods which are insufficiently covered. Sponsorship: This work has been financially supported by INSERM contract 91-1006 and the Ardèche and Hérault Committees of the ‘Ligue contre le cancer’.", "title": "Comparison of dietary assessment methods in a Southern French population: use of weighed records, estimated-diet records and a food-frequency questionnaire" }, { "docid": "37336085", "text": "PURPOSE We assessed the nephroprotective effects of montelukast sodium and N-acetylcysteine on secondary renal damage due to unilateral ureteral obstruction in a rat model. MATERIALS AND METHODS In this study 30 Wistar albino male rats were randomized into 3 groups, including placebo, N-acetylcysteine and montelukast sodium. Three rats served as the control group. The left ureter of the rats was sutured with 4-zero polyglactin sutures. Medications were given 3 days before obstruction and continued for 15 days. Dimercaptosuccinic acid renal scintigraphy was performed before obstruction and on day 15. Rats were sacrificed on day 15 and histopathological examinations were done. We biochemically assessed oxidative stress markers (myeloperoxidase and malondialdehyde), sulfhydryl and total nitrite for lipid peroxidation, oxidative protein damage and antioxidant levels, respectively. \n RESULTS On pathological examination inflammation and tubular epithelial damage in the N-acetylcysteine and montelukast sodium groups were less than in the placebo group (p <0.05). No difference was seen in normal kidneys. Myeloperoxidase, malondialdehyde and total nitrite levels in the N-acetylcysteine group, and myeloperoxidase and malondialdehyde levels in the montelukast sodium group were lower than in the placebo group (p <0.05). No statistical difference was seen in sulfhydryl levels (p >0.05) or among the N-acetylcysteine, montelukast sodium and placebo groups on scintigraphy (p >0.05). No pathological, chemical and scintigraphic differences were seen among the N-acetylcysteine, montelukast sodium and sham treated groups (p >0.05). \n CONCLUSIONS N-acetylcysteine and montelukast sodium have a protective effect against obstructive damage of the kidney. However, further investigations are needed.", "title": "Do Montelukast Sodium and N-Acetylcysteine Have a Nephroprotective Effect on Unilateral Ureteral Obstruction? A Placebo Controlled Trial in a Rat Model." }, { "docid": "22995164", "text": "Nitrosoglutathione [(GSNO), 500 nmol/l] relaxed the norepinephrine precontracted rat aortic rings. The relaxation effect was pronouncedly enhanced by H2S- and HS−-donor NaHS (30 μmol/l) at 7.5 pH but not at 6.3 pH. To study molecular mechanism of this effect, we investigated whether NaHS can release NO from NO donors. Using an electron paramagnetic resonance spectroscopy method of spin trap and by measuring the NO oxidation product, which is nitrite, by the Griess reaction, we report that NaHS released NO from nitrosothiols, namely from GSNO, S-nitroso-N-acetyl-dl-penicillamine (SNAP), from metal nitrosyl complex nitroprusside (SNP) and from rat brain homogenate and murine L1210 leukaemia cells. From the observation that the releasing effect was more pronounced at 8.0 pH than 6.0 pH, we suppose that HS−, rather than H2S, is responsible for the NO-releasing effect. Since in mammals, H2S and HS− are produced endogenously, we assume that their effect to release NO from nitrosothiols and from metal nitrosyl complexes are responsible for some of their biological activities and that this mechanism may be involved in S-nitrosothiol-signalling reactions.", "title": "H2S and HS− donor NaHS releases nitric oxide from nitrosothiols, metal nitrosyl complex, brain homogenate and murine L1210 leukaemia cells" }, { "docid": "15615957", "text": "UNLABELLED Fruit and vegetable consumption has been inversely associated with the risk of chronic diseases including cancer and cardiovascular disease, with the beneficial effects attributed to a variety of protective antioxidants, carotenoids and phytonutrients. The objective of the present study was to determine the effect of supplementation with dehydrated concentrates from mixed fruit and vegetable juices (Juice Plus+R) on serum antioxidant and folate status, plasma homocysteine levels and markers for oxidative stress and DNA damage. Japanese subjects (n=60; age 27.8 yrs; BMI 22.1) were recruited to participate in a double-blind placebo controlled study and were randomized into 2 groups of 30, matched for sex, age, BMI and smoking status (39 males, 22 smokers; 21 females, 13 smokers). Subjects were given encapsulated supplements containing mixed fruit and vegetable juice concentrates or a matching placebo for 28 days, with blood and urine samples collected at baseline, day 14 and day 28 for analytical testing. Compared with the placebo, 28 day supplementation significantly increased the concentration of serum beta-carotene 528% (p<0.0001), lycopene 80.2% (p<0.0005), and alpha tocopherol 39.5% (p<0.0001). Serum folate increased 174.3% (p<0.0001) and correlated with a decrease in plasma homocysteine of -19.9% (p<0.03). Compared with baseline, measures of oxidative stress decreased with serum lipid peroxides declining -10.5% (p<0.02) and urine 8OHdG decreasing -21.1% (p<0.02). Evaluation of data from smokers only (n=17) after 28 days of active supplementation showed comparable changes. \n CONCLUSION In the absence of dietary modification, supplementation with the fruit and vegetable juice concentrate capsules proved to be a highly bioavailable source of phytonutrients. Important antioxidants were elevated to desirable levels associated with decreased risk of disease while markers of oxidative stress were reduced, and folate status improved with a concomitant decrease in homocysteine, and these benefits occurred to a similar extent in smokers when compared to non-smokers.", "title": "Original Article" }, { "docid": "35828148", "text": "Apocynin has been reported to require dimerization by myeloperoxidase (MPO) to inhibit leukocyte NADPH oxidase. (-)-Epicatechin, a dietary flavan-3-ol, has been identified as a 'prodrug' of apocynin-like metabolites that inhibit endothelial NADPH oxidase activity and elevate the cellular level of nitric oxide. Since (-)-epicatechin has tentatively been identified as substrate of MPO, we studied the one-electron oxidation of (-)-epicatechin by MPO. By using multi-mixing stopped-flow technique, we demonstrate that (-)-epicatechin is one of the most efficient electron donors for heme peroxidases investigated so far. Second order rate constants for the (-)-epicatechin-mediated conversion of MPO-compound I to compound II and compound II to resting enzyme were estimated to be 1.9 x 10(7) and 4.5 x 10(6) M(-1)s(-1), respectively (pH 7, 25 degrees C). The data indicate that (-)-epicatechin is capable of undergoing fast MPO-mediated one-electron oxidation.", "title": "Kinetic evidence for rapid oxidation of (-)-epicatechin by human myeloperoxidase." }, { "docid": "41915616", "text": "The effects of a zinc supplement on maternal zinc status and milk zinc concentrations through > or = 7 mo of lactation were examined. Seventy-one lactating women received either a daily 15-mg zinc supplement (ZS, n = 40) or placebo (NZS, n = 31) started by 2 wk postpartum in a double-blind, randomized design. Overall mean zinc intakes were 13.0 +/- 3.4 mg/d for the NZS group and 25.7 +/- 3.9 mg/d (including supplement) for the ZS group. Plasma zinc concentrations of the ZS group were significantly higher than those of the NZS group (P = 0.05). Milk zinc concentrations declined significantly over the course of the study for all subjects but were not affected by zinc supplementation. The mean dietary zinc intake observed in the nonsupplemented group was adequate to maintain normal maternal zinc status and milk zinc concentrations through > or = 7 mo lactation. Similar controlled intervention trials in less well-nourished populations will be required to assess the impact of lower zinc intakes on milk zinc concentrations.", "title": "Zinc supplementation during lactation: effects on maternal status and milk zinc concentrations." }, { "docid": "25974070", "text": "The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.", "title": "Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function." }, { "docid": "20672596", "text": "Maximum activities of some key enzymes of metabolism were studied in elicited (inflammatory) macrophages of the mouse and lymph-node lymphocytes of the rat. The activity of hexokinase in the macrophage is very high, as high as that in any other major tissue of the body, and higher than that of phosphorylase or 6-phosphofructokinase, suggesting that glucose is a more important fuel than glycogen and that the pentose phosphate pathway is also important in these cells. The latter suggestion is supported by the high activities of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. However, the rate of glucose utilization by 'resting' macrophages incubated in vitro is less than the 10% of the activity of 6-phosphofructokinase: this suggests that the rate of glycolysis is increased dramatically during phagocytosis or increased secretory activity. The macrophages possess higher activities of citrate synthase and oxoglutarate dehydrogenase than do lymphocytes, suggesting that the tricarboxylic acid cycle may be important in energy generation in these cells. The activity of 3-oxoacid CoA-transferase is higher in the macrophage, but that of 3-hydroxybutyrate dehydrogenase is very much lower than those in the lymphocytes. The activity of carnitine palmitoyltransferase is higher in macrophages, suggesting that fatty acids as well as acetoacetate could provide acetyl-CoA as substrate for the tricarboxylic acid cycle. No detectable rate of acetoacetate or 3-hydroxybutyrate utilization was observed during incubation of resting macrophages, but that of oleate was 1.0 nmol/h per mg of protein or about 2.2% of the activity of palmitoyltransferase. The activity of glutaminase is about 4-fold higher in macrophages than in lymphocytes, which suggests that the rate of glutamine utilization could be very high. The rate of utilization of glutamine by resting incubated macrophages was similar to that reported for rat lymphocytes, but was considerably lower than the activity of glutaminase.", "title": "Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages." } ]
883
Omnivores produce more trimethylamine N-oxide from dietary I-carnitine than vegans.
[ { "docid": "14803797", "text": "Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.", "title": "Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis" } ]
[ { "docid": "6327940", "text": "Amino acids modulate the secretion of both insulin and glucagon; the composition of dietary protein therefore has the potential to influence the balance of glucagon and insulin activity. Soy protein, as well as many other vegan proteins, are higher in non-essential amino acids than most animal-derived food proteins, and as a result should preferentially favor glucagon production. Acting on hepatocytes, glucagon promotes (and insulin inhibits) cAMP-dependent mechanisms that down-regulate lipogenic enzymes and cholesterol synthesis, while up-regulating hepatic LDL receptors and production of the IGF-I antagonist IGFBP-1. The insulin-sensitizing properties of many vegan diets--high in fiber, low in saturated fat--should amplify these effects by down-regulating insulin secretion. Additionally, the relatively low essential amino acid content of some vegan diets may decrease hepatic IGF-I synthesis. Thus, diets featuring vegan proteins can be expected to lower elevated serum lipid levels, promote weight loss, and decrease circulating IGF-I activity. The latter effect should impede cancer induction (as is seen in animal studies with soy protein), lessen neutrophil-mediated inflammatory damage, and slow growth and maturation in children. In fact, vegans tend to have low serum lipids, lean physiques, shorter stature, later puberty, and decreased risk for certain prominent 'Western' cancers; a vegan diet has documented clinical efficacy in rheumatoid arthritis. Low-fat vegan diets may be especially protective in regard to cancers linked to insulin resistance--namely, breast and colon cancer--as well as prostate cancer; conversely, the high IGF-I activity associated with heavy ingestion of animal products may be largely responsible for the epidemic of 'Western' cancers in wealthy societies. Increased phytochemical intake is also likely to contribute to the reduction of cancer risk in vegans. Regression of coronary stenoses has been documented during low-fat vegan diets coupled with exercise training; such regimens also tend to markedly improve diabetic control and lower elevated blood pressure. Risk of many other degenerative disorders may be decreased in vegans, although reduced growth factor activity may be responsible for an increased risk of hemorrhagic stroke. By altering the glucagon/insulin balance, it is conceivable that supplemental intakes of key non-essential amino acids could enable omnivores to enjoy some of the health advantages of a vegan diet. An unnecessarily high intake of essential amino acids--either in the absolute sense or relative to total dietary protein--may prove to be as grave a risk factor for 'Western' degenerative diseases as is excessive fat intake.", "title": "Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity." }, { "docid": "33684572", "text": "Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility.", "title": "Transmission of atherosclerosis susceptibility with gut microbial transplantation." }, { "docid": "12709184", "text": "IMPORTANCE Some evidence suggests vegetarian dietary patterns may be associated with reduced mortality, but the relationship is not well established. \n OBJECTIVE To evaluate the association between vegetarian dietary patterns and mortality. \n DESIGN Prospective cohort study; mortality analysis by Cox proportional hazards regression, controlling for important demographic and lifestyle confounders. \n SETTING Adventist Health Study 2 (AHS-2), a large North American cohort. \n PARTICIPANTS A total of 96,469 Seventh-day Adventist men and women recruited between 2002 and 2007, from which an analytic sample of 73,308 participants remained after exclusions. EXPOSURES Diet was assessed at baseline by a quantitative food frequency questionnaire and categorized into 5 dietary patterns: nonvegetarian, semi-vegetarian, pesco-vegetarian, lacto-ovo-vegetarian, and vegan. \n MAIN OUTCOME AND MEASURE The relationship between vegetarian dietary patterns and all-cause and cause-specific mortality; deaths through 2009 were identified from the National Death Index. \n RESULTS There were 2570 deaths among 73,308 participants during a mean follow-up time of 5.79 years. The mortality rate was 6.05 (95% CI, 5.82-6.29) deaths per 1000 person-years. The adjusted hazard ratio (HR) for all-cause mortality in all vegetarians combined vs nonvegetarians was 0.88 (95% CI, 0.80-0.97). The adjusted HR for all-cause mortality in vegans was 0.85 (95% CI, 0.73-1.01); in lacto-ovo-vegetarians, 0.91 (95% CI, 0.82-1.00); in pesco-vegetarians, 0.81 (95% CI, 0.69-0.94); and in semi-vegetarians, 0.92 (95% CI, 0.75-1.13) compared with nonvegetarians. Significant associations with vegetarian diets were detected for cardiovascular mortality, noncardiovascular noncancer mortality, renal mortality, and endocrine mortality. Associations in men were larger and more often significant than were those in women. \n CONCLUSIONS AND RELEVANCE Vegetarian diets are associated with lower all-cause mortality and with some reductions in cause-specific mortality. Results appeared to be more robust in males. These favorable associations should be considered carefully by those offering dietary guidance.", "title": "Vegetarian dietary patterns and mortality in Adventist Health Study 2." }, { "docid": "39187170", "text": "Adipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human abdominal subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery. Mitochondrial DNA (mtDNA) and genomic DNA (gDNA) were determined by the PCR technique for estimation of mitochondrial density. Adipose tissue samples were permeabilized and respirometric measurements were performed in duplicate at 37 degrees C. Substrates (glutamate (G) + malate (M) + octanoyl carnitine (O) + succinate (S)) were added sequentially to provide electrons to complex I + II. ADP ((D)) for state 3 respiration was added after GM. Uncoupled respiration was measured after addition of FCCP. Visceral fat contained more mitochondria per milligram of tissue than subcutaneous fat, but the cells were smaller. Robust, stable oxygen fluxes were found in both tissues, and coupled state 3 (GMOS(D)) and uncoupled respiration were significantly (P < 0.05) higher in visceral (0.95 +/- 0.05 and 1.15 +/- 0.06 pmol O(2) s(1) mg(1), respectively) compared with subcutaneous (0.76 +/- 0.04 and 0.98 +/- 0.05 pmol O(2) s(1) mg(1), respectively) adipose tissue. Expressed per mtDNA, visceral adipose tissue had significantly (P < 0.05) lower mitochondrial respiration. Substrate control ratios were higher and uncoupling control ratio lower (P < 0.05) in visceral compared with subcutaneous adipose tissue. We conclude that visceral fat is bioenergetically more active and more sensitive to mitochondrial substrate supply than subcutaneous fat. Oxidative phosphorylation has a higher relative activity in visceral compared with subcutaneous adipose tissue.", "title": "Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity." }, { "docid": "6793674", "text": "Circulating trimethylamine N-oxide (TMAO), a canonical metabolite from gut flora, has been related to the risk of cardiovascular disorders. However, the association between circulating TMAO and the risk of cardiovascular events has not been quantitatively evaluated. We performed a systematic review and meta-analysis of all available cohort studies regarding the association between baseline circulating TMAO and subsequent cardiovascular events. Embase and PubMed databases were searched for relevant cohort studies. The overall hazard ratios for the developing of cardiovascular events (CVEs) and mortality were extracted. Heterogeneity among the included studies was evaluated with Cochran's Q Test and I2 statistics. A random-effect model or a fixed-effect model was applied depending on the heterogeneity. Subgroup analysis and meta-regression were used to evaluate the source of heterogeneity. Among the 11 eligible studies, three reported both CVE and mortality outcome, one reported only CVEs and the other seven provided mortality data only. Higher circulating TMAO was associated with a 23% higher risk of CVEs (HR = 1.23, 95% CI: 1.07-1.42, I2 = 31.4%) and a 55% higher risk of all-cause mortality (HR = 1.55, 95% CI: 1.19-2.02, I2 = 80.8%). Notably, the latter association may be blunted by potential publication bias, although sensitivity analysis by omitting one study at a time did not significantly change the results. Further subgroup analysis and meta-regression did not support that the location of the study, follow-up duration, publication year, population characteristics or the samples of TMAO affect the results significantly. Higher circulating TMAO may independently predict the risk of subsequent cardiovascular events and mortality.", "title": "Circulating trimethylamine N‐oxide and the risk of cardiovascular diseases: a systematic review and meta‐analysis of 11 prospective cohort studies" }, { "docid": "11181416", "text": "Because arginase hydrolyzes arginine to produce ornithine and urea, it has the potential to regulate nitric oxide (NO) and polyamine synthesis. We tested whether expression of the cytosolic isoform of arginase (arginase I) was limiting for NO or polyamine production by activated RAW 264.7 macrophage cells. RAW 264.7 cells, stably transfected to overexpress arginase I or beta-galactosidase, were treated with interferon-gamma to induce type 2 NO synthase or with lipopolysaccharide or 8-bromo-cAMP (8-BrcAMP) to induce ornithine decarboxylase. Overexpression of arginase I had no effect on NO synthesis. In contrast, cells overexpressing arginase I produced twice as much putrescine after activation than did cells expressing beta-galactosidase. Cells overexpressing arginase I also produced more spermidine after treatment with 8-BrcAMP than did cells expressing beta-galactosidase. Thus endogenous levels of arginase I are limiting for polyamine synthesis, but not for NO synthesis, by activated macrophage cells. This study also demonstrates that it is possible to alter arginase I levels sufficiently to affect polyamine synthesis without affecting induced NO synthesis.", "title": "Arginase I: a limiting factor for nitric oxide and polyamine synthesis by activated macrophages?" }, { "docid": "35962023", "text": "Recent studies suggest a close relationship between cell metabolism and apoptosis. We have evaluated changes in lipid metabolism on permeabilized hepatocytes treated with truncated Bid (tBid) in the presence of caspase inhibitors and exogenous cytochrome c. The measurement of β-oxidation flux by labeled palmitate demonstrates that tBid inhibits β-oxidation, thereby resulting in the accumulation of palmitoyl-coenzyme A (CoA) and depletion of acetyl-carnitine and acylcarnitines, which is pathognomonic for inhibition of carnitine palmitoyltransferase-1 (CPT-1). We also show that tBid decreases CPT-1 activity by a mechanism independent of both malonyl-CoA, the key inhibitory molecule of CPT-1, and Bak and/or Bax, but dependent on cardiolipin decrease. Overexpression of Bcl-2, which is able to interact with CPT-1, counteracts the effects exerted by tBid on β-oxidation. The unexpected role of tBid in the regulation of lipid β-oxidation suggests a model in which tBid-induced metabolic decline leads to the accumulation of toxic lipid metabolites such as palmitoyl-CoA, which might become participants in the apoptotic pathway.", "title": "tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1" }, { "docid": "44693226", "text": "Many studies have shown that caloric restriction (40%) decreases mitochondrial reactive oxygen species (ROS) generation in rodents. Moreover, we have recently found that 7 weeks of 40% protein restriction without strong caloric restriction also decreases ROS production in rat liver. This is interesting since it has been reported that protein restriction can also extend longevity in rodents. In the present study we have investigated the possible role of dietary lipids in the effects of caloric restriction on mitochondrial oxidative stress. Using semipurified diets, the ingestion of lipids in male Wistar rats was decreased by 40% below controls, while the other dietary components were ingested at exactly the same level as in animals fed ad libitum. After 7 weeks of treatment the liver mitochondria of lipid-restricted animals showed significant increases in oxygen consumption with complex I-linked substrates (pyruvate/malate and glutamate/malate). Neither mitochondrial H(2)O(2) production nor oxidative damage to mitochondrial or nuclear DNA was modified in lipid-restricted animals. Oxidative damage to mitochondrial DNA was one order of magnitude higher than that of nuclear DNA in both dietary groups. These results deny a role for lipids and reinforce the possible role of dietary proteins as being responsible for the decrease in mitochondrial ROS production and DNA damage in caloric restriction.", "title": "Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage." }, { "docid": "22995164", "text": "Nitrosoglutathione [(GSNO), 500 nmol/l] relaxed the norepinephrine precontracted rat aortic rings. The relaxation effect was pronouncedly enhanced by H2S- and HS−-donor NaHS (30 μmol/l) at 7.5 pH but not at 6.3 pH. To study molecular mechanism of this effect, we investigated whether NaHS can release NO from NO donors. Using an electron paramagnetic resonance spectroscopy method of spin trap and by measuring the NO oxidation product, which is nitrite, by the Griess reaction, we report that NaHS released NO from nitrosothiols, namely from GSNO, S-nitroso-N-acetyl-dl-penicillamine (SNAP), from metal nitrosyl complex nitroprusside (SNP) and from rat brain homogenate and murine L1210 leukaemia cells. From the observation that the releasing effect was more pronounced at 8.0 pH than 6.0 pH, we suppose that HS−, rather than H2S, is responsible for the NO-releasing effect. Since in mammals, H2S and HS− are produced endogenously, we assume that their effect to release NO from nitrosothiols and from metal nitrosyl complexes are responsible for some of their biological activities and that this mechanism may be involved in S-nitrosothiol-signalling reactions.", "title": "H2S and HS− donor NaHS releases nitric oxide from nitrosothiols, metal nitrosyl complex, brain homogenate and murine L1210 leukaemia cells" }, { "docid": "13380011", "text": "Partial inhibition of mitochondrial respiratory complex I by rotenone reproduces aspects of Parkinson's disease in rodents. The hypothesis that rotenone enhancement of neuronal cell death is attributable to oxidative stress was tested in an acute glutamate excitotoxicity model using primary cultures of rat cerebellar granule neurons. As little as 5 nM rotenone increased mitochondrial superoxide (O2*-) levels and potentiated glutamate-induced cytoplasmic Ca2+ deregulation, the first irreversible stage of necrotic cell death. However, the potent cell-permeant O2*- trap manganese tetrakis (N-ethylpyridinium-2yl) porphyrin failed to prevent the effects of the inhibitor. The bioenergetic consequences of rotenone addition were quantified by monitoring cell respiration. Glutamate activation of NMDA receptors used the full respiratory capacity of the in situ mitochondria, and >80% of the glutamate-stimulated respiration was attributable to increased cellular ATP demand. Rotenone at 20 nM inhibited basal and carbonyl cyanide p-trifluoromethoxyphenylhydrazone-stimulated cell respiration and caused respiratory failure in the presence of glutamate. ATP synthase inhibition by oligomycin was also toxic in the presence of glutamate. We conclude that the cell vulnerability in the rotenone model of partial complex I deficiency under these specific conditions is primarily determined by spare respiratory capacity rather than oxidative stress.", "title": "Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone." }, { "docid": "24349992", "text": "Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a \"lethal tumor micro-environment. \" Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a \"metabolic\" and \"mutagenic\" motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the \"Reverse Warburg Effect\"). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use \"oxidative stress\" in adjacent fibroblasts (i) as an \"engine\" to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the \"field effect\" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively \"contagious\"--spread from cell-to-cell like a virus--creating an \"oncogenic/mutagenic\" field promoting widespread DNA damage.", "title": "Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells." }, { "docid": "15615957", "text": "UNLABELLED Fruit and vegetable consumption has been inversely associated with the risk of chronic diseases including cancer and cardiovascular disease, with the beneficial effects attributed to a variety of protective antioxidants, carotenoids and phytonutrients. The objective of the present study was to determine the effect of supplementation with dehydrated concentrates from mixed fruit and vegetable juices (Juice Plus+R) on serum antioxidant and folate status, plasma homocysteine levels and markers for oxidative stress and DNA damage. Japanese subjects (n=60; age 27.8 yrs; BMI 22.1) were recruited to participate in a double-blind placebo controlled study and were randomized into 2 groups of 30, matched for sex, age, BMI and smoking status (39 males, 22 smokers; 21 females, 13 smokers). Subjects were given encapsulated supplements containing mixed fruit and vegetable juice concentrates or a matching placebo for 28 days, with blood and urine samples collected at baseline, day 14 and day 28 for analytical testing. Compared with the placebo, 28 day supplementation significantly increased the concentration of serum beta-carotene 528% (p<0.0001), lycopene 80.2% (p<0.0005), and alpha tocopherol 39.5% (p<0.0001). Serum folate increased 174.3% (p<0.0001) and correlated with a decrease in plasma homocysteine of -19.9% (p<0.03). Compared with baseline, measures of oxidative stress decreased with serum lipid peroxides declining -10.5% (p<0.02) and urine 8OHdG decreasing -21.1% (p<0.02). Evaluation of data from smokers only (n=17) after 28 days of active supplementation showed comparable changes. \n CONCLUSION In the absence of dietary modification, supplementation with the fruit and vegetable juice concentrate capsules proved to be a highly bioavailable source of phytonutrients. Important antioxidants were elevated to desirable levels associated with decreased risk of disease while markers of oxidative stress were reduced, and folate status improved with a concomitant decrease in homocysteine, and these benefits occurred to a similar extent in smokers when compared to non-smokers.", "title": "Original Article" }, { "docid": "35828148", "text": "Apocynin has been reported to require dimerization by myeloperoxidase (MPO) to inhibit leukocyte NADPH oxidase. (-)-Epicatechin, a dietary flavan-3-ol, has been identified as a 'prodrug' of apocynin-like metabolites that inhibit endothelial NADPH oxidase activity and elevate the cellular level of nitric oxide. Since (-)-epicatechin has tentatively been identified as substrate of MPO, we studied the one-electron oxidation of (-)-epicatechin by MPO. By using multi-mixing stopped-flow technique, we demonstrate that (-)-epicatechin is one of the most efficient electron donors for heme peroxidases investigated so far. Second order rate constants for the (-)-epicatechin-mediated conversion of MPO-compound I to compound II and compound II to resting enzyme were estimated to be 1.9 x 10(7) and 4.5 x 10(6) M(-1)s(-1), respectively (pH 7, 25 degrees C). The data indicate that (-)-epicatechin is capable of undergoing fast MPO-mediated one-electron oxidation.", "title": "Kinetic evidence for rapid oxidation of (-)-epicatechin by human myeloperoxidase." }, { "docid": "25974070", "text": "The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.", "title": "Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function." }, { "docid": "5687200", "text": "AIMS The aim of this study was to compare the effects of calorie-restricted vegetarian and conventional diabetic diets alone and in combination with exercise on insulin resistance, visceral fat and oxidative stress markers in subjects with Type 2 diabetes. \n METHODS A 24-week, randomized, open, parallel design was used. Seventy-four patients with Type 2 diabetes were randomly assigned to either the experimental group (n = 37), which received a vegetarian diet, or the control group (n = 37), which received a conventional diabetic diet. Both diets were isocaloric, calorie restricted (-500 kcal/day). All meals during the study were provided. The second 12 weeks of the diet were combined with aerobic exercise. Participants were examined at baseline, 12 weeks and 24 weeks. Primary outcomes were: insulin sensitivity measured by hyperinsulinaemic isoglycaemic clamp; volume of visceral and subcutaneous fat measured by magnetic resonance imaging; and oxidative stress measured by thiobarbituric acid reactive substances. Analyses were by intention to treat. \n RESULTS Forty-three per cent of participants in the experimental group and 5% of participants in the control group reduced diabetes medication (P < 0.001). Body weight decreased more in the experimental group than in the control group [-6.2 kg (95% CI -6.6 to -5.3) vs. -3.2 kg (95% CI -3.7 to -2.5); interaction group × time P = 0.001]. An increase in insulin sensitivity was significantly greater in the experimental group than in the control group [30% (95% CI 24.5-39) vs. 20% (95% CI 14-25), P = 0.04]. A reduction in both visceral and subcutaneous fat was greater in the experimental group than in the control group (P = 0.007 and P = 0.02, respectively). Plasma adiponectin increased (P = 0.02) and leptin decreased (P = 0.02) in the experimental group, with no change in the control group. Vitamin C, superoxide dismutase and reduced glutathione increased in the experimental group (P = 0.002, P < 0.001 and P = 0.02, respectively). Differences between groups were greater after the addition of exercise training. Changes in insulin sensitivity and enzymatic oxidative stress markers correlated with changes in visceral fat. \n CONCLUSIONS A calorie-restricted vegetarian diet had greater capacity to improve insulin sensitivity compared with a conventional diabetic diet over 24 weeks. The greater loss of visceral fat and improvements in plasma concentrations of adipokines and oxidative stress markers with this diet may be responsible for the reduction of insulin resistance. The addition of exercise training further augmented the improved outcomes with the vegetarian diet.", "title": "Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes" }, { "docid": "6191684", "text": "CONTEXT Chronic tension-type headaches are characterized by near-daily headaches and often are difficult to manage in primary practice. Behavioral and pharmacological therapies each appear modestly effective, but data are lacking on their separate and combined effects. \n OBJECTIVE To evaluate the clinical efficacy of behavioral and pharmacological therapies, singly and combined, for chronic tension-type headaches. \n DESIGN AND SETTING Randomized placebo-controlled trial conducted from August 1995 to January 1998 at 2 outpatient sites in Ohio. \n PARTICIPANTS Two hundred three adults (mean age, 37 years; 76% women) with diagnosis of chronic tension-type headaches (mean, 26 headache d/mo). \n INTERVENTIONS Participants were randomly assigned to receive tricyclic antidepressant (amitriptyline hydrochloride, up to 100 mg/d, or nortriptyline hydrochloride, up to 75 mg/d) medication (n = 53), placebo (n = 48), stress management (eg, relaxation, cognitive coping) therapy (3 sessions and 2 telephone contacts) plus placebo (n = 49), or stress management therapy plus antidepressant medication (n = 53). \n MAIN OUTCOME MEASURES Monthly headache index scores calculated as the mean of pain ratings (0-10 scale) recorded by participants in a daily diary 4 times per day; number of days per month with at least moderate pain (pain rating >/=5), analgesic medication use, and Headache Disability Inventory scores, compared by intervention group. \n RESULTS Tricyclic antidepressant medication and stress management therapy each produced larger reductions in headache activity, analgesic medication use, and headache-related disability than placebo, but antidepressant medication yielded more rapid improvements in headache activity. Combined therapy was more likely to produce clinically significant (>/=50%) reductions in headache index scores (64% of participants) than antidepressant medication (38% of participants; P =.006), stress management therapy (35%; P =.003), or placebo (29%; P =.001). On other measures the combined therapy and its 2 component therapies produced similar outcomes. \n CONCLUSIONS Our results indicate that antidepressant medication and stress management therapy are each modestly effective in treating chronic tension-type headaches. Combined therapy may improve outcome relative to monotherapy.", "title": "Management of chronic tension-type headache with tricyclic antidepressant medication, stress management therapy, and their combination: a randomized controlled trial." }, { "docid": "28644298", "text": "Epstein-Barr virus (EBV) latency III infection converts B lymphocytes into lymphoblastoid cell lines (LCLs) by expressing EBV nuclear and membrane proteins, EBNAs, and latent membrane proteins (LMPs), which regulate transcription through Notch and tumor necrosis factor receptor pathways. The role of NF-kappa B in LMP1 and overall EBV latency III transcriptional effects was investigated by treating LCLs with BAY11-7082 (BAY11). BAY11 rapidly and irreversibly inhibited NF-kappa B, decreased mitochondrial membrane potential, induced apoptosis, and altered LCL gene expression. BAY11 effects were similar to those of an NF-kappa B inhibitor, Delta N-I kappa B alpha, in effecting decreased JNK1 expression and in microarray analyses. More than 80% of array elements that decreased with Delta N-I kappa B alpha expression decreased with BAY11 treatment. Newly identified NF-kappa B-induced, LMP1-induced, and EBV-induced genes included pleckstrin, Jun-B, c-FLIP, CIP4, and I kappa B epsilon. Of 776 significantly changed array elements, 134 were fourfold upregulated in EBV latency III, and 74 were fourfold upregulated with LMP1 expression alone, whereas only 28 were more than fourfold downregulated by EBV latency III. EBV latency III-regulated gene products mediate cell migration (EBI2, CCR7, RGS1, RANTES, MIP1 alpha, MIP1 beta, CXCR5, and RGS13), antigen presentation (major histocompatibility complex proteins and JAW1), mitogen-activated protein kinase pathway (DUSP5 and p62Dok), and interferon (IFN) signaling (IFN-gamma R alpha, IRF-4, and STAT1). Comparison of EBV latency III LCL gene expression to immunoglobulin M (IgM)-stimulated B cells, germinal-center B cells, and germinal-center-derived lymphomas clustered LCLs with IgM-stimulated B cells separately from germinal-center cells or germinal-center lymphoma cells. Expression of IRF-2, AIM1, ASK1, SNF2L2, and components of IFN signaling pathways further distinguished EBV latency III-infected B cells from IgM-stimulated or germinal-center B cells.", "title": "Role of NF-kappa B in cell survival and transcription of latent membrane protein 1-expressing or Epstein-Barr virus latency III-infected cells." }, { "docid": "24594624", "text": "Maternal diabetes mellitus is a significant risk factor for structural birth defects, including congenital heart defects and neural tube defects. With the rising prevalence of type 2 diabetes mellitus and obesity in women of childbearing age, diabetes mellitus-induced birth defects have become an increasingly significant public health problem. Maternal diabetes mellitus in vivo and high glucose in vitro induce yolk sac injuries by damaging the morphologic condition of cells and altering the dynamics of organelles. The yolk sac vascular system is the first system to develop during embryogenesis; therefore, it is the most sensitive to hyperglycemia. The consequences of yolk sac injuries include impairment of nutrient transportation because of vasculopathy. Although the functional relationship between yolk sac vasculopathy and structural birth defects has not yet been established, a recent study reveals that the quality of yolk sac vasculature is related inversely to embryonic malformation rates. Studies in animal models have uncovered key molecular intermediates of diabetic yolk sac vasculopathy, which include hypoxia-inducible factor-1α, apoptosis signal-regulating kinase 1, and its inhibitor thioredoxin-1, c-Jun-N-terminal kinases, nitric oxide, and nitric oxide synthase. Yolk sac vasculopathy is also associated with abnormalities in arachidonic acid and myo-inositol. Dietary supplementation with fatty acids that restore lipid levels in the yolk sac lead to a reduction in diabetes mellitus-induced malformations. Although the role of the human yolk in embryogenesis is less extensive than in rodents, nevertheless, human embryonic vasculogenesis is affected negatively by maternal diabetes mellitus. Mechanistic studies have identified potential therapeutic targets for future intervention against yolk sac vasculopathy, birth defects, and other complications associated with diabetic pregnancies.", "title": "New development of the yolk sac theory in diabetic embryopathy: molecular mechanism and link to structural birth defects." }, { "docid": "19327364", "text": "Sera from 526 Old-World monkeys and apes, representing 50 species and 20 genera and living in US zoos and vivaria, were screened for antibodies to HTLV-I, HTLV-III/LAV, and simian-AIDS retrovirus, type I (SRV-I). Sera were screened initially by ELISA, and ELISA-positive sera, as well as ELISA-negative sera from cage contacts, were further tested by Western blotting. A large number of false-positive and a small number of false-negative ELISA sera were identified. Although most true positive reactions were directed to a single retrovirus, a number of individuals from 4 species were positive for more than one retrovirus. Specific seroreactivity to HTLV-I was found in 39/526 (7%) animals of 15 species. True positive reactions to SRV-I were found in 21/516 (4%) animals, including talapoins and 2 species of macaques. Specific serologic reactions to HTLV-III/LAV were detected in 23/526 (4%) monkeys. Many of the HTLV-III/LAV seropositive animals were from one mixed-species zoo exhibit, containing sooty mangabeys, mandrills, Kolb's guenons, and talapoins. A type D virus was isolated from the blood of 3/10 SRV-I antibody-positive Tonkeana macaques, but from none of 11 seropositive talapoins. A lentivirus was isolated from the blood of 4/7 HTLV-III/LAV seropositive sooty mangabeys, but not from seropositive talapoins in the same exhibit or from 2 seropositive colobus from another zoo. The sooty mangabey lentivirus produced generalized lymphadenopathy, leukopenia, and decreased levels of T4 lymphocytes in 2 experimentally infected rhesus macaques.", "title": "Seroepidemiologic survey of captive Old-World primates for antibodies to human and simian retroviruses, and isolation of a lentivirus from sooty mangabeys (Cercocebus atys)." } ]
884
Omnivores produce more trimethylamine N-oxide from dietary I-carnitine than vegetarians.
[ { "docid": "14803797", "text": "Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.", "title": "Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis" } ]
[ { "docid": "33684572", "text": "Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility.", "title": "Transmission of atherosclerosis susceptibility with gut microbial transplantation." }, { "docid": "12709184", "text": "IMPORTANCE Some evidence suggests vegetarian dietary patterns may be associated with reduced mortality, but the relationship is not well established. \n OBJECTIVE To evaluate the association between vegetarian dietary patterns and mortality. \n DESIGN Prospective cohort study; mortality analysis by Cox proportional hazards regression, controlling for important demographic and lifestyle confounders. \n SETTING Adventist Health Study 2 (AHS-2), a large North American cohort. \n PARTICIPANTS A total of 96,469 Seventh-day Adventist men and women recruited between 2002 and 2007, from which an analytic sample of 73,308 participants remained after exclusions. EXPOSURES Diet was assessed at baseline by a quantitative food frequency questionnaire and categorized into 5 dietary patterns: nonvegetarian, semi-vegetarian, pesco-vegetarian, lacto-ovo-vegetarian, and vegan. \n MAIN OUTCOME AND MEASURE The relationship between vegetarian dietary patterns and all-cause and cause-specific mortality; deaths through 2009 were identified from the National Death Index. \n RESULTS There were 2570 deaths among 73,308 participants during a mean follow-up time of 5.79 years. The mortality rate was 6.05 (95% CI, 5.82-6.29) deaths per 1000 person-years. The adjusted hazard ratio (HR) for all-cause mortality in all vegetarians combined vs nonvegetarians was 0.88 (95% CI, 0.80-0.97). The adjusted HR for all-cause mortality in vegans was 0.85 (95% CI, 0.73-1.01); in lacto-ovo-vegetarians, 0.91 (95% CI, 0.82-1.00); in pesco-vegetarians, 0.81 (95% CI, 0.69-0.94); and in semi-vegetarians, 0.92 (95% CI, 0.75-1.13) compared with nonvegetarians. Significant associations with vegetarian diets were detected for cardiovascular mortality, noncardiovascular noncancer mortality, renal mortality, and endocrine mortality. Associations in men were larger and more often significant than were those in women. \n CONCLUSIONS AND RELEVANCE Vegetarian diets are associated with lower all-cause mortality and with some reductions in cause-specific mortality. Results appeared to be more robust in males. These favorable associations should be considered carefully by those offering dietary guidance.", "title": "Vegetarian dietary patterns and mortality in Adventist Health Study 2." }, { "docid": "5687200", "text": "AIMS The aim of this study was to compare the effects of calorie-restricted vegetarian and conventional diabetic diets alone and in combination with exercise on insulin resistance, visceral fat and oxidative stress markers in subjects with Type 2 diabetes. \n METHODS A 24-week, randomized, open, parallel design was used. Seventy-four patients with Type 2 diabetes were randomly assigned to either the experimental group (n = 37), which received a vegetarian diet, or the control group (n = 37), which received a conventional diabetic diet. Both diets were isocaloric, calorie restricted (-500 kcal/day). All meals during the study were provided. The second 12 weeks of the diet were combined with aerobic exercise. Participants were examined at baseline, 12 weeks and 24 weeks. Primary outcomes were: insulin sensitivity measured by hyperinsulinaemic isoglycaemic clamp; volume of visceral and subcutaneous fat measured by magnetic resonance imaging; and oxidative stress measured by thiobarbituric acid reactive substances. Analyses were by intention to treat. \n RESULTS Forty-three per cent of participants in the experimental group and 5% of participants in the control group reduced diabetes medication (P < 0.001). Body weight decreased more in the experimental group than in the control group [-6.2 kg (95% CI -6.6 to -5.3) vs. -3.2 kg (95% CI -3.7 to -2.5); interaction group × time P = 0.001]. An increase in insulin sensitivity was significantly greater in the experimental group than in the control group [30% (95% CI 24.5-39) vs. 20% (95% CI 14-25), P = 0.04]. A reduction in both visceral and subcutaneous fat was greater in the experimental group than in the control group (P = 0.007 and P = 0.02, respectively). Plasma adiponectin increased (P = 0.02) and leptin decreased (P = 0.02) in the experimental group, with no change in the control group. Vitamin C, superoxide dismutase and reduced glutathione increased in the experimental group (P = 0.002, P < 0.001 and P = 0.02, respectively). Differences between groups were greater after the addition of exercise training. Changes in insulin sensitivity and enzymatic oxidative stress markers correlated with changes in visceral fat. \n CONCLUSIONS A calorie-restricted vegetarian diet had greater capacity to improve insulin sensitivity compared with a conventional diabetic diet over 24 weeks. The greater loss of visceral fat and improvements in plasma concentrations of adipokines and oxidative stress markers with this diet may be responsible for the reduction of insulin resistance. The addition of exercise training further augmented the improved outcomes with the vegetarian diet.", "title": "Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes" }, { "docid": "39187170", "text": "Adipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human abdominal subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery. Mitochondrial DNA (mtDNA) and genomic DNA (gDNA) were determined by the PCR technique for estimation of mitochondrial density. Adipose tissue samples were permeabilized and respirometric measurements were performed in duplicate at 37 degrees C. Substrates (glutamate (G) + malate (M) + octanoyl carnitine (O) + succinate (S)) were added sequentially to provide electrons to complex I + II. ADP ((D)) for state 3 respiration was added after GM. Uncoupled respiration was measured after addition of FCCP. Visceral fat contained more mitochondria per milligram of tissue than subcutaneous fat, but the cells were smaller. Robust, stable oxygen fluxes were found in both tissues, and coupled state 3 (GMOS(D)) and uncoupled respiration were significantly (P < 0.05) higher in visceral (0.95 +/- 0.05 and 1.15 +/- 0.06 pmol O(2) s(1) mg(1), respectively) compared with subcutaneous (0.76 +/- 0.04 and 0.98 +/- 0.05 pmol O(2) s(1) mg(1), respectively) adipose tissue. Expressed per mtDNA, visceral adipose tissue had significantly (P < 0.05) lower mitochondrial respiration. Substrate control ratios were higher and uncoupling control ratio lower (P < 0.05) in visceral compared with subcutaneous adipose tissue. We conclude that visceral fat is bioenergetically more active and more sensitive to mitochondrial substrate supply than subcutaneous fat. Oxidative phosphorylation has a higher relative activity in visceral compared with subcutaneous adipose tissue.", "title": "Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity." }, { "docid": "6793674", "text": "Circulating trimethylamine N-oxide (TMAO), a canonical metabolite from gut flora, has been related to the risk of cardiovascular disorders. However, the association between circulating TMAO and the risk of cardiovascular events has not been quantitatively evaluated. We performed a systematic review and meta-analysis of all available cohort studies regarding the association between baseline circulating TMAO and subsequent cardiovascular events. Embase and PubMed databases were searched for relevant cohort studies. The overall hazard ratios for the developing of cardiovascular events (CVEs) and mortality were extracted. Heterogeneity among the included studies was evaluated with Cochran's Q Test and I2 statistics. A random-effect model or a fixed-effect model was applied depending on the heterogeneity. Subgroup analysis and meta-regression were used to evaluate the source of heterogeneity. Among the 11 eligible studies, three reported both CVE and mortality outcome, one reported only CVEs and the other seven provided mortality data only. Higher circulating TMAO was associated with a 23% higher risk of CVEs (HR = 1.23, 95% CI: 1.07-1.42, I2 = 31.4%) and a 55% higher risk of all-cause mortality (HR = 1.55, 95% CI: 1.19-2.02, I2 = 80.8%). Notably, the latter association may be blunted by potential publication bias, although sensitivity analysis by omitting one study at a time did not significantly change the results. Further subgroup analysis and meta-regression did not support that the location of the study, follow-up duration, publication year, population characteristics or the samples of TMAO affect the results significantly. Higher circulating TMAO may independently predict the risk of subsequent cardiovascular events and mortality.", "title": "Circulating trimethylamine N‐oxide and the risk of cardiovascular diseases: a systematic review and meta‐analysis of 11 prospective cohort studies" }, { "docid": "6327940", "text": "Amino acids modulate the secretion of both insulin and glucagon; the composition of dietary protein therefore has the potential to influence the balance of glucagon and insulin activity. Soy protein, as well as many other vegan proteins, are higher in non-essential amino acids than most animal-derived food proteins, and as a result should preferentially favor glucagon production. Acting on hepatocytes, glucagon promotes (and insulin inhibits) cAMP-dependent mechanisms that down-regulate lipogenic enzymes and cholesterol synthesis, while up-regulating hepatic LDL receptors and production of the IGF-I antagonist IGFBP-1. The insulin-sensitizing properties of many vegan diets--high in fiber, low in saturated fat--should amplify these effects by down-regulating insulin secretion. Additionally, the relatively low essential amino acid content of some vegan diets may decrease hepatic IGF-I synthesis. Thus, diets featuring vegan proteins can be expected to lower elevated serum lipid levels, promote weight loss, and decrease circulating IGF-I activity. The latter effect should impede cancer induction (as is seen in animal studies with soy protein), lessen neutrophil-mediated inflammatory damage, and slow growth and maturation in children. In fact, vegans tend to have low serum lipids, lean physiques, shorter stature, later puberty, and decreased risk for certain prominent 'Western' cancers; a vegan diet has documented clinical efficacy in rheumatoid arthritis. Low-fat vegan diets may be especially protective in regard to cancers linked to insulin resistance--namely, breast and colon cancer--as well as prostate cancer; conversely, the high IGF-I activity associated with heavy ingestion of animal products may be largely responsible for the epidemic of 'Western' cancers in wealthy societies. Increased phytochemical intake is also likely to contribute to the reduction of cancer risk in vegans. Regression of coronary stenoses has been documented during low-fat vegan diets coupled with exercise training; such regimens also tend to markedly improve diabetic control and lower elevated blood pressure. Risk of many other degenerative disorders may be decreased in vegans, although reduced growth factor activity may be responsible for an increased risk of hemorrhagic stroke. By altering the glucagon/insulin balance, it is conceivable that supplemental intakes of key non-essential amino acids could enable omnivores to enjoy some of the health advantages of a vegan diet. An unnecessarily high intake of essential amino acids--either in the absolute sense or relative to total dietary protein--may prove to be as grave a risk factor for 'Western' degenerative diseases as is excessive fat intake.", "title": "Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity." }, { "docid": "11181416", "text": "Because arginase hydrolyzes arginine to produce ornithine and urea, it has the potential to regulate nitric oxide (NO) and polyamine synthesis. We tested whether expression of the cytosolic isoform of arginase (arginase I) was limiting for NO or polyamine production by activated RAW 264.7 macrophage cells. RAW 264.7 cells, stably transfected to overexpress arginase I or beta-galactosidase, were treated with interferon-gamma to induce type 2 NO synthase or with lipopolysaccharide or 8-bromo-cAMP (8-BrcAMP) to induce ornithine decarboxylase. Overexpression of arginase I had no effect on NO synthesis. In contrast, cells overexpressing arginase I produced twice as much putrescine after activation than did cells expressing beta-galactosidase. Cells overexpressing arginase I also produced more spermidine after treatment with 8-BrcAMP than did cells expressing beta-galactosidase. Thus endogenous levels of arginase I are limiting for polyamine synthesis, but not for NO synthesis, by activated macrophage cells. This study also demonstrates that it is possible to alter arginase I levels sufficiently to affect polyamine synthesis without affecting induced NO synthesis.", "title": "Arginase I: a limiting factor for nitric oxide and polyamine synthesis by activated macrophages?" }, { "docid": "35962023", "text": "Recent studies suggest a close relationship between cell metabolism and apoptosis. We have evaluated changes in lipid metabolism on permeabilized hepatocytes treated with truncated Bid (tBid) in the presence of caspase inhibitors and exogenous cytochrome c. The measurement of β-oxidation flux by labeled palmitate demonstrates that tBid inhibits β-oxidation, thereby resulting in the accumulation of palmitoyl-coenzyme A (CoA) and depletion of acetyl-carnitine and acylcarnitines, which is pathognomonic for inhibition of carnitine palmitoyltransferase-1 (CPT-1). We also show that tBid decreases CPT-1 activity by a mechanism independent of both malonyl-CoA, the key inhibitory molecule of CPT-1, and Bak and/or Bax, but dependent on cardiolipin decrease. Overexpression of Bcl-2, which is able to interact with CPT-1, counteracts the effects exerted by tBid on β-oxidation. The unexpected role of tBid in the regulation of lipid β-oxidation suggests a model in which tBid-induced metabolic decline leads to the accumulation of toxic lipid metabolites such as palmitoyl-CoA, which might become participants in the apoptotic pathway.", "title": "tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1" }, { "docid": "44693226", "text": "Many studies have shown that caloric restriction (40%) decreases mitochondrial reactive oxygen species (ROS) generation in rodents. Moreover, we have recently found that 7 weeks of 40% protein restriction without strong caloric restriction also decreases ROS production in rat liver. This is interesting since it has been reported that protein restriction can also extend longevity in rodents. In the present study we have investigated the possible role of dietary lipids in the effects of caloric restriction on mitochondrial oxidative stress. Using semipurified diets, the ingestion of lipids in male Wistar rats was decreased by 40% below controls, while the other dietary components were ingested at exactly the same level as in animals fed ad libitum. After 7 weeks of treatment the liver mitochondria of lipid-restricted animals showed significant increases in oxygen consumption with complex I-linked substrates (pyruvate/malate and glutamate/malate). Neither mitochondrial H(2)O(2) production nor oxidative damage to mitochondrial or nuclear DNA was modified in lipid-restricted animals. Oxidative damage to mitochondrial DNA was one order of magnitude higher than that of nuclear DNA in both dietary groups. These results deny a role for lipids and reinforce the possible role of dietary proteins as being responsible for the decrease in mitochondrial ROS production and DNA damage in caloric restriction.", "title": "Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage." }, { "docid": "22995164", "text": "Nitrosoglutathione [(GSNO), 500 nmol/l] relaxed the norepinephrine precontracted rat aortic rings. The relaxation effect was pronouncedly enhanced by H2S- and HS−-donor NaHS (30 μmol/l) at 7.5 pH but not at 6.3 pH. To study molecular mechanism of this effect, we investigated whether NaHS can release NO from NO donors. Using an electron paramagnetic resonance spectroscopy method of spin trap and by measuring the NO oxidation product, which is nitrite, by the Griess reaction, we report that NaHS released NO from nitrosothiols, namely from GSNO, S-nitroso-N-acetyl-dl-penicillamine (SNAP), from metal nitrosyl complex nitroprusside (SNP) and from rat brain homogenate and murine L1210 leukaemia cells. From the observation that the releasing effect was more pronounced at 8.0 pH than 6.0 pH, we suppose that HS−, rather than H2S, is responsible for the NO-releasing effect. Since in mammals, H2S and HS− are produced endogenously, we assume that their effect to release NO from nitrosothiols and from metal nitrosyl complexes are responsible for some of their biological activities and that this mechanism may be involved in S-nitrosothiol-signalling reactions.", "title": "H2S and HS− donor NaHS releases nitric oxide from nitrosothiols, metal nitrosyl complex, brain homogenate and murine L1210 leukaemia cells" }, { "docid": "44624045", "text": "BACKGROUND Few previous prospective studies have examined differences in incident ischemic heart disease (IHD) risk between vegetarians and nonvegetarians. \n OBJECTIVE The objective was to examine the association of a vegetarian diet with risk of incident (nonfatal and fatal) IHD. \n DESIGN A total of 44,561 men and women living in England and Scotland who were enrolled in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Oxford study, of whom 34% consumed a vegetarian diet at baseline, were part of the analysis. Incident cases of IHD were identified through linkage with hospital records and death certificates. Serum lipids and blood pressure measurements were available for 1519 non cases, who were matched to IHD cases by sex and age. IHD risk by vegetarian status was estimated by using multivariate Cox proportional hazards models. \n RESULTS After an average follow-up of 11.6 y, there were 1235 IHD cases (1066 hospital admissions and 169 deaths). Compared with nonvegetarians, vegetarians had a lower mean BMI [in kg/m(2); -1.2 (95% CI: -1.3, -1.1)], non-HDL-cholesterol concentration [-0.45 (95% CI: -0.60, -0.30) mmol/L], and systolic blood pressure [-3.3 (95% CI: -5.9, -0.7) mm Hg]. Vegetarians had a 32% lower risk (HR: 0.68; 95% CI: 0.58, 0.81) of IHD than did nonvegetarians, which was only slightly attenuated after adjustment for BMI and did not differ materially by sex, age, BMI, smoking, or the presence of IHD risk factors. \n CONCLUSION Consuming a vegetarian diet was associated with lower IHD risk, a finding that is probably mediated by differences in non-HDL cholesterol, and systolic blood pressure.", "title": "Risk of hospitalization or death from ischemic heart disease among British vegetarians and nonvegetarians: results from the EPIC-Oxford cohort study." }, { "docid": "13380011", "text": "Partial inhibition of mitochondrial respiratory complex I by rotenone reproduces aspects of Parkinson's disease in rodents. The hypothesis that rotenone enhancement of neuronal cell death is attributable to oxidative stress was tested in an acute glutamate excitotoxicity model using primary cultures of rat cerebellar granule neurons. As little as 5 nM rotenone increased mitochondrial superoxide (O2*-) levels and potentiated glutamate-induced cytoplasmic Ca2+ deregulation, the first irreversible stage of necrotic cell death. However, the potent cell-permeant O2*- trap manganese tetrakis (N-ethylpyridinium-2yl) porphyrin failed to prevent the effects of the inhibitor. The bioenergetic consequences of rotenone addition were quantified by monitoring cell respiration. Glutamate activation of NMDA receptors used the full respiratory capacity of the in situ mitochondria, and >80% of the glutamate-stimulated respiration was attributable to increased cellular ATP demand. Rotenone at 20 nM inhibited basal and carbonyl cyanide p-trifluoromethoxyphenylhydrazone-stimulated cell respiration and caused respiratory failure in the presence of glutamate. ATP synthase inhibition by oligomycin was also toxic in the presence of glutamate. We conclude that the cell vulnerability in the rotenone model of partial complex I deficiency under these specific conditions is primarily determined by spare respiratory capacity rather than oxidative stress.", "title": "Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone." }, { "docid": "71341302", "text": "Abstract Objective Our previous 6-month, randomized study demonstrated the beneficial effect of a vegetarian (V) compared to a conventional diet (C) with similar caloric restriction on cardiovascular risk factors for patients with type 2 diabetes (T2D), namely increased insulin sensitivity, reduced body weight, reduced volume of visceral and subcutaneous fat, decreased LDL-cholesterol and improved oxidative stress markers and chosen adipokines. We conducted post-trial monitoring to determine whether the improved outcomes persisted 1 year after the end of the study. Methods 62 subjects with T2D who completed the study were asked to come for a 1-year follow-up to measure weight, waist circumference, HbA1c and blood lipids. No attempts were made to maintain their previously assigned diets. Results 44 patients (71%) attended the post-trial monitoring. Hypoglycemic agents were increased by 14% in V and by 26% in C; insulin therapy was introduced in 5% in V and in 13% in C one year after the end of the intervention. Neither weight nor waist circumference changed significantly in either group. HbA1c increased ( p ≤ 0.05) similarly in both groups (+0.49 ± 1.04% in V vs. +0.42 ± 0.8% in C). Blood lipids did not change in either group. Conclusion One year after the end of the intervention, the positive effects of a vegetarian diet on cardiovascular risk factors compared to a conventional diet were partially maintained.", "title": "Vegetarian vs. conventional diabetic diet – A 1-year follow-up" }, { "docid": "24349992", "text": "Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a \"lethal tumor micro-environment. \" Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a \"metabolic\" and \"mutagenic\" motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the \"Reverse Warburg Effect\"). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use \"oxidative stress\" in adjacent fibroblasts (i) as an \"engine\" to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the \"field effect\" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively \"contagious\"--spread from cell-to-cell like a virus--creating an \"oncogenic/mutagenic\" field promoting widespread DNA damage.", "title": "Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells." }, { "docid": "15615957", "text": "UNLABELLED Fruit and vegetable consumption has been inversely associated with the risk of chronic diseases including cancer and cardiovascular disease, with the beneficial effects attributed to a variety of protective antioxidants, carotenoids and phytonutrients. The objective of the present study was to determine the effect of supplementation with dehydrated concentrates from mixed fruit and vegetable juices (Juice Plus+R) on serum antioxidant and folate status, plasma homocysteine levels and markers for oxidative stress and DNA damage. Japanese subjects (n=60; age 27.8 yrs; BMI 22.1) were recruited to participate in a double-blind placebo controlled study and were randomized into 2 groups of 30, matched for sex, age, BMI and smoking status (39 males, 22 smokers; 21 females, 13 smokers). Subjects were given encapsulated supplements containing mixed fruit and vegetable juice concentrates or a matching placebo for 28 days, with blood and urine samples collected at baseline, day 14 and day 28 for analytical testing. Compared with the placebo, 28 day supplementation significantly increased the concentration of serum beta-carotene 528% (p<0.0001), lycopene 80.2% (p<0.0005), and alpha tocopherol 39.5% (p<0.0001). Serum folate increased 174.3% (p<0.0001) and correlated with a decrease in plasma homocysteine of -19.9% (p<0.03). Compared with baseline, measures of oxidative stress decreased with serum lipid peroxides declining -10.5% (p<0.02) and urine 8OHdG decreasing -21.1% (p<0.02). Evaluation of data from smokers only (n=17) after 28 days of active supplementation showed comparable changes. \n CONCLUSION In the absence of dietary modification, supplementation with the fruit and vegetable juice concentrate capsules proved to be a highly bioavailable source of phytonutrients. Important antioxidants were elevated to desirable levels associated with decreased risk of disease while markers of oxidative stress were reduced, and folate status improved with a concomitant decrease in homocysteine, and these benefits occurred to a similar extent in smokers when compared to non-smokers.", "title": "Original Article" }, { "docid": "35828148", "text": "Apocynin has been reported to require dimerization by myeloperoxidase (MPO) to inhibit leukocyte NADPH oxidase. (-)-Epicatechin, a dietary flavan-3-ol, has been identified as a 'prodrug' of apocynin-like metabolites that inhibit endothelial NADPH oxidase activity and elevate the cellular level of nitric oxide. Since (-)-epicatechin has tentatively been identified as substrate of MPO, we studied the one-electron oxidation of (-)-epicatechin by MPO. By using multi-mixing stopped-flow technique, we demonstrate that (-)-epicatechin is one of the most efficient electron donors for heme peroxidases investigated so far. Second order rate constants for the (-)-epicatechin-mediated conversion of MPO-compound I to compound II and compound II to resting enzyme were estimated to be 1.9 x 10(7) and 4.5 x 10(6) M(-1)s(-1), respectively (pH 7, 25 degrees C). The data indicate that (-)-epicatechin is capable of undergoing fast MPO-mediated one-electron oxidation.", "title": "Kinetic evidence for rapid oxidation of (-)-epicatechin by human myeloperoxidase." }, { "docid": "25974070", "text": "The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.", "title": "Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function." }, { "docid": "6191684", "text": "CONTEXT Chronic tension-type headaches are characterized by near-daily headaches and often are difficult to manage in primary practice. Behavioral and pharmacological therapies each appear modestly effective, but data are lacking on their separate and combined effects. \n OBJECTIVE To evaluate the clinical efficacy of behavioral and pharmacological therapies, singly and combined, for chronic tension-type headaches. \n DESIGN AND SETTING Randomized placebo-controlled trial conducted from August 1995 to January 1998 at 2 outpatient sites in Ohio. \n PARTICIPANTS Two hundred three adults (mean age, 37 years; 76% women) with diagnosis of chronic tension-type headaches (mean, 26 headache d/mo). \n INTERVENTIONS Participants were randomly assigned to receive tricyclic antidepressant (amitriptyline hydrochloride, up to 100 mg/d, or nortriptyline hydrochloride, up to 75 mg/d) medication (n = 53), placebo (n = 48), stress management (eg, relaxation, cognitive coping) therapy (3 sessions and 2 telephone contacts) plus placebo (n = 49), or stress management therapy plus antidepressant medication (n = 53). \n MAIN OUTCOME MEASURES Monthly headache index scores calculated as the mean of pain ratings (0-10 scale) recorded by participants in a daily diary 4 times per day; number of days per month with at least moderate pain (pain rating >/=5), analgesic medication use, and Headache Disability Inventory scores, compared by intervention group. \n RESULTS Tricyclic antidepressant medication and stress management therapy each produced larger reductions in headache activity, analgesic medication use, and headache-related disability than placebo, but antidepressant medication yielded more rapid improvements in headache activity. Combined therapy was more likely to produce clinically significant (>/=50%) reductions in headache index scores (64% of participants) than antidepressant medication (38% of participants; P =.006), stress management therapy (35%; P =.003), or placebo (29%; P =.001). On other measures the combined therapy and its 2 component therapies produced similar outcomes. \n CONCLUSIONS Our results indicate that antidepressant medication and stress management therapy are each modestly effective in treating chronic tension-type headaches. Combined therapy may improve outcome relative to monotherapy.", "title": "Management of chronic tension-type headache with tricyclic antidepressant medication, stress management therapy, and their combination: a randomized controlled trial." }, { "docid": "28644298", "text": "Epstein-Barr virus (EBV) latency III infection converts B lymphocytes into lymphoblastoid cell lines (LCLs) by expressing EBV nuclear and membrane proteins, EBNAs, and latent membrane proteins (LMPs), which regulate transcription through Notch and tumor necrosis factor receptor pathways. The role of NF-kappa B in LMP1 and overall EBV latency III transcriptional effects was investigated by treating LCLs with BAY11-7082 (BAY11). BAY11 rapidly and irreversibly inhibited NF-kappa B, decreased mitochondrial membrane potential, induced apoptosis, and altered LCL gene expression. BAY11 effects were similar to those of an NF-kappa B inhibitor, Delta N-I kappa B alpha, in effecting decreased JNK1 expression and in microarray analyses. More than 80% of array elements that decreased with Delta N-I kappa B alpha expression decreased with BAY11 treatment. Newly identified NF-kappa B-induced, LMP1-induced, and EBV-induced genes included pleckstrin, Jun-B, c-FLIP, CIP4, and I kappa B epsilon. Of 776 significantly changed array elements, 134 were fourfold upregulated in EBV latency III, and 74 were fourfold upregulated with LMP1 expression alone, whereas only 28 were more than fourfold downregulated by EBV latency III. EBV latency III-regulated gene products mediate cell migration (EBI2, CCR7, RGS1, RANTES, MIP1 alpha, MIP1 beta, CXCR5, and RGS13), antigen presentation (major histocompatibility complex proteins and JAW1), mitogen-activated protein kinase pathway (DUSP5 and p62Dok), and interferon (IFN) signaling (IFN-gamma R alpha, IRF-4, and STAT1). Comparison of EBV latency III LCL gene expression to immunoglobulin M (IgM)-stimulated B cells, germinal-center B cells, and germinal-center-derived lymphomas clustered LCLs with IgM-stimulated B cells separately from germinal-center cells or germinal-center lymphoma cells. Expression of IRF-2, AIM1, ASK1, SNF2L2, and components of IFN signaling pathways further distinguished EBV latency III-infected B cells from IgM-stimulated or germinal-center B cells.", "title": "Role of NF-kappa B in cell survival and transcription of latent membrane protein 1-expressing or Epstein-Barr virus latency III-infected cells." } ]
885
One in five surgical randomized controlled trials are discontinued early.
[ { "docid": "6477536", "text": "OBJECTIVE To determine the rate of early discontinuation and non-publication of randomised controlled trials involving patients undergoing surgery. \n DESIGN Cross sectional observational study of registered and published trials. \n SETTING Randomised controlled trials of interventions in patients undergoing a surgical procedure. \n DATA SOURCES The ClinicalTrials.gov database was searched for interventional trials registered between January 2008 and December 2009 using the keyword \"surgery\". Recruitment status was extracted from the ClinicalTrials.gov database. A systematic search for studies published in peer reviewed journals was performed; if they were not found, results posted on the ClinicalTrials.gov results database were sought. Email queries were sent to trial investigators of discontinued and unpublished completed trials if no reason for the respective status was disclosed. \n MAIN OUTCOME MEASURES Trial discontinuation before completion and non-publication after completion. Logistic regression was used to determine the effect of funding source on publication status, with adjustment for intervention type and trial size. \n RESULTS Of 818 registered trials found using the keyword \"surgery\", 395 met the inclusion criteria. Of these, 21% (81/395) were discontinued early, most commonly owing to poor recruitment (44%, 36/81). The remaining 314 (79%) trials proceeded to completion, with a publication rate of 66% (208/314) at a median time of 4.9 (interquartile range 4.0-6.0) years from study completion to publication search. A further 6% (20/314) of studies presented results on ClinicalTrials.gov without a corresponding peer reviewed publication. Industry funding did not affect the rate of discontinuation (adjusted odds ratio 0.91, 95% confidence interval 0.54 to 1.55) but was associated with a lower odds of publication for completed trials (0.43, 0.26 to 0.72). Investigators' email addresses for trials with an uncertain fate were identified for 71.4% (10/14) of discontinued trials and 83% (101/122) of unpublished studies. Only 43% (6/14) and 20% (25/122) replies were received. Email responses for completed trials indicated 11 trials in press, five published studies (four in non-indexed peer reviewed journals), and nine trials remaining unpublished. \n CONCLUSIONS One in five surgical randomised controlled trials are discontinued early, one in three completed trials remain unpublished, and investigators of unpublished studies are frequently not contactable. This represents a waste of research resources and raises ethical concerns regarding hidden clinical data and futile participation by patients with its attendant risks. To promote future efficiency and transparency, changes are proposed to research governance frameworks to overcome these concerns.", "title": "Discontinuation and non-publication of surgical randomised controlled trials: observational study" } ]
[ { "docid": "9967265", "text": "BACKGROUND Patent ductus arteriosus (PDA) with significant left to right shunt in preterm infants increases morbidity and mortality. Early closure of the ductus arteriosus may be achieved pharmacologically using cyclooxygenase inhibitors or by surgery. The efficacy of both treatment modalities is well established. However, the preferred initial treatment of a symptomatic PDA in a preterm infant, surgical ligation or treatment with indomethacin, has not been well established. \n OBJECTIVES To compare the effect of surgical ligation of PDA vs. medical treatment with cyclooxygenase inhibitors (using indomethacin, ibuprofen, or mefenamic acid), each used as the initial treatment, on neonatal mortality in preterm infants with a symptomatic PDA. SEARCH STRATEGY The standard search strategy of the Cochrane Neonatal Review Group was used. This included search of electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 2, 2007), MEDLINE (1966 - July 2007), CINAHL (1982 - July 2007), EMBASE (1980 - July 2007); and hand search of abstracts of Pediatric Academic Societies annual meetings published in Pediatric Research (1990 - April 2002) or on line from May 2002 -July 2007. No language restrictions were applied. SELECTION CRITERIA All trials 1) using randomized or quasi-randomized patient allocation, 2) in preterm infants < 37 weeks gestational age or low-birth-weight infants (< 2500 grams) with symptomatic PDA in the neonatal period (< 28 days) and 3) comparing surgical ligation with medical treatment with cyclooxygenase inhibitors, each used as the initial treatment for closure of PDA. \n DATA COLLECTION AND ANALYSIS Assessment of methodological quality and extraction of data for included trials was undertaken independently by the authors. RevMan 4.1 was used for analysis of the data. \n MAIN RESULTS Only one study, trial B in the report of Gersony 1983, was found eligible. No additional studies were identified in the literature searches performed in July 2007. The trial compared the effect of surgical ligation of PDA vs. medical treatment with indomethacin, each used as the primary treatment. No trials comparing surgery to other cyclooxygenase inhibitors (ibuprofen, mefenamic acid) were found. Trial B of Gersony 1983 enrolled 154 infants. The study found no statistically significant difference between surgical closure and indomethacin treatment in mortality during hospital stay, chronic lung disease, other bleeding, necrotizing enterocolitis, sepsis, creatinine level, or intraventricular hemorrhage. There was a statistically significant increase in the surgical group in incidence of pneumothorax [RR 2.68 (95% CI 1.45, 4.93); RD 0.25 (95% CI 0.11, 0.38); NNH 4 (95% CI 3, 9)] and retinopathy of prematurity stage III and IV [RR 3.80 (95% CI 1.12, 12.93); RD 0.11 (95% CI 0.02, 0.20), NNH 9 (95% CI 5, 50] compared to the indomethacin group. There was as expected a statistically significant decrease in failure of ductal closure rate in the surgical group as compared to the indomethacin group: [RR 0.04 (95% CI 0.01, 0.27); RD -0.32 (95% CI -0.43, -0.21), NNT 3 (95% CI 2, 4)]. AUTHORS' CONCLUSIONS The data regarding net benefit/harm are insufficient to make a conclusion as to whether surgical ligation or medical treatment with indomethacin is preferred as initial treatment for symptomatic PDA in preterm infants. It should be noted that three recent observational studies indicated an increased risk for one or more of the following outcomes associated with PDA ligation; chronic lung disease, retinopathy of prematurity and neurosensory impairment . It is possible that the duration of the \"waiting-time\" and transport to another facility with surgical capacity to have the PDA ligated could adversely affect outcomes, as could the perioperative care.", "title": "Surgical versus medical treatment with cyclooxygenase inhibitors for symptomatic patent ductus arteriosus in preterm infants." }, { "docid": "7613033", "text": "Considerable evidence supports the effectiveness of aspirin for chemoprevention of colorectal cancer (CRC) in addition to its well-established benefits in the prevention of vascular disease. Epidemiologic studies have consistently observed an inverse association between aspirin use and risk of CRC. A recent pooled analysis of a long-term posttrial follow-up of nearly 14,000 patients from four randomized, cardiovascular disease prevention trials showed that daily aspirin treatment for about five years was associated with a 34% reduction in 20-year CRC mortality. A separate metaanalysis of nearly 3,000 patients with a history of colorectal adenoma or cancer in four randomized adenoma prevention trials showed that aspirin reduced the occurrence of advanced adenomas by 28% and any adenoma by 17%. Aspirin has also been shown to be beneficial in a clinical trial of patients with Lynch syndrome, a hereditary CRC syndrome; in those treated with aspirin for at least two years, there was a 50% or more reduction in the risk of CRC commencing five years after randomization and after aspirin had been discontinued. A few observational studies have shown an increase in survival among patients with CRC who use aspirin. Taken together, these findings strengthen the case for consideration of long-term aspirin use in CRC prevention. Despite these compelling data, there is a lack of consensus about the balance of risks and benefits associated with long-term aspirin use, particularly in low-risk populations. The optimal dose to use for cancer prevention and the precise mechanism underlying aspirin's anticancer effect require further investigation.", "title": "Aspirin in the chemoprevention of colorectal neoplasia: an overview." }, { "docid": "26067999", "text": "The U.S. Preventive Services Task Force (USPSTF) makes recommendations about the effectiveness of specific preventive care services for patients without related signs or symptoms. It bases its recommendations on the evidence of both the benefits and harms of the service and an assessment of the balance. The USPSTF does not consider the costs of providing a service in this assessment. The USPSTF recognizes that clinical decisions involve more considerations than evidence alone. Clinicians should understand the evidence but individualize decision making to the specific patient or situation. Similarly, the USPSTF notes that policy and coverage decisions involve considerations in addition to the evidence of clinical benefits and harms. Summary of Recommendation and Evidence The USPSTF recommends annual screening for lung cancer with low-dose computed tomography (LDCT) in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (B recommendation) See the Clinical Considerations section for suggestions for implementation in practice. See the Figure for a summary of the recommendation and suggestions for clinical practice. Figure. Screening for lung cancer: clinical summary of U.S. Preventive Services Task Force recommendation. Appendix Table 1 describes the USPSTF grades, and Appendix Table 2 describes the USPSTF classification of levels of certainty about net benefit. Appendix Table 1. What the USPSTF Grades Mean and Suggestions for Practice Appendix Table 2. USPSTF Levels of Certainty Regarding Net Benefit Supplement. Consumer Fact Sheet. Rationale Importance Lung cancer is the third most common cancer and the leading cause of cancer-related death in the United States (1). The most important risk factor for lung cancer is smoking, which results in approximately 85% of all U.S. lung cancer cases (2). Although the prevalence of smoking has decreased, approximately 37% of U.S. adults are current or former smokers (2). The incidence of lung cancer increases with age and occurs most commonly in persons aged 55 years or older. Increasing age and cumulative exposure to tobacco smoke are the 2 most common risk factors for lung cancer. Lung cancer has a poor prognosis, and nearly 90% of persons with lung cancer die of the disease. However, early-stage nonsmall cell lung cancer (NSCLC) has a better prognosis and can be treated with surgical resection. Detection Most lung cancer cases are NSCLC, and most screening programs focus on the detection and treatment of early-stage NSCLC. Although chest radiography and sputum cytologic evaluation have been used to screen for lung cancer, LDCT has greater sensitivity for detecting early-stage cancer (3). Benefits of Detection and Early Treatment Although lung cancer screening is not an alternative to smoking cessation, the USPSTF found adequate evidence that annual screening for lung cancer with LDCT in a defined population of high-risk persons can prevent a substantial number of lung cancerrelated deaths. Direct evidence from a large, well-conducted, randomized, controlled trial (RCT) provides moderate certainty of the benefit of lung cancer screening with LDCT in this population (4). The magnitude of benefit to the person depends on that person's risk for lung cancer because those who are at highest risk are most likely to benefit. Screening cannot prevent most lung cancerrelated deaths, and smoking cessation remains essential. Harms of Detection and Early Intervention and Treatment The harms associated with LDCT screening include false-negative and false-positive results, incidental findings, overdiagnosis, and radiation exposure. False-positive LDCT results occur in a substantial proportion of screened persons; 95% of all positive results do not lead to a diagnosis of cancer. In a high-quality screening program, further imaging can resolve most false-positive results; however, some patients may require invasive procedures. The USPSTF found insufficient evidence on the harms associated with incidental findings. Overdiagnosis of lung cancer occurs, but its precise magnitude is uncertain. A modeling study performed for the USPSTF estimated that 10% to 12% of screen-detected cancer cases are overdiagnosedthat is, they would not have been detected in the patient's lifetime without screening. Radiation harms, including cancer resulting from cumulative exposure to radiation, vary depending on the age at the start of screening; the number of scans received; and the person's exposure to other sources of radiation, particularly other medical imaging. USPSTF Assessment The USPSTF concludes with moderate certainty that annual screening for lung cancer with LDCT is of moderate net benefit in asymptomatic persons who are at high risk for lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking. The moderate net benefit of screening depends on limiting screening to persons who are at high risk, the accuracy of image interpretation being similar to that found in the NLST (National Lung Screening Trial), and the resolution of most false-positive results without invasive procedures (4). Clinical Considerations Patient Population Under Consideration The risk for lung cancer increases with age and cumulative exposure to tobacco smoke and decreases with time since quitting smoking. The best evidence for the benefit of screening comes from the NLST, which enrolled adults aged 55 to 74 years who had at least a 30 pack-year smoking history and were current smokers or had quit within the past 15 years. As with all screening trials, the NLST tested a specific intervention over a finite period. Because initial eligibility extended through age 74 years and participants received 3 annual screening computed tomographic scans, the oldest participants in the trial were aged 77 years. The USPSTF used modeling studies to predict the benefits and harms of screening programs that use different screening intervals, age ranges, smoking histories, and times since quitting. A program that annually screens adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years is projected to have a reasonable balance of benefits and harms. The model assumes that persons who achieve 15 years of smoking cessation during the screening program discontinue screening. This model predicts the outcomes of continuing the screening program used in the NLST through age 80 years. Screening may not be appropriate for patients with substantial comorbid conditions, particularly those at the upper end of the screening age range. The NLST excluded persons who were unlikely to complete curative lung cancer surgery and those with medical conditions that posed a substantial risk for death during the 8-year trial. The baseline characteristics of the NLST showed a relatively healthy sample, and fewer than 10% of enrolled participants were older than 70 years (5). Persons with serious comorbid conditions may experience net harm, no net benefit, or at least substantially less net benefit. Similarly, persons who are unwilling to have curative lung surgery are unlikely to benefit from a screening program. Assessment of Risk Age, total exposure to tobacco smoke, and years since quitting smoking are important risk factors for lung cancer and were used to determine eligibility in the NLST. Other risk factors include specific occupational exposures, radon exposure, family history, and history of pulmonary fibrosis or chronic obstructive lung disease. The incidence of lung cancer is relatively low in persons younger than 50 years but increases with age, especially after age 60 years. In current and former smokers, age-specific incidence rates increase with age and cumulative exposure to tobacco smoke. Smoking cessation substantially reduces a person's risk for developing and dying of lung cancer. Among persons enrolled in the NLST, those who were at highest risk because of additional risk factors or a greater cumulative exposure to tobacco smoke experienced most of the benefit (6). A validated multivariate model showed that persons in the highest 60% of risk accounted for 88% of all deaths preventable by screening. Screening Tests Low-dose computed tomography has shown high sensitivity and acceptable specificity for the detection of lung cancer in high-risk persons. Chest radiography and sputum cytologic evaluation have not shown adequate sensitivity or specificity as screening tests. Therefore, LDCT is currently the only recommended screening test for lung cancer. Treatment Surgical resection is the current standard of care for localized NSCLC. This type of cancer is treated with surgical resection when possible and also with radiation and chemotherapy. Annual LDCT screening may not be useful for patients with life-limiting comorbid conditions or poor functional status who may not be candidates for surgery. Other Approaches to Prevention Smoking cessation is the most important intervention to prevent NSCLC. Advising smokers to stop smoking and preventing nonsmokers from being exposed to tobacco smoke are the most effective ways to decrease the morbidity and mortality associated with lung cancer. Current smokers should be informed of their continuing risk for lung cancer and offered cessation treatments. Screening with LDCT should be viewed as an adjunct to tobacco cessation interventions. Useful Resources Clinicians have many resources to help patients stop smoking. The Centers for Disease Control and Prevention has developed a Web site with many such resources, including information on tobacco quit lines, available in several languages (www.cdc.gov/tobacco/campaign/tips). Quit l", "title": "Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement" }, { "docid": "11117498", "text": "Solitary metastatic brain tumors are the most common intracranial neoplasms encountered by neurosurgeons. Surgical resection of brain metastasis with whole brain radiotherapy (WBR) significantly increases survival in comparison with WBR alone. Stereotactic radiosurgery (SR) seems to provide results that are similar to those of surgical resection. To analyze the economic efficiency of these different treatments, we compared the results of surgical resection and SR as reported in the medical literature between 1974 and 1994. We included studies in which: 1) at least 75% of patients received WBR; 2) study dates were in the computed tomography era (after 1975); 3) operative morbidity, mortality, and median survival were reported; 4) study dates were not included in a more recent update or review; 5) tumor histologies were reported; and 6) the cobalt-60 gamma unit was used for SR. Three surgical resection studies and one SR study met all entry requirements. The WBR baseline was developed from two prospective, randomized trials and used for incremental cost effectiveness analysis. We developed a model of typical resource usage for uncomplicated procedures, reported complications, and subsequent craniotomies (for recurrent tumor or radiation necrosis) for both treatment options. Costs were estimated from the societal viewpoint using the 1992 Medicare Provider Analysis and Review database with average cost:charge ratios for surgery and WBR. A survey of capital and operating costs from five sites was used for radiosurgery. Our analysis revealed that radiosurgery had a lower uncomplicated procedure cost ($20,209 versus $27,587), a lower average complication cost per case ($2,534 versus $2,874), and a lower total cost per procedure ($22,743 versus $30,461), was more cost effective ($24,811 versus $32,149 per life year), and had a better incremental cost effectiveness ($40,648 versus $52,384 per life year) than surgical resection. A sensitivity analysis revealed that large changes in key assumptions would be required to change the analysis outcome. Equalization of the incremental cost effectiveness of the two treatments would require one of the following: 1) a 38.7% reduction in SR annual case volume, 2) a 34.7% increase in SR procedure cost, 3) a 18.8% reduction in surgical resection procedure cost, 4) a 240.5% increase in SR morbidity cost, 5) a 12.7% reduction in SR median survival, 6) a 16.8% increase in surgical resection median survival. Elimination of all surgical resection morbidity cost would still result in superior incremental cost effectiveness for SR.(ABSTRACT TRUNCATED AT 400 WORDS)", "title": "The cost effectiveness of stereotactic radiosurgery versus surgical resection in the treatment of solitary metastatic brain tumors." }, { "docid": "7098463", "text": "CONTEXT Observational studies suggest that surgically induced loss of weight may be effective therapy for type 2 diabetes. \n OBJECTIVE To determine if surgically induced weight loss results in better glycemic control and less need for diabetes medications than conventional approaches to weight loss and diabetes control. \n DESIGN, SETTING, AND PARTICIPANTS Unblinded randomized controlled trial conducted from December 2002 through December 2006 at the University Obesity Research Center in Australia, with general community recruitment to established treatment programs. Participants were 60 obese patients (BMI >30 and <40) with recently diagnosed (<2 years) type 2 diabetes. \n INTERVENTIONS Conventional diabetes therapy with a focus on weight loss by lifestyle change vs laparoscopic adjustable gastric banding with conventional diabetes care. \n MAIN OUTCOME MEASURES Remission of type 2 diabetes (fasting glucose level <126 mg/dL [7.0 mmol/L] and glycated hemoglobin [HbA1c] value <6.2% while taking no glycemic therapy). Secondary measures included weight and components of the metabolic syndrome. Analysis was by intention-to-treat. \n RESULTS Of the 60 patients enrolled, 55 (92%) completed the 2-year follow-up. Remission of type 2 diabetes was achieved by 22 (73%) in the surgical group and 4 (13%) in the conventional-therapy group. Relative risk of remission for the surgical group was 5.5 (95% confidence interval, 2.2-14.0). Surgical and conventional-therapy groups lost a mean (SD) of 20.7% (8.6%) and 1.7% (5.2%) of weight, respectively, at 2 years (P < .001). Remission of type 2 diabetes was related to weight loss (R2 = 0.46, P < .001) and lower baseline HbA1c levels (combined R2 = 0.52, P < .001). There were no serious complications in either group. \n CONCLUSIONS Participants randomized to surgical therapy were more likely to achieve remission of type 2 diabetes through greater weight loss. These results need to be confirmed in a larger, more diverse population and have long-term efficacy assessed. \n TRIAL REGISTRATION actr.org Identifier: ACTRN012605000159651.", "title": "Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial." }, { "docid": "8642784", "text": "OBJECTIVE To assess the efficacy of various controlled ovarian hyperstimulation (COH) regimens in the prior poor-responder patient preparing for assisted reproductive techniques. \n DESIGN English-language literature review. \n PATIENT(S) Candidates for assisted reproductive techniques who had been defined as having a prior suboptimal response to standard COH regimens. \n INTERVENTION(S) A variety of regimes are reviewed, including increased gonadotropin doses, change of gonadotropins, adjunctive growth hormone (GH), luteal phase (long) GnRH agonist (GnRH-a) initiation, early follicular phase (flare) GnRH-a initiation, low-dose luteal phase (ultrashort) GnRH-a initiation, progestin pretreatment, and microdose flare GnRH-a initiation. \n MAIN OUTCOME MEASURE(S) Maximal serum E(2) levels, follicular development, dose, and duration of gonadotropin therapy, cycle cancellation rates, oocytes retrieved, embryos transferred, and clinical and ongoing pregnancy rates. \n RESULT(S) A lack of uniformity in definition of the poor responder and of prospective randomized trials make data interpretation somewhat difficult. Of the varied strategies proposed, those that seem to be more uniformly beneficial are microdose GnRH-a flare and late luteal phase initiation of a short course of low-dose GnRH-a discontinued before COH. \n CONCLUSION(S) No single regimen will benefit all poor responders. General acceptance of uniform definitions and performance of large-scale prospective randomized trials are critical. Development of a reliable precycle screen will allow effective differentiation among normal responders, poor responders, and those who will not conceive with their own oocytes.", "title": "Evaluating strategies for improving ovarian response of the poor responder undergoing assisted reproductive techniques." }, { "docid": "6112053", "text": "Background: Selective serotonin reuptake inhibitors (SSRI) are widely used in medical practice. They have been associated with a broad range of symptoms, whose clinical meaning has not been fully appreciated. Methods: The PRISMA guidelines were followed to conduct a systematic review of the literature. Titles, abstracts, and topics were searched using the following terms: ‘withdrawal symptoms' OR ‘withdrawal syndrome' OR ‘discontinuation syndrome' OR ‘discontinuation symptoms', AND ‘SSRI' OR ‘serotonin' OR ‘antidepressant' OR ‘paroxetine' OR ‘fluoxetine' OR ‘sertraline' OR ‘fluvoxamine' OR ‘citalopram' OR ‘escitalopram'. The electronic research literature databases included CINAHL, the Cochrane Library, PubMed and Web-of-Science from inception of each database to July 2014. Results: There were 15 randomized controlled studies, 4 open trials, 4 retrospective investigations, and 38 case reports. The prevalence of the syndrome was variable, and its estimation was hindered by a lack of case identification in many studies. Symptoms typically occur within a few days from drug discontinuation and last a few weeks, also with gradual tapering. However, many variations are possible, including late onset and/or longer persistence of disturbances. Symptoms may be easily misidentified as signs of impending relapse. Conclusions: Clinicians need to add SSRI to the list of drugs potentially inducing withdrawal symptoms upon discontinuation, together with benzodiazepines, barbiturates, and other psychotropic drugs. The term ‘discontinuation syndrome' that is currently used minimizes the potential vulnerabilities induced by SSRI and should be replaced by ‘withdrawal syndrome'.", "title": "Withdrawal Symptoms after Selective Serotonin Reuptake Inhibitor Discontinuation: A Systematic Review" }, { "docid": "45336190", "text": "OBJECTIVE To evaluate the safety, tolerability, and amyloid beta (Abeta) response to the gamma-secretase inhibitor LY450139 in Alzheimer disease. \n DESIGN Multicenter, randomized, double-blind, dose-escalation, placebo-controlled trial. \n SETTING Community-based clinical research centers. Patients Fifty-one individuals with mild to moderate Alzheimer disease were randomized to receive placebo (n=15) or LY450139 (100 mg [n=22] or 140 mg [n=14]), with 43 completing the treatment phase. Intervention The LY450139 groups received 60 mg/d for 2 weeks, then 100 mg/d for 6 weeks, and then either 100 or 140 mg/d for 6 additional weeks. \n MAIN OUTCOME MEASURES Primary outcome measures were adverse events, plasma and cerebrospinal fluid Abeta levels, vital signs, electrocardiographic data, and laboratory safety test results. Secondary outcome measures included the Alzheimer's Disease Assessment Scale cognitive subscale and the Alzheimer's Disease Cooperative Study Activities of Daily Living Scale. \n RESULTS Group differences were seen in skin and subcutaneous tissue concerns (P=.05), including 3 possible drug rashes and 3 reports of hair color change in the treatment groups. There were 3 adverse event-related discontinuations, including 1 transient bowel obstruction. The plasma Abeta(40) concentration was reduced by 58.2% for the 100-mg group and 64.6% for the 140-mg group (P<.001). No significant reduction was seen in cerebrospinal fluid Abeta levels. No group differences were seen in cognitive or functional measures. \n CONCLUSIONS LY450139 was generally well tolerated at doses of up to 140 mg/d for 14 weeks, with several findings indicating the need for close clinical monitoring in future studies. Decreases in plasma Abeta concentrations were consistent with inhibition of gamma-secretase. Trial Registration clinicaltrials.gov Identifier: NCT00244322.", "title": "Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease." }, { "docid": "2328272", "text": "INTRODUCTION With the growing number of adult cancer survivors, there is increasing need for information that links potential late and long term effects with specific treatment regimens. Few adult cancer patients are treated on clinical trials; however, patients previously enrolled in these trials are an important source of information about treatment-related late effects. \n METHODS Focusing on colorectal cancer survivors, we used the database from five phase III randomized clinical trials from the National Surgical Adjuvant Breast & Bowel Project (NSABP) to recruit and enroll long term survivors in a study of late health outcomes and quality of life. We describe the challenges to recruitment of patients more than 5 -20 years after treatment. \n RESULTS Sixty-five NSABP treatment sites were invited to enroll patients in the study. Sixty participated with the potential to recruit 2,408 patients. We received registration forms on only 976 patients (41%) of whom 744 (76%) expressed interest in participating and 708 completed interviews (95% of those expressing interest; 29% of total potential sample). There were multiple barriers to recruitment (difficulty locating patients, lack of institutional commitment, lack of patient interest). \n CONCLUSIONS Patients treated on clinical trials are an important potential source for examining the late effects of cancer treatments. Retrospective recruitment has substantial limitations. In the future, mechanisms should be established for prospective long-term follow-up to identify and understand the frequency and type of late effects associated with cancer treatments. IMPLICATIONS FOR CANCER SURVIVORS As cancer patients are living longer, it will be important to learn from participants in clinical trials whether or not specific treatment regimens are associated with any serious late effects.", "title": "Cancer survivorship research: the challenge of recruiting adult long term cancer survivors from a cooperative clinical trials group" }, { "docid": "9754530", "text": "Like other branches of surgery, Urology has encountered major challenges in aligning the research processes by which new interventions are assessed with the principles of Evidence-Based Medicine. This article explains the IDEAL framework and recommendations and illustrates how they might affect the evaluation of current controversial urological procedures. From an inside perspective, we provide an overview of the efforts of the IDEAL Working Group to date with special emphasis on the field of Urology. There are clear differences between drugs and interventions in the natural history of innovations. Since the conventional framework for conducting trials of new treatments is largely based on the former, the evaluation of surgical innovations using the same template can encounter significant problems. Difficulties in performing randomized controlled trials of surgical techniques and the persistence of the case series as an important feature of the scientific literature have been the two most controversial aspects of this mismatch between the subject of research and the methodology used. The IDEAL framework provides a description of the process of innovation and development for surgical trials, and the associated recommendations provide a suggested alternative approach to developing study designs, which are appropriate for the specific problems of new techniques. IDEAL provides a new framework for surgical innovation that was developed with broad stakeholder input from the surgical community and is expected to have a transformative impact on the way that urologists perform clinical research.", "title": "The IDEAL recommendations and urological innovation" }, { "docid": "44048701", "text": "IMPORTANCE The need for surgery for the majority of patients with displaced proximal humeral fractures is unclear, but its use is increasing. \n OBJECTIVE To evaluate the clinical effectiveness of surgical vs nonsurgical treatment for adults with displaced fractures of the proximal humerus involving the surgical neck. \n DESIGN, SETTING, AND PARTICIPANTS A pragmatic, multicenter, parallel-group, randomized clinical trial, the Proximal Fracture of the Humerus Evaluation by Randomization (PROFHER) trial, recruited 250 patients aged 16 years or older (mean age, 66 years [range, 24-92 years]; 192 [77%] were female; and 249 [99.6%] were white) who presented at the orthopedic departments of 32 acute UK National Health Service hospitals between September 2008 and April 2011 within 3 weeks after sustaining a displaced fracture of the proximal humerus involving the surgical neck. Patients were followed up for 2 years (up to April 2013) and 215 had complete follow-up data. The data for 231 patients (114 in surgical group and 117 in nonsurgical group) were included in the primary analysis. \n INTERVENTIONS Fracture fixation or humeral head replacement were performed by surgeons experienced in these techniques. Nonsurgical treatment was sling immobilization. Standardized outpatient and community-based rehabilitation was provided to both groups. \n MAIN OUTCOMES AND MEASURES Primary outcome was the Oxford Shoulder Score (range, 0-48; higher scores indicate better outcomes) assessed during a 2-year period, with assessment and data collection at 6, 12, and 24 months. Sample size was based on a minimal clinically important difference of 5 points for the Oxford Shoulder Score. Secondary outcomes were the Short-Form 12 (SF-12), complications, subsequent therapy, and mortality. \n RESULTS There was no significant mean treatment group difference in the Oxford Shoulder Score averaged over 2 years (39.07 points for the surgical group vs 38.32 points for the nonsurgical group; difference of 0.75 points [95% CI, -1.33 to 2.84 points]; P = .48) or at individual time points. There were also no significant between-group differences over 2 years in the mean SF-12 physical component score (surgical group: 1.77 points higher [95% CI, -0.84 to 4.39 points]; P = .18); the mean SF-12 mental component score (surgical group: 1.28 points lower [95% CI, -3.80 to 1.23 points]; P = .32); complications related to surgery or shoulder fracture (30 patients in surgical group vs 23 patients in nonsurgical group; P = .28), requiring secondary surgery to the shoulder (11 patients in both groups), and increased or new shoulder-related therapy (7 patients vs 4 patients, respectively; P = .58); and mortality (9 patients vs 5 patients; P = .27). Ten medical complications (2 cardiovascular events, 2 respiratory events, 2 gastrointestinal events, and 4 others) occurred in the surgical group during the postoperative hospital stay. \n CONCLUSIONS AND RELEVANCE Among patients with displaced proximal humeral fractures involving the surgical neck, there was no significant difference between surgical treatment compared with nonsurgical treatment in patient-reported clinical outcomes over 2 years following fracture occurrence. These results do not support the trend of increased surgery for patients with displaced fractures of the proximal humerus. \n TRIAL REGISTRATION isrctn.com Identifier: ISRCTN50850043.", "title": "Surgical vs nonsurgical treatment of adults with displaced fractures of the proximal humerus: the PROFHER randomized clinical trial." }, { "docid": "27129115", "text": "BACKGROUND Epidemiological and basic science evidence suggests that magnesium sulphate before birth may be neuroprotective for the fetus. \n OBJECTIVES To assess the effects of magnesium sulphate as a neuroprotective agent when given to women considered at risk of preterm birth. SEARCH STRATEGY We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 August 2008). SELECTION CRITERIA Randomised controlled trials of antenatal magnesium sulphate therapy in women threatening or likely to give birth at less than 37 weeks' gestational age. For one subgroup analysis, studies were broadly categorised by the primary intent of the study into \"neuroprotective intent\", or \"other intent (maternal neuroprotective - pre-eclampsia)\", or \"other intent (tocolytic)\". \n DATA COLLECTION AND ANALYSIS At least two authors assessed trial eligibility and quality, and extracted data. \n MAIN RESULTS Five trials (6145 babies) were eligible for this review. Antenatal magnesium sulphate therapy given to women at risk of preterm birth substantially reduced the risk of cerebral palsy in their child (Relative Risk (RR) 0.68; 95% Confidence interval (CI) 0.54 to 0.87; five trials; 6145 infants). There was also a significant reduction in the rate of substantial gross motor dysfunction (RR 0.61; 95% CI 0.44 to 0.85; four trials; 5980 infants). No statistically significant effect of antenatal magnesium sulphate therapy was detected on paediatric mortality (RR 1.04; 95% CI 0.92 to 1.17; five trials; 6145 infants), or on other neurological impairments or disabilities in the first few years of life. Overall there were no significant effects of antenatal magnesium therapy on combined rates of mortality with cerebral palsy, although there were significant reductions for the neuroprotective groups RR 0.85; 95% CI 0.74 to 0.98; four trials; 4446 infants, but not for the other intent subgroups. There were higher rates of minor maternal side effects in the magnesium groups, but no significant effects on major maternal complications. AUTHORS' CONCLUSIONS The neuroprotective role for antenatal magnesium sulphate therapy given to women at risk of preterm birth for the preterm fetus is now established. The number of women needed to be treated to benefit one baby by avoiding cerebral palsy is 63 (95% confidence interval 43 to 87). Given the beneficial effects of magnesium sulphate on substantial gross motor function in early childhood, outcomes later in childhood should be evaluated to determine the presence or absence of later potentially important neurological effects, particularly on motor or cognitive function.", "title": "Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus." }, { "docid": "7639744", "text": "OBJECTIVE To systematically review the evidence that smoking cessation after diagnosis of a primary lung tumour affects prognosis. \n DESIGN Systematic review with meta-analysis. \n DATA SOURCES CINAHL (from 1981), Embase (from 1980), Medline (from 1966), Web of Science (from 1966), CENTRAL (from 1977) to December 2008, and reference lists of included studies. STUDY SELECTION Randomised controlled trials or observational longitudinal studies that measured the effect of quitting smoking after diagnosis of lung cancer on prognostic outcomes, regardless of stage at presentation or tumour histology, were included. \n DATA EXTRACTION Two researchers independently identified studies for inclusion and extracted data. Estimates were combined by using a random effects model, and the I(2) statistic was used to examine heterogeneity. Life tables were used to model five year survival for early stage non-small cell lung cancer and limited stage small cell lung cancer, using death rates for continuing smokers and quitters obtained from this review. \n RESULTS In 9/10 included studies, most patients studied were diagnosed as having an early stage lung tumour. Continued smoking was associated with a significantly increased risk of all cause mortality (hazard ratio 2.94, 95% confidence interval 1.15 to 7.54) and recurrence (1.86, 1.01 to 3.41) in early stage non-small cell lung cancer and of all cause mortality (1.86, 1.33 to 2.59), development of a second primary tumour (4.31, 1.09 to 16.98), and recurrence (1.26, 1.06 to 1.50) in limited stage small cell lung cancer. No study contained data on the effect of quitting smoking on cancer specific mortality or on development of a second primary tumour in non-small cell lung cancer. Life table modelling on the basis of these data estimated 33% five year survival in 65 year old patients with early stage non-small cell lung cancer who continued to smoke compared with 70% in those who quit smoking. In limited stage small cell lung cancer, an estimated 29% of continuing smokers would survive for five years compared with 63% of quitters on the basis of the data from this review. \n CONCLUSIONS This review provides preliminary evidence that smoking cessation after diagnosis of early stage lung cancer improves prognostic outcomes. From life table modelling, the estimated number of deaths prevented is larger than would be expected from reduction of cardiorespiratory deaths after smoking cessation, so most of the mortality gain is likely to be due to reduced cancer progression. These findings indicate that offering smoking cessation treatment to patients presenting with early stage lung cancer may be beneficial.", "title": "Influence of smoking cessation after diagnosis of early stage lung cancer on prognosis: systematic review of observational studies with meta-analysis" }, { "docid": "19205326", "text": "BACKGROUND Antiresorptive agents are widely used to treat osteoporosis. We report the results of a multinational randomized, double-blind study, in which postmenopausal women with osteoporosis were treated with alendronate for up to 10 years. \n METHODS The initial three-year phase of the study compared three daily doses of alendronate with placebo. Women in the original placebo group received alendronate in years 4 and 5 and then were discharged. Women in the original active-treatment groups continued to receive alendronate during the initial extension (years 4 and 5). In two further extensions (years 6 and 7, and 8 through 10), women who had received 5 mg or 10 mg of alendronate daily continued on the same treatment. Women in the discontinuation group received 20 mg of alendronate daily for two years and 5 mg daily in years 3, 4, and 5, followed by five years of placebo. Randomized group assignments and blinding were maintained throughout the 10 years. We report results for the 247 women who participated in all four phases of the study. \n RESULTS Treatment with 10 mg of alendronate daily for 10 years produced mean increases in bone mineral density of 13.7 percent at the lumbar spine (95 percent confidence interval, 12.0 to 15.5 percent), 10.3 percent at the trochanter (95 percent confidence interval, 8.1 to 12.4 percent), 5.4 percent at the femoral neck (95 percent confidence interval, 3.5 to 7.4 percent), and 6.7 percent at the total proximal femur (95 percent confidence interval, 4.4 to 9.1 percent) as compared with base-line values; smaller gains occurred in the group given 5 mg daily. The discontinuation of alendronate resulted in a gradual loss of effect, as measured by bone density and biochemical markers of bone remodeling. Safety data, including fractures and stature, did not suggest that prolonged treatment resulted in any loss of benefit. \n CONCLUSIONS The therapeutic effects of alendronate were sustained, and the drug was well tolerated over a 10-year period. The discontinuation of alendronate resulted in the gradual loss of its effects.", "title": "Ten years' experience with alendronate for osteoporosis in postmenopausal women." }, { "docid": "20008796", "text": "OBJECTIVE To report data relating to the informed uptake of screening tests. SEARCH STRATEGY Electronic databases, bibliographies and experts were used to identify relevant published and unpublished studies up until August 2000. INCLUSION CRITERIA RCTs, quasi-RCTs and controlled trials of interventions aimed at increasing the informed uptake of screening. All participants were eligible as defined by the entry criteria of individual programmes. Studies had to report actual uptake and meet three out of four criteria used to define informed uptake. \n DATA EXTRACTION AND SYNTHESIS Relevant studies were identified, data extracted and their validity assessed by two reviewers independently. Outcome data included screening uptake, knowledge, informed decision-making and attitudes to screening. A random-effects model was used to calculate individual relative risks and 95% confidence intervals. \n MAIN RESULTS Six controlled trials (five RCTs and one quasi-RCT), focusing on antenatal and prostate specific antigen screening, were included. All reported risks/benefits of screening and assessed knowledge. Two also assessed decision-making. Two reported risks/benefits to all randomized groups and evaluated different ways of presenting information. Neither found that interventions such as videos, information leaflets with decision trees, or touch screen computers conveyed any additional benefits over well-prepared leaflets. \n CONCLUSIONS There is some evidence to suggest that changing the format of informed choice interventions in screening does not alter knowledge, satisfaction or decisions about screening. It is not clear whether informed choice in screening affects uptake. More well-designed RCTs are required and further research should also be directed towards the development of a valid instrument for measuring all components of informed choice in screening.", "title": "Increasing informed uptake and non-uptake of screening: evidence from a systematic review." }, { "docid": "27150276", "text": "BACKGROUND Acupuncture has become a popular complementary and alternative treatment approach. This review examined the randomized controlled trials (RCTs) examining the effects of acupuncture treatment of depression. \n METHODS RCTs of the treatment of depression with acupuncture were located using MEDLINE, Allied and Complementary Medicine and the Cochrane Central Register of Controlled Trials. The methodology of RCTs was assessed using the Jadad criteria, and elements of research design, i.e., randomization, blinding, assessment of attrition rates, were quantified for systematic comparisons among studies. \n RESULTS Among the 9 RCTs examined, five were deemed to be of low quality based upon Jadad criteria. The odds ratios derived from comparing acupuncture with control conditions within the RCTs suggests some evidence for the utility of acupuncture in depression. General trends suggest that acupuncture modalities were as effective as antidepressants employed for treatment of depression in the limited studies available for comparison. However, placebo acupuncture treatment was often no different from intended verum acupuncture. LIMITATIONS The RCTs extracted were limited by small sample sizes, imprecise enrollment criteria, problems with randomization, blinding, brief duration of study and lack of longitudinal follow-up. \n CONCLUSIONS Despite the findings that the odds ratios of existing literature suggest a role for acupuncture in the treatment of depression, the evidence thus far is inconclusive. However, efforts are being made to standardize complementary approaches to treat depression, and further systematized research into their use is warranted.", "title": "A systematic review of randomized controlled trials of acupuncture in the treatment of depression." }, { "docid": "19878070", "text": "CONTEXT Risedronate, a potent bisphosphonate, has been shown to be effective in the treatment of Paget disease of bone and other metabolic bone diseases but, to our knowledge, it has not been evaluated in the treatment of established postmenopausal osteoporosis. \n OBJECTIVE To test the efficacy and safety of daily treatment with risedronate to reduce the risk of vertebral and other fractures in postmenopausal women with established osteoporosis. \n DESIGN, SETTING, AND PARTICIPANTS Randomized, double-blind, placebo-controlled trial of 2458 ambulatory postmenopausal women younger than 85 years with at least 1 vertebral fracture at baseline who were enrolled at 1 of 110 centers in North America conducted between December 1993 and January 1998. \n INTERVENTIONS Subjects were randomly assigned to receive oral treatment for 3 years with risedronate (2.5 or 5 mg/d) or placebo. All subjects received calcium, 1000 mg/d. Vitamin D (cholecalciferol, up to 500 IU/d) was provided if baseline levels of 25-hydroxyvitamin D were low. \n MAIN OUTCOME MEASURES Incidence of new vertebral fractures as detected by quantitative and semiquantitative assessments of radiographs; incidence of radiographically confirmed nonvertebral fractures and change from baseline in bone mineral density as determined by dual x-ray absorptiometry. \n RESULTS The 2.5 mg/d of risedronate arm was discontinued after 1 year; in the placebo and 5 mg/d of risedronate arms, 450 and 489 subjects, respectively, completed all 3 years of the trial. Treatment with 5 mg/d of risedronate, compared with placebo, decreased the cumulative incidence of new vertebral fractures by 41 % (95% confidence interval [CI], 18%-58%) over 3 years (11.3 % vs 16.3%; P= .003). A fracture reduction of 65% (95% CI, 38%-81 %) was observed after the first year (2.4% vs 6.4%; P<.001). The cumulative incidence of nonvertebral fractures over 3 years was reduced by 39% (95% CI, 6%-61 %) (5.2 % vs 8.4%; P = .02). Bone mineral density increased significantly compared with placebo at the lumbar spine (5.4% vs 1.1 %), femoral neck (1.6% vs -1.2%), femoral trochanter (3.3% vs -0.7%), and midshaft of the radius (0.2% vs -1.4%). Bone formed during risedronate treatment was histologically normal. The overall safety profile of risedronate, including gastrointestinal safety, was similar to that of placebo. \n CONCLUSIONS These data suggest that risedronate therapy is effective and well tolerated in the treatment of women with established postmenopausal osteoporosis.", "title": "Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group." }, { "docid": "11939159", "text": "IMPORTANCE Among nontraditional cardiovascular risk factors, recent influenzalike infection is associated with fatal and nonfatal atherothrombotic events. \n OBJECTIVES To determine if influenza vaccination is associated with prevention of cardiovascular events. \n DATA SOURCES AND STUDY SELECTION A systematic review and meta-analysis of MEDLINE (1946-August 2013), EMBASE (1947-August 2013), and the Cochrane Library Central Register of Controlled Trials (inception-August 2013) for randomized clinical trials (RCTs) comparing influenza vaccine vs placebo or control in patients at high risk of cardiovascular disease, reporting cardiovascular outcomes either as efficacy or safety events. \n DATA EXTRACTION AND SYNTHESIS Two investigators extracted data independently on trial design, baseline characteristics, outcomes, and safety events from published manuscripts and unpublished supplemental data. High-quality studies were considered those that described an appropriate method of randomization, allocation concealment, blinding, and completeness of follow-up. \n MAIN OUTCOMES AND MEASURES Random-effects Mantel-Haenszel risk ratios (RRs) and 95% CIs were derived for composite cardiovascular events, cardiovascular mortality, all-cause mortality, and individual cardiovascular events. Analyses were stratified by subgroups of patients with and without a history of acute coronary syndrome (ACS) within 1 year of randomization. \n RESULTS Five published and 1 unpublished randomized clinical trials of 6735 patients (mean age, 67 years; 51.3% women; 36.2% with a cardiac history; mean follow-up time, 7.9 months) were included. Influenza vaccine was associated with a lower risk of composite cardiovascular events (2.9% vs 4.7%; RR, 0.64 [95% CI, 0.48-0.86], P = .003) in published trials. A treatment interaction was detected between patients with (RR, 0.45 [95% CI, 0.32-0.63]) and without (RR, 0.94 [95% CI, 0.55-1.61]) recent ACS (P for interaction = .02). Results were similar with the addition of unpublished data. \n CONCLUSIONS AND RELEVANCE In a meta-analysis of RCTs, the use of influenza vaccine was associated with a lower risk of major adverse cardiovascular events. The greatest treatment effect was seen among the highest-risk patients with more active coronary disease. A large, adequately powered, multicenter trial is warranted to address these findings and assess individual cardiovascular end points.", "title": "Association between influenza vaccination and cardiovascular outcomes in high-risk patients: a meta-analysis." }, { "docid": "23670644", "text": "BACKGROUND The ketogenic diet has been widely and successfully used to treat children with drug-resistant epilepsy since the 1920s. The aim of this study was to test the efficacy of the ketogenic diet in a randomised controlled trial. \n METHODS 145 children aged between 2 and 16 years who had at least daily seizures (or more than seven seizures per week), had failed to respond to at least two antiepileptic drugs, and had not been treated previously with the ketogenic diet participated in a randomised controlled trial of its efficacy to control seizures. Enrolment for the trial ran between December, 2001, and July, 2006. Children were seen at one of two hospital centres or a residential centre for young people with epilepsy. Children were randomly assigned to receive a ketogenic diet, either immediately or after a 3-month delay, with no other changes to treatment (control group). Neither the family nor investigators were blinded to the group assignment. Early withdrawals were recorded, and seizure frequency on the diet was assessed after 3 months and compared with that of the controls. The primary endpoint was a reduction in seizures; analysis was intention to treat. Tolerability of the diet was assessed by questionnaire at 3 months. The trial is registered with ClinicalTrials.gov, number NCT00564915. \n FINDINGS 73 children were assigned to the ketogenic diet and 72 children to the control group. Data from 103 children were available for analysis: 54 on the ketogenic diet and 49 controls. Of those who did not complete the trial, 16 children did not receive their intervention, 16 did not provide adequate data, and ten withdrew from the treatment before the 3-month review, six because of intolerance. After 3 months, the mean percentage of baseline seizures was significantly lower in the diet group than in the controls (62.0%vs 136.9%, 75% decrease, 95% CI 42.4-107.4%; p<0.0001). 28 children (38%) in the diet group had greater than 50% seizure reduction compared with four (6%) controls (p<0.0001), and five children (7%) in the diet group had greater than 90% seizure reduction compared with no controls (p=0.0582). There was no significant difference in the efficacy of the treatment between symptomatic generalised or symptomatic focal syndromes. The most frequent side-effects reported at 3-month review were constipation, vomiting, lack of energy, and hunger. \n INTERPRETATION The results from this trial of the ketogenic diet support its use in children with treatment-intractable epilepsy. \n FUNDING HSA Charitable Trust; Smiths Charity; Scientific Hospital Supplies; Milk Development Council.", "title": "The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial." } ]
886
One in two surgical randomized controlled trials are discontinued early.
[ { "docid": "6477536", "text": "OBJECTIVE To determine the rate of early discontinuation and non-publication of randomised controlled trials involving patients undergoing surgery. \n DESIGN Cross sectional observational study of registered and published trials. \n SETTING Randomised controlled trials of interventions in patients undergoing a surgical procedure. \n DATA SOURCES The ClinicalTrials.gov database was searched for interventional trials registered between January 2008 and December 2009 using the keyword \"surgery\". Recruitment status was extracted from the ClinicalTrials.gov database. A systematic search for studies published in peer reviewed journals was performed; if they were not found, results posted on the ClinicalTrials.gov results database were sought. Email queries were sent to trial investigators of discontinued and unpublished completed trials if no reason for the respective status was disclosed. \n MAIN OUTCOME MEASURES Trial discontinuation before completion and non-publication after completion. Logistic regression was used to determine the effect of funding source on publication status, with adjustment for intervention type and trial size. \n RESULTS Of 818 registered trials found using the keyword \"surgery\", 395 met the inclusion criteria. Of these, 21% (81/395) were discontinued early, most commonly owing to poor recruitment (44%, 36/81). The remaining 314 (79%) trials proceeded to completion, with a publication rate of 66% (208/314) at a median time of 4.9 (interquartile range 4.0-6.0) years from study completion to publication search. A further 6% (20/314) of studies presented results on ClinicalTrials.gov without a corresponding peer reviewed publication. Industry funding did not affect the rate of discontinuation (adjusted odds ratio 0.91, 95% confidence interval 0.54 to 1.55) but was associated with a lower odds of publication for completed trials (0.43, 0.26 to 0.72). Investigators' email addresses for trials with an uncertain fate were identified for 71.4% (10/14) of discontinued trials and 83% (101/122) of unpublished studies. Only 43% (6/14) and 20% (25/122) replies were received. Email responses for completed trials indicated 11 trials in press, five published studies (four in non-indexed peer reviewed journals), and nine trials remaining unpublished. \n CONCLUSIONS One in five surgical randomised controlled trials are discontinued early, one in three completed trials remain unpublished, and investigators of unpublished studies are frequently not contactable. This represents a waste of research resources and raises ethical concerns regarding hidden clinical data and futile participation by patients with its attendant risks. To promote future efficiency and transparency, changes are proposed to research governance frameworks to overcome these concerns.", "title": "Discontinuation and non-publication of surgical randomised controlled trials: observational study" } ]
[ { "docid": "9967265", "text": "BACKGROUND Patent ductus arteriosus (PDA) with significant left to right shunt in preterm infants increases morbidity and mortality. Early closure of the ductus arteriosus may be achieved pharmacologically using cyclooxygenase inhibitors or by surgery. The efficacy of both treatment modalities is well established. However, the preferred initial treatment of a symptomatic PDA in a preterm infant, surgical ligation or treatment with indomethacin, has not been well established. \n OBJECTIVES To compare the effect of surgical ligation of PDA vs. medical treatment with cyclooxygenase inhibitors (using indomethacin, ibuprofen, or mefenamic acid), each used as the initial treatment, on neonatal mortality in preterm infants with a symptomatic PDA. SEARCH STRATEGY The standard search strategy of the Cochrane Neonatal Review Group was used. This included search of electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 2, 2007), MEDLINE (1966 - July 2007), CINAHL (1982 - July 2007), EMBASE (1980 - July 2007); and hand search of abstracts of Pediatric Academic Societies annual meetings published in Pediatric Research (1990 - April 2002) or on line from May 2002 -July 2007. No language restrictions were applied. SELECTION CRITERIA All trials 1) using randomized or quasi-randomized patient allocation, 2) in preterm infants < 37 weeks gestational age or low-birth-weight infants (< 2500 grams) with symptomatic PDA in the neonatal period (< 28 days) and 3) comparing surgical ligation with medical treatment with cyclooxygenase inhibitors, each used as the initial treatment for closure of PDA. \n DATA COLLECTION AND ANALYSIS Assessment of methodological quality and extraction of data for included trials was undertaken independently by the authors. RevMan 4.1 was used for analysis of the data. \n MAIN RESULTS Only one study, trial B in the report of Gersony 1983, was found eligible. No additional studies were identified in the literature searches performed in July 2007. The trial compared the effect of surgical ligation of PDA vs. medical treatment with indomethacin, each used as the primary treatment. No trials comparing surgery to other cyclooxygenase inhibitors (ibuprofen, mefenamic acid) were found. Trial B of Gersony 1983 enrolled 154 infants. The study found no statistically significant difference between surgical closure and indomethacin treatment in mortality during hospital stay, chronic lung disease, other bleeding, necrotizing enterocolitis, sepsis, creatinine level, or intraventricular hemorrhage. There was a statistically significant increase in the surgical group in incidence of pneumothorax [RR 2.68 (95% CI 1.45, 4.93); RD 0.25 (95% CI 0.11, 0.38); NNH 4 (95% CI 3, 9)] and retinopathy of prematurity stage III and IV [RR 3.80 (95% CI 1.12, 12.93); RD 0.11 (95% CI 0.02, 0.20), NNH 9 (95% CI 5, 50] compared to the indomethacin group. There was as expected a statistically significant decrease in failure of ductal closure rate in the surgical group as compared to the indomethacin group: [RR 0.04 (95% CI 0.01, 0.27); RD -0.32 (95% CI -0.43, -0.21), NNT 3 (95% CI 2, 4)]. AUTHORS' CONCLUSIONS The data regarding net benefit/harm are insufficient to make a conclusion as to whether surgical ligation or medical treatment with indomethacin is preferred as initial treatment for symptomatic PDA in preterm infants. It should be noted that three recent observational studies indicated an increased risk for one or more of the following outcomes associated with PDA ligation; chronic lung disease, retinopathy of prematurity and neurosensory impairment . It is possible that the duration of the \"waiting-time\" and transport to another facility with surgical capacity to have the PDA ligated could adversely affect outcomes, as could the perioperative care.", "title": "Surgical versus medical treatment with cyclooxygenase inhibitors for symptomatic patent ductus arteriosus in preterm infants." }, { "docid": "26067999", "text": "The U.S. Preventive Services Task Force (USPSTF) makes recommendations about the effectiveness of specific preventive care services for patients without related signs or symptoms. It bases its recommendations on the evidence of both the benefits and harms of the service and an assessment of the balance. The USPSTF does not consider the costs of providing a service in this assessment. The USPSTF recognizes that clinical decisions involve more considerations than evidence alone. Clinicians should understand the evidence but individualize decision making to the specific patient or situation. Similarly, the USPSTF notes that policy and coverage decisions involve considerations in addition to the evidence of clinical benefits and harms. Summary of Recommendation and Evidence The USPSTF recommends annual screening for lung cancer with low-dose computed tomography (LDCT) in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (B recommendation) See the Clinical Considerations section for suggestions for implementation in practice. See the Figure for a summary of the recommendation and suggestions for clinical practice. Figure. Screening for lung cancer: clinical summary of U.S. Preventive Services Task Force recommendation. Appendix Table 1 describes the USPSTF grades, and Appendix Table 2 describes the USPSTF classification of levels of certainty about net benefit. Appendix Table 1. What the USPSTF Grades Mean and Suggestions for Practice Appendix Table 2. USPSTF Levels of Certainty Regarding Net Benefit Supplement. Consumer Fact Sheet. Rationale Importance Lung cancer is the third most common cancer and the leading cause of cancer-related death in the United States (1). The most important risk factor for lung cancer is smoking, which results in approximately 85% of all U.S. lung cancer cases (2). Although the prevalence of smoking has decreased, approximately 37% of U.S. adults are current or former smokers (2). The incidence of lung cancer increases with age and occurs most commonly in persons aged 55 years or older. Increasing age and cumulative exposure to tobacco smoke are the 2 most common risk factors for lung cancer. Lung cancer has a poor prognosis, and nearly 90% of persons with lung cancer die of the disease. However, early-stage nonsmall cell lung cancer (NSCLC) has a better prognosis and can be treated with surgical resection. Detection Most lung cancer cases are NSCLC, and most screening programs focus on the detection and treatment of early-stage NSCLC. Although chest radiography and sputum cytologic evaluation have been used to screen for lung cancer, LDCT has greater sensitivity for detecting early-stage cancer (3). Benefits of Detection and Early Treatment Although lung cancer screening is not an alternative to smoking cessation, the USPSTF found adequate evidence that annual screening for lung cancer with LDCT in a defined population of high-risk persons can prevent a substantial number of lung cancerrelated deaths. Direct evidence from a large, well-conducted, randomized, controlled trial (RCT) provides moderate certainty of the benefit of lung cancer screening with LDCT in this population (4). The magnitude of benefit to the person depends on that person's risk for lung cancer because those who are at highest risk are most likely to benefit. Screening cannot prevent most lung cancerrelated deaths, and smoking cessation remains essential. Harms of Detection and Early Intervention and Treatment The harms associated with LDCT screening include false-negative and false-positive results, incidental findings, overdiagnosis, and radiation exposure. False-positive LDCT results occur in a substantial proportion of screened persons; 95% of all positive results do not lead to a diagnosis of cancer. In a high-quality screening program, further imaging can resolve most false-positive results; however, some patients may require invasive procedures. The USPSTF found insufficient evidence on the harms associated with incidental findings. Overdiagnosis of lung cancer occurs, but its precise magnitude is uncertain. A modeling study performed for the USPSTF estimated that 10% to 12% of screen-detected cancer cases are overdiagnosedthat is, they would not have been detected in the patient's lifetime without screening. Radiation harms, including cancer resulting from cumulative exposure to radiation, vary depending on the age at the start of screening; the number of scans received; and the person's exposure to other sources of radiation, particularly other medical imaging. USPSTF Assessment The USPSTF concludes with moderate certainty that annual screening for lung cancer with LDCT is of moderate net benefit in asymptomatic persons who are at high risk for lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking. The moderate net benefit of screening depends on limiting screening to persons who are at high risk, the accuracy of image interpretation being similar to that found in the NLST (National Lung Screening Trial), and the resolution of most false-positive results without invasive procedures (4). Clinical Considerations Patient Population Under Consideration The risk for lung cancer increases with age and cumulative exposure to tobacco smoke and decreases with time since quitting smoking. The best evidence for the benefit of screening comes from the NLST, which enrolled adults aged 55 to 74 years who had at least a 30 pack-year smoking history and were current smokers or had quit within the past 15 years. As with all screening trials, the NLST tested a specific intervention over a finite period. Because initial eligibility extended through age 74 years and participants received 3 annual screening computed tomographic scans, the oldest participants in the trial were aged 77 years. The USPSTF used modeling studies to predict the benefits and harms of screening programs that use different screening intervals, age ranges, smoking histories, and times since quitting. A program that annually screens adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years is projected to have a reasonable balance of benefits and harms. The model assumes that persons who achieve 15 years of smoking cessation during the screening program discontinue screening. This model predicts the outcomes of continuing the screening program used in the NLST through age 80 years. Screening may not be appropriate for patients with substantial comorbid conditions, particularly those at the upper end of the screening age range. The NLST excluded persons who were unlikely to complete curative lung cancer surgery and those with medical conditions that posed a substantial risk for death during the 8-year trial. The baseline characteristics of the NLST showed a relatively healthy sample, and fewer than 10% of enrolled participants were older than 70 years (5). Persons with serious comorbid conditions may experience net harm, no net benefit, or at least substantially less net benefit. Similarly, persons who are unwilling to have curative lung surgery are unlikely to benefit from a screening program. Assessment of Risk Age, total exposure to tobacco smoke, and years since quitting smoking are important risk factors for lung cancer and were used to determine eligibility in the NLST. Other risk factors include specific occupational exposures, radon exposure, family history, and history of pulmonary fibrosis or chronic obstructive lung disease. The incidence of lung cancer is relatively low in persons younger than 50 years but increases with age, especially after age 60 years. In current and former smokers, age-specific incidence rates increase with age and cumulative exposure to tobacco smoke. Smoking cessation substantially reduces a person's risk for developing and dying of lung cancer. Among persons enrolled in the NLST, those who were at highest risk because of additional risk factors or a greater cumulative exposure to tobacco smoke experienced most of the benefit (6). A validated multivariate model showed that persons in the highest 60% of risk accounted for 88% of all deaths preventable by screening. Screening Tests Low-dose computed tomography has shown high sensitivity and acceptable specificity for the detection of lung cancer in high-risk persons. Chest radiography and sputum cytologic evaluation have not shown adequate sensitivity or specificity as screening tests. Therefore, LDCT is currently the only recommended screening test for lung cancer. Treatment Surgical resection is the current standard of care for localized NSCLC. This type of cancer is treated with surgical resection when possible and also with radiation and chemotherapy. Annual LDCT screening may not be useful for patients with life-limiting comorbid conditions or poor functional status who may not be candidates for surgery. Other Approaches to Prevention Smoking cessation is the most important intervention to prevent NSCLC. Advising smokers to stop smoking and preventing nonsmokers from being exposed to tobacco smoke are the most effective ways to decrease the morbidity and mortality associated with lung cancer. Current smokers should be informed of their continuing risk for lung cancer and offered cessation treatments. Screening with LDCT should be viewed as an adjunct to tobacco cessation interventions. Useful Resources Clinicians have many resources to help patients stop smoking. The Centers for Disease Control and Prevention has developed a Web site with many such resources, including information on tobacco quit lines, available in several languages (www.cdc.gov/tobacco/campaign/tips). Quit l", "title": "Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement" }, { "docid": "9754530", "text": "Like other branches of surgery, Urology has encountered major challenges in aligning the research processes by which new interventions are assessed with the principles of Evidence-Based Medicine. This article explains the IDEAL framework and recommendations and illustrates how they might affect the evaluation of current controversial urological procedures. From an inside perspective, we provide an overview of the efforts of the IDEAL Working Group to date with special emphasis on the field of Urology. There are clear differences between drugs and interventions in the natural history of innovations. Since the conventional framework for conducting trials of new treatments is largely based on the former, the evaluation of surgical innovations using the same template can encounter significant problems. Difficulties in performing randomized controlled trials of surgical techniques and the persistence of the case series as an important feature of the scientific literature have been the two most controversial aspects of this mismatch between the subject of research and the methodology used. The IDEAL framework provides a description of the process of innovation and development for surgical trials, and the associated recommendations provide a suggested alternative approach to developing study designs, which are appropriate for the specific problems of new techniques. IDEAL provides a new framework for surgical innovation that was developed with broad stakeholder input from the surgical community and is expected to have a transformative impact on the way that urologists perform clinical research.", "title": "The IDEAL recommendations and urological innovation" }, { "docid": "7098463", "text": "CONTEXT Observational studies suggest that surgically induced loss of weight may be effective therapy for type 2 diabetes. \n OBJECTIVE To determine if surgically induced weight loss results in better glycemic control and less need for diabetes medications than conventional approaches to weight loss and diabetes control. \n DESIGN, SETTING, AND PARTICIPANTS Unblinded randomized controlled trial conducted from December 2002 through December 2006 at the University Obesity Research Center in Australia, with general community recruitment to established treatment programs. Participants were 60 obese patients (BMI >30 and <40) with recently diagnosed (<2 years) type 2 diabetes. \n INTERVENTIONS Conventional diabetes therapy with a focus on weight loss by lifestyle change vs laparoscopic adjustable gastric banding with conventional diabetes care. \n MAIN OUTCOME MEASURES Remission of type 2 diabetes (fasting glucose level <126 mg/dL [7.0 mmol/L] and glycated hemoglobin [HbA1c] value <6.2% while taking no glycemic therapy). Secondary measures included weight and components of the metabolic syndrome. Analysis was by intention-to-treat. \n RESULTS Of the 60 patients enrolled, 55 (92%) completed the 2-year follow-up. Remission of type 2 diabetes was achieved by 22 (73%) in the surgical group and 4 (13%) in the conventional-therapy group. Relative risk of remission for the surgical group was 5.5 (95% confidence interval, 2.2-14.0). Surgical and conventional-therapy groups lost a mean (SD) of 20.7% (8.6%) and 1.7% (5.2%) of weight, respectively, at 2 years (P < .001). Remission of type 2 diabetes was related to weight loss (R2 = 0.46, P < .001) and lower baseline HbA1c levels (combined R2 = 0.52, P < .001). There were no serious complications in either group. \n CONCLUSIONS Participants randomized to surgical therapy were more likely to achieve remission of type 2 diabetes through greater weight loss. These results need to be confirmed in a larger, more diverse population and have long-term efficacy assessed. \n TRIAL REGISTRATION actr.org Identifier: ACTRN012605000159651.", "title": "Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial." }, { "docid": "8642784", "text": "OBJECTIVE To assess the efficacy of various controlled ovarian hyperstimulation (COH) regimens in the prior poor-responder patient preparing for assisted reproductive techniques. \n DESIGN English-language literature review. \n PATIENT(S) Candidates for assisted reproductive techniques who had been defined as having a prior suboptimal response to standard COH regimens. \n INTERVENTION(S) A variety of regimes are reviewed, including increased gonadotropin doses, change of gonadotropins, adjunctive growth hormone (GH), luteal phase (long) GnRH agonist (GnRH-a) initiation, early follicular phase (flare) GnRH-a initiation, low-dose luteal phase (ultrashort) GnRH-a initiation, progestin pretreatment, and microdose flare GnRH-a initiation. \n MAIN OUTCOME MEASURE(S) Maximal serum E(2) levels, follicular development, dose, and duration of gonadotropin therapy, cycle cancellation rates, oocytes retrieved, embryos transferred, and clinical and ongoing pregnancy rates. \n RESULT(S) A lack of uniformity in definition of the poor responder and of prospective randomized trials make data interpretation somewhat difficult. Of the varied strategies proposed, those that seem to be more uniformly beneficial are microdose GnRH-a flare and late luteal phase initiation of a short course of low-dose GnRH-a discontinued before COH. \n CONCLUSION(S) No single regimen will benefit all poor responders. General acceptance of uniform definitions and performance of large-scale prospective randomized trials are critical. Development of a reliable precycle screen will allow effective differentiation among normal responders, poor responders, and those who will not conceive with their own oocytes.", "title": "Evaluating strategies for improving ovarian response of the poor responder undergoing assisted reproductive techniques." }, { "docid": "11117498", "text": "Solitary metastatic brain tumors are the most common intracranial neoplasms encountered by neurosurgeons. Surgical resection of brain metastasis with whole brain radiotherapy (WBR) significantly increases survival in comparison with WBR alone. Stereotactic radiosurgery (SR) seems to provide results that are similar to those of surgical resection. To analyze the economic efficiency of these different treatments, we compared the results of surgical resection and SR as reported in the medical literature between 1974 and 1994. We included studies in which: 1) at least 75% of patients received WBR; 2) study dates were in the computed tomography era (after 1975); 3) operative morbidity, mortality, and median survival were reported; 4) study dates were not included in a more recent update or review; 5) tumor histologies were reported; and 6) the cobalt-60 gamma unit was used for SR. Three surgical resection studies and one SR study met all entry requirements. The WBR baseline was developed from two prospective, randomized trials and used for incremental cost effectiveness analysis. We developed a model of typical resource usage for uncomplicated procedures, reported complications, and subsequent craniotomies (for recurrent tumor or radiation necrosis) for both treatment options. Costs were estimated from the societal viewpoint using the 1992 Medicare Provider Analysis and Review database with average cost:charge ratios for surgery and WBR. A survey of capital and operating costs from five sites was used for radiosurgery. Our analysis revealed that radiosurgery had a lower uncomplicated procedure cost ($20,209 versus $27,587), a lower average complication cost per case ($2,534 versus $2,874), and a lower total cost per procedure ($22,743 versus $30,461), was more cost effective ($24,811 versus $32,149 per life year), and had a better incremental cost effectiveness ($40,648 versus $52,384 per life year) than surgical resection. A sensitivity analysis revealed that large changes in key assumptions would be required to change the analysis outcome. Equalization of the incremental cost effectiveness of the two treatments would require one of the following: 1) a 38.7% reduction in SR annual case volume, 2) a 34.7% increase in SR procedure cost, 3) a 18.8% reduction in surgical resection procedure cost, 4) a 240.5% increase in SR morbidity cost, 5) a 12.7% reduction in SR median survival, 6) a 16.8% increase in surgical resection median survival. Elimination of all surgical resection morbidity cost would still result in superior incremental cost effectiveness for SR.(ABSTRACT TRUNCATED AT 400 WORDS)", "title": "The cost effectiveness of stereotactic radiosurgery versus surgical resection in the treatment of solitary metastatic brain tumors." }, { "docid": "6112053", "text": "Background: Selective serotonin reuptake inhibitors (SSRI) are widely used in medical practice. They have been associated with a broad range of symptoms, whose clinical meaning has not been fully appreciated. Methods: The PRISMA guidelines were followed to conduct a systematic review of the literature. Titles, abstracts, and topics were searched using the following terms: ‘withdrawal symptoms' OR ‘withdrawal syndrome' OR ‘discontinuation syndrome' OR ‘discontinuation symptoms', AND ‘SSRI' OR ‘serotonin' OR ‘antidepressant' OR ‘paroxetine' OR ‘fluoxetine' OR ‘sertraline' OR ‘fluvoxamine' OR ‘citalopram' OR ‘escitalopram'. The electronic research literature databases included CINAHL, the Cochrane Library, PubMed and Web-of-Science from inception of each database to July 2014. Results: There were 15 randomized controlled studies, 4 open trials, 4 retrospective investigations, and 38 case reports. The prevalence of the syndrome was variable, and its estimation was hindered by a lack of case identification in many studies. Symptoms typically occur within a few days from drug discontinuation and last a few weeks, also with gradual tapering. However, many variations are possible, including late onset and/or longer persistence of disturbances. Symptoms may be easily misidentified as signs of impending relapse. Conclusions: Clinicians need to add SSRI to the list of drugs potentially inducing withdrawal symptoms upon discontinuation, together with benzodiazepines, barbiturates, and other psychotropic drugs. The term ‘discontinuation syndrome' that is currently used minimizes the potential vulnerabilities induced by SSRI and should be replaced by ‘withdrawal syndrome'.", "title": "Withdrawal Symptoms after Selective Serotonin Reuptake Inhibitor Discontinuation: A Systematic Review" }, { "docid": "45336190", "text": "OBJECTIVE To evaluate the safety, tolerability, and amyloid beta (Abeta) response to the gamma-secretase inhibitor LY450139 in Alzheimer disease. \n DESIGN Multicenter, randomized, double-blind, dose-escalation, placebo-controlled trial. \n SETTING Community-based clinical research centers. Patients Fifty-one individuals with mild to moderate Alzheimer disease were randomized to receive placebo (n=15) or LY450139 (100 mg [n=22] or 140 mg [n=14]), with 43 completing the treatment phase. Intervention The LY450139 groups received 60 mg/d for 2 weeks, then 100 mg/d for 6 weeks, and then either 100 or 140 mg/d for 6 additional weeks. \n MAIN OUTCOME MEASURES Primary outcome measures were adverse events, plasma and cerebrospinal fluid Abeta levels, vital signs, electrocardiographic data, and laboratory safety test results. Secondary outcome measures included the Alzheimer's Disease Assessment Scale cognitive subscale and the Alzheimer's Disease Cooperative Study Activities of Daily Living Scale. \n RESULTS Group differences were seen in skin and subcutaneous tissue concerns (P=.05), including 3 possible drug rashes and 3 reports of hair color change in the treatment groups. There were 3 adverse event-related discontinuations, including 1 transient bowel obstruction. The plasma Abeta(40) concentration was reduced by 58.2% for the 100-mg group and 64.6% for the 140-mg group (P<.001). No significant reduction was seen in cerebrospinal fluid Abeta levels. No group differences were seen in cognitive or functional measures. \n CONCLUSIONS LY450139 was generally well tolerated at doses of up to 140 mg/d for 14 weeks, with several findings indicating the need for close clinical monitoring in future studies. Decreases in plasma Abeta concentrations were consistent with inhibition of gamma-secretase. Trial Registration clinicaltrials.gov Identifier: NCT00244322.", "title": "Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease." }, { "docid": "7613033", "text": "Considerable evidence supports the effectiveness of aspirin for chemoprevention of colorectal cancer (CRC) in addition to its well-established benefits in the prevention of vascular disease. Epidemiologic studies have consistently observed an inverse association between aspirin use and risk of CRC. A recent pooled analysis of a long-term posttrial follow-up of nearly 14,000 patients from four randomized, cardiovascular disease prevention trials showed that daily aspirin treatment for about five years was associated with a 34% reduction in 20-year CRC mortality. A separate metaanalysis of nearly 3,000 patients with a history of colorectal adenoma or cancer in four randomized adenoma prevention trials showed that aspirin reduced the occurrence of advanced adenomas by 28% and any adenoma by 17%. Aspirin has also been shown to be beneficial in a clinical trial of patients with Lynch syndrome, a hereditary CRC syndrome; in those treated with aspirin for at least two years, there was a 50% or more reduction in the risk of CRC commencing five years after randomization and after aspirin had been discontinued. A few observational studies have shown an increase in survival among patients with CRC who use aspirin. Taken together, these findings strengthen the case for consideration of long-term aspirin use in CRC prevention. Despite these compelling data, there is a lack of consensus about the balance of risks and benefits associated with long-term aspirin use, particularly in low-risk populations. The optimal dose to use for cancer prevention and the precise mechanism underlying aspirin's anticancer effect require further investigation.", "title": "Aspirin in the chemoprevention of colorectal neoplasia: an overview." }, { "docid": "18025240", "text": "OBJECTIVE To summarise the effects of anthelmintic drug treatment on growth and cognitive performance in children. \n DATA SOURCES Electronic databases: Cochrane Infectious Diseases Group controlled trial register, Cochrane controlled trials register, Embase, and Medline. Citations of all identified trials. Contact with the World Health Organization and field researchers. REVIEW METHODS Systematic review of randomised controlled trials in children aged 1-16 that compared anthelmintic treatment with placebo or no treatment. Assessment of validity and data abstraction conducted independently by two reviewers. \n MAIN OUTCOME MEASURES Growth and cognitive performance. \n RESULTS Thirty randomised controlled trials in more than 15 000 children were identified. Effects on mean weight were unremarkable, and heterogeneity was evident in the results. There were some positive effects on mean weight change in the trials reporting this outcome: after a single dose (any anthelmintic) the pooled estimates were 0.24 kg (95% confidence interval 0.15 kg to 0. 32 kg; fixed effects model assumed) and 0.38 kg (0.01 kg to 0.77 kg; random effects model assumed). Results from trials of multiple doses showed mean weight change in up to one year of follow up of 0.10 kg (0.04 kg to 0.17 kg; fixed effects) or 0.15 kg (0.00 to 0.30; random effects). At more than one year of follow up, mean weight change was 0.12 kg (-0.02 kg to 0.26 kg; fixed effects) and 0.43 (-0.61 to 1. 47; random effects). Results from studies of cognitive performance were inconclusive. \n CONCLUSIONS There is some limited evidence that routine treatment of children in areas where helminths are common has effects on weight gain, but this is not consistent between trials. There is insufficient evidence as to whether this intervention improves cognitive performance.", "title": "Effects of treatment for intestinal helminth infection on growth and cognitive performance in children: systematic review of randomised trials." }, { "docid": "8756719", "text": "This study represents the first phase III trial of the safety, tolerability, and effectiveness of tafenoquine for malaria prophylaxis. In a randomized (3:1), double-blinded study, Australian soldiers received weekly malaria prophylaxis with 200 mg tafenoquine (492 subjects) or 250 mg mefloquine (162 subjects) for 6 months on a peacekeeping deployment to East Timor. After returning to Australia, tafenoquine-receiving subjects received a placebo and mefloquine-receiving subjects received 30 mg primaquine daily for 14 days. There were no clinically significant differences between hematological and biochemical parameters of the treatment groups. Treatment-related adverse events for the two groups were similar (tafenoquine, 13.4%; mefloquine, 11.7%). Three subjects on tafenoquine (0.6%) and none on mefloquine discontinued prophylaxis because of possible drug-related adverse events. No diagnoses of malaria occurred for either group during deployment, but 4 cases (0.9%) and 1 case (0.7%) of Plasmodium vivax infection occurred among the tafenoquine and mefloquine groups, respectively, up to 20 weeks after discontinuation of medication. In a subset of subjects recruited for detailed safety assessments, treatment-related mild vortex keratopathy was detected in 93% (69 of 74) of tafenoquine subjects but none of the 21 mefloquine subjects. The vortex keratopathy was not associated with any effect on visual acuity and was fully resolved in all subjects by 1 year. Tafenoquine appears to be safe and well tolerated as malaria prophylaxis. Although the volunteers' precise exposure to malaria could not be proven in this study, tafenoquine appears to be a highly efficacious drug for malaria prophylaxis.", "title": "Randomized, double-blind study of the safety, tolerability, and efficacy of tafenoquine versus mefloquine for malaria prophylaxis in nonimmune subjects." }, { "docid": "9754833", "text": "OBJECTIVES To evaluate the effects of early lumbar disc surgery compared with prolonged conservative care for patients with sciatica over two years of follow-up. \n DESIGN Randomised controlled trial. \n SETTING Nine Dutch hospitals. \n PARTICIPANTS 283 patients with 6-12 weeks of sciatica. \n INTERVENTIONS Early surgery or an intended six months of continued conservative treatment, with delayed surgery if needed. \n MAIN OUTCOME MEASURES Scores from Roland disability questionnaire for sciatica, visual analogue scale for leg pain, and Likert self rating scale of global perceived recovery. \n RESULTS Of the 141 patients assigned to undergo early surgery, 125 (89%) underwent microdiscectomy. Of the 142 patients assigned to conservative treatment, 62 (44%) eventually required surgery, seven doing so in the second year of follow-up. There was no significant overall difference between treatment arms in disability scores during the first two years (P=0.25). Improvement in leg pain was faster for patients randomised to early surgery, with a significant difference between \"areas under the curves\" over two years (P=0.05). This short term benefit of early surgery was no longer significant by six months and continued to narrow between six months and 24 months. Patient satisfaction decreased slightly between one and two years for both groups. At two years 20% of all patients reported an unsatisfactory outcome. \n CONCLUSIONS Early surgery achieved more rapid relief of sciatica than conservative care, but outcomes were similar by one year and these did not change during the second year. \n TRIAL REGISTRY ISRCT No 26872154.", "title": "Prolonged conservative care versus early surgery in patients with sciatica caused by lumbar disc herniation: two year results of a randomised controlled trial." }, { "docid": "44048701", "text": "IMPORTANCE The need for surgery for the majority of patients with displaced proximal humeral fractures is unclear, but its use is increasing. \n OBJECTIVE To evaluate the clinical effectiveness of surgical vs nonsurgical treatment for adults with displaced fractures of the proximal humerus involving the surgical neck. \n DESIGN, SETTING, AND PARTICIPANTS A pragmatic, multicenter, parallel-group, randomized clinical trial, the Proximal Fracture of the Humerus Evaluation by Randomization (PROFHER) trial, recruited 250 patients aged 16 years or older (mean age, 66 years [range, 24-92 years]; 192 [77%] were female; and 249 [99.6%] were white) who presented at the orthopedic departments of 32 acute UK National Health Service hospitals between September 2008 and April 2011 within 3 weeks after sustaining a displaced fracture of the proximal humerus involving the surgical neck. Patients were followed up for 2 years (up to April 2013) and 215 had complete follow-up data. The data for 231 patients (114 in surgical group and 117 in nonsurgical group) were included in the primary analysis. \n INTERVENTIONS Fracture fixation or humeral head replacement were performed by surgeons experienced in these techniques. Nonsurgical treatment was sling immobilization. Standardized outpatient and community-based rehabilitation was provided to both groups. \n MAIN OUTCOMES AND MEASURES Primary outcome was the Oxford Shoulder Score (range, 0-48; higher scores indicate better outcomes) assessed during a 2-year period, with assessment and data collection at 6, 12, and 24 months. Sample size was based on a minimal clinically important difference of 5 points for the Oxford Shoulder Score. Secondary outcomes were the Short-Form 12 (SF-12), complications, subsequent therapy, and mortality. \n RESULTS There was no significant mean treatment group difference in the Oxford Shoulder Score averaged over 2 years (39.07 points for the surgical group vs 38.32 points for the nonsurgical group; difference of 0.75 points [95% CI, -1.33 to 2.84 points]; P = .48) or at individual time points. There were also no significant between-group differences over 2 years in the mean SF-12 physical component score (surgical group: 1.77 points higher [95% CI, -0.84 to 4.39 points]; P = .18); the mean SF-12 mental component score (surgical group: 1.28 points lower [95% CI, -3.80 to 1.23 points]; P = .32); complications related to surgery or shoulder fracture (30 patients in surgical group vs 23 patients in nonsurgical group; P = .28), requiring secondary surgery to the shoulder (11 patients in both groups), and increased or new shoulder-related therapy (7 patients vs 4 patients, respectively; P = .58); and mortality (9 patients vs 5 patients; P = .27). Ten medical complications (2 cardiovascular events, 2 respiratory events, 2 gastrointestinal events, and 4 others) occurred in the surgical group during the postoperative hospital stay. \n CONCLUSIONS AND RELEVANCE Among patients with displaced proximal humeral fractures involving the surgical neck, there was no significant difference between surgical treatment compared with nonsurgical treatment in patient-reported clinical outcomes over 2 years following fracture occurrence. These results do not support the trend of increased surgery for patients with displaced fractures of the proximal humerus. \n TRIAL REGISTRATION isrctn.com Identifier: ISRCTN50850043.", "title": "Surgical vs nonsurgical treatment of adults with displaced fractures of the proximal humerus: the PROFHER randomized clinical trial." }, { "docid": "19878070", "text": "CONTEXT Risedronate, a potent bisphosphonate, has been shown to be effective in the treatment of Paget disease of bone and other metabolic bone diseases but, to our knowledge, it has not been evaluated in the treatment of established postmenopausal osteoporosis. \n OBJECTIVE To test the efficacy and safety of daily treatment with risedronate to reduce the risk of vertebral and other fractures in postmenopausal women with established osteoporosis. \n DESIGN, SETTING, AND PARTICIPANTS Randomized, double-blind, placebo-controlled trial of 2458 ambulatory postmenopausal women younger than 85 years with at least 1 vertebral fracture at baseline who were enrolled at 1 of 110 centers in North America conducted between December 1993 and January 1998. \n INTERVENTIONS Subjects were randomly assigned to receive oral treatment for 3 years with risedronate (2.5 or 5 mg/d) or placebo. All subjects received calcium, 1000 mg/d. Vitamin D (cholecalciferol, up to 500 IU/d) was provided if baseline levels of 25-hydroxyvitamin D were low. \n MAIN OUTCOME MEASURES Incidence of new vertebral fractures as detected by quantitative and semiquantitative assessments of radiographs; incidence of radiographically confirmed nonvertebral fractures and change from baseline in bone mineral density as determined by dual x-ray absorptiometry. \n RESULTS The 2.5 mg/d of risedronate arm was discontinued after 1 year; in the placebo and 5 mg/d of risedronate arms, 450 and 489 subjects, respectively, completed all 3 years of the trial. Treatment with 5 mg/d of risedronate, compared with placebo, decreased the cumulative incidence of new vertebral fractures by 41 % (95% confidence interval [CI], 18%-58%) over 3 years (11.3 % vs 16.3%; P= .003). A fracture reduction of 65% (95% CI, 38%-81 %) was observed after the first year (2.4% vs 6.4%; P<.001). The cumulative incidence of nonvertebral fractures over 3 years was reduced by 39% (95% CI, 6%-61 %) (5.2 % vs 8.4%; P = .02). Bone mineral density increased significantly compared with placebo at the lumbar spine (5.4% vs 1.1 %), femoral neck (1.6% vs -1.2%), femoral trochanter (3.3% vs -0.7%), and midshaft of the radius (0.2% vs -1.4%). Bone formed during risedronate treatment was histologically normal. The overall safety profile of risedronate, including gastrointestinal safety, was similar to that of placebo. \n CONCLUSIONS These data suggest that risedronate therapy is effective and well tolerated in the treatment of women with established postmenopausal osteoporosis.", "title": "Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group." }, { "docid": "3770750", "text": "BACKGROUND The relation between sugar-sweetened beverages (SSBs) and body weight remains controversial. \n OBJECTIVE We conducted a systematic review and meta-analysis to summarize the evidence in children and adults. \n DESIGN We searched PubMed, EMBASE, and Cochrane databases through March 2013 for prospective cohort studies and randomized controlled trials (RCTs) that evaluated the SSB-weight relation. Separate meta-analyses were conducted in children and adults and for cohorts and RCTs by using random- and fixed-effects models. \n RESULTS Thirty-two original articles were included in our meta-analyses: 20 in children (15 cohort studies, n = 25,745; 5 trials, n = 2772) and 12 in adults (7 cohort studies, n = 174,252; 5 trials, n = 292). In cohort studies, one daily serving increment of SSBs was associated with a 0.06 (95% CI: 0.02, 0.10) and 0.05 (95% CI: 0.03, 0.07)-unit increase in BMI in children and 0.22 kg (95% CI: 0.09, 0.34 kg) and 0.12 kg (95% CI: 0.10, 0.14 kg) weight gain in adults over 1 y in random- and fixed-effects models, respectively. RCTs in children showed reductions in BMI gain when SSBs were reduced [random and fixed effects: -0.17 (95% CI: -0.39, 0.05) and -0.12 (95% CI: -0.22, -0.2)], whereas RCTs in adults showed increases in body weight when SSBs were added (random and fixed effects: 0.85 kg; 95% CI: 0.50, 1.20 kg). Sensitivity analyses of RCTs in children showed more pronounced benefits in preventing weight gain in SSB substitution trials (compared with school-based educational programs) and among overweight children (compared with normal-weight children). \n CONCLUSION Our systematic review and meta-analysis of prospective cohort studies and RCTs provides evidence that SSB consumption promotes weight gain in children and adults.", "title": "Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis." }, { "docid": "20008796", "text": "OBJECTIVE To report data relating to the informed uptake of screening tests. SEARCH STRATEGY Electronic databases, bibliographies and experts were used to identify relevant published and unpublished studies up until August 2000. INCLUSION CRITERIA RCTs, quasi-RCTs and controlled trials of interventions aimed at increasing the informed uptake of screening. All participants were eligible as defined by the entry criteria of individual programmes. Studies had to report actual uptake and meet three out of four criteria used to define informed uptake. \n DATA EXTRACTION AND SYNTHESIS Relevant studies were identified, data extracted and their validity assessed by two reviewers independently. Outcome data included screening uptake, knowledge, informed decision-making and attitudes to screening. A random-effects model was used to calculate individual relative risks and 95% confidence intervals. \n MAIN RESULTS Six controlled trials (five RCTs and one quasi-RCT), focusing on antenatal and prostate specific antigen screening, were included. All reported risks/benefits of screening and assessed knowledge. Two also assessed decision-making. Two reported risks/benefits to all randomized groups and evaluated different ways of presenting information. Neither found that interventions such as videos, information leaflets with decision trees, or touch screen computers conveyed any additional benefits over well-prepared leaflets. \n CONCLUSIONS There is some evidence to suggest that changing the format of informed choice interventions in screening does not alter knowledge, satisfaction or decisions about screening. It is not clear whether informed choice in screening affects uptake. More well-designed RCTs are required and further research should also be directed towards the development of a valid instrument for measuring all components of informed choice in screening.", "title": "Increasing informed uptake and non-uptake of screening: evidence from a systematic review." }, { "docid": "33417012", "text": "OBJECTIVE This study compared, in treatment and control groups, the phenomena of coaction, which is the probability that taking effective action on one behavior is related to taking effective action on a second behavior. \n METHODS Pooled data from three randomized trials of Transtheoretical Model (TTM) tailored interventions (n=9461), completed in the U.S. in 1999, were analyzed to assess coaction in three behavior pairs (diet and sun protection, diet and smoking, and sun protection and smoking). Odds ratios (ORs) compared the likelihood of taking action on a second behavior compared to taking action on only one behavior. \n RESULTS Across behavior pairs, at 12 and 24 months, the ORs for the treatment group were greater on an absolute basis than for the control group, with two being significant. The combined ORs at 12 and 24 months, respectively, were 1.63 and 1.85 for treatment and 1.20 and 1.10 for control. \n CONCLUSIONS The results of this study with addictive, energy balance and appearance-related behaviors were consistent with results found in three studies applying TTM tailoring to energy balance behaviors. Across studies, there was more coaction within the treatment group. Future research should identify predictors of coaction in more multiple behavior change interventions.", "title": "Treated individuals who progress to action or maintenance for one behavior are more likely to make similar progress on another behavior: coaction results of a pooled data analysis of three trials." }, { "docid": "19205326", "text": "BACKGROUND Antiresorptive agents are widely used to treat osteoporosis. We report the results of a multinational randomized, double-blind study, in which postmenopausal women with osteoporosis were treated with alendronate for up to 10 years. \n METHODS The initial three-year phase of the study compared three daily doses of alendronate with placebo. Women in the original placebo group received alendronate in years 4 and 5 and then were discharged. Women in the original active-treatment groups continued to receive alendronate during the initial extension (years 4 and 5). In two further extensions (years 6 and 7, and 8 through 10), women who had received 5 mg or 10 mg of alendronate daily continued on the same treatment. Women in the discontinuation group received 20 mg of alendronate daily for two years and 5 mg daily in years 3, 4, and 5, followed by five years of placebo. Randomized group assignments and blinding were maintained throughout the 10 years. We report results for the 247 women who participated in all four phases of the study. \n RESULTS Treatment with 10 mg of alendronate daily for 10 years produced mean increases in bone mineral density of 13.7 percent at the lumbar spine (95 percent confidence interval, 12.0 to 15.5 percent), 10.3 percent at the trochanter (95 percent confidence interval, 8.1 to 12.4 percent), 5.4 percent at the femoral neck (95 percent confidence interval, 3.5 to 7.4 percent), and 6.7 percent at the total proximal femur (95 percent confidence interval, 4.4 to 9.1 percent) as compared with base-line values; smaller gains occurred in the group given 5 mg daily. The discontinuation of alendronate resulted in a gradual loss of effect, as measured by bone density and biochemical markers of bone remodeling. Safety data, including fractures and stature, did not suggest that prolonged treatment resulted in any loss of benefit. \n CONCLUSIONS The therapeutic effects of alendronate were sustained, and the drug was well tolerated over a 10-year period. The discontinuation of alendronate resulted in the gradual loss of its effects.", "title": "Ten years' experience with alendronate for osteoporosis in postmenopausal women." }, { "docid": "24323695", "text": "RATIONALE Up to 80% of patients with lung cancer have comorbid chronic obstructive pulmonary disease (COPD). Many of them are poor candidates for stage-specific lung cancer treatment due to diminished lung function and poor functional status, and many forego treatment. The negative effect of COPD may be moderated by pulmonologist-guided management. \n OBJECTIVES This study examined the association between pulmonologist management and the probability of receiving the recommended stage-specific treatment modality and overall survival among patients with non-small cell lung cancer (NSCLC) with preexisting COPD. \n METHODS Early- and advanced-stage NSCLC cases diagnosed between 2002 and 2005 with a prior COPD diagnosis (3-24 months before NSCLC diagnosis) were identified in Surveillance, Epidemiology, and End Results tumor registry data linked to Medicare claims. Study outcomes included receipt of recommended stage-specific treatment (surgical resection for early-stage NSCLC and chemotherapy for advanced-stage NSCLC [advNSCLC]) and overall survival. Pulmonologist management was considered present if one or more Evaluation and Management visit claims with pulmonologist specialty were observed within 6 months after NSCLC diagnosis. Stage-specific multivariate logistic regression tested association between pulmonologist management and treatment received. Cox proportional hazard models examined the independent association between pulmonologist care and mortality. Two-stage residual inclusion instrumental variable (2SRI-IV) analyses tested and adjusted for potential confounding based on unobserved factors or measurement error. \n MEASUREMENTS AND MAIN RESULTS The cohorts included 5,488 patients with early-stage NSCLC and 6,426 patients with advNSCLC disease with preexisting COPD. Pulmonologist management was recorded for 54.9% of patients with early stage NSCLC and 35.7% of patients with advNSCLC. Of those patients with pulmonologist involvement, 58.5% of patients with early NSCLC received surgical resection, and 43.6% of patients with advNSCLC received chemotherapy. Pulmonologist management post NSCLC diagnosis was associated with increased surgical resection rates (odds ratio, 1.26; 95% confidence interval, 1.11-1.45) for early NSCLC and increased chemotherapy rates (odds ratio, 1.88; 95% confidence interval, 1.67-2.10) for advNSCLC. Pulmonologist management was also associated with reduced mortality risk for patients with early-stage NSCLC but not AdvNSCLC. \n CONCLUSIONS Pulmonologist management had a positive association with rates of stage-specific treatment in both groups and overall survival in early-stage NSCLC. These results provide preliminary support for the recently published guidelines emphasizing the role of pulmonologists in lung cancer management.", "title": "Pulmonologist involvement, stage-specific treatment, and survival in adults with non-small cell lung cancer and chronic obstructive pulmonary disease." } ]
890
Origin gross domestic product(GDP) is negatively related to dengue virus (DENV-1) diffusion in air traffic shipments.
[ { "docid": "2097256", "text": "BACKGROUND Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. \n METHODS AND FINDINGS We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. \n CONCLUSIONS Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary.", "title": "Population Density, Water Supply, and the Risk of Dengue Fever in Vietnam: Cohort Study and Spatial Analysis" } ]
[ { "docid": "18816720", "text": "BACKGROUND Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. \n METHODS AND FINDINGS Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children. \n CONCLUSIONS Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases.", "title": "Spatial and Temporal Clustering of Dengue Virus Transmission in Thai Villages" }, { "docid": "8665891", "text": "Dengue virus and its four serotypes (DENV 1-4) infect approximately 390 million people worldwide each year, with most cases in tropical and subtropical regions. Because of repeated introduction of DENV from epidemic regions and suitable weather conditions, many regions have shifted from hypo-endemicity to hyper-endemicity over recent decades. Since the first dengue outbreak in 1978, it is crucial to understand the current situation in China over nearly 40 years. The purpose of the study was to examine whether dengue in China was endemic or not, which is essential for relevant dengue control and prevention strategy implementation in China. The study, combining epidemiological characteristics of dengue from the disease notification system, phylogenetic and phylogeographic analyses, showed that all four serotypes had been detected in Guangzhou, China, which was dominated by DENV 1-2. The Maximum Likelihood tree analytic results showed that the virus detected in Guangzhou localized in different clades, except of virus of 2002 and 2003 clustered together. There existed the mutual introductions between Guangzhou and Southeast Asia. Most of the viruses were imported from Southeast Asia and the sources of outbreaks in Guangzhou mainly originated from Thailand, Indonesia, and the Philippines. The study indicates that dengue in China still remains as an imported disease, with the possibility of localization.", "title": "Dengue is still an imported disease in China: a case study in Guangzhou." }, { "docid": "15670968", "text": "Many countries use the cost-effectiveness thresholds recommended by the World Health Organization's Choosing Interventions that are Cost-Effective project (WHO-CHOICE) when evaluating health interventions. This project sets the threshold for cost-effectiveness as the cost of the intervention per disability-adjusted life-year (DALY) averted less than three times the country's annual gross domestic product (GDP) per capita. Highly cost-effective interventions are defined as meeting a threshold per DALY averted of once the annual GDP per capita. We argue that reliance on these thresholds reduces the value of cost-effectiveness analyses and makes such analyses too blunt to be useful for most decision-making in the field of public health. Use of these thresholds has little theoretical justification, skirts the difficult but necessary ranking of the relative values of locally-applicable interventions and omits any consideration of what is truly affordable. The WHO-CHOICE thresholds set such a low bar for cost-effectiveness that very few interventions with evidence of efficacy can be ruled out. The thresholds have little value in assessing the trade-offs that decision-makers must confront. We present alternative approaches for applying cost-effectiveness criteria to choices in the allocation of health-care resources.", "title": "Thresholds for the cost–effectiveness of interventions: alternative approaches" }, { "docid": "39984099", "text": "BACKGROUND New WHO guidelines recommend ART initiation for HIV-positive persons with CD4 cell counts ≤500 cells/µL, a higher threshold than was previously recommended. Country decision makers must consider whether to further expand ART eligibility accordingly. \n METHODS We used multiple independent mathematical models in four settings-South Africa, Zambia, India, and Vietnam-to evaluate the potential health impact, costs, and cost-effectiveness of different adult ART eligibility criteria under scenarios of current and expanded treatment coverage, with results projected over 20 years. Analyses considered extending eligibility to include individuals with CD4 ≤500 cells/µL or all HIV-positive adults, compared to the previous recommendation of initiation with CD4 ≤350 cells/µL. We assessed costs from a health system perspective, and calculated the incremental cost per DALY averted ($/DALY) to compare competing strategies. Strategies were considered 'very cost-effective' if the $/DALY was less than the country's per capita gross domestic product (GDP; South Africa: $8040, Zambia: $1425, India: $1489, Vietnam: $1407) and 'cost-effective' if $/DALY was less than three times per capita GDP. \n FINDINGS In South Africa, the cost per DALY averted of extending ART eligibility to CD4 ≤500 cells/µL ranged from $237 to $1691/DALY compared to 2010 guidelines; in Zambia, expanded eligibility ranged from improving health outcomes while reducing costs (i.e. dominating current guidelines) to $749/DALY. Results were similar in scenarios with substantially expanded treatment access and for expanding eligibility to all HIV-positive adults. Expanding treatment coverage in the general population was therefore found to be cost-effective. In India, eligibility for all HIV-positive persons ranged from $131 to $241/DALY and in Vietnam eligibility for CD4 ≤500 cells/µL cost $290/DALY. In concentrated epidemics, expanded access among key populations was also cost-effective. \n INTERPRETATION Earlier ART eligibility is estimated to be very cost-effective in low- and middle-income settings, although these questions should be revisited as further information becomes available. Scaling-up ART should be considered among other high-priority health interventions competing for health budgets. \n FUNDING The Bill and Melinda Gates Foundation and World Health Organization.", "title": "Health benefits, costs, and cost-effectiveness of earlier eligibility for adult antiretroviral therapy and expanded treatment coverage: a combined analysis of 12 mathematical models." }, { "docid": "457630", "text": "Purpose To evaluate the global trends in health burden of people visually impaired from cataract in terms of disability-adjusted life years (DALY) and its correlations with national levels of socioeconomic development. Methods Global, regional, and national DALY numbers, crude rate, and age-standardized rate of cataract vision loss by age and sex were obtained from the database of the Global Burden of Disease Study 2015. The human development index, per capita gross domestic product, and other country-level data were derived from international open databases. Regression analysis was used to assess the correlations between age-standardized DALY rate and socioeconomic variables. Results The global DALY numbers of cataract vision loss increased by 89.42%, from 2048.18 (95%CI [confidence interval]: 1457.60-2761.80) thousands in 1990 to 3879.74 (95% CI: 2766.07-5232.43) thousands in 2015 (P < 0.001). Females had higher DALY number 315.83 (95%CI: 237.17-394.4) and crude rate 38.29 (95%CI: 35.35-41.23) after adjusting for age and country (all P < 0.001). The age-standardized DALY rate was higher in countries with low human development index (HDI), with 91.03 (95%CI: 73.04-108.75) for low HDI, 81.67 (95%CI: 53.24-108.82) for medium HDI, 55.89 (95%CI: 36.87-69.63) for high HDI, and 17.10 (95%CI: 13.91-26.84) for very high HDI countries (P < 0.01), respectively. The national age-standardized DALY rates in 2015 were negatively associated with both HDI (R2 = 0.489, P < 0.001) and per capita gross domestic product (R2 = 0.331, P < 0.001). Stepwise multiple regression showed that HDI was significantly correlated with national age-standardized DALY rates in 2015 after adjusting for other confounding factors (P < 0.001). Conclusions The global health burden of vision loss due to cataract increased between 1990 and 2015 despite considerable efforts from the World Health Organization and VISION 2020 initiatives.", "title": "Variations and Trends in Health Burden of Visual Impairment Due to Cataract: A Global Analysis." }, { "docid": "10300888", "text": "Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP.", "title": "Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts" }, { "docid": "21003930", "text": "BACKGROUND Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults. \n METHODS In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO2) concentrations were measured. \n FINDINGS Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO2, PM10, PM2.5, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV1] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV1 and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO2, ultrafine particles and PM2.5, and an increase in PWV and augmentation index with NO2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles. \n INTERPRETATION Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects. \n FUNDING British Heart Foundation.", "title": "Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study" }, { "docid": "42387637", "text": "RATIONALE Exposure to particulate air pollution has been related to increased hospitalization and death, particularly from cardiovascular disease. Lower blood DNA methylation content is found in processes related to cardiovascular outcomes, such as oxidative stress, aging, and atherosclerosis. \n OBJECTIVES We evaluated whether particulate pollution modifies DNA methylation in heavily methylated sequences with high representation throughout the human genome. \n METHODS We measured DNA methylation of long interspersed nucleotide element (LINE)-1 and Alu repetitive elements by quantitative polymerase chain reaction-pyrosequencing of 1,097 blood samples from 718 elderly participants in the Boston area Normative Aging Study. We used covariate-adjusted mixed models to account for within-subject correlation in repeated measures. We estimated the effects on DNA methylation of ambient particulate pollutants (black carbon, particulate matter with aerodynamic diameter < or = 2.5 microm [PM2.5], or sulfate) in multiple time windows (4 h to 7 d) before the examination. We estimated standardized regression coefficients (beta) expressing the fraction of a standard deviation change in DNA methylation associated with a standard deviation increase in exposure. \n MEASUREMENTS AND MAIN RESULTS Repetitive element DNA methylation varied in association with time-related variables, such as day of the week and season. LINE-1 methylation decreased after recent exposure to higher black carbon (beta = -0.11; 95% confidence interval [CI], -0.18 to -0.04; P = 0.002) and PM2.5 (beta = -0.13; 95% CI, -0.19 to -0.06; P < 0.001 for the 7-d moving average). In two-pollutant models, only black carbon, a tracer of traffic particles, was significantly associated with LINE-1 methylation (beta = -0.09; 95% CI, -0.17 to -0.01; P = 0.03). No association was found with Alu methylation (P > 0.12). \n CONCLUSIONS We found decreased repeated-element methylation after exposure to traffic particles. Whether decreased methylation mediates exposure-related health effects remains to be determined.", "title": "Rapid DNA methylation changes after exposure to traffic particles." }, { "docid": "17454301", "text": "A small, isolated outbreak of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) due to dengue virus type 2 (DEN-2) was documented in Santiago de Cuba on the island of Cuba beginning in January 1997. There were 205 DHF/DSS cases, all in persons older than age 15 years. All but three had evidence of a prior dengue infection, with the only known opportunity being the islandwide dengue virus type 1 (DEN-1) epidemic of 1977-1979. Virtually complete clinical and laboratory surveillance of overt disease was achieved. From December 1997 to January 1998, a random, age-stratified serum sample was obtained from 1,151 persons in 40 residential clusters in Santiago. Sera were tested for DEN-1 and DEN-2 neutralizing antibodies. The prevalence of DEN-2 antibodies in children age 15 years and under, born after the 1981 DEN-2 epidemic, was taken as the 1997 DEN-2 infection rate. This was adjusted slightly to accommodate observed cases, resulting in an estimated infection rate of 4.3%. Dengue fever and DHF/DSS attack rates were calculated from estimated total primary and secondary DEN-2 infections. Only 3% of 13,116 primary infections were overt. The DHF/DSS attack rate for adults of all ages was 420 per 10,000 secondary DEN-2 infections.", "title": "Epidemiologic studies on Dengue in Santiago de Cuba, 1997." }, { "docid": "34074902", "text": "Abstract Feline leukemia virus (FeLV), Gammaretrovirus, and feline immunodeficiency virus, a Lentivirus, are members of the family Retroviridae, and may establish persistent infections in the domestic cat (Felis catus). Cytoproliferative and cytosuppressive disorders may result from infection with these viruses. Morbidity and mortality rates are high in domestic cats worldwide. Infection of endangered neotropic small felids with these viruses could be devastating. To investigate the prevalence of FeLV and feline lentiviruses in neotropic small felids kept in captivity in São Paulo state, Brazil, serum samples from 104 animals belonging to the species Leopardus pardalis, Leopardus tigrinus, Leopardus wiedii, Herpailurus yaguarondi, and Oncifelis geoffroyi were tested for FeLV and feline lentiviruses by commercially available immunoassays. All results were negative, suggesting that retrovirus infection is not an important clinical problem in these populations. Because domestic cats in São Paulo city are naturally infected with these pathogens, and feral cats are commonly found in zoologic facilities in Brazil, preventive measures should be taken to avoid transmission of retroviruses to naive populations of wild and captive neotropic felids in Brazil.", "title": "SEROSURVEY FOR FELINE LEUKEMIA VIRUS AND LENTIVIRUSES IN CAPTIVE SMALL NEOTROPIC FELIDS IN SÃO PAULO STATE, BRAZIL" }, { "docid": "11238951", "text": "Kaposi's sarcoma-associated herpesvirus (KSHV), also termed human herpesvirus type 8, is consistently identified in Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. Here we report four cases of KSHV-bearing solid lymphomas that occurred in AIDS patients (cases 1 to 3) and in a human immunodeficiency virus (HIV)-seronegative person (case 4). The patients presented extranodal masses in the abdomen (cases 1, 3, and 4) or skin (case 2), and nodal involvement, together with Kaposi's sarcoma (case 3). The gastrointestinal tract was involved in two patients (cases 1 and 3). The patients did not develop a lymphomatous effusion. KSHV was detected in the tumor cells of all cases by immunohistochemistry and by polymerase chain reaction. Epstein-Barr virus was detected in two of the HIV-related cases. All KSHV-positive solid lymphomas exhibited PEL-like cell morphology. To investigate the relationship of these disorders to PEL and to other AIDS-associated diffuse large cell lymphomas, KSHV-positive solid lymphomas were tested for the expression of a set of genes that were previously shown by gene profiling analysis to define PEL tumor cells. The results showed that expression of this set of genes in KSHV-positive lymphomas is similar to that of PEL but distinct from KSHV-negative AIDS-associated diffuse large cell lymphomas. Because pathobiological features of KSHV-positive solid lymphomas closely mimic those of PEL, our results suggest that KSHV-positive solid lymphomas should be considered as a tissue-based variant of classical PEL, irrespective of HIV status.", "title": "Kaposi's sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma." }, { "docid": "301838", "text": "The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation.", "title": "Rank Signaling Links the Development of Invariant γδ T Cell Progenitors and Aire+ Medullary Epithelium" }, { "docid": "3662510", "text": "OBJECTIVE To estimate the lost investment of domestically educated doctors migrating from sub-Saharan African countries to Australia, Canada, the United Kingdom, and the United States. \n DESIGN Human capital cost analysis using publicly accessible data. \n SETTINGS Sub-Saharan African countries. \n PARTICIPANTS Nine sub-Saharan African countries with an HIV prevalence of 5% or greater or with more than one million people with HIV/AIDS and with at least one medical school (Ethiopia, Kenya, Malawi, Nigeria, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe), and data available on the number of doctors practising in destination countries. \n MAIN OUTCOME MEASURES The financial cost of educating a doctor (through primary, secondary, and medical school), assuming that migration occurred after graduation, using current country specific interest rates for savings converted to US dollars; cost according to the number of source country doctors currently working in the destination countries; and savings to destination countries of receiving trained doctors. \n RESULTS In the nine source countries the estimated government subsidised cost of a doctor's education ranged from $21,000 (£13,000; €15,000) in Uganda to $58,700 in South Africa. The overall estimated loss of returns from investment for all doctors currently working in the destination countries was $2.17bn (95% confidence interval 2.13bn to 2.21bn), with costs for each country ranging from $2.16m (1.55m to 2.78m) for Malawi to $1.41bn (1.38bn to 1.44bn) for South Africa. The ratio of the estimated compounded lost investment over gross domestic product showed that Zimbabwe and South Africa had the largest losses. The benefit to destination countries of recruiting trained doctors was largest for the United Kingdom ($2.7bn) and United States ($846m). \n CONCLUSIONS Among sub-Saharan African countries most affected by HIV/AIDS, lost investment from the emigration of doctors is considerable. Destination countries should consider investing in measurable training for source countries and strengthening of their health systems.", "title": "The financial cost of doctors emigrating from sub-Saharan Africa: human capital analysis" }, { "docid": "25738896", "text": "The thymic transcription factor autoimmune regulator (Aire) prevents autoimmunity in part by promoting expression of tissue-specific self-antigens, which include many cancer antigens. For example, AIRE-deficient patients are predisposed to vitiligo, an autoimmune disease of melanocytes that is often triggered by efficacious immunotherapies against melanoma. Therefore, we hypothesized that Aire deficiency in mice may elevate immune responses to cancer and provide insights into how such responses might be triggered. In this study, we show that Aire deficiency decreases thymic expression of TRP-1 (TYRP1), which is a self-antigen in melanocytes and a cancer antigen in melanomas. Aire deficiency resulted in defective negative selection of TRP-1-specific T cells without affecting thymic numbers of regulatory T cells. Aire-deficient mice displayed elevated T-cell immune responses that were associated with suppression of melanoma outgrowth. Furthermore, transplantation of Aire-deficient thymic stroma was sufficient to confer more effective immune rejection of melanoma in an otherwise Aire wild-type host. Together, our work showed how Aire deficiency can enhance immune responses against melanoma and how manipulating TRP-1-specific T-cell negative selection may offer a logical strategy to enhance immune rejection of melanoma.", "title": "Aire deficiency promotes TRP-1-specific immune rejection of melanoma." }, { "docid": "4561402", "text": "Autoimmune polyendocrinopathy syndrome type 1 is a recessive Mendelian disorder resulting from mutations in a novel gene, AIRE, and is characterized by a spectrum of organ-specific autoimmune diseases. It is not known what tolerance mechanisms are defective as a result of AIRE mutation. By tracing the fate of autoreactive CD4+ T cells with high affinity for a pancreatic antigen in transgenic mice with an Aire mutation, we show here that Aire deficiency causes almost complete failure to delete the organ-specific cells in the thymus. These results indicate that autoimmune polyendocrinopathy syndrome 1 is caused by failure of a specialized mechanism for deleting forbidden T cell clones, establishing a central role for this tolerance mechanism.", "title": "Aire regulates negative selection of organ-specific T cells" }, { "docid": "3716075", "text": "BACKGROUND Dengue is the most common arbovirus infection globally, but its burden is poorly quantified. We estimated dengue mortality, incidence, and burden for the Global Burden of Disease Study 2013. \n METHODS We modelled mortality from vital registration, verbal autopsy, and surveillance data using the Cause of Death Ensemble Modelling tool. We modelled incidence from officially reported cases, and adjusted our raw estimates for under-reporting based on published estimates of expansion factors. In total, we had 1780 country-years of mortality data from 130 countries, 1636 country-years of dengue case reports from 76 countries, and expansion factor estimates for 14 countries. \n FINDINGS We estimated an average of 9221 dengue deaths per year between 1990 and 2013, increasing from a low of 8277 (95% uncertainty estimate 5353-10 649) in 1992, to a peak of 11 302 (6790-13 722) in 2010. This yielded a total of 576 900 (330 000-701 200) years of life lost to premature mortality attributable to dengue in 2013. The incidence of dengue increased greatly between 1990 and 2013, with the number of cases more than doubling every decade, from 8·3 million (3·3 million-17·2 million) apparent cases in 1990, to 58·4 million (23·6 million-121·9 million) apparent cases in 2013. When accounting for disability from moderate and severe acute dengue, and post-dengue chronic fatigue, 566 000 (186 000-1 415 000) years lived with disability were attributable to dengue in 2013. Considering fatal and non-fatal outcomes together, dengue was responsible for 1·14 million (0·73 million-1·98 million) disability-adjusted life-years in 2013. \n INTERPRETATION Although lower than other estimates, our results offer more evidence that the true symptomatic incidence of dengue probably falls within the commonly cited range of 50 million to 100 million cases per year. Our mortality estimates are lower than those presented elsewhere and should be considered in light of the totality of evidence suggesting that dengue mortality might, in fact, be substantially higher. \n FUNDING Bill & Melinda Gates Foundation.", "title": "The global burden of dengue: an analysis from the Global Burden of Disease Study 2013." }, { "docid": "23304931", "text": "PURPOSE Diffuse large B-cell lymphoma (DLBCL) represents a clinically heterogeneous disease. Models based on immunohistochemistry predict clinical outcome. These include subdivision into germinal center (GC) versus non-GC subtypes; proliferation index (measured by expression of Ki-67), and expression of BCL-2, FOXP1, or B-lymphocyte-induced maturation protein (Blimp-1)/PRDM1. We sought to determine whether immunohistochemical analyses of biopsies from patients with DLBCL having HIV infection are similarly relevant for prognosis. \n PATIENTS AND METHODS We examined 81 DLBCLs from patients with AIDS in AMC010 (cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP] v CHOP-rituximab) and AMC034 (etoposide, doxorubicin, vincristine, prednisone, and dose-adjusted cyclophosphamide plus rituximab concurrent v sequential) clinical trials and compared the immunophenotype with survival data, Epstein-Barr virus (EBV) positivity, and CD4 counts. \n RESULTS The GC and non-GC subtypes of DLBCL did not differ significantly with respect to overall survival or CD4 count at cancer presentation. EBV could be found in both subtypes of DLBCL, although less frequently in the GC subtype, and did not affect survival. Expression of FOXP1, Blimp-1/PRDM1, or BCL-2 was not correlated with the outcome in patients with AIDS-related DLBCL. \n CONCLUSION These data indicate that with current treatment strategies for lymphoma and control of HIV infection, commonly used immunohistochemical markers may not be clinically relevant in HIV-infected patients with DLBCL. The only predictive immunohistochemical marker was found to be Ki-67, where a higher proliferation index was associated with better survival, suggesting a better response to therapy in patients whose tumors had higher proliferation rates.", "title": "Immunophenotypic analysis of AIDS-related diffuse large B-cell lymphoma and clinical implications in patients from AIDS malignancies consortium clinical trials 010 and 034" }, { "docid": "29134911", "text": "An unusual human retrovirus was isolated from two patients with persistent generalized lymphadenopathy who originate from West-Central Africa and are currently residing in Belgium. Although the virus shared a number of the same biological and morphological properties as human immunodeficiency retrovirus type 1 (HIV-1) and HIV-2, significant antigenic differences could be demonstrated. Several of the viral proteins also differed in molecular weight from the corresponding HIV-1 and HIV-2 proteins. Partial chemical cleavage of the most highly conserved viral proteins resulted in patterns which differed from those of HIV-1 and HIV-2. Furthermore, nucleic acid hybridization experiments were capable of discriminating between the virus types. Sequence analysis of the viral U3 region revealed a unique enhancer organization not found in other immunodeficiency viruses. The data indicated that the new isolate is more closely related to HIV-1 than to HIV-2 but clearly differs in a number of important respects.", "title": "Isolation and partial characterization of an unusual human immunodeficiency retrovirus from two persons of west-central African origin." }, { "docid": "34582256", "text": "The object of this study was to assess the role of brown adipose tissue (BAT) and the sympathetic nervous system in the rise in heat production associated with endotoxin-induced fever. Oxygen consumption (VO2) was found to be significantly increased (28%) over a 4-h period after two doses of endotoxin (Escherichia coli lipopolysaccharide, 0.3 mg/100 g body wt) given 24 h apart. Injection of a mixed beta-adrenoceptor antagonist (propranolol) reduced VO2 by 14% in endotoxin-treated rats, whereas the selective beta 1- (atenolol) or beta 2- (ICI 118551) antagonists suppressed VO2 by 10%. These drugs did not affect VO2 in control animals. BAT thermogenic activity assessed from measurements of in vitro mitochondrial guanosine 5'-diphosphate (GDP) binding was elevated by 54% in interscapular BAT and by 171% in other BAT depots. Surgical denervation of one lobe of the interscapular depot prevented these responses. Endotoxin failed to stimulate GDP binding in rats fed protein-deficient diets. This may have been because BAT thermogenic activity was already elevated in control rats fed these diets or because endotoxin caused a marked suppression of food intake in the protein-deficient animals. The results indicate that sympathetic activation of BAT is involved in the thermogenic responses to endotoxin and that these can be modified by dietary manipulation.", "title": "Involvement of sympathetic nervous system and brown fat in endotoxin-induced fever in rats." }, { "docid": "22414304", "text": "There is little information about treatment outcome in patients with smear-negative pulmonary tuberculosis (PTB) or extrapulmonary tuberculosis (EPTB) treated under routine programme conditions in subsaharan Africa. A prospective study was carried out to determine treatment outcome in an unselected cohort of TB patients admitted to Zomba General Hospital, Malawi. Eight hundred and twenty-seven adult TB patients (451 men and 376 women) were registered between 1 July and 31 December 1995. Standardized treatment outcomes of treatment completion, death, default, and transfer to another district were assessed in relation to type of TB, human immunodeficiency virus (HIV) serostatus, age and gender. Two hundred and fifty-four patients (31%) died by the end of treatment, half of the deaths occurring in the first month. Death rates were 19% among 386 patients with smear-positive PTB, 46% among 211 patients with smear-negative PTB, and 37% among 230 patients with EPTB; 77% of the patients were HIV seropositive. Among new patients, HIV-positive patients had higher death rates than HIV-negative patients (hazard ratio [HR] 2.5; 95% confidence interval [95% CI] 1.6-3.8). Smear-negative patients had the highest death rates (HR 3.9; 95% CI 2.7-5.5 compared to smear-positive patients), followed by EPTB patients (HR 2.6, 95% CI 1.8-3.7 compared to smear-positive patients). Death rates increased with age but were similar in men and women. Adult patients in Malawi with smear-negative PTB and EPTB have low treatment completion and high death rates, related to high levels of HIV infection. National TB control programmes in areas of high HIV prevalence should no longer ignore treatment outcomes in patients with smear-negative PTB or EPTB.", "title": "Treatment outcome of an unselected cohort of tuberculosis patients in relation to human immunodeficiency virus serostatus in Zomba Hospital, Malawi." } ]
891
Origin gross domestic product(GDP) is positively related to dengue virus (DENV-1) diffusion in air traffic shipments.
[ { "docid": "2097256", "text": "BACKGROUND Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. \n METHODS AND FINDINGS We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. \n CONCLUSIONS Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary.", "title": "Population Density, Water Supply, and the Risk of Dengue Fever in Vietnam: Cohort Study and Spatial Analysis" } ]
[ { "docid": "18816720", "text": "BACKGROUND Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. \n METHODS AND FINDINGS Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children. \n CONCLUSIONS Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases.", "title": "Spatial and Temporal Clustering of Dengue Virus Transmission in Thai Villages" }, { "docid": "8665891", "text": "Dengue virus and its four serotypes (DENV 1-4) infect approximately 390 million people worldwide each year, with most cases in tropical and subtropical regions. Because of repeated introduction of DENV from epidemic regions and suitable weather conditions, many regions have shifted from hypo-endemicity to hyper-endemicity over recent decades. Since the first dengue outbreak in 1978, it is crucial to understand the current situation in China over nearly 40 years. The purpose of the study was to examine whether dengue in China was endemic or not, which is essential for relevant dengue control and prevention strategy implementation in China. The study, combining epidemiological characteristics of dengue from the disease notification system, phylogenetic and phylogeographic analyses, showed that all four serotypes had been detected in Guangzhou, China, which was dominated by DENV 1-2. The Maximum Likelihood tree analytic results showed that the virus detected in Guangzhou localized in different clades, except of virus of 2002 and 2003 clustered together. There existed the mutual introductions between Guangzhou and Southeast Asia. Most of the viruses were imported from Southeast Asia and the sources of outbreaks in Guangzhou mainly originated from Thailand, Indonesia, and the Philippines. The study indicates that dengue in China still remains as an imported disease, with the possibility of localization.", "title": "Dengue is still an imported disease in China: a case study in Guangzhou." }, { "docid": "39984099", "text": "BACKGROUND New WHO guidelines recommend ART initiation for HIV-positive persons with CD4 cell counts ≤500 cells/µL, a higher threshold than was previously recommended. Country decision makers must consider whether to further expand ART eligibility accordingly. \n METHODS We used multiple independent mathematical models in four settings-South Africa, Zambia, India, and Vietnam-to evaluate the potential health impact, costs, and cost-effectiveness of different adult ART eligibility criteria under scenarios of current and expanded treatment coverage, with results projected over 20 years. Analyses considered extending eligibility to include individuals with CD4 ≤500 cells/µL or all HIV-positive adults, compared to the previous recommendation of initiation with CD4 ≤350 cells/µL. We assessed costs from a health system perspective, and calculated the incremental cost per DALY averted ($/DALY) to compare competing strategies. Strategies were considered 'very cost-effective' if the $/DALY was less than the country's per capita gross domestic product (GDP; South Africa: $8040, Zambia: $1425, India: $1489, Vietnam: $1407) and 'cost-effective' if $/DALY was less than three times per capita GDP. \n FINDINGS In South Africa, the cost per DALY averted of extending ART eligibility to CD4 ≤500 cells/µL ranged from $237 to $1691/DALY compared to 2010 guidelines; in Zambia, expanded eligibility ranged from improving health outcomes while reducing costs (i.e. dominating current guidelines) to $749/DALY. Results were similar in scenarios with substantially expanded treatment access and for expanding eligibility to all HIV-positive adults. Expanding treatment coverage in the general population was therefore found to be cost-effective. In India, eligibility for all HIV-positive persons ranged from $131 to $241/DALY and in Vietnam eligibility for CD4 ≤500 cells/µL cost $290/DALY. In concentrated epidemics, expanded access among key populations was also cost-effective. \n INTERPRETATION Earlier ART eligibility is estimated to be very cost-effective in low- and middle-income settings, although these questions should be revisited as further information becomes available. Scaling-up ART should be considered among other high-priority health interventions competing for health budgets. \n FUNDING The Bill and Melinda Gates Foundation and World Health Organization.", "title": "Health benefits, costs, and cost-effectiveness of earlier eligibility for adult antiretroviral therapy and expanded treatment coverage: a combined analysis of 12 mathematical models." }, { "docid": "15670968", "text": "Many countries use the cost-effectiveness thresholds recommended by the World Health Organization's Choosing Interventions that are Cost-Effective project (WHO-CHOICE) when evaluating health interventions. This project sets the threshold for cost-effectiveness as the cost of the intervention per disability-adjusted life-year (DALY) averted less than three times the country's annual gross domestic product (GDP) per capita. Highly cost-effective interventions are defined as meeting a threshold per DALY averted of once the annual GDP per capita. We argue that reliance on these thresholds reduces the value of cost-effectiveness analyses and makes such analyses too blunt to be useful for most decision-making in the field of public health. Use of these thresholds has little theoretical justification, skirts the difficult but necessary ranking of the relative values of locally-applicable interventions and omits any consideration of what is truly affordable. The WHO-CHOICE thresholds set such a low bar for cost-effectiveness that very few interventions with evidence of efficacy can be ruled out. The thresholds have little value in assessing the trade-offs that decision-makers must confront. We present alternative approaches for applying cost-effectiveness criteria to choices in the allocation of health-care resources.", "title": "Thresholds for the cost–effectiveness of interventions: alternative approaches" }, { "docid": "10300888", "text": "Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP.", "title": "Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts" }, { "docid": "42387637", "text": "RATIONALE Exposure to particulate air pollution has been related to increased hospitalization and death, particularly from cardiovascular disease. Lower blood DNA methylation content is found in processes related to cardiovascular outcomes, such as oxidative stress, aging, and atherosclerosis. \n OBJECTIVES We evaluated whether particulate pollution modifies DNA methylation in heavily methylated sequences with high representation throughout the human genome. \n METHODS We measured DNA methylation of long interspersed nucleotide element (LINE)-1 and Alu repetitive elements by quantitative polymerase chain reaction-pyrosequencing of 1,097 blood samples from 718 elderly participants in the Boston area Normative Aging Study. We used covariate-adjusted mixed models to account for within-subject correlation in repeated measures. We estimated the effects on DNA methylation of ambient particulate pollutants (black carbon, particulate matter with aerodynamic diameter < or = 2.5 microm [PM2.5], or sulfate) in multiple time windows (4 h to 7 d) before the examination. We estimated standardized regression coefficients (beta) expressing the fraction of a standard deviation change in DNA methylation associated with a standard deviation increase in exposure. \n MEASUREMENTS AND MAIN RESULTS Repetitive element DNA methylation varied in association with time-related variables, such as day of the week and season. LINE-1 methylation decreased after recent exposure to higher black carbon (beta = -0.11; 95% confidence interval [CI], -0.18 to -0.04; P = 0.002) and PM2.5 (beta = -0.13; 95% CI, -0.19 to -0.06; P < 0.001 for the 7-d moving average). In two-pollutant models, only black carbon, a tracer of traffic particles, was significantly associated with LINE-1 methylation (beta = -0.09; 95% CI, -0.17 to -0.01; P = 0.03). No association was found with Alu methylation (P > 0.12). \n CONCLUSIONS We found decreased repeated-element methylation after exposure to traffic particles. Whether decreased methylation mediates exposure-related health effects remains to be determined.", "title": "Rapid DNA methylation changes after exposure to traffic particles." }, { "docid": "457630", "text": "Purpose To evaluate the global trends in health burden of people visually impaired from cataract in terms of disability-adjusted life years (DALY) and its correlations with national levels of socioeconomic development. Methods Global, regional, and national DALY numbers, crude rate, and age-standardized rate of cataract vision loss by age and sex were obtained from the database of the Global Burden of Disease Study 2015. The human development index, per capita gross domestic product, and other country-level data were derived from international open databases. Regression analysis was used to assess the correlations between age-standardized DALY rate and socioeconomic variables. Results The global DALY numbers of cataract vision loss increased by 89.42%, from 2048.18 (95%CI [confidence interval]: 1457.60-2761.80) thousands in 1990 to 3879.74 (95% CI: 2766.07-5232.43) thousands in 2015 (P < 0.001). Females had higher DALY number 315.83 (95%CI: 237.17-394.4) and crude rate 38.29 (95%CI: 35.35-41.23) after adjusting for age and country (all P < 0.001). The age-standardized DALY rate was higher in countries with low human development index (HDI), with 91.03 (95%CI: 73.04-108.75) for low HDI, 81.67 (95%CI: 53.24-108.82) for medium HDI, 55.89 (95%CI: 36.87-69.63) for high HDI, and 17.10 (95%CI: 13.91-26.84) for very high HDI countries (P < 0.01), respectively. The national age-standardized DALY rates in 2015 were negatively associated with both HDI (R2 = 0.489, P < 0.001) and per capita gross domestic product (R2 = 0.331, P < 0.001). Stepwise multiple regression showed that HDI was significantly correlated with national age-standardized DALY rates in 2015 after adjusting for other confounding factors (P < 0.001). Conclusions The global health burden of vision loss due to cataract increased between 1990 and 2015 despite considerable efforts from the World Health Organization and VISION 2020 initiatives.", "title": "Variations and Trends in Health Burden of Visual Impairment Due to Cataract: A Global Analysis." }, { "docid": "11238951", "text": "Kaposi's sarcoma-associated herpesvirus (KSHV), also termed human herpesvirus type 8, is consistently identified in Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. Here we report four cases of KSHV-bearing solid lymphomas that occurred in AIDS patients (cases 1 to 3) and in a human immunodeficiency virus (HIV)-seronegative person (case 4). The patients presented extranodal masses in the abdomen (cases 1, 3, and 4) or skin (case 2), and nodal involvement, together with Kaposi's sarcoma (case 3). The gastrointestinal tract was involved in two patients (cases 1 and 3). The patients did not develop a lymphomatous effusion. KSHV was detected in the tumor cells of all cases by immunohistochemistry and by polymerase chain reaction. Epstein-Barr virus was detected in two of the HIV-related cases. All KSHV-positive solid lymphomas exhibited PEL-like cell morphology. To investigate the relationship of these disorders to PEL and to other AIDS-associated diffuse large cell lymphomas, KSHV-positive solid lymphomas were tested for the expression of a set of genes that were previously shown by gene profiling analysis to define PEL tumor cells. The results showed that expression of this set of genes in KSHV-positive lymphomas is similar to that of PEL but distinct from KSHV-negative AIDS-associated diffuse large cell lymphomas. Because pathobiological features of KSHV-positive solid lymphomas closely mimic those of PEL, our results suggest that KSHV-positive solid lymphomas should be considered as a tissue-based variant of classical PEL, irrespective of HIV status.", "title": "Kaposi's sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma." }, { "docid": "17454301", "text": "A small, isolated outbreak of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) due to dengue virus type 2 (DEN-2) was documented in Santiago de Cuba on the island of Cuba beginning in January 1997. There were 205 DHF/DSS cases, all in persons older than age 15 years. All but three had evidence of a prior dengue infection, with the only known opportunity being the islandwide dengue virus type 1 (DEN-1) epidemic of 1977-1979. Virtually complete clinical and laboratory surveillance of overt disease was achieved. From December 1997 to January 1998, a random, age-stratified serum sample was obtained from 1,151 persons in 40 residential clusters in Santiago. Sera were tested for DEN-1 and DEN-2 neutralizing antibodies. The prevalence of DEN-2 antibodies in children age 15 years and under, born after the 1981 DEN-2 epidemic, was taken as the 1997 DEN-2 infection rate. This was adjusted slightly to accommodate observed cases, resulting in an estimated infection rate of 4.3%. Dengue fever and DHF/DSS attack rates were calculated from estimated total primary and secondary DEN-2 infections. Only 3% of 13,116 primary infections were overt. The DHF/DSS attack rate for adults of all ages was 420 per 10,000 secondary DEN-2 infections.", "title": "Epidemiologic studies on Dengue in Santiago de Cuba, 1997." }, { "docid": "21003930", "text": "BACKGROUND Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults. \n METHODS In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO2) concentrations were measured. \n FINDINGS Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO2, PM10, PM2.5, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV1] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV1 and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO2, ultrafine particles and PM2.5, and an increase in PWV and augmentation index with NO2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles. \n INTERPRETATION Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects. \n FUNDING British Heart Foundation.", "title": "Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study" }, { "docid": "23304931", "text": "PURPOSE Diffuse large B-cell lymphoma (DLBCL) represents a clinically heterogeneous disease. Models based on immunohistochemistry predict clinical outcome. These include subdivision into germinal center (GC) versus non-GC subtypes; proliferation index (measured by expression of Ki-67), and expression of BCL-2, FOXP1, or B-lymphocyte-induced maturation protein (Blimp-1)/PRDM1. We sought to determine whether immunohistochemical analyses of biopsies from patients with DLBCL having HIV infection are similarly relevant for prognosis. \n PATIENTS AND METHODS We examined 81 DLBCLs from patients with AIDS in AMC010 (cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP] v CHOP-rituximab) and AMC034 (etoposide, doxorubicin, vincristine, prednisone, and dose-adjusted cyclophosphamide plus rituximab concurrent v sequential) clinical trials and compared the immunophenotype with survival data, Epstein-Barr virus (EBV) positivity, and CD4 counts. \n RESULTS The GC and non-GC subtypes of DLBCL did not differ significantly with respect to overall survival or CD4 count at cancer presentation. EBV could be found in both subtypes of DLBCL, although less frequently in the GC subtype, and did not affect survival. Expression of FOXP1, Blimp-1/PRDM1, or BCL-2 was not correlated with the outcome in patients with AIDS-related DLBCL. \n CONCLUSION These data indicate that with current treatment strategies for lymphoma and control of HIV infection, commonly used immunohistochemical markers may not be clinically relevant in HIV-infected patients with DLBCL. The only predictive immunohistochemical marker was found to be Ki-67, where a higher proliferation index was associated with better survival, suggesting a better response to therapy in patients whose tumors had higher proliferation rates.", "title": "Immunophenotypic analysis of AIDS-related diffuse large B-cell lymphoma and clinical implications in patients from AIDS malignancies consortium clinical trials 010 and 034" }, { "docid": "3662510", "text": "OBJECTIVE To estimate the lost investment of domestically educated doctors migrating from sub-Saharan African countries to Australia, Canada, the United Kingdom, and the United States. \n DESIGN Human capital cost analysis using publicly accessible data. \n SETTINGS Sub-Saharan African countries. \n PARTICIPANTS Nine sub-Saharan African countries with an HIV prevalence of 5% or greater or with more than one million people with HIV/AIDS and with at least one medical school (Ethiopia, Kenya, Malawi, Nigeria, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe), and data available on the number of doctors practising in destination countries. \n MAIN OUTCOME MEASURES The financial cost of educating a doctor (through primary, secondary, and medical school), assuming that migration occurred after graduation, using current country specific interest rates for savings converted to US dollars; cost according to the number of source country doctors currently working in the destination countries; and savings to destination countries of receiving trained doctors. \n RESULTS In the nine source countries the estimated government subsidised cost of a doctor's education ranged from $21,000 (£13,000; €15,000) in Uganda to $58,700 in South Africa. The overall estimated loss of returns from investment for all doctors currently working in the destination countries was $2.17bn (95% confidence interval 2.13bn to 2.21bn), with costs for each country ranging from $2.16m (1.55m to 2.78m) for Malawi to $1.41bn (1.38bn to 1.44bn) for South Africa. The ratio of the estimated compounded lost investment over gross domestic product showed that Zimbabwe and South Africa had the largest losses. The benefit to destination countries of recruiting trained doctors was largest for the United Kingdom ($2.7bn) and United States ($846m). \n CONCLUSIONS Among sub-Saharan African countries most affected by HIV/AIDS, lost investment from the emigration of doctors is considerable. Destination countries should consider investing in measurable training for source countries and strengthening of their health systems.", "title": "The financial cost of doctors emigrating from sub-Saharan Africa: human capital analysis" }, { "docid": "34074902", "text": "Abstract Feline leukemia virus (FeLV), Gammaretrovirus, and feline immunodeficiency virus, a Lentivirus, are members of the family Retroviridae, and may establish persistent infections in the domestic cat (Felis catus). Cytoproliferative and cytosuppressive disorders may result from infection with these viruses. Morbidity and mortality rates are high in domestic cats worldwide. Infection of endangered neotropic small felids with these viruses could be devastating. To investigate the prevalence of FeLV and feline lentiviruses in neotropic small felids kept in captivity in São Paulo state, Brazil, serum samples from 104 animals belonging to the species Leopardus pardalis, Leopardus tigrinus, Leopardus wiedii, Herpailurus yaguarondi, and Oncifelis geoffroyi were tested for FeLV and feline lentiviruses by commercially available immunoassays. All results were negative, suggesting that retrovirus infection is not an important clinical problem in these populations. Because domestic cats in São Paulo city are naturally infected with these pathogens, and feral cats are commonly found in zoologic facilities in Brazil, preventive measures should be taken to avoid transmission of retroviruses to naive populations of wild and captive neotropic felids in Brazil.", "title": "SEROSURVEY FOR FELINE LEUKEMIA VIRUS AND LENTIVIRUSES IN CAPTIVE SMALL NEOTROPIC FELIDS IN SÃO PAULO STATE, BRAZIL" }, { "docid": "3716075", "text": "BACKGROUND Dengue is the most common arbovirus infection globally, but its burden is poorly quantified. We estimated dengue mortality, incidence, and burden for the Global Burden of Disease Study 2013. \n METHODS We modelled mortality from vital registration, verbal autopsy, and surveillance data using the Cause of Death Ensemble Modelling tool. We modelled incidence from officially reported cases, and adjusted our raw estimates for under-reporting based on published estimates of expansion factors. In total, we had 1780 country-years of mortality data from 130 countries, 1636 country-years of dengue case reports from 76 countries, and expansion factor estimates for 14 countries. \n FINDINGS We estimated an average of 9221 dengue deaths per year between 1990 and 2013, increasing from a low of 8277 (95% uncertainty estimate 5353-10 649) in 1992, to a peak of 11 302 (6790-13 722) in 2010. This yielded a total of 576 900 (330 000-701 200) years of life lost to premature mortality attributable to dengue in 2013. The incidence of dengue increased greatly between 1990 and 2013, with the number of cases more than doubling every decade, from 8·3 million (3·3 million-17·2 million) apparent cases in 1990, to 58·4 million (23·6 million-121·9 million) apparent cases in 2013. When accounting for disability from moderate and severe acute dengue, and post-dengue chronic fatigue, 566 000 (186 000-1 415 000) years lived with disability were attributable to dengue in 2013. Considering fatal and non-fatal outcomes together, dengue was responsible for 1·14 million (0·73 million-1·98 million) disability-adjusted life-years in 2013. \n INTERPRETATION Although lower than other estimates, our results offer more evidence that the true symptomatic incidence of dengue probably falls within the commonly cited range of 50 million to 100 million cases per year. Our mortality estimates are lower than those presented elsewhere and should be considered in light of the totality of evidence suggesting that dengue mortality might, in fact, be substantially higher. \n FUNDING Bill & Melinda Gates Foundation.", "title": "The global burden of dengue: an analysis from the Global Burden of Disease Study 2013." }, { "docid": "29134911", "text": "An unusual human retrovirus was isolated from two patients with persistent generalized lymphadenopathy who originate from West-Central Africa and are currently residing in Belgium. Although the virus shared a number of the same biological and morphological properties as human immunodeficiency retrovirus type 1 (HIV-1) and HIV-2, significant antigenic differences could be demonstrated. Several of the viral proteins also differed in molecular weight from the corresponding HIV-1 and HIV-2 proteins. Partial chemical cleavage of the most highly conserved viral proteins resulted in patterns which differed from those of HIV-1 and HIV-2. Furthermore, nucleic acid hybridization experiments were capable of discriminating between the virus types. Sequence analysis of the viral U3 region revealed a unique enhancer organization not found in other immunodeficiency viruses. The data indicated that the new isolate is more closely related to HIV-1 than to HIV-2 but clearly differs in a number of important respects.", "title": "Isolation and partial characterization of an unusual human immunodeficiency retrovirus from two persons of west-central African origin." }, { "docid": "34582256", "text": "The object of this study was to assess the role of brown adipose tissue (BAT) and the sympathetic nervous system in the rise in heat production associated with endotoxin-induced fever. Oxygen consumption (VO2) was found to be significantly increased (28%) over a 4-h period after two doses of endotoxin (Escherichia coli lipopolysaccharide, 0.3 mg/100 g body wt) given 24 h apart. Injection of a mixed beta-adrenoceptor antagonist (propranolol) reduced VO2 by 14% in endotoxin-treated rats, whereas the selective beta 1- (atenolol) or beta 2- (ICI 118551) antagonists suppressed VO2 by 10%. These drugs did not affect VO2 in control animals. BAT thermogenic activity assessed from measurements of in vitro mitochondrial guanosine 5'-diphosphate (GDP) binding was elevated by 54% in interscapular BAT and by 171% in other BAT depots. Surgical denervation of one lobe of the interscapular depot prevented these responses. Endotoxin failed to stimulate GDP binding in rats fed protein-deficient diets. This may have been because BAT thermogenic activity was already elevated in control rats fed these diets or because endotoxin caused a marked suppression of food intake in the protein-deficient animals. The results indicate that sympathetic activation of BAT is involved in the thermogenic responses to endotoxin and that these can be modified by dietary manipulation.", "title": "Involvement of sympathetic nervous system and brown fat in endotoxin-induced fever in rats." }, { "docid": "301838", "text": "The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation.", "title": "Rank Signaling Links the Development of Invariant γδ T Cell Progenitors and Aire+ Medullary Epithelium" }, { "docid": "643765", "text": "Sloan-Kettering virus gene product (Ski) is an unique nuclear pro-oncoprotein and belongs to the ski/sno proto-oncogene family. Ski plays multiple roles in a variety of cell types, it can induce both oncogenic transformation and terminal muscle differentiation when expressed at high levels. Ski/SnoN are important transcription regulators of the transforming growth factor-β (TGF-β) superfamily and function mainly through heterodimers. Since TGF-β superfamily are key regulators of follicle development and it has been previously shown that SnoN is also vital to follicle development, this research was conducted to clarify the relationship between Ski expression and mouse follicular development, in ovaries of neonatal and gonadotropin-induced immature mice by immunohistochemical and real-time PCR techniques. In postnatal mice, positive staining for Ski was highly detected in oocyte nuclei at postnatal day 1. With follicular development, the localization moved gradually from oocyte nuclei to perinuclear space and the total levels decreased. During the estrous cycle, Ski expression was apparent at proestrus and estrus, faint at metestrus, highest at diestrus. After injection of gonadotropin, Ski was found in perinuclear space and weak in oocyte nuclei. Following the initiation of luteinization, the expression of Ski was found in corpus luteum. Real-time PCR results also showed that Ski mRNA expression was opposite to ovulation-related genes during the cumulus expansion, with the development of the follicles, its expression level decreased. Ski is expressed in a specific manner during follicle development, ovulation and luteinization. So Ski might play essential roles in these processes especially during early follicular development.", "title": "Relationship between Sloan-Kettering virus expression and mouse follicular development" }, { "docid": "5114282", "text": "BACKGROUND Hepatitis C virus (HCV) is estimated to affect 130-180 million people worldwide. Although its origin is unknown, patterns of viral diversity suggest that HCV genotype 1 probably originated from West Africa. Previous attempts to estimate the spatiotemporal parameters of the virus, both globally and regionally, have suggested that epidemic HCV transmission began in 1900 and grew steadily until the late 1980s. However, epidemiological data suggest that the expansion of HCV may have occurred after the Second World War. The aim of our study was to elucidate the timescale and route of the global spread of HCV. \n METHODS AND FINDINGS We show that the rarely sequenced HCV region (E2P7NS2) is more informative for molecular epidemiology studies than the more commonly used NS5B region. We applied phylodynamic methods to a substantial set of new E2P7NS2 and NS5B sequences, together with all available global HCV sequences with information in both of these genomic regions, in order to estimate the timescale and nature of the global expansion of the most prevalent HCV subtypes, 1a and 1b. We showed that transmission of subtypes 1a and 1b \"exploded\" between 1940 and 1980, with the spread of 1b preceding that of 1a by at least 16 y (95% confidence interval 15-17). Phylogeographic analysis of all available NS5B sequences suggests that HCV subtypes 1a and 1b disseminated from the developed world to the developing countries. \n CONCLUSIONS The evolutionary rate of HCV appears faster than previously suggested. The global spread of HCV coincided with the widespread use of transfused blood and blood products and with the expansion of intravenous drug use but slowed prior to the wide implementation of anti-HCV screening. Differences in the transmission routes associated with subtypes 1a and 1b provide an explanation of the relatively earlier expansion of 1b. Our data show that the most plausible route of the HCV dispersal was from developed countries to the developing world. Please see later in the article for the Editors' Summary.", "title": "The Global Spread of Hepatitis C Virus 1a and 1b: A Phylodynamic and Phylogeographic Analysis" }, { "docid": "6182947", "text": "BACKGROUND Influenza A virus (IAV) infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2) activates the majority of antioxidant genes. \n METHODS Alveolar type II (ATII) cells and alveolar macrophages (AM) were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like) cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8) virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2) or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively. \n RESULTS We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis) but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and oxidative stress. However, AdNrf2 did not increase IFN-λ1 (IL-29) levels. \n CONCLUSIONS Our results indicate that IAV induces alveolar epithelial injury and that Nrf2 protects these cells from the cytopathic effects of IAV likely by increasing the expression of antioxidant genes. Identifying the pathways involved in protecting cells from injury during influenza infection may be particularly important for developing new therapeutic strategies.", "title": "Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus" } ]
893
Osteocytes have an essential role in G-CSF induced HSPC mobilization.
[ { "docid": "13509809", "text": "The bone marrow (BM) niche comprises multiple cell types that regulate hematopoietic stem/progenitor cell (HSPC) migration out of the niche and into the circulation. Here, we demonstrate that osteocytes, the major cellular component of mature bone, are regulators of HSPC egress. Granulocyte colony-stimulating factor (G-CSF), used clinically to mobilize HSPCs, induces changes in the morphology and gene expression of the osteocytic network that precedes changes in osteoblasts. This rapid response is likely under control of the sympathetic nervous system, since osteocytes express the β2-adrenergic receptor and surgical sympathectomy prevents it. Mice with targeted ablation of osteocytes or a disrupted osteocyte network have comparable numbers of HSPCs in the BM but fail to mobilize HSPCs in response to G-CSF. Taken together, these results indicate that the BM/bone niche interface is critically controlled from inside of the bone matrix and establish an important physiological role for skeletal tissues in hematopoietic function.", "title": "Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells." } ]
[ { "docid": "38899659", "text": "Cells of the osteoblast lineage provide critical support for B lymphopoiesis in the bone marrow (BM). Parathyroid hormone (PTH) signaling in osteoblastic cells through its receptor (PPR) is an important regulator of hematopoietic stem cells; however, its role in regulation of B lymphopoiesis is not clear. Here we demonstrate that deletion of PPR in osteoprogenitors results in a significant loss of trabecular and cortical bone. PPR signaling in osteoprogenitors, but not in mature osteoblasts or osteocytes, is critical for B-cell precursor differentiation via IL-7 production. Interestingly, despite a severe reduction in B-cell progenitors in BM, mature B-lymphocytes were increased 3.5-fold in the BM of mice lacking PPR in osteoprogenitors. This retention of mature IgD(+) B cells in the BM was associated with increased expression of vascular cell adhesion molecule 1 (VCAM1) by PPR-deficient osteoprogenitors, and treatment with VCAM1 neutralizing antibody increased mobilization of B lymphocytes from mutant BM. Our results demonstrate that PPR signaling in early osteoblasts is necessary for B-cell differentiation via IL-7 secretion and for B-lymphocyte mobilization via VCAM1.", "title": "PTH Signaling in Osteoprogenitors Is Essential for B-Lymphocyte Differentiation and Mobilization." }, { "docid": "23727313", "text": "MicroRNAs (miRNAs) are a recently identified class of epigenetic elements consisting of small noncoding RNAs that bind to the 3' untranslated region of mRNAs and down-regulate their translation to protein. miRNAs play critical roles in many different cellular processes including metabolism, apoptosis, differentiation, and development. We found 33 miRNAs expressed in CD34+ hematopoietic stem-progenitor cells (HSPCs) from normal human bone marrow and mobilized human peripheral blood stem cell harvests. We then combined these data with human HSPC mRNA expression data and with miRNA-mRNA target predictions, into a previously undescribed miRNA:mRNA interaction database called the Transcriptome Interaction Database. The in silico predictions from the Transcriptome Interaction Database pointed to miRNA control of hematopoietic differentiation through translational control of mRNAs critical to hematopoiesis. From these predictions, we formulated a model for miRNA control of stages of hematopoiesis in which many of the genes specifying hematopoietic differentiation are expressed by HSPCs, but are held in check by miRNAs until differentiation occurs. We validated miRNA control of several of these target mRNAs by demonstrating that their translation in fact is decreased by miRNAs. Finally, we chose miRNA-155 for functional characterization in hematopoiesis, because we predicted that it would control both myelopoiesis and erythropoiesis. As predicted, miRNA-155 transduction greatly reduced both myeloid and erythroid colony formation of normal human HSPCs.", "title": "CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control." }, { "docid": "24612804", "text": "IL-17 is a novel, CD4+ T cell-restricted cytokine. In vivo, it stimulates hematopoiesis and causes neutrophilia consisting of mature granulocytes. In this study, we show that IL-17-mediated granulopoiesis requires G-CSF release and the presence or induction of the transmembrane form of stem cell factor (SCF) for optimal granulopoiesis. However, IL-17 also protects mice from G-CSF neutralization-induced neutropenia. G-CSF neutralization completely reversed IL-17-induced BM progenitor expansion, whereas splenic CFU-GM/CFU-granulocyte-erythrocyte-megakaryocyte-monocyte was only reduced by 50% in both Sl/Sld and littermate control mice. Thus, there remained a significant SCF/G-CSF-independent effect of IL-17 on splenic granulopoiesis, resulting in a preservation of mature circulating granulocytes. IL-17 is a cytokine that potentially interconnects lymphocytic and myeloid host defense and may have potential for therapeutic development.", "title": "Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis." }, { "docid": "25419778", "text": "Cellular senescence is a fundamental mechanism by which cells remain metabolically active yet cease dividing and undergo distinct phenotypic alterations, including upregulation of p16Ink4a , profound secretome changes, telomere shortening, and decondensation of pericentromeric satellite DNA. Because senescent cells accumulate in multiple tissues with aging, these cells and the dysfunctional factors they secrete, termed the senescence-associated secretory phenotype (SASP), are increasingly recognized as promising therapeutic targets to prevent age-related degenerative pathologies, including osteoporosis. However, the cell type(s) within the bone microenvironment that undergoes senescence with aging in vivo has remained poorly understood, largely because previous studies have focused on senescence in cultured cells. Thus in young (age 6 months) and old (age 24 months) mice, we measured senescence and SASP markers in vivo in highly enriched cell populations, all rapidly isolated from bone/marrow without in vitro culture. In both females and males, p16Ink4a expression by real-time quantitative polymerase chain reaction (rt-qPCR) was significantly higher with aging in B cells, T cells, myeloid cells, osteoblast progenitors, osteoblasts, and osteocytes. Further, in vivo quantification of senescence-associated distension of satellites (SADS), ie, large-scale unraveling of pericentromeric satellite DNA, revealed significantly more senescent osteocytes in old compared with young bone cortices (11% versus 2%, p < 0.001). In addition, primary osteocytes from old mice had sixfold more (p < 0.001) telomere dysfunction-induced foci (TIFs) than osteocytes from young mice. Corresponding with the age-associated accumulation of senescent osteocytes was significantly higher expression of multiple SASP markers in osteocytes from old versus young mice, several of which also showed dramatic age-associated upregulation in myeloid cells. These data show that with aging, a subset of cells of various lineages within the bone microenvironment become senescent, although senescent myeloid cells and senescent osteocytes predominantly develop the SASP. Given the critical roles of osteocytes in orchestrating bone remodeling, our findings suggest that senescent osteocytes and their SASP may contribute to age-related bone loss. © 2016 American Society for Bone and Mineral Research.", "title": "Identification of Senescent Cells in the Bone Microenvironment." }, { "docid": "19510470", "text": "Cancer stem cells have been proposed to be important for initiation, maintenance and recurrence of various malignancies, including acute myeloid leukemia (AML). We have previously reported that CD34+CD38− human primary AML stem cells residing in the endosteal region of the bone marrow are relatively chemotherapy resistant. Using a NOD/SCID/IL2rγnull mouse model of human AML, we now show that the AML stem cells in the endosteal region are cell cycle quiescent and that these stem cells can be induced to enter the cell cycle by treatment with granulocyte colony-stimulating factor (G-CSF). In combination with cell cycle-dependent chemotherapy, G-CSF treatment significantly enhances induction of apoptosis and elimination of human primary AML stem cells in vivo. The combination therapy leads to significantly increased survival of secondary recipients after transplantation of leukemia cells compared with chemotherapy alone.", "title": "Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML" }, { "docid": "2014909", "text": "Myeloid-derived suppressor cells (MDSCs) play critical roles in primary and metastatic cancer progression. MDSC regulation is widely variable even among patients harbouring the same type of malignancy, and the mechanisms governing such heterogeneity are largely unknown. Here, integrating human tumour genomics and syngeneic mammary tumour models, we demonstrate that mTOR signalling in cancer cells dictates a mammary tumour's ability to stimulate MDSC accumulation through regulating G-CSF. Inhibiting this pathway or its activators (for example, FGFR) impairs tumour progression, which is partially rescued by restoring MDSCs or G-CSF. Tumour-initiating cells (TICs) exhibit elevated G-CSF. MDSCs reciprocally increase TIC frequency through activating Notch in tumour cells, forming a feedforward loop. Analyses of primary breast cancers and patient-derived xenografts corroborate these mechanisms in patients. These findings establish a non-canonical oncogenic role of mTOR signalling in recruiting pro-tumorigenic MDSCs and show how defined cancer subsets may evolve to promote and depend on a distinct immune microenvironment.", "title": "Oncogenic mTOR signaling recruits myeloid-derived suppressor cells to promote tumor initiation" }, { "docid": "3173489", "text": "DNA replication stress promotes genome instability in cancer. However, the contribution of the replication stress response to the development of malignancies remains unresolved. The DNA replication stress response protein SMARCAL1 stabilizes DNA replication forks and prevents replication fork collapse, a cause of DNA breaks and apoptosis. While the fork regression/remodeling functions of SMARCAL1 have been investigated, its in vivo functions in replication stress and cancer are unclear. Using a gamma radiation (IR)-induced replication stress T-cell lymphoma mouse model, we observed a significant inhibition of lymphomagenesis in mice lacking one or both alleles of Smarcal1. Notably, a quarter of the Smarcal1-deficient mice did not develop tumors. Moreover, hematopoietic stem/progenitor cells (HSPCs) and developing thymocytes in Smarcal1-deficient mice showed increased DNA damage and apoptosis during the proliferation burst following IR and an impaired ability to repopulate the thymus after IR. Additionally, mice lacking Smarcal1 showed significant HSPC defects when challenged to respond to other replication stress stimuli. Thus, our data reveal the critical function of the DNA replication stress response and, specifically, Smarcal1 in hematopoietic cell survival and tumor development. Our results also provide important insight into the immunodeficiency observed in individuals with mutations in SMARCAL1 by suggesting that it is an HSPC defect.", "title": "Defective replication stress response inhibits lymphomagenesis and impairs lymphocyte reconstitution" }, { "docid": "15248287", "text": "Neutrophil apoptosis is a highly regulated process essential for inflammation resolution, the molecular mechanisms of which are only partially elucidated. In this study, we describe a survival pathway controlled by proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repairing of proliferating cells. We show that mature neutrophils, despite their inability to proliferate, express high levels of PCNA exclusively in their cytosol and constitutively associated with procaspases, presumably to prevent their activation. Notably, cytosolic PCNA abundance decreased during apoptosis, and increased during in vitro and in vivo exposure to the survival factor granulocyte colony-stimulating factor (G-CSF). Peptides derived from the cyclin-dependent kinase inhibitor p21, which compete with procaspases to bind PCNA, triggered neutrophil apoptosis thus demonstrating that specific modification of PCNA protein interactions affects neutrophil survival. Furthermore, PCNA overexpression rendered neutrophil-differentiated PLB985 myeloid cells significantly more resistant to TNF-related apoptosis-inducing ligand- or gliotoxin-induced apoptosis. Conversely, a decrease in PCNA expression after PCNA small interfering RNA transfection sensitized these cells to apoptosis. Finally, a mutation in the PCNA interdomain-connecting loop, the binding site for many partners, significantly decreased the PCNA-mediated antiapoptotic effect. These results identify PCNA as a regulator of neutrophil lifespan, thereby highlighting a novel target to potentially modulate pathological inflammation.", "title": "Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival" }, { "docid": "24721866", "text": "Macrophage-derived foam cells play important roles in the progression of atherosclerosis. We reported previously that ERK1/2-dependent granulocyte/macrophage colony-stimulating factor (GM-CSF) expression, leading to p38 MAPK/ Akt signaling, is important for oxidized low density lipoprotein (Ox-LDL)-induced macrophage proliferation. Here, we investigated whether activation of AMP-activated protein kinase (AMPK) could suppress macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages was assessed by [(3)H]thymidine incorporation and cell counting assays. The proliferation was significantly inhibited by the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and restored by dominant-negative AMPKalpha1, suggesting that AMPK activation suppressed macrophage proliferation. AICAR partially suppressed Ox-LDL-induced ERK1/2 phosphorylation and GM-CSF expression, suggesting that another mechanism is also involved in the AICAR-mediated suppression of macrophage proliferation. AICAR suppressed GM-CSF-induced macrophage proliferation without suppressing p38 MAPK/Akt signaling. GM-CSF suppressed p53 phosphorylation and expression and induced Rb phosphorylation. Overexpression of p53 or p27(kip) suppressed GM-CSF-induced macrophage proliferation. AICAR induced cell cycle arrest, increased p53 phosphorylation and expression, and suppressed GM-CSF-induced Rb phosphorylation via AMPK activation. Moreover, AICAR induced p21(cip) and p27(kip) expression via AMPK activation, and small interfering RNA (siRNA) of p21(cip) and p27(kip) restored AICAR-mediated suppression of macrophage proliferation. In conclusion, AMPK activation suppressed Ox-LDL-induced macrophage proliferation by suppressing GM-CSF expression and inducing cell cycle arrest. These effects of AMPK activation may represent therapeutic targets for atherosclerosis.", "title": "Activation of AMP-activated protein kinase suppresses oxidized low-density lipoprotein-induced macrophage proliferation." }, { "docid": "188911", "text": "Antigen-presenting, major histocompatibility complex (MHC) class II-rich dendritic cells are known to arise from bone marrow. However, marrow lacks mature dendritic cells, and substantial numbers of proliferating less-mature cells have yet to be identified. The methodology for inducing dendritic cell growth that was recently described for mouse blood now has been modified to MHC class II-negative precursors in marrow. A key step is to remove the majority of nonadherent, newly formed granulocytes by gentle washes during the first 2-4 d of culture. This leaves behind proliferating clusters that are loosely attached to a more firmly adherent \"stroma. \" At days 4-6 the clusters can be dislodged, isolated by 1-g sedimentation, and upon reculture, large numbers of dendritic cells are released. The latter are readily identified on the basis of their distinct cell shape, ultrastructure, and repertoire of antigens, as detected with a panel of monoclonal antibodies. The dendritic cells express high levels of MHC class II products and act as powerful accessory cells for initiating the mixed leukocyte reaction. Neither the clusters nor mature dendritic cells are generated if macrophage colony-stimulating factor rather than granulocyte/macrophage colony-stimulating factor (GM-CSF) is applied. Therefore, GM-CSF generates all three lineages of myeloid cells (granulocytes, macrophages, and dendritic cells). Since > 5 x 10(6) dendritic cells develop in 1 wk from precursors within the large hind limb bones of a single animal, marrow progenitors can act as a major source of dendritic cells. This feature should prove useful for future molecular and clinical studies of this otherwise trace cell type.", "title": "Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor" }, { "docid": "3105781", "text": "Copper plays an essential role in processes including signaling to the transcription and protein trafficking machinery, oxidative phosphorylation, iron mobilization, neuropeptide maturation, and normal development. Whereas much is known about intracellular mobilization of ions such as calcium, little information is available on how eukaryotic cells mobilize intracellular copper stores. We describe a mechanism by which the Saccharomyces cerevisiae Ctr2 protein provides bioavailable copper via mobilization of intracellular copper stores. Whereas Ctr2 exhibits structural similarity to the Ctr1 plasma membrane copper importer, microscopic and biochemical fractionation studies localize Ctr2 to the vacuole membrane. We demonstrate that Ctr2 mobilizes vacuolar copper stores in a manner dependent on amino acid residues conserved between the Ctr1 and Ctr2 copper transport family and that ctr2 Delta mutants hyper-accumulate vacuolar copper. Furthermore, a Ctr2 mutant that is mislocalized to the plasma membrane stimulates extracellular copper uptake, supporting a direct role for Ctr2 in copper transport across membranes. These studies identify a novel mechanism for copper mobilization and suggest that organisms cope with copper deprivation via the use of intracellular vesicular stores.", "title": "Mobilization of intracellular copper stores by the ctr2 vacuolar copper transporter." }, { "docid": "36345185", "text": "Rho family proteins are known to regulate actin organization in fibroblasts, but their functions in cells of haematopoietic origin have not been studied in detail. Bac1.2F5 cells are a colony-stimulating factor-1 (CSF-1)-dependent murine macrophage cell line; CSF-1 stimulates their proliferation and motility, and acts as a chemoattractant. CSF-1 rapidly induced actin reorganization in Bac1 cells: it stimulated the formation of filopodia, lamellipodia and membrane ruffles at the plasma membrane, as well as the appearance of fine actin cables within the cell interior. Microinjection of constitutively activated (V12)Rac1 stimulated lamellipodium formation and membrane ruffling. The dominant inhibitory Rac mutant, N17Rac1, inhibited CSF-1-induced lamellipodium formation, and also induced cell rounding. V12Cdc42 induced the formation of long filopodia, while the dominant inhibitory mutant N17Cdc42 prevented CSF-1-induced formation of filopodia but not lamellipodia. V14RhoA stimulated actin cable assembly and cell contraction, while the Rho inhibitor, C3 transferase, induced the loss of actin cables. Bac1 cells had cell-to-substratum adhesion sites containing beta1 integrin, pp125FAK, paxillin, vinculin, and tyrosine phosphorylated proteins. These 'focal complexes' were present in growing and CSF-1-starved cells, but were disassembled in cells injected with N17Cdc42 or N17Rac1. Interestingly, beta1 integrin did not disperse until long after focal phosphotyrosine and vinculin staining had disappeared. We conclude that in Bac1 macrophages Cdc42, Rac and Rho regulate the formation of distinct actin filament-based structures, and that Cdc42 and Rac are also required for the assembly of adhesion sites to the extracellular matrix.", "title": "Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages." }, { "docid": "5774746", "text": "S100A4 is implicated in metastasis and chronic inflammation, but its function remains uncertain. Here we establish an S100A4-dependent link between inflammation and metastatic tumor progression. We found that the acute-phase response proteins serum amyloid A (SAA) 1 and SAA3 are transcriptional targets of S100A4 via Toll-like receptor 4 (TLR4)/nuclear factor-κB signaling. SAA proteins stimulated the transcription of RANTES (regulated upon activation normal T-cell expressed and presumably secreted), G-CSF (granulocyte-colony-stimulating factor) and MMP2 (matrix metalloproteinase 2), MMP3, MMP9 and MMP13. We have also shown for the first time that SAA stimulate their own transcription as well as that of proinflammatory S100A8 and S100A9 proteins. Moreover, they strongly enhanced tumor cell adhesion to fibronectin, and stimulated migration and invasion of human and mouse tumor cells. Intravenously injected S100A4 protein induced expression of SAA proteins and cytokines in an organ-specific manner. In a breast cancer animal model, ectopic expression of SAA1 or SAA3 in tumor cells potently promoted widespread metastasis formation accompanied by a massive infiltration of immune cells. Furthermore, coordinate expression of S100A4 and SAA in tumor samples from colorectal carcinoma patients significantly correlated with reduced overall survival. These data show that SAA proteins are effectors for the metastasis-promoting functions of S100A4, and serve as a link between inflammation and tumor progression.", "title": "A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4" }, { "docid": "52874170", "text": "CONTEXT Diagnostic lumbar punctures (LPs), commonly used to rule out meningitis, are associated with adverse events. \n OBJECTIVE To systematically review the evidence about diagnostic LP techniques that may decrease the risk of adverse events and the evidence about test accuracy of cerebrospinal fluid (CSF) analysis in adult patients with suspected bacterial meningitis. \n DATA SOURCES We searched the Cochrane Library, MEDLINE (using Ovid and PubMed) from 1966 to January 2006 and EMBASE from 1980 to January 2006 without language restrictions to identify relevant studies and identified others from the bibliographies of retrieved articles. STUDY SELECTION We included randomized trials of patients aged 18 years or older undergoing interventions to facilitate a successful diagnostic LP or to potentially reduce adverse events. Studies assessing the accuracy of biochemical analysis of the CSF for possible bacterial meningitis were also identified. \n DATA EXTRACTION Two investigators independently appraised study quality and extracted relevant data. For studies of the LP technique, data on the intervention and the outcome were extracted. For studies of the laboratory diagnosis of bacterial meningitis, data on the reference standard and test accuracy were extracted. \n DATA SYNTHESIS We found 15 randomized trials. A random-effects model was used for quantitative synthesis. Five studies of 587 patients compared atraumatic needles with standard needles and found a nonsignificant decrease in the odds of headache with an atraumatic needle (absolute risk reduction [ARR], 12.3%; 95% confidence interval [CI], -1.72% to 26.2%). Reinsertion of the stylet before needle removal decreased the risk of headache (ARR, 11.3%; 95% CI, 6.50%-16.2%). The combined results from 4 studies of 717 patients showed a nonsignificant decrease in headache in patients who were mobilized after LP (ARR, 2.9%; 95% CI, -3.4 to 9.3%). Four studies on the accuracy of biochemical analysis of CSF in patients with suspected meningitis met inclusion criteria. A CSF-blood glucose ratio of 0.4 or less (likelihood ratio [LR], 18; 95% CI, 12-27]), CSF white blood cell count of 500/muL or higher (LR, 15; 95% CI, 10-22), and CSF lactate level of 31.53 mg/dL or more (> or =3.5 mmol/L; LR, 21; 95% CI, 14-32) accurately diagnosed bacterial meningitis. \n CONCLUSIONS These data suggest that small-gauge, atraumatic needles may decrease the risk of headache after diagnostic LP. Reinsertion of the stylet before needle removal should occur and patients do not require bed rest after the procedure. Future research should focus on evaluating interventions to optimize the success of a diagnostic LP and to enhance training in procedural skills.", "title": "How do I perform a lumbar puncture and analyze the results to diagnose bacterial meningitis?" }, { "docid": "10795063", "text": "SPECIFIC AIMSOur previous studies implied the relation between lipid metabolism and amyloid beta protein (Aβ) as ‘a missing link in Alzheimer’s puzzle’ [FASEB J., vol. 12, p. 1097 (1998)]. In the present study, we evaluated the role of cholesterol in synaptic plasticity and neuronal degeneration by a combination of adult rat hippocampal slice technology, a well-established procedure for limited cholesterol efflux, lipid metabolic labeling, extracellular recording of CA1 field excitatory postsynaptic potentials (fEPSPs), and immunofluorescence. PRINCIPAL FINDINGS1. Increased cholesterol efflux impairs short- and long-term synaptic plasticitySynaptic plasticity is a fundamental feature of the central nervous system (CNS) that allows synapses to ‘remember’ previous activity and express plastic changes to fine-tune current synaptic action. In this study, we asked whether an increased cholesterol efflux induced ex vivo by normal human CSF-HDL3 and methyl-β-cyclodextrin (MβCD) (a natural and model cholesterol ac...", "title": "The FASEB Journal express article 10.1096/fj.00-0815fje. Published online June 27, 2001. Essential role for cholesterol in synaptic plasticity and neuronal degeneration" }, { "docid": "10486817", "text": "BACKGROUND Cellular nucleic acid binding protein (CNBP) has been implicated in vertebrate craniofacial development and in myotonic dystrophy type 2 (DM2) and sporadic inclusion body myositis (sIBM) human diseases by controlling cell proliferation and survival to mediate neural crest expansion. CNBP has been found to bind single-stranded nucleic acid and promote rearrangements of nucleic acid secondary structure in an ATP-independent manner, acting as a nucleic acid chaperone. \n METHODS A variety of methods were used, including cell viability assays, wound-scratch assays, chemotaxis assays, invasion assays, circular dichroic (CD) spectroscopy, NMR spectroscopy, chromatin immunoprecipitation, expression and purification of recombinant human CNBP, electrophoretic mobility shift assay (EMSA), surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET) analyses, luciferase reporter assay, Western blotting, and isothermal titration calorimetry (ITC). \n RESULTS Up-regulation of CNBP induced human fibrosarcoma cell death and suppressed fibrosarcoma cell motility and invasiveness. It was found that CNBP transcriptionally down-regulated the expression of heterogeneous ribonucleoprotein K (hnRNP K) through its conversion of a G-rich sequence into G-quadruplex in the promoter of hnRNP K. G-quadruplex stabilizing ligand tetra-(N-methyl-4-pyridyl) porphyrin (TMPyP4) could interact with and stabilize the G-quadruplex, resulting in downregulation of hnRNP K transcription. \n CONCLUSIONS CNBP overexpression caused increase of cell death and suppression of cell metastasis through its induction of G-quadruplex formation in the promoter of hnRNP K resulting in hnRNP K down-regulation. GENERAL SIGNIFICANCE The present result provided a new solution for controlling hnRNP K expression, which should shed light on new anticancer drug design and development.", "title": "Cellular nucleic acid binding protein suppresses tumor cell metastasis and induces tumor cell death by downregulating heterogeneous ribonucleoprotein K in fibrosarcoma cells." }, { "docid": "6374918", "text": "The CXCR4-SDF-1 axis plays a central role in the trafficking and retention of normal and malignant stem cells in the bone marrow (BM) microenvironment. Here, we used a mouse model of acute promyelocytic leukemia (APL) and a small molecule competitive antagonist of CXCR4, AMD3100, to examine the interaction of mouse APL cells with the BM microenvironment. APL cells from a murine cathepsin G-PML-RARalpha knockin mouse were genetically modified with firefly luciferase (APL(luc)) to allow tracking by bioluminescence imaging. Coculture of APL(luc) cells with M2-10B4 stromal cells protected the leukemia cells from chemotherapy-induced apoptosis in vitro. Upon injection into syngeneic recipients, APL(luc) cells rapidly migrated to the BM followed by egress to the spleen then to the peripheral blood with death due to leukostasis by day 15. Administration of AMD3100 to leukemic mice induced a 1.6-fold increase in total leukocytes and a 9-fold increase of circulating APL blast counts, which peak at 3 hours and return to baseline by 12 hours. Treatment of leukemic mice with chemotherapy plus AMD3100 resulted in decreased tumor burden and improved overall survival compared with mice treated with chemotherapy alone. These studies provide a proof-of-principle for directing therapy to the critical tethers that promote AML-niche interactions.", "title": "Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100." }, { "docid": "6000423", "text": "Despite genetic heterogeneity, myelodysplastic syndromes (MDSs) share features of cytological dysplasia and ineffective hematopoiesis. We report that a hallmark of MDSs is activation of the NLRP3 inflammasome, which drives clonal expansion and pyroptotic cell death. Independent of genotype, MDS hematopoietic stem and progenitor cells (HSPCs) overexpress inflammasome proteins and manifest activated NLRP3 complexes that direct activation of caspase-1, generation of interleukin-1β (IL-1β) and IL-18, and pyroptotic cell death. Mechanistically, pyroptosis is triggered by the alarmin S100A9 that is found in excess in MDS HSPCs and bone marrow plasma. Further, like somatic gene mutations, S100A9-induced signaling activates NADPH oxidase (NOX), increasing levels of reactive oxygen species (ROS) that initiate cation influx, cell swelling, and β-catenin activation. Notably, knockdown of NLRP3 or caspase-1, neutralization of S100A9, and pharmacologic inhibition of NLRP3 or NOX suppress pyroptosis, ROS generation, and nuclear β-catenin in MDSs and are sufficient to restore effective hematopoiesis. Thus, alarmins and founder gene mutations in MDSs license a common redox-sensitive inflammasome circuit, which suggests new avenues for therapeutic intervention.", "title": "The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype." }, { "docid": "45449835", "text": "Myelin-directed autoimmunity is considered to play a key role in the pathogenesis of multiple sclerosis (MS). Increased production of both pro- and anti-inflammatory cytokines is a common finding in MS. Interleukin-17 (IL-17) is a recently described cytokine produced in humans almost exclusively by activated memory T cells, which can induce the production of proinflammatory cytokines and chemokines from parenchymal cells and macrophages. In situ hybridisation with synthetic oligonucleotide probes was adopted to detect and enumerate IL-17 mRNA expressing mononuclear cells (MNC) in blood and cerebrospinal fluid (CSF) from patients with MS and control individuals. Numbers of IL-17 mRNA expressing blood MNC were higher in patients with MS and acute aseptic meningoencephalitis (AM) compared to healthy individuals. Higher numbers of IL-17 mRNA expressing blood MNC were detected in MS patients examined during clinical exacerbation compared to remission. Patients with MS had higher numbers of IL-17 mRNA expressing MNC in CSF compared to blood. This increase in numbers of IL-17 mRNA expressing MNC in CSF was not observed in patients with AM. Our results thus demonstrate increased numbers of IL-17 mRNA expressing MNC in MS with higher numbers in CSF than blood, and with the highest numbers in blood during clinical exacerbations.", "title": "Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis." } ]
894
Osteoparthritis (OA) is characterized by degeneration of articular cartilage, joint edge, and subchondral bone hyperplasia.
[ { "docid": "14724693", "text": "CONTEXT Chronic low back pain (LBP) with degenerative lumbar osteoarthritis (OA) is widespread in the adult population. Although glucosamine is increasingly used by patients with chronic LBP, little is known about its effect in this setting. \n OBJECTIVE To investigate the effect of glucosamine in patients with chronic LBP and degenerative lumbar OA. \n DESIGN, SETTING, AND PARTICIPANTS A double-blind, randomized, placebo-controlled trial conducted at Oslo University Hospital Outpatient Clinic, Oslo, Norway, with 250 patients older than 25 years of age with chronic LBP (>6 months) and degenerative lumbar OA. \n INTERVENTIONS Daily intake of 1500 mg of oral glucosamine (n = 125) or placebo (n = 125) for 6 months, with assessment of effect after the 6-month intervention period and at 1 year (6 months postintervention). \n MAIN OUTCOME MEASURES The primary outcome was pain-related disability measured with the Roland Morris Disability Questionnaire (RMDQ). Secondary outcomes were numerical scores from pain-rating scales of patients at rest and during activity, and the quality-of-life EuroQol-5 Dimensions (EQ-5D) instrument. Data collection occurred during the intervention period at baseline, 6 weeks, 3 and 6 months, and again 6 months following the intervention at 1 year. Group differences were analyzed using linear mixed models analysis. \n RESULTS At baseline, mean RMDQ scores were 9.2 (95% confidence interval [CI], 8.4-10.0) for glucosamine and 9.7 (95% CI, 8.9-10.5) for the placebo group (P = .37). At 6 months, the mean RMDQ score was the same for the glucosamine and placebo groups (5.0; 95% CI, 4.2-5.8). At 1 year, the mean RMDQ scores were 4.8 (95% CI, 3.9-5.6) for glucosamine and 5.5 (95% CI, 4.7-6.4) for the placebo group. No statistically significant difference in change between groups was found when assessed after the 6-month intervention period and at 1 year: RMDQ (P = .72), LBP at rest (P = .91), LBP during activity (P = .97), and quality-of-life EQ-5D (P = .20). Mild adverse events were reported in 40 patients in the glucosamine group and 46 in the placebo group (P = .48). \n CONCLUSIONS Among patients with chronic LBP and degenerative lumbar OA, 6-month treatment with oral glucosamine compared with placebo did not result in reduced pain-related disability after the 6-month intervention and after 1-year follow-up. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00404079.", "title": "Effect of glucosamine on pain-related disability in patients with chronic low back pain and degenerative lumbar osteoarthritis: a randomized controlled trial." } ]
[ { "docid": "37562370", "text": "OBJECTIVE The infrapatellar fat pad (IPFP) has been identified as a source of anterior knee pain. Fibrosis and marked inflammatory infiltrate in the IPFP of patients with arthritis of the knee and reduction in pain post knee replacement in patients following resection of the IPFP have been observed. We have investigated changes in the IPFP of rats undergoing the monoiodoacetate (MIA) model of degenerative joint disease, a model that exhibits some histopathological similarities to osteoarthritis (OA). \n METHODS Rats were injected intra-articularly with MIA and the development of weight bearing asymmetry was followed for 21 days as compared to vehicle-injected animals. In addition, IPFPs were removed from both ipsilateral and contralateral joints. Both inflammatory infiltrate and histopathological changes were analysed. \n RESULTS MIA injection caused marked weight bearing asymmetry. Ipsilateral IPFP wet weights were significantly increased on days 1 and 3 in MIA-treated animals. MIA treatment also resulted in significant increases in IPFP total white blood cells and monocytes on days 1, 3, and 7 and neutrophils on days 1 and 3. This was supported by histopathological findings at early time points which progressed to adipocyte necrosis, IPFP fibrosis, patellar cartilage and subchondral bone necrosis with synovial hyperplasia at later timepoints. \n CONCLUSIONS The current study clearly demonstrated that marked inflammatory changes in the IPFP occur during the early stage of the MIA model of OA which may contribute to the pain observed at this early stage. The role of the IPFP in later stages of the model needs to be further explored.", "title": "Cellular and histopathological changes in the infrapatellar fat pad in the monoiodoacetate model of osteoarthritis pain." }, { "docid": "22505710", "text": "OBJECTIVE To examine by immunohistochemistry the relative distributions of 6 matrix metalloproteinases (MMPs 1, 2, 3, 8, 9, and 13) and the 2 proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) in osteoarthritic (OA) cartilage compared with normal, age-matched articular cartilage. \n METHODS Articular cartilage samples were obtained from the tibial plateau of OA knees removed at arthroplasty and from normal, nonarthritic, knees obtained at autopsy. Specimens were promptly fixed in Carnoy's fixative, processed, embedded in paraffin, sectioned, and examined by immunohistochemistry for MMP and cytokine production. In addition, human articular chondrocytes (HAC) were treated in vitro with either IL-1beta, TNFalpha, or phorbol myristate acetate (PMA) to assess their potential to produce each of the MMPs, as determined by Western blotting and gelatin zymography. \n RESULTS Immunodetection of the collagenases (MMPs 1, 8, and 13) and stromelysin 1 (MMP-3) was demonstrated in a proportion of chondrocytes in the superficial zone of almost all of the OA specimens that had degenerative matrix changes. The gelatinases (MMPs 2 and 9) were also demonstrated by immunohistochemistry but were not so prominent. IL-1beta- and TNFalpha-positive chondrocytes were also observed in a proportion of cells in the superficial zones of OA specimens. Much less immunostaining for MMPs and cytokines was observed in the deep zone of all OA specimens, where the cartilage matrix and chondrocyte morphology appeared normal. In contrast, full-thickness normal cartilage specimens showed virtually no immunostaining for these MMPs or cytokines. Confirmation that chondrocytes can produce these 6 MMPs was obtained from HAC cultures treated with either IL-1beta, TNFalpha, or PMA; conditioned medium from activated HAC contained all the MMPs demonstrated by immunohistochemistry. Dual immunolocalization studies of OA cartilage specimens demonstrated the coexpression of IL-1 with MMP-8 by individual chondrocytes in situ. \n CONCLUSION These results indicate that the superficial zone of OA cartilage specimens, which is characterized by fibrillations, chondrocyte clusters, and degenerative matrix changes, contains a variable proportion of cells that immunostain for IL-1beta, TNFalpha, and 6 different MMPs. These observations support the concept that cytokine-MMP associations reflect a modified chondrocyte phenotype and an intrinsic process of cartilage degradation in OA.", "title": "Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes." }, { "docid": "58050905", "text": "The World Health Organisation has declared the period 2000 to 2010 the Bone and Joint Decade. This is indeed timely and appropriate. Hundreds of millions of people in the world today are beset with a host of disabilities caused by trauma, ageing and degeneration and other affections of the musculo-skeletal system. With the state of art of orthopaedic surgery and rheumatology, sufferers of bone and joint disabilities have benefited a great deal from advances in pharmacology, newer techniques of imaging, surgery and man-made materials to replace diseased or damaged bone and cartilage. However, man-made materials, being non-living, are subject to wear and tear and loosening in the host bone. As we advance into the Bone and Joint Decade, further improvement in the treatment of bone and joint diseases lies in more basic cartilage and bone research. The Human Genome Project has provided us with a better understanding of disease genes and the possibility of gene manipulation to prevent and treat specific diseases. Cartilage cells culture and transplant are already a reality. Tissue engineering, i.e. growing cells in three-dimensional substrates of collagen or synthetic biodegradable polymers, started in the 1980s, will in future be used to replace damaged bone and cartilage parts with living and bone and cartilaginous tissues, respectively. The first steps have been taken; more research needs to be done. And it is not unreasonable to expect a significant breakthrough in the treatment of bone and joint diseases at the end of this decade. Ann Acad Med Singapore 2002; 31:621-2", "title": "The Bone and Joint Decade 2000-2010." }, { "docid": "33912748", "text": "OBJECTIVE To determine if n-3 polyunsaturated fatty acid (PUFA) supplementation (versus treatment with n-6 polyunsaturated or other fatty acid supplements) affects the metabolism of osteoarthritic (OA) cartilage. \n METHODS The metabolic profile of human OA cartilage was determined at the time of harvest and after 24-hour exposure to n-3 PUFAs or other classes of fatty acids, followed by explant culture for 4 days in the presence or absence of interleukin-1 (IL-1). Parameters measured were glycosaminoglycan release, aggrecanase and matrix metalloproteinase (MMP) activity, and the levels of expression of messenger RNA (mRNA) for mediators of inflammation, aggrecanases, MMPs, and their natural tissue inhibitors (tissue inhibitors of metalloproteinases [TIMPs]). \n RESULTS Supplementation with n-3 PUFA (but not other fatty acids) reduced, in a dose-dependent manner, the endogenous and IL-1-induced release of proteoglycan metabolites from articular cartilage explants and specifically abolished endogenous aggrecanase and collagenase proteolytic activity. Similarly, expression of mRNA for ADAMTS-4, MMP-13, and MMP-3 (but not TIMP-1, -2, or -3) was also specifically abolished with n-3 PUFA supplementation. In addition, n-3 PUFA supplementation abolished the expression of mRNA for mediators of inflammation (cyclooxygenase 2, 5-lipoxygenase, 5-lipoxygenase-activating protein, tumor necrosis factor alpha, IL-1alpha, and IL-1beta) without affecting the expression of message for several other proteins involved in normal tissue homeostasis. \n CONCLUSION These studies show that the pathologic indicators manifested in human OA cartilage can be significantly altered by exposure of the cartilage to n-3 PUFA, but not to other classes of fatty acids.", "title": "Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids." }, { "docid": "1044552", "text": "Proteinase-activated receptors (PARs) belong to a family of G protein-coupled receptors. PARs are activated by a serine-dependent cleavage generating a tethered activating ligand. PAR-2 was shown to be involved in inflammatory pathways. We investigated the in situ levels and modulation of PAR-2 in human normal and osteoarthritis (OA) cartilage/chondrocytes. Furthermore, we evaluated the role of PAR-2 on the synthesis of the major catabolic factors in OA cartilage, including metalloproteinase (MMP)-1 and MMP-13 and the inflammatory mediator cyclooxygenase 2 (COX-2), as well as the PAR-2-activated signalling pathways in OA chondrocytes. PAR-2 expression was determined using real-time reverse transcription-polymerase chain reaction and protein levels by immunohistochemistry in normal and OA cartilage. Protein modulation was investigated in OA cartilage explants treated with a specific PAR-2-activating peptide (PAR-2-AP), SLIGKV-NH2 (1 to 400 μM), interleukin 1 beta (IL-1β) (100 pg/mL), tumor necrosis factor-alpha (TNF-α) (5 ng/mL), transforming growth factor-beta-1 (TGF-β1) (10 ng/mL), or the signalling pathway inhibitors of p38 (SB202190), MEK1/2 (mitogen-activated protein kinase kinase) (PD98059), and nuclear factor-kappa B (NF-κB) (SN50), and PAR-2 levels were determined by immunohistochemistry. Signalling pathways were analyzed on OA chondrocytes by Western blot using specific phospho-antibodies against extracellular signal-regulated kinase 1/2 (Erk1/2), p38, JNK (c-jun N-terminal kinase), and NF-κB in the presence or absence of the PAR-2-AP and/or IL-1β. PAR-2-induced MMP and COX-2 levels in cartilage were determined by immunohistochemistry. PAR-2 is produced by human chondrocytes and is significantly upregulated in OA compared with normal chondrocytes (p < 0.04 and p < 0.03, respectively). The receptor levels were significantly upregulated by IL-1β (p < 0.006) and TNF-α (p < 0.002) as well as by the PAR-2-AP at 10, 100, and 400 μM (p < 0.02) and were downregulated by the inhibition of p38. After 48 hours of incubation, PAR-2 activation significantly induced MMP-1 and COX-2 starting at 10 μM (both p < 0.005) and MMP-13 at 100 μM (p < 0.02) as well as the phosphorylation of Erk1/2 and p38 within 5 minutes of incubation (p < 0.03). Though not statistically significant, IL-1β produced an additional effect on the activation of Erk1/2 and p38. This study documents, for the first time, functional consequences of PAR-2 activation in human OA cartilage, identifies p38 as the major signalling pathway regulating its synthesis, and demonstrates that specific PAR-2 activation induces Erk1/2 and p38 in OA chondrocytes. These results suggest PAR-2 as a potential new therapeutic target for the treatment of OA.", "title": "Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study" }, { "docid": "24998637", "text": "To investigate the direct role of interleukin (IL) 6 in the development of rheumatoid arthritis, IL-6-deficient (IL-6 -/-) mice were backcrossed for eight generations into C57BL/6 mice, a strain of mice with a genetic background of susceptibility for antigen-induced arthritis (AIA). Both histological and immunological comparisons were made between IL-6-deficient (IL-6 -/-) mice and wild-type (IL-6 +/+) littermates after the induction of AIA. Although all IL-6 +/+ mice developed severe arthritis, only mild arthritis was observed in IL-6 -/- mice. Safranin O staining demonstrated that articular cartilage was well preserved in IL-6 -/- mice, whereas it was destroyed completely in IL-6 +/+ mice. In addition, comparable mRNA expression for both IL-1beta and tumor necrosis factor alpha, but not for IL-6, was detected in the inflamed joints of IL-6 -/- mice, suggesting that IL-6 may play a more crucial role in cartilage destruction than either IL-1beta or tumor necrosis factor alpha. In immunological comparisons, both antigen-specific in vitro proliferative response in lymph node cells and in vivo antibody production were elicited in IL-6 -/- mice, but they were reduced to less than half of that found in IL-6 +/+ mice. Lymph node cells of IL-6 -/- mice produced many more Th2 cytokines than did IL-6 +/+ mice with either antigen-specific or nonspecific stimulation in in vitro culture. Taken together, these results indicate that IL-6 may play a key role in the development of AIA at the inductive as well as the effector phase, and the blockade of IL-6 is possibly beneficial in the treatment of rheumatoid arthritis.", "title": "Interleukin 6 plays a key role in the development of antigen-induced arthritis." }, { "docid": "97884", "text": "The term spondyloarthropathy (SpA) describes and defines a group of related inflammatory joint disease that share characteristic clinical features and a unique association with the major histocompatibility complex class I molecule HLA-B27. Five subgroups can be differentiated: ankylosing spondylitis, reactive arthritis, psoriatic arthritis, arthritis associated with inflammatory bowel disease, and undifferentiated SpA. The sacroiliac joints are centrally involved in the SpA, most clearly and pathognomonic in ankylosing spondylitis, in which most patients are affected early in the disease. Overcoming some of the diagnostic difficulties of early sacroiliitis, dynamic magnetic resonance imaging was shown to visualize both acute and chronic changes in the sacroiliac joints. The inflammation in the sacroiliac joints in patients with SpA was recently examined in more detail; using immunohistology and in situ hybridrization, T cells, macrophages, and various cytokines were found in infiltrates. Biopsy specimens were obtained under guided computed tomography, and in the same study, intra-articular corticosteroid treatment was successfully undertaken. Further investigation of such biopsy specimens showed the absence of DNA of reactive arthritis-associated bacteria. The pathogenesis of the SpA and the reason for the tropism for the sacroiliac joints is still obscure. The nature of the relation of the genetic background of SpA to initially triggering bacterial infections remains to be established. In chronic disease, autoimmune mechanisms might be more important.", "title": "The sacroiliac joint in the spondyloarthropathies." }, { "docid": "15365719", "text": "The motor protein Kif3a and primary cilia regulate important developmental processes, but their roles in skeletogenesis remain ill-defined. Here we created mice deficient in Kif3a in cartilage and focused on the cranial base and synchondroses. Kif3a deficiency caused cranial base growth retardation and dysmorphogenesis, which were evident in neonatal animals by anatomical and micro-computed tomography (microCT) inspection. Kif3a deficiency also changed synchondrosis growth plate organization and function, and the severity of these changes increased over time. By postnatal day (P)7, mutant growth plates lacked typical zones of chondrocyte proliferation and hypertrophy, and were instead composed of chondrocytes with an unusual phenotype characterized by strong collagen II (Col2a1) gene expression but barely detectable expression of Indian hedgehog (Ihh), collagen X (Col10a1), Vegf (Vegfa), MMP-13 (Mmp13) and osterix (Sp7). Concurrently, unexpected developmental events occurred in perichondrial tissues, including excessive intramembranous ossification all along the perichondrial border and the formation of ectopic cartilage masses. Looking for possible culprits for these latter processes, we analyzed hedgehog signalling topography and intensity by monitoring the expression of the hedgehog effectors Patched 1 and Gli1, and of the hedgehog-binding cell-surface component syndecan 3. Compared with controls, hedgehog signaling was quite feeble within mutant growth plates as early as P0, but was actually higher and was widespread all along mutant perichondrial tissues. Lastly, we studied postnatal mice deficient in Ihh in cartilage; their cranial base defects only minimally resembled those in Kif3a-deficient mice. In summary, Kif3a and primary cilia make unique contributions to cranial base development and synchondrosis growth plate function. Their deficiency causes abnormal topography of hedgehog signaling, growth plate dysfunction, and un-physiologic responses and processes in perichondrial tissues, including ectopic cartilage formation and excessive intramembranous ossification.", "title": "Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis." }, { "docid": "3464191", "text": "Bone regeneration relies on the activation of skeletal stem cells (SSCs) that still remain poorly characterized. Here, we show that periosteum contains SSCs with high bone regenerative potential compared to bone marrow stromal cells/skeletal stem cells (BMSCs) in mice. Although periosteal cells (PCs) and BMSCs are derived from a common embryonic mesenchymal lineage, postnatally PCs exhibit greater clonogenicity, growth and differentiation capacity than BMSCs. During bone repair, PCs can efficiently contribute to cartilage and bone, and integrate long-term after transplantation. Molecular profiling uncovers genes encoding Periostin and other extracellular matrix molecules associated with the enhanced response to injury of PCs. Periostin gene deletion impairs PC functions and fracture consolidation. Periostin-deficient periosteum cannot reconstitute a pool of PCs after injury demonstrating the presence of SSCs within periosteum and the requirement of Periostin in maintaining this pool. Overall our results highlight the importance of analyzing periosteum and PCs to understand bone phenotypes.", "title": "Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin" }, { "docid": "19770974", "text": "Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages. After undifferentiated proliferation in vitro for 4 to 5 months, these cells still maintained the developmental potential to form trophoblast and derivatives of all three embryonic germ layers, including gut epithelium (endoderm); cartilage, bone, smooth muscle, and striated muscle (mesoderm); and neural epithelium, embryonic ganglia, and stratified squamous epithelium (ectoderm). These cell lines should be useful in human developmental biology, drug discovery, and transplantation medicine.", "title": "Prev | Table of Contents Reports Embryonic Stem Cell Lines Derived from Human" }, { "docid": "11328820", "text": "The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease.", "title": "NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis." }, { "docid": "54482327", "text": "Background/Aims: Osteoarthritis (OA) is a multifactorial disease that is associated with inflammation in joints. The purpose of the present study was to investigate the anti-inflammatory activity and mechanism of morin on human osteoarthritis chondrocytes stimulated by IL-1β. Methods: The levels of NO and PGE2 were measured by the Griess method and ELISA. The levels of MMP1, MMP3, and MMP13 were also measured by ELISA. Results: The results revealed that IL-1β significantly increased the production of NO, PGE2, MMP1, MMP3, and MMP13. Additionally, the increases were significantly attenuated by treatment with morin. Furthermore, IL-1β-induced NF-κB activation was suppressed by morin. In addition, the expression of Nrf2 and HO-1 were increased by morin and knockdown of Nrf2 could prevent the anti-inflammatory effects of morin. Conclusion: In conclusion, this study suggested that morin attenuated IL-1β-induced inflammation by activating the Nrf2 signaling pathway.", "title": "Morin Exhibits Anti-Inflammatory Effects on IL-1β-Stimulated Human Osteoarthritis Chondrocytes by Activating the Nrf2 Signaling Pathway" }, { "docid": "10078024", "text": "Studies of the identity and physiological function of mesenchymal stromal cells (MSCs) have been hampered by a lack of markers that permit both prospective identification and fate mapping in vivo. We found that Leptin Receptor (LepR) is a marker that highly enriches bone marrow MSCs. Approximately 0.3% of bone marrow cells were LepR(+) , 10% of which were CFU-Fs, accounting for 94% of bone marrow CFU-Fs. LepR(+) cells formed bone, cartilage, and adipocytes in culture and upon transplantation in vivo. LepR(+) cells were Scf-GFP(+), Cxcl12-DsRed(high), and Nestin-GFP(low), markers which also highly enriched CFU-Fs, but negative for Nestin-CreER and NG2-CreER, markers which were unlikely to be found in CFU-Fs. Fate-mapping showed that LepR(+) cells arose postnatally and gave rise to most bone and adipocytes formed in adult bone marrow, including bone regenerated after irradiation or fracture. LepR(+) cells were quiescent, but they proliferated after injury. Therefore, LepR(+) cells are the major source of bone and adipocytes in adult bone marrow.", "title": "Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow." }, { "docid": "42080024", "text": "Several growth factors are expressed in distinct temporal and spatial patterns during fracture repair. Of these, vascular endothelial growth factor, VEGF, is of particular interest because of its ability to induce neovascularization (angiogenesis). To determine whether VEGF is required for bone repair, we inhibited VEGF activity during secondary bone healing via a cartilage intermediate (endochondral ossification) and during direct bone repair (intramembranous ossification) in a novel mouse model. Treatment of mice with a soluble, neutralizing VEGF receptor decreased angiogenesis, bone formation, and callus mineralization in femoral fractures. Inhibition of VEGF also dramatically inhibited healing of a tibial cortical bone defect, consistent with our discovery of a direct autocrine role for VEGF in osteoblast differentiation. In separate experiments, exogenous VEGF enhanced blood vessel formation, ossification, and new bone (callus) maturation in mouse femur fractures, and promoted bony bridging of a rabbit radius segmental gap defect. Our results at specific time points during the course of healing underscore the role of VEGF in endochondral vs. intramembranous ossification, as well as skeletal development vs. bone repair. The responses to exogenous VEGF observed in two distinct model systems and species indicate that a slow-release formulation of VEGF, applied locally at the site of bone damage, may prove to be an effective therapy to promote human bone repair.", "title": "Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover." }, { "docid": "7948486", "text": "Kruppel-like factor 2 (KLF2) plays an important role in the regulation of a variety of immune cells, including monocytes. We have previously shown that KLF2 inhibits proinflammatory activation of monocytes. However, the role of KLF2 in arthritis is yet to be investigated. In the current study, we show that recruitment of significantly greater numbers of inflammatory subset of CD11b(+)F4/80(+)Ly6C+ monocytes to the inflammatory sites in KLF2 hemizygous mice compared to the wild type littermate controls. In parallel, inflammatory mediators, MCP-1, Cox-2 and PAI-1 were significantly up-regulated in bone marrow-derived monocytes isolated from KLF2 hemizygous mice, in comparison to wild-type controls. Methylated-BSA and IL-1β-induced arthritis was more severe in KLF2 hemizygous mice as compared to the littermate wild type controls. Consistent with this observation, monocytes isolated from KLF2 hemizygous mice showed an increased number of cells matured and differentiated towards osteoclastic lineage, potentially contributing to the severity of cartilage and bone damage in induced arthritic mice. The severity of arthritis was associated with the higher expression of proteins such as HSP60, HSP90 and MMP13 and attenuated levels of pPTEN, p21, p38 and HSP25/27 molecules in bone marrow cells of arthritic KLF2 hemizygous mice compared to littermate wild type controls. The data provide new insights and evidences of KLF2-mediated transcriptional regulation of arthritis via modulation of monocyte differentiation and function.", "title": "Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1β-induced arthritis." }, { "docid": "26409363", "text": "Daily calcitriol therapy has been reported to improve linear growth in children with renal bone disease, and 1,25-dihydroxyvitamin D is a key regultor of chondrocyte proliferation and differentiation. Whereas large intermittent doses of calcitriol can lower serum parathyroid hormone (PTH) levels and reverse the skeletal changes of secondary hyperparathyroidism, the impact of intermittent calcitriol therapy on linear growth in children is not known. Thus, we studied 16 pre-pubertal patients with bone biopsy-proven secondary hyperparathyroidism who completed a 12-month prospective clinical trial of intermittent calcitriol therapy. Biochemical results and growth data obtained during intermittent calcitriol therapy were compared to values determined during the preceding 12 months of daily calcitriol therapy in each study subject; changes in bone histology were assessed after one year of intermittent calcitriol therapy. Z-scores for height did not change during 12 months of daily calcitriol therapy. Although the skeletal lesions of secondary hyperparathyroidism improved in most patients, Z-scores for height decreased from -1.8 +/- 0.32 to -2.0 +/- 0.33, P < 0.01, during intermittent calcitriol therapy. The largest reductions were seen in patients who developed adynamic bone lesions after 12 months of treatment. Delta Z-scores for height correlated with serum PTH, r = 0.71, P < 0.01, and alkaline phosphatase levels, r = 0.67, P < 0.01, during intermittent calcitriol therapy but not during daily calcitriol therapy. The data suggest that high dose intermittent calcitriol therapy adversely affects linear growth, particularly in patients with the adynamic lesion. The higher doses of calcitriol or the intermittent schedule of calcitriol administration may directly inhibit chondrocyte activity within growth plate cartilage of children with end-stage renal disease.", "title": "Diminished linear growth during intermittent calcitriol therapy in children undergoing CCPD." }, { "docid": "31304956", "text": "Head development in vertebrates involves a complex series of molecular and morphogenetic events that generate a coordinated pattern of cartilages, bones and nerves, and result in species-specific craniofacial morphologies. A specialized cell type of neural origin, the neural crest, is central to this process, as it provides the main source of craniofacial mesenchyme. The degree of patterning information that is intrinsic to the neural crest has been recently debated, and new advances have underscored the influence of environmental signalling on the transcriptional readout that coordinates craniofacial morphogenesis in space and time.", "title": "Cranial neural crest and the building of the vertebrate head" }, { "docid": "27768226", "text": "PLoS Biology publishes today a research article by Gunther Eysenbach that is not about biology. It is about citations. It provides robust evidence that open-access articles (OA articles) are more immediately recognized and cited than non-OA articles. As such, it adds objective support to the belief we have always held that open-access publication speeds up scientific dialog between researchers and, consequently, should be extended to the whole scientific literature as quickly as possible. It is therefore fitting that we publish such a paper. We have long argued that papers freely available in a journal will be more often read and cited than those behind a subscription barrier. However, solid evidence to support or refute such a claim has been surprisingly hard to find. Since most open-access journals are new, comparisons of the effects of open access with established subscription-based journals are easily confounded by age and reputation. In the current study, Eysenbach compared citations compiled by Thomson Scientific (formerly Thomson ISI) to individual articles published between June 2004 and December 2004 in the same journal—namely, Proceedings of the National Academy of Sciences (PNAS), which announced its open-access option for authors on June 8 of that year, with an associated publication charge of US$1,000. Non-OA articles in PNAS are subject to a six-month “toll-access” delay before the article becomes publicly available. The results of this natural experiment are clear: in the 4 to 16 months following publication, OA articles gained a significant citation advantage over non-OA articles during the same period. They are twice as likely to be cited 4 to 10 months after publication and almost three times as likely between 10 and 16 months. Given that PNAS delays open access for only six months, the disparity between OA and non-OA articles in journals where the delay is longer or where articles remain “toll-access” is likely to be even greater. Eysenbach also looked at the impact of self-archiving non-OA articles. One route to open access, it is argued, is for authors to archive their published articles on their own Web sites or in institutional repositories, although this does not include an explicit business model to cover the cost of peer-review and publishing. The analysis revealed that self-archived articles are also cited less often than OA articles from the same journal. Yes, you're right; we do have a strong and vested interest in publishing results that so obviously endorse our existence. Moreover, the author of the article is also an editor of an open-access journal. But sometimes a potential conflict of interest can actually help to ensure rigor. In this case, we have an acute interest in ensuring that the article meets the same, if not higher, standards as any other research article we publish. Not only must the conclusions provide a significant advance for the field, but the study must be technically sound, with appropriate evidence to support those conclusions. As with all our research articles, we consulted throughout the evaluation process with an academic editor with appropriate expertise—in this case, Carol Tenopir, professor of information sciences at the University of Tennessee (Knoxville, Tennessee, United States). The article was reviewed by two experts in bibliometric analyses and information science, and an experienced research biologist with expertise in statistics. They all enthusiastically supported publication, although one understandably questioned the suitability of PLoS Biology as the publication venue. We have no intention of making PLoS Biology a regular home for bibliometric studies (even when about open access). What makes this study worth publishing in PLoS Biology is not only the relative strength of evidence supporting the claim but also the extent to which many (especially other publishers) have anticipated such an analysis. As far as we are aware, no other study has compared OA and non-OA articles from the same journal and controlled for so many potentially confounding factors. Eysenbach's multivariate analysis took into account the number of days since publication, number of authors, article type, country of the corresponding author, funding type, subject area, submission track ( PNAS has three different ways that authors can submit a paper), and the previous citation record of the first and last authors. He even administered a supplementary questionnaire to assess whether authors choosing the OA option in PNAS chose to do so for only their most important research (they didn't). As Ian Rowlands from the Centre for Publishing at University College London—and one of the reviewers who agreed to be identified in this article—said at the start of his review: “Many (most) of the papers and presentations I have read/seen on this topic have completely failed to address the kinds of confounding issues that are so convincingly tackled here. For that reason alone, this paper deserves to be published and alerted to the widest possible audience. ” In addition to providing evidence for the immediate advantage of open access, Eysenbach's analysis also highlights several potential challenges to its long-term future. Although a limited dataset, the citation history of the first and last authors differed between those who chose the open-access option and those who did not. In the group that chose open access, last authors tended to have a “stronger” previous citation record, whereas this situation was reversed among the group that declined the open-access option—here, it was the first authors who tended to be stronger. This may reflect varying attitudes of authors at different stages of their career, a stronger influence from the leader of a particular group, or an age- or career-related difference in the ability to pay the publication charge (e.g., [ 1]). Indeed, access to appropriate funds may also be a reason why a lower proportion of authors from European countries tended to choose the open-access option. In many of these countries, funds for page charges—and, by extension, open-access publication fees—are often not included within research grants. PNAS was one of the first journals to offer an open-access option to its authors. However, such hybrid journals are increasing: Blackwell, Springer, and Oxford University Press now provide this option as well. This means that similar experiments can be replicated. Moreover, although the evidence from the current analysis argues most strongly for a time advantage in citation for OA articles, a study over longer periods will reveal whether this translates into a sustained increase in the number of citations. In the meantime, open-access advocates should be emboldened by tangible evidence for what has seemed obvious all along.", "title": "Open Access Increases Citation Rate" }, { "docid": "15692098", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a rare but well known entity characterized by extreme short stature, low body weight, early loss of hair, lipodystrophy, scleroderma, decreased joint mobility, osteolysis, and facial features that resemble aged persons. Cardiovascular compromise leads to early demise. Cognitive development is normal. Data on 10 of our own cases and 132 cases from literature are presented. The incidence in the last century in the Netherlands was 1:4,000,000. Sex ratio was 1.2:1. Main first symptoms were failure to thrive (55%), hair loss (40%), skin problems (28%), and lipodystrophy (20%). Mean age at diagnosis was 2.9 years. Growth in weight was more disturbed than growth in height, and growth delay started already prenatally. Mean height > 13 years was 109.0 cm, mean weight was 14.5 kg. Osteolysis was wide-spread but not expressed, except in the viscerocranium, and remained limited to membranous formed bone. Lipodystrophy is generalized, only intra-abdominal fat depositions remain present. Cardiovascular problems are extremely variable, both in age of onset and nature. Stroke and coronary dysfunctioning are most frequent. Pathologic findings in coronaries and aorta resemble sometimes the findings in elderly persons, but can also be much more limited. Loss of smooth muscle cells seems the most important finding. Mean age of demise was 12.6 years. Patients can be subdivided in patients with classical HGPS, which follows an autosomal dominant pattern of inheritance, (almost) all cases representing spontaneous mutations, and in non-classical progeria, in whom growth can be less retarded, scalp hair remains present for a longer time, lipodystrophy is more slowly progressive, osteolysis is more expressed except in the face, and survival well into adulthood is not uncommon. Pattern of inheritance of non-classical progeria is most probably autosomal recessive. The cause of HGPS is an abnormally formed Lamin A, either directly by a mutated LMNA gene, or through abnormal posttranslational processing (ZMPSTE24 gene mutations). Of 34 LMNA mutations found in progeria patients, there were 26 classical p. G608G mutations (76%). Pathogenesis is most likely to follow several different pathways. Potential therapeutic strategies are developed along these lines and include RNA interference techniques and inhibition of the dominant-negative influence of abnormally formed Lamin A on polymerization with normally formed Lamin A.", "title": "Hutchinson-Gilford progeria syndrome: review of the phenotype" }, { "docid": "25263942", "text": "Endometrial polyps are very common benign endometrial lesions, but their pathogenesis is poorly understood, except for a few studies indicating the possibility of benign stromal neoplasm. Although the histopathological diagnosis of endometrial polyp on a surgical specimen is straightforward, it is often difficult to differentiate endometrial polyp from endometrial hyperplasia on a biopsy or curettage specimen. Presently, there is no immunohistochemical marker helpful in this differential diagnosis. In this study, we examined p16 expression in 35 endometrial polyps and 33 cases of endometrial hyperplasia that included 16 simple hyperplasias, 14 complex atypical hyperplasias, and 3 complex hyperplasias without atypia. Stromal p16 expression differed significantly between the two groups; it was seen in 31 (89 %) endometrial polyps, but in only 1 (3 %) endometrial hyperplasia. The percentage of p16-positive stromal cells ranged from 10 to 90 % (mean, 47 %) and the positive cells tended to be distributed around glands. Six cases of endometrial hyperplasia within an endometrial polyp were also examined and all cases showed stromal p16 expression. There was no difference in glandular p16 expression between endometrial polyps 33 (94 %) and hyperplasia 27 (82 %). The p16-immunoreactivity was mostly confined to metaplastic epithelial cells in both groups. Stromal p16 expression might be a peculiar characteristic of endometrial polyp and constitute a useful marker for the diagnosis, especially in fragmented specimens from biopsy or curettage. Stromal p16 expression might be a reflection of p16-induced cellular senescence, which has been documented in several benign mesenchymal neoplasms.", "title": "Stromal p16 expression differentiates endometrial polyp from endometrial hyperplasia" } ]
895
Over half of the gabonese children with Schimmelpenning-Feuerstein-Mims syndrome (SFM) had a plasma lactate of more than 5mmol/L.
[ { "docid": "18750453", "text": "Background The degree of volume depletion in severe malaria is currently unknown, although knowledge of fluid compartment volumes can guide therapy. To assist management of severely ill children, and to test the hypothesis that volume changes in fluid compartments reflect disease severity, we measured body compartment volumes in Gabonese children with malaria. Methods and Findings Total body water volume (TBW) and extracellular water volume (ECW) were estimated in children with severe or moderate malaria and in convalescence by tracer dilution with heavy water and bromide, respectively. Intracellular water volume (ICW) was derived from these parameters. Bioelectrical impedance analysis estimates of TBW and ECW were calibrated against dilution methods, and bioelectrical impedance analysis measurements were taken daily until discharge. Sixteen children had severe and 19 moderate malaria. Severe childhood malaria was associated with depletion of TBW (mean [SD] of 37 [33] ml/kg, or 6.7% [6.0%]) relative to measurement at discharge. This is defined as mild dehydration in other conditions. ECW measurements were normal on admission in children with severe malaria and did not rise in the first few days of admission. Volumes in different compartments (TBW, ECW, and ICW) were not related to hyperlactataemia or other clinical and laboratory markers of disease severity. Moderate malaria was not associated with a depletion of TBW.", "title": "Assessment of Volume Depletion in Children with Malaria" } ]
[ { "docid": "9254550", "text": "BACKGROUND & OBJECTIVES Anaemia is commonly observed in children with malaria, but reports on leucocyte and platelet count abnormalities associated with malaria are inconsistent. This study examined the effect of age, gender, parasite density and temperature on haematological parameters in children with acute uncomplicated malaria. \n METHODS Haematological parameters were determined in children with acute uncomplicated malaria, and these were correlated with age, sex, temperature and parasite density. Statistical analysis was done using SAS 9.1. \n RESULTS Six hundred and ninety five children with acute uncomplicated malaria participated in the study. The mean age was 51.7 months +/- 33.8. At presentation, anaemia occurred in 43.8% of the patients and children <5 yr had a significantly lower haematocrit (28.4% +/- 4.8) than that of older children (32.8% +/- 4.8) (p <0.001), but the haematocrit was not significantly different by days 14 and 28. There was no difference between both sexes. Leucocytosis was more frequently seen than leucopenia (9.5% vs 3%). Thrombocytopenia was found in 59.3% of enrolled patients. More than half of the patients with thrombocytopenia had recovered by Day 28. Baseline platelet count was related to Day 14 (r = 0.6, p < 0.0001) and Day 28 (r = 0.2, p = 0.0015) and the haematocrit on Day 28 (r = 0.12, p = 0.00197). Platelet count showed no correlation with temperature, parasite density and leucocyte count. Haematocrit correlated with age (r = 0.4, p < 0.0001); but not with parasite density or temperature. Leucocyte count showed no correlation with age or parasite density. \n CONCLUSION While thrombocytopenia was the most common haematological finding and may be of diagnostic importance, anaemia and leucocytosis were more common in the under fives.", "title": "Age as a risk factor for thrombocytopenia and anaemia in children treated for acute uncomplicated falciparum malaria." }, { "docid": "24704139", "text": "OBJECTIVE The Diabetes Prevention Program (DPP) is a 27-center randomized clinical trial designed to evaluate the safety and efficacy of interventions that may delay or prevent development of diabetes in people at increased risk for type 2 diabetes. RESEARCH DESIGN AND METHODS Eligibility requirements were age > or = 25 years, BMI > or = 24 kg/m2 (> or = 22 kg/m2 for Asian-Americans), and impaired glucose tolerance plus a fasting plasma glucose of 5.3-6.9 mmol/l (or < or = 6.9 mmol for American Indians). Randomization of participants into the DPP over 2.7 years ended in June 1999. Baseline data for the three treatment groups--intensive lifestyle modification, standard care plus metformin, and standard care plus placebo--are presented for the 3,234 participants who have been randomized. \n RESULTS Of all participants , 55% were Caucasian, 20% were African-American, 16% were Hispanic, 5% were American Indian, and 4% were Asian-American. Their average age at entry was 51 +/- 10.7 years (mean +/- SD), and 67.7% were women. Moreover, 16% were < 40 years of age, and 20% were > or = 60 years of age. Of the women, 48% were postmenopausal. Men and women had similar frequencies of history of hypercholesterolemia (37 and 33%, respectively) or hypertension (29 and 26%, respectively). On the basis of fasting lipid determinations, 54% of men and 40% of women fit National Cholesterol Education Program criteria for abnormal lipid profiles. More men than women were current or former cigarette smokers or had a history of coronary heart disease. Furthermore, 66% of men and 71% of women had a first-degree relative with diabetes. Overall, BMI averaged 34.0 +/- 6.7 kg/m2 at baseline with 57% of the men and 73% of women having a BMI > or = 30 kg/m2. Average fasting plasma glucose (6.0 +/- 0.5 mmol/l) and HbA1c (5.9 +/- 0.5%) in men were comparable with values in women (5.9 +/- 0.4 mmol/l and 5.9 +/- 0.5%, respectively). \n CONCLUSIONS The DPP has successfully randomized a large cohort of participants with a wide distribution of age, obesity, and ethnic and racial backgrounds who are at high risk for developing type 2 diabetes. The study will examine the effects of interventions on the development of diabetes.", "title": "The Diabetes Prevention Program: baseline characteristics of the randomized cohort. The Diabetes Prevention Program Research Group." }, { "docid": "19804204", "text": "BACKGROUND AND OBJECTIVES Children with chronic kidney disease (CKD) are at risk for cognitive dysfunction, and over half have hypertension. Data on the potential contribution of hypertension to CKD-associated neurocognitive deficits in children are limited. Our objective was to determine whether children with CKD and elevated BP (EBP) had decreased performance on neurocognitive testing compared with children with CKD and normal BP. \n DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This was a cross-sectional analysis of the relation between auscultatory BP and neurocognitive test performance in children 6 to 17 years enrolled in the Chronic Kidney Disease in Children (CKiD) project. \n RESULTS Of 383 subjects, 132 (34%) had EBP (systolic BP and/or diastolic BP ≥90(th) percentile). Subjects with EBP had lower mean (SD) scores on Wechsler Abbreviated Scales of Intelligence (WASI) Performance IQ than those with normal BP (normal BP versus EBP, 96.1 (16.7) versus 92.4 (14.9), P = 0.03) and WASI Full Scale IQ (97.0 (16.2) versus 93.4 (16.5), P = 0.04). BP index (subject's BP/95(th) percentile BP) correlated inversely with Performance IQ score (systolic, r = -0.13, P = 0.01; diastolic, r = -0.19, P < 0.001). On multivariate analysis, the association between lower Performance IQ score and increased BP remained significant after controlling for demographic and disease-related variables (EBP, β = -3.7, 95% confidence interval [CI]: -7.3 to -0.06; systolic BP index, β = -1.16 to 95% CI: -2.1, -0.21; diastolic BP index, β = -1.17, 95% CI: -1.8 to -0.55). \n CONCLUSIONS Higher BP was independently associated with decreased WASI Performance IQ scores in children with mild-to-moderate CKD.", "title": "Casual blood pressure and neurocognitive function in children with chronic kidney disease: a report of the children with chronic kidney disease cohort study." }, { "docid": "25938221", "text": "A specific retinopathy has been described in African children with cerebral malaria, but in adults this has not been extensively studied. Since the structure and function of the retinal vasculature greatly resembles the cerebral vasculature, study of retinal changes can reveal insights into the pathophysiology of cerebral malaria. A detailed observational study of malarial retinopathy in Bangladeshi adults was performed using high-definition portable retinal photography. Retinopathy was present in 17/27 adults (63%) with severe malaria and 14/20 adults (70%) with cerebral malaria. Moderate or severe retinopathy was more frequent in cerebral malaria (11/20, 55%) than in uncomplicated malaria (3/15, 20%; P=0.039), bacterial sepsis (0/5, 0%; P=0.038) or healthy controls (0/18, 0%; P<0.001). The spectrum of malarial retinopathy was similar to that previously described in African children, but no vessel discolouration was observed. The severity of retinal whitening correlated with admission venous plasma lactate (P=0.046), suggesting that retinal ischaemia represents systemic ischaemia. In conclusion, retinal changes related to microvascular obstruction were common in adults with severe falciparum malaria and correlated with disease severity and coma, suggesting that a compromised microcirculation has important pathophysiological significance in severe and cerebral malaria. Portable retinal photography has potential as a valuable tool to study malarial retinopathy.", "title": "The spectrum of retinopathy in adults with Plasmodium falciparum malaria" }, { "docid": "23670644", "text": "BACKGROUND The ketogenic diet has been widely and successfully used to treat children with drug-resistant epilepsy since the 1920s. The aim of this study was to test the efficacy of the ketogenic diet in a randomised controlled trial. \n METHODS 145 children aged between 2 and 16 years who had at least daily seizures (or more than seven seizures per week), had failed to respond to at least two antiepileptic drugs, and had not been treated previously with the ketogenic diet participated in a randomised controlled trial of its efficacy to control seizures. Enrolment for the trial ran between December, 2001, and July, 2006. Children were seen at one of two hospital centres or a residential centre for young people with epilepsy. Children were randomly assigned to receive a ketogenic diet, either immediately or after a 3-month delay, with no other changes to treatment (control group). Neither the family nor investigators were blinded to the group assignment. Early withdrawals were recorded, and seizure frequency on the diet was assessed after 3 months and compared with that of the controls. The primary endpoint was a reduction in seizures; analysis was intention to treat. Tolerability of the diet was assessed by questionnaire at 3 months. The trial is registered with ClinicalTrials.gov, number NCT00564915. \n FINDINGS 73 children were assigned to the ketogenic diet and 72 children to the control group. Data from 103 children were available for analysis: 54 on the ketogenic diet and 49 controls. Of those who did not complete the trial, 16 children did not receive their intervention, 16 did not provide adequate data, and ten withdrew from the treatment before the 3-month review, six because of intolerance. After 3 months, the mean percentage of baseline seizures was significantly lower in the diet group than in the controls (62.0%vs 136.9%, 75% decrease, 95% CI 42.4-107.4%; p<0.0001). 28 children (38%) in the diet group had greater than 50% seizure reduction compared with four (6%) controls (p<0.0001), and five children (7%) in the diet group had greater than 90% seizure reduction compared with no controls (p=0.0582). There was no significant difference in the efficacy of the treatment between symptomatic generalised or symptomatic focal syndromes. The most frequent side-effects reported at 3-month review were constipation, vomiting, lack of energy, and hunger. \n INTERPRETATION The results from this trial of the ketogenic diet support its use in children with treatment-intractable epilepsy. \n FUNDING HSA Charitable Trust; Smiths Charity; Scientific Hospital Supplies; Milk Development Council.", "title": "The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial." }, { "docid": "41915616", "text": "The effects of a zinc supplement on maternal zinc status and milk zinc concentrations through > or = 7 mo of lactation were examined. Seventy-one lactating women received either a daily 15-mg zinc supplement (ZS, n = 40) or placebo (NZS, n = 31) started by 2 wk postpartum in a double-blind, randomized design. Overall mean zinc intakes were 13.0 +/- 3.4 mg/d for the NZS group and 25.7 +/- 3.9 mg/d (including supplement) for the ZS group. Plasma zinc concentrations of the ZS group were significantly higher than those of the NZS group (P = 0.05). Milk zinc concentrations declined significantly over the course of the study for all subjects but were not affected by zinc supplementation. The mean dietary zinc intake observed in the nonsupplemented group was adequate to maintain normal maternal zinc status and milk zinc concentrations through > or = 7 mo lactation. Similar controlled intervention trials in less well-nourished populations will be required to assess the impact of lower zinc intakes on milk zinc concentrations.", "title": "Zinc supplementation during lactation: effects on maternal status and milk zinc concentrations." }, { "docid": "24269361", "text": "There are two main families of polyunsaturated fatty acids (PUFAs), the n-6 and the n-3 families. It has been suggested that there is a causal relationship between n-6 PUFA intake and allergic disease, and there are biologically plausible mechanisms, involving eicosanoid mediators of the n-6 PUFA arachidonic acid, that could explain this. Fish and fish oils are sources of long-chain n-3 PUFAs and these fatty acids act to oppose the actions of n-6 PUFAs. Thus, it is considered that n-3 PUFAs will protect against atopic sensitization and against the clinical manifestations of atopy. Evidence to examine this has been acquired from epidemiologic studies investigating associations between fish intake in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children and from intervention studies with fish oil supplements in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children. All five epidemiological studies investigating the effect of maternal fish intake during pregnancy on atopic or allergic outcomes in infants/children of those pregnancies concluded protective associations. One study investigating the effects of maternal fish intake during lactation did not observe any significant associations. The evidence from epidemiological studies investigating the effects of fish intake during infancy and childhood on atopic outcomes in those infants or children is inconsistent, although the majority of the studies (nine of 14) showed a protective effect of fish intake during infancy or childhood on atopic outcomes in those infants/children. Fish oil supplementation during pregnancy and lactation or during infancy or childhood results in a higher n-3 PUFA status in the infants or children. Fish oil provision to pregnant women is associated with immunologic changes in cord blood and such changes may persist. Studies performed to date indicate that provision of fish oil during pregnancy may reduce sensitization to common food allergens and reduce prevalence and severity of atopic dermatitis in the first year of life, with a possible persistence until adolescence with a reduction in eczema, hay fever, and asthma. Fish oil provision to infants or children may be associated with immunologic changes in the blood but it is not clear if these are of clinical significance and whether they persist. Fish oil supplementation in infancy may decrease the risk of developing some manifestations of allergic disease, but this benefit may not persist as other factors come into play. It is not clear whether fish oil can be used to treat children with asthma as the two studies conducted to date give divergent results. Further studies of increased long-chain n-3 PUFA provision in during pregnancy, lactation, and infancy are needed to more clearly identify the immunologic and clinical effects in infants and children and to identify protective and therapeutic effects and their persistence.", "title": "Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review." }, { "docid": "11201004", "text": "Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.", "title": "Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity." }, { "docid": "18174210", "text": "BACKGROUND The heritable haemoglobinopathy alpha(+)-thalassaemia is caused by the reduced synthesis of alpha-globin chains that form part of normal adult haemoglobin (Hb). Individuals homozygous for alpha(+)-thalassaemia have microcytosis and an increased erythrocyte count. Alpha(+)-thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA) (Hb concentration < 50 g/l), but does not influence parasite count. We tested the hypothesis that the erythrocyte indices associated with alpha(+)-thalassaemia homozygosity provide a haematological benefit during acute malaria. \n METHODS AND FINDINGS Data from children living on the north coast of Papua New Guinea who had participated in a case-control study of the protection afforded by alpha(+)-thalassaemia against severe malaria were reanalysed to assess the genotype-specific reduction in erythrocyte count and Hb levels associated with acute malarial disease. We observed a reduction in median erythrocyte count of approximately 1.5 x 10(12)/l in all children with acute falciparum malaria relative to values in community children (p < 0.001). We developed a simple mathematical model of the linear relationship between Hb concentration and erythrocyte count. This model predicted that children homozygous for alpha(+)-thalassaemia lose less Hb than children of normal genotype for a reduction in erythrocyte count of >1.1 x 10(12)/l as a result of the reduced mean cell Hb in homozygous alpha(+)-thalassaemia. In addition, children homozygous for alpha(+)-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02) for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for alpha(+)-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24-1.12, p = 0.09). \n CONCLUSIONS The increased erythrocyte count and microcytosis in children homozygous for alpha(+)-thalassaemia may contribute substantially to their protection against SMA. A lower concentration of Hb per erythrocyte and a larger population of erythrocytes may be a biologically advantageous strategy against the significant reduction in erythrocyte count that occurs during acute infection with the malaria parasite Plasmodium falciparum. This haematological profile may reduce the risk of anaemia by other Plasmodium species, as well as other causes of anaemia. Other host polymorphisms that induce an increased erythrocyte count and microcytosis may confer a similar advantage.", "title": "Increased Microerythrocyte Count in Homozygous α+-Thalassaemia Contributes to Protection against Severe Malarial Anaemia" }, { "docid": "5596332", "text": "IMPORTANCE Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. \n OBJECTIVE To evaluate and, as needed, update definitions for sepsis and septic shock. PROCESS A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). KEY FINDINGS FROM EVIDENCE SYNTHESIS Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. RECOMMENDATIONS Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. \n CONCLUSIONS AND RELEVANCE These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.", "title": "The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)." }, { "docid": "1946610", "text": "BACKGROUND Tanzania has a well-developed network of commercial ITN retailers. In 2004, the government introduced a voucher subsidy for pregnant women and, in mid 2005, helped distribute free nets to under-fives in small number of districts, including Rufiji on the southern coast, during a child health campaign. Contributions of these multiple insecticide-treated net delivery strategies existing at the same time and place to coverage in a poor rural community were assessed. \n METHODS Cross-sectional household survey in 6,331 members of randomly selected 1,752 households of 31 rural villages of Demographic Surveillance System in Rufiji district, Southern Tanzania was conducted in 2006. A questionnaire was administered to every consenting respondent about net use, treatment status and delivery mechanism. \n FINDINGS Net use was 62.7% overall, 87.2% amongst infants (0 to 1 year), 81.8% amongst young children (>1 to 5 years), 54.5% amongst older children (6 to 15 years) and 59.6% amongst adults (>15 years). 30.2% of all nets had been treated six months prior to interview. The biggest source of nets used by infants was purchase from the private sector with a voucher subsidy (41.8%). Half of nets used by young children (50.0%) and over a third of those used by older children (37.2%) were obtained free of charge through the vaccination campaign. The largest source of nets amongst the population overall was commercial purchase (45.1% use) and was the primary means for protecting adults (60.2% use). All delivery mechanisms, especially sale of nets at full market price, under-served the poorest but no difference in equity was observed between voucher-subsidized and freely distributed nets. \n CONCLUSION All three delivery strategies enabled a poor rural community to achieve net coverage high enough to yield both personal and community level protection for the entire population. Each of them reached their relevant target group and free nets only temporarily suppressed the net market, illustrating that in this setting that these are complementary rather than mutually exclusive approaches.", "title": "Markets, voucher subsidies and free nets combine to achieve high bed net coverage in rural Tanzania" }, { "docid": "29526125", "text": "BACKGROUND A major challenge for physicians is to identify patients with acute coronary syndromes who may benefit from treatment with glycoprotein-IIb/IIIa-receptor antagonists. We investigated whether troponin concentrations can be used to stratify patients for benefit from treatment with tirofiban. \n METHODS We enrolled 2222 patients of the Platelet Receptor Inhibition in Ischemic Syndrome Management study with coronary artery disease and who had had chest pain in the previous 24 h. All patients received aspirin and were randomly assigned treatment with tirofiban or heparin. We took baseline measurements of troponin I and troponin T. We recorded death, myocardial infarction, or recurrent ischaemia after 48 h infusion treatment and at 7 days and 30 days. \n FINDINGS 629 (28.3%) patients had troponin I concentrations higher than the diagnostic threshold of 1.0 microg/L and 644 (29.0%) troponin T concentrations higher than 0.1 microg/L. 30-day event rates (death, myocardial infarction) were 13.0% for troponin-I-positive patients compared with 4.9% for troponin-I-negative patients (p<0.0001), and 13.7% compared wth 3.5% for troponin T (p<0.001). At 30 days, in troponin-I-positive patients, tirofiban had lowered the risk of death (adjusted hazard ratio 0.25 [95% CI 0.09-0.68], p=0.004) and myocardial infarction (0.37 [0.16-0.84], p=0.01). This benefit was seen in medically managed patients (0.30 [0.10-0.84], p=0.004) and those undergoing revascularisation (0.37 [0.15-0.93] p=0.02) after 48 h infusion treatment. By contrast, no treatment effect was seen for troponin-I-negative patients. Similar benefits were seen for troponin-T-positive patients. \n INTERPRETATION Troponin I and troponin T reliably identified high-risk patients with acute coronary syndromes, managed medically and by revascularisation, who would benefit from tirofiban.", "title": "Troponin concentrations for stratification of patients with acute coronary syndromes in relation to therapeutic efficacy of tirofiban. PRISM Study Investigators. Platelet Receptor Inhibition in Ischemic Syndrome Management." }, { "docid": "74137632", "text": "This paper examines the potential impact of changes in medical care on changing population health in Lithuania, Hungary and Romania, with west Germany included for comparison. We used the concept of deaths from certain causes that should not occur in the presence of timely and effective health care (amenable mortality) and calculated the contribution of changes in mortality from these conditions to changes in life expectancy between birth and age 75 [e (0-75)] for the periods 1980/81 to 1988 and 1992 to 1997. Temporary life expectancy improved consistently in west Germany (men: 2.7 years, women: 1.6 years). In contrast, gains were relatively small in the other countries, except among Hungarian women, who gained 1.3 years. Romanian men lost 1.3 years. In the 1980s, falling infant mortality made a substantial contribution to improvements in temporary life expectancy in all countries, of about a quarter to half a year. Of this, more than half can be attributed to amenable conditions. At older ages, falling amenable mortality contributed about 40% among those aged over 40 in Germany and, to a lesser extent, Hungary, while causing a loss of life expectancy in Romania. In the 1990s, improvements in infant mortality continued to make substantial contributions to life expectancy in Lithuania and Hungary but had little impact in either Germany or Romania. Among adults, improvements in amenable mortality continued to benefit Hungarians and west Germans. In Lithuania, up to two-thirds of the gain in temporary life expectancy were attributable to falling mortality from ischaemic heart disease whereas medical care otherwise seems to have had a negative impact. Romanian men and women experienced increases in amenable mortality that contributed up to a half of the overall loss of life expectancy. Our findings suggest that during the last 20 years changes in medical care had considerable impact, positively as well as negatively, on changing mortality in selected central and eastern European countries.", "title": "Rembrandt Scholz" }, { "docid": "7227763", "text": "The increase in lactate (L) and pyruvate (P) content of arterial blood during experimental and clinical shock states and the extent to which such increases serve as measures of oxygen deficit and irreversible injury were investigated on an empirical basis. A standardized method for production of hemorrhagic shock in the Wistar rat was employed. During a 4-hour bleeding period, oxygen consumption of the rat was reduced to approximately 40% of control value, pH was reduced from 7.39 to 7.08, and a concurrent increase in L from 0.80 to 6.06 mm and in P from 0.07 to 0.18 mm were observed. Cumulative oxygen debt correlated with log L (r = 0.50; P < 0.0005) and both were significantly related to survival. Correlation of cumulative oxygen debt and survival, both with P and with computed values of the lactate pyruvate ratio (L/P) and excess lactate (XL), were of no higher magnitude. Partial correlation analysis demonstrated that neither the measurement of P nor the computation of L/P or XL improved predictability...", "title": "Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock)." }, { "docid": "7011850", "text": "OBJECTIVE To examine the traditional view that unawareness of hypoglycaemia and inadequate hypoglycaemic counterregulation in insulin dependent diabetes mellitus are manifestations of autonomic neuropathy. \n DESIGN Perspective assessment of unawareness of hypoglycaemia and detailed assessment of autonomic neuropathy in patients with insulin dependent diabetes according to the adequacy of their hypoglycaemic counterregulation. \n SETTING One routine diabetic unit in a university teaching hospital. \n PATIENTS 23 Patients aged 21-52 with insulin dependent diabetes mellitus (seven with symptoms suggesting autonomic neuropathy, nine with a serious clinical problem with hypoglycaemia, and seven without symptoms of autonomic neuropathy and without problems with hypoglycaemia) and 10 controls with a similar age distribution, without a personal or family history of diabetes. \n MAIN OUTCOME MEASURES Presence of autonomic neuropathy as assessed with a test of the longest sympathetic fibres (acetylcholine sweatspot test), a pupil test, and a battery of seven cardiovascular autonomic function tests; adequacy of hypoglycaemic glucose counterregulation during a 40 mU/kg/h insulin infusion test; history of unawareness of hypoglycaemia; and response of plasma pancreatic polypeptide during hypoglycaemia, which depends on an intact and responding autonomic innervation of the pancreas. \n RESULTS There was little evidence of autonomic neuropathy in either the 12 diabetic patients with a history of unawareness of hypoglycaemia or the seven patients with inadequate hypoglycaemic counterregulation. By contrast, in all seven patients with clear evidence of autonomic neuropathy there was no history of unawareness of hypoglycaemia and in six out of seven there was adequate hypoglycaemic counterregulation. Unawareness of hypoglycaemia and inadequate hypoglycaemic counterregulation were significantly associated (p less than 0.01). The response of plasma pancreatic polypeptide in the diabetic patients with adequate counterregulation but without autonomic neuropathy was not significantly different from that of the controls (change in plasma pancreatic polypeptide 226.8 v 414 pmol/l). The patients with autonomic neuropathy had a negligible plasma pancreatic polypeptide response (3.7 pmol/l), but this response was also blunted in the patients with inadequate hypoglycaemic counterregulation (72.4 pmol/l) compared with that of the controls (p less than 0.05). \n CONCLUSIONS Unawareness of hypoglycaemia and inadequate glucose counterregulation during hypoglycaemia are related to each other but are not due to autonomic neuropathy. The blunted plasma pancreatic polypeptide responses of the patients with inadequate hypoglycaemic counterregulation may reflect diminished autonomic activity consequent upon reduced responsiveness of a central glucoregulatory centre, rather than classical autonomic neuropathy.", "title": "Unawareness of hypoglycaemia and inadequate hypoglycaemic counterregulation: no causal relation with diabetic autonomic neuropathy." }, { "docid": "8428935", "text": "CONTEXT Physical inactivity contributes to weight gain in adults, but whether this relationship is true for children of different ethnic groups is not well established. \n OBJECTIVE To assess participation in vigorous activity and television watching habits and their relationship to body weight and fatness in US children. \n DESIGN Nationally representative cross-sectional survey with an in-person interview and medical examination. \n SETTING AND PARTICIPANTS Between 1988 and 1994, 4063 children aged 8 through 16 years were examined as part of the National Health and Nutrition Examination Survey III. Mexican Americans and non-Hispanic blacks were oversampled to produce reliable estimates for these groups. \n MAIN OUTCOME MEASURES Episodes of weekly vigorous activity and daily hours of television watched, and their relationship to body mass index and body fatness. \n RESULTS Eighty percent of US children reported performing 3 or more bouts of vigorous activity each week. This rate was lower in non-Hispanic black and Mexican American girls (69% and 73%, respectively). Twenty percent of US children participated in 2 or fewer bouts of vigorous activity perweek, and the rate was higher in girls (26%) than in boys (17%). Overall, 26% of US children watched 4 or more hours of television per day and 67% watched at least 2 hours per day. Non-Hispanic black children had the highest rates of watching 4 or more hours of television per day (42%). Boys and girls who watch 4 or more hours of television each day had greater body fat (P<.001) and had a greater body mass index (P<.001) than those who watched less than 2 hours per day. \n CONCLUSIONS Many US children watch a great deal of television and are inadequately vigorously active. Vigorous activity levels are lowest among girls, non-Hispanic blacks, and Mexican Americans. Intervention strategies to promote lifelong physical activity among US children are needed to stem the adverse health consequences of inactivity.", "title": "Relationship of physical activity and television watching with body weight and level of fatness among children: results from the Third National Health and Nutrition Examination Survey." }, { "docid": "25420421", "text": "Little is known about the changes in white blood cells and platelets in children with falciparum malaria in endemic areas. We measured the white cell count (WCC) and platelets of 230 healthy children from the community, 1369 children admitted to hospital with symptomatic malaria, and 1461 children with other medical conditions. Children with malaria had a higher WCC compared with community controls, and leucocytosis was strongly associated with younger age, deep breathing, severe anaemia, thrombocytopenia and death. The WCC was not associated with a positive blood culture. In children with malaria, high lymphocyte and low monocyte counts were independently associated with mortality. A platelet count of less than 150 x 109/l was found in 56.7% of children with malaria, and was associated with age, prostration and parasite density, but not with bleeding problems or mortality. The mean platelet volume was also higher in children with malaria compared with other medical conditions. This may reflect early release from the bone marrow in response to peripheral platelet destruction. Thus, leucocytosis was associated with both severity and mortality in children with falciparum malaria, irrespective of bacteraemia, whereas thrombocytopenia, although very common, was not associated with adverse outcome.", "title": "Changes in white blood cells and platelets in children with falciparum malaria: relationship to disease outcome." }, { "docid": "21870716", "text": "The ability of children to cope with a chronic medical problem requiring prolonged treatment has an effect on the quality of life of these children and of their parents and serves as an index of the quality of treatment. This study deals with coping ability and satisfaction with treatment of children whose stature was two or more SD below the average for age and gender. The study population included 96 patients, 53 of whom were male, who were on growth hormone (GH) treatment for at least 1 year. 65 patients were without any underlying disease, 15 had classical GH deficiency and 16 had Turner syndrome or renal disease. All patients were treated with daily injections at home from 12 to 66 months. Using a self-administered questionnaire, the ability to cope and the degree of satisfaction and compliance with treatment were assessed. No significant differences were found with respect to gender, the presence of an underlying disease, age at which treatment commenced or duration of treatment. Despite the fact that the outcome of GH treatment on final height has yet to be established, satisfaction and compliance were high.", "title": "Coping and satisfaction with growth hormone treatment among short-stature children." }, { "docid": "20696397", "text": "1. Plasma interleukin (IL)-6 concentration is increased with exercise and it has been demonstrated that contracting muscles can produce IL-The question addressed in the present study was whether the IL-6 production by contracting skeletal muscle is of such a magnitude that it can account for the IL-6 accumulating in the blood. 2. This was studied in six healthy males, who performed one-legged dynamic knee extensor exercise for 5 h at 25 W, which represented 40% of peak power output (Wmax). Arterial-femoral venous (a-fv) differences over the exercising and the resting leg were obtained before and every hour during the exercise. Leg blood flow was measured in parallel by the ultrasound Doppler technique. IL-6 was measured by enzyme-linked immunosorbent assay (ELISA). 3. Arterial plasma concentrations for IL-6 increased 19-fold compared to rest. The a-fv difference for IL-6 over the exercising leg followed the same pattern as did the net IL-6 release. Over the resting leg, there was no significant a-fv difference or net IL-6 release. The work was produced by 2.5 kg of active muscle, which means that during the last 2 h of exercise, the median IL-6 production was 6.8 ng min-1 (kg active muscle)-1 (range, 3.96-9.69 ng min-1 kg-1). 4. The net IL-6 release from the muscle over the last 2 h of exercise was 17-fold higher than the elevation in arterial IL-6 concentration and at 5 h of exercise the net release during 1 min was half of the IL-6 content in the plasma. This indicates a very high turnover of IL-6 during muscular exercise. We suggest that IL-6 produced by skeletal contracting muscle contributes to the maintenance of glucose homeostasis during prolonged exercise.", "title": "Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6." } ]
896
Overexpressing Cnp1 N-tail variants exacerbates the temperature-sensitive growth defect of scm3-139.
[ { "docid": "14338915", "text": "The mechanisms ensuring specific incorporation of CENP-A at centromeres are poorly understood. Mis16 and Mis18 are required for CENP-A localization at centromeres and form a complex that is conserved from fission yeast to human. Fission yeast sim1 mutants that alleviate kinetochore domain silencing are defective in Scm3(Sp), the ortholog of budding yeast Scm3(Sc). Scm3(Sp) depends on Mis16/18 for its centromere localization and like them is recruited to centromeres in late anaphase. Importantly, Scm3(Sp) coaffinity purifies with CENP-A(Cnp1) and associates with CENP-A(Cnp1) in vitro, yet localizes independently of intact CENP-A(Cnp1) chromatin and is differentially released from chromatin. While Scm3(Sc) has been proposed to form a unique hexameric nucleosome with CENP-A(Cse4) and histone H4 at budding yeast point centromeres, we favor a model in which Scm3(Sp) acts as a CENP-A(Cnp1) receptor/assembly factor, cooperating with Mis16 and Mis18 to receive CENP-A(Cnp1) from the Sim3 escort and mediate assembly of CENP-A(Cnp1) into subkinetochore chromatin.", "title": "Fission Yeast Scm3: A CENP-A Receptor Required for Integrity of Subkinetochore Chromatin" } ]
[ { "docid": "10189634", "text": "CENP-A chromatin forms the foundation for kinetochore assembly. Replication-independent incorporation of CENP-A at centromeres depends on its chaperone HJURP(Scm3), and Mis18 in vertebrates and fission yeast. The recruitment of Mis18 and HJURP(Scm3) to centromeres is cell cycle regulated. Vertebrate Mis18 associates with Mis18BP1(KNL2), which is critical for the recruitment of Mis18 and HJURP(Scm3). We identify two novel fission yeast Mis18-interacting proteins (Eic1 and Eic2), components of the Mis18 complex. Eic1 is essential to maintain Cnp1(CENP-A) at centromeres and is crucial for kinetochore integrity; Eic2 is dispensable. Eic1 also associates with Fta7(CENP-Q/Okp1), Cnl2(Nkp2) and Mal2(CENP-O/Mcm21), components of the constitutive CCAN/Mis6/Ctf19 complex. No Mis18BP1(KNL2) orthologue has been identified in fission yeast, consequently it remains unknown how the key Cnp1(CENP-A) loading factor Mis18 is recruited. Our findings suggest that Eic1 serves a function analogous to that of Mis18BP1(KNL2), thus representing the functional counterpart of Mis18BP1(KNL2) in fission yeast that connects with a module within the CCAN/Mis6/Ctf19 complex to allow the temporally regulated recruitment of the Mis18/Scm3(HJURP) Cnp1(CENP-A) loading factors. The novel interactions identified between CENP-A loading factors and the CCAN/Mis6/Ctf19 complex are likely to also contribute to CENP-A maintenance in other organisms.", "title": "Eic1 links Mis18 with the CCAN/Mis6/Ctf19 complex to promote CENP-A assembly" }, { "docid": "16686383", "text": "The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in eukaryotes. We identify posttranslational modifications of Saccharomyces cerevisiae CenH3, Cse4. Functional characterization of cse4 phosphorylation mutants shows growth and chromosome segregation defects when combined with kinetochore mutants okp1 and ame1. Using a phosphoserine-specific antibody, we show that the association of phosphorylated Cse4 with centromeres increases in response to defective microtubule attachment or reduced cohesion. We determine that evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 are reduced at centromeres in ipl1 strains in vivo, and in vitro assays show phosphorylation of Cse4 by Ipl1. Consistent with these results, we observe that a phosphomimetic cse4-4SD mutant suppresses the temperature-sensitive growth of ipl1-2 and Ipl1 substrate mutants dam1 spc34 and ndc80, which are defective for chromosome biorientation. Furthermore, cell biology approaches using a green fluorescent protein-labeled chromosome show that cse4-4SD suppresses chromosome segregation defects in dam1 spc34 strains. On the basis of these results, we propose that phosphorylation of Cse4 destabilizes defective kinetochores to promote biorientation and ensure faithful chromosome segregation. Taken together, our results provide a detailed analysis, in vivo and in vitro, of Cse4 phosphorylation and its role in promoting faithful chromosome segregation.", "title": "Phosphorylation of centromeric histone H3 variant regulates chromosome segregation in Saccharomyces cerevisiae" }, { "docid": "21425864", "text": "Glycosyl phosphatidylinositols (GPIs) anchor many proteins to the surface of eukaryotic cells and may also serve as sorting signals on proteins and participate in signal transduction. We have isolated a Saccharomyces cerevisiae GPI anchoring mutant, gpi1, using a colony screen for cells blocked in [3H]inositol incorporation into protein. The gpi1 mutant is defective in vitro in the synthesis of N-acetylglucosaminyl phosphatidylinositol, the first intermediate in GPI synthesis, and is also temperature-sensitive for growth. Completion of the first step in GPI assembly is therefore required for growth of the unicellular eukaryote S. cerevisiae. GPI synthesis could therefore be exploited as a target for antifungal or antiparasitic agents.", "title": "A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis." }, { "docid": "26117607", "text": "Down syndrome cell adhesion molecule (Dscam) seems likely to play a key role in the \"alternative adaptive immunity\" that has been reported in invertebrates. Dscam consists of a cytoplasmic tail that is involved in signal transduction and a hypervariable extracellular region that might use a pathogen recognition mechanism similar to that used by the vertebrate antibodies. In our previous paper, we isolated a unique tail-less form of Dscam from Litopenaeus vannamei. In this study, we report the first membrane-bound form of shrimp Dscam: PmDscam was isolated from Penaeus monodon, and it occurred in both membrane-bound and tail-less forms. Phylogenetic analysis showed that while the crustacean Dscams from shrimp and water flea did not share a single subclade, they were distinct from the invertebrate Dscam-like molecules and from the insecta Dscams. In the extracellular region, the variable regions of PmDscam were located in N-terminal Ig2, N-terminal Ig3 and the entire Ig7 domain. The PmDscam extracellular variants and transmembrane domain variants were produced by mutually exclusive alternative splicing events. The cytoplasmic tail variants were produced by exon inclusion/exclusion. Based on the genomic organization of Daphnia Dscam's cytoplasmic tail, we propose a model of how the shrimp Dscam genomic locus might use Type III polyadenylation to generate both the tail-less and membrane-bound forms.", "title": "Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported." }, { "docid": "17671145", "text": "The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa.", "title": "ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer" }, { "docid": "4312169", "text": "Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.", "title": "Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma" }, { "docid": "13293033", "text": "Down syndrome (DS) is the most frequent cause of human congenital mental retardation. Cognitive deficits in DS result from perturbations of normal cellular processes both during development and in adult tissues, but the mechanisms underlying DS etiology remain poorly understood. To assess the ability of induced pluripotent stem cells (iPSCs) to model DS phenotypes, as a prototypical complex human disease, we generated bona fide DS and wild-type (WT) nonviral iPSCs by episomal reprogramming. DS iPSCs selectively overexpressed chromosome 21 genes, consistent with gene dosage, which was associated with deregulation of thousands of genes throughout the genome. DS and WT iPSCs were neurally converted at >95% efficiency and had remarkably similar lineage potency, differentiation kinetics, proliferation, and axon extension at early time points. However, at later time points DS cultures showed a twofold bias toward glial lineages. Moreover, DS neural cultures were up to two times more sensitive to oxidative stress-induced apoptosis, and this could be prevented by the antioxidant N-acetylcysteine. Our results reveal a striking complexity in the genetic alterations caused by trisomy 21 that are likely to underlie DS developmental phenotypes, and indicate a central role for defective early glial development in establishing developmental defects in DS brains. Furthermore, oxidative stress sensitivity is likely to contribute to the accelerated neurodegeneration seen in DS, and we provide proof of concept for screening corrective therapeutics using DS iPSCs and their derivatives. Nonviral DS iPSCs can therefore model features of complex human disease in vitro and provide a renewable and ethically unencumbered discovery platform.", "title": "Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology." }, { "docid": "26625002", "text": "The outer membrane channel TolC is a key component of multidrug efflux and type I secretion transporters in Escherichia coli. Mutational inactivation of TolC renders cells highly susceptible to antibiotics and leads to defects in secretion of protein toxins. Despite impairment of various transport functions, no growth defects were reported in cells lacking TolC. Unexpectedly, we found that the loss of TolC notably impairs cell division and growth in minimal glucose medium. The TolC-dependent phenotype was further exacerbated by the loss of ygiB and ygiC genes expressed in the same operon as tolC and their homologues yjfM and yjfC located elsewhere on the chromosome. Our results show that this growth deficiency is caused by depletion of the critical metabolite NAD(+) and high NADH/NAD(+) ratios. The increased amounts of PspA and decreased rates of NADH oxidation in Delta tolC membranes indicated stress on the membrane and dissipation of a proton motive force. We conclude that inactivation of TolC triggers metabolic shutdown in E. coli cells grown in minimal glucose medium. The Delta tolC phenotype is partially rescued by YgiBC and YjfMC, which have parallel functions independent from TolC.", "title": "Metabolic shutdown in Escherichia coli cells lacking the outer membrane channel TolC." }, { "docid": "24725136", "text": "BACKGROUND The combination of ataxia and hypogonadism was first described more than a century ago, but its genetic basis has remained elusive. \n METHODS We performed whole-exome sequencing in a patient with ataxia and hypogonadotropic hypogonadism, followed by targeted sequencing of candidate genes in similarly affected patients. Neurologic and reproductive endocrine phenotypes were characterized in detail. The effects of sequence variants and the presence of an epistatic interaction were tested in a zebrafish model. \n RESULTS Digenic homozygous mutations in RNF216 and OTUD4, which encode a ubiquitin E3 ligase and a deubiquitinase, respectively, were found in three affected siblings in a consanguineous family. Additional screening identified compound heterozygous truncating mutations in RNF216 in an unrelated patient and single heterozygous deleterious mutations in four other patients. Knockdown of rnf216 or otud4 in zebrafish embryos induced defects in the eye, optic tectum, and cerebellum; combinatorial suppression of both genes exacerbated these phenotypes, which were rescued by nonmutant, but not mutant, human RNF216 or OTUD4 messenger RNA. All patients had progressive ataxia and dementia. Neuronal loss was observed in cerebellar pathways and the hippocampus; surviving hippocampal neurons contained ubiquitin-immunoreactive intranuclear inclusions. Defects were detected at the hypothalamic and pituitary levels of the reproductive endocrine axis. \n CONCLUSIONS The syndrome of hypogonadotropic hypogonadism, ataxia, and dementia can be caused by inactivating mutations in RNF216 or by the combination of mutations in RNF216 and OTUD4. These findings link disordered ubiquitination to neurodegeneration and reproductive dysfunction and highlight the power of whole-exome sequencing in combination with functional studies to unveil genetic interactions that cause disease. (Funded by the National Institutes of Health and others.).", "title": "Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination." }, { "docid": "7717468", "text": "Microbial survival in a host is usually dependent on the ability of a pathogen to undergo changes that promote escape from host defense mechanisms. The human-pathogenic fungus Cryptococcus neoformans undergoes phenotypic switching in vivo that promotes persistence in tissue. By microarray and real-time PCR analyses, the allergen 1 gene (ALL1) was found to be downregulated in the hypervirulent mucoid switch variant, both during logarithmic growth and during intracellular growth in macrophages. The ALL1 gene encodes a small cytoplasmic protein that is involved in capsule formation. Growth of an all1Delta gene deletion mutant was normal. Similar to cells of the mucoid switch variant, all1Delta cells produced a larger polysaccharide capsule than cells of the smooth parent and the complemented strain produced, and the enlarged capsule inhibited macrophage phagocytosis. The mutant exhibited a modest defect in capsule induction compared to all of the other variants. In animal models the phenotype of the all1Delta mutant mimicked the hypervirulent phenotype of the mucoid switch variant, which is characterized by decreased host survival and elevated intracranial pressure. Decreased survival is likely the result of both an ineffective cell-mediated immune response and impaired phagocytosis by macrophages. Consequently, we concluded that, unlike loss of most virulence-associated genes, where loss of gene function results in attenuated virulence, loss of the ALL1 gene enhances virulence by altering the host-pathogen interaction and thereby impairing clearance. Our data identified the first cryptococcal gene associated with elevated intracranial pressure and support the hypothesis that an environmental opportunistic pathogen has modified its virulence in vivo by epigenetic downregulation of gene function.", "title": "Loss of allergen 1 confers a hypervirulent phenotype that resembles mucoid switch variants of Cryptococcus neoformans." }, { "docid": "14471161", "text": "Circadian disruption accelerates cancer progression, whereas circadian reinforcement could halt it. Mice with P03 pancreatic adenocarcinoma (n = 77) were synchronized and fed ad libitum (AL) or with meal timing (MT) from Zeitgeber time (ZT) 2 to ZT6 with normal or fat diet. Tumor gene expression profiling was determined with DNA microarrays at endogenous circadian time (CT) 4 and CT16. Circadian mRNA expression patterns were determined for clock genes Rev-erbalpha, Per2, and Bmal1, cellular stress genes Hspa8 and Cirbp, and cyclin A2 gene Ccna2 in liver and tumor. The 24-hour patterns in telemetered rest-activity and body temperature and plasma corticosterone and insulin-like growth factor-I (IGF-I) were assessed. We showed that MT inhibited cancer growth by approximately 40% as compared with AL (P = 0.011) irrespective of calorie intake. Clock gene transcription remained arrhythmic in tumors irrespective of feeding schedule or diet. Yet, MT upregulated or downregulated the expression of 423 tumor genes, according to CT. Moreover, 36 genes involved in cellular stress, cell cycle, and metabolism were upregulated at one CT and downregulated 12 h apart. MT induced >10-fold circadian expression of Hspa8, Cirbp, and Ccna2 in tumors. Corticosterone or IGF-I patterns played no role in tumor growth inhibition. In contrast, MT consistently doubled the circadian amplitude of body temperature. Peak and trough respectively corresponded to peak expressions of Hspa8 and Cirbp in tumors. The reinforcement of the host circadian timing system with MT induced 24-hour rhythmic expression of critical genes in clock-deficient tumors, which translated into cancer growth inhibition. Targeting circadian clocks represents a novel potential challenge for cancer therapeutics.", "title": "Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing." }, { "docid": "29564505", "text": "IMPORTANCE Exacerbations of respiratory symptoms in chronic obstructive pulmonary disease (COPD) have profound and long-lasting adverse effects on patients. \n OBJECTIVE To test the hypothesis that elevated levels of inflammatory biomarkers in individuals with stable COPD are associated with an increased risk of having exacerbations. \n DESIGN, SETTING, AND PARTICIPANTS Prospective cohort study examining 61,650 participants with spirometry measurements from the Copenhagen City Heart Study (2001-2003) and the Copenhagen General Population Study (2003-2008). Of these, 6574 had COPD, defined as a ratio between forced expiratory volume in 1 second (FEV1) and forced vital capacity below 0.7. \n MAIN OUTCOMES AND MEASURES Baseline levels of C-reactive protein (CRP) and fibrinogen and leukocyte count were measured in participants at a time when they were not experiencing symptoms of exacerbations. Exacerbations were recorded and defined as short-course treatment with oral corticosteroids alone or in combination with an antibiotic or as a hospital admission due to COPD. Levels of CRP and fibrinogen and leukocyte count were defined as high or low according to cut points of 3 mg/L, 14 μmol/L, and 9 ×10(9)/L, respectively. \n RESULTS During follow-up, 3083 exacerbations were recorded (mean, 0.5/participant). In the first year of follow-up, multivariable-adjusted odds ratios for having frequent exacerbations were 1.2 (95% CI, 0.7-2.2; 17 events/1000 person-years) for individuals with 1 high biomarker, 1.7 (95% CI, 0.9-3.2; 32 events/1000 person-years) for individuals with 2 high biomarkers, and 3.7 (95% CI, 1.9-7.4; 81 events/1000 person-years) for individuals with 3 high biomarkers compared with individuals who had no elevated biomarkers (9 events/1000 person-years; trend: P = 2 × 10(-5)). Corresponding hazard ratios using maximum follow-up time were 1.4 (95% CI, 1.1-1.8), 1.6 (95% CI, 1.3-2.2), and 2.5 (95% CI, 1.8-3.4), respectively (trend: P = 1 × 10(-8)). The addition of inflammatory biomarkers to a basic model including age, sex, FEV1 percent predicted, smoking, use of any inhaled medication, body mass index, history of previous exacerbations, and time since most recent prior exacerbation improved the C statistics from 0.71 to 0.73 (comparison: P = 9 × 10(-5)). Relative risks were consistent in those with milder COPD, in those with no history of frequent exacerbations, and in the 2 studies separately. The highest 5-year absolute risks of having frequent exacerbations in those with 3 high biomarkers (vs no high biomarkers) were 62% (vs 24%) for those with Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades C-D (n = 558), 98% (vs 64%) in those with a history of frequent exacerbations (n = 127), and 52% (vs 15%) for those with GOLD grades 3-4 (n = 465). \n CONCLUSIONS AND RELEVANCE Simultaneously elevated levels of CRP and fibrinogen and leukocyte count in individuals with COPD were associated with increased risk of having exacerbations, even in those with milder COPD and in those without previous exacerbations. Further investigation is needed to determine the clinical value of these biomarkers for risk stratification.", "title": "Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease." }, { "docid": "23117928", "text": "Infection of Sulfolobus islandicus REY15A with mixtures of different Sulfolobus viruses, including STSV2, did not induce spacer acquisition by the host CRISPR immune system. However, coinfection with the tailed fusiform viruses SMV1 and STSV2 generated hyperactive spacer acquisition in both CRISPR loci, exclusively from STSV2, with the resultant loss of STSV2 but not SMV1. SMV1 was shown to activate adaptation while itself being resistant to CRISPR-mediated adaptation and DNA interference. Exceptionally, a single clone S-1 isolated from an SMV1 + STSV2-infected culture, that carried STSV2-specific spacers and had lost STSV2 but not SMV1, acquired spacers from SMV1. This effect was also reproducible on reinfecting wild-type host cells with a variant SMV1 isolated from the S-1 culture. The SMV1 variant lacked a virion protein ORF114 that was shown to bind DNA. This study also provided evidence for: (i) limits on the maximum sizes of CRISPR loci; (ii) spacer uptake strongly retarding growth of infected cultures; (iii) protospacer selection being essentially random and non-directional, and (iv) the reversible uptake of spacers from STSV2 and SMV1. A hypothesis is presented to explain the interactive conflicts between SMV1 and the host CRISPR immune system.", "title": "Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus." }, { "docid": "6766459", "text": "Fever is commonly used to diagnose disease and is consistently associated with increased mortality in critically ill patients. However, the molecular controls of elevated body temperature are poorly understood. We discovered that the expression of RNA-binding motif protein 3 (RBM3), known to respond to cold stress and to modulate microRNA (miRNA) expression, was reduced in 30 patients with fever, and in THP-1-derived macrophages maintained at a fever-like temperature (40 °C). Notably, RBM3 expression is reduced during fever whether or not infection is demonstrable. Reduced RBM3 expression resulted in increased expression of RBM3-targeted temperature-sensitive miRNAs, we termed thermomiRs. ThermomiRs such as miR-142-5p and miR-143 in turn target endogenous pyrogens including IL-6, IL6ST, TLR2, PGE2 and TNF to complete a negative feedback mechanism, which may be crucial to prevent pathological hyperthermia. Using normal PBMCs that were exogenously exposed to fever-like temperature (40 °C), we further demonstrate the trend by which decreased levels of RBM3 were associated with increased levels of miR-142-5p and miR-143 and vice versa over a 24 h time course. Collectively, our results indicate the existence of a negative feedback loop that regulates fever via reduced RBM3 levels and increased expression of miR-142-5p and miR-143.", "title": "RBM3 regulates temperature sensitive miR-142–5p and miR-143 (thermomiRs), which target immune genes and control fever" }, { "docid": "26596106", "text": "In the yeast S. cerevisiae, ribosome assembly is linked to environmental conditions by the coordinate transcriptional regulation of genes required for ribosome biogenesis. In this study we show that two nonessential stress-responsive genes, YAR1 and LTV1, function in 40S subunit production. We provide genetic and biochemical evidence that Yar1, a small ankyrin-repeat protein, physically interacts with RpS3, a component of the 40S subunit, and with Ltv1, a protein recently identified as a substoichiometric component of a 43S preribosomal particle. We demonstrate that cells lacking YAR1 or LTV1 are hypersensitive to particular protein synthesis inhibitors and exhibit aberrant polysome profiles, with a reduced absolute number of 40S subunits and an excess of free 60S subunits. Surprisingly, both mutants are also hypersensitive to a variety of environmental stress conditions. Overexpression of RPS3 suppresses both the stress sensitivity and the ribosome biogenesis defect of Deltayar1 mutants, but does not suppress either defect in Deltaltv1 mutants. We propose that YAR1 and LTV1 play distinct, nonessential roles in 40S subunit production. The stress-sensitive phenotypes of strains lacking these genes reveal a hitherto unknown link between ribosome biogenesis factors and environmental stress sensitivity.", "title": "Genetic and biochemical interactions among Yar1, Ltv1 and Rps3 define novel links between environmental stress and ribosome biogenesis in Saccharomyces cerevisiae." }, { "docid": "34016944", "text": "PURPOSE Tyrosine kinase (TK) inhibitors are emerging as a promising new approach to the treatment of HER overexpressing tumors, however optimal use of these agents awaits further definition of the downstream signaling pathways that mediate their effects. We reported previously that both EGFR- and Her2-overexpressing tumors are sensitive to the new EGFR-selective TK inhibitor gefitinib (ZD1839, \"Iressa\"), and sensitivity to this agent correlated with its ability to down-regulate Akt. However, EGFR-overexpressing MDA-468 cells, which lack PTEN function, are resistant to ZD1839, and ZD1839 is unable to down-regulate Akt activity in these cells. EXPERIMENTAL DESIGN To study the role of PTEN function, we generated MDA468 cells with tet-inducible PTEN expression. \n RESULTS We show here that the resistance of MDA-468 cells to ZD1839 is attributable to EGFR-independent constitutive Akt activation caused by loss of PTEN function in these cells. Reconstitution of PTEN function through tet-inducible expression restores ZD1839 sensitivity to these cells and reestablishes EGFR-stimulated Akt signaling. Although restoration of PTEN function to tumors is difficult to implement clinically, much of the effects of PTEN loss are attributable to overactive PI3K/Akt pathway signaling, and this overactivity can be modulated by pharmacologic approaches. We show here that pharmacologic down-regulation of constitutive PI3K/Akt pathway signaling using the PI3K inhibitor LY294002 similarly restores EGFR-stimulated Akt signaling and sensitizes MDA-468 cells to ZD1839. \n CONCLUSIONS Sensitivity to ZD1839 requires intact growth factor receptor-stimulated Akt signaling activity. PTEN loss leads to uncoupling of this signaling pathway and results in ZD1839 resistance, which can be reversed with reintroduction of PTEN or pharmacologic down-regulation of constitutive PI3K/Akt pathway activity. These data have important predictive and therapeutic clinical implications.", "title": "Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3'-kinase/Akt pathway signaling." }, { "docid": "22362025", "text": "Small regulatory RNAs are key regulators of gene expression. One class of small regulatory RNAs, termed the endogenous small interfering RNAs (endo siRNAs), is thought to negatively regulate cellular transcripts via an RNA interference (RNAi)-like mechanism termed endogenous RNAi (endo RNAi). A complex of proteins composed of ERI-1/3/5, RRF-3, and DICER (the ERI/DICER complex) mediates endo RNAi processes in Caenorhabditis elegans. We conducted a genetic screen to identify additional components of the endo RNAi machinery. Our screen recovered alleles of eri-9, which encodes a novel DICER-interacting protein, and a missense mutation within the helicase domain of DICER [DCR-1(G492R)]. ERI-9(-) and DCR-1(G492) animals exhibit defects in endo siRNA expression and a concomitant failure to regulate mRNAs that exhibit sequence homology to these endo siRNAs, indicating that ERI-9 and the DCR-1 helicase domain function in the C. elegans endo RNAi pathway. We define a subset of Eri mutant animals (including eri-1, rrf-3, eri-3, and dcr-1, but not eri-9 or ergo-1) that exhibit temperature-sensitive, sperm-specific sterility and defects in X chromosome segregation. Among these mutants we find multiple aberrations in sperm development beginning with cytokinesis and extending through terminal differentiation. These results identify novel components of the endo RNAi machinery, demonstrate differential requirements for the Eri factors in the sperm-producing germline, and begin to delineate the functional requirement for the ERI/DICER complex in sperm development.", "title": "Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in Caenorhabditis elegans." }, { "docid": "9315213", "text": "BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. \n METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. \n CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels.", "title": "Fibroblast Growth Factor 21 Prevents Atherosclerosis by Suppression of Hepatic Sterol Regulatory Element-Binding Protein-2 and Induction of Adiponectin in Mice" }, { "docid": "10169908", "text": "PURPOSE We have previously identified solute-linked carrier family A1 member 5 (SLC1A5) as an overexpressed protein in a shotgun proteomic analysis of stage I non-small cell lung cancer (NSCLC) when compared with matched controls. We hypothesized that overexpression of SLC1A5 occurs to meet the metabolic demand for lung cancer cell growth and survival. EXPERIMENTAL DESIGN To test our hypothesis, we first analyzed the protein expression of SLC1A5 in archival lung cancer tissues by immunohistochemistry and immunoblotting (N = 98) and in cell lines (N = 36). To examine SLC1A5 involvement in amino acid transportation, we conducted kinetic analysis of l-glutamine (Gln) uptake in lung cancer cell lines in the presence and absence of a pharmacologic inhibitor of SLC1A5, gamma-l-Glutamyl-p-Nitroanilide (GPNA). Finally, we examined the effect of Gln deprivation and uptake inhibition on cell growth, cell-cycle progression, and growth signaling pathways of five lung cancer cell lines. \n RESULTS Our results show that (i) SLC1A5 protein is expressed in 95% of squamous cell carcinomas (SCC), 74% of adenocarcinomas (ADC), and 50% of neuroendocrine tumors; (ii) SLC1A5 is located at the cytoplasmic membrane and is significantly associated with SCC histology and male gender; (iii) 68% of Gln is transported in a Na(+)-dependent manner, 50% of which is attributed to SLC1A5 activity; and (iv) pharmacologic and genetic targeting of SLC1A5 decreased cell growth and viability in lung cancer cells, an effect mediated in part by mTOR signaling. \n CONCLUSIONS These results suggest that SLC1A5 plays a key role in Gln transport controlling lung cancer cells' metabolism, growth, and survival.", "title": "SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival." } ]
897
Overexpressing Cnp1 N-tail variants rescues the temperature-sensitive growth defect of scm3-139.
[ { "docid": "14338915", "text": "The mechanisms ensuring specific incorporation of CENP-A at centromeres are poorly understood. Mis16 and Mis18 are required for CENP-A localization at centromeres and form a complex that is conserved from fission yeast to human. Fission yeast sim1 mutants that alleviate kinetochore domain silencing are defective in Scm3(Sp), the ortholog of budding yeast Scm3(Sc). Scm3(Sp) depends on Mis16/18 for its centromere localization and like them is recruited to centromeres in late anaphase. Importantly, Scm3(Sp) coaffinity purifies with CENP-A(Cnp1) and associates with CENP-A(Cnp1) in vitro, yet localizes independently of intact CENP-A(Cnp1) chromatin and is differentially released from chromatin. While Scm3(Sc) has been proposed to form a unique hexameric nucleosome with CENP-A(Cse4) and histone H4 at budding yeast point centromeres, we favor a model in which Scm3(Sp) acts as a CENP-A(Cnp1) receptor/assembly factor, cooperating with Mis16 and Mis18 to receive CENP-A(Cnp1) from the Sim3 escort and mediate assembly of CENP-A(Cnp1) into subkinetochore chromatin.", "title": "Fission Yeast Scm3: A CENP-A Receptor Required for Integrity of Subkinetochore Chromatin" } ]
[ { "docid": "10189634", "text": "CENP-A chromatin forms the foundation for kinetochore assembly. Replication-independent incorporation of CENP-A at centromeres depends on its chaperone HJURP(Scm3), and Mis18 in vertebrates and fission yeast. The recruitment of Mis18 and HJURP(Scm3) to centromeres is cell cycle regulated. Vertebrate Mis18 associates with Mis18BP1(KNL2), which is critical for the recruitment of Mis18 and HJURP(Scm3). We identify two novel fission yeast Mis18-interacting proteins (Eic1 and Eic2), components of the Mis18 complex. Eic1 is essential to maintain Cnp1(CENP-A) at centromeres and is crucial for kinetochore integrity; Eic2 is dispensable. Eic1 also associates with Fta7(CENP-Q/Okp1), Cnl2(Nkp2) and Mal2(CENP-O/Mcm21), components of the constitutive CCAN/Mis6/Ctf19 complex. No Mis18BP1(KNL2) orthologue has been identified in fission yeast, consequently it remains unknown how the key Cnp1(CENP-A) loading factor Mis18 is recruited. Our findings suggest that Eic1 serves a function analogous to that of Mis18BP1(KNL2), thus representing the functional counterpart of Mis18BP1(KNL2) in fission yeast that connects with a module within the CCAN/Mis6/Ctf19 complex to allow the temporally regulated recruitment of the Mis18/Scm3(HJURP) Cnp1(CENP-A) loading factors. The novel interactions identified between CENP-A loading factors and the CCAN/Mis6/Ctf19 complex are likely to also contribute to CENP-A maintenance in other organisms.", "title": "Eic1 links Mis18 with the CCAN/Mis6/Ctf19 complex to promote CENP-A assembly" }, { "docid": "16686383", "text": "The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in eukaryotes. We identify posttranslational modifications of Saccharomyces cerevisiae CenH3, Cse4. Functional characterization of cse4 phosphorylation mutants shows growth and chromosome segregation defects when combined with kinetochore mutants okp1 and ame1. Using a phosphoserine-specific antibody, we show that the association of phosphorylated Cse4 with centromeres increases in response to defective microtubule attachment or reduced cohesion. We determine that evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 are reduced at centromeres in ipl1 strains in vivo, and in vitro assays show phosphorylation of Cse4 by Ipl1. Consistent with these results, we observe that a phosphomimetic cse4-4SD mutant suppresses the temperature-sensitive growth of ipl1-2 and Ipl1 substrate mutants dam1 spc34 and ndc80, which are defective for chromosome biorientation. Furthermore, cell biology approaches using a green fluorescent protein-labeled chromosome show that cse4-4SD suppresses chromosome segregation defects in dam1 spc34 strains. On the basis of these results, we propose that phosphorylation of Cse4 destabilizes defective kinetochores to promote biorientation and ensure faithful chromosome segregation. Taken together, our results provide a detailed analysis, in vivo and in vitro, of Cse4 phosphorylation and its role in promoting faithful chromosome segregation.", "title": "Phosphorylation of centromeric histone H3 variant regulates chromosome segregation in Saccharomyces cerevisiae" }, { "docid": "21425864", "text": "Glycosyl phosphatidylinositols (GPIs) anchor many proteins to the surface of eukaryotic cells and may also serve as sorting signals on proteins and participate in signal transduction. We have isolated a Saccharomyces cerevisiae GPI anchoring mutant, gpi1, using a colony screen for cells blocked in [3H]inositol incorporation into protein. The gpi1 mutant is defective in vitro in the synthesis of N-acetylglucosaminyl phosphatidylinositol, the first intermediate in GPI synthesis, and is also temperature-sensitive for growth. Completion of the first step in GPI assembly is therefore required for growth of the unicellular eukaryote S. cerevisiae. GPI synthesis could therefore be exploited as a target for antifungal or antiparasitic agents.", "title": "A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis." }, { "docid": "26117607", "text": "Down syndrome cell adhesion molecule (Dscam) seems likely to play a key role in the \"alternative adaptive immunity\" that has been reported in invertebrates. Dscam consists of a cytoplasmic tail that is involved in signal transduction and a hypervariable extracellular region that might use a pathogen recognition mechanism similar to that used by the vertebrate antibodies. In our previous paper, we isolated a unique tail-less form of Dscam from Litopenaeus vannamei. In this study, we report the first membrane-bound form of shrimp Dscam: PmDscam was isolated from Penaeus monodon, and it occurred in both membrane-bound and tail-less forms. Phylogenetic analysis showed that while the crustacean Dscams from shrimp and water flea did not share a single subclade, they were distinct from the invertebrate Dscam-like molecules and from the insecta Dscams. In the extracellular region, the variable regions of PmDscam were located in N-terminal Ig2, N-terminal Ig3 and the entire Ig7 domain. The PmDscam extracellular variants and transmembrane domain variants were produced by mutually exclusive alternative splicing events. The cytoplasmic tail variants were produced by exon inclusion/exclusion. Based on the genomic organization of Daphnia Dscam's cytoplasmic tail, we propose a model of how the shrimp Dscam genomic locus might use Type III polyadenylation to generate both the tail-less and membrane-bound forms.", "title": "Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported." }, { "docid": "18676539", "text": "FANCM is a component of the Fanconi anemia (FA) core complex and one FA patient (EUFA867) with biallelic mutations in FANCM has been described. Strikingly, we found that EUFA867 also carries biallelic mutations in FANCA. After correcting the FANCA defect in EUFA867 lymphoblasts, a \"clean\" FA-M cell line was generated. These cells were hypersensitive to mitomycin C, but unlike cells defective in other core complex members, FANCM(-/-) cells were proficient in monoubiquitinating FANCD2 and were sensitive to the topoisomerase inhibitor camptothecin, a feature shared only with the FA subtype D1 and N. In addition, FANCM(-/-) cells were sensitive to UV light. FANCM and a C-terminal deletion mutant rescued the cross-linker sensitivity of FANCM(-/-) cells, whereas a FANCM ATPase mutant did not. Because both mutants restored the formation of FANCD2 foci, we conclude that FANCM functions in an FA core complex-dependent and -independent manner.", "title": "Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M." }, { "docid": "57574395", "text": "Defective brain hormonal signaling has been associated with Alzheimer's disease (AD), a disorder characterized by synapse and memory failure. Irisin is an exercise-induced myokine released on cleavage of the membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5), also expressed in the hippocampus. Here we show that FNDC5/irisin levels are reduced in AD hippocampi and cerebrospinal fluid, and in experimental AD models. Knockdown of brain FNDC5/irisin impairs long-term potentiation and novel object recognition memory in mice. Conversely, boosting brain levels of FNDC5/irisin rescues synaptic plasticity and memory in AD mouse models. Peripheral overexpression of FNDC5/irisin rescues memory impairment, whereas blockade of either peripheral or brain FNDC5/irisin attenuates the neuroprotective actions of physical exercise on synaptic plasticity and memory in AD mice. By showing that FNDC5/irisin is an important mediator of the beneficial effects of exercise in AD models, our findings place FNDC5/irisin as a novel agent capable of opposing synapse failure and memory impairment in AD.", "title": "Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models" }, { "docid": "17671145", "text": "The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa.", "title": "ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer" }, { "docid": "4312169", "text": "Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.", "title": "Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma" }, { "docid": "13293033", "text": "Down syndrome (DS) is the most frequent cause of human congenital mental retardation. Cognitive deficits in DS result from perturbations of normal cellular processes both during development and in adult tissues, but the mechanisms underlying DS etiology remain poorly understood. To assess the ability of induced pluripotent stem cells (iPSCs) to model DS phenotypes, as a prototypical complex human disease, we generated bona fide DS and wild-type (WT) nonviral iPSCs by episomal reprogramming. DS iPSCs selectively overexpressed chromosome 21 genes, consistent with gene dosage, which was associated with deregulation of thousands of genes throughout the genome. DS and WT iPSCs were neurally converted at >95% efficiency and had remarkably similar lineage potency, differentiation kinetics, proliferation, and axon extension at early time points. However, at later time points DS cultures showed a twofold bias toward glial lineages. Moreover, DS neural cultures were up to two times more sensitive to oxidative stress-induced apoptosis, and this could be prevented by the antioxidant N-acetylcysteine. Our results reveal a striking complexity in the genetic alterations caused by trisomy 21 that are likely to underlie DS developmental phenotypes, and indicate a central role for defective early glial development in establishing developmental defects in DS brains. Furthermore, oxidative stress sensitivity is likely to contribute to the accelerated neurodegeneration seen in DS, and we provide proof of concept for screening corrective therapeutics using DS iPSCs and their derivatives. Nonviral DS iPSCs can therefore model features of complex human disease in vitro and provide a renewable and ethically unencumbered discovery platform.", "title": "Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology." }, { "docid": "30675656", "text": "Frizzled family proteins have been described as receptors of Wnt signaling molecules. In Drosophila, the two known Frizzled proteins are associated with distinct developmental processes. Genesis of epithelial planar polarity requires Frizzled, whereas Dfz2 affects morphogenesis by wingless-mediated signaling. Dishevelled is required in both signaling pathways. Here, we use genetic and overexpression assays to show that Dishevelled activates JNK cascades. Rescue analysis reveals different protein domain requirements in Dishevelled for the two pathways; the C-terminal DEP domain is essential to rescue planar polarity defects and induce JNK signaling. Furthermore, the planar polarity-specific dsh1 allele is mutated in the DEP domain. Our results indicate that different Wnt/Fz signals activate distinct intracellular pathways, and Dishevelled discriminates among them by distinct domain interactions.", "title": "Dishevelled Activates JNK and Discriminates between JNK Pathways in Planar Polarity and wingless Signaling" }, { "docid": "2356950", "text": "Methyl-CpG binding protein 1 (MBD1) regulates gene expression via a DNA methylation-mediated epigenetic mechanism. We have previously demonstrated that MBD1 deficiency impairs adult neural stem/progenitor cell (aNSC) differentiation and neurogenesis, but the underlying mechanism was unclear. Here, we show that MBD1 regulates the expression of several microRNAs in aNSCs and, specifically, that miR-184 is directly repressed by MBD1. High levels of miR-184 promoted proliferation but inhibited differentiation of aNSCs, whereas inhibition of miR-184 rescued the phenotypes associated with MBD1 deficiency. We further found that miR-184 regulates the expression of Numblike (Numbl), a known regulator of brain development, by binding to the 3'-UTR of Numbl mRNA and affecting its translation. Expression of exogenous Numbl could rescue the aNSC defects that result from either miR-184 overexpression or MBD1 deficiency. Therefore, MBD1, miR-184, and Numbl form a regulatory network that helps control the balance between proliferation and differentiation of aNSCs.", "title": "Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation." }, { "docid": "23160444", "text": "Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.", "title": "Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones." }, { "docid": "7717468", "text": "Microbial survival in a host is usually dependent on the ability of a pathogen to undergo changes that promote escape from host defense mechanisms. The human-pathogenic fungus Cryptococcus neoformans undergoes phenotypic switching in vivo that promotes persistence in tissue. By microarray and real-time PCR analyses, the allergen 1 gene (ALL1) was found to be downregulated in the hypervirulent mucoid switch variant, both during logarithmic growth and during intracellular growth in macrophages. The ALL1 gene encodes a small cytoplasmic protein that is involved in capsule formation. Growth of an all1Delta gene deletion mutant was normal. Similar to cells of the mucoid switch variant, all1Delta cells produced a larger polysaccharide capsule than cells of the smooth parent and the complemented strain produced, and the enlarged capsule inhibited macrophage phagocytosis. The mutant exhibited a modest defect in capsule induction compared to all of the other variants. In animal models the phenotype of the all1Delta mutant mimicked the hypervirulent phenotype of the mucoid switch variant, which is characterized by decreased host survival and elevated intracranial pressure. Decreased survival is likely the result of both an ineffective cell-mediated immune response and impaired phagocytosis by macrophages. Consequently, we concluded that, unlike loss of most virulence-associated genes, where loss of gene function results in attenuated virulence, loss of the ALL1 gene enhances virulence by altering the host-pathogen interaction and thereby impairing clearance. Our data identified the first cryptococcal gene associated with elevated intracranial pressure and support the hypothesis that an environmental opportunistic pathogen has modified its virulence in vivo by epigenetic downregulation of gene function.", "title": "Loss of allergen 1 confers a hypervirulent phenotype that resembles mucoid switch variants of Cryptococcus neoformans." }, { "docid": "14471161", "text": "Circadian disruption accelerates cancer progression, whereas circadian reinforcement could halt it. Mice with P03 pancreatic adenocarcinoma (n = 77) were synchronized and fed ad libitum (AL) or with meal timing (MT) from Zeitgeber time (ZT) 2 to ZT6 with normal or fat diet. Tumor gene expression profiling was determined with DNA microarrays at endogenous circadian time (CT) 4 and CT16. Circadian mRNA expression patterns were determined for clock genes Rev-erbalpha, Per2, and Bmal1, cellular stress genes Hspa8 and Cirbp, and cyclin A2 gene Ccna2 in liver and tumor. The 24-hour patterns in telemetered rest-activity and body temperature and plasma corticosterone and insulin-like growth factor-I (IGF-I) were assessed. We showed that MT inhibited cancer growth by approximately 40% as compared with AL (P = 0.011) irrespective of calorie intake. Clock gene transcription remained arrhythmic in tumors irrespective of feeding schedule or diet. Yet, MT upregulated or downregulated the expression of 423 tumor genes, according to CT. Moreover, 36 genes involved in cellular stress, cell cycle, and metabolism were upregulated at one CT and downregulated 12 h apart. MT induced >10-fold circadian expression of Hspa8, Cirbp, and Ccna2 in tumors. Corticosterone or IGF-I patterns played no role in tumor growth inhibition. In contrast, MT consistently doubled the circadian amplitude of body temperature. Peak and trough respectively corresponded to peak expressions of Hspa8 and Cirbp in tumors. The reinforcement of the host circadian timing system with MT induced 24-hour rhythmic expression of critical genes in clock-deficient tumors, which translated into cancer growth inhibition. Targeting circadian clocks represents a novel potential challenge for cancer therapeutics.", "title": "Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing." }, { "docid": "23117928", "text": "Infection of Sulfolobus islandicus REY15A with mixtures of different Sulfolobus viruses, including STSV2, did not induce spacer acquisition by the host CRISPR immune system. However, coinfection with the tailed fusiform viruses SMV1 and STSV2 generated hyperactive spacer acquisition in both CRISPR loci, exclusively from STSV2, with the resultant loss of STSV2 but not SMV1. SMV1 was shown to activate adaptation while itself being resistant to CRISPR-mediated adaptation and DNA interference. Exceptionally, a single clone S-1 isolated from an SMV1 + STSV2-infected culture, that carried STSV2-specific spacers and had lost STSV2 but not SMV1, acquired spacers from SMV1. This effect was also reproducible on reinfecting wild-type host cells with a variant SMV1 isolated from the S-1 culture. The SMV1 variant lacked a virion protein ORF114 that was shown to bind DNA. This study also provided evidence for: (i) limits on the maximum sizes of CRISPR loci; (ii) spacer uptake strongly retarding growth of infected cultures; (iii) protospacer selection being essentially random and non-directional, and (iv) the reversible uptake of spacers from STSV2 and SMV1. A hypothesis is presented to explain the interactive conflicts between SMV1 and the host CRISPR immune system.", "title": "Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus." }, { "docid": "26625002", "text": "The outer membrane channel TolC is a key component of multidrug efflux and type I secretion transporters in Escherichia coli. Mutational inactivation of TolC renders cells highly susceptible to antibiotics and leads to defects in secretion of protein toxins. Despite impairment of various transport functions, no growth defects were reported in cells lacking TolC. Unexpectedly, we found that the loss of TolC notably impairs cell division and growth in minimal glucose medium. The TolC-dependent phenotype was further exacerbated by the loss of ygiB and ygiC genes expressed in the same operon as tolC and their homologues yjfM and yjfC located elsewhere on the chromosome. Our results show that this growth deficiency is caused by depletion of the critical metabolite NAD(+) and high NADH/NAD(+) ratios. The increased amounts of PspA and decreased rates of NADH oxidation in Delta tolC membranes indicated stress on the membrane and dissipation of a proton motive force. We conclude that inactivation of TolC triggers metabolic shutdown in E. coli cells grown in minimal glucose medium. The Delta tolC phenotype is partially rescued by YgiBC and YjfMC, which have parallel functions independent from TolC.", "title": "Metabolic shutdown in Escherichia coli cells lacking the outer membrane channel TolC." }, { "docid": "24725136", "text": "BACKGROUND The combination of ataxia and hypogonadism was first described more than a century ago, but its genetic basis has remained elusive. \n METHODS We performed whole-exome sequencing in a patient with ataxia and hypogonadotropic hypogonadism, followed by targeted sequencing of candidate genes in similarly affected patients. Neurologic and reproductive endocrine phenotypes were characterized in detail. The effects of sequence variants and the presence of an epistatic interaction were tested in a zebrafish model. \n RESULTS Digenic homozygous mutations in RNF216 and OTUD4, which encode a ubiquitin E3 ligase and a deubiquitinase, respectively, were found in three affected siblings in a consanguineous family. Additional screening identified compound heterozygous truncating mutations in RNF216 in an unrelated patient and single heterozygous deleterious mutations in four other patients. Knockdown of rnf216 or otud4 in zebrafish embryos induced defects in the eye, optic tectum, and cerebellum; combinatorial suppression of both genes exacerbated these phenotypes, which were rescued by nonmutant, but not mutant, human RNF216 or OTUD4 messenger RNA. All patients had progressive ataxia and dementia. Neuronal loss was observed in cerebellar pathways and the hippocampus; surviving hippocampal neurons contained ubiquitin-immunoreactive intranuclear inclusions. Defects were detected at the hypothalamic and pituitary levels of the reproductive endocrine axis. \n CONCLUSIONS The syndrome of hypogonadotropic hypogonadism, ataxia, and dementia can be caused by inactivating mutations in RNF216 or by the combination of mutations in RNF216 and OTUD4. These findings link disordered ubiquitination to neurodegeneration and reproductive dysfunction and highlight the power of whole-exome sequencing in combination with functional studies to unveil genetic interactions that cause disease. (Funded by the National Institutes of Health and others.).", "title": "Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination." }, { "docid": "6766459", "text": "Fever is commonly used to diagnose disease and is consistently associated with increased mortality in critically ill patients. However, the molecular controls of elevated body temperature are poorly understood. We discovered that the expression of RNA-binding motif protein 3 (RBM3), known to respond to cold stress and to modulate microRNA (miRNA) expression, was reduced in 30 patients with fever, and in THP-1-derived macrophages maintained at a fever-like temperature (40 °C). Notably, RBM3 expression is reduced during fever whether or not infection is demonstrable. Reduced RBM3 expression resulted in increased expression of RBM3-targeted temperature-sensitive miRNAs, we termed thermomiRs. ThermomiRs such as miR-142-5p and miR-143 in turn target endogenous pyrogens including IL-6, IL6ST, TLR2, PGE2 and TNF to complete a negative feedback mechanism, which may be crucial to prevent pathological hyperthermia. Using normal PBMCs that were exogenously exposed to fever-like temperature (40 °C), we further demonstrate the trend by which decreased levels of RBM3 were associated with increased levels of miR-142-5p and miR-143 and vice versa over a 24 h time course. Collectively, our results indicate the existence of a negative feedback loop that regulates fever via reduced RBM3 levels and increased expression of miR-142-5p and miR-143.", "title": "RBM3 regulates temperature sensitive miR-142–5p and miR-143 (thermomiRs), which target immune genes and control fever" }, { "docid": "26596106", "text": "In the yeast S. cerevisiae, ribosome assembly is linked to environmental conditions by the coordinate transcriptional regulation of genes required for ribosome biogenesis. In this study we show that two nonessential stress-responsive genes, YAR1 and LTV1, function in 40S subunit production. We provide genetic and biochemical evidence that Yar1, a small ankyrin-repeat protein, physically interacts with RpS3, a component of the 40S subunit, and with Ltv1, a protein recently identified as a substoichiometric component of a 43S preribosomal particle. We demonstrate that cells lacking YAR1 or LTV1 are hypersensitive to particular protein synthesis inhibitors and exhibit aberrant polysome profiles, with a reduced absolute number of 40S subunits and an excess of free 60S subunits. Surprisingly, both mutants are also hypersensitive to a variety of environmental stress conditions. Overexpression of RPS3 suppresses both the stress sensitivity and the ribosome biogenesis defect of Deltayar1 mutants, but does not suppress either defect in Deltaltv1 mutants. We propose that YAR1 and LTV1 play distinct, nonessential roles in 40S subunit production. The stress-sensitive phenotypes of strains lacking these genes reveal a hitherto unknown link between ribosome biogenesis factors and environmental stress sensitivity.", "title": "Genetic and biochemical interactions among Yar1, Ltv1 and Rps3 define novel links between environmental stress and ribosome biogenesis in Saccharomyces cerevisiae." } ]
898
Oxidative DNA damage activates STING signalling.
[ { "docid": "13106686", "text": "Immune sensing of DNA is critical for antiviral immunity but can also trigger autoimmune diseases such as lupus erythematosus (LE). Here we have provided evidence for the involvement of a damage-associated DNA modification in the detection of cytosolic DNA. The oxidized base 8-hydroxyguanosine (8-OHG), a marker of oxidative damage in DNA, potentiated cytosolic immune recognition by decreasing its susceptibility to 3' repair exonuclease 1 (TREX1)-mediated degradation. Oxidizative modifications arose physiologically in pathogen DNA during lysosomal reactive oxygen species (ROS) exposure, as well as in neutrophil extracellular trap (NET) DNA during the oxidative burst. 8-OHG was also abundant in UV-exposed skin lesions of LE patients and colocalized with type I interferon (IFN). Injection of oxidized DNA in the skin of lupus-prone mice induced lesions that closely matched respective lesions in patients. Thus, oxidized DNA represents a prototypic damage-associated molecular pattern (DAMP) with important implications for infection, sterile inflammation, and autoimmunity.", "title": "Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing." }, { "docid": "5572127", "text": "The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier.", "title": "Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation." } ]
[ { "docid": "1049501", "text": "Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases.", "title": "Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease" }, { "docid": "40044800", "text": "The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-β in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-β induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.", "title": "Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway." }, { "docid": "41337677", "text": "The recognition of pathogenic DNA is important to the initiation of antiviral responses. Here we report the identification of DDX41, a member of the DEXDc family of helicases, as an intracellular DNA sensor in myeloid dendritic cells (mDCs). Knockdown of DDX41 expression by short hairpin RNA blocked the ability of mDCs to mount type I interferon and cytokine responses to DNA and DNA viruses. Overexpression of both DDX41 and the membrane-associated adaptor STING together had a synergistic effect in promoting Ifnb promoter activity. DDX41 bound both DNA and STING and localized together with STING in the cytosol. Knockdown of DDX41 expression blocked activation of the mitogen-activated protein kinase TBK1 and the transcription factors NF-κB and IRF3 by B-form DNA. Our results suggest that DDX41 is an additional DNA sensor that depends on STING to sense pathogenic DNA.", "title": "The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells" }, { "docid": "19688024", "text": "Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-γ inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response.", "title": "IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes" }, { "docid": "7968532", "text": "Cytosolic detection of pathogen-derived nucleic acids is critical for the initiation of innate immune defense against diverse bacterial, viral and eukaryotic pathogens. Conversely, inappropriate responses to cytosolic nucleic acids can produce severe autoimmune pathology. The host protein STING has been identified as a central signaling molecule in the innate immune response to cytosolic nucleic acids. STING seems to be especially critical for responses to cytosolic DNA and the unique bacterial nucleic acids called 'cyclic dinucleotides'. Here we discuss advances in the understanding of STING and highlight the many unresolved issues in the field.", "title": "STING and the innate immune response to nucleic acids in the cytosol" }, { "docid": "22059387", "text": "Inflammation mediated by infection is an important factor causing carcinogenesis. Opisthorchis viverrini (OV) infection is a risk factor of cholangiocarcinoma (CHCA), probably through chronic inflammation. Formation of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), and expression of inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1) were assessed in the liver of hamsters infected with OV. We newly produced specific anti-8-nitroguanine antibody without cross-reaction. Double immunofluorescence staining revealed that 8-oxodG and 8-nitroguanine were formed mainly in the same inflammatory cells and epithelium of bile ducts from day 7 and showed the strongest immunoreactivity on days 21 and 30, respectively. It is noteworthy that 8-oxodG and 8-nitroguanine still remained in epithelium of bile ducts on day 180, although amount of alanine aminotransferase activity returned to normal level. A time course of 8-nitroguanine was associated with iNOS expression. Furthermore, this study demonstrated that HO-1 expression and subsequent iron accumulation may be involved in enhancement of oxidative DNA damage in epithelium of small bile ducts. In conclusion, nitrative and oxidative DNA damage via iNOS expression in hamsters infected with OV may participate in CHCA carcinogenesis.", "title": "Mechanism of NO-mediated oxidative and nitrative DNA damage in hamsters infected with Opisthorchis viverrini: a model of inflammation-mediated carcinogenesis." }, { "docid": "24186125", "text": "Quercetin may have the opposite effect, namely anti- as well as pro-oxidant. The aim of this study was to assess the results of quercetin anti- and/or pro-oxidant activity in the bone marrow and spleen cells of rats. The experimental rats were treated daily, with quercetin in a dose of 8 or 80mg/kg b.w. by gavage for 40 days. The intracellular redox state in cells were assessed by measuring the ferric ion reducing antioxidant power (FRAP) level and malonodialdehyde concentration. HO-1 mRNA expression was examined with real-time PCR. The extent of DNA damage was determined by the alkaline-labile comet assay. A potential pro-apoptotic quercetin action was determined using the FITC-Annexin V kit. The quercetin and isorhamnetin concentrations in serum were analyzed by HPLC-ECD. MDA concentration and FRAP values, were significantly decreased in the spleen and bone marrow cells of rats treated with quercetin, in a dose of 80mg/kg b.w. in comparison with the control rats; no significant changes were observed after quercetin was administered in a dose ten times as low. Treatment with quercetin dose-dependently upregulated the expression of HO-1 mRNA in the bone marrow cells. Quercetin administration to the rats did not induce either DNA damage or apoptosis in the examined cells. The results of our study prove that changes in the antioxidant state, caused by quercetin, do not lead to DNA damage or exert any pro-apoptotic activity in vivo.", "title": "The changes of antioxidant defense system caused by quercetin administration do not lead to DNA damage and apoptosis in the spleen and bone marrow cells of rats." }, { "docid": "21295300", "text": "The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) has a central role in coordinating DNA damage responses, including cell-cycle checkpoint control, DNA repair and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. However, the mechanism by which DNA damage activates ATM is poorly understood. Here we show that Cdk5 (cyclin-dependent kinase 5), activated by DNA damage, directly phosphorylates ATM at Ser 794 in post-mitotic neurons. Phosphorylation at Ser 794 precedes, and is required for, ATM autophosphorylation at Ser 1981, and activates ATM kinase activity. The Cdk5-ATM signal regulates phosphorylation and function of the ATM targets p53 and H2AX. Interruption of the Cdk5-ATM pathway attenuates DNA-damage-induced neuronal cell cycle re-entry and expression of the p53 targets PUMA and Bax, protecting neurons from death. Thus, activation of Cdk5 by DNA damage serves as a critical signal to initiate the ATM response and regulate ATM-dependent cellular processes.", "title": "Phosphorylation of ATM by Cdk5 mediates DNA damage signaling and regulates neuronal death" }, { "docid": "38131471", "text": "DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.", "title": "Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints." }, { "docid": "10704438", "text": "Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.", "title": "The DNA damage response during mitosis." }, { "docid": "44693226", "text": "Many studies have shown that caloric restriction (40%) decreases mitochondrial reactive oxygen species (ROS) generation in rodents. Moreover, we have recently found that 7 weeks of 40% protein restriction without strong caloric restriction also decreases ROS production in rat liver. This is interesting since it has been reported that protein restriction can also extend longevity in rodents. In the present study we have investigated the possible role of dietary lipids in the effects of caloric restriction on mitochondrial oxidative stress. Using semipurified diets, the ingestion of lipids in male Wistar rats was decreased by 40% below controls, while the other dietary components were ingested at exactly the same level as in animals fed ad libitum. After 7 weeks of treatment the liver mitochondria of lipid-restricted animals showed significant increases in oxygen consumption with complex I-linked substrates (pyruvate/malate and glutamate/malate). Neither mitochondrial H(2)O(2) production nor oxidative damage to mitochondrial or nuclear DNA was modified in lipid-restricted animals. Oxidative damage to mitochondrial DNA was one order of magnitude higher than that of nuclear DNA in both dietary groups. These results deny a role for lipids and reinforce the possible role of dietary proteins as being responsible for the decrease in mitochondrial ROS production and DNA damage in caloric restriction.", "title": "Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage." }, { "docid": "18358026", "text": "Cancer cells simultaneously harbor global losses and gains in DNA methylation. We demonstrate that inducing cellular oxidative stress by hydrogen peroxide treatment recruits DNA methyltransferase 1 (DNMT1) to damaged chromatin. DNMT1 becomes part of a complex(es) containing DNMT3B and members of the polycomb repressive complex 4. Hydrogen peroxide treatment causes relocalization of these proteins from non-GC-rich to GC-rich areas. Key components are similarly enriched at gene promoters in an in vivo colitis model. Although high-expression genes enriched for members of the complex have histone mark and nascent transcription changes, CpG island-containing low-expression genes gain promoter DNA methylation. Thus, oxidative damage induces formation and relocalization of a silencing complex that may explain cancer-specific aberrant DNA methylation and transcriptional silencing.", "title": "Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands." }, { "docid": "3863543", "text": "Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system, but the underlying molecular mechanisms and relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the pre-leukemic disorder Shwachman-Diamond syndrome (SDS) induces mitochondrial dysfunction, oxidative stress, and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the SDS mouse model and a range of human pre-leukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome (MDS), the principal leukemia predisposition syndrome. Collectively, our findings identify mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as a targetable determinant of disease outcome in human pre-leukemia.", "title": "Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia." }, { "docid": "13023410", "text": "The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair.", "title": "BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks." }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" }, { "docid": "25293721", "text": "Placental oxidative stress plays a key role in the pathophysiology of placenta-related disorders, most notably preeclampsia (PE) and intrauterine growth restriction (IUGR). Oxidative stress occurs when accumulation of reactive oxygen species (ROS) damages DNA, proteins and lipids, an outcome that is limited by antioxidant enzymes; mitochondrial uncoupling protein 2 (UCP2) may also limit oxidative stress by reducing ROS production. Here we characterized placental antioxidant defenses during normal gestation and following glucocorticoid-induced IUGR. Placentas were collected on Days 16 and 22 of normal rat pregnancy (term = Day 23) and at Day 22 after dexamethasone treatment from Day 13. Expression of several genes encoding antioxidant enzymes (Sod1, Sod2, Sod3, Cat, Gpx3, Txn1, Txnrd1, Txnrd2, and Txnrd3) and Ucp2 was measured by quantitative RT-PCR in the labyrinth (LZ) and junctional zones (JZ) of the placenta. Expression of Sod1 and Ucp2 mRNAs and the activity of xanthine oxidase, a source of ROS, all increased from Days 16 to 22 in both placental zones, whereas Sod2 and Gpx3 increased only in the rapidly growing LZ. In contrast, Sod3 and Txnrd1 expression fell in the LZ over this period, whereas total superoxide dismutase activity remained stable. Dexamethasone treatment reduced fetal-placental growth and LZ expression of Ucp2 but increased JZ expression of Txn1. Indices of placental oxidative damage (TBARS, F2-isoprostanes, and 8-OHdG) did not change with gestational age or dexamethasone, indicative of adequate antioxidant protection. Overall, our data suggest that the rat placenta is protected from oxidative stress by the dynamic zone- and stage-dependent expression of antioxidant defense genes.", "title": "Antioxidant Defenses in the Rat Placenta in Late Gestation: Increased Labyrinthine Expression of Superoxide Dismutases, Glutathione Peroxidase 3, and Uncoupling Protein 21" }, { "docid": "28441310", "text": "Mutation frequency and specificity were determined as a function of age in nuclear DNA from liver, bladder, and brain of Big Blue lacI transgenic mice aged 1.5-25 months. Mutations accumulated with age in liver and accumulated more rapidly in bladder. In the brain a small initial increase in mutation frequency was observed in young animals; however, no further increase was observed in adult mice. To investigate the origin of mutations, the mutational spectra for each tissue and age were determined. DNA sequence analysis of mutant lacI transgenes revealed no significant changes in mutational specificity in any tissue at any age. The spectra of mutations found in aging animals were identical to those in younger animals, suggesting that they originated from a common set of DNA lesions manifested during DNA replication. The data also indicated that there were no significant age-related mutational changes due to oxidative damage, or errors resulting from either changes in the fidelity of DNA polymerase or the efficiency of DNA repair. Hence, no evidence was found to support hypotheses that predict that oxidative damage or accumulation of errors in nuclear DNA contributes significantly to the aging process, at least in these three somatic tissues.", "title": "Mutation frequency and specificity with age in liver, bladder and brain of lacI transgenic mice." }, { "docid": "20381484", "text": "S-nitrosylation of proteins by nitric oxide is a major mode of signalling in cells. S-nitrosylation can mediate the regulation of a range of proteins, including prominent nuclear proteins, such as HDAC2 (ref. 2) and PARP1 (ref. 3). The high reactivity of the nitric oxide group with protein thiols, but the selective nature of nitrosylation within the cell, implies the existence of targeting mechanisms. Specificity of nitric oxide signalling is often achieved by the binding of nitric oxide synthase (NOS) to target proteins, either directly or through scaffolding proteins such as PSD-95 (ref. 5) and CAPON. As the three principal isoforms of NOS--neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS)--are primarily non-nuclear, the mechanisms by which nuclear proteins are selectively nitrosylated have been elusive. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is physiologically nitrosylated at its Cys 150 residue. Nitrosylated GAPDH (SNO-GAPDH) binds to Siah1, which possesses a nuclear localization signal, and is transported to the nucleus. Here, we show that SNO-GAPDH physiologically transnitrosylates nuclear proteins, including the deacetylating enzyme sirtuin-1 (SIRT1), histone deacetylase-2 (HDAC2) and DNA-activated protein kinase (DNA-PK). Our findings reveal a novel mechanism for targeted nitrosylation of nuclear proteins and suggest that protein-protein transfer of nitric oxide groups may be a general mechanism in cellular signal transduction.", "title": "GAPDH Mediates Nitrosylation of Nuclear Proteins" }, { "docid": "40901687", "text": "The DNA damage response (DDR) is a complex regulatory network that is critical for maintaining genome integrity. Posttranslational modifications are widely used to ensure strict spatiotemporal control of signal flow, but how the DDR responds to environmental cues, such as changes in ambient oxygen tension, remains poorly understood. We found that an essential component of the ATR/CHK1 signaling pathway, the human homolog of the Caenorhabditis elegans biological clock protein CLK-2 (HCLK2), associated with and was hydroxylated by prolyl hydroxylase domain protein 3 (PHD3). HCLK2 hydroxylation was necessary for its interaction with ATR and the subsequent activation of ATR/CHK1/p53. Inhibiting PHD3, either with the pan-hydroxylase inhibitor dimethyloxaloylglycine (DMOG) or through hypoxia, prevented activation of the ATR/CHK1/p53 pathway and decreased apoptosis induced by DNA damage. Consistent with these observations, we found that mice lacking PHD3 were resistant to the effects of ionizing radiation and had decreased thymic apoptosis, a biomarker of genomic integrity. Our identification of HCLK2 as a substrate of PHD3 reveals the mechanism through which hypoxia inhibits the DDR, suggesting hydroxylation of HCLK2 is a potential therapeutic target for regulating the ATR/CHK1/p53 pathway.", "title": "PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response." } ]
899
Oxidative DNA damage inhibits STING signalling.
[ { "docid": "13106686", "text": "Immune sensing of DNA is critical for antiviral immunity but can also trigger autoimmune diseases such as lupus erythematosus (LE). Here we have provided evidence for the involvement of a damage-associated DNA modification in the detection of cytosolic DNA. The oxidized base 8-hydroxyguanosine (8-OHG), a marker of oxidative damage in DNA, potentiated cytosolic immune recognition by decreasing its susceptibility to 3' repair exonuclease 1 (TREX1)-mediated degradation. Oxidizative modifications arose physiologically in pathogen DNA during lysosomal reactive oxygen species (ROS) exposure, as well as in neutrophil extracellular trap (NET) DNA during the oxidative burst. 8-OHG was also abundant in UV-exposed skin lesions of LE patients and colocalized with type I interferon (IFN). Injection of oxidized DNA in the skin of lupus-prone mice induced lesions that closely matched respective lesions in patients. Thus, oxidized DNA represents a prototypic damage-associated molecular pattern (DAMP) with important implications for infection, sterile inflammation, and autoimmunity.", "title": "Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing." }, { "docid": "5572127", "text": "The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier.", "title": "Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation." } ]
[ { "docid": "1049501", "text": "Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases.", "title": "Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease" }, { "docid": "40044800", "text": "The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-β in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-β induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.", "title": "Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway." }, { "docid": "7968532", "text": "Cytosolic detection of pathogen-derived nucleic acids is critical for the initiation of innate immune defense against diverse bacterial, viral and eukaryotic pathogens. Conversely, inappropriate responses to cytosolic nucleic acids can produce severe autoimmune pathology. The host protein STING has been identified as a central signaling molecule in the innate immune response to cytosolic nucleic acids. STING seems to be especially critical for responses to cytosolic DNA and the unique bacterial nucleic acids called 'cyclic dinucleotides'. Here we discuss advances in the understanding of STING and highlight the many unresolved issues in the field.", "title": "STING and the innate immune response to nucleic acids in the cytosol" }, { "docid": "41337677", "text": "The recognition of pathogenic DNA is important to the initiation of antiviral responses. Here we report the identification of DDX41, a member of the DEXDc family of helicases, as an intracellular DNA sensor in myeloid dendritic cells (mDCs). Knockdown of DDX41 expression by short hairpin RNA blocked the ability of mDCs to mount type I interferon and cytokine responses to DNA and DNA viruses. Overexpression of both DDX41 and the membrane-associated adaptor STING together had a synergistic effect in promoting Ifnb promoter activity. DDX41 bound both DNA and STING and localized together with STING in the cytosol. Knockdown of DDX41 expression blocked activation of the mitogen-activated protein kinase TBK1 and the transcription factors NF-κB and IRF3 by B-form DNA. Our results suggest that DDX41 is an additional DNA sensor that depends on STING to sense pathogenic DNA.", "title": "The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells" }, { "docid": "19688024", "text": "Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-γ inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response.", "title": "IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes" }, { "docid": "28107602", "text": "The oncogene MDMX is overexpressed in many cancers, leading to suppression of the tumor suppressor p53. Inhibitors of the oncogene product MDMX therefore might help reactivate p53 and enhance the efficacy of DNA-damaging drugs. However, we currently lack a quantitative understanding of how MDMX inhibition affects the p53 signaling pathway and cell sensitivity to DNA damage. Live cell imaging showed that MDMX depletion triggered two distinct phases of p53 accumulation in single cells: an initial postmitotic pulse, followed by low-amplitude oscillations. The response to DNA damage was sharply different in these two phases; in the first phase, MDMX depletion was synergistic with DNA damage in causing cell death, whereas in the second phase, depletion of MDMX inhibited cell death. Thus a quantitative understanding of signal dynamics and cellular states is important for designing an optimal schedule of dual-drug administration.", "title": "Schedule-dependent interaction between anticancer treatments" }, { "docid": "38131471", "text": "DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.", "title": "Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints." }, { "docid": "6670101", "text": "It is long been known that cancer and non-cancer cells can be distinguished on the basis of their nucleolar morphologies. As early as the 19th century, it was reported that cancer cells have larger and more irregularly shaped nucleoli. Since then, pathologists have used nucleolar morphology to predict the clinical outcome [1]. Nucleolar morphology is altered due to the up-regulation of ribosomal gene transcription. Within nucleoli, ribosomal genes (rDNA) are transcribed by RNA polymerase I (pol I). The pre-ribosomal RNA (pre-rRNA) transcripts are subsequently modified and processed into the mature 18S, 5.8S and 28S rRNAs. 5S rRNA is transcribed by RNA polymerase III in the nucleoplasm. Together with the ribosomal proteins, the 5S rRNA is imported into the nucleolus where 40S and 60S ribosomal subunits are assembled prior to export to the cytoplasm [1, 2]. Oncogenes such as c-Myc can both directly and indirectly upregulate rDNA transcription, while tumour suppressors like p53 and Rb suppress ribosome biogenesis. Mutations in these genes not only result in deregulated cell cycle control, but also upregulated ribosome biogenesis. In addition to ribosome biogenesis, the nucleolus is a key cellular stress sensor and plays a central role in p53 activation [1, 2]. The increased translational capacity of cancer cells enables them to maintain higher proliferation rates. As stated by Ruggero, “compared with normal cells, cancer cells may be addicted to increases in ribosome biogenesis and number” [1]. This provides new therapeutic opportunities. As it turns out many chemotherapeutic drugs used in cancer treatment already inhibit ribosome biogenesis. In one recent survey it was shown that 20 out of 36 drugs in clinical use inhibit ribosome biogenesis [3]. Most of these drugs were originally designed to target highly proliferating cells by damaging DNA, interfering with DNA synthesis or with mitosis. These targeting modalities of these drugs also lead to toxicity in normal highly proliferating tissues. An example is ActinomycinD (AMD), a DNA intercalator which has a preference for GC-rich DNA sequences. As rDNA has above average GC-richness and because of its open chromatin conformation, low concentrations of AMD preferentially inhibit RNA polymerase I transcription and upon prolonged exposure causes genome wide DNA damage. Alkylating drugs like cisplatin and oxaliplatin or topoisomerases poisons like camptothecin inhibit pol I transcription. The degree to which inhibition of ribosome biogenesis contributes to the efficacy of these drugs is difficult to establish [3]. This raises an important question. Can targeting ribosome biogenesis without DNA damage offer any therapeutic potential? Two recently described drugs CX-5461 and BMH-21 are now providing evidence that inhibition of ribosome biogenesis by targeting transcription of rDNA by pol I has promising therapeutic potential. CX-5461 was designed to specifically inhibit pol I transcription by disrupting pre-initiation complex formation at the rDNA promoter. CX-5461 has been shown to activate p53 via nucleolar stress. It induces autophagy as well as senescence in a multiple types of cancer cells in a p53-dependent manner. Especially in leukaemia and lymphoma cells, treatment with CX-5461 induces p53-dependent apoptosis, while normal cells tolerate it [4, 5]. Whether the drug also induces DNA damage was not fully addressed, but it was demonstrated that it could induce cell death in cells lacking ATM - a key mediator of DNA double strand break responses. However, more recently Laiho and colleagues have shown that at high concentrations, CX-5461 does induce a γH2AX response, raising concerns about DNA damage [6]. BMH-21 was identified in a screen performed by Laiho and colleagues aimed at identifying novel p53 activators. Like AMD, BMH-21 is a DNA intercalator with preference for GC rich sequences [7]. Continuing the parallel with AMD, BMH-21 is a potent and specific inhibitor rDNA transcription and induces nucleolar reorganisation often referred to as nucleolar capping. Interestingly, transcription inhibition was followed by the degradation of the main pol I subunit, RPA194, by the proteasome [6]. In contrast with AMD, initial indications were that BMH-21 did not appear to induce DNA damage as evidenced by the lack of a γH2AX response [7]. Inhibition of transcription by BMH-21 causes nucleolar stress, resulting in decreased proliferation and cell death. P53 is activated in BMH-21 treated cells but is not required for its anti-proliferative effects. Intriguingly, it appears that cancer cells with high demands for ribosome biogenesis are selectively targeted [6]. The current publication in Oncotarget now rules out any role for DNA damage signalling and repair pathways in the BMH-21 response. Moreover, BMH-21 derivatives that can induce DNA damage display lower efficiency in inducing nucleolar stress and inhibiting proliferation [8]. The central importance of this study is that it finally uncouples DNA damage and nucleolar stress and reveals an Achilles heel in cancer cells, their addiction to ribosome biogenesis.", "title": "Ribosome biogenesis: Achilles heel of cancer?" }, { "docid": "44693226", "text": "Many studies have shown that caloric restriction (40%) decreases mitochondrial reactive oxygen species (ROS) generation in rodents. Moreover, we have recently found that 7 weeks of 40% protein restriction without strong caloric restriction also decreases ROS production in rat liver. This is interesting since it has been reported that protein restriction can also extend longevity in rodents. In the present study we have investigated the possible role of dietary lipids in the effects of caloric restriction on mitochondrial oxidative stress. Using semipurified diets, the ingestion of lipids in male Wistar rats was decreased by 40% below controls, while the other dietary components were ingested at exactly the same level as in animals fed ad libitum. After 7 weeks of treatment the liver mitochondria of lipid-restricted animals showed significant increases in oxygen consumption with complex I-linked substrates (pyruvate/malate and glutamate/malate). Neither mitochondrial H(2)O(2) production nor oxidative damage to mitochondrial or nuclear DNA was modified in lipid-restricted animals. Oxidative damage to mitochondrial DNA was one order of magnitude higher than that of nuclear DNA in both dietary groups. These results deny a role for lipids and reinforce the possible role of dietary proteins as being responsible for the decrease in mitochondrial ROS production and DNA damage in caloric restriction.", "title": "Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage." }, { "docid": "40901687", "text": "The DNA damage response (DDR) is a complex regulatory network that is critical for maintaining genome integrity. Posttranslational modifications are widely used to ensure strict spatiotemporal control of signal flow, but how the DDR responds to environmental cues, such as changes in ambient oxygen tension, remains poorly understood. We found that an essential component of the ATR/CHK1 signaling pathway, the human homolog of the Caenorhabditis elegans biological clock protein CLK-2 (HCLK2), associated with and was hydroxylated by prolyl hydroxylase domain protein 3 (PHD3). HCLK2 hydroxylation was necessary for its interaction with ATR and the subsequent activation of ATR/CHK1/p53. Inhibiting PHD3, either with the pan-hydroxylase inhibitor dimethyloxaloylglycine (DMOG) or through hypoxia, prevented activation of the ATR/CHK1/p53 pathway and decreased apoptosis induced by DNA damage. Consistent with these observations, we found that mice lacking PHD3 were resistant to the effects of ionizing radiation and had decreased thymic apoptosis, a biomarker of genomic integrity. Our identification of HCLK2 as a substrate of PHD3 reveals the mechanism through which hypoxia inhibits the DDR, suggesting hydroxylation of HCLK2 is a potential therapeutic target for regulating the ATR/CHK1/p53 pathway.", "title": "PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response." }, { "docid": "18358026", "text": "Cancer cells simultaneously harbor global losses and gains in DNA methylation. We demonstrate that inducing cellular oxidative stress by hydrogen peroxide treatment recruits DNA methyltransferase 1 (DNMT1) to damaged chromatin. DNMT1 becomes part of a complex(es) containing DNMT3B and members of the polycomb repressive complex 4. Hydrogen peroxide treatment causes relocalization of these proteins from non-GC-rich to GC-rich areas. Key components are similarly enriched at gene promoters in an in vivo colitis model. Although high-expression genes enriched for members of the complex have histone mark and nascent transcription changes, CpG island-containing low-expression genes gain promoter DNA methylation. Thus, oxidative damage induces formation and relocalization of a silencing complex that may explain cancer-specific aberrant DNA methylation and transcriptional silencing.", "title": "Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands." }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" }, { "docid": "22059387", "text": "Inflammation mediated by infection is an important factor causing carcinogenesis. Opisthorchis viverrini (OV) infection is a risk factor of cholangiocarcinoma (CHCA), probably through chronic inflammation. Formation of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), and expression of inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1) were assessed in the liver of hamsters infected with OV. We newly produced specific anti-8-nitroguanine antibody without cross-reaction. Double immunofluorescence staining revealed that 8-oxodG and 8-nitroguanine were formed mainly in the same inflammatory cells and epithelium of bile ducts from day 7 and showed the strongest immunoreactivity on days 21 and 30, respectively. It is noteworthy that 8-oxodG and 8-nitroguanine still remained in epithelium of bile ducts on day 180, although amount of alanine aminotransferase activity returned to normal level. A time course of 8-nitroguanine was associated with iNOS expression. Furthermore, this study demonstrated that HO-1 expression and subsequent iron accumulation may be involved in enhancement of oxidative DNA damage in epithelium of small bile ducts. In conclusion, nitrative and oxidative DNA damage via iNOS expression in hamsters infected with OV may participate in CHCA carcinogenesis.", "title": "Mechanism of NO-mediated oxidative and nitrative DNA damage in hamsters infected with Opisthorchis viverrini: a model of inflammation-mediated carcinogenesis." }, { "docid": "1103795", "text": "Antibiotic mode-of-action classification is based upon drug-target interaction and whether the resultant inhibition of cellular function is lethal to bacteria. Here we show that the three major classes of bactericidal antibiotics, regardless of drug-target interaction, stimulate the production of highly deleterious hydroxyl radicals in Gram-negative and Gram-positive bacteria, which ultimately contribute to cell death. We also show, in contrast, that bacteriostatic drugs do not produce hydroxyl radicals. We demonstrate that the mechanism of hydroxyl radical formation induced by bactericidal antibiotics is the end product of an oxidative damage cellular death pathway involving the tricarboxylic acid cycle, a transient depletion of NADH, destabilization of iron-sulfur clusters, and stimulation of the Fenton reaction. Our results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.", "title": "A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics" }, { "docid": "13023410", "text": "The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair.", "title": "BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks." }, { "docid": "10993232", "text": "Recent observations have suggested that classic antibiotics kill bacteria by stimulating the formation of reactive oxygen species (ROS). If true, this notion might guide new strategies to improve antibiotic efficacy. In this study, the model was directly tested. Contrary to the hypothesis, antibiotic treatment did not accelerate the formation of hydrogen peroxide in Escherichia coli and did not elevate intracellular free iron, an essential reactant for the production of lethal damage. Lethality persisted in the absence of oxygen, and DNA repair mutants were not hypersensitive, undermining the idea that toxicity arose from oxidative DNA lesions. We conclude that these antibiotic exposures did not produce ROS and that lethality more likely resulted from the direct inhibition of cell-wall assembly, protein synthesis, and DNA replication.", "title": "Cell death from antibiotics without the involvement of reactive oxygen species." }, { "docid": "24186125", "text": "Quercetin may have the opposite effect, namely anti- as well as pro-oxidant. The aim of this study was to assess the results of quercetin anti- and/or pro-oxidant activity in the bone marrow and spleen cells of rats. The experimental rats were treated daily, with quercetin in a dose of 8 or 80mg/kg b.w. by gavage for 40 days. The intracellular redox state in cells were assessed by measuring the ferric ion reducing antioxidant power (FRAP) level and malonodialdehyde concentration. HO-1 mRNA expression was examined with real-time PCR. The extent of DNA damage was determined by the alkaline-labile comet assay. A potential pro-apoptotic quercetin action was determined using the FITC-Annexin V kit. The quercetin and isorhamnetin concentrations in serum were analyzed by HPLC-ECD. MDA concentration and FRAP values, were significantly decreased in the spleen and bone marrow cells of rats treated with quercetin, in a dose of 80mg/kg b.w. in comparison with the control rats; no significant changes were observed after quercetin was administered in a dose ten times as low. Treatment with quercetin dose-dependently upregulated the expression of HO-1 mRNA in the bone marrow cells. Quercetin administration to the rats did not induce either DNA damage or apoptosis in the examined cells. The results of our study prove that changes in the antioxidant state, caused by quercetin, do not lead to DNA damage or exert any pro-apoptotic activity in vivo.", "title": "The changes of antioxidant defense system caused by quercetin administration do not lead to DNA damage and apoptosis in the spleen and bone marrow cells of rats." }, { "docid": "10704438", "text": "Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.", "title": "The DNA damage response during mitosis." }, { "docid": "28441310", "text": "Mutation frequency and specificity were determined as a function of age in nuclear DNA from liver, bladder, and brain of Big Blue lacI transgenic mice aged 1.5-25 months. Mutations accumulated with age in liver and accumulated more rapidly in bladder. In the brain a small initial increase in mutation frequency was observed in young animals; however, no further increase was observed in adult mice. To investigate the origin of mutations, the mutational spectra for each tissue and age were determined. DNA sequence analysis of mutant lacI transgenes revealed no significant changes in mutational specificity in any tissue at any age. The spectra of mutations found in aging animals were identical to those in younger animals, suggesting that they originated from a common set of DNA lesions manifested during DNA replication. The data also indicated that there were no significant age-related mutational changes due to oxidative damage, or errors resulting from either changes in the fidelity of DNA polymerase or the efficiency of DNA repair. Hence, no evidence was found to support hypotheses that predict that oxidative damage or accumulation of errors in nuclear DNA contributes significantly to the aging process, at least in these three somatic tissues.", "title": "Mutation frequency and specificity with age in liver, bladder and brain of lacI transgenic mice." } ]
900
Oxidative phosphorylation is one of the primary glycometabolic pathways in cells.
[ { "docid": "18678095", "text": "Fast axonal transport (FAT) requires consistent energy over long distances to fuel the molecular motors that transport vesicles. We demonstrate that glycolysis provides ATP for the FAT of vesicles. Although inhibiting ATP production from mitochondria did not affect vesicles motility, pharmacological or genetic inhibition of the glycolytic enzyme GAPDH reduced transport in cultured neurons and in Drosophila larvae. GAPDH localizes on vesicles via a huntingtin-dependent mechanism and is transported on fast-moving vesicles within axons. Purified motile vesicles showed GAPDH enzymatic activity and produced ATP. Finally, we show that vesicular GAPDH is necessary and sufficient to provide on-board energy for fast vesicular transport. Although detaching GAPDH from vesicles reduced transport, targeting GAPDH to vesicles was sufficient to promote FAT in GAPDH deficient neurons. This specifically localized glycolytic machinery may supply constant energy, independent of mitochondria, for the processive movement of vesicles over long distances in axons.", "title": "Vesicular Glycolysis Provides On-Board Energy for Fast Axonal Transport" } ]
[ { "docid": "14496749", "text": "Oxidative stress influences cell survival and homeostasis, but the mechanisms underlying the biological effects of oxidative stress remain to be elucidated. Here, we demonstrate that the protein kinase MST1 mediates oxidative-stress-induced cell death in primary mammalian neurons by directly activating the FOXO transcription factors. MST1 phosphorylates FOXO proteins at a conserved site within the forkhead domain that disrupts their interaction with 14-3-3 proteins, promotes FOXO nuclear translocation, and thereby induces cell death in neurons. We also extend the MST-FOXO signaling link to nematodes. Knockdown of the C. elegans MST1 ortholog CST-1 shortens life span and accelerates tissue aging, while overexpression of cst-1 promotes life span and delays aging. The cst-1-induced life-span extension occurs in a daf-16-dependent manner. The identification of the FOXO transcription factors as major and evolutionarily conserved targets of MST1 suggests that MST kinases play important roles in diverse biological processes including cellular responses to oxidative stress and longevity.", "title": "A Conserved MST-FOXO Signaling Pathway Mediates Oxidative-Stress Responses and Extends Life Span" }, { "docid": "19957813", "text": "Oxidative phosphorylation (OXPHOS) is the major pathway for ATP production in humans. Deficiencies in OXPHOS can arise from mutations in either mitochondrial or nuclear genomes and comprise the largest collection of inborn errors of metabolism. At present we lack a complete catalog of human genes and pathways essential for OXPHOS. Here we introduce a genome-wide CRISPR \"death screen\" that actively selects dying cells to reveal human genes required for OXPHOS, inspired by the classic observation that human cells deficient in OXPHOS survive in glucose but die in galactose. We report 191 high-confidence hits essential for OXPHOS, including 72 underlying known OXPHOS diseases. Our screen reveals a functional module consisting of NGRN, WBSCR16, RPUSD3, RPUSD4, TRUB2, and FASTKD2 that regulates the mitochondrial 16S rRNA and intra-mitochondrial translation. Our work yields a rich catalog of genes required for OXPHOS and, more generally, demonstrates the power of death screening for functional genomic analysis.", "title": "A Genome-wide CRISPR Death Screen Identifies Genes Essential for Oxidative Phosphorylation." }, { "docid": "7005276", "text": "The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK) signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid) and BML-275 (an AMPKα inhibitor). Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.", "title": "Acetic Acid Activates the AMP-Activated Protein Kinase Signaling Pathway to Regulate Lipid Metabolism in Bovine Hepatocytes" }, { "docid": "15381976", "text": "Asthma is one of the most common inflammatory diseases characterized by airway hyperresponsiveness, inflammation, and remodeling. Morin, an active ingredient obtained from Moraceae plants, has been demonstrated to have promising anti-inflammatory activities in a range of disorders. However, its impacts on pulmonary diseases, particularly on asthma, have not been clarified. This study was designed to investigate whether morin alleviates airway inflammation in chronic asthma with an emphasis on oxidative stress modulation. In vivo, ovalbumin- (OVA-) sensitized mice were administered with morin or dexamethasone before challenge. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to perform cell counts, histological analysis, and enzyme-linked immunosorbent assay. In vitro, human bronchial epithelial cells (BECs) were challenged by tumor necrosis factor alpha (TNF-α). The supernatant was collected for the detection of the proinflammatory proteins, and the cells were collected for reactive oxygen species (ROS)/mitogen-activated protein kinase (MAPK) evaluations. Severe inflammatory responses and remodeling were observed in the airways of the OVA-sensitized mice. Treatment with morin dramatically attenuated the extensive trafficking of inflammatory cells into the BALF and inhibited their infiltration around the respiratory tracts and vessels. Morin administration also significantly suppressed goblet cell hyperplasia and collagen deposition/fibrosis and dose-dependently inhibited the OVA-induced increases in IgE, TNF-α, interleukin- (IL-) 4, IL-13, matrix metalloproteinase-9, and malondialdehyde. In human BECs challenged by TNF-α, the levels of proteins such as eotaxin-1, monocyte chemoattractant protein-1, IL-8 and intercellular adhesion molecule-1, were consistently significantly decreased by morin. Western blotting and the 2',7'-dichlorofluorescein assay revealed that the increases in intracellular ROS and MAPK phosphorylation were abolished by morin, implying that ROS/MAPK signaling contributes to the relief of airway inflammation. Our findings indicate for the first time that morin alleviates airway inflammation in chronic asthma, which probably occurs via the oxidative stress-responsive MAPK pathway, highlighting a novel profile of morin as a potent agent for asthma management.", "title": "Morin Attenuates Ovalbumin-Induced Airway Inflammation by Modulating Oxidative Stress-Responsive MAPK Signaling." }, { "docid": "26658659", "text": "Hydrogen sulfide (H(2)S) was recently discovered to be synthesized in mammalian tissues by several different enzymes. Numerous studies have shown that H(2)S has vasodilator and antihypertensive effects in the cardiovascular system. However, intracellular mechanisms of the H(2)S-induced vasodilation and its interactions with other endothelium-derived relaxing factors, such as nitric oxide (NO), remain unclear. We investigated whether H(2)S directly regulates endothelial NO synthase (eNOS) activity and NO production in endothelial cells. NaHS, a H(2)S donor, dose-dependently increased NO production in cultured endothelial cells. This effect was abolished by a calcium chelator (BAPTA-AM), but not by the absence of extracellular calcium. The NaHS-induced NO production was partially blocked by inhibitors of ryanodine receptor (dantrolene) or inositol 1,4,5-triphosphate receptor (xestospongin C). NaHS significantly increased intracellular calcium concentrations, and this effect was attenuated by dantrolene or xestospongin C. NaHS induced phosphorylation of eNOS at the activating phosphoserine residue 1179. The NaHS-induced eNOS phosphorylation and NO production were not affected by a PI3K/Akt inhibitor (wortmannin). The data of this study suggest that H(2)S directly acts on endothelial cells to induce eNOS activation and NO production by releasing calcium from the intracellular store in endoplasmic reticulum, which may explain one of mechanisms of its vasodilator function.", "title": "Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells." }, { "docid": "4306711", "text": "Human mitochondrial ribosomes are specialized in the synthesis of 13 proteins, which are fundamental components of the oxidative phosphorylation system. The pathway of mitoribosome biogenesis, the compartmentalization of the process, and factors involved remain largely unknown. Here, we have identified the DEAD-box protein DDX28 as an RNA granule component essential for the biogenesis of the mitoribosome large subunit (mt-LSU). DDX28 interacts with the 16S rRNA and the mt-LSU. RNAi-mediated DDX28 silencing in HEK293T cells does not affect mitochondrial mRNA stability or 16S rRNA processing or modification. However, it leads to reduced levels of 16S rRNA and mt-LSU proteins, impaired mt-LSU assembly, deeply attenuated mitochondrial protein synthesis, and consequent failure to assemble oxidative phosphorylation complexes. Our findings identify DDX28 as essential during the early stages of mitoribosome mt-LSU biogenesis, a process that takes place mainly near the mitochondrial nucleoids, in the compartment defined by the RNA granules.", "title": "The Human Mitochondrial DEAD-Box Protein DDX28 Resides in RNA Granules and Functions in Mitoribosome Assembly." }, { "docid": "3973445", "text": "Adenosine 5′-monophosphate–activated protein kinase (AMPK) is a pivotal regulator of metabolism at cellular and organismal levels. AMPK also suppresses inflammation. We found that pharmacological activation of AMPK rapidly inhibited the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway in various cells. In vitro kinase assays revealed that AMPK directly phosphorylated two residues (Ser515 and Ser518) within the Src homology 2 domain of JAK1. Activation of AMPK enhanced the interaction between JAK1 and 14-3-3 proteins in cultured vascular endothelial cells and fibroblasts, an effect that required the presence of Ser515 and Ser518 and was abolished in cells lacking AMPK catalytic subunits. Mutation of Ser515 and Ser518 abolished AMPK-mediated inhibition of JAK-STAT signaling stimulated by either the sIL-6Rα/IL-6 complex or the expression of a constitutively active V658F-mutant JAK1 in human fibrosarcoma cells. Clinically used AMPK activators metformin and salicylate enhanced the inhibitory phosphorylation of endogenous JAK1 and inhibited STAT3 phosphorylation in primary vascular endothelial cells. Therefore, our findings reveal a mechanism by which JAK1 function and inflammatory signaling may be suppressed in response to metabolic stress and provide a mechanistic rationale for the investigation of AMPK activators in a range of diseases associated with enhanced activation of the JAK-STAT pathway.", "title": "Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling" }, { "docid": "27093166", "text": "BACKGROUND Ketamine, as an anesthetic agent, has an anti-inflammatory effect. In the present study, we investigated whether ketamine inhibits release of high mobility group box 1 (HMGB1), a late-phase cytokine of sepsis, in lipopolysaccharide (LPS)-stimulated macrophages through heme oxygenase-1 (HO-1) induction. \n METHODS Macrophages were preincubated with various concentrations of ketamine and then treated with LPS (1 μg/mL). The cell culture supernatants were collected to measure inflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor-α, and interleukin 1β) by enzyme-linked immunosorbent assay. Moreover, HO-1 protein expression, the phosphorylation and degradation of IκB-α, and the nuclear translocation of nuclear factor E2-related factor 2 and nuclear factor κB (NF-κB) p65 were tested by Western blot analysis. In addition, to further identify the role of HO-1 in this process, tin protoporphyrin (SnPP), an HO-1 inhibitor, was used. \n RESULTS Ketamine treatment dose-dependently attenuated the increased levels of proinflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor α, and interleukin 1β) and increased the HO-1 protein expression in LPS-activated macrophages. Furthermore, ketamine suppressed the phosphorylation and degradation of IκB-α as well as the LPS-stimulated nuclear translocation of NF-κB p65 in macrophages. In addition, the present study also demonstrated that ketamine induced HO-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 in macrophages. The effects of ketamine on LPS-induced proinflammatory cytokines production were partially reversed by the HO inhibitor tin protoporphyrin (SnPP). \n CONCLUSION Ketamine inhibits the release of HMGB1 in LPS-stimulated macrophages, and this effect is at least partly mediated by the activation of the Nrf2/HO-1 pathway and NF-κB suppression.", "title": "Ketamine reduces LPS-induced HMGB1 via activation of the Nrf2/HO-1 pathway and NF-κB suppression." }, { "docid": "6923795", "text": "Cytochrome P450 (P450)-dependent metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs), are proposed to be endothelium-derived hyperpolarizing factors (EDHF) that affect vascular tone; however, the effects of EDHF on endothelial-derived nitric oxide biosynthesis remain unknown. We examined the regulation of endothelial nitric-oxide synthase (eNOS) by EDHF and investigated the relevant signaling pathways involved. The P450 epoxygenases CYP102 F87V mutant, CYP2C11-CYPOR, and CYP2J2 were transfected into cultured bovine aortic endothelial cells, and the effects of endogenously formed or exogenously applied EETs on eNOS expression and activity were assessed. Transfection with the P450 epoxygenases led to increased eNOS protein expression, an effect that was attenuated by cotreatment with the P450 inhibitor 17-ODYA. Northern analysis demonstrated that P450 transfection led to increased eNOS mRNA levels consistent with an effect at the pretranslational level. P450 epoxygenase transfection resulted in increased eNOS activity as measured by the conversion of L-arginine to L-citrulline. Addition of synthetic EETs (50-200 nM) to the culture media also increased eNOS expression and activity. Treatment with mitogen-activated protein kinase (MAPK), MAPK kinase, and protein kinase C inhibitors apigenin, 2'-amino-3'-methoxyflavone (PD98059), and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), respectively, significantly inhibited the effects of P450 transfection on eNOS expression. Overexpression of P450 epoxygenases or addition of synthetic EETs increased Thr495 phosphorylation of eNOS, an effect that was inhibited by both apigenin and PD98059. Overexpression of P450 epoxygenases in rats resulted in increased aortic eNOS expression, providing direct evidence that EDHF can influence vascular eNOS levels in vivo. Based on this data, we conclude that EDHF up-regulates eNOS via activation of MAPK and protein kinase C signaling pathways.", "title": "Up-regulation of endothelial nitric-oxide synthase by endothelium-derived hyperpolarizing factor involves mitogen-activated protein kinase and protein kinase C signaling pathways." }, { "docid": "19922508", "text": "Reactive oxygen species (ROS) are potentially harmful to cells because of their ability to oxidize cell constituents such as DNA, proteins, and lipids. However, at low levels, and under tight control, this feature makes them excellent modifiers in a variety of signal transduction pathways, including autophagy. Autophagy was traditionally associated with oxidative stress, acting in the degradation of oxidized proteins and organelles. Recently, a signaling role was suggested for ROS in the regulation of autophagy, leading, under different circumstances, either to survival or to death. To study the effects of ROS on this pathway, one must determine the localization, intensity, kinetics, and essentiality of the oxidative signal in autophagy. Moreover, once characterized, detection and manipulation of ROS formation could be used to monitor and control autophagic activity. In this chapter we discuss methods to examine ROS in the context of autophagy.", "title": "Monitoring starvation-induced reactive oxygen species formation." }, { "docid": "83308790", "text": "In mammals, the canonical nuclear factor κB (NF-κB) signaling pathway activated in response to infections is based on degradation of IκB inhibitors. This pathway depends on the IκB kinase (IKK), which contains two catalytic subunits, IKKα and IKKβ. IKKβ is essential for inducible IκB phosphorylation and degradation, whereas IKKα is not. Here we show that IKKα is required for B cell maturation, formation of secondary lymphoid organs, increased expression of certain NF-κB target genes, and processing of the NF-κB2 (p100) precursor. IKKα preferentially phosphorylates NF-κB2, and this activity requires its phosphorylation by upstream kinases, one of which may be NF-κB–inducing kinase (NIK). IKKα is therefore a pivotal component of a second NF-κB activation pathway based on regulated NF-κB2 processing rather than IκB degradation.", "title": "Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway" }, { "docid": "33912020", "text": "Semaphorin3A (Sema3A) is a repulsive guidance molecule for axons, which acts by inducing growth cone collapse through phosphorylation of CRMP2 (collapsin response mediator protein 2). Here, we show a role for CRMP2 oxidation and thioredoxin (TRX) in the regulation of CRMP2 phosphorylation and growth cone collapse. Sema3A stimulation generated hydrogen peroxide (H2O2) through MICAL (molecule interacting with CasL) and oxidized CRMP2, enabling it to form a disulfide-linked homodimer through cysteine-504. Oxidized CRMP2 then formed a transient disulfide-linked complex with TRX, which stimulated CRMP2 phosphorylation by glycogen synthase kinase-3, leading to growth cone collapse. We also reconstituted oxidation-dependent phosphorylation of CRMP2 in vitro, using a limited set of purified proteins. Our results not only clarify the importance of H2O2 and CRMP2 oxidation in Sema3A-induced growth cone collapse but also indicate an unappreciated role for TRX in linking CRMP2 oxidation to phosphorylation.", "title": "Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse." }, { "docid": "38143689", "text": "Serotonin 5-HT2C receptors (5-HT(2C)Rs) are almost exclusively expressed in the CNS, and implicated in disorders such as obesity, depression, and schizophrenia. The present study investigated the mechanisms governing the coupling of the 5-HT(2C)R to the extracellular signal-regulated kinases (ERKs) 1/2, using a Chinese hamster ovary (CHO) cell line stably expressing the receptor at levels comparable to those found in the brain. Using the non-RNA-edited isoform of the 5-HT(2C)R, constitutive ERK1/2 phosphorylation was observed and found to be modulated by full, partial and inverse agonists. Interestingly, agonist-directed trafficking of receptor stimulus was also observed when comparing effects on phosphoinositide accumulation and intracellular Ca2+ elevation to ERK1/2 phosphorylation, whereby the agonists, [+/-]-2,5-dimethoxy-4-iodoamphetamine (DOI) and quipazine, showed reversal of efficacy between the phosphoinositide/Ca2+ pathways, on the one hand, and the ERK1/2 pathway on the other. Subsequent molecular characterization found that 5-HT-stimulated ERK1/2 phosphorylation in this cellular background requires phospholipase D, protein kinase C, and activation of the Raf/MEK/ERK module, but is independent of both receptor- and non-receptor tyrosine kinases, phospholipase C, phosphoinositide 3-kinase, and endocytosis. Our findings underscore the potential for exploiting pathway-selective receptor states in the differential modulation of signaling pathways that play prominent roles in normal and abnormal neuronal signaling.", "title": "Characterization of serotonin 5-HT2C receptor signaling to extracellular signal-regulated kinases 1 and 2." }, { "docid": "26019505", "text": "The Hippo pathway regulates organ size and tissue homeostasis in response to multiple stimuli, including cell density and mechanotransduction. Pharmacological inhibition of phosphatases can also stimulate Hippo signaling in cell culture. We defined the Hippo protein-protein interaction network with and without inhibition of serine and threonine phosphatases by okadaic acid. We identified 749 protein interactions, including 599 previously unrecognized interactions, and demonstrated that several interactions with serine and threonine phosphatases were phosphorylation-dependent. Mutation of the T-loop of MST2 (mammalian STE20-like protein kinase 2), which prevented autophosphorylation, disrupted its association with STRIPAK (striatin-interacting phosphatase and kinase complex). Deletion of the amino-terminal forkhead-associated domain of SLMAP (sarcolemmal membrane-associated protein), a component of the STRIPAK complex, prevented its association with MST1 and MST2. Phosphatase inhibition produced temporally distinct changes in proteins that interacted with MOB1A and MOB1B (Mps one binder kinase activator-like 1A and 1B) and promoted interactions with upstream Hippo pathway proteins, such as MST1 and MST2, and with the trimeric protein phosphatase 6 complex (PP6). Mutation of three basic amino acids that are part of a phospho-serine- and phospho-threonine-binding domain in human MOB1B prevented its interaction with MST1 and PP6 in cells treated with okadaic acid. Collectively, our results indicated that changes in phosphorylation orchestrate interactions between kinases and phosphatases in Hippo signaling, providing a putative mechanism for pathway regulation.", "title": "Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions." }, { "docid": "24721866", "text": "Macrophage-derived foam cells play important roles in the progression of atherosclerosis. We reported previously that ERK1/2-dependent granulocyte/macrophage colony-stimulating factor (GM-CSF) expression, leading to p38 MAPK/ Akt signaling, is important for oxidized low density lipoprotein (Ox-LDL)-induced macrophage proliferation. Here, we investigated whether activation of AMP-activated protein kinase (AMPK) could suppress macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages was assessed by [(3)H]thymidine incorporation and cell counting assays. The proliferation was significantly inhibited by the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and restored by dominant-negative AMPKalpha1, suggesting that AMPK activation suppressed macrophage proliferation. AICAR partially suppressed Ox-LDL-induced ERK1/2 phosphorylation and GM-CSF expression, suggesting that another mechanism is also involved in the AICAR-mediated suppression of macrophage proliferation. AICAR suppressed GM-CSF-induced macrophage proliferation without suppressing p38 MAPK/Akt signaling. GM-CSF suppressed p53 phosphorylation and expression and induced Rb phosphorylation. Overexpression of p53 or p27(kip) suppressed GM-CSF-induced macrophage proliferation. AICAR induced cell cycle arrest, increased p53 phosphorylation and expression, and suppressed GM-CSF-induced Rb phosphorylation via AMPK activation. Moreover, AICAR induced p21(cip) and p27(kip) expression via AMPK activation, and small interfering RNA (siRNA) of p21(cip) and p27(kip) restored AICAR-mediated suppression of macrophage proliferation. In conclusion, AMPK activation suppressed Ox-LDL-induced macrophage proliferation by suppressing GM-CSF expression and inducing cell cycle arrest. These effects of AMPK activation may represent therapeutic targets for atherosclerosis.", "title": "Activation of AMP-activated protein kinase suppresses oxidized low-density lipoprotein-induced macrophage proliferation." }, { "docid": "6363093", "text": "BACKGROUND Glioblastoma multiforme (GBM) is an umbrella designation that includes a heterogeneous group of primary brain tumors. Several classification strategies of GBM have been reported, some by clinical course and others by resemblance to cell types either in the adult or during development. From a practical and therapeutic standpoint, classifying GBMs by signal transduction pathway activation and by mutation in pathway member genes may be particularly valuable for the development of targeted therapies. \n METHODOLOGY/PRINCIPAL FINDINGS We performed targeted proteomic analysis of 27 surgical glioma samples to identify patterns of coordinate activation among glioma-relevant signal transduction pathways, then compared these results with integrated analysis of genomic and expression data of 243 GBM samples from The Cancer Genome Atlas (TCGA). In the pattern of signaling, three subclasses of GBM emerge which appear to be associated with predominance of EGFR activation, PDGFR activation, or loss of the RAS regulator NF1. The EGFR signaling class has prominent Notch pathway activation measured by elevated expression of Notch ligands, cleaved Notch receptor, and downstream target Hes1. The PDGF class showed high levels of PDGFB ligand and phosphorylation of PDGFRbeta and NFKB. NF1-loss was associated with lower overall MAPK and PI3K activation and relative overexpression of the mesenchymal marker YKL40. These three signaling classes appear to correspond with distinct transcriptomal subclasses of primary GBM samples from TCGA for which copy number aberration and mutation of EGFR, PDGFRA, and NF1 are signature events. \n CONCLUSIONS/SIGNIFICANCE Proteomic analysis of GBM samples revealed three patterns of expression and activation of proteins in glioma-relevant signaling pathways. These three classes are comprised of roughly equal numbers showing either EGFR activation associated with amplification and mutation of the receptor, PDGF-pathway activation that is primarily ligand-driven, or loss of NF1 expression. The associated signaling activities correlating with these sentinel alterations provide insight into glioma biology and therapeutic strategies.", "title": "Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations" }, { "docid": "3882374", "text": "The RNA-binding proteins LIN28A and LIN28B play critical roles in embryonic development, tumorigenesis, and pluripotency, but their exact functions are poorly understood. Here, we show that, like LIN28A, LIN28B can function effectively with NANOG, OCT4, and SOX2 in reprogramming to pluripotency and that reactivation of both endogenous LIN28A and LIN28B loci are required for maximal reprogramming efficiency. In human fibroblasts, LIN28B is activated early during reprogramming, while LIN28A is activated later during the transition to bona fide induced pluripotent stem cells (iPSCs). In murine cells, LIN28A and LIN28B facilitate conversion from naive to primed pluripotency. Proteomic and metabolomic analysis highlighted roles for LIN28 in maintaining the low mitochondrial function associated with primed pluripotency and in regulating one-carbon metabolism, nucleotide metabolism, and histone methylation. LIN28 binds to mRNAs of proteins important for oxidative phosphorylation and modulates protein abundance. Thus, LIN28A and LIN28B play cooperative roles in regulating reprogramming, naive/primed pluripotency, and stem cell metabolism.", "title": "LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency." }, { "docid": "9588931", "text": "Vascular calcification is a strong independent predictor of increased cardiovascular morbidity and mortality and has a high prevalence among patients with chronic kidney disease. The present study investigated the effects of quercetin on vascular calcification caused by oxidative stress and abnormal mitochondrial dynamics both in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial potential and ATP production. Disruption of mitochondrial structural integrity was also observed in a rat model of adenine-induced aortic calcification. Increased production of reactive oxygen species, enhanced expression and phosphorylation of Drp1, and excessive mitochondrial fragmentation were also observed in Pi-treated VSMCs. These effects were accompanied by mitochondria-dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol and subsequent activation of caspase-3. Quercetin was shown to block Pi-induced apoptosis and calcification of VSMCs by inhibiting oxidative stress and decreasing mitochondrial fission by inhibiting the expression and phosphorylation of Drp1. Quercetin also significantly ameliorated adenine-induced aortic calcification in rats. In summary, our findings suggest that quercetin attenuates calcification by reducing apoptosis of VSMCs by blocking oxidative stress and inhibiting mitochondrial fission.", "title": "Quercetin attenuates vascular calcification by inhibiting oxidative stress and mitochondrial fission." }, { "docid": "1605196", "text": "Successful generation of induced pluripotent stem cells entails a major metabolic switch from mitochondrial oxidative phosphorylation to glycolysis during the reprogramming process. The mechanism of this metabolic reprogramming, however, remains elusive. Here, our results suggest that an Atg5-independent autophagic process mediates mitochondrial clearance, a characteristic event involved in the metabolic switch. We found that blocking such autophagy, but not canonical autophagy, inhibits mitochondrial clearance, in turn, preventing iPSC induction. Furthermore, AMPK seems to be upstream of this autophagic pathway and can be targeted by small molecules to modulate mitochondrial clearance during metabolic reprogramming. Our work not only reveals that the Atg5-independent autophagy is crucial for establishing pluripotency, but it also suggests that iPSC generation and tumorigenesis share a similar metabolic switch.", "title": "Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming" }, { "docid": "6121555", "text": "The aim of this study was to investigate the mechanism through which Sphingosine kinase-1 (SPHK1) exerts its anti-apoptosis activity in glioma cancer cells. We here report that dysregulation of SPHK1 alters the sensitivity of glioma to apoptosis both in vitro and in vivo. Further mechanistic study examined the expression of Bcl-2 family members, including Bcl-2, Mcl-1, Bax and Bim, in SPHK1-overexpressing glioma cells and revealed that only pro-apoptotic Bim was downregulated by SPHK1. Moreover, the transcriptional level of Bim was also altered by SPHK1 in glioma cells. We next confirmed the correlation between SPHK1 and Bim expression in primary glioma specimens. Importantly, increasing SPHK1 expression in glioma cells markedly elevated Akt activity and phosphorylated inactivation of FOXO3a, which led to downregulation of Bim. A pharmacological approach showed that these effects of SPHK1 were dependent on phosphatidylinositol 3-kinase (PI3K). Furthermore, effects of SPHK1 on Akt/FOXO3a/Bim pathway could be reversed by SPHK1 specific RNA interference or SPHK1 inhibitor. Collectively, our results indicate that regulation of the Akt/FOXO3a/Bim pathway may be a novel mechanism by which SPHK1 protects glioma cells from apoptosis, thereby involved in glioma tumorigenesis.", "title": "Sphingosine Kinase 1 Regulates the Akt/FOXO3a/Bim Pathway and Contributes to Apoptosis Resistance in Glioma Cells" } ]
901
PCSK9 inhibitors decrease plasma Lp(a) levels.
[ { "docid": "6540064", "text": "BACKGROUND Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date. \n METHODS Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured. \n RESULTS Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations. \n CONCLUSIONS Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a). CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971.", "title": "Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans" } ]
[ { "docid": "33118292", "text": "WHAT IS KNOWN AND OBJECTIVE There is a growing body of experimental and clinical evidence for the atherogenic and pro-thrombotic potential of Lipoprotein(a) [Lp(a)], as well as for its causative role in coronary heart disease and stroke. We comment on novel strategies for reducing Lp(a) levels. COMMENT Irrespective of the underlying biological mechanisms explaining the athero-thrombotic potential of this lipoprotein, most work has focused on the identification of suitable therapies for hyperlipoproteinemia(a). These include apheresis techniques, nicotinic acid and statins. None of these strategies have been shown to be definitely effective or convenient for the patient and new strategies are being attempted. Promising results are emerging with therapeutic interventions targeting the 'inflammatory pathways' by inhibition of Interleukin-6 (IL-6) signalling with natural compounds (e.g., Ginko biloba) or the IL-6 receptor antibody Tocilizumab. These may both lower Lp(a) and cardiovascular risk of the patients. Besides inhibiting platelet function, antiplatelet therapy with aspirin may also decrease the plasma concentration of Lp(a) and modulate its influence on platelets. WHAT IS NEW AND CONCLUSION We highlight the inadequacy of current approaches for lowering Lp(a) and draw attention to novel insights that may lead to better treatment.", "title": "Optimal therapy for reduction of lipoprotein(a)." }, { "docid": "46277811", "text": "Background: The relationship of LPA single nucleotide polymorphisms (SNPs), apolipoprotein(a) isoforms, and lipoprotein(a) [Lp(a)] levels with major adverse cardiovascular events (MACE) in different ethnic groups is not well known. Methods: LPA SNPs, apolipoprotein(a) isoforms, Lp(a), and oxidized phospholipids on apolipoprotein B-100 (OxPL-apoB) levels were measured in 1792 black, 1030 white, and 597 Hispanic subjects enrolled in the Dallas Heart Study. Their interdependent relationships and prospective association with MACE after median 9.5-year follow-up were determined. Results: LPA SNP rs3798220 was most prevalent in Hispanics (42.38%), rs10455872 in whites (14.27%), and rs9457951 in blacks (32.92%). The correlation of each of these SNPs with the major apolipoprotein(a) isoform size was highly variable and in different directions among ethnic groups. In the entire cohort, Cox regression analysis with multivariable adjustment revealed that quartiles 4 of Lp(a) and OxPL-apoB were associated with hazard ratios (95% confidence interval) for time to MACE of 2.35 (1.50–3.69, P<0.001) and 1.89 (1.26–2.84, P=0.003), respectively, versus quartile 1. Addition of the major apolipoprotein(a) isoform and the 3 LPA SNPs to these models attenuated the risk, but significance was maintained for both Lp(a) and OxPL-apoB. Evaluating time to MACE in specific ethnic groups, Lp(a) was a positive predictor and the size of the major apolipoprotein(a) isoform was an inverse predictor in blacks, the size of the major apolipoprotein(a) isoform was an inverse predictor in whites, and OxPL-apoB was a positive predictor in Hispanics. Conclusions: The prevalence and association of LPA SNPs with size of apolipoprotein(a) isoforms, Lp(a), and OxPL-apoB levels are highly variable and ethnicity-specific. The relationship to MACE is best explained by elevated plasma Lp(a) or OxPL-apoB levels, despite significant ethnic differences in LPA genetic markers.", "title": "LPA Gene, Ethnicity, and Cardiovascular Events" }, { "docid": "9334631", "text": "OBJECTIVE C-Reactive protein (CRP), a cardiovascular risk marker, could also participate in atherosclerosis. Atherosclerotic plaques express CRP and interleukin (IL)-10, a major antiinflammatory cytokine. IL-10 deficiency results in increased lesion formation, whereas IL-10 delivery attenuates lesions. We tested the effect of CRP on lipopolysaccharide (LPS)-induced IL-10 secretion in human monocyte-derived macrophages (HMDMs). \n METHODS AND RESULTS Incubation of HMDMs with CRP significantly decreased LPS-induced IL-10 mRNA and intracellular and secreted IL-10 protein and destabilized IL-10 mRNA. Also, CRP alone increased secretion of IL-8, IL-6, and tumor necrosis factor from HMDMs and did not inhibit LPS-induced secretion of these cytokines. Fc gamma receptor I antibodies significantly reversed CRP-mediated IL-10 inhibition. CRP significantly decreased intracellular cAMP, phospho-cAMP response element binding protein (pCREB), and adenyl cyclase activity. cAMP agonists reversed CRP-mediated IL-10 inhibition. Overexpression of wild-type and constitutively active CREB in THP-1 cells revealed attenuation of the inhibitory effect of CRP on LPS-induced IL-10 levels. CRP also inhibited hemoglobin:haptoglobin-induced IL-10 and heme oxygenase-1. Furthermore, administration of human CRP to rats significantly decreased IL-10 levels. \n CONCLUSIONS This study provides novel evidence that CRP, by decreasing IL-10 alters the antiinflammatory/proinflammatory balance, accentuating inflammation, which is pivotal in atherothrombosis.", "title": "C-reactive protein decreases interleukin-10 secretion in activated human monocyte-derived macrophages via inhibition of cyclic AMP production." }, { "docid": "27093166", "text": "BACKGROUND Ketamine, as an anesthetic agent, has an anti-inflammatory effect. In the present study, we investigated whether ketamine inhibits release of high mobility group box 1 (HMGB1), a late-phase cytokine of sepsis, in lipopolysaccharide (LPS)-stimulated macrophages through heme oxygenase-1 (HO-1) induction. \n METHODS Macrophages were preincubated with various concentrations of ketamine and then treated with LPS (1 μg/mL). The cell culture supernatants were collected to measure inflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor-α, and interleukin 1β) by enzyme-linked immunosorbent assay. Moreover, HO-1 protein expression, the phosphorylation and degradation of IκB-α, and the nuclear translocation of nuclear factor E2-related factor 2 and nuclear factor κB (NF-κB) p65 were tested by Western blot analysis. In addition, to further identify the role of HO-1 in this process, tin protoporphyrin (SnPP), an HO-1 inhibitor, was used. \n RESULTS Ketamine treatment dose-dependently attenuated the increased levels of proinflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor α, and interleukin 1β) and increased the HO-1 protein expression in LPS-activated macrophages. Furthermore, ketamine suppressed the phosphorylation and degradation of IκB-α as well as the LPS-stimulated nuclear translocation of NF-κB p65 in macrophages. In addition, the present study also demonstrated that ketamine induced HO-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 in macrophages. The effects of ketamine on LPS-induced proinflammatory cytokines production were partially reversed by the HO inhibitor tin protoporphyrin (SnPP). \n CONCLUSION Ketamine inhibits the release of HMGB1 in LPS-stimulated macrophages, and this effect is at least partly mediated by the activation of the Nrf2/HO-1 pathway and NF-κB suppression.", "title": "Ketamine reduces LPS-induced HMGB1 via activation of the Nrf2/HO-1 pathway and NF-κB suppression." }, { "docid": "11868606", "text": "Cystic Fibrosis (CF) is an inherited pleiotropic disease that results from abnormalities in the gene codes of a chloride channel. The lungs of CF patients are chronically infected by several pathogens but bacteraemia have rarely been reported in this pathology. Besides that, circulating monocytes in CF patients exhibit a patent Endotoxin Tolerance (ET) state since they show a significant reduction of the inflammatory response to bacterial stimulus. Despite a previous description of this phenomenon, the direct cause of ET in CF patients remains unknown. In this study we have researched the possible role of microbial/endotoxin translocation from a localized infection to the bloodstream as a potential cause of ET induction in CF patients. Plasma analysis of fourteen CF patients revealed high levels of LPS compared to healthy volunteers and patients who suffer from Chronic Obstructive Pulmonary Disease. Experiments in vitro showed that endotoxin concentrations found in plasma of CF patients were enough to induce an ET phenotype in monocytes from healthy controls. In agreement with clinical data, we failed to detect bacterial DNA in CF plasma. Our results suggest that soluble endotoxin present in bloodstream of CF patients causes endotoxin tolerance in their circulating monocytes.", "title": "Translocated LPS Might Cause Endotoxin Tolerance in Circulating Monocytes of Cystic Fibrosis Patients" }, { "docid": "52874170", "text": "CONTEXT Diagnostic lumbar punctures (LPs), commonly used to rule out meningitis, are associated with adverse events. \n OBJECTIVE To systematically review the evidence about diagnostic LP techniques that may decrease the risk of adverse events and the evidence about test accuracy of cerebrospinal fluid (CSF) analysis in adult patients with suspected bacterial meningitis. \n DATA SOURCES We searched the Cochrane Library, MEDLINE (using Ovid and PubMed) from 1966 to January 2006 and EMBASE from 1980 to January 2006 without language restrictions to identify relevant studies and identified others from the bibliographies of retrieved articles. STUDY SELECTION We included randomized trials of patients aged 18 years or older undergoing interventions to facilitate a successful diagnostic LP or to potentially reduce adverse events. Studies assessing the accuracy of biochemical analysis of the CSF for possible bacterial meningitis were also identified. \n DATA EXTRACTION Two investigators independently appraised study quality and extracted relevant data. For studies of the LP technique, data on the intervention and the outcome were extracted. For studies of the laboratory diagnosis of bacterial meningitis, data on the reference standard and test accuracy were extracted. \n DATA SYNTHESIS We found 15 randomized trials. A random-effects model was used for quantitative synthesis. Five studies of 587 patients compared atraumatic needles with standard needles and found a nonsignificant decrease in the odds of headache with an atraumatic needle (absolute risk reduction [ARR], 12.3%; 95% confidence interval [CI], -1.72% to 26.2%). Reinsertion of the stylet before needle removal decreased the risk of headache (ARR, 11.3%; 95% CI, 6.50%-16.2%). The combined results from 4 studies of 717 patients showed a nonsignificant decrease in headache in patients who were mobilized after LP (ARR, 2.9%; 95% CI, -3.4 to 9.3%). Four studies on the accuracy of biochemical analysis of CSF in patients with suspected meningitis met inclusion criteria. A CSF-blood glucose ratio of 0.4 or less (likelihood ratio [LR], 18; 95% CI, 12-27]), CSF white blood cell count of 500/muL or higher (LR, 15; 95% CI, 10-22), and CSF lactate level of 31.53 mg/dL or more (> or =3.5 mmol/L; LR, 21; 95% CI, 14-32) accurately diagnosed bacterial meningitis. \n CONCLUSIONS These data suggest that small-gauge, atraumatic needles may decrease the risk of headache after diagnostic LP. Reinsertion of the stylet before needle removal should occur and patients do not require bed rest after the procedure. Future research should focus on evaluating interventions to optimize the success of a diagnostic LP and to enhance training in procedural skills.", "title": "How do I perform a lumbar puncture and analyze the results to diagnose bacterial meningitis?" }, { "docid": "7757997", "text": "It has been estimated that approximately 37% of the US population judged to be at high risk for developing coronary artery disease (CAD), based on the National Cholesterol Education Program guidelines, have increased plasma lipoprotein(a) [Lp(a)], whereas Lp(a) is increased in only 14% of those judged to be at low risk. Therefore, the importance of establishing a better understanding of the relative contribution of Lp(a) to the risk burden for CAD and other forms of vascular disease, as well as the underlying mechanisms, is clearly evident. However, the structural complexity and size heterogeneity of Lp(a) have hindered the development of immunoassays to accurately measure Lp(a) concentrations in plasma. The large intermethod variation in Lp(a) values has made it difficult to compare data from different clinical studies and to achieve a uniform interpretation of clinical data. A workshop was recently convened by the National Heart, Lung, and Blood Institute (NHLBI) to evaluate our current understanding of Lp(a) as a risk factor for atherosclerotic disorders; to determine how future studies could be designed to more clearly define the extent to which, and mechanisms by which, Lp(a) participates in these processes; and to present the results of the NHLBI-supported program for the evaluation and standardization of Lp(a) immunoassays. This report includes the most recent data presented by the workshop participants and the resulting practical and research recommendations.", "title": "Report of the National Heart, Lung, and Blood Institute Workshop on Lipoprotein(a) and Cardiovascular Disease: recent advances and future directions." }, { "docid": "8997410", "text": "Recent studies have investigated the dendritic actin cytoskeleton of the cell edge's lamellipodial (LP) region by experimentally decreasing the activity of the actin filament nucleator and branch former, the Arp2/3 complex. Here we extend these studies via pharmacological inhibition of the Arp2/3 complex in sea urchin coelomocytes, cells that possess an unusually broad LP region and display correspondingly exaggerated centripetal flow. Using light and electron microscopy, we demonstrate that Arp2/3 complex inhibition via the drug CK666 dramatically altered LP actin architecture, slowed centripetal flow, drove a lamellipodial-to-filopodial shape change in suspended cells, and induced a novel actin structural organization during cell spreading. A general feature of the CK666 phenotype in coelomocytes was transverse actin arcs, and arc generation was arrested by a formin inhibitor. We also demonstrate that CK666 treatment produces actin arcs in other cells with broad LP regions, namely fish keratocytes and Drosophila S2 cells. We hypothesize that the actin arcs made visible by Arp2/3 complex inhibition in coelomocytes may represent an exaggerated manifestation of the elongate mother filaments that could possibly serve as the scaffold for the production of the dendritic actin network.", "title": "Arp2/3 complex inhibition radically alters lamellipodial actin architecture, suspended cell shape, and the cell spreading process" }, { "docid": "3943235", "text": "During physiological or psychological stress, catecholamines produced by the sympathetic nervous system (SNS) regulate the immune system. Previous studies report that the activation of β-adrenergic receptors (βARs) mediates the actions of catecholamines and increases pro-inflammatory cytokine production in a number of different cell types. The impact of the SNS on the immune modulation of social defeat has not been examined. The following studies were designed to determine whether SNS activation during social disruption stress (SDR) influences anxiety-like behavior as well as the activation, priming, and glucocorticoid resistance of splenocytes after social stress. CD-1 mice were exposed to one, three, or six cycles of SDR and HPLC analysis of the plasma and spleen revealed an increase in catecholamines. After six cycles of SDR the open field test was used to measure behaviors characteristic of anxiety and indicated that the social defeat induced increase in anxiety-like behavior was blocked by pre-treatment with the β-adrenergic antagonist propranolol. Pre-treatment with the β-adrenergic antagonist propranolol did not significantly alter corticosterone levels indicating no difference in activation of the hypothalamic-pituitary-adrenal axis. In addition to anxiety-like behavior the SDR induced splenomegaly and increase in plasma IL-6, TNFα, and MCP-1 were each reversed by pre-treatment with propranolol. Furthermore, flow cytometric analysis of cells from propranolol pretreated mice reduced the SDR-induced increase in the percentage of CD11b(+) splenic macrophages and significantly decreased the expression of TLR2, TLR4, and CD86 on the surface of these cells. In addition, supernatants from 18h LPS-stimulated ex vivo cultures of splenocytes from propranolol-treated SDR mice contained less IL-6. Likewise propranolol pre-treatment abrogated the glucocorticoid insensitivity of CD11b(+) cells ex vivo when compared to splenocytes from SDR vehicle-treated mice. Together, this study demonstrates that the immune activation and priming effects of SDR result, in part, as a consequence of SNS activation.", "title": "Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress" }, { "docid": "12039953", "text": "Depression is a mood disorder characterized by complex alterations of neurotransmitters such as serotonin, norepinephrine, and dopamine. In particular, there is substantial evidence of abnormalities in serotonin neurotransmission. Peripheral parameters of serotoninergic transmission, such as the 5-hydroxytryptamine content of plasma and platelets, have been used to identify biochemical alterations related to depression. In recent years, these parameters have also been used to examine the mechanism of action of antidepressive drugs such as the selective serotonin reuptake inhibitors. This study investigated the interaction between the plasma and platelet levels of fluoxetine and serotonin after fluoxetine administration to depressed patients. Twelve patients affected by major depression (according to the DSM-IV criteria) received a single oral dose of fluoxetine in the morning: 5 mg in the first 5 days, 10 mg from day 6 to day 10, and 20 mg from day 11 to day 40. Blood samples were collected at 0, 7, 10, and 24 hours after drug administration on the day 1 of fluoxetine 5 mg and on the 1st and the 30th day of fluoxetine 20 mg (days 11 and 40 of treatment, respectively). Plasma fluoxetine and serotonin levels increased after drug administration, reaching the highest levels on the 30th day of fluoxetine 20 mg. Fluoxetine levels were also detectable in platelets, with a time variation similar to plasma values. Platelet serotonin levels decreased after drug administration, and the lowest values were observed on the 30th day of fluoxetine 20 mg.", "title": "Serotonin and fluoxetine levels in plasma and platelets after fluoxetine treatment in depressive patients." }, { "docid": "4462919", "text": "The RNA-guided endonuclease Cas9 has emerged as a versatile genome-editing platform. However, the size of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for basic research and therapeutic applications that use the highly versatile adeno-associated virus (AAV) delivery vehicle. Here, we characterize six smaller Cas9 orthologues and show that Cas9 from Staphylococcus aureus (SaCas9) can edit the genome with efficiencies similar to those of SpCas9, while being more than 1 kilobase shorter. We packaged SaCas9 and its single guide RNA expression cassette into a single AAV vector and targeted the cholesterol regulatory gene Pcsk9 in the mouse liver. Within one week of injection, we observed >40% gene modification, accompanied by significant reductions in serum Pcsk9 and total cholesterol levels. We further assess the genome-wide targeting specificity of SaCas9 and SpCas9 using BLESS, and demonstrate that SaCas9-mediated in vivo genome editing has the potential to be efficient and specific.", "title": "In vivo genome editing using Staphylococcus aureus Cas9" }, { "docid": "28517384", "text": "Myeloid differentiation factor-2 (MD-2) is a lipopolysaccharide (LPS)-binding protein usually coexpressed with and binding to Toll-like receptor 4 (TLR4), conferring LPS responsiveness of immune cells. MD-2 is also found as a soluble protein. Soluble MD-2 (sMD-2) levels are markedly elevated in plasma from patients with severe infections, and in other fluids from inflamed tissues. We show that sMD-2 is a type II acute-phase protein. Soluble MD-2 mRNA and protein levels are up-regulated in mouse liver after the induction of an acute-phase response. It is secreted by human hepatocytic cells and up-regulated by interleukin-6. Soluble MD-2 binds to Gram-negative but not Gram-positive bacteria, and sMD-2 secreted by hepatocytic cells is an essential cofactor for the activation of TLR4-expressing cells by Gram-negative bacteria. Soluble MD-2 opsonization of Gram-negative bacteria accelerates and enhances phagocytosis, principally by polymorphonuclear neutrophils. In summary, our results demonstrate that sMD-2 is a newly recognized type II acute-phase reactant, an opsonin for Gram-negative bacteria, and a cofactor essential for the activation of TLR4-expressing cells. This suggests that sMD-2 plays a key role in the host innate immune response to Gram-negative infections.", "title": "Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria." }, { "docid": "45336190", "text": "OBJECTIVE To evaluate the safety, tolerability, and amyloid beta (Abeta) response to the gamma-secretase inhibitor LY450139 in Alzheimer disease. \n DESIGN Multicenter, randomized, double-blind, dose-escalation, placebo-controlled trial. \n SETTING Community-based clinical research centers. Patients Fifty-one individuals with mild to moderate Alzheimer disease were randomized to receive placebo (n=15) or LY450139 (100 mg [n=22] or 140 mg [n=14]), with 43 completing the treatment phase. Intervention The LY450139 groups received 60 mg/d for 2 weeks, then 100 mg/d for 6 weeks, and then either 100 or 140 mg/d for 6 additional weeks. \n MAIN OUTCOME MEASURES Primary outcome measures were adverse events, plasma and cerebrospinal fluid Abeta levels, vital signs, electrocardiographic data, and laboratory safety test results. Secondary outcome measures included the Alzheimer's Disease Assessment Scale cognitive subscale and the Alzheimer's Disease Cooperative Study Activities of Daily Living Scale. \n RESULTS Group differences were seen in skin and subcutaneous tissue concerns (P=.05), including 3 possible drug rashes and 3 reports of hair color change in the treatment groups. There were 3 adverse event-related discontinuations, including 1 transient bowel obstruction. The plasma Abeta(40) concentration was reduced by 58.2% for the 100-mg group and 64.6% for the 140-mg group (P<.001). No significant reduction was seen in cerebrospinal fluid Abeta levels. No group differences were seen in cognitive or functional measures. \n CONCLUSIONS LY450139 was generally well tolerated at doses of up to 140 mg/d for 14 weeks, with several findings indicating the need for close clinical monitoring in future studies. Decreases in plasma Abeta concentrations were consistent with inhibition of gamma-secretase. Trial Registration clinicaltrials.gov Identifier: NCT00244322.", "title": "Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease." }, { "docid": "12280462", "text": "Bile acids are recognized as metabolic modulators. The present study was aimed at evaluating the effects of a potent Asbt inhibitor (264W94), which blocks intestinal absorption of bile acids, on glucose homeostasis in Zucker Diabetic Fatty (ZDF) rats. Oral administration of 264W94 for two wk increased fecal bile acid concentrations and elevated non-fasting plasma total Glp-1. Treatment of 264W94 significantly decreased HbA1c and glucose, and prevented the drop of insulin levels typical of ZDF rats in a dose-dependent manner. An oral glucose tolerance test revealed up to two-fold increase in plasma total Glp-1 and three-fold increase in insulin in 264W94 treated ZDF rats at doses sufficient to achieve glycemic control. Tissue mRNA analysis indicated a decrease in farnesoid X receptor (Fxr) activation in small intestines and the liver but co-administration of a Fxr agonist (GW4064) did not attenuate 264W94 induced glucose lowering effects. In summary, our results demonstrate that inhibition of Asbt increases bile acids in the distal intestine, promotes Glp-1 release and may offer a new therapeutic strategy for type 2 diabetes mellitus.", "title": "Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes." }, { "docid": "23737024", "text": "Two studies were performed to investigate the effects of an acute bout of physical exercise on the nuclear protein kappaB (NF-kappaB) signaling pathway in rat skeletal muscle. In Study 1, a group of rats (n=6) was run on the treadmill at 25 m/min, 5% grade, for 1 h or until exhaustion (Ex), and compared with a second group (n=6) injected with two doses of pyrrolidine dithiocarbamate (PDTC, 100 mg/kg, i.p.) 24 and 1 h prior to the acute exercise bout. Three additional groups of rats (n=6) were injected with either 8 mg/kg (i.p.) of lipopolysaccharide (LPS), 1 mmol/kg (i.p.) t-butylhydroperoxide (tBHP), or saline (C) and killed at resting condition. Ex rats showed higher levels of NF-kappaB binding and P50 protein content in muscle nuclear extracts compared with C rats. Cytosolic IkappaBalpha and IkappaB kinase (IKK) contents were decreased, whereas phospho-IkappaBalpha and phospho-IKK contents were increased, comparing Ex vs. C. The exercise-induced activation of NF-kappaB signaling cascade was partially abolished by PDTC treatment. LPS, but not tBHP, treatment mimicked and exaggerated the effects observed in Ex rats. In Study 2, the time course of exercise-induced NF-kappaB activation was examined. Highest levels of NF-kappaB binding were observed at 2 h postexercise. Decreased cytosolic IkappaBalpha and increased phosphor-IkappaBalpha content were found 0-1 h postexercise whereas P65 reached peak levels at 2-4 h. These data suggest that the NF-kappaB signaling pathway can be activated in a redox-sensitive manner during muscular contraction, presumably due to increased oxidant production. The cascade of intracellular events may be the overture to elevated gene expression of manganese superoxide dismutase reported earlier (Pfluegers Arch. 442, 426-434, 2001).", "title": "Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle." }, { "docid": "27545868", "text": "Kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), are associated with inflammation. The mechanism that regulates inflammation in these renal injuries remains unclear. Here, we demonstrated that p300/CBP-associated factor (PCAF), a histone acetyltransferase, was overexpressed in the kidneys of db/db mice and lipopolysaccharide (LPS)-injected mice. Moreover, elevated histone acetylation, such as H3K18ac, and up-regulation of some inflammatory genes, such as ICAM-1, VCAM-1, and MCP-1, were found upon these renal injuries. Furthermore, increased H3K18ac was recruited to the promoters of ICAM-1, VCAM-1, and MCP-1 in the kidneys of LPS-injected mice. In vitro studies demonstrated that PCAF knockdown in human renal proximal tubule epithelial cells (HK-2) led to downregulation of inflammatory molecules, including VCAM-1, ICAM-1, p50 subunit of NF-κB (p50), and MCP-1 mRNA and protein levels, together with significantly decreased H3K18ac level. Consistent with these, overexpression of PCAF enhanced the expression of inflammatory molecules. Furthermore, PCAF deficiency reduced palmitate-induced recruitment of H3K18ac on the promoters of ICAM-1 and MCP-1, as well as inhibited palmitate-induced upregulation of these inflammatory molecules. In summary, the present work demonstrates that PCAF plays an essential role in the regulation of inflammatory molecules through H3K18ac, which provides a potential therapeutic target for inflammation-related renal diseases.", "title": "Histone acetyltransferase PCAF regulates inflammatory molecules in the development of renal injury." }, { "docid": "25822299", "text": "Vascular endothelial cells produce nitric oxide (NO), which is a potent vasodilator substance and has been proposed as having antiatherosclerotic property. Vascular endothelial cells also produce endothelin-1 (ET-1), which is a potent vasoconstrictor peptide and has potent proliferating activity on vascular smooth muscle cells. Therefore, ET-1 has been implicated in the progression of atheromatous vascular disease. Because exercise training has been reported to produce an alteration in the function of vascular endothelial cells in animals, we hypothesized that exercise training influences the production of NO and ET-1 in humans. The purpose of the present study was to examine whether chronic exercise could influence the plasma levels of NO (measured as the stable end product of NO, i.e., nitrite/nitrate [NOx]) and ET-1 in humans. Eight healthy young subjects (20.3 +/- 0.5 yr old) participated in the study and exercised by cycling on a leg ergometer (70% VO2max for 1 hour, 3-4 days/week) for 8 weeks. Venous plasma concentrations of NOx and ET-1 were measured before and after (immediately before the end of 8-week exercise training) the exercise training, and also after the 4th and 8th week after the cessation of training. The VO2max significantly increased after exercise training. After the exercise training, the plasma concentration of NOx significantly increased (30.69 +/- 3.20 vs. 48.64 +/- 8.16 micromol/L, p < 0.05), and the plasma concentration of ET-1 significantly decreased (1.65 +/- 0.14 vs. 1.23 +/- 0.12 pg/mL, p < 0.05). The increase in NOx level and the decrease in ET-1 level lasted to the 4th week after the cessation of exercise training and these levels (levels of NOx and ET-1) returned to the basal levels (the levels before the exercise training) in the 8th week after the cessation of exercise training. There was a significant negative correlation between plasma NOx concentration and plasma ET-1 concentration. The present study suggests that chronic exercise causes an increase in production of NO and a decrease in production of ET-1 in humans, which may produce beneficial effects (i.e., vasodilative and antiatherosclerotic) on the cardiovascular system.", "title": "Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans." }, { "docid": "44562221", "text": "Endogenous glucocorticoids (GC) play an important role in the termination of the inflammatory response following infection and tissue injury. However, recent findings indicate that stress can impair the anti-inflammatory capacities of these hormones. Lipopolysaccharide (LPS)-stimulated splenocytes of mice that were repeatedly subjected to social disruption (SDR) stress were less sensitive to the immunosuppressive effects of corticosterone (CORT) as demonstrated by an increased production of pro-inflammatory cytokines and enhanced cell survival. Myeloid cells expressing the marker CD11b were shown to play a key role in this process. Here we investigated the role of the bone marrow as a potential source of the GC-insensitive cells. The study revealed that LPS-stimulated bone marrow cells, in the absence of experimental stress, were virtually GC-resistant and retained high levels of cell viability after treatment with CORT. Recurrent exposure to the acute stressor over a period of 2, 4 or 6 days led to an increase in the GC sensitivity of the bone marrow cells. This increase in GC sensitivity was associated with enhanced mRNA expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), an increase in the number of myeloid progenitors, and a decrease in the proportion of mature CD11b+ cells. The changes in the cellular composition of the bone marrow were accompanied by an increase in splenic CD11b+ cell numbers. Simultaneous assessment of the GC sensitivity in bone marrow and spleen revealed a significant negative correlation between both tissues suggesting that social stress causes the redistribution of GC-insensitive myeloid cells from the bone marrow to the spleen.", "title": "Tissue-specific alterations in the glucocorticoid sensitivity of immune cells following repeated social defeat in mice" }, { "docid": "42441846", "text": "INTRODUCTION Elevated plasma total homocysteine is a major risk for coronary artery disease (CAD). Methyltetrahydrofolate reductase (MTHFR) is a main regulatory enzyme in homocysteine metabolism; a common C677T mutation in the MTHFR gene results in decreased enzyme activity, and contributes to increased homocysteine levels and decreased folate levels. We investigated the frequency of MTHFR C677T alleles in a Korean population, determined the genotype-specific threshold levels of folate or vitamin B12, and investigated the relationship between the TT genotype and the risk of CAD. MATERIALS AND METHODS We enrolled a study population of 163 CAD patients and 50 control subjects, and screened the MTHFR C677T polymorphism using real-time PCR with melting point analysis. Levels of plasma homocysteine, folate and vitamin B12 were also determined. We then defined the genotype-specific threshold values of folate and vitamin B12 required to keep homocysteine levels in a normal range for individuals of each MTHFR C677T genotype. \n RESULTS The frequency of the TT genotype was 18% in control subjects and 26% in patients group (P>0.05). Individuals homozygous for the TT genotype had significantly elevated homocysteine levels (P<0.05). The genotype-specific folate threshold level was significantly higher in TT individuals than in the CC or CT genotypes. The OR of individuals with low folate status and the TT genotype to estimate the relative risk of CAD was 2.2 and the OR of those with high folate status and the TT genotype was 1.5 (95% CI, 0.5-9.6 and 0.7-3.2, respectively). \n CONCLUSION We were able to define a gene-nutrient interaction that shows a higher risk for CAD based on specific threshold folate levels required by different MTHFR C677T genotypes in a Korean population.", "title": "Gene--nutrition interactions in coronary artery disease: correlation between the MTHFR C677T polymorphism and folate and homocysteine status in a Korean population." } ]
902
PD-1 triggering on monocytes enhances IL-10 production by monocytes.
[ { "docid": "10648422", "text": "Viral replication and microbial translocation from the gut to the blood during HIV infection lead to hyperimmune activation, which contributes to the decline in CD4+ T cell numbers during HIV infection. Programmed death-1 (PD-1) and interleukin-10 (IL-10) are both upregulated during HIV infection. Blocking interactions between PD-1 and programmed death ligand-1 (PD-L1) and between IL-10 and IL-10 receptor (IL-10R) results in viral clearance and improves T cell function in animal models of chronic viral infections. Here we show that high amounts of microbial products and inflammatory cytokines in the plasma of HIV-infected subjects lead to upregulation of PD-1 expression on monocytes that correlates with high plasma concentrations of IL-10. Triggering of PD-1 expressed on monocytes by PD-L1 expressed on various cell types induced IL-10 production and led to reversible CD4+ T cell dysfunction. We describe a new function for PD-1 whereby microbial products inhibit T cell expansion and function by upregulating PD-1 levels and IL-10 production by monocytes after binding of PD-1 by PD-L1.", "title": "Programmed death-1–induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection" } ]
[ { "docid": "5752492", "text": "Chronic immune activation that persists despite anti-retroviral therapy (ART) is the strongest predictor of disease progression in HIV infection. Monocyte/macrophages in HIV-infected individuals are known to spontaneously secrete cytokines, although neither the mechanism nor the molecules involved are known. Here we show that overexpression of the newly described co-stimulatory molecule, PD1 homologue (PD-1H) in human monocyte/macrophages is sufficient to induce spontaneous secretion of multiple cytokines. The process requires signaling via PD-1H as cytokine secretion could be abrogated by deletion of the cytoplasmic domain. Such overexpression of PD-1H, associated with spontaneous cytokine expression is seen in monocytes from chronically HIV-infected individuals and this correlates with immune activation and CD4 depletion, but not viral load. Moreover, antigen presentation by PD-1H-overexpressing monocytes results in enhanced cytokine secretion by HIV-specific T cells. These results suggest that PD-1H might play a crucial role in modulating immune activation and immune response in HIV infection.", "title": "Characterization of Programmed Death-1 Homologue-1 (PD-1H) Expression and Function in Normal and HIV Infected Individuals" }, { "docid": "9334631", "text": "OBJECTIVE C-Reactive protein (CRP), a cardiovascular risk marker, could also participate in atherosclerosis. Atherosclerotic plaques express CRP and interleukin (IL)-10, a major antiinflammatory cytokine. IL-10 deficiency results in increased lesion formation, whereas IL-10 delivery attenuates lesions. We tested the effect of CRP on lipopolysaccharide (LPS)-induced IL-10 secretion in human monocyte-derived macrophages (HMDMs). \n METHODS AND RESULTS Incubation of HMDMs with CRP significantly decreased LPS-induced IL-10 mRNA and intracellular and secreted IL-10 protein and destabilized IL-10 mRNA. Also, CRP alone increased secretion of IL-8, IL-6, and tumor necrosis factor from HMDMs and did not inhibit LPS-induced secretion of these cytokines. Fc gamma receptor I antibodies significantly reversed CRP-mediated IL-10 inhibition. CRP significantly decreased intracellular cAMP, phospho-cAMP response element binding protein (pCREB), and adenyl cyclase activity. cAMP agonists reversed CRP-mediated IL-10 inhibition. Overexpression of wild-type and constitutively active CREB in THP-1 cells revealed attenuation of the inhibitory effect of CRP on LPS-induced IL-10 levels. CRP also inhibited hemoglobin:haptoglobin-induced IL-10 and heme oxygenase-1. Furthermore, administration of human CRP to rats significantly decreased IL-10 levels. \n CONCLUSIONS This study provides novel evidence that CRP, by decreasing IL-10 alters the antiinflammatory/proinflammatory balance, accentuating inflammation, which is pivotal in atherothrombosis.", "title": "C-reactive protein decreases interleukin-10 secretion in activated human monocyte-derived macrophages via inhibition of cyclic AMP production." }, { "docid": "5372773", "text": "Human cytomegalovirus (HCMV) expresses several homologues of human interleukin 10 (hIL-10) possessing immunomodulatory properties which may promote viral infection by modulating the function of myeloid cells. We examined the phenotype and phagocytic capability of human monocytes exposed to hIL-10, an HCMV-encoded hIL-10 homologue expressed during the productive phase of infection (cmvIL-10), and a differentially spliced form of cmvIL-10 expressed during latent and productive phases of infection, (LAcmvIL-10). hIL-10 and cmvIL-10 upregulated expression of Fcgamma receptors, stimulated phagocytosis of IgG-opsonised erythrocytes and decreased MHC class II (HLA-DR) expression on purified monocytes within 24 h. In contrast, LAcmvIL-10 decreased HLA-DR expression at later times (48 h and 72 h) but did not increase Fcgamma receptor expression. We conclude that cmvIL-10 promotes differentiation of monocytes towards a pro-phagocytic phenotype and that LAcmvIL-10 does not affect monocytes by the same mechanism as cmvIL-10. The significance of these properties to cytomegalovirus pathogenesis is discussed.", "title": "Enhanced monocyte Fc phagocytosis by a homologue of interleukin-10 encoded by human cytomegalovirus." }, { "docid": "34469966", "text": "Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an \"alternative inflammasome\" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans.", "title": "Human Monocytes Engage an Alternative Inflammasome Pathway." }, { "docid": "21439640", "text": "Tumor-associated macrophages and high levels of cyclooxygenase-2 (COX-2) are associated with poor prognosis in breast cancer patients, but their potential interdependence has not been evaluated. The objective of this study was to determine whether macrophages regulate COX-2 expression in breast cancer cells. For this purpose, THP-1 cells were cocultured with HCC1954 breast cancer cells. Coculture led to increased COX-2 expression in the HCC1954 cells and elevated prostaglandin E(2) levels in conditioned media. Similar results were observed when THP-1 cells were incubated with HCC1937 breast cancer cells or when human monocyte-derived macrophages were cocultured with HCC1954 cells. Coculture triggered production of reactive oxygen species (ROS) in HCC1954 cells. COX-2 induction was blocked in cells preincubated with an reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor or by silencing p67PHOX, a subunit of NADPH oxidase. ROS production triggered activation of Src and mitogen-activated protein kinases (MAPKs). Blocking Src or MAPK activities or antagonizing the activator protein-1 (AP-1) transcription factor attenuated COX-2 induction in HCC1954 cells. Coculture caused rapid induction of interleukin-1β (IL-1β) in both breast cancer cells and macrophages. Increased IL-1β expression was blocked by an interleukin-1 receptor antagonist (IL-1Ra), suggesting autocrine and paracrine effects. Importantly, macrophage-induced COX-2 expression was blocked in HCC1954 cells preincubated with IL-1Ra or anti-IL-1β IgG. Together, these results indicate that macrophage-mediated induction of COX-2 in breast cancer cells is a consequence of IL-1β-mediated stimulation of ROS→Src→MAPK→AP-1 signaling. IL-1β-dependent induction of COX-2 in breast cancer cells provides a mechanism whereby macrophages contribute to tumor progression and potential therapeutic targets in breast cancer.", "title": "Macrophages induce COX-2 expression in breast cancer cells: role of IL-1β autoamplification." }, { "docid": "21498497", "text": "Leprosy enables investigation of mechanisms by which the innate immune system contributes to host defense against infection, because in one form, the disease progresses, and in the other, the infection is limited. We report that Toll-like receptor (TLR) activation of human monocytes induces rapid differentiation into two distinct subsets: DC-SIGN+ CD16+ macrophages and CD1b+ DC-SIGN− dendritic cells. DC-SIGN+ phagocytic macrophages were expanded by TLR-mediated upregulation of interleukin (IL)-15 and IL-15 receptor. CD1b+ dendritic cells were expanded by TLR-mediated upregulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor, promoted T cell activation and secreted proinflammatory cytokines. Whereas DC-SIGN+ macrophages were detected in lesions and after TLR activation in all leprosy patients, CD1b+ dendritic cells were not detected in lesions or after TLR activation of peripheral monocytes in individuals with the progressive lepromatous form, except during reversal reactions in which bacilli were cleared by T helper type 1 (TH1) responses. In tuberculoid lepromatous lesions, DC-SIGN+ cells were positive for macrophage markers, but negative for dendritic cell markers. Thus, TLR-induced differentiation of monocytes into either macrophages or dendritic cells seems to crucially influence effective host defenses in human infectious disease.", "title": "TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells" }, { "docid": "26068103", "text": "RSV lower respiratory tract infections (LRTI) are among the most common diseases necessitating hospital admission in children. In addition to causing acute respiratory failure, RSV infections are associated with sequelae such as secondary bacterial infections and reactive airway disease. One characteristic host response observed in severe RSV-induced LRTI and/or subsequent development of asthma is increased expression of interleukin (IL)-10. However, contradictory results have been reported regarding whether IL-10 inhibits asthmatic responses or intensifies the disease. We aimed to reconcile these discordant observations by elucidating the role of IL-10 in regulating the host response to RSV LRTI. In this study, we used a lung-specific, inducible IL-10 over-expression (OE) transgenic mouse model to address this question. Our results showed that the presence of IL-10 at the time of RSV infection not only attenuated acute inflammatory process (i.e. 24 h post-infection), but also late inflammatory changes [characterized by T helper type 2 (Th2) cytokine and chemokine expression]. While this result appears contradictory to some clinical observations where elevated IL-10 levels are observed in asthmatic patients, we also found that delaying IL-10 OE until the late immune response to RSV infection, additive effects rather than inhibitory effects were observed. Importantly, in non-infected, IL-10 OE mice, IL-10 OE alone induced up-regulation of Th2 cytokine (IL-13 and IL-5) and Th2-related chemokine [monocyte chemoattractant protein 1 (MCP-1), chemokine (C-C motif) ligand 3 (CCL3) and regulated upon activation normal T cell expressed and secreted (RANTES)] expression. We identified a subset of CD11b(+)CD11c(+)CD49b(+)F4/80(-)Gr-1(-) myeloid cells as a prinicipal source of IL-10-induced IL-13 production. Therefore, the augmented pathological responses observed in our 'delayed' IL-10 over-expression model could be attributed to IL-10 OE alone. Taken together, our study indicated dual roles of IL-10 on RSV-induced lung inflammation which appear to depend upon the timing of when elevated IL-10 is expressed in the lung.", "title": "Dual role of interleukin-10 in the regulation of respiratory syncitial virus (RSV)-induced lung inflammation." }, { "docid": "37762357", "text": "Cytomegalovirus (CMV) has highly evolved mechanisms for avoiding detection by the host immune system. Recently, in the genomes of human and primate CMV, a novel gene comprising segments of noncontiguous open reading frames was identified and found to have limited predicted homology to endogenous cellular interleukin-10 (IL-10). Here we investigate the biological activities of the CMV IL-10-like gene product and show it to possess potent immunosuppressive properties. Both purified bacterium-derived recombinant CMV IL-10 and CMV IL-10 expressed in supernatants of human cells were found to inhibit proliferation of mitogen-stimulated peripheral blood mononuclear cells (PBMCs), with specific activity comparable to that of recombinant human IL-10. In addition, CMV IL-10 expressed from human cells inhibited cytokine synthesis, as treatment of stimulated PBMCs and monocytes with CMV IL-10 led to a marked decrease in production of proinflammatory cytokines. Finally, CMV IL-10 was observed to decrease cell surface expression of both major histocompatibility complex (MHC) class I and class II molecules, while conversely increasing expression of the nonclassical MHC allele HLA-G. These results demonstrate for the first time that CMV has a biologically active IL-10 homolog that may contribute to immune evasion during virus infection.", "title": "Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10." }, { "docid": "5511240", "text": "Kupffer cells, the phagocytes of fetal origin that line the liver sinusoids, are key contributors of host defense against enteroinvasive bacteria. Here, we found that infection by Listeria monocytogenes induced the early necroptotic death of Kupffer cells, which was followed by monocyte recruitment and an anti-bacterial type 1 inflammatory response. Kupffer cell death also triggered a type 2 response that involved the hepatocyte-derived alarmin interleukin-33 (IL-33) and basophil-derived interleukin-4 (IL-4). This led to the alternative activation of the monocyte-derived macrophages recruited to the liver, which thereby replaced ablated Kupffer cells and restored liver homeostasis. Kupffer cell death is therefore a key signal orchestrating type 1 microbicidal inflammation and type-2-mediated liver repair upon infection. This indicates that beyond the classical dichotomy of type 1 and type 2 responses, these responses can develop sequentially in the context of a bacterial infection and act interdependently, orchestrating liver immune responses and return to homeostasis, respectively.", "title": "Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection." }, { "docid": "1360607", "text": "Exercise increases plasma TNF-alpha, IL-1beta, and IL-6, yet the stimuli and sources of TNF-alpha and IL-1beta remain largely unknown. We tested the role of oxidative stress and the potential contribution of monocytes in this cytokine (especially IL-1beta) response in previously untrained individuals. Six healthy nonathletes performed two 45-min bicycle exercise sessions at 70% of Vo(2 max) before and after a combination of antioxidants (vitamins E, A, and C for 60 days; allopurinol for 15 days; and N-acetylcysteine for 3 days). Blood was drawn at baseline, end-exercise, and 30 and 120 min postexercise. Plasma cytokines were determined by ELISA and monocyte intracellular cytokine level by flow cytometry. Before antioxidants, TNF-alpha increased by 60%, IL-1beta by threefold, and IL-6 by sixfold secondary to exercise (P < 0.05). After antioxidants, plasma IL-1beta became undetectable, the TNF-alpha response to exercise was abolished, and the IL-6 response was significantly blunted (P < 0.05). Exercise did not increase the percentage of monocytes producing the cytokines or their mean fluorescence intensity. We conclude that in untrained humans oxidative stress is a major stimulus for exercise-induced cytokine production and that monocytes play no role in this process.", "title": "Antioxidants attenuate the plasma cytokine response to exercise in humans." }, { "docid": "14386505", "text": "Myeloid cells play pivotal roles in chronic inflammatory diseases through their broad proinflammatory, destructive, and remodeling capacities. CD200 is widely expressed on a variety of cell types, while the recently identified CD200R is expressed on myeloid cells and T cells. CD200 deletion in vivo results in myeloid cell dysregulation and enhanced susceptibility to autoimmune inflammation, suggesting that the CD200-CD200R interaction is involved in immune suppression. We demonstrate in this study that CD200R agonists suppress mouse and human myeloid cell function in vitro, and also define a dose relationship between receptor expression and cellular inhibition. IFN-gamma- and IL-17-stimulated cytokine secretion from mouse peritoneal macrophages was inhibited by CD200R engagement. Inhibitory effects were not universal, as LPS-stimulated responses were unaffected. Inhibition of U937 cell cytokine production correlated with CD200R expression levels, and inhibition was only observed in low CD200R expressing cells, if the CD200R agonists were further cross-linked. Tetanus toxoid-induced human PBMC IL-5 and IL-13 secretion was inhibited by CD200R agonists. This inhibition was dependent upon cross-linking the CD200R on monocytes, but not on cross-linking the CD200R on CD4+ T cells. In all, we provide direct evidence that the CD200-CD200R interaction controls monocyte/macrophage function in both murine and human systems, further supporting the potential clinical application of CD200R agonists for the treatment of chronic inflammatory diseases.", "title": "Regulation of myeloid cell function through the CD200 receptor." }, { "docid": "11837657", "text": "Mycobacterium tuberculosis (Mtb) infects lung macrophages, which instead of killing the pathogen can be manipulated by the bacilli, creating an environment suitable for intracellular replication and spread to adjacent cells. The role of host cell death during Mtb infection is debated because the bacilli have been shown to be both anti-apoptotic, keeping the host cell alive to avoid the antimicrobial effects of apoptosis, and pro-necrotic, killing the host macrophage to allow infection of neighboring cells. Since mycobacteria activate the NLRP3 inflammasome in macrophages, we investigated whether Mtb could induce one of the recently described inflammasome-linked cell death modes pyroptosis and pyronecrosis. These are mediated through caspase-1 and cathepsin-B, respectively. Human monocyte-derived macrophages were infected with virulent (H37Rv) Mtb at a multiplicity of infection (MOI) of 1 or 10. The higher MOI resulted in strongly enhanced release of IL-1β, while a low MOI gave no IL-1β response. The infected macrophages were collected and cell viability in terms of the integrity of DNA, mitochondria and the plasma membrane was determined. We found that infection with H37Rv at MOI 10, but not MOI 1, over two days led to extensive DNA fragmentation, loss of mitochondrial membrane potential, loss of plasma membrane integrity, and HMGB1 release. Although we observed plasma membrane permeabilization and IL-1β release from infected cells, the cell death induced by Mtb was not dependent on caspase-1 or cathepsin B. It was, however, dependent on mycobacterial expression of ESAT-6. We conclude that as virulent Mtb reaches a threshold number of bacilli inside the human macrophage, ESAT-6-dependent necrosis occurs, activating caspase-1 in the process.", "title": "Human Macrophages Infected with a High Burden of ESAT-6-Expressing M. tuberculosis Undergo Caspase-1- and Cathepsin B-Independent Necrosis" }, { "docid": "7948486", "text": "Kruppel-like factor 2 (KLF2) plays an important role in the regulation of a variety of immune cells, including monocytes. We have previously shown that KLF2 inhibits proinflammatory activation of monocytes. However, the role of KLF2 in arthritis is yet to be investigated. In the current study, we show that recruitment of significantly greater numbers of inflammatory subset of CD11b(+)F4/80(+)Ly6C+ monocytes to the inflammatory sites in KLF2 hemizygous mice compared to the wild type littermate controls. In parallel, inflammatory mediators, MCP-1, Cox-2 and PAI-1 were significantly up-regulated in bone marrow-derived monocytes isolated from KLF2 hemizygous mice, in comparison to wild-type controls. Methylated-BSA and IL-1β-induced arthritis was more severe in KLF2 hemizygous mice as compared to the littermate wild type controls. Consistent with this observation, monocytes isolated from KLF2 hemizygous mice showed an increased number of cells matured and differentiated towards osteoclastic lineage, potentially contributing to the severity of cartilage and bone damage in induced arthritic mice. The severity of arthritis was associated with the higher expression of proteins such as HSP60, HSP90 and MMP13 and attenuated levels of pPTEN, p21, p38 and HSP25/27 molecules in bone marrow cells of arthritic KLF2 hemizygous mice compared to littermate wild type controls. The data provide new insights and evidences of KLF2-mediated transcriptional regulation of arthritis via modulation of monocyte differentiation and function.", "title": "Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1β-induced arthritis." }, { "docid": "22483580", "text": "Bipolar disorder is a severe psychiatric disorder that is associated with persistent changes in the quality, duration and architecture of sleep. Currently there is no unifying hypothesis explaining the alterations in sleep observable in patients with bipolar disorder and management is often difficult though vital. Sleep is modified by various cytokines including IL-6. Elevated levels of IL-6 are associated with a poorer quality of sleep and changes in the architecture of sleep similar to those observed in bipolar disorder. Therapeutic administration of Interferon causes elevations of intrathecal IL-6 concentrations and appears to provoke a deteriorating quality of sleep. The blockade of IL-6 with tocilizumab in rheumatoid arthritis is associated with improvements in the quality of sleep. Bipolar disorder is associated with elevated levels of IL-6 and in particular elevated levels of mRNA coding for IL-6 in peripheral monocytes. We propose that the changes observed in the sleep of patients with bipolar disorder are related to the elevation of IL-6 and that this correlates with an elevated expression of mRNA coding for IL-6 expression in peripheral monocytes.", "title": "Disturbed sleep in bipolar disorder is related to an elevation of IL-6 in peripheral monocytes." }, { "docid": "13902570", "text": "OBJECTIVE TGR5 is a G-protein-coupled receptor for bile acids. So far, little is known about the function of TGR5 in vascular endothelial cells. APPROACH AND RESULTS In bovine aortic endothelial cells, treatment with a bile acid having a high affinity to TGR5, taurolithocholic acid (TLCA), significantly increased NO production. This effect was abolished by small interfering RNA-mediated depletion of TGR5. TLCA-induced NO production was also observed in human umbilical vein endothelial cells measured via intracellular cGMP accumulation. TLCA increased endothelial NO synthase(ser1177) phosphorylation in human umbilical vein endothelial cells. This response was accompanied by increased Akt(ser473) phosphorylation and intracellular Ca(2+). Inhibition of these signals significantly decreased TLCA-induced NO production. We next examined whether TGR5-mediated NO production affects inflammatory responses of endothelial cells. In human umbilical vein endothelial cells, TLCA significantly reduced tumor necrosis factor-α-induced adhesion of monocytes, vascular cell adhesion molecule-1 expression, and activation of nuclear factor-κB. TLCA also inhibited lipopolysaccharide-induced monocyte adhesion to mesenteric venules in vivo. These inhibitory effects of TLCA were abrogated by NO synthase inhibition. \n CONCLUSIONS TGR5 agonism induces NO production via Akt activation and intracellular Ca(2+) increase in vascular endothelial cells, and this function inhibits monocyte adhesion in response to inflammatory stimuli.", "title": "Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells." }, { "docid": "39084565", "text": "Experimental autoimmune myocarditis (EAM) represents a Th17 T cell-mediated mouse model of postinflammatory heart disease. In BALB/c wild-type mice, EAM is a self-limiting disease, peaking 21 days after alpha-myosin H chain peptide (MyHC-alpha)/CFA immunization and largely resolving thereafter. In IFN-gammaR(-/-) mice, however, EAM is exacerbated and shows a chronic progressive disease course. We found that this progressive disease course paralleled persistently elevated IL-17 release from T cells infiltrating the hearts of IFN-gammaR(-/-) mice 30 days after immunization. In fact, IL-17 promoted the recruitment of CD11b(+) monocytes, the major heart-infiltrating cells in EAM. In turn, CD11b(+) monocytes suppressed MyHC-alpha-specific Th17 T cell responses IFN-gamma-dependently in vitro. In vivo, injection of IFN-gammaR(+/+)CD11b(+), but not IFN-gammaR(-/-)CD11b(+), monocytes, suppressed MyHC-alpha-specific T cells, and abrogated the progressive disease course in IFN-gammaR(-/-) mice. Finally, coinjection of MyHC-alpha-specific, but not OVA-transgenic, IFN-gamma-releasing CD4(+) Th1 T cell lines, together with MyHC-alpha-specific Th17 T cells protected RAG2(-/-) mice from EAM. In conclusion, CD11b(+) monocytes play a dual role in EAM: as a major cellular substrate of IL-17-induced inflammation and as mediators of an IFN-gamma-dependent negative feedback loop confining disease progression.", "title": "CD11b+ monocytes abrogate Th17 CD4+ T cell-mediated experimental autoimmune myocarditis." }, { "docid": "13905670", "text": "The clinical course and eventual outcome, or prognosis, of complex diseases varies enormously between affected individuals. This variability critically determines the impact a disease has on a patient's life but is very poorly understood. Here, we exploit existing genome-wide association study data to gain insight into the role of genetics in prognosis. We identify a noncoding polymorphism in FOXO3A (rs12212067: T > G) at which the minor (G) allele, despite not being associated with disease susceptibility, is associated with a milder course of Crohn's disease and rheumatoid arthritis and with increased risk of severe malaria. Minor allele carriage is shown to limit inflammatory responses in monocytes via a FOXO3-driven pathway, which through TGFβ1 reduces production of proinflammatory cytokines, including TNFα, and increases production of anti-inflammatory cytokines, including IL-10. Thus, we uncover a shared genetic contribution to prognosis in distinct diseases that operates via a FOXO3-driven pathway modulating inflammatory responses.", "title": "Human SNP Links Differential Outcomes in Inflammatory and Infectious Disease to a FOXO3-Regulated Pathway" }, { "docid": "2436602", "text": "Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.", "title": "β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat." }, { "docid": "195683603", "text": "Neutrophils are the main effector cells during inflammation, but they can also control excessive inflammatory responses by secreting anti-inflammatory cytokines. However, the mechanisms that modulate their plasticity remain unclear. We now show that systemic serum amyloid A 1 (SAA-1) controls the plasticity of neutrophil differentiation. SAA-1 not only induced anti-inflammatory interleukin 10 (IL-10)-secreting neutrophils but also promoted the interaction of invariant natural killer T cells (iNKT cells) with those neutrophils, a process that limited their suppressive activity by diminishing the production of IL-10 and enhancing the production of IL-12. Because SAA-1-producing melanomas promoted differentiation of IL-10-secreting neutrophils, harnessing iNKT cells could be useful therapeutically by decreasing the frequency of immunosuppressive neutrophils and restoring tumor-specific immune responses.", "title": "Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A." } ]
908
PGE 2 suppresss intestinal tumor growth by altering the expression of tumor suppressing and DNA repair genes.
[ { "docid": "6923961", "text": "Although aberrant DNA methylation is considered to be one of the key ways by which tumor-suppressor and DNA-repair genes are silenced during tumor initiation and progression, the mechanisms underlying DNA methylation alterations in cancer remain unclear. Here we show that prostaglandin E(2) (PGE(2)) silences certain tumor-suppressor and DNA-repair genes through DNA methylation to promote tumor growth. These findings uncover a previously unrecognized role for PGE(2) in the promotion of tumor progression.", "title": "Prostaglandin E2 promotes intestinal tumor growth via DNA methylation" } ]
[ { "docid": "11915280", "text": "Aberrant gene silencing accompanied by DNA methylation is associated with neoplastic progression in many tumors that also show global loss of DNA methylation. Using conditional inactivation of de novo methyltransferase Dnmt3b in Apc(Min/+) mice, we demonstrate that the loss of Dnmt3b has no impact on microadenoma formation, which is considered the earliest stage of intestinal tumor formation. Nevertheless, we observed a significant decrease in the formation of macroscopic colonic adenomas. Interestingly, many large adenomas showed regions with Dnmt3b inactivation, indicating that Dnmt3b is required for initial outgrowth of macroscopic adenomas but is not required for their maintenance. These results support a role for Dnmt3b in the transition stage between microadenoma formation and macroscopic colonic tumor growth and further suggest that Dnmt3b, and by extension de novo methylation, is not required for maintaining tumor growth after this transition stage has occurred.", "title": "Suppression of intestinal neoplasia by deletion of Dnmt3b" }, { "docid": "6945691", "text": "Prostaglandins (PGs) have been implicated as a regulator of tumor growth in mice and humans. Since natural killer cell (NK) cytotoxicity may be an important component of immune surveillance against cancer, it is appropriate to study whether the amount of PGs produced by tumors may be sufficient to suppress NK activity. Accordingly, the effect of various PGs on the NK activity of human peripheral mononuclear cells was investigated. The percentage cytotoxicity was measured by the release of Cr51 from labeled K562 and other target cells. At very high concentrations of PG (10(-6) M), suppression was seen with PGE2, PGD2, PGA2, and PGF2 alpha. However, at concentrations of PG in the physiologic range (10(-8) M), significant suppression was seen with PGE2 and PGD2 only. The percentage suppression with PGE2 ranged from 77% to 9.5% over a range of concentrations from 10(-5) to 10(-9) M (45% at 10(-8) M). Significant suppression was observed at 10(-8) M PGE2 with 4 different targets and at effector:target ratios varying from 50:1 to 12.5:1. To assess whether the suppressive effect of PGE2 was directed at the effector and/or target cell, K562 cells or effector cells were pretreated with PGE2. Significant suppression was seen with effector cell pretreatment but not with target cell pretreatment. Finally, the suppressive effects of supernatants obtained from tumor cell lines (polyoma virus-transformed murine fibroblast cell line, PY3T3) was determined. The marked suppressive effect of the supernatant could be attributed to its content of PGE. Thus, it appears that the production of PGE by tumor cells may be an important modulator of human NK activity.", "title": "The modulation of human natural killer cell activity by prostaglandins." }, { "docid": "11271123", "text": "Endometrial cancer is associated with numeric and structural chromosomal abnormalities, microsatellite instability (MSI), and alterations that activate oncogenes and inactivate tumor suppressor genes. The aim of this study was to characterize a set of endometrial cancers using multiple molecular genetic and immunohistochemical techniques. Ninety-six cases were examined for genomic alterations by MSI, MLH1 promoter hypermethylation, p53 and mismatch repair protein expression (MLH1, MSH2, MSH6, PMS2), and PTEN, PIK3CA, KRAS, and BRAF mutation analysis. At least 1 alteration was identified in 48 of 87 (55%) specimens tested for PTEN, making it the most common abnormality in this study. A PIK3CA alteration was observed in 16 (17%) specimens. Twenty-nine of 94 (31%) MSI tested tumors exhibited an MSI-H phenotype. Of the 29 MSI-H cases, 24 (83%) were positive for methylation of the MLH1 promoter region. Twenty-three (82%) of the 28 MSI-H cases with immunohistochemistry results showed loss of expression of MLH1/PMS2 (n=19), MSH2/MSH6 (n=2), or MSH6 only (n=2). Of the 19 MSI-H cases with loss of MLH1/PMS2 on immunohistochemistry, 18 were positive, and 1 was equivocal for MLH1 promoter hypermethylation. Twelve of 94 cases (13%) analyzed for KRAS mutations were found to have a mutation. No BRAF V600E mutations were indentified. This study provides a comprehensive molecular genetic analysis of commonly analyzed targets in a large cohort of endometrial cancers.", "title": "Molecular characterization of endometrial cancer: a correlative study assessing microsatellite instability, MLH1 hypermethylation, DNA mismatch repair protein expression, and PTEN, PIK3CA, KRAS, and BRAF mutation analysis." }, { "docid": "14332945", "text": "Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.", "title": "Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks" }, { "docid": "29366489", "text": "Deleted in liver cancer 1 (DLC-1), as its name implied, was originally isolated as a potential tumor suppressor gene often deleted in hepatocellular carcinoma. Further studies have indicated that down-expression of DLC-1 either by genomic deletion or DNA methylation is associated with a variety of cancer types including lung, breast, prostate, kidney, colon, uterus, ovary, and stomach. Re-expression of DLC-1 in cancer cells regulates the structure of actin cytoskeleton and focal adhesions and significantly inhibits cell growth, supporting its role as a tumor suppressor. This tumor suppressive function relies on DLC-1's RhoGTPase activating protein (RhoGAP) activity and steroidogenic acute regulatory (StAR)-related lipid transfer (START) domain, as well as its focal adhesion localization, which is recruited by the Src Homology 2 (SH2) domains of tensins in a phosphotyrosine-independent fashion. Therefore, the expression and subcellular localization of DLC-1 could be a useful molecular marker for cancer prognosis, whereas DLC-1 and its downstream signaling molecules might be therapeutic targets for the treatment of cancer.", "title": "Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver." }, { "docid": "39758684", "text": "To reach the biological alterations that characterize cancer, the genome of tumor cells must acquire increased mutability resulting from a malfunction of a network of genome stability systems, e.g., cell cycle arrest, DNA repair, and high accuracy of DNA synthesis during DNA replication. Numeric chromosomal imbalance, referred to as aneuploidy, is the most prevalent genetic changes recorded among many types of solid tumors. We report here that ectopic expression in cells of DNA polymerase beta, an error-prone enzyme frequently over-regulated in human tumors, induces aneuploidy, an abnormal localization of the centrosome-associated gamma-tubulin protein during mitosis, a deficient mitotic checkpoint, and promotes tumorigenesis in nude immunodeficient mice. Thus, we find that alteration of polymerase beta expression appears to induce major genetic changes associated with a malignant phenotype.", "title": "Deregulated DNA polymerase beta induces chromosome instability and tumorigenesis." }, { "docid": "14471161", "text": "Circadian disruption accelerates cancer progression, whereas circadian reinforcement could halt it. Mice with P03 pancreatic adenocarcinoma (n = 77) were synchronized and fed ad libitum (AL) or with meal timing (MT) from Zeitgeber time (ZT) 2 to ZT6 with normal or fat diet. Tumor gene expression profiling was determined with DNA microarrays at endogenous circadian time (CT) 4 and CT16. Circadian mRNA expression patterns were determined for clock genes Rev-erbalpha, Per2, and Bmal1, cellular stress genes Hspa8 and Cirbp, and cyclin A2 gene Ccna2 in liver and tumor. The 24-hour patterns in telemetered rest-activity and body temperature and plasma corticosterone and insulin-like growth factor-I (IGF-I) were assessed. We showed that MT inhibited cancer growth by approximately 40% as compared with AL (P = 0.011) irrespective of calorie intake. Clock gene transcription remained arrhythmic in tumors irrespective of feeding schedule or diet. Yet, MT upregulated or downregulated the expression of 423 tumor genes, according to CT. Moreover, 36 genes involved in cellular stress, cell cycle, and metabolism were upregulated at one CT and downregulated 12 h apart. MT induced >10-fold circadian expression of Hspa8, Cirbp, and Ccna2 in tumors. Corticosterone or IGF-I patterns played no role in tumor growth inhibition. In contrast, MT consistently doubled the circadian amplitude of body temperature. Peak and trough respectively corresponded to peak expressions of Hspa8 and Cirbp in tumors. The reinforcement of the host circadian timing system with MT induced 24-hour rhythmic expression of critical genes in clock-deficient tumors, which translated into cancer growth inhibition. Targeting circadian clocks represents a novel potential challenge for cancer therapeutics.", "title": "Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing." }, { "docid": "19683625", "text": "BACKGROUND Tetracyclines such as doxycycline are reported to possess cytotoxic activity against mammalian tumor cells, but the mechanism of their effects on cell proliferation remains unclear. MATERIALS AND METHODS The antitumor effect of doxycycline was investigated in human pancreatic cancer cell line, PANC-1. We also investigated the effect of doxycycline on expression of a potent proangiogenic factor, interleukin (IL)-8. \n RESULTS In excess of 20 microg/ml, cytotoxic effects of doxycycline were accompanied by G(1)-S cell cycle arrest and DNA fragmentation in PANC-1 cells. Doxycycline consistently activated transcription of p53, p21 and Fas/FasL-cascade-related genes, while reducing the expression of Bcl-xL and Mcl-1. Doxycycline (5 microg/ml) below the cytotoxic level suppressed endogenous and paclitaxel-induced IL-8 expression. In the mouse xenograft model, doxycycline treatment was shown to suppress tumor growth by 80%. \n CONCLUSION These data suggest that doxycycline exerts its antitumor effect by activating proapoptotic genes, inhibiting IL-8 expression, and suppressing antiapoptotic genes.", "title": "Doxycycline induces apoptosis in PANC-1 pancreatic cancer cells." }, { "docid": "22482820", "text": "Breast cancer (BC) is generally classified based on the receptors overexpressed on the cell nucleus, which include hormone receptors such as progesterone (PR) and estrogen (ER), and HER2. Triple-negative breast cancer (TNBC) is a type of cancer that lacks any of these three types of receptor proteins (ER/PR/HER2). Tumor cells exhibit drug resistant phenotypes that decrease the efficacy of chemotherapeutic treatments. Generally, drug resistance has a genetic basis that is caused by an abnormal gene expression, nevertheless, there are several types of drug resistance: efflux pumps reducing the cellular concentration of the drug, alterations in membrane lipids that reduce cellular uptake, increased or altered drug targets, metabolic alteration of the drug, inhibition of apoptosis, repair of the damaged DNA, and alteration of the cell cycle checkpoints. The use of \"combination therapy\" is recognized as an efficient solution to treat human diseases, in particular, breast cancer. In this review, we give examples of different nanocarriers used to co-deliver multiple therapeutics (chemotherapeutic agent and nucleic acid) to drug-resistant tumor cells, and lastly, we give our recommendations for the future directions for the co-delivery treatments.", "title": "An overview of the effective combination therapies for the treatment of breast cancer." }, { "docid": "22972632", "text": "Inhibition of αvβ3 or αvβ5 integrin function has been reported to suppress neovascularization and tumor growth, suggesting that these integrins are critical modulators of angiogenesis. Here we report that mice lacking β3 integrins or both β3 and β5 integrins not only support tumorigenesis, but have enhanced tumor growth as well. Moreover, the tumors in these integrin-deficient mice display enhanced angiogenesis, strongly suggesting that neither β3 nor β5 integrins are essential for neovascularization. We also observed that angiogenic responses to hypoxia and vascular endothelial growth factor (VEGF) are augmented significantly in the absence of β3 integrins. We found no evidence that the expression or functions of other integrins were altered as a consequence of the β3 deficiency, but we did observe elevated levels of VEGF receptor-2 (also called Flk-1) in β3-null endothelial cells. These data indicate that αvβ3 and αvβ5 integrins are not essential for vascular development or pathological angiogenesis and highlight the need for further evaluation of the mechanisms of action of αv-integrin antagonists in anti-angiogenic therapeutics.", "title": "Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins" }, { "docid": "9486930", "text": "PURPOSE Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. \n PATIENTS AND METHODS Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. \n RESULTS An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a \"self-renewal\" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. \n CONCLUSION This study provides first clinical evidence for the implication of a \"glioma stem cell\" or \"self-renewal\" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.", "title": "Stem cell-related \"self-renewal\" signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma." }, { "docid": "57783564", "text": "Caudal-related homeobox transcription factor 2 (CDX2), an intestine-specific nuclear transcription factor, has been strongly implicated in the tumourigenesis of various human cancers. However, the functional role of CDX2 in the development and progression of colorectal cancer (CRC) is not well known. In this study, CDX2 knockdown in colon cancer cells promoted cell proliferation in vitro, accelerated tumor formation in vivo, and induced a cell cycle transition from G0/G1 to S phase, whereas CDX2 overexpression inhibited cell proliferation. TOP/FOP-Flash reporter assay showed that CDX2 knockdown or CDX2 overexpression significantly increased or decreased Wnt signaling activity. Western blot assay showed that downstream targets of Wnt signaling, including β-catenin, cyclin D1 and c-myc, were up-regulated or down-regulated in CDX2-knockdown or CDX2-overexpressing colon cancer cells. In addition, suppression of Wnt signaling by XAV-939 led to a marked suppression of the cell proliferation enhanced by CDX2 knockdown, whereas activation of this signaling by CHIR-99021 significantly enhanced the cell proliferation inhibited by CDX2 overexpression. Dual-luciferase reporter and quantitative chromatin immunoprecipitation (qChIP) assays further confirmed that CDX2 transcriptionally activates glycogen synthase kinase-3β (GSK-3β) and axis inhibition protein 2 (Axin2) expression by directly binding to the promoter of GSK-3β and the upstream enhancer of Axin2. In conclusion, these results indicated that CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling.", "title": "CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling via transactivation of GSK-3β and Axin2 expression" }, { "docid": "4688340", "text": "BACKGROUND Resistance to radiotherapy continues to be a limiting factor in the treatment of cancer including head and neck squamous cell carcinoma (HNSCC). Simultaneous targeting of β1 integrin and EGFR was shown to have a higher radiosensitizing potential than mono-targeting in the majority of tested HNSCC cancer models. As tumor-initiating cells (TIC) are thought to play a key role for therapy resistance and recurrence and can be enriched in sphere forming conditions, this study investigated the efficacy of β1 integrin/EGFR targeting without and in combination with X-ray irradiation on the behavior of sphere-forming cells (SFC). \n METHODS HNSCC cell lines (UTSCC15, UTSCC5, Cal33, SAS) were injected subcutaneously into nude mice for tumor up-take and plated for primary and secondary sphere formation under non-adhesive conditions which is thought to reflect the enrichment of SFC and their self-renewal capacity, respectively. Treatment was accomplished by inhibitory antibodies for β1 integrin (AIIB2) and EGFR (Cetuximab) as well as X-ray irradiation (2 - 6 Gy single doses). Further, flow cytometry for TIC marker expression and cell cycling as well as Western blotting for DNA repair protein expression and phosphorylation were employed. \n RESULTS We found higher primary and secondary sphere forming capacity of SAS cells relative to other HNSCC cell lines, which was in line with the tumor up-take rates of SAS versus UTSCC15 cells. AIIB2 and Cetuximab administration had minor cytotoxic and no radiosensitizing effects on SFC. Intriguingly, secondary SAS spheres, representing the fraction of surviving SFC upon passaging, showed greatly enhanced radiosensitivity compared to primary spheres. Intriguingly, neither AIIB2 nor Cetuximab significantly altered basal sphere forming capacity and radiosensitivity. While an increased accumulation of G0/G1 phase cells was observable in secondary SAS spheres, DNA double strand break repair indicated no difference on the basis of significantly enhanced ATM and Chk2 dephosphorylation upon irradiation. \n CONCLUSIONS In the HNSCC model, sphere-forming conditions select for cells, which are unsusceptible to both anti-β1 integrin and anti-EGFR inhibitory antibodies. With regard to primary and secondary sphere formation, our data suggest that both of these SFC fractions express distinct survival strategies independent from β1 integrin and EGFR and that future work is warranted to better understand SFC survival and enrichment before and after treatment to untangle the underlying mechanisms for identifying novel, druggable cancer targets in SFC.", "title": "Efficacy of Beta1 Integrin and EGFR Targeting in Sphere-Forming Human Head and Neck Cancer Cells" }, { "docid": "6896063", "text": "p53 functions as a transcription factor involved in cell-cycle control, DNA repair, apoptosis and cellular stress responses. However, besides inducing cell growth arrest and apoptosis, p53 activation also modulates cellular senescence and organismal aging. Senescence is an irreversible cell-cycle arrest that has a crucial role both in aging and as a robust physiological antitumor response, which counteracts oncogenic insults. Therefore, via the regulation of senescence, p53 contributes to tumor growth suppression, in a manner strictly dependent by its expression and cellular context. In this review, we focus on the recent advances on the contribution of p53 to cellular senescence and its implication for cancer therapy, and we will discuss p53’s impact on animal lifespan. Moreover, we describe p53-mediated regulation of several physiological pathways that could mediate its role in both senescence and aging.", "title": "Senescence and aging: the critical roles of p53" }, { "docid": "5254463", "text": "Colorectal cancer is one of the major causes of cancer-related deaths. To gain further insights into the mechanisms underlying its development, we investigated the role of Wip1 phosphatase, which is highly expressed in intestinal stem cells, in the mouse model of APC(Min)-driven polyposis. We found that Wip1 removal increased the life span of APC(Min) mice through a significant suppression of polyp formation. This protection was dependent on the p53 tumor suppressor, which plays a putative role in the regulation of apoptosis of intestinal stem cells. Activation of apoptosis in stem cells of Wip1-deficient mice, but not wild-type APC(Min) mice, increased when the Wnt pathway was constitutively activated. We propose, therefore, that the Wip1 phosphatase regulates homeostasis of intestinal stem cells. In turn, Wip1 loss suppresses APC(Min)-driven polyposis by lowering the threshold for p53-dependent apoptosis of stem cells, thus preventing their conversion into tumor-initiating stem cells.", "title": "Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine." }, { "docid": "343052", "text": "Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses.", "title": "Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model." }, { "docid": "33387953", "text": "Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.", "title": "Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance" }, { "docid": "5824955", "text": "Genomic instability and alterations in gene expression are hallmarks of eukaryotic aging. The yeast histone deacetylase Sir2 silences transcription and stabilizes repetitive DNA, but during aging or in response to a DNA break, the Sir complex relocalizes to sites of genomic instability, resulting in the desilencing of genes that cause sterility, a characteristic of yeast aging. Using embryonic stem cells, we show that mammalian Sir2, SIRT1, represses repetitive DNA and a functionally diverse set of genes across the mouse genome. In response to DNA damage, SIRT1 dissociates from these loci and relocalizes to DNA breaks to promote repair, resulting in transcriptional changes that parallel those in the aging mouse brain. Increased SIRT1 expression promotes survival in a mouse model of genomic instability and suppresses age-dependent transcriptional changes. Thus, DNA damage-induced redistribution of SIRT1 and other chromatin-modifying proteins may be a conserved mechanism of aging in eukaryotes.", "title": "SIRT1 Redistribution on Chromatin Promotes Genomic Stability but Alters Gene Expression during Aging" }, { "docid": "11968641", "text": "BACKGROUND Circadian clocks control cell cycle factors, and circadian disruption promotes cancer. To address whether enhancing circadian rhythmicity in tumor cells affects cell cycle progression and reduces proliferation, we compared growth and cell cycle events of B16 melanoma cells and tumors with either a functional or dysfunctional clock. \n RESULTS We found that clock genes were suppressed in B16 cells and tumors, but treatments inducing circadian rhythmicity, such as dexamethasone, forskolin and heat shock, triggered rhythmic clock and cell cycle gene expression, which resulted in fewer cells in S phase and more in G1 phase. Accordingly, B16 proliferation in vitro and tumor growth in vivo was slowed down. Similar effects were observed in human colon carcinoma HCT-116 cells. Notably, the effects of dexamethasone were not due to an increase in apoptosis nor to an enhancement of immune cell recruitment to the tumor. Knocking down the essential clock gene Bmal1 in B16 tumors prevented the effects of dexamethasone on tumor growth and cell cycle events. \n CONCLUSIONS Here we demonstrated that the effects of dexamethasone on cell cycle and tumor growth are mediated by the tumor-intrinsic circadian clock. Thus, our work reveals that enhancing circadian clock function might represent a novel strategy to control cancer progression.", "title": "Enhancing circadian clock function in cancer cells inhibits tumor growth" } ]
909
PKG-la does not have a large impact on expression of pain hypersensitivity in PGK-la knockout mice.
[ { "docid": "11254556", "text": "Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.", "title": "Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity" } ]
[ { "docid": "10666475", "text": "Neuropathic pain is a major, intractable clinical problem and its pathophysiology is not well understood. Although recent gene expression profiling studies have enabled the identification of novel targets for pain therapy, classical study designs provide unclear results owing to the differential expression of hundreds of genes across sham and nerve-injured groups, which can be difficult to validate, particularly with respect to the specificity of pain modulation. To circumvent this, we used two outbred lines of rats, which are genetically similar except for being genetically segregated as a result of selective breeding for differences in neuropathic pain hypersensitivity. SerpinA3N, a serine protease inhibitor, was upregulated in the dorsal root ganglia (DRG) after nerve injury, which was further validated for its mouse homolog. Mice lacking SerpinA3N developed more neuropathic mechanical allodynia than wild-type (WT) mice, and exogenous delivery of SerpinA3N attenuated mechanical allodynia in WT mice. T lymphocytes infiltrate the DRG after nerve injury and release leukocyte elastase (LE), which was inhibited by SerpinA3N derived from DRG neurons. Genetic loss of LE or exogenous application of a LE inhibitor (Sivelastat) in WT mice attenuated neuropathic mechanical allodynia. Overall, we reveal a novel and clinically relevant role for a member of the serpin superfamily and a leukocyte elastase and crosstalk between neurons and T cells in the modulation of neuropathic pain.", "title": "The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase" }, { "docid": "16270577", "text": "H2-M3 is a class Ib MHC molecule of the mouse with a 10(4)-fold preference for binding N-formylated peptides. To elucidate the basis of this unusual specificity, we expressed and crystallized a soluble form of M3 with a formylated nonamer peptide, fMYFINILTL, and determined the structure by X-ray crystallography. M3, refined at 2.1 A resolution, resembles class la MHC molecules in its overall structure, but differs in the peptide-binding groove. The A pocket, which usually accommodates the free N-terminus of a bound peptide, is closed, and the peptide is shifted one residue, such that the P1 side chain is lodged in the B pocket. The formyl group is coordinated by His-9 and a bound water on the floor of the groove.", "title": "Nonclassical binding of formylated peptide in crystal structure of the MHC class lb molecule H2-M3" }, { "docid": "25141908", "text": "The human cytomegalovirus UL111A region is active during both productive and latent phases of infection. During productive infection, the virus expresses ORF79, a protein with oncogenic properties, and cmvIL-10, a functional homolog of human IL-10. During latent infection of myeloid progenitor cells, an alternately spliced variant of cmvIL-10, termed latency-associated (LA) cmvIL-10 has previously been identified. To determine whether LAcmvIL-10 transcription occurs during productive infection, we performed 5' and 3' RACE to map UL111A-region transcripts in productively infected human foreskin fibroblasts (HFFs). This analysis revealed the presence of a singly spliced UL111A-region transcript predicted to encode LAcmvIL-10. This transcript was expressed in HFFs with early (beta) kinetics, a temporal class that differs from that of ORF79 (alpha kinetics) and cmvIL-10 (gamma kinetics). These data identify and map a transcript encoding a latency-associated homolog of IL-10 which is expressed by the virus during the productive phase of infection.", "title": "Expression of a human cytomegalovirus latency-associated homolog of interleukin-10 during the productive phase of infection." }, { "docid": "6625693", "text": "The use of N-type voltage-gated calcium channel (CaV2.2) blockers to treat pain is limited by many physiological side effects. Here we report that inflammatory and neuropathic hypersensitivity can be suppressed by inhibiting the binding of collapsin response mediator protein 2 (CRMP-2) to CaV2.2 and thereby reducing channel function. A peptide of CRMP-2 fused to the HIV transactivator of transcription (TAT) protein (TAT-CBD3) decreased neuropeptide release from sensory neurons and excitatory synaptic transmission in dorsal horn neurons, reduced meningeal blood flow, reduced nocifensive behavior induced by formalin injection or corneal capsaicin application and reversed neuropathic hypersensitivity produced by an antiretroviral drug. TAT-CBD3 was mildly anxiolytic without affecting memory retrieval, sensorimotor function or depression. At doses tenfold higher than that required to reduce hypersensitivity in vivo, TAT-CBD3 caused a transient episode of tail kinking and body contortion. By preventing CRMP-2–mediated enhancement of CaV2.2 function, TAT-CBD3 alleviated inflammatory and neuropathic hypersensitivity, an approach that may prove useful in managing chronic pain.", "title": "Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex" }, { "docid": "22800314", "text": "Interleukin-15 (IL-15) is a cytokine produced in the normal brain that acts on its specific receptor IL-15Rα and co-receptors IL-2Rβ and IL-2Rγ in neuronal cells. The functions of the cerebral IL-15 system, however, are not yet clear. To test the hypothesis that IL-15Rα regulates metabolic activity and body temperature, we quantified the specific metabolic phenotype of IL-15Rα knockout mice. These normal-appearing mice were leaner with lower fat composition. During the entire circadian cycle, the knockout mice had a significantly higher acrophase in locomotor activity and heat dissipation. During the light phase, there was significantly greater food intake, oxygen consumption, and carbon dioxide production. The difference in the dark and light phases suggests that IL-15Rα participates in circadian rhythm regulation. The higher oxygen consumption in the light phase indicates adaptive thermogenesis in the knockout mice. The body temperature of the receptor knockout mice was significantly higher than the control in the light phase, and this was mainly caused by a large difference occurring between 0600 and 0900 h. In addition to the metabolic chamber studies and circadian rhythm analyses, qPCR of hypothalamic homogenates indicated higher mRNA expression of orexin and transient receptor potential vanilloid 4 cation channels. Consistent with a direct role of IL-15Rα in the hypothalamus, IL-15 treatment of the wild-type mice induced c-Fos expression in the preoptic area. We conclude that activation of hypothalamic neurons by IL-15 in mice contributes to thermoregulation and modifies the metabolic phenotype.", "title": "IL-15 Receptor Deletion Results in Circadian Changes of Locomotor and Metabolic Activity" }, { "docid": "12130690", "text": "Protease-activated receptor-2 (PAR-2) is a G-protein-coupled receptor activated through proteolytic cleavage. It is localized on epithelial, endothelial and inflammatory cells, as well as on transient receptor potential vanilloid 1 (TRPV1) receptor-expressing neurones. It plays an important role in inflammatory/nociceptive processes. Since there are few reports concerning PAR-2 function in joints, the effects of intraarticular PAR-2 activation on joint pain and inflammation were studied. Secondary hyperalgesia/allodynia, spontaneous weight distribution, swelling and inflammatory cytokine production were measured and the involvement of TRPV1 ion channels was investigated in rats and mice. Injection of the PAR-2 receptor agonist SLIGRL-NH(2) into the knee decreased touch sensitivity and weight bearing of the ipsilateral hindlimb in both species. Secondary mechanical allodynia/hyperalgesia and impaired weight distribution were significantly reduced by the TRPV1 antagonist SB366791 in rats and by the genetic deletion of this receptor in mice. PAR-2 activation did not cause significant joint swelling, but increased IL-1beta concentration which was not influenced by the lack of the TRPV1 channel. For comparison, intraplantar SLIGRL-NH(2) evoked similar primary mechanical hyperalgesia and impaired weight distribution in both WT and TRPV1 deficient mice, but oedema was smaller in the knockouts. The inactive peptide, LRGILS-NH(2), injected into either site did not induce any inflammatory or nociceptive changes. These data provide evidence for a significant role of TRPV1 receptors in secondary mechanical hyperalgesia/allodynia and spontaneous pain induced by PAR-2 receptor activation in the knee joint. Although intraplantar PAR-2 activation-induced oedema is also TRPV1 receptor-mediated, primary mechanical hyperalgesia, impaired weight distribution and IL-1beta production are independent of this channel.", "title": "Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception." }, { "docid": "8536018", "text": "Nitric oxide (NO) was identified as a key player in plant defence responses approximately 20 years ago and a large body of evidence has accumulated since then supporting its role as a signalling molecule. However, there are many discrepancies in current NO detection assays and the enzymatic pathways responsible for its synthesis have yet to be determined. This has provoked strong debates concerning the function of NO in plants, even questioning its existence in planta. Here we gather data obtained using the model pathosystem Arabidopsis/Pseudomonas, which confirms the production of NO during the hypersensitive response and supports is role as a trigger of hypersensitive cell death and a mediator of defence gene expression. Finally, we discuss potential sources of NO synthesis, focusing on the role of nitrite as major substrate for NO production during incompatible interactions.", "title": "Detection and function of nitric oxide during the hypersensitive response in Arabidopsis thaliana: where there's a will there's a way." }, { "docid": "27711043", "text": "OBJECTIVES To describe the impact of musculoskeletal pain (MP); to compare management of MP by the population and by primary care physicians; and to identify misconceptions about treatment. \n METHODS 5803 people with MP and 1483 primary care physicians, randomly selected, in eight European countries were interviewed by telephone. A structured questionnaire was used to ask about usual management of MP and perceived benefits and risks of treatment. Current health status (SF-12) was also assessed. \n RESULTS From primary care physicians' perceptions, MP appears to be well managed. All presenting patients are offered some form of treatment, 90% or more doctors are trying to improve patients' quality of life, and most are aware and concerned about the risks of treatment with NSAIDs. From a population perspective, up to 27% of people with pain do not seek medical help and of those who do, several wait months/years before seeing a doctor. 55% or fewer patients who have seen a doctor are currently receiving prescription treatment for their pain. Communication between doctors and patients is poor; few patients are given information about their condition; and many have misconceptions about treatment. \n CONCLUSIONS Management of MP is similar across eight European countries, but there is discordance between physician and patient perspectives of care. Some people with pain have never sought medical help despite being in constant/daily pain. Those who do seek help receive little written information or explanation and many have misperceptions about the benefits and risks of treatment that limit their ability to actively participate in decisions about their care.", "title": "Musculoskeletal pain in Europe: its impact and a comparison of population and medical perceptions of treatment in eight European countries." }, { "docid": "13573143", "text": "Comparative Gene Identification-58 (CGI-58), a lipid droplet (LD)-associated protein, promotes intracellular triglyceride (TG) hydrolysis in vitro. Mutations in human CGI-58 cause TG accumulation in numerous tissues including intestine. Enterocytes are thought not to store TG-rich LDs, but a fatty meal does induce temporary cytosolic accumulation of LDs. Accumulated LDs are eventually cleared out, implying existence of TG hydrolytic machinery in enterocytes. However, identities of proteins responsible for LD-TG hydrolysis remain unknown. Here we report that intestine-specific inactivation of CGI-58 in mice significantly reduces postprandial plasma TG concentrations and intestinal TG hydrolase activity, which is associated with a 4-fold increase in intestinal TG content and large cytosolic LD accumulation in absorptive enterocytes during the fasting state. Intestine-specific CGI-58 knockout mice also display mild yet significant decreases in intestinal fatty acid absorption and oxidation. Surprisingly, inactivation of CGI-58 in intestine significantly raises plasma and intestinal cholesterol, and reduces hepatic cholesterol, without altering intestinal cholesterol absorption and fecal neutral sterol excretion. In conclusion, intestinal CGI-58 is required for efficient postprandial lipoprotein-TG secretion and for maintaining hepatic and plasma lipid homeostasis. Our animal model will serve as a valuable tool to further define how intestinal fat metabolism influences the pathogenesis of metabolic disorders, such as obesity and type 2 diabetes.", "title": "Intestinal Cgi-58 Deficiency Reduces Postprandial Lipid Absorption" }, { "docid": "23573229", "text": "Helicobacter hepaticus has been reported to induce colitis, hepatitis, and hepatocellular carcinoma in several different murine models. The aim of this study was to determine if H. hepaticus will cause colitis in monoassociated mice lacking the interleukin-10 gene (IL-10(-/-) mice) and potentiate colitis in specific-pathogen-free (SPF) IL-10(-/-) mice. Germfree IL-10(-/-) mice on either a mixed (C57BL/6 x 129/Ola) or inbred (129/SvEv) genetic background were monoassociated with H. hepaticus ATCC 51448 by oral feeding and rectal enemas. In a second experiment, germfree IL-10(-/-) mice were colonized with stool from SPF mice that harbored or did not harbor endogenous H. hepaticus. After 7 to 9 weeks of colonization, weight loss and mortality were assessed, the colon was isolated for histology and IL-12 secretion, and mesenteric lymph node cells were assessed for T-cell activation markers. It was found that IL-10(-/-) mice monoassociated with H. hepaticus for up to 16 weeks showed almost no histologic colitis or increased IL-12 production. SPF IL-10-knockout mice had no significant difference in weight loss, mortality rate, histologic scores, colonic IL-12 secretion, or T-cell activation with or without H. hepaticus. We conclude that H. hepaticus does not induce or potentiate disease in our IL-10(-/-) mice and therefore is not required to induce colitis in genetically susceptible hosts.", "title": "Helicobacter hepaticus does not induce or potentiate colitis in interleukin-10-deficient mice." }, { "docid": "17333231", "text": "The prion protein (PrP(C)) is highly expressed in the nervous system and critically involved in prion diseases where it misfolds into pathogenic PrP(Sc). Moreover, it has been suggested as a receptor mediating neurotoxicity in common neurodegenerative proteinopathies such as Alzheimer's disease. PrP(C) is shed at the plasma membrane by the metalloprotease ADAM10, yet the impact of this on prion disease remains enigmatic. Employing conditional knockout mice, we show that depletion of ADAM10 in forebrain neurons leads to posttranslational increase of PrP(C) levels. Upon prion infection of these mice, clinical, biochemical, and morphological data reveal that lack of ADAM10 significantly reduces incubation times and increases PrP(Sc) formation. In contrast, spatiotemporal analysis indicates that absence of shedding impairs spread of prion pathology. Our data support a dual role for ADAM10-mediated shedding and highlight the role of proteolytic processing in prion disease.", "title": "The sheddase ADAM10 is a potent modulator of prion disease" }, { "docid": "718601", "text": "Mammals can taste a wide repertoire of chemosensory stimuli. Two unrelated families of receptors (T1Rs and T2Rs) mediate responses to sweet, amino acids, and bitter compounds. Here, we demonstrate that knockouts of TRPM5, a taste TRP ion channel, or PLCbeta2, a phospholipase C selectively expressed in taste tissue, abolish sweet, amino acid, and bitter taste reception, but do not impact sour or salty tastes. Therefore, despite relying on different receptors, sweet, amino acid, and bitter transduction converge on common signaling molecules. Using PLCbeta2 taste-blind animals, we then examined a fundamental question in taste perception: how taste modalities are encoded at the cellular level. Mice engineered to rescue PLCbeta2 function exclusively in bitter-receptor expressing cells respond normally to bitter tastants but do not taste sweet or amino acid stimuli. Thus, bitter is encoded independently of sweet and amino acids, and taste receptor cells are not broadly tuned across these modalities.", "title": "Coding of Sweet, Bitter, and Umami Tastes Different Receptor Cells Sharing Similar Signaling Pathways" }, { "docid": "6820680", "text": "MicroRNAs (miRNAs) are short noncoding RNAs that exert posttranscriptional gene silencing and regulate gene expression. In addition to the hundreds of conserved cellular miRNAs that have been identified, miRNAs of viral origin have been isolated and found to modulate both the viral life cycle and the cellular transcriptome. Thus far, detection of virus-derived miRNAs has been largely limited to DNA viruses, suggesting that RNA viruses may be unable to exploit this aspect of transcriptional regulation. Lack of RNA virus-produced miRNAs has been attributed to the replicative constraints that would incur following RNase III processing of a genomic hairpin. To ascertain whether the generation of viral miRNAs is limited to DNA viruses, we investigated whether influenza virus could be designed to deliver functional miRNAs without affecting replication. Here, we describe a modified influenza A virus that expresses cellular microRNA-124 (miR-124). Insertion of the miR-124 hairpin into an intron of the nuclear export protein transcript resulted in endogenous processing and functional miR-124. We demonstrate that a viral RNA genome incorporating a hairpin does not result in segment instability or miRNA-mediated genomic targeting, thereby permitting the virus to produce a miRNA without having a negative impact on viral replication. This work demonstrates that RNA viruses can produce functional miRNAs and suggests that this level of transcriptional regulation may extend beyond DNA viruses.", "title": "Engineered RNA viral synthesis of microRNAs." }, { "docid": "14188138", "text": "In vitro studies indicate a role for the LIM kinase family in the regulation of cofilin phosphorylation and actin dynamics. In addition, abnormal expression of LIMK-1 is associated with Williams syndrome, a mental disorder with profound deficits in visuospatial cognition. However, the in vivo function of this family of kinases remains elusive. Using LIMK-1 knockout mice, we demonstrate a significant role for LIMK-1 in vivo in regulating cofilin and the actin cytoskeleton. Furthermore, we show that the knockout mice exhibited significant abnormalities in spine morphology and in synaptic function, including enhanced hippocampal long-term potentiation. The knockout mice also showed altered fear responses and spatial learning. These results indicate that LIMK-1 plays a critical role in dendritic spine morphogenesis and brain function.", "title": "Abnormal Spine Morphology and Enhanced LTP in LIMK-1 Knockout Mice" }, { "docid": "19529370", "text": "Although skeletal pain can have a marked impact on a patient's functional status and quality of life, relatively little is known about the specific populations of peripheral nerve fibers that drive non-malignant bone pain. In the present report, neonatal male Sprague-Dawley rats were treated with capsaicin or vehicle and femoral fracture was produced when the animals were young adults (15-16 weeks old). Capsaicin treatment, but not vehicle, resulted in a significant (>70%) depletion in the density of calcitonin-gene related peptide positive (CGRP(+)) sensory nerve fibers, but not 200 kDa neurofilament H positive (NF200(+)) sensory nerve fibers in the periosteum. The periosteum is a thin, cellular and fibrous tissue that tightly adheres to the outer surface of all but the articulated surface of bone and appears to play a pivotal role in driving fracture pain. In animals treated with capsaicin, but not vehicle, there was a 50% reduction in the severity, but no change in the time course, of fracture-induced skeletal pain-related behaviors as measured by spontaneous flinching, guarding and weight bearing. These results suggest that both capsaicin-sensitive (primarily CGRP(+) C-fibers) and capsaicin-insensitive (primarily NF200(+) A-delta fibers) sensory nerve fibers participate in driving skeletal fracture pain. Skeletal pain can be a significant impediment to functional recovery following trauma-induced fracture, osteoporosis-induced fracture and orthopedic surgery procedures such as knee and hip replacement. Understanding the specific populations of sensory nerve fibers that need to be targeted to inhibit the generation and maintenance of skeletal pain may allow the development of more specific mechanism-based therapies that can effectively attenuate acute and chronic skeletal pain.", "title": "Capsaicin-sensitive sensory nerve fibers contribute to the generation and maintenance of skeletal fracture pain." }, { "docid": "649951", "text": "Rationale: Endogenous and exogenous cannabinoids acting through the CB1 cannabinoid receptors are implicated in the control of a variety of behavioural and neuroendocrine functions, including emotional responses, and learning and memory processes. Recently, knockout mice deficient in the CB1 cannabinoid receptor have been generated, and these animals result in an excellent tool to evaluate the neurophysiology of the endogenous cannabinoid system. Objectives: To establish the role of the CB1 cannabinoid receptor in several emotional-related behavioural responses, including aggressiveness, anxiety, depression and learning models, using CB1 knockout mice. Methods: We evaluated the spontaneous responses of CB1 knockout mice and wild-type controls under different behavioural paradigms, including the light/dark box, the chronic unpredictable mild stress, the resident–intruder test and the active avoidance paradigm. Results: Our findings showed that CB1 knockout mice presented an increase in the aggressive response measured in the resident–intruder test and an anxiogenic-like response in the light/dark box. Furthermore, a higher sensitivity to exhibit depressive-like responses in the chronic unpredictable mild stress procedure was observed in CB1 knockout mice, suggesting an increased susceptibility to develop an anhedonic state in these animals. Finally, CB1 knockout mice showed a significant increase in the conditioned responses produced in the active avoidance model, suggesting an improvement of learning and memory processes. Conclusions: Taken together these findings demonstrate that endogenous cannabinoids through the activation of CB1 receptors are implicated in the control of emotional behaviour and participate in the physiological processes of learning and memory.", "title": "Involvement of CB1 cannabinoid receptors in emotional behaviour" }, { "docid": "6313547", "text": "Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.", "title": "Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity." }, { "docid": "34733465", "text": "BACKGROUND Patients with cystic fibrosis have altered levels of plasma fatty acids. We previously demonstrated that arachidonic acid levels are increased and docosahexaenoic acid levels are decreased in affected tissues from cystic fibrosis-knockout mice. In this study we determined whether humans with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have a similar fatty acid defect in tissues expressing CFTR. \n METHODS Fatty acids from nasal- and rectal-biopsy specimens, nasal epithelial scrapings, and plasma were analyzed from 38 subjects with cystic fibrosis and compared with results in 13 obligate heterozygotes, 24 healthy controls, 11 subjects with inflammatory bowel disease, 9 subjects with upper respiratory tract infection, and 16 subjects with asthma. \n RESULTS The ratio of arachidonic to docosahexaenoic acid was increased in mucosal and submucosal nasal-biopsy specimens (P<0.001) and rectal-biopsy specimens (P=0.009) from subjects with cystic fibrosis and pancreatic sufficiency and subjects with cystic fibrosis and pancreatic insufficiency, as compared with values in healthy control subjects. In nasal tissue, this change reflected an increase in arachidonic acid levels and a decrease in docosahexaenoic acid levels. In cells from nasal mucosa, the ratio of arachidonic to docosahexaenoic acid was increased in subjects with cystic fibrosis (P<0.001), as compared with healthy controls, with values in obligate heterozygotes intermediate between these two groups (P<0.001). The ratio was not increased in subjects with inflammatory bowel disease. Subjects with asthma and those with upper respiratory tract infection had values intermediate between those in subjects with cystic fibrosis and those in healthy control subjects. \n CONCLUSIONS These data indicate that alterations in fatty acids similar to those in cystic fibrosis-knockout mice are present in CFTR-expressing tissue from subjects with cystic fibrosis.", "title": "Association of cystic fibrosis with abnormalities in fatty acid metabolism." }, { "docid": "37205759", "text": "The Apolipoprotein (Apo) family is implicated in lipid metabolism. There are five types of Apo: Apoa, Apob, Apoc, Apod, and Apoe. Apoe has been demonstrated to play a central role in lipoprotein metabolism and to be essential for efficient receptor-mediated plasma clearance of chylomicron remnants and VLDL remnant particles by the liver. Apoe-deficient (Apoe(-/-)) mice develop atherosclerotic plaques spontaneously, followed by obesity. In this study, we investigated whether lipid deposition caused by Apoe knockout affects reproduction in female mice. The results demonstrated that Apoe(-/-) mice were severely hypercholesterolemic, with their cholesterol metabolism disordered, and lipid accumulating in the ovaries causing the ovaries to be heavier compared with the WT counterparts. In addition, estrogen and progesterone decreased significantly at D 100. Quantitative PCR analysis demonstrated that at D 100 the expression of cytochromeP450 aromatase (Cyp19a1), 3β-hydroxysteroid dehydrogenase (Hsd3b), mechanistic target of rapamycin (Mtor), and nuclear factor-κB (Nfkb) decreased significantly, while that of BCL2-associated agonist of cell death (Bad) and tuberous sclerosis complex 2 (Tsc2) increased significantly in the Apoe(-/-) mice. However, there was no difference in the fertility rates of the Apoe(-/-) and WT mice; that is, obesity induced by Apoe knockout has no significant effect on reproduction. However, the deletion of Apoe increased the number of ovarian follicles and the ratio of ovarian follicle atresia and apoptosis. We believe that this work will augment our understanding of the role of Apoe in reproduction.", "title": "Obesity occurring in apolipoprotein E-knockout mice has mild effects on fertility." } ]
910
PKG-la does not have a large impact on expression of spinal long term potentiation in PGK-la knockout mice.
[ { "docid": "11254556", "text": "Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.", "title": "Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity" } ]
[ { "docid": "25141908", "text": "The human cytomegalovirus UL111A region is active during both productive and latent phases of infection. During productive infection, the virus expresses ORF79, a protein with oncogenic properties, and cmvIL-10, a functional homolog of human IL-10. During latent infection of myeloid progenitor cells, an alternately spliced variant of cmvIL-10, termed latency-associated (LA) cmvIL-10 has previously been identified. To determine whether LAcmvIL-10 transcription occurs during productive infection, we performed 5' and 3' RACE to map UL111A-region transcripts in productively infected human foreskin fibroblasts (HFFs). This analysis revealed the presence of a singly spliced UL111A-region transcript predicted to encode LAcmvIL-10. This transcript was expressed in HFFs with early (beta) kinetics, a temporal class that differs from that of ORF79 (alpha kinetics) and cmvIL-10 (gamma kinetics). These data identify and map a transcript encoding a latency-associated homolog of IL-10 which is expressed by the virus during the productive phase of infection.", "title": "Expression of a human cytomegalovirus latency-associated homolog of interleukin-10 during the productive phase of infection." }, { "docid": "14188138", "text": "In vitro studies indicate a role for the LIM kinase family in the regulation of cofilin phosphorylation and actin dynamics. In addition, abnormal expression of LIMK-1 is associated with Williams syndrome, a mental disorder with profound deficits in visuospatial cognition. However, the in vivo function of this family of kinases remains elusive. Using LIMK-1 knockout mice, we demonstrate a significant role for LIMK-1 in vivo in regulating cofilin and the actin cytoskeleton. Furthermore, we show that the knockout mice exhibited significant abnormalities in spine morphology and in synaptic function, including enhanced hippocampal long-term potentiation. The knockout mice also showed altered fear responses and spatial learning. These results indicate that LIMK-1 plays a critical role in dendritic spine morphogenesis and brain function.", "title": "Abnormal Spine Morphology and Enhanced LTP in LIMK-1 Knockout Mice" }, { "docid": "16270577", "text": "H2-M3 is a class Ib MHC molecule of the mouse with a 10(4)-fold preference for binding N-formylated peptides. To elucidate the basis of this unusual specificity, we expressed and crystallized a soluble form of M3 with a formylated nonamer peptide, fMYFINILTL, and determined the structure by X-ray crystallography. M3, refined at 2.1 A resolution, resembles class la MHC molecules in its overall structure, but differs in the peptide-binding groove. The A pocket, which usually accommodates the free N-terminus of a bound peptide, is closed, and the peptide is shifted one residue, such that the P1 side chain is lodged in the B pocket. The formyl group is coordinated by His-9 and a bound water on the floor of the groove.", "title": "Nonclassical binding of formylated peptide in crystal structure of the MHC class lb molecule H2-M3" }, { "docid": "2062382", "text": "The popularization of genome-wide analyses and RNA sequencing led to the discovery that a large part of the human genome, while effectively transcribed, does not encode proteins. Long non-coding RNAs have emerged as critical regulators of gene expression in both normal and disease states. Studies of long non-coding RNAs expressed in the heart, in combination with gene association studies, revealed that these molecules are regulated during cardiovascular development and disease. Some long non-coding RNAs have been functionally implicated in cardiac pathophysiology and constitute potential therapeutic targets. Here, we review the current knowledge of the function of long non-coding RNAs in the cardiovascular system, with an emphasis on cardiovascular development and biology, focusing on hypertension, coronary artery disease, myocardial infarction, ischemia, and heart failure. We discuss potential therapeutic implications and the challenges of long non-coding RNA research, with directions for future research and translational focus.", "title": "The Function and Therapeutic Potential of Long Non-coding RNAs in Cardiovascular Development and Disease" }, { "docid": "22800314", "text": "Interleukin-15 (IL-15) is a cytokine produced in the normal brain that acts on its specific receptor IL-15Rα and co-receptors IL-2Rβ and IL-2Rγ in neuronal cells. The functions of the cerebral IL-15 system, however, are not yet clear. To test the hypothesis that IL-15Rα regulates metabolic activity and body temperature, we quantified the specific metabolic phenotype of IL-15Rα knockout mice. These normal-appearing mice were leaner with lower fat composition. During the entire circadian cycle, the knockout mice had a significantly higher acrophase in locomotor activity and heat dissipation. During the light phase, there was significantly greater food intake, oxygen consumption, and carbon dioxide production. The difference in the dark and light phases suggests that IL-15Rα participates in circadian rhythm regulation. The higher oxygen consumption in the light phase indicates adaptive thermogenesis in the knockout mice. The body temperature of the receptor knockout mice was significantly higher than the control in the light phase, and this was mainly caused by a large difference occurring between 0600 and 0900 h. In addition to the metabolic chamber studies and circadian rhythm analyses, qPCR of hypothalamic homogenates indicated higher mRNA expression of orexin and transient receptor potential vanilloid 4 cation channels. Consistent with a direct role of IL-15Rα in the hypothalamus, IL-15 treatment of the wild-type mice induced c-Fos expression in the preoptic area. We conclude that activation of hypothalamic neurons by IL-15 in mice contributes to thermoregulation and modifies the metabolic phenotype.", "title": "IL-15 Receptor Deletion Results in Circadian Changes of Locomotor and Metabolic Activity" }, { "docid": "11992632", "text": "People with Down syndrome (DS) exhibit abnormal brain structure. Alterations affecting neurotransmission and signalling pathways that govern brain function are also evident. A large number of genes are simultaneously expressed at abnormal levels in DS; therefore, it is a challenge to determine which gene(s) contribute to specific abnormalities, and then identify the key molecular pathways involved. We generated RCAN1-TG mice to study the consequences of RCAN1 over-expression and investigate the contribution of RCAN1 to the brain phenotype of DS. RCAN1-TG mice exhibit structural brain abnormalities in those areas affected in DS. The volume and number of neurons within the hippocampus is reduced and this correlates with a defect in adult neurogenesis. The density of dendritic spines on RCAN1-TG hippocampal pyramidal neurons is also reduced. Deficits in hippocampal-dependent learning and short- and long-term memory are accompanied by a failure to maintain long-term potentiation (LTP) in hippocampal slices. In response to LTP induction, we observed diminished calcium transients and decreased phosphorylation of CaMKII and ERK1/2-proteins that are essential for the maintenance of LTP and formation of memory. Our data strongly suggest that RCAN1 plays an important role in normal brain development and function and its up-regulation likely contributes to the neural deficits associated with DS.", "title": "Over-expression of RCAN1 causes Down syndrome-like hippocampal deficits that alter learning and memory." }, { "docid": "25827024", "text": "Deletion of copper-zinc superoxide dismutase (CuZnSOD) in Sod1(-/-) mice leads to accelerated loss of muscle mass and force during aging, but the losses do not occur with muscle-specific deletion of CuZnSOD. To determine the role of motor neurons in the muscle decline, we generated transgenic Sod1(-/-) mice in which CuZnSOD was expressed under control of the synapsin 1 promoter (SynTgSod1(-/-) mice). SynTgSod1(-/-) mice expressed CuZnSOD in brain, spinal cord, and peripheral nerve, but not in other tissues. Sciatic nerve CuZnSOD content in SynTgSod1(-/-) mice was ~20% that of control mice, but no reduction in muscle mass or isometric force was observed in SynTgSod1(-/-) mice compared with control animals, whereas muscles of age-matched Sod1(-/-) mice displayed 30-40% reductions in mass and force. In addition, increased oxidative damage and adaptations in stress responses observed in muscles of Sod1(-/-) mice were absent in SynTgSod1(-/-) mice, and degeneration of neuromuscular junction (NMJ) structure and function occurred in Sod1(-/-) mice but not in SynTgSod1(-/-) mice. Our data demonstrate that specific CuZnSOD expression in neurons is sufficient to preserve NMJ and skeletal muscle structure and function in Sod1(-/-) mice and suggest that redox homeostasis in motor neurons plays a key role in initiating sarcopenia during aging.", "title": "Neuron-specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD-knockout mice." }, { "docid": "23573229", "text": "Helicobacter hepaticus has been reported to induce colitis, hepatitis, and hepatocellular carcinoma in several different murine models. The aim of this study was to determine if H. hepaticus will cause colitis in monoassociated mice lacking the interleukin-10 gene (IL-10(-/-) mice) and potentiate colitis in specific-pathogen-free (SPF) IL-10(-/-) mice. Germfree IL-10(-/-) mice on either a mixed (C57BL/6 x 129/Ola) or inbred (129/SvEv) genetic background were monoassociated with H. hepaticus ATCC 51448 by oral feeding and rectal enemas. In a second experiment, germfree IL-10(-/-) mice were colonized with stool from SPF mice that harbored or did not harbor endogenous H. hepaticus. After 7 to 9 weeks of colonization, weight loss and mortality were assessed, the colon was isolated for histology and IL-12 secretion, and mesenteric lymph node cells were assessed for T-cell activation markers. It was found that IL-10(-/-) mice monoassociated with H. hepaticus for up to 16 weeks showed almost no histologic colitis or increased IL-12 production. SPF IL-10-knockout mice had no significant difference in weight loss, mortality rate, histologic scores, colonic IL-12 secretion, or T-cell activation with or without H. hepaticus. We conclude that H. hepaticus does not induce or potentiate disease in our IL-10(-/-) mice and therefore is not required to induce colitis in genetically susceptible hosts.", "title": "Helicobacter hepaticus does not induce or potentiate colitis in interleukin-10-deficient mice." }, { "docid": "24632480", "text": "Aberrant protein misfolding may contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS) but the detailed mechanisms are largely unknown. Our previous study has shown that autophagy is altered in the mouse model of ALS. In the present study, we systematically investigated the correlation of the autophagic alteration with the motor neurons (MNs) degeneration in the ALS mice. We have demonstrated that the autophagic protein marker LC3-II is markedly and specifically increased in the spinal cord MNs of the ALS mice. Electron microscopy and immunochemistry studies have shown that autophagic vacuoles are significantly accumulated in the dystrophic axons of spinal cord MNs of the ALS mice. All these changes in the ALS mice appear at the age of 90 d when the ALS mice display modest clinical symptoms; and they become prominent at the age of 120 d. The clinical symptoms are correlated with the progression of MNs degeneration. Moreover, we have found that p62/SQSTM1 is accumulated progressively in the spinal cord, indicating that the possibility of impaired autophagic flux in the SOD1(G93A) mice. Furthermore, to our surprise, we have found that treatment with autophagy enhancer rapamycin accelerates the MNs degeneration, shortens the life span of the ALS mice, and has no obvious effects on the accumulation of SOD1 aggregates. In addition, we have demonstrated that rapamycin treatment in the ALS mice causes more severe mitochondrial impairment, higher Bax levels and greater caspase-3 activation. These findings suggest that selective degeneration of MNs is associated with the impairment of the autophagy pathway and that rapamycin treatment may exacerbate the pathological processing through apoptosis and other mechanisms in the ALS mice.", "title": "Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis." }, { "docid": "25789730", "text": "Both axon and myelin degeneration have significant impact on the long-term disability of patients with white matter disorder. However, the clinical manifestations of the neurological dysfunction caused by white matter disorders are not sufficient to determine the origin of neurological deficits. A noninvasive biological marker capable of detecting and differentiating axon and myelin degeneration would be a significant addition to currently available tools. Directional diffusivities derived from diffusion tensor imaging (DTI) have been previously proposed by this group as potential biological markers to detect and differentiate axon and myelin degeneration. To further test the hypothesis that axial (lambdaparallel) and radial (lambdaperpendicular) diffusivities reflect axon and myelin pathologies, respectively, the optic nerve was examined serially using DTI in a mouse model of retinal ischemia. A significant decrease of lambdaparallel, the putative DTI axonal marker, was observed 3 days after ischemia without concurrently detectable changes in lambdaperpendicular, the putative myelin marker. This result is consistent with histological findings of significant axonal degeneration with no detectable demyelination at 3 days after ischemia. The elevation of lambdaperpendicular observed 5 days after ischemia is consistent with histological findings of myelin degeneration at this time. These results support the hypothesis that lambdaparallel and lambdaperpendicular hold promise as specific markers of axonal and myelin injury, respectively, and, further, that the coexistence of axonal and myelin degeneration does not confound this utility.", "title": "Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia." }, { "docid": "13899137", "text": "BACKGROUND Many mathematical models have investigated the impact of expanding access to antiretroviral therapy (ART) on new HIV infections. Comparing results and conclusions across models is challenging because models have addressed slightly different questions and have reported different outcome metrics. This study compares the predictions of several mathematical models simulating the same ART intervention programmes to determine the extent to which models agree about the epidemiological impact of expanded ART. \n METHODS AND FINDINGS Twelve independent mathematical models evaluated a set of standardised ART intervention scenarios in South Africa and reported a common set of outputs. Intervention scenarios systematically varied the CD4 count threshold for treatment eligibility, access to treatment, and programme retention. For a scenario in which 80% of HIV-infected individuals start treatment on average 1 y after their CD4 count drops below 350 cells/µl and 85% remain on treatment after 3 y, the models projected that HIV incidence would be 35% to 54% lower 8 y after the introduction of ART, compared to a counterfactual scenario in which there is no ART. More variation existed in the estimated long-term (38 y) reductions in incidence. The impact of optimistic interventions including immediate ART initiation varied widely across models, maintaining substantial uncertainty about the theoretical prospect for elimination of HIV from the population using ART alone over the next four decades. The number of person-years of ART per infection averted over 8 y ranged between 5.8 and 18.7. Considering the actual scale-up of ART in South Africa, seven models estimated that current HIV incidence is 17% to 32% lower than it would have been in the absence of ART. Differences between model assumptions about CD4 decline and HIV transmissibility over the course of infection explained only a modest amount of the variation in model results. \n CONCLUSIONS Mathematical models evaluating the impact of ART vary substantially in structure, complexity, and parameter choices, but all suggest that ART, at high levels of access and with high adherence, has the potential to substantially reduce new HIV infections. There was broad agreement regarding the short-term epidemiologic impact of ambitious treatment scale-up, but more variation in longer term projections and in the efficiency with which treatment can reduce new infections. Differences between model predictions could not be explained by differences in model structure or parameterization that were hypothesized to affect intervention impact.", "title": "HIV Treatment as Prevention: Systematic Comparison of Mathematical Models of the Potential Impact of Antiretroviral Therapy on HIV Incidence in South Africa" }, { "docid": "1805641", "text": "BACKGROUND Artemisinin derivatives used in recently introduced combination therapies (ACTs) for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas. \n METHODS AND FINDINGS We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%), compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%). Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission area, with 54 clinical episodes per 100 persons per year averted compared to five per 100 persons per year in the lowest-transmission area. High coverage was important. Reducing presumptive treatment through improved diagnosis substantially reduced the number of treatment courses required per clinical episode averted in the lower-transmission settings although there was some loss of overall impact on transmission. An efficacious antimalarial regimen with no specific gametocytocidal properties but a long prophylactic time was estimated to be more effective at reducing transmission than a short-acting ACT in the highest-transmission setting. \n CONCLUSIONS Our results suggest that ACTs have the potential for transmission reductions approaching those achieved by insecticide-treated nets in lower-transmission settings. ACT partner drugs and nonartemisinin regimens with longer prophylactic times could result in a larger impact in higher-transmission settings, although their long term benefit must be evaluated in relation to the risk of development of parasite resistance.", "title": "Modelling the Impact of Artemisinin Combination Therapy and Long-Acting Treatments on Malaria Transmission Intensity" }, { "docid": "11250124", "text": "Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1-sigma1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1-sigma1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three sigma1 subunit isoforms: A, B and C. The expressions of sigma1A and sigma1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from sigma1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The sigma1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation.", "title": "AP-1/sigma1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory." }, { "docid": "44265107", "text": "ContextChronic hepatitis C is the leading cause for liver transplantation in the United States. Intravenous drug use, the major risk factor, accounts for approximately 60% of hepatitis C virus transmission. Information from the United Network of Organ Sharing (UNOS) does not address substance use among liver transplantation patients. ObjectiveTo identify addiction-related criteria for admission to the UNOS liver transplantation waiting list and posttransplantation problems experienced by patients who are prescribed maintenance methadone. Design, Setting, and ParticipantsMail survey of all 97 adult US liver transplantation programs (belonging to UNOS) in March 2000 with telephone follow-up conducted in May and June 2000.Main Outcome MeasuresPrograms' acceptance and management of patients with past or present substance use disorder. ResultsOf the 97 programs surveyed, 87 (90%) responded. All accept applicants with a history of alcoholism or other addictions, including heroin dependence. Eighty-eight percent of the responding programs require at least 6 months of abstinence from alcohol; 83% from illicit drugs. Ninety-four percent have addiction treatment requirements. Consultations from substance abuse specialists are obtained by 86%. Patients receiving methadone maintenance are accepted by 56% of the responding programs. Approximately 180 patients receiving methadone maintenance are reported to have undergone liver transplantation. ConclusionsMost liver transplantation programs have established policies for patients with substance use disorders. Opiate-dependent patients receiving opiate replacement therapy seem underrepresented in transplantation programs. Little anecdotal evidence for negative impact of opiate replacement therapy on liver transplantation outcome was found. Policies requiring discontinuation of methadone in 32% of all programs contradict the evidence base for efficacy of long-term replacement therapies and potentially result in relapse of previously stable patients.", "title": "Liver transplantation and opioid dependence." }, { "docid": "34630025", "text": "Eosinophils are abundant in inflammatory demyelinating lesions in neuromyelitis optica (NMO). We used cell culture, ex vivo spinal cord slices, and in vivo mouse models of NMO to investigate the role of eosinophils in NMO pathogenesis and the therapeutic potential of eosinophil inhibitors. Eosinophils cultured from mouse bone marrow produced antibody-dependent cell-mediated cytotoxicity (ADCC) in cell cultures expressing aquaporin-4 in the presence of NMO autoantibody (NMO-IgG). In the presence of complement, eosinophils greatly increased cell killing by a complement-dependent cell-mediated cytotoxicity (CDCC) mechanism. NMO pathology was produced in NMO-IgG-treated spinal cord slice cultures by inclusion of eosinophils or their granule toxins. The second-generation antihistamines cetirizine and ketotifen, which have eosinophil-stabilizing actions, greatly reduced NMO-IgG/eosinophil-dependent cytotoxicity and NMO pathology. In live mice, demyelinating NMO lesions produced by continuous intracerebral injection of NMO-IgG and complement showed marked eosinophil infiltration. Lesion severity was increased in transgenic hypereosinophilic mice. Lesion severity was reduced in mice made hypoeosinophilic by anti-IL-5 antibody or by gene deletion, and in normal mice receiving cetirizine orally. Our results implicate the involvement of eosinophils in NMO pathogenesis by ADCC and CDCC mechanisms and suggest the therapeutic utility of approved eosinophil-stabilizing drugs.", "title": "Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica." }, { "docid": "15425958", "text": "Interleukin-10 (IL-10) suppresses the maturation and cytokine production of dendritic cells (DCs), key regulators of adaptive immunity, and prevents the activation and polarization of naïve T cells towards protective gamma interferon-producing effectors. We hypothesized that human cytomegalovirus (HCMV) utilizes its viral IL-10 homolog (cmvIL-10) to attenuate DC functionality, thereby subverting the efficient induction of antiviral immune responses. RNA and protein analyses demonstrated that the cmvIL-10 gene was expressed with late gene kinetics. Treatment of immature DCs (iDCs) with supernatant from HCMV-infected cultures inhibited both the lipopolysaccharide-induced DC maturation and proinflammatory cytokine production. These inhibitory effects were specifically mediated through the IL-10 receptor and were not observed when DCs were treated with supernatant of cells infected with a cmvIL-10-knockout mutant. Incubation of iDCs with recombinant cmvIL-10 recapitulated the inhibition of maturation. Furthermore, cmvIL-10 had pronounced long-term effects on those DCs that could overcome this inhibition of maturation. It enhanced the migration of mature DCs (mDCs) towards the lymph node homing chemokine but greatly reduced their cytokine production. The inability of mDCs to secrete IL-12 was maintained, even when they were restimulated by the activated T-cell signal CD40 ligand in the absence of cmvIL-10. Importantly, cmvIL-10 potentiates these anti-inflammatory effects, at least partially, by inducing endogenous cellular IL-10 expression in DCs. Collectively, we show that cmvIL-10 causes long-term functional alterations at all stages of DC activation.", "title": "Human Cytomegalovirus-Encoded Interleukin-10 Homolog Inhibits Maturation of Dendritic Cells and Alters Their Functionality" }, { "docid": "26244918", "text": "We tested here the impact of a long-term inhibition of dipeptidyl peptidase-4 (DPP-4) with sitagliptin on the deposition of amyloid-beta within the brain and deficits in memory-related behavioral paradigms in a model of Alzheimer's disease (AD): double transgenic mice B6*Cg-Tg(APPswe,PSEN1dE9)85Dbo/J. Mice began to receive sitagliptin at 7 months of age. Three different dose of sitagliptin (5, 10 and 20 mg/kg), were administered daily for 12 weeks by gastric gavage. The treatments counteracted: (i) the memory impairment in the contextual fear conditioning test; (ii) increased the brain levels of GLP-1; (iii) produced significant reductions of nitrosative stress and inflammation hallmarks within the brain, as well as (iv) a significant diminution in the ultimate number and total area of betaAPP and Abeta deposits. All these effects much more evident for the dose of 20 mg/kg sitagliptin. The long-term inhibition of the endogenous DPP-4 enzymes with sitagliptin can significantly delay some forms of AD pathology, including amyloid deposition, when administered early in the disease course of a transgenic mouse model of AD.", "title": "Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer's prone mice." }, { "docid": "30553457", "text": "The role of transient receptor potential M4 (Trpm4), an unusual member of the Trp family of ion channels, is poorly understood. Using rodent models of spinal cord injury, we studied involvement of Trpm4 in the progressive expansion of secondary hemorrhage associated with capillary fragmentation, the most destructive mechanism of secondary injury in the central nervous system. Trpm4 mRNA and protein were abundantly upregulated in capillaries preceding their fragmentation and formation of petechial hemorrhages. Trpm4 expression in vitro rendered COS-7 cells highly susceptible to oncotic swelling and oncotic death following ATP depletion. After spinal cord injury, in vivo gene suppression in rats treated with Trpm4 antisense or in Trpm4−/− mice preserved capillary structural integrity, eliminated secondary hemorrhage, yielded a threefold to fivefold reduction in lesion volume and produced a substantial improvement in neurological function. To our knowledge, this is the first example of a Trp channel that must undergo de novo expression for manifestation of central nervous system pathology.", "title": "De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury" }, { "docid": "4418269", "text": "Spinal reflexes are mediated by synaptic connections between sensory afferents and motor neurons. The organization of these circuits shows several levels of specificity. Only certain classes of proprioceptive sensory neurons make direct, monosynaptic connections with motor neurons. Those that do are bound by rules of motor pool specificity: they form strong connections with motor neurons supplying the same muscle, but avoid motor pools supplying antagonistic muscles. This pattern of connectivity is initially accurate and is maintained in the absence of activity, implying that wiring specificity relies on the matching of recognition molecules on the surface of sensory and motor neurons. However, determinants of fine synaptic specificity here, as in most regions of the central nervous system, have yet to be defined. To address the origins of synaptic specificity in these reflex circuits we have used molecular genetic methods to manipulate recognition proteins expressed by subsets of sensory and motor neurons. We show here that a recognition system involving expression of the class 3 semaphorin Sema3e by selected motor neuron pools, and its high-affinity receptor plexin D1 (Plxnd1) by proprioceptive sensory neurons, is a critical determinant of synaptic specificity in sensory–motor circuits in mice. Changing the profile of Sema3e–Plxnd1 signalling in sensory or motor neurons results in functional and anatomical rewiring of monosynaptic connections, but does not alter motor pool specificity. Our findings indicate that patterns of monosynaptic connectivity in this prototypic central nervous system circuit are constructed through a recognition program based on repellent signalling.", "title": "Specificity of sensory–motor connections encoded by Sema3e–Plxnd1 recognition" } ]
912
PKG-la plays an essential role in expression of spinal long term potentiation in PGK-la knockout mice.
[ { "docid": "11254556", "text": "Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.", "title": "Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity" } ]
[ { "docid": "14188138", "text": "In vitro studies indicate a role for the LIM kinase family in the regulation of cofilin phosphorylation and actin dynamics. In addition, abnormal expression of LIMK-1 is associated with Williams syndrome, a mental disorder with profound deficits in visuospatial cognition. However, the in vivo function of this family of kinases remains elusive. Using LIMK-1 knockout mice, we demonstrate a significant role for LIMK-1 in vivo in regulating cofilin and the actin cytoskeleton. Furthermore, we show that the knockout mice exhibited significant abnormalities in spine morphology and in synaptic function, including enhanced hippocampal long-term potentiation. The knockout mice also showed altered fear responses and spatial learning. These results indicate that LIMK-1 plays a critical role in dendritic spine morphogenesis and brain function.", "title": "Abnormal Spine Morphology and Enhanced LTP in LIMK-1 Knockout Mice" }, { "docid": "25141908", "text": "The human cytomegalovirus UL111A region is active during both productive and latent phases of infection. During productive infection, the virus expresses ORF79, a protein with oncogenic properties, and cmvIL-10, a functional homolog of human IL-10. During latent infection of myeloid progenitor cells, an alternately spliced variant of cmvIL-10, termed latency-associated (LA) cmvIL-10 has previously been identified. To determine whether LAcmvIL-10 transcription occurs during productive infection, we performed 5' and 3' RACE to map UL111A-region transcripts in productively infected human foreskin fibroblasts (HFFs). This analysis revealed the presence of a singly spliced UL111A-region transcript predicted to encode LAcmvIL-10. This transcript was expressed in HFFs with early (beta) kinetics, a temporal class that differs from that of ORF79 (alpha kinetics) and cmvIL-10 (gamma kinetics). These data identify and map a transcript encoding a latency-associated homolog of IL-10 which is expressed by the virus during the productive phase of infection.", "title": "Expression of a human cytomegalovirus latency-associated homolog of interleukin-10 during the productive phase of infection." }, { "docid": "25827024", "text": "Deletion of copper-zinc superoxide dismutase (CuZnSOD) in Sod1(-/-) mice leads to accelerated loss of muscle mass and force during aging, but the losses do not occur with muscle-specific deletion of CuZnSOD. To determine the role of motor neurons in the muscle decline, we generated transgenic Sod1(-/-) mice in which CuZnSOD was expressed under control of the synapsin 1 promoter (SynTgSod1(-/-) mice). SynTgSod1(-/-) mice expressed CuZnSOD in brain, spinal cord, and peripheral nerve, but not in other tissues. Sciatic nerve CuZnSOD content in SynTgSod1(-/-) mice was ~20% that of control mice, but no reduction in muscle mass or isometric force was observed in SynTgSod1(-/-) mice compared with control animals, whereas muscles of age-matched Sod1(-/-) mice displayed 30-40% reductions in mass and force. In addition, increased oxidative damage and adaptations in stress responses observed in muscles of Sod1(-/-) mice were absent in SynTgSod1(-/-) mice, and degeneration of neuromuscular junction (NMJ) structure and function occurred in Sod1(-/-) mice but not in SynTgSod1(-/-) mice. Our data demonstrate that specific CuZnSOD expression in neurons is sufficient to preserve NMJ and skeletal muscle structure and function in Sod1(-/-) mice and suggest that redox homeostasis in motor neurons plays a key role in initiating sarcopenia during aging.", "title": "Neuron-specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD-knockout mice." }, { "docid": "11992632", "text": "People with Down syndrome (DS) exhibit abnormal brain structure. Alterations affecting neurotransmission and signalling pathways that govern brain function are also evident. A large number of genes are simultaneously expressed at abnormal levels in DS; therefore, it is a challenge to determine which gene(s) contribute to specific abnormalities, and then identify the key molecular pathways involved. We generated RCAN1-TG mice to study the consequences of RCAN1 over-expression and investigate the contribution of RCAN1 to the brain phenotype of DS. RCAN1-TG mice exhibit structural brain abnormalities in those areas affected in DS. The volume and number of neurons within the hippocampus is reduced and this correlates with a defect in adult neurogenesis. The density of dendritic spines on RCAN1-TG hippocampal pyramidal neurons is also reduced. Deficits in hippocampal-dependent learning and short- and long-term memory are accompanied by a failure to maintain long-term potentiation (LTP) in hippocampal slices. In response to LTP induction, we observed diminished calcium transients and decreased phosphorylation of CaMKII and ERK1/2-proteins that are essential for the maintenance of LTP and formation of memory. Our data strongly suggest that RCAN1 plays an important role in normal brain development and function and its up-regulation likely contributes to the neural deficits associated with DS.", "title": "Over-expression of RCAN1 causes Down syndrome-like hippocampal deficits that alter learning and memory." }, { "docid": "16270577", "text": "H2-M3 is a class Ib MHC molecule of the mouse with a 10(4)-fold preference for binding N-formylated peptides. To elucidate the basis of this unusual specificity, we expressed and crystallized a soluble form of M3 with a formylated nonamer peptide, fMYFINILTL, and determined the structure by X-ray crystallography. M3, refined at 2.1 A resolution, resembles class la MHC molecules in its overall structure, but differs in the peptide-binding groove. The A pocket, which usually accommodates the free N-terminus of a bound peptide, is closed, and the peptide is shifted one residue, such that the P1 side chain is lodged in the B pocket. The formyl group is coordinated by His-9 and a bound water on the floor of the groove.", "title": "Nonclassical binding of formylated peptide in crystal structure of the MHC class lb molecule H2-M3" }, { "docid": "17967608", "text": "Neutrophils trap and kill bacteria by forming highly decondensed chromatin structures, termed neutrophil extracellular traps (NETs). We previously reported that histone hypercitrullination catalyzed by peptidylarginine deiminase 4 (PAD4) correlates with chromatin decondensation during NET formation. However, the role of PAD4 in NET-mediated bacterial trapping and killing has not been tested. Here, we use PAD4 knockout mice to show that PAD4 is essential for NET-mediated antibacterial function. Unlike PAD4(+/+) neutrophils, PAD4(-/-) neutrophils cannot form NETs after stimulation with chemokines or incubation with bacteria, and are deficient in bacterial killing by NETs. In a mouse infectious disease model of necrotizing fasciitis, PAD4(-/-) mice are more susceptible to bacterial infection than PAD4(+/+) mice due to a lack of NET formation. Moreover, we found that citrullination decreased the bacterial killing activity of histones and nucleosomes, which suggests that PAD4 mainly plays a role in chromatin decondensation to form NETs instead of increasing histone-mediated bacterial killing. Our results define a role for histone hypercitrullination in innate immunity during bacterial infection.", "title": "PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps" }, { "docid": "37205759", "text": "The Apolipoprotein (Apo) family is implicated in lipid metabolism. There are five types of Apo: Apoa, Apob, Apoc, Apod, and Apoe. Apoe has been demonstrated to play a central role in lipoprotein metabolism and to be essential for efficient receptor-mediated plasma clearance of chylomicron remnants and VLDL remnant particles by the liver. Apoe-deficient (Apoe(-/-)) mice develop atherosclerotic plaques spontaneously, followed by obesity. In this study, we investigated whether lipid deposition caused by Apoe knockout affects reproduction in female mice. The results demonstrated that Apoe(-/-) mice were severely hypercholesterolemic, with their cholesterol metabolism disordered, and lipid accumulating in the ovaries causing the ovaries to be heavier compared with the WT counterparts. In addition, estrogen and progesterone decreased significantly at D 100. Quantitative PCR analysis demonstrated that at D 100 the expression of cytochromeP450 aromatase (Cyp19a1), 3β-hydroxysteroid dehydrogenase (Hsd3b), mechanistic target of rapamycin (Mtor), and nuclear factor-κB (Nfkb) decreased significantly, while that of BCL2-associated agonist of cell death (Bad) and tuberous sclerosis complex 2 (Tsc2) increased significantly in the Apoe(-/-) mice. However, there was no difference in the fertility rates of the Apoe(-/-) and WT mice; that is, obesity induced by Apoe knockout has no significant effect on reproduction. However, the deletion of Apoe increased the number of ovarian follicles and the ratio of ovarian follicle atresia and apoptosis. We believe that this work will augment our understanding of the role of Apoe in reproduction.", "title": "Obesity occurring in apolipoprotein E-knockout mice has mild effects on fertility." }, { "docid": "20128547", "text": "Spinal cord injuries (SCIs) in humans and experimental animals are often associated with varying degrees of spontaneous functional recovery during the first months after injury. Such recovery is widely attributed to axons spared from injury that descend from the brain and bypass incomplete lesions, but its mechanisms are uncertain. To investigate the neural basis of spontaneous recovery, we used kinematic, physiological and anatomical analyses to evaluate mice with various combinations of spatially and temporally separated lateral hemisections with or without the excitotoxic ablation of intrinsic spinal cord neurons. We show that propriospinal relay connections that bypass one or more injury sites are able to mediate spontaneous functional recovery and supraspinal control of stepping, even when there has been essentially total and irreversible interruption of long descending supraspinal pathways in mice. Our findings show that pronounced functional recovery can occur after severe SCI without the maintenance or regeneration of direct projections from the brain past the lesion and can be mediated by the reorganization of descending and propriospinal connections. Targeting interventions toward augmenting the remodeling of relay connections may provide new therapeutic strategies to bypass lesions and restore function after SCI and in other conditions such as stroke and multiple sclerosis.", "title": "Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury" }, { "docid": "10790846", "text": "Many forms of long-lasting behavioral and synaptic plasticity require the synthesis of new proteins. For example, long-term potentiation (LTP) that endures for more than an hour requires both transcription and translation. The signal-transduction mechanisms that couple synaptic events to protein translational machinery during long-lasting synaptic plasticity, however, are not well understood. One signaling pathway that is stimulated by growth factors and results in the translation of specific mRNAs includes the rapamycin-sensitive kinase mammalian target of rapamycin (mTOR, also known as FRAP and RAFT-1). Several components of this translational signaling pathway, including mTOR, eukaryotic initiation factor-4E-binding proteins 1 and 2, and eukaryotic initiation factor-4E, are present in the rat hippocampus as shown by Western blot analysis, and these proteins are detected in the cell bodies and dendrites in the hippocampal slices by immunostaining studies. In cultured hippocampal neurons, these proteins are present in dendrites and are often found near the presynaptic protein, synapsin I. At synaptic sites, their distribution completely overlaps with a postsynaptic protein, PSD-95. These observations suggest the postsynaptic localization of these proteins. Disruption of mTOR signaling by rapamycin results in a reduction of late-phase LTP expression induced by high-frequency stimulation; the early phase of LTP is unaffected. Rapamycin also blocks the synaptic potentiation induced by brain-derived neurotrophic factor in hippocampal slices. These results demonstrate an essential role for rapamycin-sensitive signaling in the expression of two forms of synaptic plasticity that require new protein synthesis. The localization of this translational signaling pathway at postsynaptic sites may provide a mechanism that controls local protein synthesis at potentiated synapses.", "title": "A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus." }, { "docid": "30553457", "text": "The role of transient receptor potential M4 (Trpm4), an unusual member of the Trp family of ion channels, is poorly understood. Using rodent models of spinal cord injury, we studied involvement of Trpm4 in the progressive expansion of secondary hemorrhage associated with capillary fragmentation, the most destructive mechanism of secondary injury in the central nervous system. Trpm4 mRNA and protein were abundantly upregulated in capillaries preceding their fragmentation and formation of petechial hemorrhages. Trpm4 expression in vitro rendered COS-7 cells highly susceptible to oncotic swelling and oncotic death following ATP depletion. After spinal cord injury, in vivo gene suppression in rats treated with Trpm4 antisense or in Trpm4−/− mice preserved capillary structural integrity, eliminated secondary hemorrhage, yielded a threefold to fivefold reduction in lesion volume and produced a substantial improvement in neurological function. To our knowledge, this is the first example of a Trp channel that must undergo de novo expression for manifestation of central nervous system pathology.", "title": "De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury" }, { "docid": "22800314", "text": "Interleukin-15 (IL-15) is a cytokine produced in the normal brain that acts on its specific receptor IL-15Rα and co-receptors IL-2Rβ and IL-2Rγ in neuronal cells. The functions of the cerebral IL-15 system, however, are not yet clear. To test the hypothesis that IL-15Rα regulates metabolic activity and body temperature, we quantified the specific metabolic phenotype of IL-15Rα knockout mice. These normal-appearing mice were leaner with lower fat composition. During the entire circadian cycle, the knockout mice had a significantly higher acrophase in locomotor activity and heat dissipation. During the light phase, there was significantly greater food intake, oxygen consumption, and carbon dioxide production. The difference in the dark and light phases suggests that IL-15Rα participates in circadian rhythm regulation. The higher oxygen consumption in the light phase indicates adaptive thermogenesis in the knockout mice. The body temperature of the receptor knockout mice was significantly higher than the control in the light phase, and this was mainly caused by a large difference occurring between 0600 and 0900 h. In addition to the metabolic chamber studies and circadian rhythm analyses, qPCR of hypothalamic homogenates indicated higher mRNA expression of orexin and transient receptor potential vanilloid 4 cation channels. Consistent with a direct role of IL-15Rα in the hypothalamus, IL-15 treatment of the wild-type mice induced c-Fos expression in the preoptic area. We conclude that activation of hypothalamic neurons by IL-15 in mice contributes to thermoregulation and modifies the metabolic phenotype.", "title": "IL-15 Receptor Deletion Results in Circadian Changes of Locomotor and Metabolic Activity" }, { "docid": "12130690", "text": "Protease-activated receptor-2 (PAR-2) is a G-protein-coupled receptor activated through proteolytic cleavage. It is localized on epithelial, endothelial and inflammatory cells, as well as on transient receptor potential vanilloid 1 (TRPV1) receptor-expressing neurones. It plays an important role in inflammatory/nociceptive processes. Since there are few reports concerning PAR-2 function in joints, the effects of intraarticular PAR-2 activation on joint pain and inflammation were studied. Secondary hyperalgesia/allodynia, spontaneous weight distribution, swelling and inflammatory cytokine production were measured and the involvement of TRPV1 ion channels was investigated in rats and mice. Injection of the PAR-2 receptor agonist SLIGRL-NH(2) into the knee decreased touch sensitivity and weight bearing of the ipsilateral hindlimb in both species. Secondary mechanical allodynia/hyperalgesia and impaired weight distribution were significantly reduced by the TRPV1 antagonist SB366791 in rats and by the genetic deletion of this receptor in mice. PAR-2 activation did not cause significant joint swelling, but increased IL-1beta concentration which was not influenced by the lack of the TRPV1 channel. For comparison, intraplantar SLIGRL-NH(2) evoked similar primary mechanical hyperalgesia and impaired weight distribution in both WT and TRPV1 deficient mice, but oedema was smaller in the knockouts. The inactive peptide, LRGILS-NH(2), injected into either site did not induce any inflammatory or nociceptive changes. These data provide evidence for a significant role of TRPV1 receptors in secondary mechanical hyperalgesia/allodynia and spontaneous pain induced by PAR-2 receptor activation in the knee joint. Although intraplantar PAR-2 activation-induced oedema is also TRPV1 receptor-mediated, primary mechanical hyperalgesia, impaired weight distribution and IL-1beta production are independent of this channel.", "title": "Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception." }, { "docid": "44500794", "text": "The aim of this study was to compare the effects of the genetic and pharmacological disruption of CB1 cannabinoid receptors on the elevated plus-maze test of anxiety. In the first experiment, the behaviour of CB1-knockout mice and wild-type mice was compared. In the second experiment, the cannabinoid antagonist SR141716A (0, 1, and 3 mg/kg) was administered to both CB1-knockout and wild type mice. Untreated CB1-knockout mice showed a reduced exploration of the open arms of the plus-maze apparatus, thus appearing more anxious than the wild-type animals, however no changes in locomotion were noticed. The vehicle-injected CB1-knockout mice from the second experiment also showed increased anxiety as compared with wild types. Surprisingly, the cannabinoid antagonist SR141716A reduced anxiety in both wild type and CB1 knockout mice. Locomotor behaviour was only marginally affected. Recent evidence suggests the existence of a novel cannabinoid receptor in the brain. It has also been shown that SR141716A binds to both the CB1 and the putative novel receptor. The data presented here supports these findings, as the cannabinoid receptor antagonist affected anxiety in both wild type and CB1-knockout mice. Tentatively, it may be suggested that the discrepancy between the effects of the genetic and pharmacological blockade of the CB1 receptor suggests that the novel receptor plays a role in anxiety.", "title": "The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety." }, { "docid": "34630025", "text": "Eosinophils are abundant in inflammatory demyelinating lesions in neuromyelitis optica (NMO). We used cell culture, ex vivo spinal cord slices, and in vivo mouse models of NMO to investigate the role of eosinophils in NMO pathogenesis and the therapeutic potential of eosinophil inhibitors. Eosinophils cultured from mouse bone marrow produced antibody-dependent cell-mediated cytotoxicity (ADCC) in cell cultures expressing aquaporin-4 in the presence of NMO autoantibody (NMO-IgG). In the presence of complement, eosinophils greatly increased cell killing by a complement-dependent cell-mediated cytotoxicity (CDCC) mechanism. NMO pathology was produced in NMO-IgG-treated spinal cord slice cultures by inclusion of eosinophils or their granule toxins. The second-generation antihistamines cetirizine and ketotifen, which have eosinophil-stabilizing actions, greatly reduced NMO-IgG/eosinophil-dependent cytotoxicity and NMO pathology. In live mice, demyelinating NMO lesions produced by continuous intracerebral injection of NMO-IgG and complement showed marked eosinophil infiltration. Lesion severity was increased in transgenic hypereosinophilic mice. Lesion severity was reduced in mice made hypoeosinophilic by anti-IL-5 antibody or by gene deletion, and in normal mice receiving cetirizine orally. Our results implicate the involvement of eosinophils in NMO pathogenesis by ADCC and CDCC mechanisms and suggest the therapeutic utility of approved eosinophil-stabilizing drugs.", "title": "Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica." }, { "docid": "15425958", "text": "Interleukin-10 (IL-10) suppresses the maturation and cytokine production of dendritic cells (DCs), key regulators of adaptive immunity, and prevents the activation and polarization of naïve T cells towards protective gamma interferon-producing effectors. We hypothesized that human cytomegalovirus (HCMV) utilizes its viral IL-10 homolog (cmvIL-10) to attenuate DC functionality, thereby subverting the efficient induction of antiviral immune responses. RNA and protein analyses demonstrated that the cmvIL-10 gene was expressed with late gene kinetics. Treatment of immature DCs (iDCs) with supernatant from HCMV-infected cultures inhibited both the lipopolysaccharide-induced DC maturation and proinflammatory cytokine production. These inhibitory effects were specifically mediated through the IL-10 receptor and were not observed when DCs were treated with supernatant of cells infected with a cmvIL-10-knockout mutant. Incubation of iDCs with recombinant cmvIL-10 recapitulated the inhibition of maturation. Furthermore, cmvIL-10 had pronounced long-term effects on those DCs that could overcome this inhibition of maturation. It enhanced the migration of mature DCs (mDCs) towards the lymph node homing chemokine but greatly reduced their cytokine production. The inability of mDCs to secrete IL-12 was maintained, even when they were restimulated by the activated T-cell signal CD40 ligand in the absence of cmvIL-10. Importantly, cmvIL-10 potentiates these anti-inflammatory effects, at least partially, by inducing endogenous cellular IL-10 expression in DCs. Collectively, we show that cmvIL-10 causes long-term functional alterations at all stages of DC activation.", "title": "Human Cytomegalovirus-Encoded Interleukin-10 Homolog Inhibits Maturation of Dendritic Cells and Alters Their Functionality" }, { "docid": "33507866", "text": "A critical regulator of autophagy is the Class III PI3K Vps34 (also called PIK3C3). Although Vps34 is known to play an essential role in autophagy in yeast, its role in mammals remains elusive. To elucidate the physiological function of Vps34 and to determine its precise role in autophagy, we have generated Vps34(f/f) mice, in which expression of Cre recombinase results in a deletion of exon 4 of Vps34 and a frame shift causing a deletion of 755 of the 887 amino acids of Vps34. Acute ablation of Vps34 in MEFs upon adenoviral Cre infection results in a diminishment of localized generation of phosphatidylinositol 3-phosphate and blockade of both endocytic and autophagic degradation. Starvation-induced autophagosome formation is blocked in both Vps34-null MEFs and liver. Liver-specific Albumin-Cre;Vps34(f/f) mice developed hepatomegaly and hepatic steatosis, and impaired protein turnover. Ablation of Vps34 in the heart of muscle creatine kinase-Cre;Vps34(f/f) mice led to cardiomegaly and decreased contractility. In addition, while amino acid-stimulated mTOR activation was suppressed in the absence of Vps34, the steady-state level of mTOR signaling was not affected in Vps34-null MEFs, liver, or cardiomyocytes. Taken together, our results indicate that Vps34 plays an essential role in regulating functional autophagy and is indispensable for normal liver and heart function.", "title": "Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function." }, { "docid": "2481032", "text": "Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.", "title": "Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues." }, { "docid": "14893428", "text": "This protocol describes a basic method for in vivo electroporation in the nervous system of embryonic mice. Delivery of electric pulses following microinjection of DNA into the brain ventricle or the spinal cord central canal enables efficient transfection of genes into the nervous system. Transfection is facilitated by forceps-type electrodes, which hold the uterus and/or the yolk sac containing the embryo. More than ten embryos in a single pregnant mouse can be operated on within 30 min. More than 90% of operated embryos survive and more than 90% of these survivors express the transfected genes appropriately. Gene expression in neurons persists for a long time, even at postnatal stages, after electroporation. Thus, this method could be used to analyze roles of genes not only in embryonic development but also in higher order function of the nervous system, such as learning.", "title": "In vivo electroporation in the embryonic mouse central nervous system" }, { "docid": "3619931", "text": "Thyroid hormone (TH) is critical for the maintenance of cellular homeostasis during stress responses, but its role in lung fibrosis is unknown. Here we found that the activity and expression of iodothyronine deiodinase 2 (DIO2), an enzyme that activates TH, were higher in lungs from patients with idiopathic pulmonary fibrosis than in control individuals and were correlated with disease severity. We also found that Dio2-knockout mice exhibited enhanced bleomycin-induced lung fibrosis. Aerosolized TH delivery increased survival and resolved fibrosis in two models of pulmonary fibrosis in mice (intratracheal bleomycin and inducible TGF-β1). Sobetirome, a TH mimetic, also blunted bleomycin-induced lung fibrosis. After bleomycin-induced injury, TH promoted mitochondrial biogenesis, improved mitochondrial bioenergetics and attenuated mitochondria-regulated apoptosis in alveolar epithelial cells both in vivo and in vitro. TH did not blunt fibrosis in Ppargc1a- or Pink1-knockout mice, suggesting dependence on these pathways. We conclude that the antifibrotic properties of TH are associated with protection of alveolar epithelial cells and restoration of mitochondrial function and that TH may thus represent a potential therapy for pulmonary fibrosis.", "title": "Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function" } ]
916
PRC1-bound plasmids sediment at a slower rate in unbound plasmids than in sucrose gradients.
[ { "docid": "18037805", "text": "The transcriptional status of a gene can be maintained through multiple rounds of cell division during development. This epigenetic effect is believed to reflect heritable changes in chromatin folding and histone modifications or variants at target genes, but little is known about how these chromatin features are inherited through cell division. A particular challenge for maintaining transcription states is DNA replication, which disrupts or dilutes chromatin-associated proteins and histone modifications. PRC1-class Polycomb group protein complexes are essential for development and are thought to heritably silence transcription by altering chromatin folding and histone modifications. It is not known whether these complexes and their effects are maintained during DNA replication or subsequently re-established. We find that when PRC1-class Polycomb complex-bound chromatin or DNA is replicated in vitro, Polycomb complexes remain bound to replicated templates. Retention of Polycomb proteins through DNA replication may contribute to maintenance of transcriptional silencing through cell division.", "title": "Polycomb Proteins Remain Bound to Chromatin and DNA during DNA Replication In Vitro" } ]
[ { "docid": "463309", "text": "Intact yeast cells treated with alkali cations took up plasmid DNA. Li+, Cs+, Rb+, K+, and Na+ were effective in inducing competence. Conditions for the transformation of Saccharomyces cerevisiae D13-1A with plasmid YRp7 were studied in detail with CsCl. The optimum incubation time was 1 h, and the optimum cell concentration was 5 x 10(7) cells per ml. The optimum concentration of Cs+ was 1.0 M. Transformation efficiency increased with increasing concentrations of plasmid DNA. Polyethylene glycol was absolutely required. Heat pulse and various polyamines or basic proteins stimulated the uptake of plasmid DNA. Besides circular DNA, linear plasmid DNA was also taken up by Cs+-treated yeast cells, although the uptake efficiency was considerably reduced. The transformation efficiency with Cs+ or Li+ was comparable with that of conventional protoplast methods for a plasmid containing ars1, although not for plasmids containing a 2 microns origin replication.", "title": "Transformation of intact yeast cells treated with alkali cations." }, { "docid": "1631583", "text": "Publisher Summary The yeast Saccharomyces cerevisiae is now recognized as a model system representing a simple eukaryote whose genome can be easily manipulated. Yeast has only a slightly greater genetic complexity than bacteria and shares many of the technical advantages that permitted rapid progress in the molecular genetics of prokaryotes and their viruses. Some of the properties that make yeast particularly suitable for biological studies include rapid growth, dispersed cells, the ease of replica plating and mutant isolation, a well-defined genetic system, and most important, a highly versatile DNA transformation system. Being nonpathogenic, yeast can be handled with little precautions. Large quantities of normal baker's yeast are commercially available and can provide a cheap source for biochemical studies. The development of DNA transformation has made yeast particularly accessible to gene cloning and genetic engineering techniques. Structural genes corresponding to virtually any genetic trait can be identified by complementation from plasmid libraries. Plasmids can be introduced into yeast cells either as replicating molecules or by integration into the genome. In contrast to most other organisms, integrative recombination of transforming DNA in yeast proceeds exclusively via homologous recombination. Cloned yeast sequences, accompanied by foreign sequences on plasmids, can therefore be directed at will to specific locations in the genome.", "title": "Getting started with yeast." }, { "docid": "25462689", "text": "We have investigated HO endonuclease-induced double-strand break (DSB) recombination and repair in a LACZ duplication plasmid in yeast. A 117-bp MATa fragment, embedded in one copy of LACZ, served as a site for initiation of a DSB when HO endonuclease was expressed. The DSB could be repaired using wild-type sequences located on a second, promoterless, copy of LACZ on the same plasmid. In contrast to normal mating-type switching, crossing-over associated with gene conversion occurred at least 50% of the time. The proportion of conversion events accompanied by exchange was greater when the two copies of LACZ were in direct orientation (80%), than when inverted (50%). In addition, the fraction of plasmids lost was significantly greater in the inverted orientation. The kinetics of appearance of intermediates and final products were also monitored. The repair of the DSB is slow, requiring at least an hour from the detection of the HO-cut fragments to completion of repair. Surprisingly, the appearance of the two reciprocal products of crossing over did not occur with the same kinetics. For example, when the two LACZ sequences were in the direct orientation, the HO-induced formation of a large circular deletion product was not accompanied by the appearance of a small circular reciprocal product. We suggest that these differences may reflect two kinetically separable processes, one involving only one cut end and the other resulting from the concerted participation of both ends of the DSB.", "title": "Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae." }, { "docid": "10786948", "text": "The generation of induced pluripotent stem cells (iPSCs) provides the opportunity to use patient-specific somatic cells, which are a valuable source for disease modeling and drug discovery. To promote research involving these cells, it is important to make iPSCs from easily accessible and less invasive tissues, like blood. We have recently reported the efficient generation of human iPSCs from adult fibroblasts using a combination of plasmids encoding OCT3/4, SOX2, KLF4, L-MYC, LIN28, and shRNA for TP53. We herein report a modified protocol enabling efficient iPSC induction from CD34+ cord blood cells and from peripheral blood isolated from healthy donors using these plasmid vectors. The original plasmid mixture could induce iPSCs; however, the efficiency was low. The addition of EBNA1, an essential factor for episomal amplification of the vectors, by an extra plasmid greatly increased the efficiency of iPSC induction, especially when the induction was performed from αβT cells. This improvement enabled the establishment of blood-derived iPSCs from seven healthy donors ranging in age from their 20s to their 60s. This induction method will be useful for the derivation of patient-specific integration-free iPSCs and would also be applicable to the generation of clinical-grade iPSCs in the future.", "title": "An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells." }, { "docid": "1791637", "text": "In embryonic stem (ES) cells, bivalent chromatin domains with overlapping repressive (H3 lysine 27 tri-methylation) and activating (H3 lysine 4 tri-methylation) histone modifications mark the promoters of more than 2,000 genes. To gain insight into the structure and function of bivalent domains, we mapped key histone modifications and subunits of Polycomb-repressive complexes 1 and 2 (PRC1 and PRC2) genomewide in human and mouse ES cells by chromatin immunoprecipitation, followed by ultra high-throughput sequencing. We find that bivalent domains can be segregated into two classes -- the first occupied by both PRC2 and PRC1 (PRC1-positive) and the second specifically bound by PRC2 (PRC2-only). PRC1-positive bivalent domains appear functionally distinct as they more efficiently retain lysine 27 tri-methylation upon differentiation, show stringent conservation of chromatin state, and associate with an overwhelming number of developmental regulator gene promoters. We also used computational genomics to search for sequence determinants of Polycomb binding. This analysis revealed that the genomewide locations of PRC2 and PRC1 can be largely predicted from the locations, sizes, and underlying motif contents of CpG islands. We propose that large CpG islands depleted of activating motifs confer epigenetic memory by recruiting the full repertoire of Polycomb complexes in pluripotent cells.", "title": "Genomewide Analysis of PRC1 and PRC2 Occupancy Identifies Two Classes of Bivalent Domains" }, { "docid": "24541180", "text": "Current methods of nuclear isolation from liver disrupt the plasmalemmae via homogenization and separation of the nuclei by high centrifugal force (HCF) through gradients of sucrose or other substances for up to 80 min. The use of HCF for such a long time increases the potential for nuclear damage and degradation by endogenous proteases. We compared four combinations of alterations to classical nuclear isolation methods as follows. Mouse liver was gently crushed through a fine mesh with and without in vivo perfusion with collagenase. The cell suspension was centrifuged at 600 g to remove gross debris and then at moderate centrifugal force (MCF, 16,000 g) or high centrifugal force (HCF, 70,000 g) through sucrose gradients for 30 min. The purity of the isolated nuclei was assessed biologically and morphologically, including analyses of representative marker proteins for nuclei and cytoplasm. The results indicate that MCF and no collagenase provided the highest nuclear integrity and purity, whereas MCF with collagenase is a viable option if priority is given to yield. The method is especially suited for small samples and so should facilitate studies with human liver biopsies and livers from mice, the most widely used species for gene targeting.", "title": "Isolation of intact nuclei of high purity from mouse liver." }, { "docid": "23342845", "text": "In type 1 diabetes (T1D), there is an intense inflammatory response that destroys the β cells in the pancreatic islets of Langerhans, the site where insulin is produced and released. A therapy for T1D that targets the specific autoimmune response in this disease while leaving the remainder of the immune system intact, has long been sought. Proinsulin is a major target of the adaptive immune response in T1D. We hypothesized that an engineered DNA plasmid encoding proinsulin (BHT-3021) would preserve β cell function in T1D patients through reduction of insulin-specific CD8⁺ T cells. We studied 80 subjects over 18 years of age who were diagnosed with T1D within the past 5 years. Subjects were randomized 2:1 to receive intramuscular injections of BHT-3021 or BHT-placebo, weekly for 12 weeks, and then monitored for safety and immune responses in a blinded fashion. Four dose levels of BHT-3021 were evaluated: 0.3, 1.0, 3.0, and 6.0 mg. C-peptide was used both as an exploratory efficacy measure and as a safety measure. Islet-specific CD8⁺ T cell frequencies were assessed with multimers of monomeric human leukocyte antigen class I molecules loaded with peptides from pancreatic and unrelated antigens. No serious adverse events related to BHT-3021 were observed. C-peptide levels improved relative to placebo at all doses, at 1 mg at the 15-week time point (+19.5% BHT-3021 versus -8.8% BHT-placebo, P < 0.026). Proinsulin-reactive CD8⁺ T cells, but not T cells against unrelated islet or foreign molecules, declined in the BHT-3021 arm (P < 0.006). No significant changes were noted in interferon-γ, interleukin-4 (IL-4), or IL-10 production in CD4 T cells. Thus, we demonstrate that a plasmid encoding proinsulin reduces the frequency of CD8⁺ T cells reactive to proinsulin while preserving C-peptide over the course of dosing.", "title": "Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8⁺ T cells in type 1 diabetes." }, { "docid": "11336632", "text": "Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.", "title": "CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA" }, { "docid": "15635366", "text": "L3mbtl2 has been implicated in transcriptional repression and chromatin compaction but its biological function has not been defined. Here we show that disruption of L3mbtl2 results in embryonic lethality with failure of gastrulation. This correlates with compromised proliferation and abnormal differentiation of L3mbtl2(-/-) embryonic stem (ES) cells. L3mbtl2 regulates genes by recruiting a Polycomb Repressive Complex1 (PRC1)-related complex, resembling the previously described E2F6-complex, and including G9A, Hdac1, and Ring1b. The presence of L3mbtl2 at target genes is associated with H3K9 dimethylation, low histone acetylation, and H2AK119 ubiquitination, but the latter is neither dependent on L3mbtl2 nor sufficient for repression. Genome-wide studies revealed that the L3mbtl2-dependent complex predominantly regulates genes not bound by canonical PRC1 and PRC2. However, some developmental regulators are repressed by the combined activity of all three complexes. Together, we have uncovered a highly selective, essential role for an atypical PRC1-family complex in ES cells and early development.", "title": "The polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex that is essential in pluripotent stem cells and early development." }, { "docid": "20942644", "text": "Sulfolobus islandicus is being used as a model for studying archaeal biology, geo-biology and evolution. However, no genetic system is available for this organism. To produce an S. islandicus mutant suitable for genetic analyses, we screened for colonies with a spontaneous pyrEF mutation. One mutant was obtained containing only 233 bp of the original pyrE sequence in the mutant allele and it was used as a host to delete the β-glycosidase (lacS) gene. Two unmarked gene deletion methods were employed, namely plasmid integration and segregation, and marker replacement and looping out, and unmarked lacS mutants were obtained by each method. A new alternative recombination mechanism, i.e., marker circularization and integration, was shown to operate in the latter method, which did not yield the designed deletion mutation. Subsequently, Sulfolobus–E. coli plasmid shuttle vectors were constructed, which genetically complemented ΔpyrEFΔlacS mutation after transformation. Thus, a complete set of genetic tools was established for S. islandicus with pyrEF and lacS as genetic markers.", "title": "Unmarked gene deletion and host–vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus" }, { "docid": "87337034", "text": "SummaryA plant expression vector pBIA9-AMF containing an antisense fragment of the CYP86MF gene and the tapetum-specific A9 promoter was constructed. Plasmid vectors were introduced by floral-dipping and pollen-tube transformation methods to Chinese cabbage pak-choi (Brassica campestris ssp. chinensis (L.) Makino var. communis Tsen et Lee, syn. B. rapa ssp. chinensis (L.) Makino var. communis Tsen et Lee) and flowering Chinese cabbage (B. campestris ssp. chinensis (L.) Makino var. parachinensis (Bailey) Tsen et Lee). Results showed that KanR seedlings could be obtained by the pollen-tube method through germination tests of T1 progeny seeds, but not by the floral-dipping method. One of the two KanR seedlings proved that the antisense fragment of the CYP86MF gene was integrated into the Chinese cabbage genome by PCR amplification and Southern blotting. Northern hybridization indicated that the CYP86MF gene, under the A9 promoter, was inhibited in the transformant, and self-infertility was found in the trans...", "title": "Construction of an antisense CYP86MF gene plasmid vector and production of a male-sterile Chinese cabbage transformant by the pollen-tube method" }, { "docid": "3512154", "text": "CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages.", "title": "CRISPR adaptation biases explain preference for acquisition of foreign DNA" }, { "docid": "37727521", "text": "Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) are nonpolyadenylated, untranslated RNAs, exist most abundantly in latently EBV-infected cells, and are expected to show secondary structures with many short stem-loops. Retinoic acid-inducible gene I (RIG-I) is a cytosolic protein that detects viral double-stranded RNA (dsRNA) inside the cell and initiates signaling pathways leading to the induction of protective cellular genes, including type I interferons (IFNs). We investigated whether EBERs were recognized by RIG-I as dsRNA. Transfection of RIG-I plasmid induced IFNs and IFN-stimulated genes (ISGs) in EBV-positive Burkitt's lymphoma (BL) cells, but not in their EBV-negative counterparts or EBER-knockout EBV-infected BL cells. Transfection of EBER plasmid or in vitro-synthesized EBERs induced expression of type I IFNs and ISGs in RIG-I-expressing, EBV-negative BL cells, but not in RIG-I-minus counterparts. EBERs activated RIG-I's substrates, NF-kappaB and IFN regulatory factor 3, which were necessary for type I IFN activation. It was also shown that EBERs co-precipitated with RIG-I. These results indicate that EBERs are recognized by RIG-I and activate signaling to induce type I IFN in EBV-infected cells.", "title": "EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN." }, { "docid": "799586", "text": "Bacteria encode a single-stranded DNA (ssDNA) binding protein (SSB) crucial for genome maintenance. In Bacillus subtilis and Streptococcus pneumoniae, an alternative SSB, SsbB, is expressed uniquely during competence for genetic transformation, but its precise role has been disappointingly obscure. Here, we report our investigations involving comparison of a null mutant (ssbB(-)) and a C-ter truncation (ssbBΔ7) of SsbB of S. pneumoniae, the latter constructed because SSBs' acidic tail has emerged as a key site for interactions with partner proteins. We provide evidence that SsbB directly protects internalized ssDNA. We show that SsbB is highly abundant, potentially allowing the binding of ~1.15 Mb ssDNA (half a genome equivalent); that it participates in the processing of ssDNA into recombinants; and that, at high DNA concentration, it is of crucial importance for chromosomal transformation whilst antagonizing plasmid transformation. While the latter observation explains a long-standing observation that plasmid transformation is very inefficient in S. pneumoniae (compared to chromosomal transformation), the former supports our previous suggestion that SsbB creates a reservoir of ssDNA, allowing successive recombination cycles. SsbBΔ7 fulfils the reservoir function, suggesting that SsbB C-ter is not necessary for processing protein(s) to access stored ssDNA. We propose that the evolutionary raison d'être of SsbB and its abundance is maintenance of this reservoir, which contributes to the genetic plasticity of S. pneumoniae by increasing the likelihood of multiple transformation events in the same cell.", "title": "Role of the Single-Stranded DNA–Binding Protein SsbB in Pneumococcal Transformation: Maintenance of a Reservoir for Genetic Plasticity" }, { "docid": "7735859", "text": "BACKGROUND Crohn's disease (CD)-associated dysbiosis is characterised by a loss of Faecalibacterium prausnitzii, whose culture supernatant exerts an anti-inflammatory effect both in vitro and in vivo. However, the chemical nature of the anti-inflammatory compounds has not yet been determined. \n METHODS Peptidomic analysis using mass spectrometry was applied to F. prausnitzii supernatant. Anti-inflammatory effects of identified peptides were tested in vitro directly on intestinal epithelial cell lines and on cell lines transfected with a plasmid construction coding for the candidate protein encompassing these peptides. In vivo, the cDNA of the candidate protein was delivered to the gut by recombinant lactic acid bacteria to prevent dinitrobenzene sulfonic acid (DNBS)-colitis in mice. \n RESULTS The seven peptides, identified in the F. prausnitzii culture supernatants, derived from a single microbial anti-inflammatory molecule (MAM), a protein of 15 kDa, and comprising 53% of non-polar residues. This last feature prevented the direct characterisation of the putative anti-inflammatory activity of MAM-derived peptides. Transfection of MAM cDNA in epithelial cells led to a significant decrease in the activation of the nuclear factor (NF)-κB pathway with a dose-dependent effect. Finally, the use of a food-grade bacterium, Lactococcus lactis, delivering a plasmid encoding MAM was able to alleviate DNBS-induced colitis in mice. \n CONCLUSIONS A 15 kDa protein with anti-inflammatory properties is produced by F. prausnitzii, a commensal bacterium involved in CD pathogenesis. This protein is able to inhibit the NF-κB pathway in intestinal epithelial cells and to prevent colitis in an animal model.", "title": "Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease." }, { "docid": "24349430", "text": "BACKGROUND Orai1/CRACM1 is a principal component of the store-operated calcium channels. Store-operated calcium influx is highly correlated with inflammatory reactions, immunological regulation, and cell proliferation. Epidermal growth factor (EGF), which plays an important role in the regulation of cell proliferation, can activate store-operated calcium channels. However, the consequences of Orai1/CRACM1 overexpression in EGF-mediated lung cancer cells growth are not known. \n METHODS To investigate the role of Orai1/CRACM1 in EGF-mediated lung cancer cell proliferation, Orai1/CRACM1 plasmids were transfected into cells by lipofection. A cell proliferation assay, immunofluorescence staining, flow cytometry, and real-time polymerase chain reaction were employed to monitor cell proliferation. The calcium influx signals were investigated using a fluorescent-based calcium assay. \n RESULTS Transfection of Orai1/CRACM1 plasmids resulted in the inhibition of EGF-mediated cell proliferation. ERK1/2 and Akt phosphorylation were inhibited by Orai1/CRACM1 overexpression. Expression of the cell cycle modulator p21 was induced in the Orai1/CRACM1-overexpressing cells, whereas the expression of cyclin D3 was reduced. Flow cytometry revealed that overexpression of Orai1/CRACM1 resulted in G0/G1 cell cycle arrest. Importantly, Orai1/CRACM1 overexpression significantly attenuated EGF-mediated store-operated calcium influx. In addition, application of 2-APB, a store-operated calcium channel inhibitor, resulted in the inhibition of EGF-mediated cancer cell proliferation. \n CONCLUSIONS We conclude that Orai1/CRACM1 overexpression attenuates store-operated Ca(2+) influx that in turn blocks EGF-mediated proliferative signaling and drives cell cycle arrest.", "title": "Orai1/CRACM1 overexpression suppresses cell proliferation via attenuation of the store-operated calcium influx-mediated signalling pathway in A549 lung cancer cells." }, { "docid": "1286352", "text": "The type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system has emerged recently as a powerful method to manipulate the genomes of various organisms. Here, we report a toolbox for high-efficiency genome engineering of Drosophila melanogaster consisting of transgenic Cas9 lines and versatile guide RNA (gRNA) expression plasmids. Systematic evaluation reveals Cas9 lines with ubiquitous or germ-line-restricted patterns of activity. We also demonstrate differential activity of the same gRNA expressed from different U6 snRNA promoters, with the previously untested U6:3 promoter giving the most potent effect. An appropriate combination of Cas9 and gRNA allows targeting of essential and nonessential genes with transmission rates ranging from 25-100%. We also demonstrate that our optimized CRISPR/Cas tools can be used for offset nicking-based mutagenesis. Furthermore, in combination with oligonucleotide or long double-stranded donor templates, our reagents allow precise genome editing by homology-directed repair with rates that make selection markers unnecessary. Last, we demonstrate a novel application of CRISPR/Cas-mediated technology in revealing loss-of-function phenotypes in somatic cells following efficient biallelic targeting by Cas9 expressed in a ubiquitous or tissue-restricted manner. Our CRISPR/Cas tools will facilitate the rapid evaluation of mutant phenotypes of specific genes and the precise modification of the genome with single-nucleotide precision. Our results also pave the way for high-throughput genetic screening with CRISPR/Cas.", "title": "Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila." }, { "docid": "19661996", "text": "With current techniques, genetic alterations of herpesviruses are difficult to perform, mostly because of the large size of their genomes. To solve this problem, we have designed a system that allows the cloning of any gamma-herpesvirus in Escherichia coli onto an F factor-derived plasmid. Immortalized B cell lines were readily established with recombinant Epstein-Barr virus (EBV), demonstrating that the F factor-cloned EBV genome has all the characteristics of wild-type EBV. Because any genetic modification is possible in E. coli, this experimental approach opens the way to the genetic analysis of all EBV functions. Moreover, it is now feasible to generate attenuated EBV strains in vitro such that vaccine strains can be designed. Because we incorporated the genes for hygromycin resistance and green fluorescent protein onto the E. coli cloned EBV genome, the still open question of the EBV target cells other than B lymphocytes will be addressed.", "title": "Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells." }, { "docid": "45199834", "text": "Abstract Intact HeLa cells can bind virions of poliovirus type 1 and can subsequently convert them to altered particles by incubation at 37°. Altered particles sediment more slowly than virions, have lost VP-4, and are disrupted by sodium dodecyl sulfate, but their RNA is intact and ribonuclease insensitive. These characteristics allow assay of altered particles and of particles that have released their RNA, using nuclease digestion with or without sodium dodecyl sulfate treatment. With this simple assay procedure, quantitative parameters of binding and alteration can be measured. The binding-altering activity can be localized in plasma membranes, and pure membranes can be shown to carry out alteration. The membrane-bound activity is abolished by proteases and by nonionic detergents. Only altered particles are formed by membranes; release of RNA is not caused by membranes but is caused by intact cells. Binding and alteration are processes that are closely associated; it is possible that alteration is a consequence of binding by multiple receptors in a fluid membrane.", "title": "A plasma membrane component able to bind and alter virions of poliovirus type 1: studies on cell-free alteration using a simplified assay." } ]
917
PTEN is a regulator for the transcriptional activity of SRF
[ { "docid": "34071621", "text": "Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN-SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings.", "title": "Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation" } ]
[ { "docid": "15176526", "text": "Epidermal homeostasis depends on a balance between stem cell renewal and differentiation and is regulated by extrinsic signals from the extracellular matrix (ECM). A powerful approach to analysing the pathways involved is to engineer single-cell microenvironments in which individual variables are precisely and quantitatively controlled. Here, we employ micropatterned surfaces to identify the signalling pathways by which restricted ECM contact triggers human epidermal stem cells to initiate terminal differentiation. On small (20 μm diameter) circular islands, keratinocytes remained rounded, and differentiated at higher frequency than cells that could spread on large (50 μm diameter) islands. Differentiation did not depend on ECM composition or density. Rather, the actin cytoskeleton mediated shape-induced differentiation by regulating serum response factor (SRF) transcriptional activity. Knockdown of SRF or its co-factor MAL inhibited differentiation, whereas overexpression of MAL stimulated SRF activity and involucrin expression. SRF target genes FOS and JUNB were also required for differentiation: c-Fos mediated serum responsiveness, whereas JunB was regulated by actin and MAL. Our findings demonstrate how biophysical cues are transduced into transcriptional responses that determine epidermal cell fate.", "title": "Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions" }, { "docid": "469066", "text": "During corticogenesis, pyramidal neurons (∼80% of cortical neurons) arise from the ventricular zone, pass through a multipolar stage to become bipolar and attach to radial glia, and then migrate to their proper position within the cortex. As pyramidal neurons migrate radially, they remain attached to their glial substrate as they pass through the subventricular and intermediate zones, regions rich in tangentially migrating interneurons and axon fibre tracts. We examined the role of lamellipodin (Lpd), a homologue of a key regulator of neuronal migration and polarization in Caenorhabditis elegans, in corticogenesis. Lpd depletion caused bipolar pyramidal neurons to adopt a tangential, rather than radial-glial, migration mode without affecting cell fate. Mechanistically, Lpd depletion reduced the activity of SRF, a transcription factor regulated by changes in the ratio of polymerized to unpolymerized actin. Therefore, Lpd depletion exposes a role for SRF in directing pyramidal neurons to select a radial migration pathway along glia rather than a tangential migration mode.", "title": "Lpd depletion reveals that SRF specifies radial versus tangential migration of pyramidal neurons" }, { "docid": "13964633", "text": "BACKGROUND Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3'UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. \n METHODS AND FINDINGS Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3'UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3'UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3'UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3'UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3'UTR formed smaller tumors compared with cells transfected with a control vector. \n CONCLUSION Our results demonstrated that a 3'UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3'UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities.", "title": "Expression of Versican 3′-Untranslated Region Modulates Endogenous MicroRNA Functions" }, { "docid": "6828370", "text": "The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs could possess a regulatory role that relies on their ability to compete for microRNA binding, independently of their protein-coding function. As a model for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene PTENP1 and the critical consequences of this interaction. We find that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role. We also show that the PTENP1 locus is selectively lost in human cancer. We extended our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. We also demonstrate that the transcripts of protein-coding genes such as PTEN are biologically active. These findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.", "title": "A coding-independent function of gene and pseudogene mRNAs regulates tumour biology" }, { "docid": "16364639", "text": "By analyzing gene expression data in glioblastoma in combination with matched microRNA profiles, we have uncovered a posttranscriptional regulation layer of surprising magnitude, comprising more than 248,000 microRNA (miR)-mediated interactions. These include ∼7,000 genes whose transcripts act as miR \"sponges\" and 148 genes that act through alternative, nonsponge interactions. Biochemical analyses in cell lines confirmed that this network regulates established drivers of tumor initiation and subtype implementation, including PTEN, PDGFRA, RB1, VEGFA, STAT3, and RUNX1, suggesting that these interactions mediate crosstalk between canonical oncogenic pathways. siRNA silencing of 13 miR-mediated PTEN regulators, whose locus deletions are predictive of PTEN expression variability, was sufficient to downregulate PTEN in a 3'UTR-dependent manner and to increase tumor cell growth rates. Thus, miR-mediated interactions provide a mechanistic, experimentally validated rationale for the loss of PTEN expression in a large number of glioma samples with an intact PTEN locus.", "title": "An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma" }, { "docid": "34016944", "text": "PURPOSE Tyrosine kinase (TK) inhibitors are emerging as a promising new approach to the treatment of HER overexpressing tumors, however optimal use of these agents awaits further definition of the downstream signaling pathways that mediate their effects. We reported previously that both EGFR- and Her2-overexpressing tumors are sensitive to the new EGFR-selective TK inhibitor gefitinib (ZD1839, \"Iressa\"), and sensitivity to this agent correlated with its ability to down-regulate Akt. However, EGFR-overexpressing MDA-468 cells, which lack PTEN function, are resistant to ZD1839, and ZD1839 is unable to down-regulate Akt activity in these cells. EXPERIMENTAL DESIGN To study the role of PTEN function, we generated MDA468 cells with tet-inducible PTEN expression. \n RESULTS We show here that the resistance of MDA-468 cells to ZD1839 is attributable to EGFR-independent constitutive Akt activation caused by loss of PTEN function in these cells. Reconstitution of PTEN function through tet-inducible expression restores ZD1839 sensitivity to these cells and reestablishes EGFR-stimulated Akt signaling. Although restoration of PTEN function to tumors is difficult to implement clinically, much of the effects of PTEN loss are attributable to overactive PI3K/Akt pathway signaling, and this overactivity can be modulated by pharmacologic approaches. We show here that pharmacologic down-regulation of constitutive PI3K/Akt pathway signaling using the PI3K inhibitor LY294002 similarly restores EGFR-stimulated Akt signaling and sensitizes MDA-468 cells to ZD1839. \n CONCLUSIONS Sensitivity to ZD1839 requires intact growth factor receptor-stimulated Akt signaling activity. PTEN loss leads to uncoupling of this signaling pathway and results in ZD1839 resistance, which can be reversed with reintroduction of PTEN or pharmacologic down-regulation of constitutive PI3K/Akt pathway activity. These data have important predictive and therapeutic clinical implications.", "title": "Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3'-kinase/Akt pathway signaling." }, { "docid": "15113221", "text": "Pathway-specific therapy is the future of cancer management. The oncogenic phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in solid tumors; however, currently, no reliable test for PI3K pathway activation exists for human tumors. Taking advantage of the observation that loss of PTEN, the negative regulator of PI3K, results in robust activation of this pathway, we developed and validated a microarray gene expression signature for immunohistochemistry (IHC)-detectable PTEN loss in breast cancer (BC). The most significant signature gene was PTEN itself, indicating that PTEN mRNA levels are the primary determinant of PTEN protein levels in BC. Some PTEN IHC-positive BCs exhibited the signature of PTEN loss, which was associated to moderately reduced PTEN mRNA levels cooperating with specific types of PIK3CA mutations and/or amplification of HER2. This demonstrates that the signature is more sensitive than PTEN IHC for identifying tumors with pathway activation. In independent data sets of breast, prostate, and bladder carcinoma, prediction of pathway activity by the signature correlated significantly to poor patient outcome. Stathmin, encoded by the signature gene STMN1, was an accurate IHC marker of the signature and had prognostic significance in BC. Stathmin was also pathway-pharmacodynamic in vitro and in vivo. Thus, the signature or its components such as stathmin may be clinically useful tests for stratification of patients for anti-PI3K pathway therapy and monitoring therapeutic efficacy. This study indicates that aberrant PI3K pathway signaling is strongly associated with metastasis and poor survival across carcinoma types, highlighting the enormous potential impact on patient survival that pathway inhibition could achieve.", "title": "Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity." }, { "docid": "24294572", "text": "The PI3K signaling pathway regulates cell growth and movement and is heavily mutated in cancer. Class I PI3Ks synthesize the lipid messenger PI(3,4,5)P3. PI(3,4,5)P3 can be dephosphorylated by 3- or 5-phosphatases, the latter producing PI(3,4)P2. The PTEN tumor suppressor is thought to function primarily as a PI(3,4,5)P3 3-phosphatase, limiting activation of this pathway. Here we show that PTEN also functions as a PI(3,4)P2 3-phosphatase, both in vitro and in vivo. PTEN is a major PI(3,4)P2 phosphatase in Mcf10a cytosol, and loss of PTEN and INPP4B, a known PI(3,4)P2 4-phosphatase, leads to synergistic accumulation of PI(3,4)P2, which correlated with increased invadopodia in epidermal growth factor (EGF)-stimulated cells. PTEN deletion increased PI(3,4)P2 levels in a mouse model of prostate cancer, and it inversely correlated with PI(3,4)P2 levels across several EGF-stimulated prostate and breast cancer lines. These results point to a role for PI(3,4)P2 in the phenotype caused by loss-of-function mutations or deletions in PTEN.", "title": "PTEN Regulates PI(3,4)P2 Signaling Downstream of Class I PI3K" }, { "docid": "16346504", "text": "BACKGROUND Growth arrest-specific 5 (GAS5) was reported to be implicated and aberrantly express in multiple cancers. However, the expression and mechanism of action of GAS5 were largely poor understood in endometrial carcinoma. \n RESULTS According to the result of real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and flow cytometry analysis, we identified that GAS5 was down-regulated in endometrial cancer cells and stimulated the apoptosis of endometrial cancer cells. To investigate the expression of GAS5, PTEN and miR-103, RT-PCR was performed. And we found that the expression of PTEN was up-regulated when endometrial cancer cells overexpressed GAS5. The prediction of bioinformatics online revealed that GAS5 could bind to miR-103, which was further found to be regulated by GAS5. Finally, we found that miR-103 mimic could decrease the mRNA and protein levels of PTEN through luciferase reporter assay and western blotting, and GAS5 plasmid may reverse this regulation effect in endometrial cancer cells. \n CONCLUSION In summary, we demonstrate that GAS5 acts as an tumor suppressor lncRNA in endometrial cancer. Through inhibiting the expression of miR-103, GAS5 significantly enhanced the expression of PTEN to promote cancer cell apoptosis, and, thus, could be an important mediator in the pathogenesis of endometrial cancer.", "title": "LncRNA-GAS5 induces PTEN expression through inhibiting miR-103 in endometrial cancer cells" }, { "docid": "32721137", "text": "Although 75% of endometrial cancers are treated at an early stage, 15% to 20% of these recur. We performed an integrated analysis of genome-wide expression and copy-number data for primary endometrial carcinomas with extensive clinical and histopathological data to detect features predictive of recurrent disease. Unsupervised analysis of the expression data distinguished 2 major clusters with strikingly different phenotypes, including significant differences in disease-free survival. To identify possible mechanisms for these differences, we performed a global genomic survey of amplifications, deletions, and loss of heterozygosity, which identified 11 significantly amplified and 13 significantly deleted regions. Amplifications of 3q26.32 harboring the oncogene PIK3CA were associated with poor prognosis and segregated with the aggressive transcriptional cluster. Moreover, samples with PIK3CA amplification carried signatures associated with in vitro activation of PI3 kinase (PI3K), a signature that was shared by aggressive tumors without PIK3CA amplification. Tumors with loss of PTEN expression or PIK3CA overexpression that did not have PIK3CA amplification also shared the PI3K activation signature, high protein expression of the PI3K pathway member STMN1, and an aggressive phenotype in test and validation datasets. However, mutations of PTEN or PIK3CA were not associated with the same expression profile or aggressive phenotype. STMN1 expression had independent prognostic value. The results affirm the utility of systematic characterization of the cancer genome in clinically annotated specimens and suggest the particular importance of the PI3K pathway in patients who have aggressive endometrial cancer.", "title": "Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation." }, { "docid": "22901758", "text": "The identification of brain tumor stem-like cells (BTSCs) has implicated a role of biological self-renewal mechanisms in clinical brain tumor initiation and propagation. The molecular mechanisms underlying the tumor-forming capacity of BTSCs, however, remain unknown. Here, we have generated molecular signatures of glioblastoma multiforme (GBM) using gene expression profiles of BTSCs and have identified both Sonic Hedgehog (SHH) signaling-dependent and -independent BTSCs and their respective glioblastoma surgical specimens. BTSC proliferation could be abrogated in a pathway-dependent fashion in vitro and in an intracranial tumor model in athymic mice. Both SHH-dependent and -independent brain tumor growth required phosphoinositide 3-kinase-mammalian target of rapamycin signaling. In human GBMs, the levels of SHH and PTCH1 expression were significantly higher in PTEN-expressing tumors than in PTEN-deficient tumors. In addition, we show that hyperactive SHH-GLI signaling in PTEN-coexpressing human GBM is associated with reduced survival time. Thus, distinct proliferation signaling dependence may underpin glioblastoma propagation by BTSCs. Modeling these BTSC proliferation mechanisms may provide a rationale for individualized glioblastoma treatment.", "title": "Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas." }, { "docid": "14019636", "text": "Ribosomal DNA is one of the most variable regions in the human genome with respect to copy number. Despite the importance of rDNA for cellular function, we know virtually nothing about what governs its copy number, stability, and sequence in the mammalian genome due to challenges associated with mapping and analysis. We applied computational and droplet digital PCR approaches to measure rDNA copy number in normal and cancer states in human and mouse genomes. We find that copy number and sequence can change in cancer genomes. Counterintuitively, human cancer genomes show a loss of copies, accompanied by global copy number co-variation. The sequence can also be more variable in the cancer genome. Cancer genomes with lower copies have mutational evidence of mTOR hyperactivity. The PTEN phosphatase is a tumor suppressor that is critical for genome stability and a negative regulator of the mTOR kinase pathway. Surprisingly, but consistent with the human cancer genomes, hematopoietic cancer stem cells from a Pten-/- mouse model for leukemia have lower rDNA copy number than normal tissue, despite increased proliferation, rRNA production, and protein synthesis. Loss of copies occurs early and is associated with hypersensitivity to DNA damage. Therefore, copy loss is a recurrent feature in cancers associated with mTOR activation. Ribosomal DNA copy number may be a simple and useful indicator of whether a cancer will be sensitive to DNA damaging treatments.", "title": "Ribosomal DNA copy number loss and sequence variation in cancer" }, { "docid": "16201748", "text": "BACKGROUND Different molecular alterations have been described in endometrioid endometrial carcinoma (EECA). Among them the most frequently altered is loss of the PTEN protein, a tumor suppressor gene. The purpose of this study was to evaluate the expression pattern of PTEN gene in normal, hyperplastic and neoplastic endometrium. \n METHODS In a study in a referral gynecologic hospital in Tehran, Iran, immunohistochemical (IHC) evaluation of PTEN was performed on 87 consecutive specimens to the following three groups; group A- normal proliferative endometrium(n = 29); group B- hyperplastic endometrium [including simple hyperplasia without atypia(n = 21) and complex hyperplasia with atypia (n = 8)] and group C- EECA(n = 29). Immunostaining of cells was analyzed by arbitrary quantitative methods according to both slide's area staining and intensity of color reaction. \n RESULTS PTEN immunoreactivity was present in all normal proliferative endometrium, all simple hyperplasia, 75% of atypical complex hyperplasia and in 48% of EECA (P < 0.001). The intensity of PTEN reaction was significantly higher in group with proliferative endometrium than hyperplastic endometrium and EECA (P < 0.001). \n CONCLUSION PTEN expression was significantly higher in cyclical endometrium than in atypical hyperplasia and endometrioid carcinoma.", "title": "Altered PTEN expression; a diagnostic marker for differentiating normal, hyperplastic and neoplastic endometrium" }, { "docid": "11289247", "text": "The regulation and coordination of mitochondrial metabolism with hematopoietic stem cell (HSC) self-renewal and differentiation is not fully understood. Here we report that depletion of PTPMT1, a PTEN-like mitochondrial phosphatase, in inducible or hematopoietic-cell-specific knockout mice resulted in hematopoietic failure due to changes in the cell cycle and a block in the differentiation of HSCs. Surprisingly, the HSC pool was increased by ∼40-fold in PTPMT1 knockout mice. Reintroduction of wild-type PTPMT1, but not catalytically deficient PTPMT1 or truncated PTPMT1 lacking mitochondrial localization, restored differentiation capabilities of PTPMT1 knockout HSCs. Further analyses demonstrated that PTPMT1 deficiency altered mitochondrial metabolism and that phosphatidylinositol phosphate substrates of PTPMT1 directly enhanced fatty-acid-induced activation of mitochondrial uncoupling protein 2. Intriguingly, depletion of PTPMT1 from myeloid, T lymphoid, or B lymphoid progenitors did not cause any defects in lineage-specific knockout mice. This study establishes a crucial role of PTPMT1 in the metabolic regulation of HSC function.", "title": "Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation." }, { "docid": "11271123", "text": "Endometrial cancer is associated with numeric and structural chromosomal abnormalities, microsatellite instability (MSI), and alterations that activate oncogenes and inactivate tumor suppressor genes. The aim of this study was to characterize a set of endometrial cancers using multiple molecular genetic and immunohistochemical techniques. Ninety-six cases were examined for genomic alterations by MSI, MLH1 promoter hypermethylation, p53 and mismatch repair protein expression (MLH1, MSH2, MSH6, PMS2), and PTEN, PIK3CA, KRAS, and BRAF mutation analysis. At least 1 alteration was identified in 48 of 87 (55%) specimens tested for PTEN, making it the most common abnormality in this study. A PIK3CA alteration was observed in 16 (17%) specimens. Twenty-nine of 94 (31%) MSI tested tumors exhibited an MSI-H phenotype. Of the 29 MSI-H cases, 24 (83%) were positive for methylation of the MLH1 promoter region. Twenty-three (82%) of the 28 MSI-H cases with immunohistochemistry results showed loss of expression of MLH1/PMS2 (n=19), MSH2/MSH6 (n=2), or MSH6 only (n=2). Of the 19 MSI-H cases with loss of MLH1/PMS2 on immunohistochemistry, 18 were positive, and 1 was equivocal for MLH1 promoter hypermethylation. Twelve of 94 cases (13%) analyzed for KRAS mutations were found to have a mutation. No BRAF V600E mutations were indentified. This study provides a comprehensive molecular genetic analysis of commonly analyzed targets in a large cohort of endometrial cancers.", "title": "Molecular characterization of endometrial cancer: a correlative study assessing microsatellite instability, MLH1 hypermethylation, DNA mismatch repair protein expression, and PTEN, PIK3CA, KRAS, and BRAF mutation analysis." }, { "docid": "5270265", "text": "Trastuzumab is a successful rationally designed ERBB2-targeted therapy. However, about half of individuals with ERBB2-overexpressing breast cancer do not respond to trastuzumab-based therapies, owing to various resistance mechanisms. Clinically applicable regimens for overcoming trastuzumab resistance of different mechanisms are not yet available. We show that the nonreceptor tyrosine kinase c-SRC (SRC) is a key modulator of trastuzumab response and a common node downstream of multiple trastuzumab resistance pathways. We find that SRC is activated in both acquired and de novo trastuzumab-resistant cells and uncover a novel mechanism of SRC regulation involving dephosphorylation by PTEN. Increased SRC activation conferred considerable trastuzumab resistance in breast cancer cells and correlated with trastuzumab resistance in patients. Targeting SRC in combination with trastuzumab sensitized multiple lines of trastuzumab-resistant cells to trastuzumab and eliminated trastuzumab-resistant tumors in vivo, suggesting the potential clinical application of this strategy to overcome trastuzumab resistance.", "title": "Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways" }, { "docid": "14819804", "text": "The novel phosphatidylinositol-3-kinase (PI3K) inhibitor PX-866 was tested against 13 experimental human tumor xenografts derived from cell lines of various tissue origins. Mutant PI3K (PIK3CA) and loss of PTEN activity were sufficient, but not necessary, as predictors of sensitivity to the antitumor activity of the PI3K inhibitor PX-866 in the presence of wild-type Ras, whereas mutant oncogenic Ras was a dominant determinant of resistance, even in tumors with coexisting mutations in PIK3CA. The level of activation of PI3K signaling measured by tumor phosphorylated Ser(473)-Akt was insufficient to predict in vivo antitumor response to PX-866. Reverse-phase protein array revealed that the Ras-dependent downstream targets c-Myc and cyclin B were elevated in cell lines resistant to PX-866 in vivo. Studies using an H-Ras construct to constitutively and preferentially activate the three best-defined downstream targets of Ras, i.e., Raf, RalGDS, and PI3K, showed that mutant Ras mediates resistance through its ability to use multiple pathways for tumorigenesis. The identification of Ras and downstream signaling pathways driving resistance to PI3K inhibition might serve as an important guide for patient selection as inhibitors enter clinical trials and for the development of rational combinations with other molecularly targeted agents.", "title": "Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance." }, { "docid": "9301606", "text": "Parathyroid hormone (PTH), a major regulator of bone metabolism, activates the PTHR1 receptor on the osteoblast plasma membrane to initiate signaling and induce transcription of primary response genes. Subsequently, primary genes with transcriptional activity regulate expression of downstream PTH targets. We have identified the adenovirus E4 promoter-binding protein/nuclear factor regulated by IL-3 (E4bp4) as a PTH-induced primary gene in osteoblasts. E4BP4 is a basic leucine zipper (bZIP) transcription factor that represses or activates transcription in non-osteoblastic cells. We report here that PTH rapidly and transiently induced E4bp4 mRNA in osteoblastic cells and that this induction did not require protein synthesis. PTH also induced E4BP4 protein synthesis and E4BP4 binding to a consensus but not to a mutant E4BP4 response element (EBPRE). E4BP4 overexpression inhibited an EBPRE-containing promoter-reporter construct, whereas PTH treatment attenuated activity of the same construct in primary mouse osteoblasts. Finally, E4BP4 overexpression inhibited PTH-induced activity of a cyclooxygenase-2 promoter-reporter construct. Our data suggest a role for E4BP4 in attenuation of PTH target gene transcription in osteoblasts.", "title": "Parathyroid hormone-induced E4BP4/NFIL3 down-regulates transcription in osteoblasts." }, { "docid": "20179918", "text": "Both signal transducer and activator of transcription 3 (STAT3) and SALL4 are important in maintaining the pluripotent and self-renewal state of embryonic stem cells. We hypothesized that STAT3, a latent transcriptional factor, may regulate the gene expression of SALL4. In support of this hypothesis, DNA sequence analysis of the SALL4 gene promoter revealed four putative STAT3-binding sites. Using a SALL4-luciferase reporter gene assay, we found that modulation of the STAT3 activity significantly up-regulated the luciferase activity. By chromatin immunoprecipitation, the segment of the SALL4 promoter showing the highest affinity to STAT3 was localized to -366 to -163, in which there was only one putative STAT3 binding site starting at -199. Site-directed mutagenesis of all four putative STAT3-binding sites in the SALL4 promoter significantly reduced its responsiveness to STAT3, although the most dramatic effect was seen at the binding site starting at -199. We further tested the functional relationship between STAT3 and SALL4 using MDA-MB-231, a breast cell line carrying constitutive SALL4 expression and STAT3 activity. Down-regulation of the STAT3 activity using a dominant-negative construct resulted in a significant decrease in the expression of SALL4. To conclude, our data suggest that STAT3 and SALL4 probably cooperate in both physiological and pathological states.", "title": "Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4." } ]
919
Participants who quit smoking reduce lung cancer risk by approximately 50%.
[ { "docid": "16422880", "text": "CONTEXT Many smokers are unable or unwilling to completely quit smoking. A proposed means of harm reduction is to reduce the number of cigarettes smoked per day. However, it is not clear whether this strategy decreases the risk for tobacco-related diseases. \n OBJECTIVE To assess the effects of smoking reduction on lung cancer incidence. \n DESIGN, SETTING, AND PARTICIPANTS Observational population-based cohort study with up to 31 years of follow-up from the Copenhagen Centre for Prospective Population Studies, which administrates data from 3 longitudinal studies conducted in Copenhagen and suburbs, the Copenhagen City Heart Study, the Copenhagen Male Study, and the Glostrup Population Studies, Denmark. Participants were 11,151 men and 8563 women (N = 19,714) aged 20 to 93 years, who attended 2 consecutive examinations with a 5- to 10-year interval between 1964 and 1988. Participants underwent a physical examination and completed self-filled questionnaires about lifestyle habits. The study population was divided into 6 groups according to smoking habits: continued heavy smokers (> or =15 cigarettes/d), reducers (reduced from > or =15 cigarettes/d by minimum of 50% without quitting), continued light smokers (1-14 cigarettes/d), quitters (stopped between first and second examination), stable ex-smokers, and never smokers. \n MAIN OUTCOME MEASURE Incident primary lung cancer cases assessed by record linkage with the National Cancer Registry until December 31, 2003. \n RESULTS There were 864 incident lung cancers during follow-up. Using Cox regression, the adjusted hazard ratio (HR) for lung cancer in reducers was 0.73 (95% confidence interval [CI], 0.54-0.98) compared with persistent heavy smokers. The HR for light smokers was 0.44 (95% CI, 0.35-0.56); for quitters, HR 0.50 (95% CI, 0.36-0.69), for stable ex-smokers, HR 0.17 (95% CI, 0.13-0.23), and for never smokers, HR 0.09 (95% CI, 0.06-0.13). \n CONCLUSION Among individuals who smoke 15 or more cigarettes per day, smoking reduction by 50% significantly reduces the risk of lung cancer.", "title": "Effect of smoking reduction on lung cancer risk." } ]
[ { "docid": "26067999", "text": "The U.S. Preventive Services Task Force (USPSTF) makes recommendations about the effectiveness of specific preventive care services for patients without related signs or symptoms. It bases its recommendations on the evidence of both the benefits and harms of the service and an assessment of the balance. The USPSTF does not consider the costs of providing a service in this assessment. The USPSTF recognizes that clinical decisions involve more considerations than evidence alone. Clinicians should understand the evidence but individualize decision making to the specific patient or situation. Similarly, the USPSTF notes that policy and coverage decisions involve considerations in addition to the evidence of clinical benefits and harms. Summary of Recommendation and Evidence The USPSTF recommends annual screening for lung cancer with low-dose computed tomography (LDCT) in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (B recommendation) See the Clinical Considerations section for suggestions for implementation in practice. See the Figure for a summary of the recommendation and suggestions for clinical practice. Figure. Screening for lung cancer: clinical summary of U.S. Preventive Services Task Force recommendation. Appendix Table 1 describes the USPSTF grades, and Appendix Table 2 describes the USPSTF classification of levels of certainty about net benefit. Appendix Table 1. What the USPSTF Grades Mean and Suggestions for Practice Appendix Table 2. USPSTF Levels of Certainty Regarding Net Benefit Supplement. Consumer Fact Sheet. Rationale Importance Lung cancer is the third most common cancer and the leading cause of cancer-related death in the United States (1). The most important risk factor for lung cancer is smoking, which results in approximately 85% of all U.S. lung cancer cases (2). Although the prevalence of smoking has decreased, approximately 37% of U.S. adults are current or former smokers (2). The incidence of lung cancer increases with age and occurs most commonly in persons aged 55 years or older. Increasing age and cumulative exposure to tobacco smoke are the 2 most common risk factors for lung cancer. Lung cancer has a poor prognosis, and nearly 90% of persons with lung cancer die of the disease. However, early-stage nonsmall cell lung cancer (NSCLC) has a better prognosis and can be treated with surgical resection. Detection Most lung cancer cases are NSCLC, and most screening programs focus on the detection and treatment of early-stage NSCLC. Although chest radiography and sputum cytologic evaluation have been used to screen for lung cancer, LDCT has greater sensitivity for detecting early-stage cancer (3). Benefits of Detection and Early Treatment Although lung cancer screening is not an alternative to smoking cessation, the USPSTF found adequate evidence that annual screening for lung cancer with LDCT in a defined population of high-risk persons can prevent a substantial number of lung cancerrelated deaths. Direct evidence from a large, well-conducted, randomized, controlled trial (RCT) provides moderate certainty of the benefit of lung cancer screening with LDCT in this population (4). The magnitude of benefit to the person depends on that person's risk for lung cancer because those who are at highest risk are most likely to benefit. Screening cannot prevent most lung cancerrelated deaths, and smoking cessation remains essential. Harms of Detection and Early Intervention and Treatment The harms associated with LDCT screening include false-negative and false-positive results, incidental findings, overdiagnosis, and radiation exposure. False-positive LDCT results occur in a substantial proportion of screened persons; 95% of all positive results do not lead to a diagnosis of cancer. In a high-quality screening program, further imaging can resolve most false-positive results; however, some patients may require invasive procedures. The USPSTF found insufficient evidence on the harms associated with incidental findings. Overdiagnosis of lung cancer occurs, but its precise magnitude is uncertain. A modeling study performed for the USPSTF estimated that 10% to 12% of screen-detected cancer cases are overdiagnosedthat is, they would not have been detected in the patient's lifetime without screening. Radiation harms, including cancer resulting from cumulative exposure to radiation, vary depending on the age at the start of screening; the number of scans received; and the person's exposure to other sources of radiation, particularly other medical imaging. USPSTF Assessment The USPSTF concludes with moderate certainty that annual screening for lung cancer with LDCT is of moderate net benefit in asymptomatic persons who are at high risk for lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking. The moderate net benefit of screening depends on limiting screening to persons who are at high risk, the accuracy of image interpretation being similar to that found in the NLST (National Lung Screening Trial), and the resolution of most false-positive results without invasive procedures (4). Clinical Considerations Patient Population Under Consideration The risk for lung cancer increases with age and cumulative exposure to tobacco smoke and decreases with time since quitting smoking. The best evidence for the benefit of screening comes from the NLST, which enrolled adults aged 55 to 74 years who had at least a 30 pack-year smoking history and were current smokers or had quit within the past 15 years. As with all screening trials, the NLST tested a specific intervention over a finite period. Because initial eligibility extended through age 74 years and participants received 3 annual screening computed tomographic scans, the oldest participants in the trial were aged 77 years. The USPSTF used modeling studies to predict the benefits and harms of screening programs that use different screening intervals, age ranges, smoking histories, and times since quitting. A program that annually screens adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years is projected to have a reasonable balance of benefits and harms. The model assumes that persons who achieve 15 years of smoking cessation during the screening program discontinue screening. This model predicts the outcomes of continuing the screening program used in the NLST through age 80 years. Screening may not be appropriate for patients with substantial comorbid conditions, particularly those at the upper end of the screening age range. The NLST excluded persons who were unlikely to complete curative lung cancer surgery and those with medical conditions that posed a substantial risk for death during the 8-year trial. The baseline characteristics of the NLST showed a relatively healthy sample, and fewer than 10% of enrolled participants were older than 70 years (5). Persons with serious comorbid conditions may experience net harm, no net benefit, or at least substantially less net benefit. Similarly, persons who are unwilling to have curative lung surgery are unlikely to benefit from a screening program. Assessment of Risk Age, total exposure to tobacco smoke, and years since quitting smoking are important risk factors for lung cancer and were used to determine eligibility in the NLST. Other risk factors include specific occupational exposures, radon exposure, family history, and history of pulmonary fibrosis or chronic obstructive lung disease. The incidence of lung cancer is relatively low in persons younger than 50 years but increases with age, especially after age 60 years. In current and former smokers, age-specific incidence rates increase with age and cumulative exposure to tobacco smoke. Smoking cessation substantially reduces a person's risk for developing and dying of lung cancer. Among persons enrolled in the NLST, those who were at highest risk because of additional risk factors or a greater cumulative exposure to tobacco smoke experienced most of the benefit (6). A validated multivariate model showed that persons in the highest 60% of risk accounted for 88% of all deaths preventable by screening. Screening Tests Low-dose computed tomography has shown high sensitivity and acceptable specificity for the detection of lung cancer in high-risk persons. Chest radiography and sputum cytologic evaluation have not shown adequate sensitivity or specificity as screening tests. Therefore, LDCT is currently the only recommended screening test for lung cancer. Treatment Surgical resection is the current standard of care for localized NSCLC. This type of cancer is treated with surgical resection when possible and also with radiation and chemotherapy. Annual LDCT screening may not be useful for patients with life-limiting comorbid conditions or poor functional status who may not be candidates for surgery. Other Approaches to Prevention Smoking cessation is the most important intervention to prevent NSCLC. Advising smokers to stop smoking and preventing nonsmokers from being exposed to tobacco smoke are the most effective ways to decrease the morbidity and mortality associated with lung cancer. Current smokers should be informed of their continuing risk for lung cancer and offered cessation treatments. Screening with LDCT should be viewed as an adjunct to tobacco cessation interventions. Useful Resources Clinicians have many resources to help patients stop smoking. The Centers for Disease Control and Prevention has developed a Web site with many such resources, including information on tobacco quit lines, available in several languages (www.cdc.gov/tobacco/campaign/tips). Quit l", "title": "Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement" }, { "docid": "7639744", "text": "OBJECTIVE To systematically review the evidence that smoking cessation after diagnosis of a primary lung tumour affects prognosis. \n DESIGN Systematic review with meta-analysis. \n DATA SOURCES CINAHL (from 1981), Embase (from 1980), Medline (from 1966), Web of Science (from 1966), CENTRAL (from 1977) to December 2008, and reference lists of included studies. STUDY SELECTION Randomised controlled trials or observational longitudinal studies that measured the effect of quitting smoking after diagnosis of lung cancer on prognostic outcomes, regardless of stage at presentation or tumour histology, were included. \n DATA EXTRACTION Two researchers independently identified studies for inclusion and extracted data. Estimates were combined by using a random effects model, and the I(2) statistic was used to examine heterogeneity. Life tables were used to model five year survival for early stage non-small cell lung cancer and limited stage small cell lung cancer, using death rates for continuing smokers and quitters obtained from this review. \n RESULTS In 9/10 included studies, most patients studied were diagnosed as having an early stage lung tumour. Continued smoking was associated with a significantly increased risk of all cause mortality (hazard ratio 2.94, 95% confidence interval 1.15 to 7.54) and recurrence (1.86, 1.01 to 3.41) in early stage non-small cell lung cancer and of all cause mortality (1.86, 1.33 to 2.59), development of a second primary tumour (4.31, 1.09 to 16.98), and recurrence (1.26, 1.06 to 1.50) in limited stage small cell lung cancer. No study contained data on the effect of quitting smoking on cancer specific mortality or on development of a second primary tumour in non-small cell lung cancer. Life table modelling on the basis of these data estimated 33% five year survival in 65 year old patients with early stage non-small cell lung cancer who continued to smoke compared with 70% in those who quit smoking. In limited stage small cell lung cancer, an estimated 29% of continuing smokers would survive for five years compared with 63% of quitters on the basis of the data from this review. \n CONCLUSIONS This review provides preliminary evidence that smoking cessation after diagnosis of early stage lung cancer improves prognostic outcomes. From life table modelling, the estimated number of deaths prevented is larger than would be expected from reduction of cardiorespiratory deaths after smoking cessation, so most of the mortality gain is likely to be due to reduced cancer progression. These findings indicate that offering smoking cessation treatment to patients presenting with early stage lung cancer may be beneficial.", "title": "Influence of smoking cessation after diagnosis of early stage lung cancer on prognosis: systematic review of observational studies with meta-analysis" }, { "docid": "12145359", "text": "BACKGROUND Individuals with severely impaired lung function have an increased risk of lung cancer. Whether milder reductions in forced expiratory volume in 1 second (FEV(1)) also increase the risk of lung cancer is controversial. Moreover, there is little consensus on whether men and women have similar risks for lung cancer for similar decreases in FEV(1). \n METHODS A search was conducted of PubMed and EMBASE from January 1966 to January 2005 and studies that examined the relationship between FEV1 and lung cancer were identified. The search was limited to studies that were population based, employed a prospective design, were large in size (> or = 5000 participants), and adjusted for cigarette smoking status. \n RESULTS Twenty eight abstracts were identified, six of which did not report FEV1 and eight did not adjust for smoking. Included in this report are four studies that reported FEV1 in quintiles. The risk of lung cancer increased with decreasing FEV1. Compared with the highest quintile of FEV1 (> 100% of predicted), the lowest quintile of FEV1 (< approximately 70% of predicted) was associated with a 2.23 fold (95% confidence interval (CI) 1.73 to 2.86) increase in the risk for lung cancer in men and a 3.97 fold increase in women (95% CI 1.93 to 8.25). Even relatively small decrements in FEV1 ( approximately 90% of predicted) increased the risk for lung cancer by 30% in men (95% CI 1.05 to 1.62) and 2.64 fold in women (95% CI 1.30 to 5.31). \n CONCLUSION Reduced FEV1 is strongly associated with lung cancer. Even a relatively modest reduction in FEV1 is a significant predictor of lung cancer, especially among women.", "title": "Relationship between reduced forced expiratory volume in one second and the risk of lung cancer: a systematic review and meta-analysis." }, { "docid": "34369306", "text": "BACKGROUND A double-blind RCT on the short-term efficacy of nicotine patches compared to placebo patches among Dutch adolescents was conducted. The findings demonstrated that nicotine patches are efficacious for smoking cessation at end-of-treatment; however, only in highly compliant participants. We tested whether the effects of NRT also held in 6- (T7) and 12-month (T8) follow-up assessments. \n METHODS Adolescents aged 12-18 years, who smoked at least seven cigarettes a day and who were motivated to quit smoking were recruited at school yards and randomly assigned to either a nicotine patch (n=182) or a placebo patch (n=180) condition according to a computer generated list. Participants (N=257, age: 16.7 ± 1.13 years) attended an information meeting followed by a 6- or 9-week treatment. Smoking cessation, compliance, and potential covariates were measured by means of online questionnaires. Smoking cessation at T8 was biochemically validated by saliva cotinine. \n RESULTS At T7, 8.1% and 5.7% of participants were abstinent in the nicotine and placebo patch groups, respectively. At T8, abstinence was 4.4% and 6.6%, respectively. Intention-to-treat analyses showed no significant effects of NRT on abstinence rates at T7 (OR=1.54, 95% CI=0.57, 4.16) and validated abstinence rates at T8 (OR=0.64, 95% CI=0.21, 1.93) neither after considering compliance nor after adjusting for covariates. \n CONCLUSIONS NRT fails in helping adolescents quit smoking at 6- and 12-month follow-ups. This finding suggests that a more intensive approach is needed to assist youngsters in their quit attempts.", "title": "Long-term efficacy of nicotine replacement therapy for smoking cessation in adolescents: a randomized controlled trial." }, { "docid": "5114940", "text": "BACKGROUND Smoking is the leading preventable cause of illness and premature death worldwide. Some medications have been proven to help people to quit, with three licensed for this purpose in Europe and the USA: nicotine replacement therapy (NRT), bupropion, and varenicline. Cytisine (a treatment pharmacologically similar to varenicline) is also licensed for use in Russia and some of the former socialist economy countries. Other therapies, including nortriptyline, have also been tested for effectiveness. \n OBJECTIVES How do NRT, bupropion and varenicline compare with placebo and with each other in achieving long-term abstinence (six months or longer)? How do the remaining treatments compare with placebo in achieving long-term abstinence? How do the risks of adverse and serious adverse events (SAEs) compare between the treatments, and are there instances where the harms may outweigh the benefits? \n METHODS The overview is restricted to Cochrane reviews, all of which include randomised trials. Participants are usually adult smokers, but we exclude reviews of smoking cessation for pregnant women and in particular disease groups or specific settings. We cover nicotine replacement therapy (NRT), antidepressants (bupropion and nortriptyline), nicotine receptor partial agonists (varenicline and cytisine), anxiolytics, selective type 1 cannabinoid receptor antagonists (rimonabant), clonidine, lobeline, dianicline, mecamylamine, Nicobrevin, opioid antagonists, nicotine vaccines, and silver acetate. Our outcome for benefit is continuous or prolonged abstinence at least six months from the start of treatment. Our outcome for harms is the incidence of serious adverse events associated with each of the treatments. We searched the Cochrane Database of Systematic Reviews (CDSR) in The Cochrane Library, for any reviews with 'smoking' in the title, abstract or keyword fields. The last search was conducted in November 2012. We assessed methodological quality using a revised version of the AMSTAR scale. For NRT, bupropion and varenicline we conducted network meta-analyses, comparing each with the others and with placebo for benefit, and varenicline and bupropion for risks of serious adverse events. \n MAIN RESULTS We identified 12 treatment-specific reviews. The analyses covered 267 studies, involving 101,804 participants. Both NRT and bupropion were superior to placebo (odds ratios (OR) 1.84; 95% credible interval (CredI) 1.71 to 1.99, and 1.82; 95% CredI 1.60 to 2.06 respectively). Varenicline increased the odds of quitting compared with placebo (OR 2.88; 95% CredI 2.40 to 3.47). Head-to-head comparisons between bupropion and NRT showed equal efficacy (OR 0.99; 95% CredI 0.86 to 1.13). Varenicline was superior to single forms of NRT (OR 1.57; 95% CredI 1.29 to 1.91), and to bupropion (OR 1.59; 95% CredI 1.29 to 1.96). Varenicline was more effective than nicotine patch (OR 1.51; 95% CredI 1.22 to 1.87), than nicotine gum (OR 1.72; 95% CredI 1.38 to 2.13), and than 'other' NRT (inhaler, spray, tablets, lozenges; OR 1.42; 95% CredI 1.12 to 1.79), but was not more effective than combination NRT (OR 1.06; 95% CredI 0.75 to 1.48). Combination NRT also outperformed single formulations. The four categories of NRT performed similarly against each other, apart from 'other' NRT, which was marginally more effective than NRT gum (OR 1.21; 95% CredI 1.01 to 1.46). Cytisine (a nicotine receptor partial agonist) returned positive findings (risk ratio (RR) 3.98; 95% CI 2.01 to 7.87), without significant adverse events or SAEs. Across the 82 included and excluded bupropion trials, our estimate of six seizures in the bupropion arms versus none in the placebo arms was lower than the expected rate (1:1000), at about 1:1500. SAE meta-analysis of the bupropion studies demonstrated no excess of neuropsychiatric (RR 0.88; 95% CI 0.31 to 2.50) or cardiovascular events (RR 0.77; 95% CI 0.37 to 1.59). SAE meta-analysis of 14 varenicline trials found no difference between the varenicline and placebo arms (RR 1.06; 95% CI 0.72 to 1.55), and subgroup analyses detected no significant excess of neuropsychiatric events (RR 0.53; 95% CI 0.17 to 1.67), or of cardiac events (RR 1.26; 95% CI 0.62 to 2.56). Nortriptyline increased the chances of quitting (RR 2.03; 95% CI 1.48 to 2.78). Neither nortriptyline nor bupropion were shown to enhance the effect of NRT compared with NRT alone. Clonidine increased the chances of quitting (RR 1.63; 95% CI 1.22 to 2.18), but this was offset by a dose-dependent rise in adverse events. Mecamylamine in combination with NRT may increase the chances of quitting, but the current evidence is inconclusive. Other treatments failed to demonstrate a benefit compared with placebo. Nicotine vaccines are not yet licensed for use as an aid to smoking cessation or relapse prevention. Nicobrevin's UK license is now revoked, and the manufacturers of rimonabant, taranabant and dianicline are no longer supporting the development or testing of these treatments. AUTHORS' CONCLUSIONS NRT, bupropion, varenicline and cytisine have been shown to improve the chances of quitting. Combination NRT and varenicline are equally effective as quitting aids. Nortriptyline also improves the chances of quitting. On current evidence, none of the treatments appear to have an incidence of adverse events that would mitigate their use. Further research is warranted into the safety of varenicline and into cytisine's potential as an effective and affordable treatment, but not into the efficacy and safety of NRT.", "title": "Pharmacological interventions for smoking cessation: an overview and network meta-analysis." }, { "docid": "17124832", "text": "CONTEXT Previous studies indicate that the population attributable risk (PAR) of bladder cancer for tobacco smoking is 50% to 65% in men and 20% to 30% in women and that current cigarette smoking triples bladder cancer risk relative to never smoking. During the last 30 years, incidence rates have remained stable in the United States in men (123.8 per 100,000 person-years to 142.2 per 100,000 person-years) and women (32.5 per 100,000 person-years to 33.2 per 100,000 person-years); however, changing smoking prevalence and cigarette composition warrant revisiting risk estimates for smoking and bladder cancer. \n OBJECTIVE To evaluate the association between tobacco smoking and bladder cancer. \n DESIGN, SETTING, AND PARTICIPANTS Men (n = 281,394) and women (n = 186,134) of the National Institutes of Health-AARP (NIH-AARP) Diet and Health Study cohort completed a lifestyle questionnaire and were followed up between October 25, 1995, and December 31, 2006. Previous prospective cohort studies of smoking and incident bladder cancer were identified by systematic review and relative risks were estimated from fixed-effects models with heterogeneity assessed by the I(2) statistic. \n MAIN OUTCOME MEASURES Hazard ratios (HRs), PARs, and number needed to harm (NNH). \n RESULTS During 4,518,941 person-years of follow-up, incident bladder cancer occurred in 3896 men (144.0 per 100,000 person-years) and 627 women (34.5 per 100,000 person-years). Former smokers (119.8 per 100,000 person-years; HR, 2.22; 95% confidence interval [CI], 2.03-2.44; NNH, 1250) and current smokers (177.3 per 100,000 person-years; HR, 4.06; 95% CI, 3.66-4.50; NNH, 727) had higher risks of bladder cancer than never smokers (39.8 per 100,000 person-years). In contrast, the summary risk estimate for current smoking in 7 previous studies (initiated between 1963 and 1987) was 2.94 (95% CI, 2.45-3.54; I(2) = 0.0%). The PAR for ever smoking in our study was 0.50 (95% CI, 0.45-0.54) in men and 0.52 (95% CI, 0.45-0.59) in women. \n CONCLUSION Compared with a pooled estimate of US data from cohorts initiated between 1963 and 1987, relative risks for smoking in the more recent NIH-AARP Diet and Health Study cohort were higher, with PARs for women comparable with those for men.", "title": "Association between smoking and risk of bladder cancer among men and women." }, { "docid": "21003930", "text": "BACKGROUND Long-term exposure to pollution can lead to an increase in the rate of decline of lung function, especially in older individuals and in those with chronic obstructive pulmonary disease (COPD), whereas shorter-term exposure at higher pollution levels has been implicated in causing excess deaths from ischaemic heart disease and exacerbations of COPD. We aimed to assess the effects on respiratory and cardiovascular responses of walking down a busy street with high levels of pollution compared with walking in a traffic-free area with lower pollution levels in older adults. \n METHODS In this randomised, crossover study, we recruited men and women aged 60 years and older with angiographically proven stable ischaemic heart disease or stage 2 Global initiative for Obstructive Lung Disease (GOLD) COPD who had been clinically stable for 6 months, and age-matched healthy volunteers. Individuals with ischaemic heart disease or COPD were recruited from existing databases or outpatient respiratory and cardiology clinics at the Royal Brompton & Harefield NHS Foundation Trust and age-matched healthy volunteers using advertising and existing databases. All participants had abstained from smoking for at least 12 months and medications were taken as recommended by participants' doctors during the study. Participants were randomly assigned by drawing numbered disks at random from a bag to do a 2 h walk either along a commercial street in London (Oxford Street) or in an urban park (Hyde Park). Baseline measurements of participants were taken before the walk in the hospital laboratory. During each walk session, black carbon, particulate matter (PM) concentrations, ultrafine particles, and nitrogen dioxide (NO2) concentrations were measured. \n FINDINGS Between October, 2012, and June, 2014, we screened 135 participants, of whom 40 healthy volunteers, 40 individuals with COPD, and 39 with ischaemic heart disease were recruited. Concentrations of black carbon, NO2, PM10, PM2.5, and ultrafine particles were higher on Oxford Street than in Hyde Park. Participants with COPD reported more cough (odds ratio [OR] 1·95, 95% CI 0·96-3·95; p<0·1), sputum (3·15, 1·39-7·13; p<0·05), shortness of breath (1·86, 0·97-3·57; p<0·1), and wheeze (4·00, 1·52-10·50; p<0·05) after walking down Oxford Street compared with Hyde Park. In all participants, irrespective of their disease status, walking in Hyde Park led to an increase in lung function (forced expiratory volume in the first second [FEV1] and forced vital capacity [FVC]) and a decrease in pulse wave velocity (PWV) and augmentation index up to 26 h after the walk. By contrast, these beneficial responses were attenuated after walking on Oxford Street. In participants with COPD, a reduction in FEV1 and FVC, and an increase in R5-20 were associated with an increase in during-walk exposure to NO2, ultrafine particles and PM2.5, and an increase in PWV and augmentation index with NO2 and ultrafine particles. In healthy volunteers, PWV and augmentation index were associated both with black carbon and ultrafine particles. \n INTERPRETATION Short-term exposure to traffic pollution prevents the beneficial cardiopulmonary effects of walking in people with COPD, ischaemic heart disease, and those free from chronic cardiopulmonary diseases. Medication use might reduce the adverse effects of air pollution in individuals with ischaemic heart disease. Policies should aim to control ambient levels of air pollution along busy streets in view of these negative health effects. \n FUNDING British Heart Foundation.", "title": "Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study" }, { "docid": "15512462", "text": "OBJECTIVE To compare the incidence of cancer among women with and without a history of pre-eclampsia. \n DESIGN Cohort study. \n SETTING Jerusalem perinatal study of women who delivered in three large hospitals in West Jerusalem during 1964-76. \n PARTICIPANTS 37 033 women. \n MAIN OUTCOME MEASURES Age adjusted and multivariable adjusted hazard ratios for cancer incidence for the entire cohort and for women who were primiparous at study entry. \n RESULTS Cancer developed in 91 women who had pre-eclampsia and 2204 who did not (hazard ratio 1.27, 95% confidence interval 1.03 to 1.57). The risk of site specific cancers was increased, particularly of the stomach, ovary epithelium, breast, and lung or larynx. The incidence of cancer of the stomach, breast, ovary, kidney, and lung or larynx was increased in primiparous women at study entry who had a history pre-eclampsia. \n CONCLUSIONS A history of pre-eclampsia is associated with increases in overall risk of cancer and incidence at several sites. This may be explained by environmental and genetic factors common to the development of pre-eclampsia and cancer in this population.", "title": "Cancer after pre-eclampsia: follow up of the Jerusalem perinatal study cohort." }, { "docid": "6085365", "text": "BACKGROUND Few studies have examined whether physician knowledge, attitudes, or practice patterns might contribute to gender disparities in the primary prevention of coronary heart disease (CHD), including among physicians caring for the largest number of reproductive-age women, obstetricians and gynecologists (OB/GYNs). We sought to identify barriers affecting the provision of recommended coronary risk factor therapies in women. \n METHODS We surveyed internists and OB/GYNs who attended Grand Rounds presentations developed for the New York State Women and Heart Disease Physician Education Initiative. This program was designed to improve screening and management of coronary risk factors in women. Attendees were asked to complete a 7-minute questionnaire. \n RESULTS The mean age of the 529 respondents was 40.3 years (standard deviation = 12.3), 75.1% were internists (n=378), and 42.7% (n=226) were women. Physicians correctly responded to 71.5% of the 13 questions assessing knowledge of coronary risk prevention (range, 4-13). Almost one third of internists and half of the OB/GYNs did not know that tobacco use was the leading cause of myocardial infarction in young women. For patients who smoked tobacco, only two thirds of internists and 55.4% of OB/GYNs reported suggesting a quit date (p=.007). After controlling for covariates, physicians who did not perceive time as a barrier were more likely to discuss smoking cessation (odds ratio=1.7 [1.1-2.7]). \n CONCLUSIONS Among the internists and OB/GYNs surveyed, time was perceived as a barrier to implementing risk prevention. These physicians also underestimated the impact of tobacco use as a risk factor for CHD in young women. To lessen gender disparities in CHD prevention, both specialties need time-efficient educational programs that reflect specialty differences.", "title": "Physician knowledge levels and barriers to coronary risk prevention in women: survey results from the Women and Heart Disease Physician Education Initiative." }, { "docid": "18174210", "text": "BACKGROUND The heritable haemoglobinopathy alpha(+)-thalassaemia is caused by the reduced synthesis of alpha-globin chains that form part of normal adult haemoglobin (Hb). Individuals homozygous for alpha(+)-thalassaemia have microcytosis and an increased erythrocyte count. Alpha(+)-thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA) (Hb concentration < 50 g/l), but does not influence parasite count. We tested the hypothesis that the erythrocyte indices associated with alpha(+)-thalassaemia homozygosity provide a haematological benefit during acute malaria. \n METHODS AND FINDINGS Data from children living on the north coast of Papua New Guinea who had participated in a case-control study of the protection afforded by alpha(+)-thalassaemia against severe malaria were reanalysed to assess the genotype-specific reduction in erythrocyte count and Hb levels associated with acute malarial disease. We observed a reduction in median erythrocyte count of approximately 1.5 x 10(12)/l in all children with acute falciparum malaria relative to values in community children (p < 0.001). We developed a simple mathematical model of the linear relationship between Hb concentration and erythrocyte count. This model predicted that children homozygous for alpha(+)-thalassaemia lose less Hb than children of normal genotype for a reduction in erythrocyte count of >1.1 x 10(12)/l as a result of the reduced mean cell Hb in homozygous alpha(+)-thalassaemia. In addition, children homozygous for alpha(+)-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02) for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for alpha(+)-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24-1.12, p = 0.09). \n CONCLUSIONS The increased erythrocyte count and microcytosis in children homozygous for alpha(+)-thalassaemia may contribute substantially to their protection against SMA. A lower concentration of Hb per erythrocyte and a larger population of erythrocytes may be a biologically advantageous strategy against the significant reduction in erythrocyte count that occurs during acute infection with the malaria parasite Plasmodium falciparum. This haematological profile may reduce the risk of anaemia by other Plasmodium species, as well as other causes of anaemia. Other host polymorphisms that induce an increased erythrocyte count and microcytosis may confer a similar advantage.", "title": "Increased Microerythrocyte Count in Homozygous α+-Thalassaemia Contributes to Protection against Severe Malarial Anaemia" }, { "docid": "1456068", "text": "BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. \n METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. \n CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary.", "title": "Combined Impact of Lifestyle-Related Factors on Total and Cause-Specific Mortality among Chinese Women: Prospective Cohort Study" }, { "docid": "12009265", "text": "CONTEXT Many individuals take vitamins in the hopes of preventing chronic diseases such as cancer, and vitamins E and C are among the most common individual supplements. A large-scale randomized trial suggested that vitamin E may reduce risk of prostate cancer; however, few trials have been powered to address this relationship. No previous trial in men at usual risk has examined vitamin C alone in the prevention of cancer. \n OBJECTIVE To evaluate whether long-term vitamin E or C supplementation decreases risk of prostate and total cancer events among men. \n DESIGN, SETTING, AND PARTICIPANTS The Physicians' Health Study II is a randomized, double-blind, placebo-controlled factorial trial of vitamins E and C that began in 1997 and continued until its scheduled completion on August 31, 2007. A total of 14,641 male physicians in the United States initially aged 50 years or older, including 1307 men with a history of prior cancer at randomization, were enrolled. \n INTERVENTION Individual supplements of 400 IU of vitamin E every other day and 500 mg of vitamin C daily. \n MAIN OUTCOME MEASURES Prostate and total cancer. \n RESULTS During a mean follow-up of 8.0 years, there were 1008 confirmed incident cases of prostate cancer and 1943 total cancers. Compared with placebo, vitamin E had no effect on the incidence of prostate cancer (active and placebo vitamin E groups, 9.1 and 9.5 events per 1000 person-years; hazard ratio [HR], 0.97; 95% confidence interval [CI], 0.85-1.09; P = .58) or total cancer (active and placebo vitamin E groups, 17.8 and 17.3 cases per 1000 person-years; HR, 1.04; 95% CI, 0.95-1.13; P = .41). There was also no significant effect of vitamin C on total cancer (active and placebo vitamin C groups, 17.6 and 17.5 events per 1000 person-years; HR, 1.01; 95% CI, 0.92-1.10; P = .86) or prostate cancer (active and placebo vitamin C groups, 9.4 and 9.2 cases per 1000 person-years; HR, 1.02; 95% CI, 0.90-1.15; P = .80). Neither vitamin E nor vitamin C had a significant effect on colorectal, lung, or other site-specific cancers. Adjustment for adherence and exclusion of the first 4 or 6 years of follow-up did not alter the results. Stratification by various cancer risk factors demonstrated no significant modification of the effect of vitamin E on prostate cancer risk or either agent on total cancer risk. \n CONCLUSIONS In this large, long-term trial of male physicians, neither vitamin E nor C supplementation reduced the risk of prostate or total cancer. These data provide no support for the use of these supplements for the prevention of cancer in middle-aged and older men. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00270647.", "title": "Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians' Health Study II randomized controlled trial." }, { "docid": "12794099", "text": "BACKGROUND There is overwhelming evidence that behavioural factors influence health, but their combined impact on the general population is less well documented. We aimed to quantify the potential combined impact of four health behaviours on mortality in men and women living in the general community. \n METHODS AND FINDINGS We examined the prospective relationship between lifestyle and mortality in a prospective population study of 20,244 men and women aged 45-79 y with no known cardiovascular disease or cancer at baseline survey in 1993-1997, living in the general community in the United Kingdom, and followed up to 2006. Participants scored one point for each health behaviour: current non-smoking, not physically inactive, moderate alcohol intake (1-14 units a week) and plasma vitamin C >50 mmol/l indicating fruit and vegetable intake of at least five servings a day, for a total score ranging from zero to four. After an average 11 y follow-up, the age-, sex-, body mass-, and social class-adjusted relative risks (95% confidence intervals) for all-cause mortality(1,987 deaths) for men and women who had three, two, one, and zero compared to four health behaviours were respectively, 1.39 (1.21-1.60), 1.95 (1.70--2.25), 2.52 (2.13-3.00), and 4.04 (2.95-5.54) p < 0.001 trend. The relationships were consistent in subgroups stratified by sex, age, body mass index, and social class, and after excluding deaths within 2 y. The trends were strongest for cardiovascular causes. The mortality risk for those with four compared to zero health behaviours was equivalent to being 14 y younger in chronological age. \n CONCLUSIONS Four health behaviours combined predict a 4-fold difference in total mortality in men and women, with an estimated impact equivalent to 14 y in chronological age.", "title": "Combined Impact of Health Behaviours and Mortality in Men and Women: The EPIC-Norfolk Prospective Population Study" }, { "docid": "195689316", "text": "BACKGROUND The main associations of body-mass index (BMI) with overall and cause-specific mortality can best be assessed by long-term prospective follow-up of large numbers of people. The Prospective Studies Collaboration aimed to investigate these associations by sharing data from many studies. \n METHODS Collaborative analyses were undertaken of baseline BMI versus mortality in 57 prospective studies with 894 576 participants, mostly in western Europe and North America (61% [n=541 452] male, mean recruitment age 46 [SD 11] years, median recruitment year 1979 [IQR 1975-85], mean BMI 25 [SD 4] kg/m(2)). The analyses were adjusted for age, sex, smoking status, and study. To limit reverse causality, the first 5 years of follow-up were excluded, leaving 66 552 deaths of known cause during a mean of 8 (SD 6) further years of follow-up (mean age at death 67 [SD 10] years): 30 416 vascular; 2070 diabetic, renal or hepatic; 22 592 neoplastic; 3770 respiratory; 7704 other. \n FINDINGS In both sexes, mortality was lowest at about 22.5-25 kg/m(2). Above this range, positive associations were recorded for several specific causes and inverse associations for none, the absolute excess risks for higher BMI and smoking were roughly additive, and each 5 kg/m(2) higher BMI was on average associated with about 30% higher overall mortality (hazard ratio per 5 kg/m(2) [HR] 1.29 [95% CI 1.27-1.32]): 40% for vascular mortality (HR 1.41 [1.37-1.45]); 60-120% for diabetic, renal, and hepatic mortality (HRs 2.16 [1.89-2.46], 1.59 [1.27-1.99], and 1.82 [1.59-2.09], respectively); 10% for neoplastic mortality (HR 1.10 [1.06-1.15]); and 20% for respiratory and for all other mortality (HRs 1.20 [1.07-1.34] and 1.20 [1.16-1.25], respectively). Below the range 22.5-25 kg/m(2), BMI was associated inversely with overall mortality, mainly because of strong inverse associations with respiratory disease and lung cancer. These inverse associations were much stronger for smokers than for non-smokers, despite cigarette consumption per smoker varying little with BMI. \n INTERPRETATION Although other anthropometric measures (eg, waist circumference, waist-to-hip ratio) could well add extra information to BMI, and BMI to them, BMI is in itself a strong predictor of overall mortality both above and below the apparent optimum of about 22.5-25 kg/m(2). The progressive excess mortality above this range is due mainly to vascular disease and is probably largely causal. At 30-35 kg/m(2), median survival is reduced by 2-4 years; at 40-45 kg/m(2), it is reduced by 8-10 years (which is comparable with the effects of smoking). The definite excess mortality below 22.5 kg/m(2) is due mainly to smoking-related diseases, and is not fully explained.", "title": "Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies." }, { "docid": "25725663", "text": "Cigarette smoke is the leading cause of the development of various lung diseases including lung cancer through triggering oxidant stress and inflammatory responses which contributed to the lesions of normal human bronchial epithelial (NHBE) cell. Wedelolactone (WEL), a natural compound from Eclipta prostrata L., has been found to possess the inhibitive effects on the proliferation and growth of cancers. In the present study, we investigated the effects of WEL on NHBE cell injury induced by cigarette smoke extract (CSE) in vitro. It showed that the pretreatment WEL (2.5-20μM) resulted in a significant protective effect on 10% CSE-induced cell death in NHBE cells. The pretreatment with WEL dose-dependently and significantly reversed the activities of SOD, CAT, GSH and the level of MDA to normal level. We also found that the protein expression levels of COX-2 and ICAM-1 which are related to inflammatory response were remarkably reduced by WEL compared with 10% CSE treatment. Additionally, WEL also reduced the expressions of antioxidases including NAD(P)H dehydrogenase:Quinone 1 (NQO1) and heme oxygenase-1 (HO-1). Moreover, Nrf2 inhibitor all-trans-retinoic acid (ATRA) decreased remarkably their expressions. These results suggest that WEL protects NHBE cell against CSE-induced injury through modulating Nrf2 pathway. Our study indicates that WEL may be a new potential protective agent against CSE-induced lung injury.", "title": "Wedelolactone protects human bronchial epithelial cell injury against cigarette smoke extract-induced oxidant stress and inflammation responses through Nrf2 pathway." }, { "docid": "16390264", "text": "OBJECTIVES To determine the extent to which type of hospital admission (emergency compared with elective) and surgical procedure varied by socioeconomic circumstances, age, sex, and year of admission for colorectal, breast, and lung cancer. \n DESIGN Repeated cross sectional study with data from individual patients, 1 April 1999 to 31 March 2006. \n SETTING Hospital episode statistics (HES) dataset. \n PARTICIPANTS 564 821 patients aged 50 and over admitted with a diagnosis of colorectal, breast, or lung cancer. \n MAIN OUTCOME MEASURES Proportion of patients admitted as emergencies, and the proportion receiving the recommended surgical treatment. \n RESULTS Patients from deprived areas, older people, and women were more likely to be admitted as emergencies. For example, the adjusted odds ratio for patients with breast cancer in the least compared with most deprived fifth of deprivation was 0.63 (95% confidence interval 0.60 to 0.66) and the adjusted odds ratio for patients with lung cancer aged 80-89 compared with those aged 50-59 was 3.13 (2.93 to 3.34). There were some improvements in disparities between age groups but not for patients living in deprived areas over time. Patients from deprived areas were less likely to receive preferred procedures for rectal, breast, and lung cancer. These findings did not improve with time. For example, 67.4% (3529/5237) of patients in the most deprived fifth of deprivation had anterior resection for rectal cancer compared with 75.5% (4497/5959) of patients in the least deprived fifth (1.34, 1.22 to 1.47). Over half (54.0%, 11 256/20 849) of patients in the most deprived fifth of deprivation had breast conserving surgery compared with 63.7% (18 445/28 960) of patients in the least deprived fifth (1.21, 1.16 to 1.26). Men were less likely than women to undergo anterior resection and lung cancer resection and older people were less likely to receive breast conserving surgery and lung cancer resection. For example, the adjusted odds ratio for lung cancer patients aged 80-89 compared with those aged 50-59 was 0.52 (0.46 to 0.59). Conclusions Despite the implementation of the NHS Cancer Plan, social factors still strongly influence access to and the provision of care.", "title": "Social variations in access to hospital care for patients with colorectal, breast, and lung cancer between 1999 and 2006: retrospective analysis of hospital episode statistics" }, { "docid": "24873253", "text": "Patients with metastatic bone disease are at risk for developing skeletal-related events that can negatively influence quality of life, contributing to loss of autonomy and functional capabilities. Bisphosphonates have become an important component in the treatment of patients with bone metastases as they delay the onset and reduce the risk of skeletal-related events and also palliate or control bone pain in multiple cancer types, thus preserving quality of life. Zoledronic acid has proven efficacy and safety in patients with bone lesions from breast cancer, prostate cancer, lung cancer, and other solid tumors, as well as in patients with multiple myeloma. Current data suggest that early treatment with zoledronic acid (before the onset of bone pain) may provide additional clinical benefits and also positive effects on survival in subsets of patients who have elevated levels of N-telopeptide of type I collagen (NTX), a biochemical marker of bone resorption. Studies have shown that in patients with breast cancer, prostate cancer, lung cancer, or other solid tumors, normalization of elevated levels of NTX was observed in the majority of patients who received zoledronic acid. Furthermore, normalization of NTX values correlated with extended survival.", "title": "Clinical benefits and considerations of bisphosphonate treatment in metastatic bone disease." }, { "docid": "13025574", "text": "High doses of ionizing radiation clearly produce deleterious consequences in humans, including, but not exclusively, cancer induction. At very low radiation doses the situation is much less clear, but the risks of low-dose radiation are of societal importance in relation to issues as varied as screening tests for cancer, the future of nuclear power, occupational radiation exposure, frequent-flyer risks, manned space exploration, and radiological terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address two specific questions. First, what is the lowest dose of x- or gamma-radiation for which good evidence exists of increased cancer risks in humans? The epidemiological data suggest that it is approximately 10-50 mSv for an acute exposure and approximately 50-100 mSv for a protracted exposure. Second, what is the most appropriate way to extrapolate such cancer risk estimates to still lower doses? Given that it is supported by experimentally grounded, quantifiable, biophysical arguments, a linear extrapolation of cancer risks from intermediate to very low doses currently appears to be the most appropriate methodology. This linearity assumption is not necessarily the most conservative approach, and it is likely that it will result in an underestimate of some radiation-induced cancer risks and an overestimate of others.", "title": "Cancer risks attributable to low doses of ionizing radiation: assessing what we really know." }, { "docid": "33835579", "text": "Tuberculosis remains one of the world's leading infectious causes of death. Approximately 80% of all disease is due to postprimary (secondary) tuberculosis in the lung. Unfortunately, tissues of developing lesions are seldom available and there are no recognized models of postprimary tuberculosis. In the preantibiotic era when tissues were more abundant, several investigators described early postprimary tuberculosis as a lipid pneumonia quite different from the caseating granulomas commonly described today. We used histopathologic, immunohistochemical and acid fast stains to examine tissues from several people with untreated primary and postprimary tuberculosis and compared the findings with those of mice with reactivation tuberculosis. The results confirmed that developing postprimary tuberculosis begins as a lipid pneumonia accompanied by bronchial obstruction in which infection is restricted to foamy alveolar macrophages. Cavities result from a combination of caseation of tuberculous pneumonia and microvascular occlusion characteristic of delayed type hypersensitivity (DTH). Reactivation tuberculosis in the mouse begins as a similar tuberculous lipid pneumonia with bronchial obstruction and evidence for participation of DTH. Developing necrosis in both species is associated with localization of organisms within lipid droplets. These results suggest that reactivation tuberculosis in mice is a valuable model of developing human postprimary tuberculosis.", "title": "Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs." } ]
923
Patients in stable partnerships have a slower progression from HIV to AIDS.
[ { "docid": "17077004", "text": "OBJECTIVES To explore the association between a stable partnership and clinical outcome in HIV infected patients receiving highly active antiretroviral therapy (HAART). \n DESIGN Prospective cohort study of adults with HIV (Swiss HIV cohort study). \n SETTING Seven outpatient clinics throughout Switzerland. \n PARTICIPANTS The 3736 patients in the cohort who started HAART before 2002 (median age 36 years, 29% female, median follow up 3.6 years). \n MAIN OUTCOME MEASURES Time to AIDS or death (primary endpoint), death alone, increases in CD4 cell count of at least 50 and 100 above baseline, optimal viral suppression (a viral load below 400 copies/ml), and viral rebound. \n RESULTS During follow up 2985 (80%) participants reported a stable partnership on at least one occasion. When starting HAART, 52% (545/1042) of participants reported a stable partnership; after five years of follow up 46% (190/412) of participants reported a stable partnership. In an analysis stratified by previous antiretroviral therapy and clinical stage when starting HAART (US Centers for Disease Control and Prevention group A, B, or C), the adjusted hazard ratio for progression to AIDS or death was 0.79 (95% confidence interval 0.63 to 0.98) for participants with a stable partnership compared with those without. Adjusted hazards ratios for other endpoints were 0.59 (0.44 to 0.79) for progression to death, 1.15 (1.06 to 1.24) for an increase in CD4 cells of 100 counts/microl or more, and 1.06 (0.98 to 1.14) for optimal viral suppression. \n CONCLUSIONS A stable partnership is associated with a slower rate of progression to AIDS or death in HIV infected patients receiving HAART.", "title": "Stable partnership and progression to AIDS or death in HIV infected patients receiving highly active antiretroviral therapy: Swiss HIV cohort study." } ]
[ { "docid": "23304931", "text": "PURPOSE Diffuse large B-cell lymphoma (DLBCL) represents a clinically heterogeneous disease. Models based on immunohistochemistry predict clinical outcome. These include subdivision into germinal center (GC) versus non-GC subtypes; proliferation index (measured by expression of Ki-67), and expression of BCL-2, FOXP1, or B-lymphocyte-induced maturation protein (Blimp-1)/PRDM1. We sought to determine whether immunohistochemical analyses of biopsies from patients with DLBCL having HIV infection are similarly relevant for prognosis. \n PATIENTS AND METHODS We examined 81 DLBCLs from patients with AIDS in AMC010 (cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP] v CHOP-rituximab) and AMC034 (etoposide, doxorubicin, vincristine, prednisone, and dose-adjusted cyclophosphamide plus rituximab concurrent v sequential) clinical trials and compared the immunophenotype with survival data, Epstein-Barr virus (EBV) positivity, and CD4 counts. \n RESULTS The GC and non-GC subtypes of DLBCL did not differ significantly with respect to overall survival or CD4 count at cancer presentation. EBV could be found in both subtypes of DLBCL, although less frequently in the GC subtype, and did not affect survival. Expression of FOXP1, Blimp-1/PRDM1, or BCL-2 was not correlated with the outcome in patients with AIDS-related DLBCL. \n CONCLUSION These data indicate that with current treatment strategies for lymphoma and control of HIV infection, commonly used immunohistochemical markers may not be clinically relevant in HIV-infected patients with DLBCL. The only predictive immunohistochemical marker was found to be Ki-67, where a higher proliferation index was associated with better survival, suggesting a better response to therapy in patients whose tumors had higher proliferation rates.", "title": "Immunophenotypic analysis of AIDS-related diffuse large B-cell lymphoma and clinical implications in patients from AIDS malignancies consortium clinical trials 010 and 034" }, { "docid": "37444589", "text": "Although 13 years have passed since identification of human immunodeficiency virus-1 (HIV-1) as the cause of AIDS, we do not yet know how HIV kills its primary target, the T cell that carries the CD4 antigen. We and others have shown an increase in the percentage of apoptotic cells among circulating CD4+ (and CD8+) T cells of HIV-seropositive individuals and an increase in frequency of apoptosis with disease progression. However, it is not known if this apoptosis occurs in infected or uninfected T cells. We show here, using in situ labelling of lymph nodes from HIV-infected children and SIV-infected macaques, that apoptosis occurs predominantly in bystander cells and not in the productively infected cells themselves. These data have implications for pathogenesis and therapy, namely, arguing that rational drug therapy may involve combination agents targeting viral replication in infected cells and apoptosis of uninfected cells.", "title": "Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes" }, { "docid": "24596228", "text": "BACKGROUND/AIMS There is only limited information on the prevalence and influence of coinfection with either hepatitis B or C on the clinical course in patients infected with the human immunodeficiency virus (HIV). \n METHODS Follow-up was available in 232 HIV-infected patients (age 37+/-8 years, CD4 count 167+/-167 microl; 46% had AIDS). Samples were investigated for markers of HBV and HCV infection (HBsAg, HBeAg, HBV-DNA, Anti-HBs, anti-HBc, anti-HCV, HCV-RNA). \n RESULTS 60/232 patients (23%) were anti-HCV positive. 78% of these sera were positive for HCV-RNA. 22/232 patients (9%) suffered from chronic HBV infection (HBsAg positive), 18/22 (82%) of these sera had detectable HBeAg and 19/22 (86%) HBV-DNA. Presence of HCV-RNA, HBeAg and amount of HBV-DNA were related to the degree of immunodeficiency. In contrast to the control group without HBV or HCV infection, patients infected with HIV and either HBV or HCV showed a direct correlation between a reduction in CD4 counts and decreased cholinesterase activity. In patients with AIDS, coinfection with HBV or HCV was associated with a reduced survival compared to controls (HBV: 212 days, 95%CI, 106-317; HCV: 267, 95%CI, 112-396; controls: 439 days, 95%CI, 364-513). \n CONCLUSIONS Coinfection of HIV and HBV or HCV is frequently observed. Our results suggest that with prolonged survival of HIV-infected patients, coinfection with either HBV or HCV correlates with a reduced survival rate.", "title": "Hepatitis B and C in HIV-infected patients. Prevalence and prognostic value." }, { "docid": "11238951", "text": "Kaposi's sarcoma-associated herpesvirus (KSHV), also termed human herpesvirus type 8, is consistently identified in Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. Here we report four cases of KSHV-bearing solid lymphomas that occurred in AIDS patients (cases 1 to 3) and in a human immunodeficiency virus (HIV)-seronegative person (case 4). The patients presented extranodal masses in the abdomen (cases 1, 3, and 4) or skin (case 2), and nodal involvement, together with Kaposi's sarcoma (case 3). The gastrointestinal tract was involved in two patients (cases 1 and 3). The patients did not develop a lymphomatous effusion. KSHV was detected in the tumor cells of all cases by immunohistochemistry and by polymerase chain reaction. Epstein-Barr virus was detected in two of the HIV-related cases. All KSHV-positive solid lymphomas exhibited PEL-like cell morphology. To investigate the relationship of these disorders to PEL and to other AIDS-associated diffuse large cell lymphomas, KSHV-positive solid lymphomas were tested for the expression of a set of genes that were previously shown by gene profiling analysis to define PEL tumor cells. The results showed that expression of this set of genes in KSHV-positive lymphomas is similar to that of PEL but distinct from KSHV-negative AIDS-associated diffuse large cell lymphomas. Because pathobiological features of KSHV-positive solid lymphomas closely mimic those of PEL, our results suggest that KSHV-positive solid lymphomas should be considered as a tissue-based variant of classical PEL, irrespective of HIV status.", "title": "Kaposi's sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma." }, { "docid": "2758012", "text": "Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome-associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis.", "title": "BLM helicase facilitates telomere replication during leading strand synthesis of telomeres" }, { "docid": "11230569", "text": "Substantial changes are needed to achieve a more targeted and strategic approach to investment in the response to the HIV/AIDS epidemic that will yield long-term dividends. Until now, advocacy for resources has been done on the basis of a commodity approach that encouraged scaling up of numerous strategies in parallel, irrespective of their relative effects. We propose a strategic investment framework that is intended to support better management of national and international HIV/AIDS responses than exists with the present system. Our framework incorporates major efficiency gains through community mobilisation, synergies between programme elements, and benefits of the extension of antiretroviral therapy for prevention of HIV transmission. It proposes three categories of investment, consisting of six basic programmatic activities, interventions that create an enabling environment to achieve maximum effectiveness, and programmatic efforts in other health and development sectors related to HIV/AIDS. The yearly cost of achievement of universal access to HIV prevention, treatment, care, and support by 2015 is estimated at no less than US$22 billion. Implementation of the new investment framework would avert 12·2 million new HIV infections and 7·4 million deaths from AIDS between 2011 and 2020 compared with continuation of present approaches, and result in 29·4 million life-years gained. The framework is cost effective at $1060 per life-year gained, and the additional investment proposed would be largely offset from savings in treatment costs alone.", "title": "Towards an improved investment approach for an effective response to HIV/AIDS." }, { "docid": "31562330", "text": "BACKGROUND The increased caloric requirements of HIV-positive individuals, undesirable side effects of treatment that may be worsened by malnutrition (but alleviated by nutritional support), and associated declines in adherence and possible increased drug resistance are all justifications for developing better interventions to strengthen the nutrition security of individuals receiving antiretroviral treatment. \n OBJECTIVE To highlight key benefits and challenges relating to interventions aimed at strengthening the nutrition security of people living with HIV who are receiving antiretroviral treatment. \n METHODS Qualitative research was undertaken on a short-term nutrition intervention linked to the provision of free antiretroviral treatment for people living with HIV in western Kenya in late 2005 and early 2006. \n RESULTS Patients enrolled in the food program while on treatment regimens self-reported greater adherence to their medication, fewer side effects, and a greater ability to satisfy increased appetite. Most clients self-reported weight gain, recovery of physical strength, and the resumption of labor activities while enrolled in dual (food supplementation and treatment) programs. Such improvements were seen to catalyze increased support from family and community. \n CONCLUSIONS These findings provide further empirical support to calls for a more holistic and comprehensive response to the coexistence of AIDS epidemics with chronic nutrition insecurity. Future work is needed to clarify ways of bridging the gap between short-term nutritional support to individuals and longer-term livelihood security programming for communities affected by AIDS. Such interdisciplinary research will need to be matched by intersectoral action on the part of the agriculture and health sectors in such environments.", "title": "Integrating nutrition security with treatment of people living with HIV: lessons from Kenya." }, { "docid": "1259359", "text": "The incidence of the acquired immunodeficiency syndrome (AIDS) in Malawi is one of the highest in Central Africa. Since tuberculosis is an important initial manifestations of the disease, consecutive patients admitted to the tuberculosis (TB) wards of Zomba General Hospital, Malawi, were asked for permission to undergo a human immunodeficiency virus (HIV)-antibodies test. In addition, two other studies were done: from September 1986 all medical in-patients, clinically suspected for immune deficiency and from April 1988 all blood donors were tested for HIV seropositivity. Seventy-five percent of the TB patients volunteered; 32 out of 125 (26%) were seropositive. In the high-risk age groups (20-40 years) this percentage rose to 32. Among the medical in-patients suspected of immune deficiency the seropositivity rose sharply from April 1987 to October 1988. Among the blood donors tested, 20% were seropositive.", "title": "HIV seropositivity and tuberculosis in a large general hospital in Malawi." }, { "docid": "9161988", "text": "The development of a safe and effective HIV vaccine is perhaps the most important and challenging goal remaining in HIV-AIDS research. Recent progress using a poxvirus vector prime and envelope protein boost strategy demonstrated a modest but statistically significant level of efficacy and established the concept that a vaccine could prevent HIV infection (1), and approaches to boost durability and efficacy are currently in the planning stages (2). But the results of two vaccine concepts based on recombinant adenovirus serotype-5 (rAd5) (3–5) pointed to a potential major problem—that such vaccines might increase susceptibility to HIV infection. This also raised the question of whether the problem extends to some or all of the other recombinant adenovirus vectors currently in development or to other vector-based vaccines.", "title": "Immune Activation with HIV Vaccines" }, { "docid": "21274496", "text": "Simian immunodeficiency virus (SIV) naturally infects non-human primates in Africa. To date, 40 SIVs have been described both in natural hosts and in heterologous species. These viruses are highly diverse and the majority cluster in 6 relatively equidistant phylogenetic lineages. At least 8 SIVs are currently considered as recombinant viruses, based on different clustering patterns in different genomic regions. Only three types of genomes are known, based on the number of accessory genes: vpr-containing genomes, vpr-vpx containing genomes and vpr-vpu-containing genomes. vpx resulted by a duplication of the vpr gene following non-homologous recombination and is characteristic of SIVs infecting the Papionini tribe of monkeys and HIV-2 in humans. vpu is characteristic of SIVcpz and HIV-1 and may have originated from a recombination involving SIVs from cercopitecini monkeys. SIV seems to be non-pathogenic in the vast majority of natural hosts in spite of a high levels of viral replication. This is probably a consequence of virus-host adaptation, in which the incubation period of the disease generally exceeds the life span of the African primate host. SIVs also have a high propensity for cross-species transmission. In the new host, the outcome may vary from inapparent infection to highly pathogenic, the former being reported for African monkeys, whereas the latter being observed in macaques and humans. The high diversity of SIVs was generated by a high mutation rate due to a low fidelity of the reverse-transcriptase and active viral and host cell turnover, host-dependent evolution and recombination. Cross-species transmission is not rare, however preferential host switching may drive the majority of cross-species transmissions. Numerous SIVs tested so far are able to grow in vitro on human PBMC, therefore it has been postulated that SIV represents a threat for infection of humans in Central Africa and that AIDS is a zoonosis. However, although the simian origin of the two HIV types is broadly acknowledged, there are no data that AIDS is acquired like a zoonosis. SIV may undergo adaptation in the new human host in order to emerge in the general population. The study of SIV in their natural hosts should provide important clues to the real threat to human populations and also elucidate the mechanisms associated with a long-term persistent viral infection without clinical consequences for the host.", "title": "The history of SIVS and AIDS: epidemiology, phylogeny and biology of isolates from naturally SIV infected non-human primates (NHP) in Africa." }, { "docid": "15319019", "text": "Background The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre’s database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance. Methods and Findings The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre’s database. N348I increased in prevalence from below 1% in 368 treatmentnao ¨ve individuals to 12.1% in 1,009 treatment-experienced patients (p ¼ 7.7 3 10 � 12 ). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p , 0.001), the lamivudine resistance mutations M184V/I (p , 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p , 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43–4.81). The appearance of N348I was associated with a significant increase in viral load (p , 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wildtype HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance. Conclusions", "title": "N348I in the Connection Domain of HIV-1 Reverse Transcriptase Confers Zidovudine and Nevirapine Resistance" }, { "docid": "22227889", "text": "This study examines factors associated with caregiver burden in 82 HIV-positive (HIV+) and 162 HIV-negative (HIV-) partners of men with AIDS. We expected HIV+ caregivers to report more burden than HIV- caregivers because of the toll of their disease on their resources. HIV+ caregivers did report more burden and, compared with the HIV- caregivers, they were more religious or spiritual, had less income, and coped by using more positive reappraisal and cognitive escape-avoidance and by seeking social support. Comparisons of HIV+ caregivers with 61 HIV+ partners of healthy men indicated that most differences between HIV+ and HIV- caregivers were associated with HIV seropositivity rather than caregiving. However, of the variables associated with HIV seropositivity, only religiosity or spirituality contributed independently to burden in HIV+ caregivers, suggesting a relatively weak link between HIV seropositivity and caregiver burden. The model explained 62% of the variance in burden in HIV+ caregivers and 36% of the variance in HIV- caregivers.", "title": "Caregiver burden in HIV-positive and HIV-negative partners of men with AIDS." }, { "docid": "46353045", "text": "Late presentation remains a major concern despite the dramatically improved prognosis realized by ART. We define a first presentation for HIV care during the course of HIV infection as 'late' if an AIDS-defining opportunistic disease is apparent, or if CD4+ T-cells are <200/microl. In the Western world, approximately 10 and 30% of HIV-infected individuals still present with CD4+ T-cells <50 and <200/microl, respectively; estimates are substantially higher for developing countries. Diagnosis and treatment of opportunistic diseases and intense supportive in-hospital care take precedence over ART. Benefits of starting ART without delay, that is, when opportunistic diseases are still active, include faster resolution of opportunistic diseases and a decreased risk of recurrence. The downside of starting ART without delay could include toxicity, drug interactions and immune reconstitution inflammatory syndrome (IRIS). Among asymptomatic or oligosymptomatic individuals presenting late, where ART and primary prophylaxis are initiated, approximately 10-20% will become symptomatic from drug toxicity or undiagnosed opportunistic complications, including IRIS, which require appropriate therapies. In this review we describe late presentation to HIV care, the scale of the problem, the evaluation of a late-presenting patient and challenges associated with initiation of potent antiretroviral therapy (ART) in the setting of acute opportunistic infections and other comorbidities.", "title": "Late presentation of HIV-infected individuals." }, { "docid": "374902", "text": "BACKGROUND Roughly 3 million people worldwide were receiving antiretroviral therapy (ART) at the end of 2007, but an estimated 6.7 million were still in need of treatment and a further 2.7 million became infected with HIV in 2007. Prevention efforts might reduce HIV incidence but are unlikely to eliminate this disease. We investigated a theoretical strategy of universal voluntary HIV testing and immediate treatment with ART, and examined the conditions under which the HIV epidemic could be driven towards elimination. \n METHODS We used mathematical models to explore the effect on the case reproduction number (stochastic model) and long-term dynamics of the HIV epidemic (deterministic transmission model) of testing all people in our test-case community (aged 15 years and older) for HIV every year and starting people on ART immediately after they are diagnosed HIV positive. We used data from South Africa as the test case for a generalised epidemic, and assumed that all HIV transmission was heterosexual. \n FINDINGS The studied strategy could greatly accelerate the transition from the present endemic phase, in which most adults living with HIV are not receiving ART, to an elimination phase, in which most are on ART, within 5 years. It could reduce HIV incidence and mortality to less than one case per 1000 people per year by 2016, or within 10 years of full implementation of the strategy, and reduce the prevalence of HIV to less than 1% within 50 years. We estimate that in 2032, the yearly cost of the present strategy and the theoretical strategy would both be US$1.7 billion; however, after this time, the cost of the present strategy would continue to increase whereas that of the theoretical strategy would decrease. \n INTERPRETATION Universal voluntary HIV testing and immediate ART, combined with present prevention approaches, could have a major effect on severe generalised HIV/AIDS epidemics. This approach merits further mathematical modelling, research, and broad consultation.", "title": "Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model." }, { "docid": "25134146", "text": "Hepatitis C virus (HCV) is frequently encountered in human immunodeficiency virus (HIV)-infected patients because of common routes of transmission. Previous studies suggested that HIV infection impaired the natural course of chronic hepatitis C, with a more rapid progression to cirrhosis. However, these studies did not assess the HIV infection impact on chronic hepatitis C by taking into account the risk factors for liver fibrosis progression: alcohol, sex, age at the contamination, and duration of HCV infection. We studied liver biopsy specimens of 2 groups of 58 patients that were infected by both HCV and HIV or by HCV alone. The 2 groups were matched according those risk factors, and liver biopsy responses were evaluated with the METAVIR items. The METAVIR activity was higher in HIV-positive than HIV-negative patients. Cirrhosis was more frequent: (1) in HIV-positive patients with CD4 < or = 200 cells/microL (45%) than in HIV-negative patients (10%) (P = .003), (2) in HIV-positive patients with CD4 < or = 200 cells/microL (45%) than in HIV-positive patients with CD4 > 200 cells/microL (17%) (P = .04). These differences, which were linked to HIV status, might be related to the enhanced HCV replication during HIV infection or other immune mechanisms that need further studies.", "title": "Impact of human immunodeficiency virus infection on the histological features of chronic hepatitis C: a case-control study. The MULTIVIRC group." }, { "docid": "13071728", "text": "BACKGROUND The World Health Organization (WHO) released revised guidelines in 2015 recommending that all people living with HIV, regardless of CD4 count, initiate antiretroviral therapy (ART) upon diagnosis. However, few studies have projected the global resources needed for rapid scale-up of ART. Under the Health Policy Project, we conducted modeling analyses for 97 countries to estimate eligibility for and numbers on ART from 2015 to 2020, along with the facility-level financial resources required. We compared the estimated financial requirements to estimated funding available. \n METHODS AND FINDINGS Current coverage levels and future need for treatment were based on country-specific epidemiological and demographic data. Simulated annual numbers of individuals on treatment were derived from three scenarios: (1) continuation of countries' current policies of eligibility for ART, (2) universal adoption of aspects of the WHO 2013 eligibility guidelines, and (3) expanded eligibility as per the WHO 2015 guidelines and meeting the Joint United Nations Programme on HIV/AIDS \"90-90-90\" ART targets. We modeled uncertainty in the annual resource requirements for antiretroviral drugs, laboratory tests, and facility-level personnel and overhead. We estimate that 25.7 (95% CI 25.5, 26.0) million adults and 1.57 (95% CI 1.55, 1.60) million children could receive ART by 2020 if countries maintain current eligibility plans and increase coverage based on historical rates, which may be ambitious. If countries uniformly adopt aspects of the WHO 2013 guidelines, 26.5 (95% CI 26.0 27.0) million adults and 1.53 (95% CI 1.52, 1.55) million children could be on ART by 2020. Under the 90-90-90 scenario, 30.4 (95% CI 30.1, 30.7) million adults and 1.68 (95% CI 1.63, 1.73) million children could receive treatment by 2020. The facility-level financial resources needed for scaling up ART in these countries from 2015 to 2020 are estimated to be US$45.8 (95% CI 45.4, 46.2) billion under the current scenario, US$48.7 (95% CI 47.8, 49.6) billion under the WHO 2013 scenario, and US$52.5 (95% CI 51.4, 53.6) billion under the 90-90-90 scenario. After projecting recent external and domestic funding trends, the estimated 6-y financing gap ranges from US$19.8 billion to US$25.0 billion, depending on the costing scenario and the U.S. President's Emergency Plan for AIDS Relief contribution level, with the gap for ART commodities alone ranging from US$14.0 to US$16.8 billion. The study is limited by excluding above-facility and other costs essential to ART service delivery and by the availability and quality of country- and region-specific data. \n CONCLUSIONS The projected number of people receiving ART across three scenarios suggests that countries are unlikely to meet the 90-90-90 treatment target (81% of people living with HIV on ART by 2020) unless they adopt a test-and-offer approach and increase ART coverage. Our results suggest that future resource needs for ART scale-up are smaller than stated elsewhere but still significantly threaten the sustainability of the global HIV response without additional resource mobilization from domestic or innovative financing sources or efficiency gains. As the world moves towards adopting the WHO 2015 guidelines, advances in technology, including the introduction of lower-cost, highly effective antiretroviral regimens, whose value are assessed here, may prove to be \"game changers\" that allow more people to be on ART with the resources available.", "title": "The HIV Treatment Gap: Estimates of the Financial Resources Needed versus Available for Scale-Up of Antiretroviral Therapy in 97 Countries from 2015 to 2020" }, { "docid": "27466734", "text": "Objectives To develop and validate updated QRISK3 prediction algorithms to estimate the 10 year risk of cardiovascular disease in women and men accounting for potential new risk factors. Design Prospective open cohort study. Setting General practices in England providing data for the QResearch database. Participants 1309 QResearch general practices in England: 981 practices were used to develop the scores and a separate set of 328 practices were used to validate the scores. 7.89 million patients aged 25-84 years were in the derivation cohort and 2.67 million patients in the validation cohort. Patients were free of cardiovascular disease and not prescribed statins at baseline. Methods Cox proportional hazards models in the derivation cohort to derive separate risk equations in men and women for evaluation at 10 years. Risk factors considered included those already in QRISK2 (age, ethnicity, deprivation, systolic blood pressure, body mass index, total cholesterol: high density lipoprotein cholesterol ratio, smoking, family history of coronary heart disease in a first degree relative aged less than 60 years, type 1 diabetes, type 2 diabetes, treated hypertension, rheumatoid arthritis, atrial fibrillation, chronic kidney disease (stage 4 or 5)) and new risk factors (chronic kidney disease (stage 3, 4, or 5), a measure of systolic blood pressure variability (standard deviation of repeated measures), migraine, corticosteroids, systemic lupus erythematosus (SLE), atypical antipsychotics, severe mental illness, and HIV/AIDs). We also considered erectile dysfunction diagnosis or treatment in men. Measures of calibration and discrimination were determined in the validation cohort for men and women separately and for individual subgroups by age group, ethnicity, and baseline disease status. Main outcome measures Incident cardiovascular disease recorded on any of the following three linked data sources: general practice, mortality, or hospital admission records. Results 363 565 incident cases of cardiovascular disease were identified in the derivation cohort during follow-up arising from 50.8 million person years of observation. All new risk factors considered met the model inclusion criteria except for HIV/AIDS, which was not statistically significant. The models had good calibration and high levels of explained variation and discrimination. In women, the algorithm explained 59.6% of the variation in time to diagnosis of cardiovascular disease (R2, with higher values indicating more variation), and the D statistic was 2.48 and Harrell's C statistic was 0.88 (both measures of discrimination, with higher values indicating better discrimination). The corresponding values for men were 54.8%, 2.26, and 0.86. Overall performance of the updated QRISK3 algorithms was similar to the QRISK2 algorithms. Conclusion Updated QRISK3 risk prediction models were developed and validated. The inclusion of additional clinical variables in QRISK3 (chronic kidney disease, a measure of systolic blood pressure variability (standard deviation of repeated measures), migraine, corticosteroids, SLE, atypical antipsychotics, severe mental illness, and erectile dysfunction) can help enable doctors to identify those at most risk of heart disease and stroke.", "title": "Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study" }, { "docid": "3662510", "text": "OBJECTIVE To estimate the lost investment of domestically educated doctors migrating from sub-Saharan African countries to Australia, Canada, the United Kingdom, and the United States. \n DESIGN Human capital cost analysis using publicly accessible data. \n SETTINGS Sub-Saharan African countries. \n PARTICIPANTS Nine sub-Saharan African countries with an HIV prevalence of 5% or greater or with more than one million people with HIV/AIDS and with at least one medical school (Ethiopia, Kenya, Malawi, Nigeria, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe), and data available on the number of doctors practising in destination countries. \n MAIN OUTCOME MEASURES The financial cost of educating a doctor (through primary, secondary, and medical school), assuming that migration occurred after graduation, using current country specific interest rates for savings converted to US dollars; cost according to the number of source country doctors currently working in the destination countries; and savings to destination countries of receiving trained doctors. \n RESULTS In the nine source countries the estimated government subsidised cost of a doctor's education ranged from $21,000 (£13,000; €15,000) in Uganda to $58,700 in South Africa. The overall estimated loss of returns from investment for all doctors currently working in the destination countries was $2.17bn (95% confidence interval 2.13bn to 2.21bn), with costs for each country ranging from $2.16m (1.55m to 2.78m) for Malawi to $1.41bn (1.38bn to 1.44bn) for South Africa. The ratio of the estimated compounded lost investment over gross domestic product showed that Zimbabwe and South Africa had the largest losses. The benefit to destination countries of recruiting trained doctors was largest for the United Kingdom ($2.7bn) and United States ($846m). \n CONCLUSIONS Among sub-Saharan African countries most affected by HIV/AIDS, lost investment from the emigration of doctors is considerable. Destination countries should consider investing in measurable training for source countries and strengthening of their health systems.", "title": "The financial cost of doctors emigrating from sub-Saharan Africa: human capital analysis" }, { "docid": "28821565", "text": "To prevent acquisition of HIV through oral sex, drugs used for preexposure prophylaxis (Prep) need to diffuse in saliva. We measured tenofovir (TFV) and emtricitabine (FTC) concentrations simultaneously in the plasma and saliva of 41 HIV-infected patients under stable antiretroviral treatment. Mean ratios of saliva/plasma concentration were 3% (±4%) and 86.9% (±124%) for TFV and FTC, respectively. Tenofovir disoproxil fumarate (TDF) should be used in combination with FTC to prevent oral acquisition of HIV.", "title": "Concentrations of tenofovir and emtricitabine in saliva: implications for preexposure prophylaxis of oral HIV acquisition." } ]
925
Patients in stable partnerships progress from HIV to death at the same rate as patients not in partnerships.
[ { "docid": "17077004", "text": "OBJECTIVES To explore the association between a stable partnership and clinical outcome in HIV infected patients receiving highly active antiretroviral therapy (HAART). \n DESIGN Prospective cohort study of adults with HIV (Swiss HIV cohort study). \n SETTING Seven outpatient clinics throughout Switzerland. \n PARTICIPANTS The 3736 patients in the cohort who started HAART before 2002 (median age 36 years, 29% female, median follow up 3.6 years). \n MAIN OUTCOME MEASURES Time to AIDS or death (primary endpoint), death alone, increases in CD4 cell count of at least 50 and 100 above baseline, optimal viral suppression (a viral load below 400 copies/ml), and viral rebound. \n RESULTS During follow up 2985 (80%) participants reported a stable partnership on at least one occasion. When starting HAART, 52% (545/1042) of participants reported a stable partnership; after five years of follow up 46% (190/412) of participants reported a stable partnership. In an analysis stratified by previous antiretroviral therapy and clinical stage when starting HAART (US Centers for Disease Control and Prevention group A, B, or C), the adjusted hazard ratio for progression to AIDS or death was 0.79 (95% confidence interval 0.63 to 0.98) for participants with a stable partnership compared with those without. Adjusted hazards ratios for other endpoints were 0.59 (0.44 to 0.79) for progression to death, 1.15 (1.06 to 1.24) for an increase in CD4 cells of 100 counts/microl or more, and 1.06 (0.98 to 1.14) for optimal viral suppression. \n CONCLUSIONS A stable partnership is associated with a slower rate of progression to AIDS or death in HIV infected patients receiving HAART.", "title": "Stable partnership and progression to AIDS or death in HIV infected patients receiving highly active antiretroviral therapy: Swiss HIV cohort study." } ]
[ { "docid": "36202354", "text": "Both to address unmet medical needs and to improve industry competitiveness, regulators in both the United States and the European Union have taken bold steps to translate academic research from the university lab to the patient. A pharmaceutical public-private partnership (PPPP), which is a legally binding contract between a private pharmaceutical enterprise and a public research university (or a private university doing research funded with public funds), can be a significant tool to ensure a more efficient payoff in the highly regulated world of pharmaceuticals. In particular, a properly framed binding contract, coupled with respect for positive social norms, can move the parties away from an inefficient prisoners’ dilemma Nash Equilibrium to the Pareto Optimal Frontier. When coupled with appropriate attention to the difficult task of coordinating the actions of interdependent actors, a PPPP arrangement can enhance the likelihood of successful commercialization by flipping the parties’ incentives as compared with more traditional contracts. Because PPPPs are less common in Europe than in the United States, a key purpose of this article is to provide an annotated roadmap that universities, private firms, and EU policy makers can use to create efficient PPPPs to enhance for-profit innovation in the pharmaceutical industry in Europe. A secondary purpose is to suggest amendments to the U.S. laws governing the patenting of government-funded technology to prevent undue burdens on the sharing of certain upstream medical discoveries and research tools. Our analysis is not only comparative; it also combines, we believe for the first time, a game theory and law and management approach to for-profit PPPPs.", "title": "Pharmaceutical Public-Private Partnerships in the United States and Europe: Moving from the Bench to the Bedside" }, { "docid": "16760369", "text": "CONTEXT Clinicians and trialists have difficulty with identifying which patients are highest risk for cardiovascular events. Prior ischemic events, polyvascular disease, and diabetes mellitus have all been identified as predictors of ischemic events, but their comparative contributions to future risk remain unclear. \n OBJECTIVE To categorize the risk of cardiovascular events in stable outpatients with various initial manifestations of atherothrombosis using simple clinical descriptors. \n DESIGN, SETTING, AND PATIENTS Outpatients with coronary artery disease, cerebrovascular disease, or peripheral arterial disease or with multiple risk factors for atherothrombosis were enrolled in the global Reduction of Atherothrombosis for Continued Health (REACH) Registry and were followed up for as long as 4 years. Patients from 3647 centers in 29 countries were enrolled between 2003 and 2004 and followed up until 2008. Final database lock was in April 2009. \n MAIN OUTCOME MEASURES Rates of cardiovascular death, myocardial infarction, and stroke. \n RESULTS A total of 45,227 patients with baseline data were included in this 4-year analysis. During the follow-up period, a total of 5481 patients experienced at least 1 event, including 2315 with cardiovascular death, 1228 with myocardial infarction, 1898 with stroke, and 40 with both a myocardial infarction and stroke on the same day. Among patients with atherothrombosis, those with a prior history of ischemic events at baseline (n = 21,890) had the highest rate of subsequent ischemic events (18.3%; 95% confidence interval [CI], 17.4%-19.1%); patients with stable coronary, cerebrovascular, or peripheral artery disease (n = 15,264) had a lower risk (12.2%; 95% CI, 11.4%-12.9%); and patients without established atherothrombosis but with risk factors only (n = 8073) had the lowest risk (9.1%; 95% CI, 8.3%-9.9%) (P < .001 for all comparisons). In addition, in multivariable modeling, the presence of diabetes (hazard ratio [HR], 1.44; 95% CI, 1.36-1.53; P < .001), an ischemic event in the previous year (HR, 1.71; 95% CI, 1.57-1.85; P < .001), and polyvascular disease (HR, 1.99; 95% CI, 1.78-2.24; P < .001) each were associated with a significantly higher risk of the primary end point. \n CONCLUSION Clinical descriptors can assist clinicians in identifying high-risk patients within the broad range of risk for outpatients with atherothrombosis.", "title": "Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis." }, { "docid": "22414304", "text": "There is little information about treatment outcome in patients with smear-negative pulmonary tuberculosis (PTB) or extrapulmonary tuberculosis (EPTB) treated under routine programme conditions in subsaharan Africa. A prospective study was carried out to determine treatment outcome in an unselected cohort of TB patients admitted to Zomba General Hospital, Malawi. Eight hundred and twenty-seven adult TB patients (451 men and 376 women) were registered between 1 July and 31 December 1995. Standardized treatment outcomes of treatment completion, death, default, and transfer to another district were assessed in relation to type of TB, human immunodeficiency virus (HIV) serostatus, age and gender. Two hundred and fifty-four patients (31%) died by the end of treatment, half of the deaths occurring in the first month. Death rates were 19% among 386 patients with smear-positive PTB, 46% among 211 patients with smear-negative PTB, and 37% among 230 patients with EPTB; 77% of the patients were HIV seropositive. Among new patients, HIV-positive patients had higher death rates than HIV-negative patients (hazard ratio [HR] 2.5; 95% confidence interval [95% CI] 1.6-3.8). Smear-negative patients had the highest death rates (HR 3.9; 95% CI 2.7-5.5 compared to smear-positive patients), followed by EPTB patients (HR 2.6, 95% CI 1.8-3.7 compared to smear-positive patients). Death rates increased with age but were similar in men and women. Adult patients in Malawi with smear-negative PTB and EPTB have low treatment completion and high death rates, related to high levels of HIV infection. National TB control programmes in areas of high HIV prevalence should no longer ignore treatment outcomes in patients with smear-negative PTB or EPTB.", "title": "Treatment outcome of an unselected cohort of tuberculosis patients in relation to human immunodeficiency virus serostatus in Zomba Hospital, Malawi." }, { "docid": "2058909", "text": "UNLABELLED The objective of this study was to examine differences in cancer survival between socioeconomic groups in England, with particular attention to survival in the short term of follow-up. \n PATIENTS AND METHODS Individuals diagnosed with colorectal cancer between 1996 and 2004 in England were identified from cancer registry records. Five-year cumulative relative survival and excess death rates were computed. \n RESULTS For colon cancer there was a very high excess death rate in the first month of follow-up, and the excess death rate was highest in the socioeconomically deprived groups. In subsequent periods, excess mortality rates were much lower and there was less socioeconomic variation. The pattern of variation in excess death rates was generally similar in rectal cancer but the socioeconomic difference in death rates persisted several years longer. If the excess death rates in the entire colorectal cancer patient population were the same as those observed in the most affluent socioeconomic quintile, the annual reduction would be 360 deaths in colon cancer and 336 deaths in rectal cancer patients. These deaths occurred almost entirely in the first month and the first year after diagnosis. \n CONCLUSION Recent developments in the national cancer control agenda have included an increasing emphasis on outcome measures, with short-term cancer survival an operational measure of variation and progress in cancer control. In providing clues to the nature of the survival differences between socioeconomic groups, the results presented here give strong support for this strategy.", "title": "Colorectal cancer survival in socioeconomic groups in England: variation is mainly in the short term after diagnosis." }, { "docid": "21479231", "text": "RATIONALE The outcome of fully intermittent thrice-weekly antituberculosis treatment of various durations in HIV-associated tuberculosis is unclear. \n OBJECTIVES To compare the efficacy of an intermittent 6-month regimen (Reg6M: 2EHRZ(3)/4HR(3) [ethambutol, 1,200 mg; isoniazid, 600 mg; rifampicin, 450 or 600 mg depending on body weight <60 or > or =60 kg; and pyrazinamide, 1,500 mg for 2 mo; followed by 4 mo of isoniazid and rifampicin at the same doses]) versus a 9-month regimen (Reg9M: 2EHRZ(3)/7HR(3)) in HIV/tuberculosis (TB). \n METHODS HIV-infected patients with newly diagnosed pulmonary or extrapulmonary TB were randomly assigned to Reg6M (n = 167) or Reg9M (n = 160) and monitored by determination of clinical, immunological, and bacteriological parameters for 36 months. Primary outcomes included favorable responses at the end of treatment and recurrences during follow-up, whereas the secondary outcome was death. Intent-to-treat and on-treatment analyses were performed. All patients were antiretroviral treatment-naive during treatment. \n MEASUREMENTS AND MAIN RESULTS Of the patients, 70% had culture-positive pulmonary TB; the median viral load was 155,000 copies/ml and the CD4(+) cell count was 160 cells/mm(3). Favorable response to antituberculosis treatment was similar by intent to treat (Reg6M, 83% and Reg9M, 76%; P = not significant). Bacteriological recurrences occurred significantly more often in Reg6M than in Reg9M (15 vs. 7%; P < 0.05) although overall recurrences were not significantly different (Reg6M, 19% vs. Reg9M, 13%). By 36 months, 36% of patients undergoing Reg6M and 35% undergoing Reg9M had died, with no significant difference between regimens. All 19 patients who failed treatment developed acquired rifamycin resistance (ARR), the main risk factor being baseline isoniazid resistance. \n CONCLUSIONS Among antiretroviral treatment-naive HIV-infected patients with TB, a 9-month regimen resulted in a similar outcome at the end of treatment but a significantly lower bacteriological recurrence rate compared with a 6-month thrice-weekly regimen. ARR was high with these intermittent regimens and neither mortality nor ARR was altered by lengthening TB treatment. Clinical Trials Registry Information: ID# NCT00376012 registered at www.clinicaltrials.gov.", "title": "Efficacy of a 6-month versus 9-month intermittent treatment regimen in HIV-infected patients with tuberculosis: a randomized clinical trial." }, { "docid": "31363207", "text": "BACKGROUND Patients with human immunodeficiency virus (HIV) infection and tuberculosis have an increased risk of death, treatment failure, and relapse. \n METHODS A systematic review and meta-analysis of randomized, controlled trials and cohort studies was conducted to evaluate the impact of duration and dosing schedule of rifamycin and use of antiretroviral therapy in the treatment of active tuberculosis in HIV-positive patients. In included studies, the initial tuberculosis diagnosis, failure, and/or relapse were microbiologically confirmed, and patients received standardized rifampin- or rifabutin-containing regimens. Pooled cumulative incidence of treatment failure, death during treatment, and relapse were calculated using random-effects models. Multivariable meta-regression was performed using negative binomial regression. \n RESULTS After screening 5158 citations, 6 randomized trials and 21 cohort studies were included. Relapse was more common with regimens using 2 months rifamycin (adjusted risk ratio, 3.6; 95% confidence interval, 1.1-11.7) than with regimens using rifamycin for at least 8 months. Compared with daily therapy in the initial phase (n=3352 patients from 35 study arms), thrice-weekly therapy (n=211 patients from 5 study arms) was associated with higher rates of failure (adjusted risk ratio, 4.0; 95% confidence interval, 1.5-10.4) and relapse [adjusted risk ratio, 4.8; 95% confidence interval, 1.8-12.8). There were trends toward higher relapse rates if rifamycins were used for only 6 months, compared with > or =8 months, or if antiretroviral therapy was not used. \n CONCLUSIONS This review raises serious concerns regarding current recommendations for treatment of HIV-tuberculosis coinfection. The data suggest that at least 8 months duration of rifamycin therapy, initial daily dosing, and concurrent antiretroviral therapy might be associated with better outcomes, but adequately powered randomized trials are urgently needed to confirm this.", "title": "Treatment of active tuberculosis in HIV-coinfected patients: a systematic review and meta-analysis." }, { "docid": "38793927", "text": "A major clinical manifestation of bone cancers is bone destruction. It is widely accepted that this destruction is not caused by the malignant cells themselves, but by osteoclasts, multinucleated cells of monocytic origin that are considered to be the only cells able to degrade bone. The present study demonstrates that bone-resorbing osteoclasts from myeloma patients contain nuclei with translocated chromosomes of myeloma B-cell clone origin, in addition to nuclei without these translocations, by using combined FISH and immunohistochemistry on bone sections. These nuclei of malignant origin are transcriptionally active and appear fully integrated amongst the other nuclei. The contribution of malignant nuclei to the osteoclast population analysed in this study was greater than 30%. Osteoclast-myeloma clone hybrids contained more nuclei than normal osteoclasts and their occurrence correlated with the proximity of myeloma cells. Similar hybrid cells were generated in myeloma cell-osteoclast co-cultures, as revealed by tracing myeloma nuclei using translocations, bromo-deoxyuridine, or the Y chromosome of male myeloma cells in female osteoclasts. These observations indicate that hybrid cells can originate through fusion between myeloma cells and osteoclasts. In conclusion, malignant cells contribute significantly to the formation of bone-resorbing osteoclasts in multiple myeloma. Osteoclast-myeloma clone hybrids reflect a previously unrecognized mechanism of bone destruction in which malignant cells participate directly. The possibility that malignant cells corrupt host cells by the transfer of malignant DNA may have been underestimated to date in cancer research.", "title": "Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership?" }, { "docid": "14319754", "text": "BACKGROUND Highly active antiretroviral therapy (HAART) is being scaled up in developing countries. We compared baseline characteristics and outcomes during the first year of HAART between HIV-1-infected patients in low-income and high-income settings. \n METHODS 18 HAART programmes in Africa, Asia, and South America (low-income settings) and 12 HIV cohort studies from Europe and North America (high-income settings) provided data for 4810 and 22,217, respectively, treatment-naïve adult patients starting HAART. All patients from high-income settings and 2725 (57%) patients from low-income settings were actively followed-up and included in survival analyses. \n FINDINGS Compared with high-income countries, patients starting HAART in low-income settings had lower CD4 cell counts (median 108 cells per muL vs 234 cells per muL), were more likely to be female (51%vs 25%), and more likely to start treatment with a non-nucleoside reverse transcriptase inhibitor (NNRTI) (70%vs 23%). At 6 months, the median number of CD4 cells gained (106 cells per muL vs 103 cells per muL) and the percentage of patients reaching HIV-1 RNA levels lower than 500 copies/mL (76%vs 77%) were similar. Mortality was higher in low-income settings (124 deaths during 2236 person-years of follow-up) than in high-income settings (414 deaths during 20,532 person-years). The adjusted hazard ratio (HR) of mortality comparing low-income with high-income settings fell from 4.3 (95% CI 1.6-11.8) during the first month to 1.5 (0.7-3.0) during months 7-12. The provision of treatment free of charge in low-income settings was associated with lower mortality (adjusted HR 0.23; 95% CI 0.08-0.61). \n INTERPRETATION Patients starting HAART in resource-poor settings have increased mortality rates in the first months on therapy, compared with those in developed countries. Timely diagnosis and assessment of treatment eligibility, coupled with free provision of HAART, might reduce this excess mortality.", "title": "The Antiretroviral Therapy in Lower Income Countries (ART-LINC) Collaboration and ART Cohort Collaboration (ART-CC) groups Summary" }, { "docid": "52188256", "text": "This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.", "title": "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries." }, { "docid": "3471191", "text": "IMPORTANCE The programmed death 1 (PD-1) pathway limits immune responses to melanoma and can be blocked with the humanized anti-PD-1 monoclonal antibody pembrolizumab. \n OBJECTIVE To characterize the association of pembrolizumab with tumor response and overall survival among patients with advanced melanoma. \n DESIGN, SETTINGS, AND PARTICIPANTS Open-label, multicohort, phase 1b clinical trials (enrollment, December 2011-September 2013). Median duration of follow-up was 21 months. The study was performed in academic medical centers in Australia, Canada, France, and the United States. Eligible patients were aged 18 years and older and had advanced or metastatic melanoma. Data were pooled from 655 enrolled patients (135 from a nonrandomized cohort [n = 87 ipilimumab naive; n = 48 ipilimumab treated] and 520 from randomized cohorts [n = 226 ipilimumab naive; n = 294 ipilimumab treated]). Cutoff dates were April 18, 2014, for safety analyses and October 18, 2014, for efficacy analyses. EXPOSURES Pembrolizumab 10 mg/kg every 2 weeks, 10 mg/kg every 3 weeks, or 2 mg/kg every 3 weeks continued until disease progression, intolerable toxicity, or investigator decision. \n MAIN OUTCOMES AND MEASURES The primary end point was confirmed objective response rate (best overall response of complete response or partial response) in patients with measurable disease at baseline per independent central review. Secondary end points included toxicity, duration of response, progression-free survival, and overall survival. \n RESULTS Among the 655 patients (median [range] age, 61 [18-94] years; 405 [62%] men), 581 had measurable disease at baseline. An objective response was reported in 194 of 581 patients (33% [95% CI, 30%-37%]) and in 60 of 133 treatment-naive patients (45% [95% CI, 36% to 54%]). Overall, 74% (152/205) of responses were ongoing at the time of data cutoff; 44% (90/205) of patients had response duration for at least 1 year and 79% (162/205) had response duration for at least 6 months. Twelve-month progression-free survival rates were 35% (95% CI, 31%-39%) in the total population and 52% (95% CI, 43%-60%) among treatment-naive patients. Median overall survival in the total population was 23 months (95% CI, 20-29) with a 12-month survival rate of 66% (95% CI, 62%-69%) and a 24-month survival rate of 49% (95% CI, 44%-53%). In treatment-naive patients, median overall survival was 31 months (95% CI, 24 to not reached) with a 12-month survival rate of 73% (95% CI, 65%-79%) and a 24-month survival rate of 60% (95% CI, 51%-68%). Ninety-two of 655 patients (14%) experienced at least 1 treatment-related grade 3 or 4 adverse event (AE) and 27 of 655 (4%) patients discontinued treatment because of a treatment-related AE. Treatment-related serious AEs were reported in 59 patients (9%). There were no drug-related deaths. \n CONCLUSIONS AND RELEVANCE Among patients with advanced melanoma, pembrolizumab administration was associated with an overall objective response rate of 33%, 12-month progression-free survival rate of 35%, and median overall survival of 23 months; grade 3 or 4 treatment-related AEs occurred in 14%. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01295827.", "title": "Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma." }, { "docid": "8582337", "text": "IMPORTANCE Understanding the major health problems in the United States and how they are changing over time is critical for informing national health policy. \n OBJECTIVES To measure the burden of diseases, injuries, and leading risk factors in the United States from 1990 to 2010 and to compare these measurements with those of the 34 countries in the Organisation for Economic Co-operation and Development (OECD) countries. \n DESIGN We used the systematic analysis of descriptive epidemiology of 291 diseases and injuries, 1160 sequelae of these diseases and injuries, and 67 risk factors or clusters of risk factors from 1990 to 2010 for 187 countries developed for the Global Burden of Disease 2010 Study to describe the health status of the United States and to compare US health outcomes with those of 34 OECD countries. Years of life lost due to premature mortality (YLLs) were computed by multiplying the number of deaths at each age by a reference life expectancy at that age. Years lived with disability (YLDs) were calculated by multiplying prevalence (based on systematic reviews) by the disability weight (based on population-based surveys) for each sequela; disability in this study refers to any short- or long-term loss of health. Disability-adjusted life-years (DALYs) were estimated as the sum of YLDs and YLLs. Deaths and DALYs related to risk factors were based on systematic reviews and meta-analyses of exposure data and relative risks for risk-outcome pairs. Healthy life expectancy (HALE) was used to summarize overall population health, accounting for both length of life and levels of ill health experienced at different ages. \n RESULTS US life expectancy for both sexes combined increased from 75.2 years in 1990 to 78.2 years in 2010; during the same period, HALE increased from 65.8 years to 68.1 years. The diseases and injuries with the largest number of YLLs in 2010 were ischemic heart disease, lung cancer, stroke, chronic obstructive pulmonary disease, and road injury. Age-standardized YLL rates increased for Alzheimer disease, drug use disorders, chronic kidney disease, kidney cancer, and falls. The diseases with the largest number of YLDs in 2010 were low back pain, major depressive disorder, other musculoskeletal disorders, neck pain, and anxiety disorders. As the US population has aged, YLDs have comprised a larger share of DALYs than have YLLs. The leading risk factors related to DALYs were dietary risks, tobacco smoking, high body mass index, high blood pressure, high fasting plasma glucose, physical inactivity, and alcohol use. Among 34 OECD countries between 1990 and 2010, the US rank for the age-standardized death rate changed from 18th to 27th, for the age-standardized YLL rate from 23rd to 28th, for the age-standardized YLD rate from 5th to 6th, for life expectancy at birth from 20th to 27th, and for HALE from 14th to 26th. \n CONCLUSIONS AND RELEVANCE From 1990 to 2010, the United States made substantial progress in improving health. Life expectancy at birth and HALE increased, all-cause death rates at all ages decreased, and age-specific rates of years lived with disability remained stable. However, morbidity and chronic disability now account for nearly half of the US health burden, and improvements in population health in the United States have not kept pace with advances in population health in other wealthy nations.", "title": "The state of US health, 1990-2010: burden of diseases, injuries, and risk factors." }, { "docid": "24581365", "text": "CONTEXT The appropriate therapy for men with clinically localized prostate cancer is uncertain. A recent study suggested an increasing prostate cancer mortality rate for men who are alive more than 15 years following diagnosis. \n OBJECTIVE To estimate 20-year survival based on a competing risk analysis of men who were diagnosed with clinically localized prostate cancer and treated with observation or androgen withdrawal therapy alone, stratified by age at diagnosis and histological findings. \n DESIGN, SETTING, AND PATIENTS A retrospective population-based cohort study using Connecticut Tumor Registry data supplemented by hospital record and histology review of 767 men aged 55 to 74 years with clinically localized prostate cancer diagnosed between January 1, 1971, and December 31, 1984. Patients were treated with either observation or immediate or delayed androgen withdrawal therapy, with a median observation of 24 years. \n MAIN OUTCOME MEASURES Probability of mortality from prostate cancer or other competing medical conditions, given a patient's age at diagnosis and tumor grade. \n RESULTS The prostate cancer mortality rate was 33 per 1000 person-years during the first 15 years of follow-up (95% confidence interval [CI], 28-38) and 18 per 1000 person-years after 15 years of follow-up (95% CI, 10-29). The mortality rates for these 2 follow-up periods were not statistically different, after adjusting for differences in tumor histology (rate ratio, 1.1; 95% CI, 0.6-1.9). Men with low-grade prostate cancers have a minimal risk of dying from prostate cancer during 20 years of follow-up (Gleason score of 2-4, 6 deaths per 1000 person-years; 95% CI, 2-11). Men with high-grade prostate cancers have a high probability of dying from prostate cancer within 10 years of diagnosis (Gleason score of 8-10, 121 deaths per 1000 person-years; 95% CI, 90-156). Men with Gleason score of 5 or 6 tumors have an intermediate risk of prostate cancer death. \n CONCLUSION The annual mortality rate from prostate cancer appears to remain stable after 15 years from diagnosis, which does not support aggressive treatment for localized low-grade prostate cancer.", "title": "20-year outcomes following conservative management of clinically localized prostate cancer." }, { "docid": "5884524", "text": "BACKGROUND Although unstable coronary artery disease is the most common reason for admission to a coronary care unit, the long-term prognosis of patients with this diagnosis is unknown. This is particularly true for patients with diabetes mellitus, who are known to have a high morbidity and mortality after an acute myocardial infarction. \n METHODS AND RESULTS Prospectively collected data from 6 different countries in the Organization to Assess Strategies for Ischemic Syndromes (OASIS) registry were analyzed to determine the 2-year prognosis of diabetic and nondiabetic patients who were hospitalized with unstable angina or non-Q-wave myocardial infarction. Overall, 1718 of 8013 registry patients (21%) had diabetes. Diabetic patients had a higher rate of coronary bypass surgery than nondiabetic patients (23% versus 20%, P:<0.001) but had similar rates of catheterization and angioplasty. Diabetes independently predicted mortality (relative risk [RR], 1.57; 95% CI, 1.38 to 1.81; P:<0.001), as well as cardiovascular death, new myocardial infarction, stroke, and new congestive heart failure. Moreover, compared with their nondiabetic counterparts, women had a significantly higher risk than men (RR, 1.98; 95% CI, 1.60 to 2.44; and RR, 1.28; 95% CI, 1.06 to 1.56, respectively). Interestingly, diabetic patients without prior cardiovascular disease had the same event rates for all outcomes as nondiabetic patients with previous vascular disease. \n CONCLUSIONS Hospitalization for unstable angina or non-Q-wave myocardial infarction predicts a high 2-year morbidity and mortality; this is especially evident for patients with diabetes. Diabetic patients with no previous cardiovascular disease have the same long-term morbidity and mortality as nondiabetic patients with established cardiovascular disease after hospitalization for unstable coronary artery disease.", "title": "Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry." }, { "docid": "25134146", "text": "Hepatitis C virus (HCV) is frequently encountered in human immunodeficiency virus (HIV)-infected patients because of common routes of transmission. Previous studies suggested that HIV infection impaired the natural course of chronic hepatitis C, with a more rapid progression to cirrhosis. However, these studies did not assess the HIV infection impact on chronic hepatitis C by taking into account the risk factors for liver fibrosis progression: alcohol, sex, age at the contamination, and duration of HCV infection. We studied liver biopsy specimens of 2 groups of 58 patients that were infected by both HCV and HIV or by HCV alone. The 2 groups were matched according those risk factors, and liver biopsy responses were evaluated with the METAVIR items. The METAVIR activity was higher in HIV-positive than HIV-negative patients. Cirrhosis was more frequent: (1) in HIV-positive patients with CD4 < or = 200 cells/microL (45%) than in HIV-negative patients (10%) (P = .003), (2) in HIV-positive patients with CD4 < or = 200 cells/microL (45%) than in HIV-positive patients with CD4 > 200 cells/microL (17%) (P = .04). These differences, which were linked to HIV status, might be related to the enhanced HCV replication during HIV infection or other immune mechanisms that need further studies.", "title": "Impact of human immunodeficiency virus infection on the histological features of chronic hepatitis C: a case-control study. The MULTIVIRC group." }, { "docid": "20491205", "text": "The prison population is increasing and the health problems of prisoners are considerable. Prison is designed with punishment, correction and rehabilitation to the community in mind and these goals may conflict with the aims of health care. A literature review showed that the main issues in prison health care are mental health, substance abuse and communicable diseases. Women prisoners and older prisoners have needs which are distinct from other prisoners. Health promotion and the health of the community outside prisons are desirable aims of prison health care. The delivery of effective health care to prisoners is dependent upon partnership between health and prison services and telemedicine is one possible mode of delivery.", "title": "Prison health care: a review of the literature." }, { "docid": "10509344", "text": "In the past decades, public health research has focused on categorical rather than cross-cutting or systems issues. Little research has been carried out on the infrastructure required to support public health programs. This article describes the results of an interactive process to develop a research agenda for public health workforce development to inform all those with stakes in the public health system. This research is defined as a multidisciplinary field of inquiry, both basic and applied, that examines the workforce in terms of costs, quality, accessibility, delivery, organization, financing, and outcomes of public health services to increase knowledge and understanding of the relationships among workforce and structure, processes, and effects of public health services. A logic model and five priority research areas resulted from meetings of expert panels during 2000 to 2003. Innovative public and private partnerships will be required to advance cross-cutting and systems-focused research.", "title": "A research agenda for public health workforce development." }, { "docid": "24596228", "text": "BACKGROUND/AIMS There is only limited information on the prevalence and influence of coinfection with either hepatitis B or C on the clinical course in patients infected with the human immunodeficiency virus (HIV). \n METHODS Follow-up was available in 232 HIV-infected patients (age 37+/-8 years, CD4 count 167+/-167 microl; 46% had AIDS). Samples were investigated for markers of HBV and HCV infection (HBsAg, HBeAg, HBV-DNA, Anti-HBs, anti-HBc, anti-HCV, HCV-RNA). \n RESULTS 60/232 patients (23%) were anti-HCV positive. 78% of these sera were positive for HCV-RNA. 22/232 patients (9%) suffered from chronic HBV infection (HBsAg positive), 18/22 (82%) of these sera had detectable HBeAg and 19/22 (86%) HBV-DNA. Presence of HCV-RNA, HBeAg and amount of HBV-DNA were related to the degree of immunodeficiency. In contrast to the control group without HBV or HCV infection, patients infected with HIV and either HBV or HCV showed a direct correlation between a reduction in CD4 counts and decreased cholinesterase activity. In patients with AIDS, coinfection with HBV or HCV was associated with a reduced survival compared to controls (HBV: 212 days, 95%CI, 106-317; HCV: 267, 95%CI, 112-396; controls: 439 days, 95%CI, 364-513). \n CONCLUSIONS Coinfection of HIV and HBV or HCV is frequently observed. Our results suggest that with prolonged survival of HIV-infected patients, coinfection with either HBV or HCV correlates with a reduced survival rate.", "title": "Hepatitis B and C in HIV-infected patients. Prevalence and prognostic value." }, { "docid": "22688699", "text": "OBJECT Awake craniotomy was performed as the standard surgical approach to supratentorial intraaxial tumors, regardless of the involvement of eloquent cortex, in a prospective trial of 200 patients surgically treated by the same surgeon at a single institution. \n METHODS Patient presentations, comorbid conditions, tumor locations, and the histological characteristics of lesions were recorded. Brain mapping was possible in 195 (97.5%) of 200 patients. The total number of patients sustaining complications was 33 for an overall complication rate of 16.5%. There were two deaths in this series, for a mortality rate of 1%. New postoperative neurological deficits were seen in 13% of the patients, but these were permanent in only 4.5% of them. Complication rates were higher in patients who had gliomas or preoperative neurological deficits and in those who had undergone prior radiation therapy or surgery. No patient who entered the operating room neurologically intact sustained a permanent neurological deficit postoperatively. Of the most recent 50 patients treated, three (6%) required a stay in the intensive care unit, and the median total hospital stay was 1 day. \n CONCLUSIONS Use of awake craniotomy can result in a considerable reduction in resource utilization without compromising patient care by minimizing intensive care time and total hospital stay. Awake craniotomy is a practical and effective standard surgical approach to supratentorial tumors with a low complication rate, and provides an excellent alternative to craniotomy performed with the patient in the state of general anesthesia because it allows the opportunity for brain mapping and avoids general anesthesia.", "title": "Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases." }, { "docid": "24450344", "text": "PURPOSE We evaluated the long-term outcome of radical prostatectomy for pathological Gleason score 8 or greater prostate cancer and characterized the prognostic significance of other pathological variables. MATERIALS AND METHODS A total of 6,419 patients underwent radical prostatectomy between 1987 and 1996. There were 407 patients classified as having pathological Gleason 8 or greater, including 8 in 48%, 9 in 49% and 10 in 3%. Adjuvant treatment was used in 45% of patients and adjuvant hormonal therapy was administered to 155 (38%). Progression-free, including local or systemic, and/or prostate specific antigen (PSA) 0.4 ng./ml. or greater, and cancer specific survival were determined by the Kaplan-Meier method. The effect of pathological grade and stage, preoperative PSA, DNA ploidy, margin status, tumor dimension, seminal vesicle invasion, and adjuvant treatment was assessed with the univariate and multivariate analyses. \n RESULTS Pathological stage distribution was pT2 in 26% of patients, pT3 48% and pTxN+ 27%. Overall and progression-free survival at 10 years was 67% and 36%, respectively, compared to cancer specific survival 85%. Adjuvant treatment, pathological stage, preoperative PSA and pathological grade were significant (less than 0.05) univariate predictors of progression-free survival. Pathological stage, margin status and ploidy were univariately associated with cancer specific survival. Progression-free survival at 10 years of those patients who did and did not receive adjuvant treatment was 52% and 23%, respectively. In the multivariate analysis pathological grade (p=0.02), preoperative PSA (p <0.0001), adjuvant therapy (p <0.0001) and pathological stage (p=0.036) were significant independent predictors of progression-free survival. \n CONCLUSIONS High grade prostate cancer can be controlled with radical prostatectomy in some patients with disease confined pathologically, and 10-year cause specific survival is 96%. Predictors of outcome in patients with Gleason 8 disease or greater are similar to established predictors derived by using all grades. Although adjuvant hormonal therapy appears to improve disease progression rates after radical prostatectomy on the basis of this nonrandomized study, it may not affect prostate cancer death rates within 10 years in patients with high grade cancer.", "title": "Radical prostatectomy for pathological Gleason 8 or greater prostate cancer: influence of concomitant pathological variables." } ]
926
Patients with common epithelial cancers are more likely to have an emergency event as their first hospital admission if they live in resource-deprived areas.
[ { "docid": "16390264", "text": "OBJECTIVES To determine the extent to which type of hospital admission (emergency compared with elective) and surgical procedure varied by socioeconomic circumstances, age, sex, and year of admission for colorectal, breast, and lung cancer. \n DESIGN Repeated cross sectional study with data from individual patients, 1 April 1999 to 31 March 2006. \n SETTING Hospital episode statistics (HES) dataset. \n PARTICIPANTS 564 821 patients aged 50 and over admitted with a diagnosis of colorectal, breast, or lung cancer. \n MAIN OUTCOME MEASURES Proportion of patients admitted as emergencies, and the proportion receiving the recommended surgical treatment. \n RESULTS Patients from deprived areas, older people, and women were more likely to be admitted as emergencies. For example, the adjusted odds ratio for patients with breast cancer in the least compared with most deprived fifth of deprivation was 0.63 (95% confidence interval 0.60 to 0.66) and the adjusted odds ratio for patients with lung cancer aged 80-89 compared with those aged 50-59 was 3.13 (2.93 to 3.34). There were some improvements in disparities between age groups but not for patients living in deprived areas over time. Patients from deprived areas were less likely to receive preferred procedures for rectal, breast, and lung cancer. These findings did not improve with time. For example, 67.4% (3529/5237) of patients in the most deprived fifth of deprivation had anterior resection for rectal cancer compared with 75.5% (4497/5959) of patients in the least deprived fifth (1.34, 1.22 to 1.47). Over half (54.0%, 11 256/20 849) of patients in the most deprived fifth of deprivation had breast conserving surgery compared with 63.7% (18 445/28 960) of patients in the least deprived fifth (1.21, 1.16 to 1.26). Men were less likely than women to undergo anterior resection and lung cancer resection and older people were less likely to receive breast conserving surgery and lung cancer resection. For example, the adjusted odds ratio for lung cancer patients aged 80-89 compared with those aged 50-59 was 0.52 (0.46 to 0.59). Conclusions Despite the implementation of the NHS Cancer Plan, social factors still strongly influence access to and the provision of care.", "title": "Social variations in access to hospital care for patients with colorectal, breast, and lung cancer between 1999 and 2006: retrospective analysis of hospital episode statistics" } ]
[ { "docid": "5641851", "text": "OBJECTIVE Cancer outcomes vary between and within countries with patients from deprived backgrounds known to have inferior survival. The authors set out to explore the effect of deprivation in relation to the accessibility of hospitals offering diagnostic and therapeutic services on stage at presentation and receipt of treatment. \n DESIGN Analysis of a Cancer Registry Database. Data included stage and treatment details from the first 6 months. The socioeconomic status of the immediate area of residence and the travel time from home to hospital was derived from the postcode. \n SETTING Population-based study of patients resident in a large area in the north of England. \n PARTICIPANTS 39 619 patients with colorectal cancer diagnosed between 1994 and 2002. \n OUTCOMES MEASURED Stage of diagnosis and receipt of treatment in relation to deprivation and distance from hospital. \n RESULTS Patients in the most deprived quartile were significantly more likely to be diagnosed at stage 4 for rectal cancer (OR 1.516, p<0.05) but less so for colonic cancer. There was a trend for both sites for patients in the most deprived quartile to be less likely to receive chemotherapy for stage 4 disease. Patients with colonic cancer were very significantly less likely to receive any treatment if they came from any but the most affluent area (ORs 0.639, 0.603 and 0.544 in increasingly deprived quartiles), this may have been exacerbated if the hospital was distant from their residence (OR for forth quartile for both travel and deprivation 0.731, not significant). The effect was less for rectal cancer and no effect of distance was seen. \n CONCLUSIONS Residing in a deprived area is associated with tendencies to higher stage at diagnosis and especially in the case of colonic cancer to reduced receipt of treatment. These observations are consistent with other findings and indicate that access to diagnosis requires further investigation.", "title": "Social and geographical factors affecting access to treatment of colorectal cancer: a cancer registry study" }, { "docid": "10374686", "text": "Although 65% of people with cancer want to die at home, only about 30% are successful in doing so.1,2 A government committed to choice for patients must improve this figure.3 Developing palliative care services in primary care is essential for realising the expectations of dying people. Such services could also offer important opportunities for extending supportive humane care at an earlier stage, and to people not only with cancer but with chronic obstructive pulmonary disease, motor neurone disease, and cardiac failure, for example, who also often have palliative care needs. Primary care professionals have the potential and ability to provide end of life care for most patients, given adequate training, resources, and, when needed, specialist advice.4,5 They share common values with palliative care specialists—holistic, patient centred care, delivered in the context of families and friends.6 However, until recently, apart from Macmillan general practitioners and nurse facilitators, few comprehensive workforce initiatives have been undertaken in primary care that focus on end of life care. Many cancer patients and their carers experience existential distress long before they die.7 Recognising and alleviating such suffering is important, but it often goes unrecognised or is overlooked by services focusing on the terminal phase of illnesses. Primary care teams may know patients over long periods of time. They can readily identify patients from cancer and chronic disease registers who might benefit from an early palliative care approach. Such patients could be identified by clinicians asking one simple question of themselves: “Would I be surprised if my patient were to die in the next 12 months?”8 By identifying such patients proactively we could deliver, simultaneously, active treatment and patient centred supportive care, through a team with whom many patients have a valued long term relationship. Palliative care services need to be extended to patients with non-malignant conditions who have comparable concerns to and in some cases even greater unmet needs than cancer patients.9 Progress by palliative medicine specialists is hampered by issues such as uncertainty about the most effective models of care, lack of non-cancer expertise, and concerns about pressure on specialist services. General practitioners and community nurses can lead the way in providing a palliative care approach for patients with terminal organ failure illness. The first step in such an approach is for the goals of care to be discussed and agreed. Management plans are adjusted accordingly. Effective control of symptoms and maintaining quality of life are prioritised. In the light of these important opportunities it is regrettable that the new general medical services contract has not prioritised palliative care. By day, other developments to achieve the quality indicators are taking precedence. By night and at weekends, the new unscheduled care services (which are responsible for providing care for 75% of the hours in the week) are even less well configured than previous out of hours provision to facilitate dying at home. Such services specialise in dealing with acute emergencies and, as such, often struggle to meet the medical, nursing, and social care needs of dying people and their families. These changes will greatly affect care for dying people and may increase the number of hospital admissions. However, one important initiative is gaining momentum within primary care. The Gold Standards Framework is a resource for organising proactive palliative care in the community and is supported by funding from the Cancer Services Collaborative, Macmillan Cancer Relief, and the National Lottery.10 The framework provides a detailed guide to providing holistic, patient centred care and thereby facilitates effective care in the community. Other recently initiated mechanisms for developing primary palliative care include the training of general practitioners with a special interest in palliative care and the new end of life initiative in England to improve palliative care provision by generalists and to share examples of good practice. To support such developments it is essential that primary palliative care is supported by an adequate academic base.11 This is admittedly a challenging arena in which to undertake research, but progress has been made in recent years in developing conceptual models and research architectures for studying end of life issues. Now we need to build on this work to ensure that the understanding and insights gleaned can be translated into effective interventions. Every person with a progressive illness has a right to palliative care.12 Patients desire a reassuring professional presence in the face of death. General practitioners and community nurses are trusted by patients and are in a position to provide effective, equitable, and accessible palliative care. This will happen only if they have adequate time and resources and work in a system that encourages such care. Patients who receive holistic support in the community may be less likely to require expensive admission to hospital and often futile treatments at the end of their lives.", "title": "Developing primary palliative care." }, { "docid": "5372432", "text": "BACKGROUND There is some previous evidence that diagnosis of cancer at death, recorded as registry death certificate only records, is associated with problems of access to care. \n METHODS Records from the Northern and Yorkshire Cancer Registry for patients registered with breast, colorectal, lung, ovarian or prostate cancer between 1994 and 2002 were supplemented with measures of travel time to general practitioner and hospital services, and social deprivation. Logistic regression was used to identify predictors of records where diagnosis was at death. \n RESULTS There was no association between the odds diagnosis at death and access to primary care. For all sites except breast, the highest odds of being a cancer diagnosed at death fell among those living in the highest quartile of hospital travel time, although it was only statistically significant for colorectal and ovary tumours. Those in the most deprived and furthest travel time to hospital quartile were 2.6 times more likely to be a diagnosis at death case compared with those in the most affluent and proximal areas. \n CONCLUSIONS There is some evidence that poorer geographical access to tertiary care, in particular when coupled with social disadvantages, may be associated with increased odds of diagnosis at death.", "title": "Geographical access to healthcare in Northern England and post-mortem diagnosis of cancer." }, { "docid": "42404093", "text": "OBJECTIVES To assess incidence and preventability of adverse drug events (ADEs) and potential ADEs. To analyze preventable events to develop prevention strategies. \n DESIGN Prospective cohort study. \n PARTICIPANTS All 4031 adult admissions to a stratified random sample of 11 medical and surgical units in two tertiary care hospitals over a 6-month period. Units included two medical and three surgical intensive care units and four medical and two surgical general care units. \n MAIN OUTCOME MEASURES Adverse drug events and potential ADEs. \n METHODS Incidents were detected by stimulated self-report by nurses and pharmacists and by daily review of all charts by nurse investigators. Incidents were subsequently classified by two independent reviewers as to whether they represented ADEs or potential ADEs and as to severity and preventability. \n RESULTS Over 6 months, 247 ADEs and 194 potential ADEs were identified. Extrapolated event rates were 6.5 ADEs and 5.5 potential ADEs per 100 nonobstetrical admissions, for mean numbers per hospital per year of approximately 1900 ADEs and 1600 potential ADEs. Of all ADEs, 1% were fatal (none preventable), 12% life-threatening, 30% serious, and 57% significant. Twenty-eight percent were judged preventable. Of the life-threatening and serious ADEs, 42% were preventable, compared with 18% of significant ADEs. Errors resulting in preventable ADEs occurred most often at the stages of ordering (56%) and administration (34%); transcription (6%) and dispensing errors (4%) were less common. Errors were much more likely to be intercepted if the error occurred earlier in the process: 48% at the ordering stage vs 0% at the administration stage. \n CONCLUSION Adverse drug events were common and often preventable; serious ADEs were more likely to be preventable. Most resulted from errors at the ordering stage, but many also occurred at the administration stage. Prevention strategies should target both stages of the drug delivery process.", "title": "Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group." }, { "docid": "5185871", "text": "Importance The Sepsis-3 Criteria emphasized the value of a change of 2 or more points in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score, introduced quick SOFA (qSOFA), and removed the systemic inflammatory response syndrome (SIRS) criteria from the sepsis definition. Objective Externally validate and assess the discriminatory capacities of an increase in SOFA score by 2 or more points, 2 or more SIRS criteria, or a qSOFA score of 2 or more points for outcomes among patients who are critically ill with suspected infection. Design, Setting, and Participants Retrospective cohort analysis of 184 875 patients with an infection-related primary admission diagnosis in 182 Australian and New Zealand intensive care units (ICUs) from 2000 through 2015. Exposures SOFA, qSOFA, and SIRS criteria applied to data collected within 24 hours of ICU admission. Main Outcomes and Measures The primary outcome was in-hospital mortality. In-hospital mortality or ICU length of stay (LOS) of 3 days or more was a composite secondary outcome. Discrimination was assessed using the area under the receiver operating characteristic curve (AUROC). Adjusted analyses were performed using a model of baseline risk determined using variables independent of the scoring systems. Results Among 184 875 patients (mean age, 62.9 years [SD, 17.4]; women, 82 540 [44.6%]; most common diagnosis bacterial pneumonia, 32 634 [17.7%]), a total of 34 578 patients (18.7%) died in the hospital, and 102 976 patients (55.7%) died or experienced an ICU LOS of 3 days or more. SOFA score increased by 2 or more points in 90.1%; 86.7% manifested 2 or more SIRS criteria, and 54.4% had a qSOFA score of 2 or more points. SOFA demonstrated significantly greater discrimination for in-hospital mortality (crude AUROC, 0.753 [99% CI, 0.750-0.757]) than SIRS criteria (crude AUROC, 0.589 [99% CI, 0.585-0.593]) or qSOFA (crude AUROC, 0.607 [99% CI, 0.603-0.611]). Incremental improvements were 0.164 (99% CI, 0.159-0.169) for SOFA vs SIRS criteria and 0.146 (99% CI, 0.142-0.151) for SOFA vs qSOFA (P <.001). SOFA (AUROC, 0.736 [99% CI, 0.733-0.739]) outperformed the other scores for the secondary end point (SIRS criteria: AUROC, 0.609 [99% CI, 0.606-0.612]; qSOFA: AUROC, 0.606 [99% CI, 0.602-0.609]). Incremental improvements were 0.127 (99% CI, 0.123-0.131) for SOFA vs SIRS criteria and 0.131 (99% CI, 0.127-0.134) for SOFA vs qSOFA (P <.001). Findings were consistent for both outcomes in multiple sensitivity analyses. Conclusions and Relevance Among adults with suspected infection admitted to an ICU, an increase in SOFA score of 2 or more had greater prognostic accuracy for in-hospital mortality than SIRS criteria or the qSOFA score. These findings suggest that SIRS criteria and qSOFA may have limited utility for predicting mortality in an ICU setting.", "title": "Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the Intensive Care Unit" }, { "docid": "4346731", "text": "The development and maintenance of an epithelium requires finely balanced rates of growth and cell death. However, the mechanical and biochemical mechanisms that ensure proper feedback control of tissue growth, which when deregulated contribute to tumorigenesis, are poorly understood. Here we use the fly notum as a model system to identify a novel process of crowding-induced cell delamination that balances growth to ensure the development of well-ordered cell packing. In crowded regions of the tissue, a proportion of cells undergo a serial loss of cell–cell junctions and a progressive loss of apical area, before being squeezed out by their neighbours. This path of delamination is recapitulated by a simple computational model of epithelial mechanics, in which stochastic cell loss relieves overcrowding as the system tends towards equilibrium. We show that this process of delamination is mechanistically distinct from apoptosis-mediated cell extrusion and precedes the first signs of cell death. Overall, this analysis reveals a simple mechanism that buffers epithelia against variations in growth. Because live-cell delamination constitutes a mechanistic link between epithelial hyperplasia and cell invasion, this is likely to have important implications for our understanding of the early stages of cancer development.", "title": "Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding" }, { "docid": "14021596", "text": "BACKGROUND The objective of the study was to test the hypothesis that elevated red cell distribution width (RDW) at admission increases the risk of mortality in older patients admitted to the emergency department (ED). \n METHODS We performed a retrospective analysis of patients admitted to the ED between May 2013 and October 2013. We included patients who were older than 65 years who visited the ED with any medical problems. Baseline RDW values were measured at the time of admission to the ED. The primary outcome was all-cause in-hospital mortality. Multivariate logistic analysis was performed. \n RESULTS A total of 1,990 patients were finally included in this study. The mean age was 75 years (SD 7), and 936 (47 %) subjects were male. The in-hospital mortality rate was 3.76 % (74 patients). RDW values higher in non-survivors than in survivors (15.9 ± 2.5 vs. 13.8 ± 1.7, p < 0.001). Multivariate logistic analysis showed that RDW was associated with all-cause in-hospital mortality after adjusting for other confounding factors. DISCUSSION RDW value at admission is an independent predictor of all-cause in-hospital mortality among patients older than 65 years. After adjustment for multiple confounders, the all-cause in-hospital mortality rate increased by 21.8% for each 1% increase in RDW. \n CONCLUSION These results show that RDW at admission is associated with in-hospital mortality among patients older than 65. Thus, RDW at admission may represent a surrogate marker of disease severity. We caution against using these findings to aid clinical decision-making process until they are externally validated.", "title": "The association of Red cell distribution width and in-hospital mortality in older adults admitted to the emergency department" }, { "docid": "27188320", "text": "OBJECTIVE This longitudinal study conducted path analyses to examine the relationships between treatment processes and outcomes among patients in community-based drug treatment programs. \n METHODS A total of 1,939 patients from 36 outpatient drug-free and residential treatment programs in 13 California counties were assessed at intake, discharge, three months after admission, and nine months after admission. Path analyses were conducted to relate the quantity and quality of services that were received in the first three months of treatment to treatment retention and outcomes at the nine-month follow-up. Patients were determined to have a favorable outcome if for at least 30 days before the follow-up assessment they did not use drugs, were not involved in criminal activity, and lived in the community. The path analyses controlled for patients' baseline characteristics. \n RESULTS Greater service intensity and satisfaction were positively related to either treatment completion or longer treatment retention, which in turn was related to favorable treatment outcomes. Patients with greater problem severity received more services and were more likely to be satisfied with treatment. These patterns were similar for patients regardless of whether they were treated in outpatient drug-free programs or residential programs. \n CONCLUSIONS The positive association between process measures-that is, greater levels of service intensity, satisfaction, and either treatment completion or retention-and treatment outcome strongly suggests that improvements in these key elements of the treatment process will improve treatment outcomes.", "title": "Relationship between drug treatment services, retention, and outcomes." }, { "docid": "13282296", "text": "CONTEXT Although acute hypoglycemia may be associated with cognitive impairment in children with type 1 diabetes, no studies to date have evaluated whether hypoglycemia is a risk factor for dementia in older patients with type 2 diabetes. \n OBJECTIVE To determine if hypoglycemic episodes severe enough to require hospitalization are associated with an increased risk of dementia in a population of older patients with type 2 diabetes followed up for 27 years. \n DESIGN, SETTING, AND PATIENTS A longitudinal cohort study from 1980-2007 of 16,667 patients with a mean age of 65 years and type 2 diabetes who are members of an integrated health care delivery system in northern California. \n MAIN OUTCOME MEASURE Hypoglycemic events from 1980-2002 were collected and reviewed using hospital discharge and emergency department diagnoses. Cohort members with no prior diagnoses of dementia, mild cognitive impairment, or general memory complaints as of January 1, 2003, were followed up for a dementia diagnosis through January 15, 2007. Dementia risk was examined using Cox proportional hazard regression models, adjusted for age, sex, race/ethnicity, education, body mass index, duration of diabetes, 7-year mean glycated hemoglobin, diabetes treatment, duration of insulin use, hyperlipidemia, hypertension, cardiovascular disease, stroke, transient cerebral ischemia, and end-stage renal disease. \n RESULTS At least 1 episode of hypoglycemia was diagnosed in 1465 patients (8.8%) and dementia was diagnosed in 1822 patients (11%) during follow-up; 250 patients had both dementia and at least 1 episode of hypoglycemia (16.95%). Compared with patients with no hypoglycemia, patients with single or multiple episodes had a graded increase in risk with fully adjusted hazard ratios (HRs): for 1 episode (HR, 1.26; 95% confidence interval [CI], 1.10-1.49); 2 episodes (HR, 1.80; 95% CI, 1.37-2.36); and 3 or more episodes (HR, 1.94; 95% CI, 1.42-2.64). The attributable risk of dementia between individuals with and without a history of hypoglycemia was 2.39% per year (95% CI, 1.72%-3.01%). Results were not attenuated when medical utilization rates, length of health plan membership, or time since initial diabetes diagnosis were added to the model. When examining emergency department admissions for hypoglycemia for association with risk of dementia (535 episodes), results were similar (compared with patients with 0 episodes) with fully adjusted HRs: for 1 episode (HR, 1.42; 95% CI, 1.12-1.78) and for 2 or more episodes (HR, 2.36; 95% CI, 1.57-3.55). \n CONCLUSIONS Among older patients with type 2 diabetes, a history of severe hypoglycemic episodes was associated with a greater risk of dementia. Whether minor hypoglycemic episodes increase risk of dementia is unknown.", "title": "Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus." }, { "docid": "29387024", "text": "BACKGROUND Pregnant women with type 1 diabetes are a high-risk population who are recommended to strive for optimal glucose control, but neonatal outcomes attributed to maternal hyperglycaemia remain suboptimal. Our aim was to examine the effectiveness of continuous glucose monitoring (CGM) on maternal glucose control and obstetric and neonatal health outcomes. \n METHODS In this multicentre, open-label, randomised controlled trial, we recruited women aged 18-40 years with type 1 diabetes for a minimum of 12 months who were receiving intensive insulin therapy. Participants were pregnant (≤13 weeks and 6 days' gestation) or planning pregnancy from 31 hospitals in Canada, England, Scotland, Spain, Italy, Ireland, and the USA. We ran two trials in parallel for pregnant participants and for participants planning pregnancy. In both trials, participants were randomly assigned to either CGM in addition to capillary glucose monitoring or capillary glucose monitoring alone. Randomisation was stratified by insulin delivery (pump or injections) and baseline glycated haemoglobin (HbA1c). The primary outcome was change in HbA1c from randomisation to 34 weeks' gestation in pregnant women and to 24 weeks or conception in women planning pregnancy, and was assessed in all randomised participants with baseline assessments. Secondary outcomes included obstetric and neonatal health outcomes, assessed with all available data without imputation. This trial is registered with ClinicalTrials.gov, number NCT01788527. \n FINDINGS Between March 25, 2013, and March 22, 2016, we randomly assigned 325 women (215 pregnant, 110 planning pregnancy) to capillary glucose monitoring with CGM (108 pregnant and 53 planning pregnancy) or without (107 pregnant and 57 planning pregnancy). We found a small difference in HbA1c in pregnant women using CGM (mean difference -0·19%; 95% CI -0·34 to -0·03; p=0·0207). Pregnant CGM users spent more time in target (68% vs 61%; p=0·0034) and less time hyperglycaemic (27% vs 32%; p=0·0279) than did pregnant control participants, with comparable severe hypoglycaemia episodes (18 CGM and 21 control) and time spent hypoglycaemic (3% vs 4%; p=0·10). Neonatal health outcomes were significantly improved, with lower incidence of large for gestational age (odds ratio 0·51, 95% CI 0·28 to 0·90; p=0·0210), fewer neonatal intensive care admissions lasting more than 24 h (0·48; 0·26 to 0·86; p=0·0157), fewer incidences of neonatal hypoglycaemia (0·45; 0·22 to 0·89; p=0·0250), and 1-day shorter length of hospital stay (p=0·0091). We found no apparent benefit of CGM in women planning pregnancy. Adverse events occurred in 51 (48%) of CGM participants and 43 (40%) of control participants in the pregnancy trial, and in 12 (27%) of CGM participants and 21 (37%) of control participants in the planning pregnancy trial. Serious adverse events occurred in 13 (6%) participants in the pregnancy trial (eight [7%] CGM, five [5%] control) and in three (3%) participants in the planning pregnancy trial (two [4%] CGM and one [2%] control). The most common adverse events were skin reactions occurring in 49 (48%) of 103 CGM participants and eight (8%) of 104 control participants during pregnancy and in 23 (44%) of 52 CGM participants and five (9%) of 57 control participants in the planning pregnancy trial. The most common serious adverse events were gastrointestinal (nausea and vomiting in four participants during pregnancy and three participants planning pregnancy). \n INTERPRETATION Use of CGM during pregnancy in patients with type 1 diabetes is associated with improved neonatal outcomes, which are likely to be attributed to reduced exposure to maternal hyperglycaemia. CGM should be offered to all pregnant women with type 1 diabetes using intensive insulin therapy. This study is the first to indicate potential for improvements in non-glycaemic health outcomes from CGM use. \n FUNDING Juvenile Diabetes Research Foundation, Canadian Clinical Trials Network, and National Institute for Health Research.", "title": "Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial" }, { "docid": "19464037", "text": "OBJECTIVE To describe outcomes and identify variables associated with hospital and 1-year survival for patients admitted to an intensive care unit (ICU) with an acute exacerbation of chronic obstructive pulmonary disease (COPD). \n DESIGN Prospective, multicenter, inception cohort study. \n SETTING Forty-two ICUs at 40 US hospitals. \n PATIENTS A total of 362 admissions for COPD exacerbation selected from the Acute Physiology and Chronic Health Evaluation (APACHE) III database of 17,440 ICU admissions. \n MEASUREMENTS AND RESULTS Hospital mortality for the 362 admissions was 24%. For the 167 patients aged 65 years or older, mortality was 30% at hospital discharge, 41% at 90 days, 47% at 180 days, and 59% at 1 year. Median survival for all patients was 224 days, and median survival for the patients who died within 1 year was 30.5 days. On multiple regression analysis, variables associated with hospital mortality included age, severity of respiratory and nonrespiratory organ system dysfunction, and hospital length of stay before ICU admission. Development of nonrespiratory organ system dysfunction was the major predictor of hospital mortality (60% of total explanatory power) and 180-day outcomes (54% of explanatory power). Respiratory physiological variables (respiratory rate, serum pH, PaCO2, PaO2, and alveolar-arterial difference in partial pressure of oxygen [PAO2-PaO2]) indicative of advanced dysfunction were more strongly associated with 180-day mortality rates (22% of explanatory power) than hospital death rates (4% of explanatory power). After controlling for severity of illness, mechanical ventilation at ICU admission was not associated with either hospital mortality or subsequent survival. \n CONCLUSIONS Patients with COPD admitted to an ICU for an acute exacerbation have a substantial hospital mortality (24%). For patients aged 65 years or older, mortality doubles in 1 year from 30% to 59%. Hospital and longer-term mortality is closely associated with development of nonrespiratory organ system dysfunction; severity of the underlying respiratory function substantially influences mortality following hospital discharge. The need for mechanical ventilation at ICU admission did not influence either short- or long-term outcomes. Physicians should be aware of these relationships when making treatment decisions or evaluating new therapies.", "title": "Hospital and 1-year survival of patients admitted to intensive care units with acute exacerbation of chronic obstructive pulmonary disease." }, { "docid": "17876040", "text": "Owing to their integral involvement in cell cycle regulation, the Polo-like kinase (Plk) family, particularly Plk1, has emerged as an attractive therapeutic target in oncology. In recent years, several Plk1 inhibitors have been developed, with some agents showing encouraging results in early-phase clinical trials. This review focuses on volasertib (BI 6727; an investigational agent), a potent and selective Plk inhibitor. Volasertib has shown promising activity in various cancer cell lines and xenograft models of human cancer. Trials performed to date suggest that volasertib has clinical efficacy in a range of malignancies, with the most promising results seen in patients with acute myeloid leukemia (AML). Encouragingly, recent phase II data have demonstrated that volasertib combined with low-dose cytarabine (LDAC) was associated with higher response rates and improved event-free survival than LDAC alone in patients with previously untreated AML. Based on these observations, and its presumably manageable safety profile, volasertib is currently in phase III development as a potential treatment for patients with AML who are ineligible for intensive remission induction therapy. Given that many patients with AML are of an older age and frail, this constitutes an area of major unmet need. In this review, we discuss the biologic rationale for Plk1 inhibitors in cancer, the clinical development of volasertib to date in solid tumors and AML, and the future identification of biomarkers that might predict response to volasertib and help determine the role of this agent in the clinic.", "title": "Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy" }, { "docid": "3580005", "text": "BACKGROUND Chronic obstructive pulmonary disease (COPD) has a high prevalence rate in Germany and a further increase is expected within the next years. Although risk factors on an individual level are widely understood, only little is known about the spatial heterogeneity and population-based risk factors of COPD. Background knowledge about broader, population-based processes could help to plan the future provision of healthcare and prevention strategies more aligned to the expected demand. The aim of this study is to analyze how the prevalence of COPD varies across northeastern Germany on the smallest spatial-scale possible and to identify the location-specific population-based risk factors using health insurance claims of the AOK Nordost. \n METHODS To visualize the spatial distribution of COPD prevalence at the level of municipalities and urban districts, we used the conditional autoregressive Besag-York-Mollié (BYM) model. Geographically weighted regression modelling (GWR) was applied to analyze the location-specific ecological risk factors for COPD. \n RESULTS The sex- and age-adjusted prevalence of COPD was 6.5% in 2012 and varied widely across northeastern Germany. Population-based risk factors consist of the proportions of insurants aged 65 and older, insurants with migration background, household size and area deprivation. The results of the GWR model revealed that the population at risk for COPD varies considerably across northeastern Germany. \n CONCLUSION Area deprivation has a direct and an indirect influence on the prevalence of COPD. Persons ageing in socially disadvantaged areas have a higher chance of developing COPD, even when they are not necessarily directly affected by deprivation on an individual level. This underlines the importance of considering the impact of area deprivation on health for planning of healthcare. Additionally, our results reveal that in some parts of the study area, insurants with migration background and persons living in multi-persons households are at elevated risk of COPD.", "title": "Who is where at risk for Chronic Obstructive Pulmonary Disease? A spatial epidemiological analysis of health insurance claims for COPD in Northeastern Germany" }, { "docid": "19308127", "text": "BACKGROUND P2Y12 inhibitor switching has appeared in clinical practice as a consequence of prasugrel and ticagrelor availability, apart from clopidogrel, for use in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI). \n METHODS In the context of the GReek AntiPlatelet REgistry (GRAPE) we assessed the prevalence, predictive factors and short-term outcome of in-hospital P2Y12 inhibitor switching in 1794 ACS patients undergoing PCI. \n RESULTS Switching occurred in 636 (35.5%) patients of which in the form of clopidogrel to a novel agent, novel agent to clopidogrel and between prasugrel and ticagrelor in 574 (90.4%), 34 (5.3%) and 27 (4.3%) patients, respectively. Presentation to non PCI-capable hospital, bivalirudin use, age ≥75 years (inverse predictor), and regional trends emerged as predictive factors of switching to a novel agent. At combined in-hospital and one-month follow-up, propensity matched pairs analysis showed no differences in major adverse cardiovascular (MACE) or bleeding events between switching from clopidogrel to a novel agent vs novel agent constant administration. More Bleeding Academic Research Consortium type 1, type 2 and any type events and fewer MACE were seen when switching from clopidogrel to a novel agent vs only clopidogrel administration (23.7%, 3.8%, 30.6%, 1.2% vs 8.9%, 1.2%, 12.0%, 3.8% with P < .001, P = .03, P < .001 and P = .03 respectively). \n CONCLUSIONS In a real-life experience with contemporary antiplatelet treatment in ACS patients undergoing PCI, in-hospital switching represents common clinical practice. Clinical factors and regional practice differences seem to affect this strategy's choice, while switching to a novel agent may be associated with higher risk of bleeding.", "title": "In-hospital switching of oral P2Y12 inhibitor treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention: prevalence, predictors and short-term outcome." }, { "docid": "5884524", "text": "BACKGROUND Although unstable coronary artery disease is the most common reason for admission to a coronary care unit, the long-term prognosis of patients with this diagnosis is unknown. This is particularly true for patients with diabetes mellitus, who are known to have a high morbidity and mortality after an acute myocardial infarction. \n METHODS AND RESULTS Prospectively collected data from 6 different countries in the Organization to Assess Strategies for Ischemic Syndromes (OASIS) registry were analyzed to determine the 2-year prognosis of diabetic and nondiabetic patients who were hospitalized with unstable angina or non-Q-wave myocardial infarction. Overall, 1718 of 8013 registry patients (21%) had diabetes. Diabetic patients had a higher rate of coronary bypass surgery than nondiabetic patients (23% versus 20%, P:<0.001) but had similar rates of catheterization and angioplasty. Diabetes independently predicted mortality (relative risk [RR], 1.57; 95% CI, 1.38 to 1.81; P:<0.001), as well as cardiovascular death, new myocardial infarction, stroke, and new congestive heart failure. Moreover, compared with their nondiabetic counterparts, women had a significantly higher risk than men (RR, 1.98; 95% CI, 1.60 to 2.44; and RR, 1.28; 95% CI, 1.06 to 1.56, respectively). Interestingly, diabetic patients without prior cardiovascular disease had the same event rates for all outcomes as nondiabetic patients with previous vascular disease. \n CONCLUSIONS Hospitalization for unstable angina or non-Q-wave myocardial infarction predicts a high 2-year morbidity and mortality; this is especially evident for patients with diabetes. Diabetic patients with no previous cardiovascular disease have the same long-term morbidity and mortality as nondiabetic patients with established cardiovascular disease after hospitalization for unstable coronary artery disease.", "title": "Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry." }, { "docid": "97566194", "text": "Abstract Within some data limitations, the paper provides a first assessment of areas in Australia with potential for implementing desalination technologies to supply agricultural water. At the national scale, these areas were identified based on a set of selected criteria: distance from land currently used for irrigated agriculture and feedlots; distance from town sites; exclusion of areas of environmental protection; exclusion of areas with surface elevation greater than 600 m AHD; and exclusion of regions with limited groundwater resources. Industries involved in the production of high-value crops are most likely to benefit from desalinated water as they use more-efficient irrigation practices and have the highest gross value of irrigated agricultural production. Groundwater was identified as the most likely feedwater source for cost-effective desalination, which is also the case worldwide. Brine disposal is a major factor in overall cost effectiveness of desalination. When feedwater salinity is relatively low, mixing permeate with feedwater leads to an increase in water production and a reduction in water cost. It was estimated that Australian farmers are unlikely to pay more than AU$1.2/kL for agricultural water. Generally for agriculture, desalinated water is still more expensive than water from other sources; however, there are likely to be circumstances when the costs could be comparable.", "title": "Feasibility assessment of desalination application in Australian traditional agriculture" }, { "docid": "3878434", "text": "In Sepsis-3, the quick Sequential Organ Failure Assessment (qSOFA) score was developed as criteria to use for recognizing patients who may have poor outcomes. This study was performed to evaluate the predictive performance of the qSOFA score as a screening tool for sepsis, mortality, and intensive care unit (ICU) admission in patients with febrile neutropenia (FN). We also tried to compare its performance with that of the systemic inflammatory response syndrome (SIRS) criteria and Multinational Association of Supportive Care in Cancer (MASCC) score for FN. We used a prospectively collected adult FN data registry. The qSOFA and SIRS scores were calculated retrospectively using the preexisting data. The primary outcome was the development of sepsis. The secondary outcomes were ICU admission and 28-day mortality. Of the 615 patients, 100 developed sepsis, 20 died, and 38 were admitted to ICUs. In multivariate analysis, qSOFA was an independent factor predicting sepsis and ICU admission. However, compared to the MASCC score, the area under the receiver operating curve of qSOFA was lower. qSOFA showed a low sensitivity (0.14, 0.2, and 0.23) but high specificity (0.98, 0.97, and 0.97) in predicting sepsis, 28-day mortality, and ICU admission. Performance of the qSOFA score was inferior to that of the MASCC score. The preexisting risk stratification tool is more useful for predicting outcomes in patients with FN.", "title": "Predictive performance of the quick Sequential Organ Failure Assessment score as a screening tool for sepsis, mortality, and intensive care unit admission in patients with febrile neutropenia" }, { "docid": "24408040", "text": "BACKGROUND Heart failure (HF) is a serious complication and often the cause of death in adults with congenital heart disease (CHD). Therefore, our aims were to determine the frequency of HF-admissions, and to assess risk factors of first HF-admission and of mortality after first HF-admission in adults with CHD. \n METHODS The Dutch CONCOR registry was linked to the Hospital Discharge Registry and National Mortality Registry to obtain data on HF-admissions and mortality. Risk factors for both HF-admission and mortality were assessed using Cox regression models. \n RESULTS Of 10,808 adult patients (49% male), 274 (2.5%) were admitted for HF during a median follow-up period of 21 years. The incidence of first HF-admission was 1.2 per 1000 patient-years, but the incidence of HF itself will be higher. Main defect, multiple defects, and surgical interventions in childhood were identified as independent risk factors of HF-admission. Patients admitted for HF had a five-fold higher risk of mortality than patients not admitted (hazard ratio (HR)=5.3; 95% confidence interval 4.2-6.9). One- and three-year mortality after first HF-admission were 24% and 35% respectively. Independent risk factors for three-year mortality after first HF-admission were male gender, pacemaker implantation, admission duration, non-cardiac medication use and high serum creatinine. \n CONCLUSIONS The incidence of HF-admission in adults with CHD is 1.2 per 1000 patient-years. Mortality risk is substantially increased after HF-admission, which emphasises the importance to identify patients at high risk of HF-admission. These patients might benefit from closer follow-up and earlier medical interventions. The presented risk factors may facilitate surveillance.", "title": "Heart failure admissions in adults with congenital heart disease; risk factors and prognosis." }, { "docid": "40164383", "text": "CONTEXT Mesenchymal stem cells (MSCs) are under evaluation as a therapy for ischemic cardiomyopathy (ICM). Both autologous and allogeneic MSC therapies are possible; however, their safety and efficacy have not been compared. \n OBJECTIVE To test whether allogeneic MSCs are as safe and effective as autologous MSCs in patients with left ventricular (LV) dysfunction due to ICM. \n DESIGN, SETTING, AND PATIENTS A phase 1/2 randomized comparison (POSEIDON study) in a US tertiary-care referral hospital of allogeneic and autologous MSCs in 30 patients with LV dysfunction due to ICM between April 2, 2010, and September 14, 2011, with 13-month follow-up. \n INTERVENTION Twenty million, 100 million, or 200 million cells (5 patients in each cell type per dose level) were delivered by transendocardial stem cell injection into 10 LV sites. \n MAIN OUTCOME MEASURES Thirty-day postcatheterization incidence of predefined treatment-emergent serious adverse events (SAEs). Efficacy assessments included 6-minute walk test, exercise peak VO2, Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association class, LV volumes, ejection fraction (EF), early enhancement defect (EED; infarct size), and sphericity index. \n RESULTS Within 30 days, 1 patient in each group (treatment-emergent SAE rate, 6.7%) was hospitalized for heart failure, less than the prespecified stopping event rate of 25%. The 1-year incidence of SAEs was 33.3% (n = 5) in the allogeneic group and 53.3% (n = 8) in the autologous group (P = .46). At 1 year, there were no ventricular arrhythmia SAEs observed among allogeneic recipients compared with 4 patients (26.7%) in the autologous group (P = .10). Relative to baseline, autologous but not allogeneic MSC therapy was associated with an improvement in the 6-minute walk test and the MLHFQ score, but neither improved exercise VO2 max. Allogeneic and autologous MSCs reduced mean EED by −33.21% (95% CI, −43.61% to −22.81%; P < .001) and sphericity index but did not increase EF. Allogeneic MSCs reduced LV end-diastolic volumes. Low-dose concentration MSCs (20 million cells) produced greatest reductions in LV volumes and increased EF. Allogeneic MSCs did not stimulate significant donor-specific alloimmune reactions. \n CONCLUSIONS In this early-stage study of patients with ICM, transendocardial injection of allogeneic and autologous MSCs without a placebo control were both associated with low rates of treatment-emergent SAEs, including immunologic reactions. In aggregate, MSC injection favorably affected patient functional capacity, quality of life, and ventricular remodeling. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01087996.", "title": "Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial." } ]
927
Patients with common epithelial cancers are less likely to have an emergency event as their first hospital admission if they live in resource-deprived areas.
[ { "docid": "16390264", "text": "OBJECTIVES To determine the extent to which type of hospital admission (emergency compared with elective) and surgical procedure varied by socioeconomic circumstances, age, sex, and year of admission for colorectal, breast, and lung cancer. \n DESIGN Repeated cross sectional study with data from individual patients, 1 April 1999 to 31 March 2006. \n SETTING Hospital episode statistics (HES) dataset. \n PARTICIPANTS 564 821 patients aged 50 and over admitted with a diagnosis of colorectal, breast, or lung cancer. \n MAIN OUTCOME MEASURES Proportion of patients admitted as emergencies, and the proportion receiving the recommended surgical treatment. \n RESULTS Patients from deprived areas, older people, and women were more likely to be admitted as emergencies. For example, the adjusted odds ratio for patients with breast cancer in the least compared with most deprived fifth of deprivation was 0.63 (95% confidence interval 0.60 to 0.66) and the adjusted odds ratio for patients with lung cancer aged 80-89 compared with those aged 50-59 was 3.13 (2.93 to 3.34). There were some improvements in disparities between age groups but not for patients living in deprived areas over time. Patients from deprived areas were less likely to receive preferred procedures for rectal, breast, and lung cancer. These findings did not improve with time. For example, 67.4% (3529/5237) of patients in the most deprived fifth of deprivation had anterior resection for rectal cancer compared with 75.5% (4497/5959) of patients in the least deprived fifth (1.34, 1.22 to 1.47). Over half (54.0%, 11 256/20 849) of patients in the most deprived fifth of deprivation had breast conserving surgery compared with 63.7% (18 445/28 960) of patients in the least deprived fifth (1.21, 1.16 to 1.26). Men were less likely than women to undergo anterior resection and lung cancer resection and older people were less likely to receive breast conserving surgery and lung cancer resection. For example, the adjusted odds ratio for lung cancer patients aged 80-89 compared with those aged 50-59 was 0.52 (0.46 to 0.59). Conclusions Despite the implementation of the NHS Cancer Plan, social factors still strongly influence access to and the provision of care.", "title": "Social variations in access to hospital care for patients with colorectal, breast, and lung cancer between 1999 and 2006: retrospective analysis of hospital episode statistics" } ]
[ { "docid": "5641851", "text": "OBJECTIVE Cancer outcomes vary between and within countries with patients from deprived backgrounds known to have inferior survival. The authors set out to explore the effect of deprivation in relation to the accessibility of hospitals offering diagnostic and therapeutic services on stage at presentation and receipt of treatment. \n DESIGN Analysis of a Cancer Registry Database. Data included stage and treatment details from the first 6 months. The socioeconomic status of the immediate area of residence and the travel time from home to hospital was derived from the postcode. \n SETTING Population-based study of patients resident in a large area in the north of England. \n PARTICIPANTS 39 619 patients with colorectal cancer diagnosed between 1994 and 2002. \n OUTCOMES MEASURED Stage of diagnosis and receipt of treatment in relation to deprivation and distance from hospital. \n RESULTS Patients in the most deprived quartile were significantly more likely to be diagnosed at stage 4 for rectal cancer (OR 1.516, p<0.05) but less so for colonic cancer. There was a trend for both sites for patients in the most deprived quartile to be less likely to receive chemotherapy for stage 4 disease. Patients with colonic cancer were very significantly less likely to receive any treatment if they came from any but the most affluent area (ORs 0.639, 0.603 and 0.544 in increasingly deprived quartiles), this may have been exacerbated if the hospital was distant from their residence (OR for forth quartile for both travel and deprivation 0.731, not significant). The effect was less for rectal cancer and no effect of distance was seen. \n CONCLUSIONS Residing in a deprived area is associated with tendencies to higher stage at diagnosis and especially in the case of colonic cancer to reduced receipt of treatment. These observations are consistent with other findings and indicate that access to diagnosis requires further investigation.", "title": "Social and geographical factors affecting access to treatment of colorectal cancer: a cancer registry study" }, { "docid": "10374686", "text": "Although 65% of people with cancer want to die at home, only about 30% are successful in doing so.1,2 A government committed to choice for patients must improve this figure.3 Developing palliative care services in primary care is essential for realising the expectations of dying people. Such services could also offer important opportunities for extending supportive humane care at an earlier stage, and to people not only with cancer but with chronic obstructive pulmonary disease, motor neurone disease, and cardiac failure, for example, who also often have palliative care needs. Primary care professionals have the potential and ability to provide end of life care for most patients, given adequate training, resources, and, when needed, specialist advice.4,5 They share common values with palliative care specialists—holistic, patient centred care, delivered in the context of families and friends.6 However, until recently, apart from Macmillan general practitioners and nurse facilitators, few comprehensive workforce initiatives have been undertaken in primary care that focus on end of life care. Many cancer patients and their carers experience existential distress long before they die.7 Recognising and alleviating such suffering is important, but it often goes unrecognised or is overlooked by services focusing on the terminal phase of illnesses. Primary care teams may know patients over long periods of time. They can readily identify patients from cancer and chronic disease registers who might benefit from an early palliative care approach. Such patients could be identified by clinicians asking one simple question of themselves: “Would I be surprised if my patient were to die in the next 12 months?”8 By identifying such patients proactively we could deliver, simultaneously, active treatment and patient centred supportive care, through a team with whom many patients have a valued long term relationship. Palliative care services need to be extended to patients with non-malignant conditions who have comparable concerns to and in some cases even greater unmet needs than cancer patients.9 Progress by palliative medicine specialists is hampered by issues such as uncertainty about the most effective models of care, lack of non-cancer expertise, and concerns about pressure on specialist services. General practitioners and community nurses can lead the way in providing a palliative care approach for patients with terminal organ failure illness. The first step in such an approach is for the goals of care to be discussed and agreed. Management plans are adjusted accordingly. Effective control of symptoms and maintaining quality of life are prioritised. In the light of these important opportunities it is regrettable that the new general medical services contract has not prioritised palliative care. By day, other developments to achieve the quality indicators are taking precedence. By night and at weekends, the new unscheduled care services (which are responsible for providing care for 75% of the hours in the week) are even less well configured than previous out of hours provision to facilitate dying at home. Such services specialise in dealing with acute emergencies and, as such, often struggle to meet the medical, nursing, and social care needs of dying people and their families. These changes will greatly affect care for dying people and may increase the number of hospital admissions. However, one important initiative is gaining momentum within primary care. The Gold Standards Framework is a resource for organising proactive palliative care in the community and is supported by funding from the Cancer Services Collaborative, Macmillan Cancer Relief, and the National Lottery.10 The framework provides a detailed guide to providing holistic, patient centred care and thereby facilitates effective care in the community. Other recently initiated mechanisms for developing primary palliative care include the training of general practitioners with a special interest in palliative care and the new end of life initiative in England to improve palliative care provision by generalists and to share examples of good practice. To support such developments it is essential that primary palliative care is supported by an adequate academic base.11 This is admittedly a challenging arena in which to undertake research, but progress has been made in recent years in developing conceptual models and research architectures for studying end of life issues. Now we need to build on this work to ensure that the understanding and insights gleaned can be translated into effective interventions. Every person with a progressive illness has a right to palliative care.12 Patients desire a reassuring professional presence in the face of death. General practitioners and community nurses are trusted by patients and are in a position to provide effective, equitable, and accessible palliative care. This will happen only if they have adequate time and resources and work in a system that encourages such care. Patients who receive holistic support in the community may be less likely to require expensive admission to hospital and often futile treatments at the end of their lives.", "title": "Developing primary palliative care." }, { "docid": "5372432", "text": "BACKGROUND There is some previous evidence that diagnosis of cancer at death, recorded as registry death certificate only records, is associated with problems of access to care. \n METHODS Records from the Northern and Yorkshire Cancer Registry for patients registered with breast, colorectal, lung, ovarian or prostate cancer between 1994 and 2002 were supplemented with measures of travel time to general practitioner and hospital services, and social deprivation. Logistic regression was used to identify predictors of records where diagnosis was at death. \n RESULTS There was no association between the odds diagnosis at death and access to primary care. For all sites except breast, the highest odds of being a cancer diagnosed at death fell among those living in the highest quartile of hospital travel time, although it was only statistically significant for colorectal and ovary tumours. Those in the most deprived and furthest travel time to hospital quartile were 2.6 times more likely to be a diagnosis at death case compared with those in the most affluent and proximal areas. \n CONCLUSIONS There is some evidence that poorer geographical access to tertiary care, in particular when coupled with social disadvantages, may be associated with increased odds of diagnosis at death.", "title": "Geographical access to healthcare in Northern England and post-mortem diagnosis of cancer." }, { "docid": "42404093", "text": "OBJECTIVES To assess incidence and preventability of adverse drug events (ADEs) and potential ADEs. To analyze preventable events to develop prevention strategies. \n DESIGN Prospective cohort study. \n PARTICIPANTS All 4031 adult admissions to a stratified random sample of 11 medical and surgical units in two tertiary care hospitals over a 6-month period. Units included two medical and three surgical intensive care units and four medical and two surgical general care units. \n MAIN OUTCOME MEASURES Adverse drug events and potential ADEs. \n METHODS Incidents were detected by stimulated self-report by nurses and pharmacists and by daily review of all charts by nurse investigators. Incidents were subsequently classified by two independent reviewers as to whether they represented ADEs or potential ADEs and as to severity and preventability. \n RESULTS Over 6 months, 247 ADEs and 194 potential ADEs were identified. Extrapolated event rates were 6.5 ADEs and 5.5 potential ADEs per 100 nonobstetrical admissions, for mean numbers per hospital per year of approximately 1900 ADEs and 1600 potential ADEs. Of all ADEs, 1% were fatal (none preventable), 12% life-threatening, 30% serious, and 57% significant. Twenty-eight percent were judged preventable. Of the life-threatening and serious ADEs, 42% were preventable, compared with 18% of significant ADEs. Errors resulting in preventable ADEs occurred most often at the stages of ordering (56%) and administration (34%); transcription (6%) and dispensing errors (4%) were less common. Errors were much more likely to be intercepted if the error occurred earlier in the process: 48% at the ordering stage vs 0% at the administration stage. \n CONCLUSION Adverse drug events were common and often preventable; serious ADEs were more likely to be preventable. Most resulted from errors at the ordering stage, but many also occurred at the administration stage. Prevention strategies should target both stages of the drug delivery process.", "title": "Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group." }, { "docid": "4346731", "text": "The development and maintenance of an epithelium requires finely balanced rates of growth and cell death. However, the mechanical and biochemical mechanisms that ensure proper feedback control of tissue growth, which when deregulated contribute to tumorigenesis, are poorly understood. Here we use the fly notum as a model system to identify a novel process of crowding-induced cell delamination that balances growth to ensure the development of well-ordered cell packing. In crowded regions of the tissue, a proportion of cells undergo a serial loss of cell–cell junctions and a progressive loss of apical area, before being squeezed out by their neighbours. This path of delamination is recapitulated by a simple computational model of epithelial mechanics, in which stochastic cell loss relieves overcrowding as the system tends towards equilibrium. We show that this process of delamination is mechanistically distinct from apoptosis-mediated cell extrusion and precedes the first signs of cell death. Overall, this analysis reveals a simple mechanism that buffers epithelia against variations in growth. Because live-cell delamination constitutes a mechanistic link between epithelial hyperplasia and cell invasion, this is likely to have important implications for our understanding of the early stages of cancer development.", "title": "Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding" }, { "docid": "40164383", "text": "CONTEXT Mesenchymal stem cells (MSCs) are under evaluation as a therapy for ischemic cardiomyopathy (ICM). Both autologous and allogeneic MSC therapies are possible; however, their safety and efficacy have not been compared. \n OBJECTIVE To test whether allogeneic MSCs are as safe and effective as autologous MSCs in patients with left ventricular (LV) dysfunction due to ICM. \n DESIGN, SETTING, AND PATIENTS A phase 1/2 randomized comparison (POSEIDON study) in a US tertiary-care referral hospital of allogeneic and autologous MSCs in 30 patients with LV dysfunction due to ICM between April 2, 2010, and September 14, 2011, with 13-month follow-up. \n INTERVENTION Twenty million, 100 million, or 200 million cells (5 patients in each cell type per dose level) were delivered by transendocardial stem cell injection into 10 LV sites. \n MAIN OUTCOME MEASURES Thirty-day postcatheterization incidence of predefined treatment-emergent serious adverse events (SAEs). Efficacy assessments included 6-minute walk test, exercise peak VO2, Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association class, LV volumes, ejection fraction (EF), early enhancement defect (EED; infarct size), and sphericity index. \n RESULTS Within 30 days, 1 patient in each group (treatment-emergent SAE rate, 6.7%) was hospitalized for heart failure, less than the prespecified stopping event rate of 25%. The 1-year incidence of SAEs was 33.3% (n = 5) in the allogeneic group and 53.3% (n = 8) in the autologous group (P = .46). At 1 year, there were no ventricular arrhythmia SAEs observed among allogeneic recipients compared with 4 patients (26.7%) in the autologous group (P = .10). Relative to baseline, autologous but not allogeneic MSC therapy was associated with an improvement in the 6-minute walk test and the MLHFQ score, but neither improved exercise VO2 max. Allogeneic and autologous MSCs reduced mean EED by −33.21% (95% CI, −43.61% to −22.81%; P < .001) and sphericity index but did not increase EF. Allogeneic MSCs reduced LV end-diastolic volumes. Low-dose concentration MSCs (20 million cells) produced greatest reductions in LV volumes and increased EF. Allogeneic MSCs did not stimulate significant donor-specific alloimmune reactions. \n CONCLUSIONS In this early-stage study of patients with ICM, transendocardial injection of allogeneic and autologous MSCs without a placebo control were both associated with low rates of treatment-emergent SAEs, including immunologic reactions. In aggregate, MSC injection favorably affected patient functional capacity, quality of life, and ventricular remodeling. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01087996.", "title": "Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial." }, { "docid": "14021596", "text": "BACKGROUND The objective of the study was to test the hypothesis that elevated red cell distribution width (RDW) at admission increases the risk of mortality in older patients admitted to the emergency department (ED). \n METHODS We performed a retrospective analysis of patients admitted to the ED between May 2013 and October 2013. We included patients who were older than 65 years who visited the ED with any medical problems. Baseline RDW values were measured at the time of admission to the ED. The primary outcome was all-cause in-hospital mortality. Multivariate logistic analysis was performed. \n RESULTS A total of 1,990 patients were finally included in this study. The mean age was 75 years (SD 7), and 936 (47 %) subjects were male. The in-hospital mortality rate was 3.76 % (74 patients). RDW values higher in non-survivors than in survivors (15.9 ± 2.5 vs. 13.8 ± 1.7, p < 0.001). Multivariate logistic analysis showed that RDW was associated with all-cause in-hospital mortality after adjusting for other confounding factors. DISCUSSION RDW value at admission is an independent predictor of all-cause in-hospital mortality among patients older than 65 years. After adjustment for multiple confounders, the all-cause in-hospital mortality rate increased by 21.8% for each 1% increase in RDW. \n CONCLUSION These results show that RDW at admission is associated with in-hospital mortality among patients older than 65. Thus, RDW at admission may represent a surrogate marker of disease severity. We caution against using these findings to aid clinical decision-making process until they are externally validated.", "title": "The association of Red cell distribution width and in-hospital mortality in older adults admitted to the emergency department" }, { "docid": "29387024", "text": "BACKGROUND Pregnant women with type 1 diabetes are a high-risk population who are recommended to strive for optimal glucose control, but neonatal outcomes attributed to maternal hyperglycaemia remain suboptimal. Our aim was to examine the effectiveness of continuous glucose monitoring (CGM) on maternal glucose control and obstetric and neonatal health outcomes. \n METHODS In this multicentre, open-label, randomised controlled trial, we recruited women aged 18-40 years with type 1 diabetes for a minimum of 12 months who were receiving intensive insulin therapy. Participants were pregnant (≤13 weeks and 6 days' gestation) or planning pregnancy from 31 hospitals in Canada, England, Scotland, Spain, Italy, Ireland, and the USA. We ran two trials in parallel for pregnant participants and for participants planning pregnancy. In both trials, participants were randomly assigned to either CGM in addition to capillary glucose monitoring or capillary glucose monitoring alone. Randomisation was stratified by insulin delivery (pump or injections) and baseline glycated haemoglobin (HbA1c). The primary outcome was change in HbA1c from randomisation to 34 weeks' gestation in pregnant women and to 24 weeks or conception in women planning pregnancy, and was assessed in all randomised participants with baseline assessments. Secondary outcomes included obstetric and neonatal health outcomes, assessed with all available data without imputation. This trial is registered with ClinicalTrials.gov, number NCT01788527. \n FINDINGS Between March 25, 2013, and March 22, 2016, we randomly assigned 325 women (215 pregnant, 110 planning pregnancy) to capillary glucose monitoring with CGM (108 pregnant and 53 planning pregnancy) or without (107 pregnant and 57 planning pregnancy). We found a small difference in HbA1c in pregnant women using CGM (mean difference -0·19%; 95% CI -0·34 to -0·03; p=0·0207). Pregnant CGM users spent more time in target (68% vs 61%; p=0·0034) and less time hyperglycaemic (27% vs 32%; p=0·0279) than did pregnant control participants, with comparable severe hypoglycaemia episodes (18 CGM and 21 control) and time spent hypoglycaemic (3% vs 4%; p=0·10). Neonatal health outcomes were significantly improved, with lower incidence of large for gestational age (odds ratio 0·51, 95% CI 0·28 to 0·90; p=0·0210), fewer neonatal intensive care admissions lasting more than 24 h (0·48; 0·26 to 0·86; p=0·0157), fewer incidences of neonatal hypoglycaemia (0·45; 0·22 to 0·89; p=0·0250), and 1-day shorter length of hospital stay (p=0·0091). We found no apparent benefit of CGM in women planning pregnancy. Adverse events occurred in 51 (48%) of CGM participants and 43 (40%) of control participants in the pregnancy trial, and in 12 (27%) of CGM participants and 21 (37%) of control participants in the planning pregnancy trial. Serious adverse events occurred in 13 (6%) participants in the pregnancy trial (eight [7%] CGM, five [5%] control) and in three (3%) participants in the planning pregnancy trial (two [4%] CGM and one [2%] control). The most common adverse events were skin reactions occurring in 49 (48%) of 103 CGM participants and eight (8%) of 104 control participants during pregnancy and in 23 (44%) of 52 CGM participants and five (9%) of 57 control participants in the planning pregnancy trial. The most common serious adverse events were gastrointestinal (nausea and vomiting in four participants during pregnancy and three participants planning pregnancy). \n INTERPRETATION Use of CGM during pregnancy in patients with type 1 diabetes is associated with improved neonatal outcomes, which are likely to be attributed to reduced exposure to maternal hyperglycaemia. CGM should be offered to all pregnant women with type 1 diabetes using intensive insulin therapy. This study is the first to indicate potential for improvements in non-glycaemic health outcomes from CGM use. \n FUNDING Juvenile Diabetes Research Foundation, Canadian Clinical Trials Network, and National Institute for Health Research.", "title": "Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial" }, { "docid": "5185871", "text": "Importance The Sepsis-3 Criteria emphasized the value of a change of 2 or more points in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score, introduced quick SOFA (qSOFA), and removed the systemic inflammatory response syndrome (SIRS) criteria from the sepsis definition. Objective Externally validate and assess the discriminatory capacities of an increase in SOFA score by 2 or more points, 2 or more SIRS criteria, or a qSOFA score of 2 or more points for outcomes among patients who are critically ill with suspected infection. Design, Setting, and Participants Retrospective cohort analysis of 184 875 patients with an infection-related primary admission diagnosis in 182 Australian and New Zealand intensive care units (ICUs) from 2000 through 2015. Exposures SOFA, qSOFA, and SIRS criteria applied to data collected within 24 hours of ICU admission. Main Outcomes and Measures The primary outcome was in-hospital mortality. In-hospital mortality or ICU length of stay (LOS) of 3 days or more was a composite secondary outcome. Discrimination was assessed using the area under the receiver operating characteristic curve (AUROC). Adjusted analyses were performed using a model of baseline risk determined using variables independent of the scoring systems. Results Among 184 875 patients (mean age, 62.9 years [SD, 17.4]; women, 82 540 [44.6%]; most common diagnosis bacterial pneumonia, 32 634 [17.7%]), a total of 34 578 patients (18.7%) died in the hospital, and 102 976 patients (55.7%) died or experienced an ICU LOS of 3 days or more. SOFA score increased by 2 or more points in 90.1%; 86.7% manifested 2 or more SIRS criteria, and 54.4% had a qSOFA score of 2 or more points. SOFA demonstrated significantly greater discrimination for in-hospital mortality (crude AUROC, 0.753 [99% CI, 0.750-0.757]) than SIRS criteria (crude AUROC, 0.589 [99% CI, 0.585-0.593]) or qSOFA (crude AUROC, 0.607 [99% CI, 0.603-0.611]). Incremental improvements were 0.164 (99% CI, 0.159-0.169) for SOFA vs SIRS criteria and 0.146 (99% CI, 0.142-0.151) for SOFA vs qSOFA (P <.001). SOFA (AUROC, 0.736 [99% CI, 0.733-0.739]) outperformed the other scores for the secondary end point (SIRS criteria: AUROC, 0.609 [99% CI, 0.606-0.612]; qSOFA: AUROC, 0.606 [99% CI, 0.602-0.609]). Incremental improvements were 0.127 (99% CI, 0.123-0.131) for SOFA vs SIRS criteria and 0.131 (99% CI, 0.127-0.134) for SOFA vs qSOFA (P <.001). Findings were consistent for both outcomes in multiple sensitivity analyses. Conclusions and Relevance Among adults with suspected infection admitted to an ICU, an increase in SOFA score of 2 or more had greater prognostic accuracy for in-hospital mortality than SIRS criteria or the qSOFA score. These findings suggest that SIRS criteria and qSOFA may have limited utility for predicting mortality in an ICU setting.", "title": "Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the Intensive Care Unit" }, { "docid": "17876040", "text": "Owing to their integral involvement in cell cycle regulation, the Polo-like kinase (Plk) family, particularly Plk1, has emerged as an attractive therapeutic target in oncology. In recent years, several Plk1 inhibitors have been developed, with some agents showing encouraging results in early-phase clinical trials. This review focuses on volasertib (BI 6727; an investigational agent), a potent and selective Plk inhibitor. Volasertib has shown promising activity in various cancer cell lines and xenograft models of human cancer. Trials performed to date suggest that volasertib has clinical efficacy in a range of malignancies, with the most promising results seen in patients with acute myeloid leukemia (AML). Encouragingly, recent phase II data have demonstrated that volasertib combined with low-dose cytarabine (LDAC) was associated with higher response rates and improved event-free survival than LDAC alone in patients with previously untreated AML. Based on these observations, and its presumably manageable safety profile, volasertib is currently in phase III development as a potential treatment for patients with AML who are ineligible for intensive remission induction therapy. Given that many patients with AML are of an older age and frail, this constitutes an area of major unmet need. In this review, we discuss the biologic rationale for Plk1 inhibitors in cancer, the clinical development of volasertib to date in solid tumors and AML, and the future identification of biomarkers that might predict response to volasertib and help determine the role of this agent in the clinic.", "title": "Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy" }, { "docid": "5884524", "text": "BACKGROUND Although unstable coronary artery disease is the most common reason for admission to a coronary care unit, the long-term prognosis of patients with this diagnosis is unknown. This is particularly true for patients with diabetes mellitus, who are known to have a high morbidity and mortality after an acute myocardial infarction. \n METHODS AND RESULTS Prospectively collected data from 6 different countries in the Organization to Assess Strategies for Ischemic Syndromes (OASIS) registry were analyzed to determine the 2-year prognosis of diabetic and nondiabetic patients who were hospitalized with unstable angina or non-Q-wave myocardial infarction. Overall, 1718 of 8013 registry patients (21%) had diabetes. Diabetic patients had a higher rate of coronary bypass surgery than nondiabetic patients (23% versus 20%, P:<0.001) but had similar rates of catheterization and angioplasty. Diabetes independently predicted mortality (relative risk [RR], 1.57; 95% CI, 1.38 to 1.81; P:<0.001), as well as cardiovascular death, new myocardial infarction, stroke, and new congestive heart failure. Moreover, compared with their nondiabetic counterparts, women had a significantly higher risk than men (RR, 1.98; 95% CI, 1.60 to 2.44; and RR, 1.28; 95% CI, 1.06 to 1.56, respectively). Interestingly, diabetic patients without prior cardiovascular disease had the same event rates for all outcomes as nondiabetic patients with previous vascular disease. \n CONCLUSIONS Hospitalization for unstable angina or non-Q-wave myocardial infarction predicts a high 2-year morbidity and mortality; this is especially evident for patients with diabetes. Diabetic patients with no previous cardiovascular disease have the same long-term morbidity and mortality as nondiabetic patients with established cardiovascular disease after hospitalization for unstable coronary artery disease.", "title": "Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry." }, { "docid": "24906548", "text": "The epsilon4 allele of the apolipoprotein E (APOE) gene has been linked to negative outcomes among adults with traumatic brain injury (TBI) across the spectrum of severity, with preliminary evidence suggesting a similar pattern among children. This study investigated the relationship of the APOE epsilon4 allele to outcomes in children with mild TBI. Participants in this prospective, longitudinal study included 99 children with mild TBI between the ages of 8 and 15 recruited from consecutive admissions to Emergency Departments at two large children's hospitals. Outcomes were assessed acutely in the Emergency Department and at follow-ups at 2 weeks, 3 months, and 12 months post-injury. Among the 99 participants, 28 had at least one epsilon4 allele. Children with and without an epsilon4 allele did not differ demographically. Children with an epsilon4 allele were significantly more likely than those without an epsilon4 allele to have a Glasgow Coma Scale score of less than 15, but the groups did not differ on any other measures of injury severity. Those with an epsilon4 allele exhibited better performance than children without an epsilon4 allele on a test of constructional skill, but the groups did not differ on any other neuropsychological tests. Children with and without an epsilon4 allele also did not differ on measures of post-concussive symptoms. Overall, the findings suggest that the APOE epsilon4 allele is not consistently related to the outcomes of mild TBI in children.", "title": "Apolipoprotein E4 as a predictor of outcomes in pediatric mild traumatic brain injury." }, { "docid": "11335781", "text": "The emergence of immuno-oncology as the first broadly successful strategy for metastatic cancer will require clinicians to integrate this new pillar of medicine with chemotherapy, radiation, and targeted small-molecule compounds. Of equal importance is gaining an understanding of the limitations and toxicities of immunotherapy. Immunotherapy was initially perceived to be a relatively less toxic approach to cancer treatment than other available therapies—and surely it is, when compared to those. However, as the use of immunotherapy becomes more common, especially as first- and second-line treatments, immunotoxicity and autoimmunity are emerging as the Achilles' heel of immunotherapy. In this Perspective, we discuss evidence that the occurrence of immunotoxicity bodes well for the patient, and describe mechanisms that might be related to the induction of autoimmunity. We then explore approaches to limit immunotoxicity, and discuss the future directions of research and reporting that are needed to diminish it.", "title": "Is autoimmunity the Achilles' heel of cancer immunotherapy?" }, { "docid": "24408040", "text": "BACKGROUND Heart failure (HF) is a serious complication and often the cause of death in adults with congenital heart disease (CHD). Therefore, our aims were to determine the frequency of HF-admissions, and to assess risk factors of first HF-admission and of mortality after first HF-admission in adults with CHD. \n METHODS The Dutch CONCOR registry was linked to the Hospital Discharge Registry and National Mortality Registry to obtain data on HF-admissions and mortality. Risk factors for both HF-admission and mortality were assessed using Cox regression models. \n RESULTS Of 10,808 adult patients (49% male), 274 (2.5%) were admitted for HF during a median follow-up period of 21 years. The incidence of first HF-admission was 1.2 per 1000 patient-years, but the incidence of HF itself will be higher. Main defect, multiple defects, and surgical interventions in childhood were identified as independent risk factors of HF-admission. Patients admitted for HF had a five-fold higher risk of mortality than patients not admitted (hazard ratio (HR)=5.3; 95% confidence interval 4.2-6.9). One- and three-year mortality after first HF-admission were 24% and 35% respectively. Independent risk factors for three-year mortality after first HF-admission were male gender, pacemaker implantation, admission duration, non-cardiac medication use and high serum creatinine. \n CONCLUSIONS The incidence of HF-admission in adults with CHD is 1.2 per 1000 patient-years. Mortality risk is substantially increased after HF-admission, which emphasises the importance to identify patients at high risk of HF-admission. These patients might benefit from closer follow-up and earlier medical interventions. The presented risk factors may facilitate surveillance.", "title": "Heart failure admissions in adults with congenital heart disease; risk factors and prognosis." }, { "docid": "2058909", "text": "UNLABELLED The objective of this study was to examine differences in cancer survival between socioeconomic groups in England, with particular attention to survival in the short term of follow-up. \n PATIENTS AND METHODS Individuals diagnosed with colorectal cancer between 1996 and 2004 in England were identified from cancer registry records. Five-year cumulative relative survival and excess death rates were computed. \n RESULTS For colon cancer there was a very high excess death rate in the first month of follow-up, and the excess death rate was highest in the socioeconomically deprived groups. In subsequent periods, excess mortality rates were much lower and there was less socioeconomic variation. The pattern of variation in excess death rates was generally similar in rectal cancer but the socioeconomic difference in death rates persisted several years longer. If the excess death rates in the entire colorectal cancer patient population were the same as those observed in the most affluent socioeconomic quintile, the annual reduction would be 360 deaths in colon cancer and 336 deaths in rectal cancer patients. These deaths occurred almost entirely in the first month and the first year after diagnosis. \n CONCLUSION Recent developments in the national cancer control agenda have included an increasing emphasis on outcome measures, with short-term cancer survival an operational measure of variation and progress in cancer control. In providing clues to the nature of the survival differences between socioeconomic groups, the results presented here give strong support for this strategy.", "title": "Colorectal cancer survival in socioeconomic groups in England: variation is mainly in the short term after diagnosis." }, { "docid": "13282296", "text": "CONTEXT Although acute hypoglycemia may be associated with cognitive impairment in children with type 1 diabetes, no studies to date have evaluated whether hypoglycemia is a risk factor for dementia in older patients with type 2 diabetes. \n OBJECTIVE To determine if hypoglycemic episodes severe enough to require hospitalization are associated with an increased risk of dementia in a population of older patients with type 2 diabetes followed up for 27 years. \n DESIGN, SETTING, AND PATIENTS A longitudinal cohort study from 1980-2007 of 16,667 patients with a mean age of 65 years and type 2 diabetes who are members of an integrated health care delivery system in northern California. \n MAIN OUTCOME MEASURE Hypoglycemic events from 1980-2002 were collected and reviewed using hospital discharge and emergency department diagnoses. Cohort members with no prior diagnoses of dementia, mild cognitive impairment, or general memory complaints as of January 1, 2003, were followed up for a dementia diagnosis through January 15, 2007. Dementia risk was examined using Cox proportional hazard regression models, adjusted for age, sex, race/ethnicity, education, body mass index, duration of diabetes, 7-year mean glycated hemoglobin, diabetes treatment, duration of insulin use, hyperlipidemia, hypertension, cardiovascular disease, stroke, transient cerebral ischemia, and end-stage renal disease. \n RESULTS At least 1 episode of hypoglycemia was diagnosed in 1465 patients (8.8%) and dementia was diagnosed in 1822 patients (11%) during follow-up; 250 patients had both dementia and at least 1 episode of hypoglycemia (16.95%). Compared with patients with no hypoglycemia, patients with single or multiple episodes had a graded increase in risk with fully adjusted hazard ratios (HRs): for 1 episode (HR, 1.26; 95% confidence interval [CI], 1.10-1.49); 2 episodes (HR, 1.80; 95% CI, 1.37-2.36); and 3 or more episodes (HR, 1.94; 95% CI, 1.42-2.64). The attributable risk of dementia between individuals with and without a history of hypoglycemia was 2.39% per year (95% CI, 1.72%-3.01%). Results were not attenuated when medical utilization rates, length of health plan membership, or time since initial diabetes diagnosis were added to the model. When examining emergency department admissions for hypoglycemia for association with risk of dementia (535 episodes), results were similar (compared with patients with 0 episodes) with fully adjusted HRs: for 1 episode (HR, 1.42; 95% CI, 1.12-1.78) and for 2 or more episodes (HR, 2.36; 95% CI, 1.57-3.55). \n CONCLUSIONS Among older patients with type 2 diabetes, a history of severe hypoglycemic episodes was associated with a greater risk of dementia. Whether minor hypoglycemic episodes increase risk of dementia is unknown.", "title": "Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus." }, { "docid": "23862975", "text": "INTRODUCTION The face is the central point of the physical features; it transmits expressions and emotions, communicates feelings and allows for individual identity. Facial burns are very common and are devastating to the affected patient and results into numerous physical, emotional and psychosocial sequels. Partial thickness facial burns are very common especially among children. This study compares the effect of standard moist open technique management and a moist closed technique for partial thickness burns of the face. \n PATIENTS AND METHODS Patients with partial-thickness facial burns admitted in the burn unit, Ain Shams University, Cairo, Egypt in the period from April 2009 to December 2009 were included in this study. They were divided into two groups to receive either open treatment with MEBO(®) (n=20) or coverage with Aquacel(®) Ag (n=20). Demographics (age, gender, ethnicity, TBSA, burn areas), length of hospital stay (LOS), rate of infections, time to total healing, frequency of dressing changes, pain, cost benefit and patient discomfort were compared between the two groups. The long-term outcome (incidence of hypertrophic scarring) was assessed for up to 6 months follow-up period. \n RESULTS There were no significant differences in demographics between the two groups. In the group treated with the Aquacel(®) Ag, the mean time for re-epithelialization was 10.5 days, while it was 12.4 days in the MEBO(®) group (p<0.05). Frequency of changes, pain and patient discomfort were less with Aquacel(®) Ag. Cost was of no significant difference between the two groups. Scar quality improved in the Aquacel(®) Ag treatment group. Three and 6 months follow-up was done and long-term outcomes were recorded in both groups. \n CONCLUSION Moist occlusive dressing (Aquacel(®) Ag) significantly improves the management and healing rate of partial thickness facial burns with better long-term outcome compared to moist open dressing (MEBO(®)).", "title": "Moist occlusive dressing (Aquacel(®) Ag) versus moist open dressing (MEBO(®)) in the management of partial-thickness facial burns: a comparative study in Ain Shams University." }, { "docid": "9658390", "text": "INTRODUCTION To assess whether respiratory intermediate care units (RICUs) are cost effective alternatives to intensive care units (ICUs) for patients with exacerbation of chronic obstructive pulmonary disease (COPD). \n PATIENTS AND METHODS Multi-centre, prospective, bottom-up cost study performed in 15 ICUs and 6 RICUs. COPD patients staying longer than 48 h were recruited; those coming from other ICUs/RICUs, with immune-deficiency or stroke, were excluded. After the ICU sample was standardised to the RICU distribution of the reason-for-admission and infusion of a vasoactive drug on admission, 60 ICU patients and 65 RICU patients remained, of the original 164 recruited. For each patient, besides clinical data on admission and discharge, daily information about the resources consumed were recorded and analysed in terms of their costs. \n RESULTS Total cost per patient was lower in RICUs than in ICUs (754 vs. 1507 Euro; P < 0.0001). In all items, except drugs and nutrition, we found a significant lower cost in RICUs. Dead patients were noticeably different in terms of disease severity between ICUs and RICUs, while surviving ones were not. \n CONCLUSIONS Our study suggests that some COPD patients, less severe and with pure respiratory failure, could be successfully and less costly treated in RICUs.", "title": "Costs of the COPD. Differences between intensive care unit and respiratory intermediate care unit." }, { "docid": "27188320", "text": "OBJECTIVE This longitudinal study conducted path analyses to examine the relationships between treatment processes and outcomes among patients in community-based drug treatment programs. \n METHODS A total of 1,939 patients from 36 outpatient drug-free and residential treatment programs in 13 California counties were assessed at intake, discharge, three months after admission, and nine months after admission. Path analyses were conducted to relate the quantity and quality of services that were received in the first three months of treatment to treatment retention and outcomes at the nine-month follow-up. Patients were determined to have a favorable outcome if for at least 30 days before the follow-up assessment they did not use drugs, were not involved in criminal activity, and lived in the community. The path analyses controlled for patients' baseline characteristics. \n RESULTS Greater service intensity and satisfaction were positively related to either treatment completion or longer treatment retention, which in turn was related to favorable treatment outcomes. Patients with greater problem severity received more services and were more likely to be satisfied with treatment. These patterns were similar for patients regardless of whether they were treated in outpatient drug-free programs or residential programs. \n CONCLUSIONS The positive association between process measures-that is, greater levels of service intensity, satisfaction, and either treatment completion or retention-and treatment outcome strongly suggests that improvements in these key elements of the treatment process will improve treatment outcomes.", "title": "Relationship between drug treatment services, retention, and outcomes." } ]
928
Patients with microcytosis and higher erythrocyte count are more vulnerable to severe malarial anaemia when infected with Plasmodium falciparum.
[ { "docid": "18174210", "text": "BACKGROUND The heritable haemoglobinopathy alpha(+)-thalassaemia is caused by the reduced synthesis of alpha-globin chains that form part of normal adult haemoglobin (Hb). Individuals homozygous for alpha(+)-thalassaemia have microcytosis and an increased erythrocyte count. Alpha(+)-thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA) (Hb concentration < 50 g/l), but does not influence parasite count. We tested the hypothesis that the erythrocyte indices associated with alpha(+)-thalassaemia homozygosity provide a haematological benefit during acute malaria. \n METHODS AND FINDINGS Data from children living on the north coast of Papua New Guinea who had participated in a case-control study of the protection afforded by alpha(+)-thalassaemia against severe malaria were reanalysed to assess the genotype-specific reduction in erythrocyte count and Hb levels associated with acute malarial disease. We observed a reduction in median erythrocyte count of approximately 1.5 x 10(12)/l in all children with acute falciparum malaria relative to values in community children (p < 0.001). We developed a simple mathematical model of the linear relationship between Hb concentration and erythrocyte count. This model predicted that children homozygous for alpha(+)-thalassaemia lose less Hb than children of normal genotype for a reduction in erythrocyte count of >1.1 x 10(12)/l as a result of the reduced mean cell Hb in homozygous alpha(+)-thalassaemia. In addition, children homozygous for alpha(+)-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02) for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for alpha(+)-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24-1.12, p = 0.09). \n CONCLUSIONS The increased erythrocyte count and microcytosis in children homozygous for alpha(+)-thalassaemia may contribute substantially to their protection against SMA. A lower concentration of Hb per erythrocyte and a larger population of erythrocytes may be a biologically advantageous strategy against the significant reduction in erythrocyte count that occurs during acute infection with the malaria parasite Plasmodium falciparum. This haematological profile may reduce the risk of anaemia by other Plasmodium species, as well as other causes of anaemia. Other host polymorphisms that induce an increased erythrocyte count and microcytosis may confer a similar advantage.", "title": "Increased Microerythrocyte Count in Homozygous α+-Thalassaemia Contributes to Protection against Severe Malarial Anaemia" } ]
[ { "docid": "2460304", "text": "Erythrocytes carrying a variant hemoglobin allele (HbS), which causes sickle cell disease and resists infection by the malaria parasite Plasmodium falciparum. The molecular basis of this resistance, which has long been recognized as multifactorial, remains incompletely understood. Here we show that the dysregulated microRNA (miRNA) composition, of either heterozygous HbAS or homozygous HbSS erythrocytes, contributes to resistance against P. falciparum. During the intraerythrocytic life cycle of P. falciparum, a subset of erythrocyte miRNAs translocate into the parasite. Two miRNAs, miR-451 and let-7i, were highly enriched in HbAS and HbSS erythrocytes, and these miRNAs, along with miR-223, negatively regulated parasite growth. Surprisingly, we found that miR-451 and let-7i integrated into essential parasite messenger RNAs and, via impaired ribosomal loading, resulted in translational inhibition. Hence, sickle cell erythrocytes exhibit cell-intrinsic resistance to malaria in part through an atypical miRNA activity, which may represent a unique host defense strategy against complex eukaryotic pathogens.", "title": "Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance." }, { "docid": "9254550", "text": "BACKGROUND & OBJECTIVES Anaemia is commonly observed in children with malaria, but reports on leucocyte and platelet count abnormalities associated with malaria are inconsistent. This study examined the effect of age, gender, parasite density and temperature on haematological parameters in children with acute uncomplicated malaria. \n METHODS Haematological parameters were determined in children with acute uncomplicated malaria, and these were correlated with age, sex, temperature and parasite density. Statistical analysis was done using SAS 9.1. \n RESULTS Six hundred and ninety five children with acute uncomplicated malaria participated in the study. The mean age was 51.7 months +/- 33.8. At presentation, anaemia occurred in 43.8% of the patients and children <5 yr had a significantly lower haematocrit (28.4% +/- 4.8) than that of older children (32.8% +/- 4.8) (p <0.001), but the haematocrit was not significantly different by days 14 and 28. There was no difference between both sexes. Leucocytosis was more frequently seen than leucopenia (9.5% vs 3%). Thrombocytopenia was found in 59.3% of enrolled patients. More than half of the patients with thrombocytopenia had recovered by Day 28. Baseline platelet count was related to Day 14 (r = 0.6, p < 0.0001) and Day 28 (r = 0.2, p = 0.0015) and the haematocrit on Day 28 (r = 0.12, p = 0.00197). Platelet count showed no correlation with temperature, parasite density and leucocyte count. Haematocrit correlated with age (r = 0.4, p < 0.0001); but not with parasite density or temperature. Leucocyte count showed no correlation with age or parasite density. \n CONCLUSION While thrombocytopenia was the most common haematological finding and may be of diagnostic importance, anaemia and leucocytosis were more common in the under fives.", "title": "Age as a risk factor for thrombocytopenia and anaemia in children treated for acute uncomplicated falciparum malaria." }, { "docid": "25420421", "text": "Little is known about the changes in white blood cells and platelets in children with falciparum malaria in endemic areas. We measured the white cell count (WCC) and platelets of 230 healthy children from the community, 1369 children admitted to hospital with symptomatic malaria, and 1461 children with other medical conditions. Children with malaria had a higher WCC compared with community controls, and leucocytosis was strongly associated with younger age, deep breathing, severe anaemia, thrombocytopenia and death. The WCC was not associated with a positive blood culture. In children with malaria, high lymphocyte and low monocyte counts were independently associated with mortality. A platelet count of less than 150 x 109/l was found in 56.7% of children with malaria, and was associated with age, prostration and parasite density, but not with bleeding problems or mortality. The mean platelet volume was also higher in children with malaria compared with other medical conditions. This may reflect early release from the bone marrow in response to peripheral platelet destruction. Thus, leucocytosis was associated with both severity and mortality in children with falciparum malaria, irrespective of bacteraemia, whereas thrombocytopenia, although very common, was not associated with adverse outcome.", "title": "Changes in white blood cells and platelets in children with falciparum malaria: relationship to disease outcome." }, { "docid": "25938221", "text": "A specific retinopathy has been described in African children with cerebral malaria, but in adults this has not been extensively studied. Since the structure and function of the retinal vasculature greatly resembles the cerebral vasculature, study of retinal changes can reveal insights into the pathophysiology of cerebral malaria. A detailed observational study of malarial retinopathy in Bangladeshi adults was performed using high-definition portable retinal photography. Retinopathy was present in 17/27 adults (63%) with severe malaria and 14/20 adults (70%) with cerebral malaria. Moderate or severe retinopathy was more frequent in cerebral malaria (11/20, 55%) than in uncomplicated malaria (3/15, 20%; P=0.039), bacterial sepsis (0/5, 0%; P=0.038) or healthy controls (0/18, 0%; P<0.001). The spectrum of malarial retinopathy was similar to that previously described in African children, but no vessel discolouration was observed. The severity of retinal whitening correlated with admission venous plasma lactate (P=0.046), suggesting that retinal ischaemia represents systemic ischaemia. In conclusion, retinal changes related to microvascular obstruction were common in adults with severe falciparum malaria and correlated with disease severity and coma, suggesting that a compromised microcirculation has important pathophysiological significance in severe and cerebral malaria. Portable retinal photography has potential as a valuable tool to study malarial retinopathy.", "title": "The spectrum of retinopathy in adults with Plasmodium falciparum malaria" }, { "docid": "17168045", "text": "BACKGROUND This study sought to describe and quantify microcirculatory changes in the mucosal surfaces of patients with severe malaria, by direct in vivo observation using orthogonal polarization spectral (OPS) imaging. \n METHODS The microcirculation in the rectal mucosa of adult patients with severe malaria was assessed by use of OPS imaging, at admission and then daily. Comparison groups comprised patients with uncomplicated falciparum malaria, patients with bacterial sepsis, and healthy individuals. \n RESULTS Erythrocyte velocities were measured directly in 43 adult patients with severe falciparum malaria, of whom 20 died. Microcirculatory blood flow was markedly disturbed, with heterogeneous obstruction that was proportional to severity of disease. Blocked capillaries were found in 29 patients (67%) and were associated with concurrent hyperdynamic blood flow (erythrocyte velocity, >750 mm/s) in adjacent vessels in 27 patients (93%). The proportion of blocked capillaries correlated with the base deficit in plasma and with the concentration of lactate. Abnormalities disappeared when the patients recovered. In healthy individuals and in patients with uncomplicated malaria or sepsis, no stagnant erythrocytes were detected, and, in patients with sepsis, hyperdynamic blood flow was prominent. \n CONCLUSION Patients with severe falciparum malaria show extensive microvascular obstruction that is proportional to the severity of the disease. This finding underscores the prominent role that microvascular obstruction plays in the pathophysiology of severe malaria and illustrates the fundamental difference between the microvascular pathophysiology of malaria and that of bacterial sepsis.", "title": "Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria." }, { "docid": "13959707", "text": "BACKGROUND Plasmodium falciparum malaria remains a major cause of illness and death in sub-Saharan Africa. Young children bear the brunt of the disease and though older children and adults suffer relatively fewer clinical attacks, they remain susceptible to asymptomatic P. falciparum infection. A better understanding of the host factors associated with immunity to clinical malaria and the ability to sustain asymptomatic P. falciparum infection will aid the development of improved strategies for disease prevention. \n METHODS AND FINDINGS Here we investigate whether full differential blood counts can predict susceptibility to clinical malaria among Kenyan children sampled at five annual cross-sectional surveys. We find that the ratio of monocytes to lymphocytes, measured in peripheral blood at the time of survey, directly correlates with risk of clinical malaria during follow-up. This association is evident among children with asymptomatic P. falciparum infection at the time the cell counts are measured (Hazard ratio (HR) = 2.7 (95% CI 1.42, 5.01, P = 0.002) but not in those without detectable parasitaemia (HR = 1.0 (95% CI 0.74, 1.42, P = 0.9). \n CONCLUSIONS We propose that the monocyte to lymphocyte ratio, which is easily derived from routine full differential blood counts, reflects an individual's capacity to mount an effective immune response to P. falciparum infection.", "title": "The Ratio of Monocytes to Lymphocytes in Peripheral Blood Correlates with Increased Susceptibility to Clinical Malaria in Kenyan Children" }, { "docid": "25069745", "text": "OBJECTIVE To describe the epidemiology of urban malaria, an emerging problem in sub-Saharan Africa. \n METHOD Cross-sectional surveys of communities in Accra and Kumasi, Ghana, determining risk factors for malaria infection and anaemia in children aged 6-60 months. \n RESULTS Malaria prevalence rates ranged from 2% to 33% between urban communities. 47.1% of children were anaemic (Hb<11.0 g/dl). Factors associated with malaria prevalence were low socio-economic status, age and anaemia. The attributable risks of anaemia and severe anaemia (Hb<8.0 g/dl) caused by malaria were 5% and 23% respectively. \n CONCLUSIONS Malaria in urban areas displayed a heterogeneity and complexity that differed from the rural environment, which has important implications for malaria control. Marked intra-city variation indicates the importance of targeting specific areas or districts. The most vulnerable group, the urban poor, should be prioritized when designing control measures. This would require careful assessment of the malaria risk pattern in any city to guide an integrated control program.", "title": "Urban malaria and anaemia in children: a cross-sectional survey in two cities of Ghana." }, { "docid": "40900567", "text": "The multiplication rates and invasiveness of Plasmodium falciparum parasites isolated from adult Thai patients hospitalized with uncomplicated malaria (n=34) were compared with those from persons with severe malaria (n=42). To simulate severe malaria and control for host effects, the in vitro cultures were adjusted to 1% parasitemia and used the same red blood cell donor. P. falciparum isolates from persons with severe malaria had initial cycle multiplication rates in vitro that were 3-fold higher than those from uncomplicated malaria (median [95% confidence interval], 8.3 [7. 1-10.5] vs. 2.8 [1.7-3.9]; P=.001). Parasites causing severe malaria exhibited unrestricted red blood cell invasion, whereas those from uncomplicated malaria were restricted to a geometric mean of 40 (31%-53%) of red blood cells. P. falciparum parasites causing severe malaria were less selective and multiplied more at high parasitemias than those causing uncomplicated malaria.", "title": "Parasite multiplication potential and the severity of Falciparum malaria." }, { "docid": "27889071", "text": "The high prevalence of microcytosis (defined here as mean cell haemoglobin<27 pg) with no other abnormality is a principal cause of confusion in screening for haemoglobin disorders. Here we report the results of a small pilot study aiming to resolve this confusion by routinely proceeding to plasma ferritin and HPLC assay, using the original sequestrene blood sample, when microcytosis is detected. Participants comprised a random sample of 1,302 people referred for a full blood count by their General Practitioner (GP) to the laboratory of a North London district general hospital serving a multi-ethnic inner-city population. Ethnicity was established by questionnaire. In North Europeans, microcytosis was present in 3% of males (half were iron-deficient) and 11% of females (most were iron-deficient). Among ethnic minorities, microcytosis was present in 35% of males (one tenth were iron-deficient), and 45% of females (less than half were iron-deficient): an exclusion diagnosis of \"probable alpha thalassaemia\" could be made in the remainder. We conclude that when microcytosis is present, routine further analysis of the original sequestrene sample by plasma ferritin assay and haemoglobinopathy screening could lead to a more efficient and cost-effective laboratory service for primary care and maternity services.", "title": "Microcytosis, iron deficiency and thalassaemia in a multi-ethnic community: a pilot study." }, { "docid": "42373943", "text": "BACKGROUND Malaria is considered as the main differential diagnosis of acute febrile illness in the tropics, and alteration of various hematological parameters has been observed in patients with malaria. AIM To ascertain if certain hematological parameters increase the probability of malaria in patients with acute febrile illnesses. \n SETTINGS AND DESIGN Hospital based, prospective cohort study. \n METHODS AND MATERIAL All consecutive in patients with fever of less than seven days in duration were included in the study. Patients where localizing cause for fever could be determined were excluded. Hematological parameters (Hemoglobin, Red cell distribution width (RDW), Leukocyte count, and platelet counts) were determined by using automated counter, and peripheral smear examination for malarial parasite was taken as gold standard for the diagnosis of malaria. STATISTICAL ANALYSIS USED Diagnostic accuracy was measured by computing sensitivity, specificity, predictive values and likelihood ratios. The precision of these estimates was evaluated using 95% confidence intervals. \n RESULTS AND CONCLUSIONS A total of 184 patients were included in the study and 70 (38%) had a positive peripheral smear for malarial parasite. Thrombocytopenia alone (platelet countless than 150,000/mm3) was a predictor for malaria (Sn 60%, Sp 88%, LR+ 5.04) and in combination with anemia (Hb < 10 g/dl) it was next best parameter (Sn 69%, Sp 74%, LR+ 2.77). RDW and leukocyte count were not predictive. The conclusion of this study is that the presence of thrombocytopenia in a patient with acute febrile illness increases the probability of malarial infection.", "title": "Can hematological parameters discriminate malaria from nonmalarious acute febrile illness in the tropics?" }, { "docid": "2264455", "text": "There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates.", "title": "Vaccines against malaria" }, { "docid": "20761364", "text": "Artemisinins are peroxidic antimalarial drugs known to be very potent but highly chemically unstable; they degrade in the presence of ferrous iron, Fe(II)-heme, or biological reductants. Less documented is how this translates into chemical stability and antimalarial activity across a range of conditions applying to in vitro testing and clinical situations. Dihydroartemisinin (DHA) is studied here because it is an antimalarial drug on its own and the main metabolite of other artemisinins. The behaviors of DHA in phosphate-buffered saline, plasma, or erythrocyte lysate at different temperatures and pH ranges were examined. The antimalarial activity of the residual drug was evaluated using the chemosensitivity assay on Plasmodium falciparum, and the extent of decomposition of DHA was established through use of high-performance liquid chromatography with electrochemical detection analysis. The role of the Fe(II)-heme was investigated by blocking its reactivity using carbon monoxide (CO). A significant reduction in the antimalarial activity of DHA was seen after incubation in plasma and to a lesser extent in erythrocyte lysate. Activity was reduced by half after 3 h and almost completely abolished after 24 h. Serum-enriched media also affected DHA activity. Effects were temperature and pH dependent and paralleled the increased rate of decomposition of DHA from pH 7 upwards and in plasma. These results suggest that particular care should be taken in conducting and interpreting in vitro studies, prone as their results are to experimental and drug storage conditions. Disorders such as fever, hemolysis, or acidosis associated with malaria severity may contribute to artemisinin instability and reduce their clinical efficacy.", "title": "Stability of the antimalarial drug dihydroartemisinin under physiologically relevant conditions: implications for clinical treatment and pharmacokinetic and in vitro assays." }, { "docid": "3929361", "text": "BACKGROUND Malaria elimination requires a variety of approaches individually optimized for different transmission settings. A recent field study in an area of low seasonal transmission in South West Cambodia demonstrated dramatic reductions in malaria parasite prevalence following both mass drug administration (MDA) and high treatment coverage of symptomatic patients with artemisinin-piperaquine plus primaquine. This study employed multiple combined strategies and it was unclear what contribution each made to the reductions in malaria. \n METHOD AND FINDINGS A mathematical model fitted to the trial results was used to assess the effects of the various components of these interventions, design optimal elimination strategies, and explore their interactions with artemisinin resistance, which has recently been discovered in Western Cambodia. The modelling indicated that most of the initial reduction of P. falciparum malaria resulted from MDA with artemisinin-piperaquine. The subsequent continued decline and near elimination resulted mainly from high coverage with artemisinin-piperaquine treatment. Both these strategies were more effective with the addition of primaquine. MDA with artemisinin combination therapy (ACT) increased the proportion of artemisinin resistant infections, although much less than treatment of symptomatic cases with ACT, and this increase was slowed by adding primaquine. Artemisinin resistance reduced the effectiveness of interventions using ACT when the prevalence of resistance was very high. The main results were robust to assumptions about primaquine action, and immunity. \n CONCLUSIONS The key messages of these modelling results for policy makers were: high coverage with ACT treatment can produce a long-term reduction in malaria whereas the impact of MDA is generally only short-term; primaquine enhances the effect of ACT in eliminating malaria and reduces the increase in proportion of artemisinin resistant infections; parasite prevalence is a better surveillance measure for elimination programmes than numbers of symptomatic cases; combinations of interventions are most effective and sustained efforts are crucial for successful elimination.", "title": "Optimising Strategies for Plasmodium falciparum Malaria Elimination in Cambodia: Primaquine, Mass Drug Administration and Artemisinin Resistance" }, { "docid": "12409683", "text": "BACKGROUND Artemisinin combination therapies (ACT), which are increasingly being introduced for treatment of Plasmodium falciparum malaria, are more effective against sexual stage parasites (gametocytes) than previous first-line antimalarials and therefore have the potential to reduce parasite transmission. The size of this effect is estimated in symptomatic P. falciparum infections. \n METHODS Data on 3,174 patients were pooled from six antimalarial trials conducted in The Gambia and Kenya. Multivariable regression was used to investigate the role of ACT versus non-artemisinin antimalarial treatment, treatment failure, presence of pre-treatment gametocytes and submicroscopic gametocytaemia on transmission to mosquitoes and the area under the curve (AUC) of gametocyte density during the 28 days of follow up. \n RESULTS ACT treatment was associated with a significant reduction in the probability of being gametocytaemic on the day of transmission experiments (OR 0.20 95% CI 0.16-0.26), transmission to mosquitoes by slide-positive gametocyte carriers (OR mosquito infection 0.49 95% CI 0.33-0.73) and AUC of gametocyte density (ratio of means 0.35 95% CI 0.31-0.41). Parasitological treatment failure did not account for the difference between ACT and non-artemisinin impact. The presence of slide-positive gametocytaemia prior to treatment significantly reduced ACT impact on gametocytaemia (p < 0.001). Taking account of submicroscopic gametocytaemia reduced estimates of ACT impact in a high transmission setting in Kenya, but not in a lower transmission setting in the Gambia. \n CONCLUSION Treatment with ACT significantly reduces infectiousness of individual patients with uncomplicated falciparum malaria compared to previous first line treatments. Rapid treatment of cases before gametocytaemia is well developed may enhance the impact of ACT on transmission.", "title": "Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials" }, { "docid": "1805641", "text": "BACKGROUND Artemisinin derivatives used in recently introduced combination therapies (ACTs) for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas. \n METHODS AND FINDINGS We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%), compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%). Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission area, with 54 clinical episodes per 100 persons per year averted compared to five per 100 persons per year in the lowest-transmission area. High coverage was important. Reducing presumptive treatment through improved diagnosis substantially reduced the number of treatment courses required per clinical episode averted in the lower-transmission settings although there was some loss of overall impact on transmission. An efficacious antimalarial regimen with no specific gametocytocidal properties but a long prophylactic time was estimated to be more effective at reducing transmission than a short-acting ACT in the highest-transmission setting. \n CONCLUSIONS Our results suggest that ACTs have the potential for transmission reductions approaching those achieved by insecticide-treated nets in lower-transmission settings. ACT partner drugs and nonartemisinin regimens with longer prophylactic times could result in a larger impact in higher-transmission settings, although their long term benefit must be evaluated in relation to the risk of development of parasite resistance.", "title": "Modelling the Impact of Artemisinin Combination Therapy and Long-Acting Treatments on Malaria Transmission Intensity" }, { "docid": "17925632", "text": "We assessed monthly doses of tafenoquine for preventing Plasmodium vivax and multidrug-resistant P. falciparum malaria. In a randomized, double-blind, placebo-controlled study, 205 Thai soldiers received either a loading dose of tafenoquine 400 mg (base) daily for 3 days, followed by single monthly 400-mg doses (n = 104), or placebo (n = 101), for up to 5 consecutive months. In volunteers completing follow-up (96 tafenoquine and 91 placebo recipients), there were 22 P. vivax, 8 P. falciparum, and 1 mixed infection. All infections except 1 P. vivax occurred in placebo recipients, giving tafenoquine a protective efficacy of 97% for all malaria (95% confidence interval [CI], 82%-99%), 96% for P. vivax malaria (95% CI, 76%-99%), and 100% for P. falciparum malaria (95% CI, 60%-100%). Monthly tafenoquine was safe, well tolerated, and highly effective in preventing P. vivax and multidrug-resistant P. falciparum malaria in Thai soldiers during 6 months of prophylaxis.", "title": "Efficacy of monthly tafenoquine for prophylaxis of Plasmodium vivax and multidrug-resistant P. falciparum malaria." }, { "docid": "10617916", "text": "Background. Artemisinin-based combination therapy (ACT) reduces microscopically confirmed gametocytemia and mosquito infection. However, molecular techniques have recently revealed high prevalences of submicroscopic gametocytemia. Our objective here was to determine the effect of sulfadoxine-pyrimethamine (SP) monotherapy and treatment with SP plus amodiaquine (AQ), SP plus artesunate (AS), and artemether-lumefantrine (AL; Coartem) on submicroscopic gametocytemia and infectiousness. Methods. Kenyan children (n=528) 6 months-10 years of age were randomized to 4 treatment arms. Gametocytemia was determined by both microscopy and Pfs25 RNA-based quantitative nucleic acid sequence-based amplification (Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays. Results. Gametocyte prevalence, as determined by Pfs25 QT-NASBA, was 89.4% (219/245) at enrollment and decreased after treatment with SP plus AS, SP plus AQ, and AL. Membrane-feeding assays for a group of randomly selected children revealed that the proportion of infectious children was as much as 4-fold higher than expected when based on microscopy. ACT did not significantly reduce the proportion of infectious children but did reduce the proportion of infected mosquitoes. Conclusions. Submicroscopic gametocytemia is common after treatment and contributes considerably to mosquito infection. Our findings should be interpreted in the context of transmission intensity, but the effect of ACT on malaria transmission appears to be moderate and restricted to the duration of gametocyte carriage and the proportion of mosquitoes that are infected by carriers.", "title": "Moderate effect of artemisinin-based combination therapy on transmission of Plasmodium falciparum." }, { "docid": "8373753", "text": "The seasonal dynamics and spatial distributions of Anopheles mosquitoes and Plasmodium falciparum parasites were studied for one year at 30 villages in Malindi, Kilifi, and Kwale Districts along the coast of Kenya. Anopheline mosquitoes were sampled inside houses at each site once every two months and malaria parasite prevalence in local school children was determined at the end of the entomologic survey. A total of 5,476 Anopheles gambiae s.l. and 3,461 An. funestus were collected. Species in the An. gambiae complex, identified by a polymerase chain reaction, included 81.9% An. gambiae s.s., 12.8% An. arabiensis, and 5.3% An. merus. Anopheles gambiae s.s. contributed most to the transmission of P. falciparum along the coast as a whole, while An. funestus accounted for more than 50% of all transmission in Kwale District. Large spatial heterogeneity of transmission intensity (< 1 up to 120 infective bites per person per year) resulted in correspondingly large and significantly related variations in parasite prevalence (range = 38-83%). Thirty-two percent of the sites (7 of 22 sites) with malaria prevalences ranging from 38% to 70% had annual entomologic inoculation rates (EIR) less than five infective bites per person per year. Anopheles gambiae s.l. and An. funestus densities in Kwale were not significantly influenced by rainfall. However, both were positively correlated with rainfall one and three months previously in Malindi and Kilifi Districts, respectively. These unexpected variations in the relationship between mosquito populations and rainfall suggest environmental heterogeneity in the predominant aquatic habitats in each district. One important conclusion is that the highly non-linear relationship between EIRs and prevalence indicates that the consistent pattern of high prevalence might be governed by substantial variation in transmission intensity measured by entomologic surveys. The field-based estimate of entomologic parameters on a district level does not provide a sensitive indicator of transmission intensity in this study.", "title": "Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast." }, { "docid": "2526777", "text": "Falciparum malaria kills, and it particularly kills the rural poor. Artemisinin derivatives, such as artesunate, are a vital component of Plasmodium falciparum malaria treatment and control in the face of globally increasing antimalarial drug resistance. Since 1998 a worsening epidemic of sophisticated counterfeit “artesunate” tablets (containing no artesunate) has plagued mainland Southeast Asia (see Figure S1). In some countries, most of the available artesunate is fake [ 1–5]. Artemisinin derivatives are remarkably rapid in their antimalarial effects, and they are very well tolerated. So where these medicines are available, they are sought after. But as they are relatively expensive, a demand is created for cheaper versions amongst the poorest and most vulnerable people, upon whom the counterfeiters have preyed–with fatal results.", "title": "Manslaughter by Fake Artesunate in Asia—Will Africa Be Next?" } ]
929
Patients with microcytosis and higher erythrocyte count were more resistant to severe malarial anaemia when infected with Plasmodium falciparum.
[ { "docid": "18174210", "text": "BACKGROUND The heritable haemoglobinopathy alpha(+)-thalassaemia is caused by the reduced synthesis of alpha-globin chains that form part of normal adult haemoglobin (Hb). Individuals homozygous for alpha(+)-thalassaemia have microcytosis and an increased erythrocyte count. Alpha(+)-thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA) (Hb concentration < 50 g/l), but does not influence parasite count. We tested the hypothesis that the erythrocyte indices associated with alpha(+)-thalassaemia homozygosity provide a haematological benefit during acute malaria. \n METHODS AND FINDINGS Data from children living on the north coast of Papua New Guinea who had participated in a case-control study of the protection afforded by alpha(+)-thalassaemia against severe malaria were reanalysed to assess the genotype-specific reduction in erythrocyte count and Hb levels associated with acute malarial disease. We observed a reduction in median erythrocyte count of approximately 1.5 x 10(12)/l in all children with acute falciparum malaria relative to values in community children (p < 0.001). We developed a simple mathematical model of the linear relationship between Hb concentration and erythrocyte count. This model predicted that children homozygous for alpha(+)-thalassaemia lose less Hb than children of normal genotype for a reduction in erythrocyte count of >1.1 x 10(12)/l as a result of the reduced mean cell Hb in homozygous alpha(+)-thalassaemia. In addition, children homozygous for alpha(+)-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02) for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for alpha(+)-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24-1.12, p = 0.09). \n CONCLUSIONS The increased erythrocyte count and microcytosis in children homozygous for alpha(+)-thalassaemia may contribute substantially to their protection against SMA. A lower concentration of Hb per erythrocyte and a larger population of erythrocytes may be a biologically advantageous strategy against the significant reduction in erythrocyte count that occurs during acute infection with the malaria parasite Plasmodium falciparum. This haematological profile may reduce the risk of anaemia by other Plasmodium species, as well as other causes of anaemia. Other host polymorphisms that induce an increased erythrocyte count and microcytosis may confer a similar advantage.", "title": "Increased Microerythrocyte Count in Homozygous α+-Thalassaemia Contributes to Protection against Severe Malarial Anaemia" } ]
[ { "docid": "2460304", "text": "Erythrocytes carrying a variant hemoglobin allele (HbS), which causes sickle cell disease and resists infection by the malaria parasite Plasmodium falciparum. The molecular basis of this resistance, which has long been recognized as multifactorial, remains incompletely understood. Here we show that the dysregulated microRNA (miRNA) composition, of either heterozygous HbAS or homozygous HbSS erythrocytes, contributes to resistance against P. falciparum. During the intraerythrocytic life cycle of P. falciparum, a subset of erythrocyte miRNAs translocate into the parasite. Two miRNAs, miR-451 and let-7i, were highly enriched in HbAS and HbSS erythrocytes, and these miRNAs, along with miR-223, negatively regulated parasite growth. Surprisingly, we found that miR-451 and let-7i integrated into essential parasite messenger RNAs and, via impaired ribosomal loading, resulted in translational inhibition. Hence, sickle cell erythrocytes exhibit cell-intrinsic resistance to malaria in part through an atypical miRNA activity, which may represent a unique host defense strategy against complex eukaryotic pathogens.", "title": "Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance." }, { "docid": "9254550", "text": "BACKGROUND & OBJECTIVES Anaemia is commonly observed in children with malaria, but reports on leucocyte and platelet count abnormalities associated with malaria are inconsistent. This study examined the effect of age, gender, parasite density and temperature on haematological parameters in children with acute uncomplicated malaria. \n METHODS Haematological parameters were determined in children with acute uncomplicated malaria, and these were correlated with age, sex, temperature and parasite density. Statistical analysis was done using SAS 9.1. \n RESULTS Six hundred and ninety five children with acute uncomplicated malaria participated in the study. The mean age was 51.7 months +/- 33.8. At presentation, anaemia occurred in 43.8% of the patients and children <5 yr had a significantly lower haematocrit (28.4% +/- 4.8) than that of older children (32.8% +/- 4.8) (p <0.001), but the haematocrit was not significantly different by days 14 and 28. There was no difference between both sexes. Leucocytosis was more frequently seen than leucopenia (9.5% vs 3%). Thrombocytopenia was found in 59.3% of enrolled patients. More than half of the patients with thrombocytopenia had recovered by Day 28. Baseline platelet count was related to Day 14 (r = 0.6, p < 0.0001) and Day 28 (r = 0.2, p = 0.0015) and the haematocrit on Day 28 (r = 0.12, p = 0.00197). Platelet count showed no correlation with temperature, parasite density and leucocyte count. Haematocrit correlated with age (r = 0.4, p < 0.0001); but not with parasite density or temperature. Leucocyte count showed no correlation with age or parasite density. \n CONCLUSION While thrombocytopenia was the most common haematological finding and may be of diagnostic importance, anaemia and leucocytosis were more common in the under fives.", "title": "Age as a risk factor for thrombocytopenia and anaemia in children treated for acute uncomplicated falciparum malaria." }, { "docid": "25420421", "text": "Little is known about the changes in white blood cells and platelets in children with falciparum malaria in endemic areas. We measured the white cell count (WCC) and platelets of 230 healthy children from the community, 1369 children admitted to hospital with symptomatic malaria, and 1461 children with other medical conditions. Children with malaria had a higher WCC compared with community controls, and leucocytosis was strongly associated with younger age, deep breathing, severe anaemia, thrombocytopenia and death. The WCC was not associated with a positive blood culture. In children with malaria, high lymphocyte and low monocyte counts were independently associated with mortality. A platelet count of less than 150 x 109/l was found in 56.7% of children with malaria, and was associated with age, prostration and parasite density, but not with bleeding problems or mortality. The mean platelet volume was also higher in children with malaria compared with other medical conditions. This may reflect early release from the bone marrow in response to peripheral platelet destruction. Thus, leucocytosis was associated with both severity and mortality in children with falciparum malaria, irrespective of bacteraemia, whereas thrombocytopenia, although very common, was not associated with adverse outcome.", "title": "Changes in white blood cells and platelets in children with falciparum malaria: relationship to disease outcome." }, { "docid": "25938221", "text": "A specific retinopathy has been described in African children with cerebral malaria, but in adults this has not been extensively studied. Since the structure and function of the retinal vasculature greatly resembles the cerebral vasculature, study of retinal changes can reveal insights into the pathophysiology of cerebral malaria. A detailed observational study of malarial retinopathy in Bangladeshi adults was performed using high-definition portable retinal photography. Retinopathy was present in 17/27 adults (63%) with severe malaria and 14/20 adults (70%) with cerebral malaria. Moderate or severe retinopathy was more frequent in cerebral malaria (11/20, 55%) than in uncomplicated malaria (3/15, 20%; P=0.039), bacterial sepsis (0/5, 0%; P=0.038) or healthy controls (0/18, 0%; P<0.001). The spectrum of malarial retinopathy was similar to that previously described in African children, but no vessel discolouration was observed. The severity of retinal whitening correlated with admission venous plasma lactate (P=0.046), suggesting that retinal ischaemia represents systemic ischaemia. In conclusion, retinal changes related to microvascular obstruction were common in adults with severe falciparum malaria and correlated with disease severity and coma, suggesting that a compromised microcirculation has important pathophysiological significance in severe and cerebral malaria. Portable retinal photography has potential as a valuable tool to study malarial retinopathy.", "title": "The spectrum of retinopathy in adults with Plasmodium falciparum malaria" }, { "docid": "17168045", "text": "BACKGROUND This study sought to describe and quantify microcirculatory changes in the mucosal surfaces of patients with severe malaria, by direct in vivo observation using orthogonal polarization spectral (OPS) imaging. \n METHODS The microcirculation in the rectal mucosa of adult patients with severe malaria was assessed by use of OPS imaging, at admission and then daily. Comparison groups comprised patients with uncomplicated falciparum malaria, patients with bacterial sepsis, and healthy individuals. \n RESULTS Erythrocyte velocities were measured directly in 43 adult patients with severe falciparum malaria, of whom 20 died. Microcirculatory blood flow was markedly disturbed, with heterogeneous obstruction that was proportional to severity of disease. Blocked capillaries were found in 29 patients (67%) and were associated with concurrent hyperdynamic blood flow (erythrocyte velocity, >750 mm/s) in adjacent vessels in 27 patients (93%). The proportion of blocked capillaries correlated with the base deficit in plasma and with the concentration of lactate. Abnormalities disappeared when the patients recovered. In healthy individuals and in patients with uncomplicated malaria or sepsis, no stagnant erythrocytes were detected, and, in patients with sepsis, hyperdynamic blood flow was prominent. \n CONCLUSION Patients with severe falciparum malaria show extensive microvascular obstruction that is proportional to the severity of the disease. This finding underscores the prominent role that microvascular obstruction plays in the pathophysiology of severe malaria and illustrates the fundamental difference between the microvascular pathophysiology of malaria and that of bacterial sepsis.", "title": "Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria." }, { "docid": "3929361", "text": "BACKGROUND Malaria elimination requires a variety of approaches individually optimized for different transmission settings. A recent field study in an area of low seasonal transmission in South West Cambodia demonstrated dramatic reductions in malaria parasite prevalence following both mass drug administration (MDA) and high treatment coverage of symptomatic patients with artemisinin-piperaquine plus primaquine. This study employed multiple combined strategies and it was unclear what contribution each made to the reductions in malaria. \n METHOD AND FINDINGS A mathematical model fitted to the trial results was used to assess the effects of the various components of these interventions, design optimal elimination strategies, and explore their interactions with artemisinin resistance, which has recently been discovered in Western Cambodia. The modelling indicated that most of the initial reduction of P. falciparum malaria resulted from MDA with artemisinin-piperaquine. The subsequent continued decline and near elimination resulted mainly from high coverage with artemisinin-piperaquine treatment. Both these strategies were more effective with the addition of primaquine. MDA with artemisinin combination therapy (ACT) increased the proportion of artemisinin resistant infections, although much less than treatment of symptomatic cases with ACT, and this increase was slowed by adding primaquine. Artemisinin resistance reduced the effectiveness of interventions using ACT when the prevalence of resistance was very high. The main results were robust to assumptions about primaquine action, and immunity. \n CONCLUSIONS The key messages of these modelling results for policy makers were: high coverage with ACT treatment can produce a long-term reduction in malaria whereas the impact of MDA is generally only short-term; primaquine enhances the effect of ACT in eliminating malaria and reduces the increase in proportion of artemisinin resistant infections; parasite prevalence is a better surveillance measure for elimination programmes than numbers of symptomatic cases; combinations of interventions are most effective and sustained efforts are crucial for successful elimination.", "title": "Optimising Strategies for Plasmodium falciparum Malaria Elimination in Cambodia: Primaquine, Mass Drug Administration and Artemisinin Resistance" }, { "docid": "13959707", "text": "BACKGROUND Plasmodium falciparum malaria remains a major cause of illness and death in sub-Saharan Africa. Young children bear the brunt of the disease and though older children and adults suffer relatively fewer clinical attacks, they remain susceptible to asymptomatic P. falciparum infection. A better understanding of the host factors associated with immunity to clinical malaria and the ability to sustain asymptomatic P. falciparum infection will aid the development of improved strategies for disease prevention. \n METHODS AND FINDINGS Here we investigate whether full differential blood counts can predict susceptibility to clinical malaria among Kenyan children sampled at five annual cross-sectional surveys. We find that the ratio of monocytes to lymphocytes, measured in peripheral blood at the time of survey, directly correlates with risk of clinical malaria during follow-up. This association is evident among children with asymptomatic P. falciparum infection at the time the cell counts are measured (Hazard ratio (HR) = 2.7 (95% CI 1.42, 5.01, P = 0.002) but not in those without detectable parasitaemia (HR = 1.0 (95% CI 0.74, 1.42, P = 0.9). \n CONCLUSIONS We propose that the monocyte to lymphocyte ratio, which is easily derived from routine full differential blood counts, reflects an individual's capacity to mount an effective immune response to P. falciparum infection.", "title": "The Ratio of Monocytes to Lymphocytes in Peripheral Blood Correlates with Increased Susceptibility to Clinical Malaria in Kenyan Children" }, { "docid": "40900567", "text": "The multiplication rates and invasiveness of Plasmodium falciparum parasites isolated from adult Thai patients hospitalized with uncomplicated malaria (n=34) were compared with those from persons with severe malaria (n=42). To simulate severe malaria and control for host effects, the in vitro cultures were adjusted to 1% parasitemia and used the same red blood cell donor. P. falciparum isolates from persons with severe malaria had initial cycle multiplication rates in vitro that were 3-fold higher than those from uncomplicated malaria (median [95% confidence interval], 8.3 [7. 1-10.5] vs. 2.8 [1.7-3.9]; P=.001). Parasites causing severe malaria exhibited unrestricted red blood cell invasion, whereas those from uncomplicated malaria were restricted to a geometric mean of 40 (31%-53%) of red blood cells. P. falciparum parasites causing severe malaria were less selective and multiplied more at high parasitemias than those causing uncomplicated malaria.", "title": "Parasite multiplication potential and the severity of Falciparum malaria." }, { "docid": "17925632", "text": "We assessed monthly doses of tafenoquine for preventing Plasmodium vivax and multidrug-resistant P. falciparum malaria. In a randomized, double-blind, placebo-controlled study, 205 Thai soldiers received either a loading dose of tafenoquine 400 mg (base) daily for 3 days, followed by single monthly 400-mg doses (n = 104), or placebo (n = 101), for up to 5 consecutive months. In volunteers completing follow-up (96 tafenoquine and 91 placebo recipients), there were 22 P. vivax, 8 P. falciparum, and 1 mixed infection. All infections except 1 P. vivax occurred in placebo recipients, giving tafenoquine a protective efficacy of 97% for all malaria (95% confidence interval [CI], 82%-99%), 96% for P. vivax malaria (95% CI, 76%-99%), and 100% for P. falciparum malaria (95% CI, 60%-100%). Monthly tafenoquine was safe, well tolerated, and highly effective in preventing P. vivax and multidrug-resistant P. falciparum malaria in Thai soldiers during 6 months of prophylaxis.", "title": "Efficacy of monthly tafenoquine for prophylaxis of Plasmodium vivax and multidrug-resistant P. falciparum malaria." }, { "docid": "27889071", "text": "The high prevalence of microcytosis (defined here as mean cell haemoglobin<27 pg) with no other abnormality is a principal cause of confusion in screening for haemoglobin disorders. Here we report the results of a small pilot study aiming to resolve this confusion by routinely proceeding to plasma ferritin and HPLC assay, using the original sequestrene blood sample, when microcytosis is detected. Participants comprised a random sample of 1,302 people referred for a full blood count by their General Practitioner (GP) to the laboratory of a North London district general hospital serving a multi-ethnic inner-city population. Ethnicity was established by questionnaire. In North Europeans, microcytosis was present in 3% of males (half were iron-deficient) and 11% of females (most were iron-deficient). Among ethnic minorities, microcytosis was present in 35% of males (one tenth were iron-deficient), and 45% of females (less than half were iron-deficient): an exclusion diagnosis of \"probable alpha thalassaemia\" could be made in the remainder. We conclude that when microcytosis is present, routine further analysis of the original sequestrene sample by plasma ferritin assay and haemoglobinopathy screening could lead to a more efficient and cost-effective laboratory service for primary care and maternity services.", "title": "Microcytosis, iron deficiency and thalassaemia in a multi-ethnic community: a pilot study." }, { "docid": "42373943", "text": "BACKGROUND Malaria is considered as the main differential diagnosis of acute febrile illness in the tropics, and alteration of various hematological parameters has been observed in patients with malaria. AIM To ascertain if certain hematological parameters increase the probability of malaria in patients with acute febrile illnesses. \n SETTINGS AND DESIGN Hospital based, prospective cohort study. \n METHODS AND MATERIAL All consecutive in patients with fever of less than seven days in duration were included in the study. Patients where localizing cause for fever could be determined were excluded. Hematological parameters (Hemoglobin, Red cell distribution width (RDW), Leukocyte count, and platelet counts) were determined by using automated counter, and peripheral smear examination for malarial parasite was taken as gold standard for the diagnosis of malaria. STATISTICAL ANALYSIS USED Diagnostic accuracy was measured by computing sensitivity, specificity, predictive values and likelihood ratios. The precision of these estimates was evaluated using 95% confidence intervals. \n RESULTS AND CONCLUSIONS A total of 184 patients were included in the study and 70 (38%) had a positive peripheral smear for malarial parasite. Thrombocytopenia alone (platelet countless than 150,000/mm3) was a predictor for malaria (Sn 60%, Sp 88%, LR+ 5.04) and in combination with anemia (Hb < 10 g/dl) it was next best parameter (Sn 69%, Sp 74%, LR+ 2.77). RDW and leukocyte count were not predictive. The conclusion of this study is that the presence of thrombocytopenia in a patient with acute febrile illness increases the probability of malarial infection.", "title": "Can hematological parameters discriminate malaria from nonmalarious acute febrile illness in the tropics?" }, { "docid": "1805641", "text": "BACKGROUND Artemisinin derivatives used in recently introduced combination therapies (ACTs) for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas. \n METHODS AND FINDINGS We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%), compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%). Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission area, with 54 clinical episodes per 100 persons per year averted compared to five per 100 persons per year in the lowest-transmission area. High coverage was important. Reducing presumptive treatment through improved diagnosis substantially reduced the number of treatment courses required per clinical episode averted in the lower-transmission settings although there was some loss of overall impact on transmission. An efficacious antimalarial regimen with no specific gametocytocidal properties but a long prophylactic time was estimated to be more effective at reducing transmission than a short-acting ACT in the highest-transmission setting. \n CONCLUSIONS Our results suggest that ACTs have the potential for transmission reductions approaching those achieved by insecticide-treated nets in lower-transmission settings. ACT partner drugs and nonartemisinin regimens with longer prophylactic times could result in a larger impact in higher-transmission settings, although their long term benefit must be evaluated in relation to the risk of development of parasite resistance.", "title": "Modelling the Impact of Artemisinin Combination Therapy and Long-Acting Treatments on Malaria Transmission Intensity" }, { "docid": "6503185", "text": "Plasmodium falciparum malaria, an infectious disease caused by a parasitic protozoan, claims the lives of nearly a million children each year in Africa alone and is a top public health concern. Evidence is accumulating that resistance to artemisinin derivatives, the frontline therapy for the asexual blood stage of the infection, is developing in southeast Asia. Renewed initiatives to eliminate malaria will benefit from an expanded repertoire of antimalarials, including new drugs that kill circulating P. falciparum gametocytes, thereby preventing transmission. Our current understanding of the biology of asexual blood-stage parasites and gametocytes and the ability to culture them in vitro lends optimism that high-throughput screenings of large chemical libraries will produce a new generation of antimalarial drugs. There is also a need for new therapies to reduce the high mortality of severe malaria. An understanding of the pathophysiology of severe disease may identify rational targets for drugs that improve survival.", "title": "Malaria biology and disease pathogenesis: insights for new treatments" }, { "docid": "20761364", "text": "Artemisinins are peroxidic antimalarial drugs known to be very potent but highly chemically unstable; they degrade in the presence of ferrous iron, Fe(II)-heme, or biological reductants. Less documented is how this translates into chemical stability and antimalarial activity across a range of conditions applying to in vitro testing and clinical situations. Dihydroartemisinin (DHA) is studied here because it is an antimalarial drug on its own and the main metabolite of other artemisinins. The behaviors of DHA in phosphate-buffered saline, plasma, or erythrocyte lysate at different temperatures and pH ranges were examined. The antimalarial activity of the residual drug was evaluated using the chemosensitivity assay on Plasmodium falciparum, and the extent of decomposition of DHA was established through use of high-performance liquid chromatography with electrochemical detection analysis. The role of the Fe(II)-heme was investigated by blocking its reactivity using carbon monoxide (CO). A significant reduction in the antimalarial activity of DHA was seen after incubation in plasma and to a lesser extent in erythrocyte lysate. Activity was reduced by half after 3 h and almost completely abolished after 24 h. Serum-enriched media also affected DHA activity. Effects were temperature and pH dependent and paralleled the increased rate of decomposition of DHA from pH 7 upwards and in plasma. These results suggest that particular care should be taken in conducting and interpreting in vitro studies, prone as their results are to experimental and drug storage conditions. Disorders such as fever, hemolysis, or acidosis associated with malaria severity may contribute to artemisinin instability and reduce their clinical efficacy.", "title": "Stability of the antimalarial drug dihydroartemisinin under physiologically relevant conditions: implications for clinical treatment and pharmacokinetic and in vitro assays." }, { "docid": "2264455", "text": "There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates.", "title": "Vaccines against malaria" }, { "docid": "37205685", "text": "Malaria resistant to chloroquine has now been confirmed in more than 40 countries. The drug was introduced in 1934, but was not in large-scale use until the early 1950s. Anecdotal reports suggest that resistance emerged as early as 1957 both in Colombia and along the then Cambodia-Thailand border area. But by 1960, resistance in these areas was confirmed - and may represent two separate events. Resistance spread rapidly, with a new focus of resistance confirmed in East Africa by 1977. Chloroquine resistance represents a severe problem both for prophylaxis and treatment of malaria. In this aricle, David Payne traces the spread of resistance and discusses some of its implications.", "title": "Spread of chloroquine resistance in Plasmodium falciparum." }, { "docid": "12409683", "text": "BACKGROUND Artemisinin combination therapies (ACT), which are increasingly being introduced for treatment of Plasmodium falciparum malaria, are more effective against sexual stage parasites (gametocytes) than previous first-line antimalarials and therefore have the potential to reduce parasite transmission. The size of this effect is estimated in symptomatic P. falciparum infections. \n METHODS Data on 3,174 patients were pooled from six antimalarial trials conducted in The Gambia and Kenya. Multivariable regression was used to investigate the role of ACT versus non-artemisinin antimalarial treatment, treatment failure, presence of pre-treatment gametocytes and submicroscopic gametocytaemia on transmission to mosquitoes and the area under the curve (AUC) of gametocyte density during the 28 days of follow up. \n RESULTS ACT treatment was associated with a significant reduction in the probability of being gametocytaemic on the day of transmission experiments (OR 0.20 95% CI 0.16-0.26), transmission to mosquitoes by slide-positive gametocyte carriers (OR mosquito infection 0.49 95% CI 0.33-0.73) and AUC of gametocyte density (ratio of means 0.35 95% CI 0.31-0.41). Parasitological treatment failure did not account for the difference between ACT and non-artemisinin impact. The presence of slide-positive gametocytaemia prior to treatment significantly reduced ACT impact on gametocytaemia (p < 0.001). Taking account of submicroscopic gametocytaemia reduced estimates of ACT impact in a high transmission setting in Kenya, but not in a lower transmission setting in the Gambia. \n CONCLUSION Treatment with ACT significantly reduces infectiousness of individual patients with uncomplicated falciparum malaria compared to previous first line treatments. Rapid treatment of cases before gametocytaemia is well developed may enhance the impact of ACT on transmission.", "title": "Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials" }, { "docid": "4336849", "text": "CHLOROQUINE is thought to act against falciparum malaria by accumulating in the acid vesicles of the parasite and interfering with their function1–4. Parasites resistant to chloroquine expel the drug rapidly in an unaltered form, thereby reducing levels of accumulation in the vesicles5. The discovery that verapamil partially reverses chloroquine resistance in vitro 6 led to the proposal that efflux may involve an ATP-driven P-glycoprotein pump similar to that in mammalian multidrug-resistant (mdr) tumor cell lines. Indeed, Plasmodium falciparum contains at least two mdr-like genes7,8, one of which has been suggested to confer the chloroquine resistant (CQR) phenotype7,9,10. To determine if either of these genes is linked to chloroquine resistance, we performed a genetic cross between CQR and chloroquine-susceptible (CQS) clones of P. falciparum. Examination of 16 independent recombinant progeny indicated that the rapid efflux phenotype is controlled by a single gene or a closely linked group of genes. But, there was no linkage between the rapid efflux, CQR phenotype and either of the mdr-like P. falciparum genes or amplification of those genes. These data indicate that the genetic locus governing chloroquine efflux and resistance is independent of the known mdr-like genes.", "title": "Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross" }, { "docid": "8373753", "text": "The seasonal dynamics and spatial distributions of Anopheles mosquitoes and Plasmodium falciparum parasites were studied for one year at 30 villages in Malindi, Kilifi, and Kwale Districts along the coast of Kenya. Anopheline mosquitoes were sampled inside houses at each site once every two months and malaria parasite prevalence in local school children was determined at the end of the entomologic survey. A total of 5,476 Anopheles gambiae s.l. and 3,461 An. funestus were collected. Species in the An. gambiae complex, identified by a polymerase chain reaction, included 81.9% An. gambiae s.s., 12.8% An. arabiensis, and 5.3% An. merus. Anopheles gambiae s.s. contributed most to the transmission of P. falciparum along the coast as a whole, while An. funestus accounted for more than 50% of all transmission in Kwale District. Large spatial heterogeneity of transmission intensity (< 1 up to 120 infective bites per person per year) resulted in correspondingly large and significantly related variations in parasite prevalence (range = 38-83%). Thirty-two percent of the sites (7 of 22 sites) with malaria prevalences ranging from 38% to 70% had annual entomologic inoculation rates (EIR) less than five infective bites per person per year. Anopheles gambiae s.l. and An. funestus densities in Kwale were not significantly influenced by rainfall. However, both were positively correlated with rainfall one and three months previously in Malindi and Kilifi Districts, respectively. These unexpected variations in the relationship between mosquito populations and rainfall suggest environmental heterogeneity in the predominant aquatic habitats in each district. One important conclusion is that the highly non-linear relationship between EIRs and prevalence indicates that the consistent pattern of high prevalence might be governed by substantial variation in transmission intensity measured by entomologic surveys. The field-based estimate of entomologic parameters on a district level does not provide a sensitive indicator of transmission intensity in this study.", "title": "Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast." } ]
930
Patients with panic anxiety show decreased CSF levels of hypocretin.
[ { "docid": "16056514", "text": "Panic disorder is a severe anxiety disorder with recurrent, debilitating panic attacks. In individuals with panic disorder there is evidence of decreased central gamma-aminobutyric acid (GABA) activity as well as marked increases in autonomic and respiratory responses after intravenous infusions of hypertonic sodium lactate. In a rat model of panic disorder, chronic inhibition of GABA synthesis in the dorsomedial-perifornical hypothalamus of rats produces anxiety-like states and a similar vulnerability to sodium lactate-induced cardioexcitatory responses. The dorsomedial-perifornical hypothalamus is enriched in neurons containing orexin (ORX, also known as hypocretin), which have a crucial role in arousal, vigilance and central autonomic mobilization, all of which are key components of panic. Here we show that activation of ORX-synthesizing neurons is necessary for developing a panic-prone state in the rat panic model, and either silencing of the hypothalamic gene encoding ORX (Hcrt) with RNAi or systemic ORX-1 receptor antagonists blocks the panic responses. Moreover, we show that human subjects with panic anxiety have elevated levels of ORX in the cerebrospinal fluid compared to subjects without panic anxiety. Taken together, our results suggest that the ORX system may be involved in the pathophysiology of panic anxiety and that ORX antagonists constitute a potential new treatment strategy for panic disorder.", "title": "A KEY ROLE FOR OREXIN IN PANIC ANXIETY" } ]
[ { "docid": "44830890", "text": "OBJECTIVE To investigate the frequency of depressive and anxiety disorders in patients with chronic daily headache. \n BACKGROUND There is a lack of data in the literature on the extent of psychiatric comorbidity in patients with different subtypes of chronic daily headache. \n METHODS We recruited consecutive patients with chronic daily headache seen in a headache clinic from November 1998 to December 1999. The subtypes of chronic daily headache were classified according to the criteria proposed by Silberstein et al. A psychiatrist evaluated the patients according to the structured Mini-International Neuropsychiatric Interview to assess the comorbidity of depressive and anxiety disorders. \n RESULTS Two hundred sixty-one patients with chronic daily headache were recruited. The mean age was 46 years, and 80% were women. Transformed migraine was diagnosed in 152 patients (58%) and chronic tension-type headache in 92 patients (35%). Seventy-eight percent of patients with transformed migraine had psychiatric comorbidity, including major depression (57%), dysthymia (11%), panic disorder (30%), and generalized anxiety disorder (8%). Sixty-four percent of patients with chronic tension-type headache had psychiatric diagnoses, including major depression (51%), dysthymia (8%), panic disorder (22%), and generalized anxiety disorder (1%). The frequency of anxiety disorders was significantly higher in patients with transformed migraine after controlling for age and sex (P =.02). Both depressive and anxiety disorders were significantly more frequent in women. \n CONCLUSION Psychiatric comorbidity, especially major depression and panic disorders, was highly prevalent in patients with chronic daily headache seen in a headache clinic. These results demonstrate that women and patients with transformed migraine are at higher risk of psychiatric comorbidity.", "title": "Comorbidity of depressive and anxiety disorders in chronic daily headache and its subtypes." }, { "docid": "52874170", "text": "CONTEXT Diagnostic lumbar punctures (LPs), commonly used to rule out meningitis, are associated with adverse events. \n OBJECTIVE To systematically review the evidence about diagnostic LP techniques that may decrease the risk of adverse events and the evidence about test accuracy of cerebrospinal fluid (CSF) analysis in adult patients with suspected bacterial meningitis. \n DATA SOURCES We searched the Cochrane Library, MEDLINE (using Ovid and PubMed) from 1966 to January 2006 and EMBASE from 1980 to January 2006 without language restrictions to identify relevant studies and identified others from the bibliographies of retrieved articles. STUDY SELECTION We included randomized trials of patients aged 18 years or older undergoing interventions to facilitate a successful diagnostic LP or to potentially reduce adverse events. Studies assessing the accuracy of biochemical analysis of the CSF for possible bacterial meningitis were also identified. \n DATA EXTRACTION Two investigators independently appraised study quality and extracted relevant data. For studies of the LP technique, data on the intervention and the outcome were extracted. For studies of the laboratory diagnosis of bacterial meningitis, data on the reference standard and test accuracy were extracted. \n DATA SYNTHESIS We found 15 randomized trials. A random-effects model was used for quantitative synthesis. Five studies of 587 patients compared atraumatic needles with standard needles and found a nonsignificant decrease in the odds of headache with an atraumatic needle (absolute risk reduction [ARR], 12.3%; 95% confidence interval [CI], -1.72% to 26.2%). Reinsertion of the stylet before needle removal decreased the risk of headache (ARR, 11.3%; 95% CI, 6.50%-16.2%). The combined results from 4 studies of 717 patients showed a nonsignificant decrease in headache in patients who were mobilized after LP (ARR, 2.9%; 95% CI, -3.4 to 9.3%). Four studies on the accuracy of biochemical analysis of CSF in patients with suspected meningitis met inclusion criteria. A CSF-blood glucose ratio of 0.4 or less (likelihood ratio [LR], 18; 95% CI, 12-27]), CSF white blood cell count of 500/muL or higher (LR, 15; 95% CI, 10-22), and CSF lactate level of 31.53 mg/dL or more (> or =3.5 mmol/L; LR, 21; 95% CI, 14-32) accurately diagnosed bacterial meningitis. \n CONCLUSIONS These data suggest that small-gauge, atraumatic needles may decrease the risk of headache after diagnostic LP. Reinsertion of the stylet before needle removal should occur and patients do not require bed rest after the procedure. Future research should focus on evaluating interventions to optimize the success of a diagnostic LP and to enhance training in procedural skills.", "title": "How do I perform a lumbar puncture and analyze the results to diagnose bacterial meningitis?" }, { "docid": "24770122", "text": "To assess the clinical and personality characteristics of patients with chronic daily headache before and after treatment, 20 patients were examined and the Minnesota Multiphasic Personality Inventory (MMPI [Italian 356-item abbreviated version]) and the Strait and Trait Anxiety Index 1,2 (STAI) administered. There were two groups: group 1 (n = 6), with a \"conversion V\" configuration (with elevation of hypochondria and hysteria scales, the depression scale being somewhat lower); and group 2 (n = 13) with elevation of depression and of other MMPI scales. One patient had no scale elevation. STAI 1,2 scores were high in both groups. Several psychosomatic symptoms and some migraine features were present in almost all patients. Occurrence, severity, and duration of headache were recorded regularly and the MMPI and the STAI administered again after treatment. Improvement of headaches and a decrease of several MMPI and STAI 2 scores were observed. However, 12 of 20 patients showed a conversion V configuration after treatment. It is concluded that chronic daily headache was transformed migraine in most cases and was accompanied by anxiety levels in all patients and hysteric traits in some. With time, these patients may develop a depressive disorder. After treatment, hysterical traits are still present at a lower level in those showing these traits before treatment and may be unmasked in those that had depression.", "title": "Chronic daily headache. A clinical and psychological profile before and after treatment." }, { "docid": "36721932", "text": "OBJECTIVE Nociceptive and neuropathic components both contribute to pain. Since these components require different pain management strategies, correct pain diagnosis before and during treatment is highly desirable. As low back pain (LBP) patients constitute an important subgroup of chronic pain patients, we addressed the following issues: (i) to establish a simple, validated screening tool to detect neuropathic pain (NeP) components in chronic LBP patients, (ii) to determine the prevalence of neuropathic pain components in LBP in a large-scale survey, and (iii) to determine whether LBP patients with an NeP component suffer from worse, or different, co-morbidities. \n METHODS In co-operation with the German Research Network on Neuropathic Pain we developed and validated the painDETECT questionnaire (PD-Q) in a prospective, multicentre study and subsequently applied it to approximately 8000 LBP patients. \n RESULTS The PD-Q is a reliable screening tool with high sensitivity, specificity and positive predictive accuracy; these were 84% in a palm-top computerised version and 85%, 80% and 83%, respectively, in a corresponding pencil-and-paper questionnaire. In an unselected cohort of chronic LBP patients, 37% were found to have predominantly neuropathic pain. Patients with NeP showed higher ratings of pain intensity, with more (and more severe) co-morbidities such as depression, panic/anxiety and sleep disorders. This also affected functionality and use of health-care resources. On the basis of given prevalence of LBP in the general population, we calculated that 14.5% of all female and 11.4% of all male Germans suffer from LBP with a predominant neuropathic pain component. \n CONCLUSION Simple, patient-based, easy-to-use screening questionnaires can determine the prevalence of neuropathic pain components both in individual LBP patients and in heterogeneous cohorts of such patients. Since NeP correlates with more intense pain, more severe co-morbidity and poorer quality of life, accurate diagnosis is a milestone in choosing appropriate therapy.", "title": "painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain." }, { "docid": "27024392", "text": "Cannabis has a potential for clinical use often obscured by unreliable and purely anecdotal reports. The most important natural cannabinoid is the psychoactive tetrahydrocannabinol (Δ9-THC); others include cannabidiol (CBD) and cannabigerol (CBG). Not all the observed effects can be ascribed to THC, and the other constituents may also modulate its action; for example CBD reduces anxiety induced by THC. A standardised extract of the herb may be therefore be more beneficial in practice and clinical trial protocols have been drawn up to assess this. The mechanism of action is still not fully understood, although cannabinoid receptors have been cloned and natural ligands identified. Cannabis is frequently used by patients with multiple sclerosis (MS) for muscle spasm and pain, and in an experimental model of MS low doses of cannabinoids alleviated tremor. Most of the controlled studies have been carried out with THC rather than cannabis herb and so do not mimic the usual clincal situation. Small clinical studies have confirmed the usefulness of THC as an analgesic; CBD and CBG also have analgesic and antiinflammatory effects, indicating that there is scope for developing drugs which do not have the psychoactive properties ofTHC. Patients taking the synthetic derivative nabilone for neurogenic pain actually preferred cannabis herb and reported that it relieved not only pain but the associated depression and anxiety. Cannabinoids are effective in chemotherapy-induced emesis and nabilone has been licensed for this use for several years. Currently, the synthetic cannabinoid HU211 is undergoing trials as a protective agent after brain trauma. Anecdotal reports of cannabis use include case studies in migraine and Tourette’s syndrome, and as a treatment for asthma and glaucoma. Apart from the smoking aspect, the safety profile of cannabis is fairly good. However, adverse reactions include panic or anxiety attacks, which are worse in the elderly and in women, and less likely in children. Although psychosis has been cited as a consequence of cannabis use, an examination of psychiatric hospital admissions found no evidence of this, however, it may exacerbate existing symptoms. The relatively slow elimination from the body of the cannabinoids has safety implications for cognitive tasks, especially driving and operating machinery; although driving impairment with cannabis is only moderate, there is a significant interaction with alcohol. Natural materials are highly variable and multiple components need to be standardised to ensure reproducible effects. Pure natural and synthetic compounds do not have these disadvantages but may not have the overall therapeutic effect of the herb.", "title": "Cannabinoids in Clinical Practice" }, { "docid": "654735", "text": "Glioma is a most common type of primary brain tumors. Extracellular vesicles, in the form of exosomes, are known to mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we examined the cerebrospinal fluid (CSF) from patients with recurrent glioma for the levels of cancer-related miRNAs, and evaluated the values for prognosis by comparing the measures of CSF-, serum-, and exosome-contained miR-21 levels. Samples from seventy glioma patients following surgery were compared with those from brain trauma patients as a non-tumor control group. Exosomal miR-21 levels in the CSF of glioma patients were found significantly higher than in the controls; whereas no difference was detected in serum-derived exosomal miR-21 expression. The CSF-derived exosomal miR-21 levels correlated with tumor spinal/ventricle metastasis and the recurrence with anatomical site preference. From additional 198 glioma tissue samples, we verified that miR-21 levels associated with tumor grade of diagnosis and negatively correlated with the median values of patient overall survival time. We further used a lentiviral inhibitor to suppress miR-21 expression in U251 cells. The results showed that the levels of miR-21 target genes of PTEN, RECK and PDCD4 were up-regulated at protein levels. Therefore, we concluded that the exosomal miR-21 levels could be demonstrated as a promising indicator for glioma diagnosis and prognosis, particularly with values to predict tumor recurrence or metastasis.", "title": "Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients" }, { "docid": "5260382", "text": "Serotonin signaling suppresses generation of amyloid-β (Aβ) in vitro and in animal models of Alzheimer’s disease (AD). We show that in an aged transgenic AD mouse model (APP/PS1 plaque-bearing mice), the antidepressant citalopram, a selective serotonin reuptake inhibitor, decreased Aβ in brain interstitial fluid in a dose-dependent manner. Growth of individual amyloid plaques was assessed in plaque-bearing mice that were chronically administered citalopram. Citalopram arrested the growth of preexisting plaques and reduced the appearance of new plaques by 78%. In healthy human volunteers, citalopram’s effects on Aβ production and Aβ concentrations in cerebrospinal fluid (CSF) were measured prospectively using stable isotope labeling kinetics, with CSF sampling during acute dosing of citalopram. Aβ production in CSF was slowed by 37% in the citalopram group compared to placebo. This change was associated with a 38% decrease in total CSF Aβ concentrations in the drug-treated group. The ability to safely decrease Aβ concentrations is potentially important as a preventive strategy for AD. This study demonstrates key target engagement for future AD prevention trials.", "title": "An Antidepressant Decreases CSF Aβ Production in Healthy Individuals and in Transgenic AD Mice" }, { "docid": "25440070", "text": "Testosterone (T) and its 5alpha-reduced metabolite, dihydrotestosterone (DHT), can decrease anxiety-like behavior; however, the mechanisms underlying these effects have not been established. First, we hypothesized that if T reduces anxiety-like behavior through actions of its 5alpha-reduced metabolite, DHT, then gonadectomy (GDX) would increase anxiety-like behavior, an effect which would be reversed by systemic administration of DHT. Second, we hypothesized that if T and DHT reduce anxiety-like behavior in part through actions at intracellular androgen receptors in the hippocampus, then administration of an androgen receptor antagonist, flutamide, directly to the hippocampus should increase anxiety-like behavior of intact and DHT-replaced, but not GDX, male rats. Inserts that were empty or contained flutamide were applied directly to the dorsal hippocampus of intact, GDX, or GDX and DHT-replaced rats 2 h prior to testing in the open field, elevated plus maze, or defensive freezing tasks. GDX rats exhibited significantly more anxiety-like behaviors than intact or DHT-replaced rats. Intact and DHT-replaced rats administered flutamide to the hippocampus showed significantly more anxiety-like behavior than did intact and DHT-replaced controls. However, flutamide alone did not increase anxiety-like behavior of GDX rats. Together, these findings suggest that androgens can decrease anxiety-like behavior of male rats in part through DHT's actions at androgen receptors in the hippocampus.", "title": "Intrahippocampal administration of an androgen receptor antagonist, flutamide, can increase anxiety-like behavior in intact and DHT-replaced male rats." }, { "docid": "46565020", "text": "BACKGROUND AN1792 (beta-amyloid [Abeta]1-42) immunization reduces Abeta plaque burden and preserves cognitive function in APP transgenic mice. The authors report the results of a phase IIa immunotherapy trial of AN1792(QS-21) in patients with mild to moderate Alzheimer disease (AD) that was interrupted because of meningoencephalitis in 6% of immunized patients. \n METHODS This randomized, multicenter, placebo-controlled, double-blind trial of IM AN1792 225 microg plus the adjuvant QS-21 50 microg (300 patients) and saline (72 patients) included patients aged 50 to 85 years with probable AD, Mini-Mental State Examination (MMSE) 15 to 26. Injections were planned for months 0, 1, 3, 6, 9, and 12. Safety and tolerability were evaluated, and pilot efficacy (AD Assessment Scale-Cognitive Subscale [ADAS-Cog], MRI, neuropsychological test battery [NTB], CSF tau, and Abeta42) was assessed in anti-AN1792 antibody responder patients (immunoglobulin G titer > or = 1:2,200). \n RESULTS Following reports of meningoencephalitis (overall 18/300 [6%]), immunization was stopped after one (2 patients), two (274 patients), or three (24 patients) injections. Of the 300 AN1792(QS-21)-treated patients, 59 (19.7%) developed the predetermined antibody response. Double-blind assessments were maintained for 12 months. No significant differences were found between antibody responder and placebo groups for ADAS-Cog, Disability Assessment for Dementia, Clinical Dementia Rating, MMSE, or Clinical Global Impression of Change, but analyses of the z-score composite across the NTB revealed differences favoring antibody responders (0.03 +/- 0.37 vs -0.20 +/- 0.45; p = 0.020). In the small subset of subjects who had CSF examinations, CSF tau was decreased in antibody responders (n = 11) vs placebo subjects (n = 10; p < 0.001). \n CONCLUSION Although interrupted, this trial provides an indication that Abeta immunotherapy may be useful in Alzheimer disease.", "title": "Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial." }, { "docid": "3943235", "text": "During physiological or psychological stress, catecholamines produced by the sympathetic nervous system (SNS) regulate the immune system. Previous studies report that the activation of β-adrenergic receptors (βARs) mediates the actions of catecholamines and increases pro-inflammatory cytokine production in a number of different cell types. The impact of the SNS on the immune modulation of social defeat has not been examined. The following studies were designed to determine whether SNS activation during social disruption stress (SDR) influences anxiety-like behavior as well as the activation, priming, and glucocorticoid resistance of splenocytes after social stress. CD-1 mice were exposed to one, three, or six cycles of SDR and HPLC analysis of the plasma and spleen revealed an increase in catecholamines. After six cycles of SDR the open field test was used to measure behaviors characteristic of anxiety and indicated that the social defeat induced increase in anxiety-like behavior was blocked by pre-treatment with the β-adrenergic antagonist propranolol. Pre-treatment with the β-adrenergic antagonist propranolol did not significantly alter corticosterone levels indicating no difference in activation of the hypothalamic-pituitary-adrenal axis. In addition to anxiety-like behavior the SDR induced splenomegaly and increase in plasma IL-6, TNFα, and MCP-1 were each reversed by pre-treatment with propranolol. Furthermore, flow cytometric analysis of cells from propranolol pretreated mice reduced the SDR-induced increase in the percentage of CD11b(+) splenic macrophages and significantly decreased the expression of TLR2, TLR4, and CD86 on the surface of these cells. In addition, supernatants from 18h LPS-stimulated ex vivo cultures of splenocytes from propranolol-treated SDR mice contained less IL-6. Likewise propranolol pre-treatment abrogated the glucocorticoid insensitivity of CD11b(+) cells ex vivo when compared to splenocytes from SDR vehicle-treated mice. Together, this study demonstrates that the immune activation and priming effects of SDR result, in part, as a consequence of SNS activation.", "title": "Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress" }, { "docid": "10207180", "text": "INTRODUCTION The β-secretase enzyme, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), cleaves amyloid precursor protein (APP) in the first step in β-amyloid (Aβ) peptide production. Thus, BACE1 is a key target for candidate disease-modifying treatment of Alzheimer's disease. In a previous exploratory Aβ biomarker study, we found that BACE1 inhibitor treatment resulted in decreased levels of Aβ1-34 together with increased Aβ5-40, suggesting that these Aβ species may be novel pharmacodynamic biomarkers in clinical trials. We have now examined whether the same holds true in humans. \n METHODS In an investigator-blind, placebo-controlled and randomized study, healthy subjects (n =18) were randomly assigned to receive a single dose of 30 mg of LY2811376 (n =6), 90 mg of LY2811376 (n =6), or placebo (n =6). We used hybrid immunoaffinity-mass spectrometry (HI-MS) and enzyme-linked immunosorbent assays to monitor a variety of Aβ peptides. \n RESULTS Here, we demonstrate dose-dependent changes in cerebrospinal fluid (CSF) Aβ1-34, Aβ5-40 and Aβ5-X after treatment with the BACE1-inhibitor LY2811376. Aβ5-40 and Aβ5-X increased dose-dependently, as reflected by two independent methods, while Aβ1-34 dose-dependently decreased. \n CONCLUSION Using HI-MS for the first time in a study where subjects have been treated with a BACE inhibitor, we confirm that CSF Aβ1-34 may be useful in clinical trials on BACE1 inhibitors to monitor target engagement. Since it is less hydrophobic than longer Aβ species, it is less susceptible to preanalytical confounding factors and may thus be a more stable marker. By independent measurement techniques, we also show that BACE1 inhibition in humans is associated with APP-processing into N-terminally truncated Aβ peptides via a BACE1-independent pathway. \n TRIAL REGISTRATION ClinicalTrials.gov NCT00838084. Registered: First received: January 23, 2009, Last updated: July 14, 2009, Last verified: July 2009.", "title": "β-site amyloid precursor protein-cleaving enzyme 1(BACE1) inhibitor treatment induces Aβ5-X peptides through alternative amyloid precursor protein cleavage" }, { "docid": "2436602", "text": "Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.", "title": "β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat." }, { "docid": "23816832", "text": "Diagnosis of multiple sclerosis (MS) requires the exclusion of other possible diagnoses. For this reason, the cerebrospinal fluid (CSF) should be routinely analysed in patients with a first clinical event suggestive of MS. CSF analysis is no longer mandatory for diagnosis of relapsing–remitting MS, as long as MRI diagnostic criteria are fulfilled. However, caution is required in diagnosing MS in patients with negative MRI findings or in the absence of CSF analysis, as CSF investigation is useful to eliminate other causes of disease. The detection of oligoclonal IgG bands in CSF has potential prognostic value and is helpful for clinical decision-making. In addition, CSF analysis is important for research into the pathogenesis of MS. Pathophysiological and neurodegenerative findings of inflammation in MS have been derived from CSF investigations. Novel CSF biomarkers, though not yet validated, have been identified for diagnosis of MS and for ascertaining disease activity, prognosis and response to treatment, and are likely to increase in number with modern detection techniques. In this Review, we summarize CSF findings that shed light on the differential diagnosis of MS, and highlight the potential of novel biomarkers for this disease that could advance understanding of its pathophysiology.", "title": "The utility of cerebrospinal fluid analysis in patients with multiple sclerosis" }, { "docid": "15248287", "text": "Neutrophil apoptosis is a highly regulated process essential for inflammation resolution, the molecular mechanisms of which are only partially elucidated. In this study, we describe a survival pathway controlled by proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repairing of proliferating cells. We show that mature neutrophils, despite their inability to proliferate, express high levels of PCNA exclusively in their cytosol and constitutively associated with procaspases, presumably to prevent their activation. Notably, cytosolic PCNA abundance decreased during apoptosis, and increased during in vitro and in vivo exposure to the survival factor granulocyte colony-stimulating factor (G-CSF). Peptides derived from the cyclin-dependent kinase inhibitor p21, which compete with procaspases to bind PCNA, triggered neutrophil apoptosis thus demonstrating that specific modification of PCNA protein interactions affects neutrophil survival. Furthermore, PCNA overexpression rendered neutrophil-differentiated PLB985 myeloid cells significantly more resistant to TNF-related apoptosis-inducing ligand- or gliotoxin-induced apoptosis. Conversely, a decrease in PCNA expression after PCNA small interfering RNA transfection sensitized these cells to apoptosis. Finally, a mutation in the PCNA interdomain-connecting loop, the binding site for many partners, significantly decreased the PCNA-mediated antiapoptotic effect. These results identify PCNA as a regulator of neutrophil lifespan, thereby highlighting a novel target to potentially modulate pathological inflammation.", "title": "Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival" }, { "docid": "12122482", "text": "We compared the diagnostic capabilities of MRI to CT, evoked potentials (EP), and CSF oligoclonal banding analysis in a prospective evaluation of 200 patients with suspected multiple sclerosis (MS). MRI was the best method for demonstrating dissemination in space. An abnormal appropriate EP in monosymptomatic disease was usually supported by MRI and CSF analysis as being predictive of MS as a clinical diagnosis. A normal appropriate EP study was not satisfactory because MRI and CSF analysis often did not support a diagnosis of non-MS. When there is agreement between three of these paraclinical studies, the diagnosis of MS is probably unequivocal. For use in research studies, laboratory-supported definite MS (LSDMS) could be diagnosed in 85 patients of the total 200 (42.5%), in 19/38 (50%) of optic neuritis (ON) patients, and in 24/52 (46%) of chronic progressive myelopathy (CPM) patients. MRI was 100% successful in identifying patients who qualified for LSDMS in the ON and CPM groups. In a short follow-up (less than 1 year), 19/200 (10%) went on to develop clinically definite MS (CDMS), and MRI predicted that diagnosis in 18/19 (95%). Only long-term follow-up will show how well these studies and the category of LSDMS predict the development of CDMS. The clinical diagnosis of MS (CDMS), even though only 95% accurate, must remain the gold standard.", "title": "MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT." }, { "docid": "2014909", "text": "Myeloid-derived suppressor cells (MDSCs) play critical roles in primary and metastatic cancer progression. MDSC regulation is widely variable even among patients harbouring the same type of malignancy, and the mechanisms governing such heterogeneity are largely unknown. Here, integrating human tumour genomics and syngeneic mammary tumour models, we demonstrate that mTOR signalling in cancer cells dictates a mammary tumour's ability to stimulate MDSC accumulation through regulating G-CSF. Inhibiting this pathway or its activators (for example, FGFR) impairs tumour progression, which is partially rescued by restoring MDSCs or G-CSF. Tumour-initiating cells (TICs) exhibit elevated G-CSF. MDSCs reciprocally increase TIC frequency through activating Notch in tumour cells, forming a feedforward loop. Analyses of primary breast cancers and patient-derived xenografts corroborate these mechanisms in patients. These findings establish a non-canonical oncogenic role of mTOR signalling in recruiting pro-tumorigenic MDSCs and show how defined cancer subsets may evolve to promote and depend on a distinct immune microenvironment.", "title": "Oncogenic mTOR signaling recruits myeloid-derived suppressor cells to promote tumor initiation" }, { "docid": "4505748", "text": "BACKGROUND The apolipoprotein E (APOE) genotype provides information on the risk of Alzheimer's disease, but the genotyping of patients and their family members has been discouraged. We examined the effect of genotype disclosure in a prospective, randomized, controlled trial. \n METHODS We randomly assigned 162 asymptomatic adults who had a parent with Alzheimer's disease to receive the results of their own APOE genotyping (disclosure group) or not to receive such results (nondisclosure group). We measured symptoms of anxiety, depression, and test-related distress 6 weeks, 6 months, and 1 year after disclosure or nondisclosure. \n RESULTS There were no significant differences between the two groups in changes in time-averaged measures of anxiety (4.5 in the disclosure group and 4.4 in the nondisclosure group, P=0.84), depression (8.8 and 8.7, respectively; P=0.98), or test-related distress (6.9 and 7.5, respectively; P=0.61). Secondary comparisons between the nondisclosure group and a disclosure subgroup of subjects carrying the APOE epsilon4 allele (which is associated with increased risk) also revealed no significant differences. However, the epsilon4-negative subgroup had a significantly lower level of test-related distress than did the epsilon4-positive subgroup (P=0.01). Subjects with clinically meaningful changes in psychological outcomes were distributed evenly among the nondisclosure group and the epsilon4-positive and epsilon4-negative subgroups. Baseline scores for anxiety and depression were strongly associated with post-disclosure scores of these measures (P<0.001 for both comparisons). \n CONCLUSIONS The disclosure of APOE genotyping results to adult children of patients with Alzheimer's disease did not result in significant short-term psychological risks. Test-related distress was reduced among those who learned that they were APOE epsilon4-negative. Persons with high levels of emotional distress before undergoing genetic testing were more likely to have emotional difficulties after disclosure. (ClinicalTrials.gov number, NCT00571025.)", "title": "Disclosure of APOE genotype for risk of Alzheimer's disease." }, { "docid": "45449835", "text": "Myelin-directed autoimmunity is considered to play a key role in the pathogenesis of multiple sclerosis (MS). Increased production of both pro- and anti-inflammatory cytokines is a common finding in MS. Interleukin-17 (IL-17) is a recently described cytokine produced in humans almost exclusively by activated memory T cells, which can induce the production of proinflammatory cytokines and chemokines from parenchymal cells and macrophages. In situ hybridisation with synthetic oligonucleotide probes was adopted to detect and enumerate IL-17 mRNA expressing mononuclear cells (MNC) in blood and cerebrospinal fluid (CSF) from patients with MS and control individuals. Numbers of IL-17 mRNA expressing blood MNC were higher in patients with MS and acute aseptic meningoencephalitis (AM) compared to healthy individuals. Higher numbers of IL-17 mRNA expressing blood MNC were detected in MS patients examined during clinical exacerbation compared to remission. Patients with MS had higher numbers of IL-17 mRNA expressing MNC in CSF compared to blood. This increase in numbers of IL-17 mRNA expressing MNC in CSF was not observed in patients with AM. Our results thus demonstrate increased numbers of IL-17 mRNA expressing MNC in MS with higher numbers in CSF than blood, and with the highest numbers in blood during clinical exacerbations.", "title": "Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis." }, { "docid": "3078080", "text": "UNLABELLED Fast, definitive diagnosis of Creutzfeldt-Jakob disease (CJD) is important in assessing patient care options and transmission risks. Real-time quaking-induced conversion (RT-QuIC) assays of cerebrospinal fluid (CSF) and nasal-brushing specimens are valuable in distinguishing CJD from non-CJD conditions but have required 2.5 to 5 days. Here, an improved RT-QuIC assay is described which identified positive CSF samples within 4 to 14 h with better analytical sensitivity. Moreover, analysis of 11 CJD patients demonstrated that while 7 were RT-QuIC positive using the previous conditions, 10 were positive using the new assay. In these and further analyses, a total of 46 of 48 CSF samples from sporadic CJD patients were positive, while all 39 non-CJD patients were negative, giving 95.8% diagnostic sensitivity and 100% specificity. This second-generation RT-QuIC assay markedly improved the speed and sensitivity of detecting prion seeds in CSF specimens from CJD patients. This should enhance prospects for rapid and accurate ante mortem CJD diagnosis. IMPORTANCE A long-standing problem in dealing with various neurodegenerative protein misfolding diseases is early and accurate diagnosis. This issue is particularly important with human prion diseases, such as CJD, because prions are deadly, transmissible, and unusually resistant to decontamination. The recently developed RT-QuIC test allows for highly sensitive and specific detection of CJD in human cerebrospinal fluid and is being broadly implemented as a key diagnostic tool. However, as currently applied, RT-QuIC takes 2.5 to 5 days and misses 11 to 23% of CJD cases. Now, we have markedly improved RT-QuIC analysis of human CSF such that CJD and non-CJD patients can be discriminated in a matter of hours rather than days with enhanced sensitivity. These improvements should allow for much faster, more accurate, and practical testing for CJD. In broader terms, our study provides a prototype for tests for misfolded protein aggregates that cause many important amyloid diseases, such as Alzheimer's, Parkinson's, and tauopathies.", "title": "Rapid and Sensitive RT-QuIC Detection of Human Creutzfeldt-Jakob Disease Using Cerebrospinal Fluid" } ]
933
Pediatric SCD patients with vaso-occlusive crisis show increased morphine use after breathing 80 ppm iNO for 4 hours.
[ { "docid": "14711483", "text": "CONTEXT Vaso-occlusion is central to the painful crises and acute and chronic organ damage in sickle cell disease. Abnormal nitric oxide-dependent regulation of vascular tone, adhesion, platelet activation, and inflammation contributes to the pathophysiology of vaso-occlusion. Nitric oxide may have promise as a mechanism-of-disease-based therapy for treatment of vaso-occlusion. \n OBJECTIVE To explore the efficacy and safety of inhaled nitric oxide (INO) for treatment of vaso-occlusive crisis in pediatric patients. \n DESIGN Prospective, double-blind, placebo-controlled, randomized clinical trial with enrollment between September 1999 and October 2001. \n SETTING Urban, tertiary care children's hospital in the United States. \n PARTICIPANTS Twenty patients aged 10 to 21 years with sickle cell disease and severe acute vaso-occlusive crisis. \n INTERVENTION Patients were randomly assigned to receive INO (80 ppm with 21% final concentration of inspired oxygen; n = 10), or placebo (21% inspired oxygen; n = 10) for 4 hours. \n MAIN OUTCOME MEASURES Change in pain at 4 hours of inhalation compared with preinhalation pain, measured on a 10-cm visual analog scale (VAS); secondary outcome measures were pain over 6 hours, parenteral narcotic use over 24 hours, duration of hospitalization, blood pressure, oxygen saturation, and methemoglobin concentration. \n RESULTS Preinhalation VAS pain scores were similar in the INO and placebo groups (P =.80). The decrease in VAS pain scores at 4 hours was 2.0 cm in the INO group and 1.2 cm in the placebo group (P =.37). Repeated-measures analysis of variance for hourly pain scores showed a 1-cm/h greater reduction in the INO group than the placebo group (P =.02). Morphine use over 6 hours was significantly less in the INO group (mean cumulative use, 0.29 vs 0.44 mg/kg; P =.03) but was not different over 4 hours (0.26 vs 0.32 mg/kg; P =.21) or 24 hours (0.63 vs 0.91 mg/kg; P =.15). Duration of hospitalization was 78 and 100 hours in the INO and placebo groups, respectively (P =.19). No INO toxicity was observed. \n CONCLUSIONS Results of this exploratory study suggest that INO may be beneficial for acute vaso-occlusive crisis. These preliminary results warrant further investigation.", "title": "Preliminary assessment of inhaled nitric oxide for acute vaso-occlusive crisis in pediatric patients with sickle cell disease." } ]
[ { "docid": "29947146", "text": "BACKGROUND Obesity is an epidemic that affects 1 in 3 individuals in the United States, and recent evidence suggests that enteric microbiota may play a significant role in the development of obesity. This study evaluated the association between methanogenic archaea and obesity in human subjects. \n METHODS Subjects with a body mass index (BMI) of 30 kg/m² or higher were prospectively recruited from the weight loss program of a tertiary care medical center. Subjects who met the study's inclusion criteria were asked to complete a questionnaire that included a series of visual analogue scores for bowel symptom severities. Subjects then provided a single end-expiratory breath sample to quantitate methane levels. Bivariate and multivariate analyses were used to determine associations with BMI. \n RESULTS A total of 58 patients qualified for enrollment. Twenty percent of patients (n = 12) had breath test results that were positive for methane (>3 parts per million [ppm]), with a mean breath methane concentration of 12.2±3.1 ppm. BMI was significantly higher in methane-positive subjects (45.2±2.3 kg/m²) than in methane-negative subjects (38.5±0.8 kg/m²; P=.001). Methane-positive subjects also had a greater severity of constipation than methane-negative subjects (21.3±6.4 vs 9.5±2.4; P=.043). Multiple regression analysis illustrated a significant association between BMI and methane, constipation, and antidepressant use. However, methane remained an independent predictor of elevated BMI when controlling for antidepressant use (P<.001) and when controlling for both constipation and antidepressant use (6.55 kg/m² greater BMI; P=.003). \n CONCLUSION This is the first human study to demonstrate that a higher concentration of methane detected by breath testing is a predictor of significantly greater obesity in overweight subjects.", "title": "Intestinal methane production in obese individuals is associated with a higher body mass index." }, { "docid": "23349986", "text": "CONTEXT Dexamethasone is widely used to prevent postoperative nausea and vomiting (PONV) in pediatric tonsillectomy. \n OBJECTIVE To assess whether dexamethasone dose-dependently reduces the risk of PONV at 24 hours after tonsillectomy. \n DESIGN, SETTING, AND PATIENTS Randomized placebo-controlled trial conducted among 215 children undergoing elective tonsillectomy at a major public teaching hospital in Switzerland from February 2005 to December 2007. \n INTERVENTIONS Children were randomly assigned to receive dexamethasone (0.05, 0.15, or 0.5 mg/kg) or placebo intravenously after induction of anesthesia. Acetaminophen-codeine and ibuprofen were given as postoperative analgesia. Follow-up continued until the 10th postoperative day. \n MAIN OUTCOME MEASURES The primary end point was prevention of PONV at 24 hours; secondary end points were decrease in the need for ibuprofen at 24 hours and evaluation of adverse effects. \n RESULTS At 24 hours, 24 of 54 participants who received placebo (44%; 95% confidence interval [CI], 31%-59%) had experienced PONV compared with 20 of 53 (38%; 95% CI, 25%-52%), 13 of 54 (24%; 95% CI, 13%-38%), and 6 of 52 (12%; 95% CI, 4%-23%) who received dexamethasone at 0.05, 0.15, and 0.5 mg/kg, respectively (P<.001 for linear trend). Children who received dexamethasone received significantly less ibuprofen. There were 26 postoperative bleeding episodes in 22 children. Two of 53 (4%; 95% CI, 0.5%-13%) children who received placebo had bleeding compared with 6 of 53 (11%; 95% CI, 4%-23%), 2 of 51 (4%; 95% CI, 0.5%-13%), and 12 of 50 (24%; 95% CI, 13%-38%) who received dexamethasone at 0.05, 0.15, and 0.5 mg/kg, respectively (P = .003). Dexamethasone, 0.5 mg/kg, was associated with the highest bleeding risk (adjusted relative risk, 6.80; 95% CI, 1.77-16.5). Eight children had to undergo emergency reoperation because of bleeding, all of whom had received dexamethasone. The trial was stopped early for safety reasons. \n CONCLUSION In this study of children undergoing tonsillectomy, dexamethasone decreased the risk of PONV dose dependently but was associated with an increased risk of postoperative bleeding. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00403806.", "title": "Dexamethasone and risk of nausea and vomiting and postoperative bleeding after tonsillectomy in children: a randomized trial." }, { "docid": "25098790", "text": "Inefficient inhaler technique is a common problem resulting in poor drug delivery, decreased disease control and increased inhaler use. The aim of this study was to assess patients' use of different inhaler devices and to ascertain whether patient preference is indicative of ease of use and whether current inhaler use has any influence on either technique or preference. We also wished to define the most appropriate method of selecting an inhaler for a patient, taking into account observed technique and device cost. One hundred patients received instruction, in randomized order, in the use of seven different inhaler devices. After instruction they were graded (using predetermined criteria) in their inhaler technique. After assessment patients were asked which three inhalers they most preferred and which, if any, they currently used. Technique was best using the breath-actuated inhalers; the Easi-Breathe and Autohaler, with 91% seen to have good technique. The pressurized metered dose inhaler (pMDI) fared poorly, in last position with only 79% of patients showing good technique, despite being the most commonly prescribed. The Easi-Breathe was by far the most popular device with the patients. The Autohaler came in second position closely followed by the Clickhaler and Accuhaler. The majority of patients (55%) currently used the pMDI but the pMDI did not score highly for preference or achieve better grades than the other devices. Only 79% of patients tested could use the pMDI effectively even after expert instruction yet it continues to be commonly prescribed. This has important repercussions for drug delivery and hence disease control. Prescribing a patient's preferred device increases cost but can improve efficiency and therefore be cost effective in the long term. Using an inexpensive device (pMDI) when technique is good and the patient's preferred inhaler device when not is one way to optimize delivery and may even reduce cost.", "title": "Inappropriate inhaler use: assessment of use and patient preference of seven inhalation devices. EDICI." }, { "docid": "2360905", "text": "PURPOSE To define copy number alterations and gene expression signatures underlying pediatric high-grade glioma (HGG). \n PATIENTS AND METHODS We conducted a high-resolution analysis of genomic imbalances in 78 de novo pediatric HGGs, including seven diffuse intrinsic pontine gliomas, and 10 HGGs arising in children who received cranial irradiation for a previous cancer using single nucleotide polymorphism microarray analysis. Gene expression was analyzed with gene expression microarrays for 53 tumors. Results were compared with publicly available data from adult tumors. \n RESULTS Significant differences in copy number alterations distinguish childhood and adult glioblastoma. PDGFRA was the predominant target of focal amplification in childhood HGG, including diffuse intrinsic pontine gliomas, and gene expression analyses supported an important role for deregulated PDGFRalpha signaling in pediatric HGG. No IDH1 hotspot mutations were found in pediatric tumors, highlighting molecular differences with adult secondary glioblastoma. Pediatric and adult glioblastomas were clearly distinguished by frequent gain of chromosome 1q (30% v 9%, respectively) and lower frequency of chromosome 7 gain (13% v 74%, respectively) and 10q loss (35% v 80%, respectively). PDGFRA amplification and 1q gain occurred at significantly higher frequency in irradiation-induced tumors, suggesting that these are initiating events in childhood gliomagenesis. A subset of pediatric HGGs showed minimal copy number changes. \n CONCLUSION Integrated molecular profiling showed substantial differences in the molecular features underlying pediatric and adult HGG, indicating that findings in adult tumors cannot be simply extrapolated to younger patients. PDGFRalpha may be a useful target for pediatric HGG, including diffuse pontine gliomas.", "title": "Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease." }, { "docid": "14474178", "text": "The objective of the present study was to determine if chicken melanoma-differentiation-associated gene 5 (MDA5) senses infectious bursal disease virus infection to induce innate immunity that bridges to adaptive immunity. During IBDV infection in HD11 cells, IBDV titers and RNA loads increased up to 3.4 × 107 plaque-forming units (PFU)/mL and 1114 ng/µL, respectively, at 24 hours postinfection (hpi). IBDV infection in HD11 cells induced significantly upregulated (p < 0.05) expression levels of chicken MDA5 (59-fold), interferon-β (IFN-β) (693-fold), dsRNA-dependent protein kinase (PKR) (4-fold), 2’, 5’-oligoadenylate synthetase (OAS) (286-fold), myxovirus resistance gene (Mx) (22-fold), interleukin-1β (IL-1β) (5-fold), IL-6 (146-fold), IL-8 (4-fold), IL-10 (4-fold), inducible nitric oxide synthase (iNOS) (15-fold), and major histocompatibility complex class I (MHC class I) (4-fold). Nitric oxide production in the culture supernatants increased significantly (p < 0.05) up to 6.5 μM at 24 hpi. The expressed chMDA5 and IBDV-derived dsRNA were localized in the cytoplasm of HD11 cells during IBDV infection. ChMDA5-knockdown HD11 cells had significantly higher (p < 0.05) IBDV RNA loads at 24 hpi and significantly lower (p < 0.05) nitric oxide production and expression levels of chicken MDA5, IFN-β, PKR, OAS, Mx, IL-1β, IL-6, IL-8, IL-12(p40), IL-18, IL-10, iNOS, MHC class I and CD86 at 24 hpi. In addition, chMDA5 overexpression in HD11 cells resulted in significantly reduced (p < 0.05) IBDV titers and RNA loads and significantly increased (p < 0.05) nitric oxide production at 16 and 24 hpi. It also resulted in significantly higher (p < 0.05) expression levels of chicken MDA5, IFN-β, PKR, OAS, Mx, IL-1β, IL-6, IL-8, IL-12(p40), IL-10 and iNOS at 2 hpi. In conclusion, the results indicate that chMDA5 senses IBDV infection in chicken macrophages, and this is associated with IBDV-induced expression of IFN-β and initiation of an innate immune response that in turn activates the adaptive immune response and limits IBDV replication.", "title": "Role of chicken melanoma differentiation-associated gene 5 in induction and activation of innate and adaptive immune responses to infectious bursal disease virus in cultured macrophages" }, { "docid": "46743299", "text": "Chronic exercise upregulates endothelial nitric oxide synthase (eNOS) gene expression. Whether the expression of inducible nitric oxide synthase (iNOS) is affected by exercise is unknown. We therefore investigated the effects of chronic exercise on iNOS and eNOS expression in isolated rat aortic endothelial and smooth muscle cells separately. Five-week-old male Wistar rats were randomly divided into control and exercise groups. After 10 weeks of running training, animals were sacrificed under ether anesthesia. The standard curve quantitative competitive reverse transcriptase-polymerase chain reaction method was used to quantify NOS mRNA expression in isolated endothelial/smooth muscle cells. To evaluate the functional role of iNOS, we examined phenylephrine-induced vascular responses with or without pretreatment with aminoguanidine. We found that (1) expression of iNOS and eNOS mRNA in endothelial cells was increased by chronic exercise and (2) chronic exercise blunted phenylephrine-induced vascular responses, probably by increasing NO release via iNOS. Our results show that chronic exercise increases both iNOS and eNOS gene expression in endothelium. These alterations may be partially responsible for the change in vascular response after exercise.", "title": "Chronic Exercise Increases Both Inducible and Endothelial Nitric Oxide Synthase Gene Expression in Endothelial Cells of Rat Aorta" }, { "docid": "10984005", "text": "CONTEXT More than 1.5 million US adults use stimulants and other medications labeled for treatment of attention-deficit/hyperactivity disorder (ADHD). These agents can increase heart rate and blood pressure, raising concerns about their cardiovascular safety. \n OBJECTIVE To examine whether current use of medications prescribed primarily to treat ADHD is associated with increased risk of serious cardiovascular events in young and middle-aged adults. \n DESIGN, SETTING, AND PARTICIPANTS Retrospective, population-based cohort study using electronic health care records from 4 study sites (OptumInsight Epidemiology, Tennessee Medicaid, Kaiser Permanente California, and the HMO Research Network), starting in 1986 at 1 site and ending in 2005 at all sites, with additional covariate assessment using 2007 survey data. Participants were adults aged 25 through 64 years with dispensed prescriptions for methylphenidate, amphetamine, or atomoxetine at baseline. Each medication user (n = 150,359) was matched to 2 nonusers on study site, birth year, sex, and calendar year (443,198 total users and nonusers). \n MAIN OUTCOME MEASURES Serious cardiovascular events, including myocardial infarction (MI), sudden cardiac death (SCD), or stroke, with comparison between current or new users and remote users to account for potential healthy-user bias. \n RESULTS During 806,182 person-years of follow-up (median, 1.3 years per person), 1357 cases of MI, 296 cases of SCD, and 575 cases of stroke occurred. There were 107,322 person-years of current use (median, 0.33 years), with a crude incidence per 1000 person-years of 1.34 (95% CI, 1.14-1.57) for MI, 0.30 (95% CI, 0.20-0.42) for SCD, and 0.56 (95% CI, 0.43-0.72) for stroke. The multivariable-adjusted rate ratio (RR) of serious cardiovascular events for current use vs nonuse of ADHD medications was 0.83 (95% CI, 0.72-0.96). Among new users of ADHD medications, the adjusted RR was 0.77 (95% CI, 0.63-0.94). The adjusted RR for current use vs remote use was 1.03 (95% CI, 0.86-1.24); for new use vs remote use, the adjusted RR was 1.02 (95% CI, 0.82-1.28); the upper limit of 1.28 corresponds to an additional 0.19 events per 1000 person-years at ages 25-44 years and 0.77 events per 1000 person-years at ages 45-64 years. \n CONCLUSIONS Among young and middle-aged adults, current or new use of ADHD medications, compared with nonuse or remote use, was not associated with an increased risk of serious cardiovascular events. Apparent protective associations likely represent healthy-user bias.", "title": "ADHD medications and risk of serious cardiovascular events in young and middle-aged adults." }, { "docid": "33884866", "text": "OBJECTIVE The sphingosine-1-phosphate (S1P) receptor agonist fingolimod (FTY720), that has shown efficacy in advanced multiple sclerosis clinical trials, decreases reperfusion injury in heart, liver, and kidney. We therefore tested the therapeutic effects of fingolimod in several rodent models of focal cerebral ischemia. To assess the translational significance of these findings, we asked whether fingolimod improved long-term behavioral outcomes, whether delayed treatment was still effective, and whether neuroprotection can be obtained in a second species. \n METHODS We used rodent models of middle cerebral artery occlusion and cell-culture models of neurotoxicity and inflammation to examine the therapeutic potential and mechanisms of neuroprotection by fingolimod. \n RESULTS In a transient mouse model, fingolimod reduced infarct size, neurological deficit, edema, and the number of dying cells in the core and periinfarct area. Neuroprotection was accompanied by decreased inflammation, as fingolimod-treated mice had fewer activated neutrophils, microglia/macrophages, and intercellular adhesion molecule-1 (ICAM-1)-positive blood vessels. Fingolimod-treated mice showed a smaller infarct and performed better in behavioral tests up to 15 days after ischemia. Reduced infarct was observed in a permanent model even when mice were treated 4 hours after ischemic onset. Fingolimod also decreased infarct size in a rat model of focal ischemia. Fingolimod did not protect primary neurons against glutamate excitotoxicity or hydrogen peroxide, but decreased ICAM-1 expression in brain endothelial cells stimulated by tumor necrosis factor alpha. \n INTERPRETATION These findings suggest that anti-inflammatory mechanisms, and possibly vasculoprotection, rather than direct effects on neurons, underlie the beneficial effects of fingolimod after stroke. S1P receptors are a highly promising target in stroke treatment.", "title": "Fingolimod provides long-term protection in rodent models of cerebral ischemia." }, { "docid": "5152028", "text": "BACKGROUND Homocysteine is a risk factor for coronary artery disease (CAD), although a causal relation remains to be proven. The importance of determining direct causality rests in the fact that plasma homocysteine can be safely and inexpensively reduced by 25% with folic acid. This reduction is maximally achieved by doses of 0.4 mg/d. High-dose folic acid (5 mg/d) improves endothelial function in CAD, although the mechanism is controversial. It has been proposed that improvement occurs through reduction in total (tHcy) or free (non-protein bound) homocysteine (fHcy). We investigated the effects of folic acid on endothelial function before a change in homocysteine in patients with CAD. \n METHODS AND RESULTS A randomized, placebo-controlled study of folic acid (5 mg/d) for 6 weeks was undertaken in 33 patients. Endothelial function, assessed by flow-mediated dilatation (FMD), was measured before, at 2 and 4 hours after the first dose of folic acid, and after 6 weeks of treatment. Plasma folate increased markedly by 1 hour (200 compared with 25.8 nmol/L; P<0.001). FMD improved at 2 hours (83 compared with 47 microm; P<0.001) and was largely complete by 4 hours (101 compared with 51 microm; P<0.001). tHcy did not significantly differ acutely (4-hour tHcy, 9.56 compared with 9.79 micromol/L; P=NS). fHcy did not differ at 3 hours but was slightly reduced at 4 hours (1.55 compared with 1.78 micromol/L; P=0.02). FMD improvement did not correlate with reductions in either fHcy or tHcy at any time. \n CONCLUSIONS These data suggest that folic acid improves endothelial function in CAD acutely by a mechanism largely independent of homocysteine.", "title": "Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering." }, { "docid": "8398627", "text": "PURPOSE The goal of this study is to look at the geographic growth patterns of community-acquired methicillin-resistant Staphylococcus aureus (MRSA) infections in our local region and to determine if specific geographic areas are at increased risk. \n METHODS After Institution Review Board approval (132603-3), a retrospective chart review was conducted of 614 patients who underwent incision and drainage of an abscess by a single pediatric surgical practice from January 2004 to December 2008. In addition, previously published data from 195 patients who underwent incision and drainage of an abscess from January 2000 to December 2003 were reviewed. \n RESULTS The most commonly cultured organism found in the pediatric population undergoing incision and drainage was S aureus (n = 388), of which 258 (66%) were methicillin resistant. This is a 21% increase from the rate of MRSA cultures identified from 2000 to 2003. Geographic information system space-time analysis showed that a cluster of 14 MRSA cases was located within a 1.44-km radius between 2000 and 2003, and 5 separate clusters of more than 20 MRSA infection cases each were identified in 3 separate cities over the 8-year time span using geographic information system spatial analysis (P value = .001). \n CONCLUSION Methicillin-resistant S aureus has now become the most prevalent organism isolated from cultures of community-acquired abscesses requiring incision and drainage in the pediatric population in our local region. Significant clustering of MRSA infections has appeared in several different cities within our geographic region.", "title": "Geographic distribution of community-acquired methicillin-resistant Staphylococcus aureus soft tissue infections." }, { "docid": "10761515", "text": "In 30 patients with cancer of the large bowel, 24 (80%) had detectable levels of methane in their breath, compared with 25 (39%) of 64 patients with non-malignant large-bowel disease and 83 (40%) of 208 subjects without large-bowel disease. These findings suggest that there may be a difference in anaerobic intestinal flora between patients with cancer of the large bowel and those without the disease. This difference may antedate the development of the tumour or, alternatively, result from the tumour.", "title": "Breath-methane in patients with cancer of the large bowel." }, { "docid": "4678846", "text": "CONTEXT The antioxidant acetylcysteine prevents acute contrast nephrotoxicity in patients with impaired renal function who undergo computed tomography scanning. However, its role in coronary angiography is unclear. \n OBJECTIVE To determine whether oral acetylcysteine prevents acute deterioration in renal function in patients with moderate renal insufficiency who undergo elective coronary angiography. \n DESIGN AND SETTING Prospective, randomized, double-blind, placebo-controlled trial conducted from May 2000 to December 2001 at the Grantham Hospital at the University of Hong Kong. \n PARTICIPANTS Two hundred Chinese patients aged mean (SD) 68 (6.5) years with stable moderate renal insufficiency (creatinine clearance <60 mL/min [1.00 mL/s]) who were undergoing elective coronary angiography with or without intervention. \n INTERVENTION Participants were randomly assigned to receive oral acetylcysteine(600 mg twice per day; n = 102) or matching placebo tablets (n = 98) on the day before and the day of angiography. All patients received low-osmolality contrast agent. \n MAIN OUTCOME MEASURES Occurrence of more than a 25% increase in serum creatinine level within 48 hours after contrast administration; change in creatinine clearance and serum creatinine level. \n RESULTS Twelve control patients (12%) and 4 acetylcysteine patients (4%) developed a more than 25% increase in serum creatinine level within 48 hours after contrast administration (relative risk, 0.32; 95% confidence interval [CI], 0.10-0.96; P =.03). Serum creatinine was lower in the acetylcysteine group (1.22 mg/dL [107.8 micromol/L]; 95% CI, 1.11-1.33 mg/dL vs 1.38 mg/dL [122.9 micromol/L]; 95% CI, 1.27-1.49 mg/dL; P =.006) during the first 48 hours after angiography. Acetylcysteine treatment significantly increased creatinine clearance from 44.8 mL/min (0.75 mL/s) (95% CI, 42.7-47.6 mL/min) to 58.9 mL/min (0.98 mL/s) (95% CI, 55.6-62.3 mL/min) 2 days after the contrast administration (P<.001). The increase was not significant in the control group (from 42.1 to 44.1 mL/min [0.70 to 0.74 mL/s]; P =.15). The benefit of acetylcysteine was consistent among various patient subgroups and persistent for at least 7 days. There were no major treatment-related adverse events. \n CONCLUSION Acetylcysteine protects patients with moderate chronic renal insufficiency from contrast-induced deterioration in renal function after coronary angiographic procedures, with minimal adverse effects and at a low cost.", "title": "Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial." }, { "docid": "2842550", "text": "BACKGROUND Platelet deposition and aggregation are central to the pathogenesis of ischemic complications of acute coronary syndromes (ACS). Pharmacodynamic effects of the platelet glycoprotein IIb/IIIa antagonist eptifibatide have been delineated in healthy subjects but not in patients with ACS. We assessed effects of eptifibatide on ex vivo platelet aggregation in patients enrolled in the Platelet glycoprotein IIb/IIIa in Unstable angina: Receptor Suppression Using Integrilin (eptifibatide) Therapy (PURSUIT) trial of ACS. \n METHODS AND RESULTS Patients were randomly assigned to an intravenous bolus (180 microgram/kg) and 72-hour infusion of eptifibatide (2.0 microgram/kg per minute, n=48) or placebo (n=50). We assessed correlations of plasma eptifibatide levels with receptor occupancy and inhibition of ex vivo platelet aggregation at 5 minutes and 1, 4, 24, 48, and 72 hours during treatment and 4 and 8 hours after termination of infusion. Blood was collected in buffered citrate and D-phenylalanyl-L-prolyl-L-arginine chloromethylketone anticoagulants. Although eptifibatide produced profound, prolonged inhibition of platelet aggregation during therapy, aggregation appeared to recover partially by 4 hours after the bolus. The aggregation response was greater with thrombin receptor agonist peptide versus ADP stimulation; inhibition of platelet aggregation was greater in blood samples anticoagulated with citrate versus D-phenylalanyl-L-prolyl-L-arginine chloromethylketone (PPACK). Plasma eptifibatide levels correlated significantly with receptor occupancy but not with inhibition of platelet aggregation. \n CONCLUSIONS A bolus and infusion of eptifibatide inhibits platelet aggregation profoundly in patients with ACS and is followed by brief, partial recovery. These results enhance our understanding of the relation between pharmacodynamic and clinical effects of eptifibatide in such patients and may have important implications for its use in percutaneous interventions.", "title": "Pharmacodynamics and pharmacokinetics of eptifibatide in patients with acute coronary syndromes: prospective analysis from PURSUIT." }, { "docid": "24097933", "text": "Paraquat poisoning is characterized by multiorgan failure and pulmonary fibrosis with respiratory failure. Multiorgan failure with circulatory collapse is a major cause of early death within 3 days of paraquat ingestion. Recent studies suggested that continuous venovenous hemofiltration (CVVH) had a role in the treatment of multiorgan failure by promoting hemodynamic stability. We therefore evaluated the effect of prophylactic CVVH in 80 patients with paraquat poisoning (August 1996 to February 1999). The amount ingested was 2.1 +/- 1.0 mouthfuls (as 20% concentrate). All patients were treated with hemoperfusion (HP; duration, 6.4 +/- 3.0 hours) within 24 hours of ingestion and then randomly assigned to the HP-alone or HP-CVVH group. Forty-four patients underwent HP only, and 36 patients underwent CVVH (duration, 57.4 +/- 31.3 hours; ultrafiltration volume, 40.2 +/- 4.8 L/d) after HP. Although time to death after ingestion was significantly longer in the HP-CVVH than HP group (5.0 +/- 5.0 versus 2.5 +/- 2.1 days; P < 0.05), there was no difference in mortality rates between the two groups (66.7% versus 63.6%; P = 0.82). In the HP group, early circulatory collapse was a major cause of death compared with the HP-CVVH group, in which late respiratory failure was a major cause of death. In conclusion, prophylactic CVVH after HP prevented early death caused by circulatory collapse and prolonged survival time. However, it could not prevent late death caused by respiratory failure and did not provide a survival benefit in acute paraquat poisoning.", "title": "Failure of continuous venovenous hemofiltration to prevent death in paraquat poisoning." }, { "docid": "39985001", "text": "We retrospectively studied the long-term (2-year) outcome of 50 consecutive patients admitted to our inpatient headache program because of chronic daily headache (CDH) associated with the overuse of analgesics, ergotamine, or both. They had been detoxified, given repetitive intravenous dihydroergotamine (IV DHE) and prophylactic medications as part of the program, and had become headache-free on this regimen. At the time of admission, 37 of the 50 patients had transformed migraine (TM), 12 had new daily persistent headache (NDPH), and 1 had chronic tension-type headache; 29 of the patients with TM, 7 of those with NDPH, and the single patient with chronic tension-type headache had coexistent migraine. Substances abused, alone or in combination, included: caffeine in 39 patients (av. 441 mg/d), acetaminophen in 32 (av. 2187 mg/d), aspirin in 24 (av. 1807 mg/d), ibuprofen in 9 (av. 1156 mg/d), narcotics in 7 (av. 10.1 mg morphine equivalents/d) and ergotamine in 11 (av. 2.3 mg/d). Twenty patients were using preventive medication at the time of admission. Follow-up evaluations were performed at 3, 6, 12, and 24 months after discharge. Forty-three patients were analyzed at 3 months. Of these, 44% had an excellent or good result and 28% a fair result; 3 were overusing analgesics. At 24 months, 39 patients were analyzed: 59% had a good or excellent result and 28% a fair result; 5 were overusing analgesics, 4 of whom were doing poorly.(ABSTRACT TRUNCATED AT 250 WORDS)", "title": "Chronic daily headache: long-term prognosis following inpatient treatment with repetitive IV DHE." }, { "docid": "6993046", "text": "Exertional fatigue and dyspnoea limit the daily activities of patients with pulmonary arterial hypertension 1. These symptoms are usually explained by the inability of the overloaded right ventricle to perfuse the lungs and to adapt systemic oxygen delivery to oxygen demand. Accordingly, pulmonary hypertension patients present with reductions in peak oxygen uptake, anaerobic threshold, oxygen pulse, ventilatory efficiency and 6-min walk distance 2–8. This ergospirometric profile is strikingly similar to that of congestive heart failure 8–12, further supporting the notion of impaired cardiac output adaptation to peripheral oxygen requirements as the main cause of decreased exercise capacity. However, in both pulmonary hypertension and heart failure, ergospirometric variables and walk distances are better correlated to functional class and prognosis than to haemodynamic function 3, 6, 7, 10–12. In addition, impaired skeletal muscle function has been repeatedly reported in heart failure, fuelling a “muscle hypothesis” relating dyspnoea and fatigue symptoms to skeletal muscle metaboreceptor and/or ergoreceptor reflexes 13. The muscle hypothesis implies a persistent sympathetic nervous system activation, which has indeed been shown to occur in heart failure 14 and also, more recently, in pulmonary hypertension 15. Until now, there have been no studies on skeletal muscle function in pulmonary arterial hypertension. In the present issue of the European Respiratory Journal , Meyer et al. 16 report data suggesting that respiratory muscle strength is decreased in pulmonary arterial hypertension. In a prospective study on 37 patients with idiopathic pulmonary hypertension, significant decreases in maximal inspiratory (MIP) and expiratory pressures (MEP) were measured, together with an increased mouth occlusion pressure within first 0.1 s of inspiration ( P 0.1), suggesting inadequate muscle …", "title": "Breathing more with weaker respiratory muscles in pulmonary arterial hypertension." }, { "docid": "35766603", "text": "PURPOSE To determine the toxicity and the therapeutic efficacy of the combination of the recombinant tumor necrosis factor alpha (rTNF alpha), recombinant interferon gamma (rIFN-gamma), and melphalan, we designed a protocol using isolation limb perfusion (ILP) with hyperthermia for in-transit metastases of melanoma and recurrent sarcoma. The triple combination was chosen because of the reported synergistic antitumor effect of rTNF alpha with IFN-gamma and of rTNF alpha with alkylating agents. \n PATIENTS AND METHODS Twenty-three patients received a total of 25 ILPs with the triple combination. There were 19 females and four males with either multiple progressive in-transit melanoma metastases of the extremities (stage IIIa or IIIab; 19 patients) or recurrent soft tissue sarcoma (five). The rTNF alpha was injected as a bolus in the arterial line, and total dose ranged between 2 and 4 mg, under hyperthermic conditions (40 degrees C to 40.5 degrees C) for 90 minutes. The rIFN-gamma was given subcutaneously (SC) on days -2 and -1 and in the perfusate, with rTNF alpha at the dose of 0.2 mg. Melphalan (Alkeran; Burroughs Wellcome Co, London, England) was administered in the perfusate at 40 micrograms/mL. RESULTS Toxicity observed during three ILPs in a pilot study with rTNF alpha included only two severe toxicities: one severe hypotension with tachycardia and transient oliguria and one moderate hypotension for 4 hours followed by severe kidney failure with complete recovery on day 29. In all 18 ILPs performed in the triple combination protocol, the patients received continuous infusion dopamine at 3 micrograms/kg/min from the start of ILP and for 72 hours and showed only mild hypotension and transient chills and temperature. Regional toxicity attributable to rTNF alpha was minimal. There have been 11 cases with hematologic toxicity consisting of neutropenia (one grade 4 and one grade 3) and neutropenia with thrombocytopenia (one grade 4 and three grade 2). Twelve patients had been previously treated with melphalan in ILP (11) or with cisplatin (one). The 23 patients are assessable: there have been 21 complete responses (CRs; range, 4 to 29 months; 89%), two partial responses (PRs; range, 2 to 3 months), and no failures. Overall disease-free survival and survival have been 70% and 76%, respectively, at 12 months. In all cases, softening of the nodules was obvious within 3 days after ILP and time to definite response ranged between day 5 and 30. \n CONCLUSION This preliminary analysis of a phase II study suggests that high-dose rTNF alpha can be administered with acceptable toxicity by ILP with dopamine and hyperhydration. Tumor responses can be evidenced in melanoma and sarcoma. Furthermore, combination of rTNF alpha, rIFN-gamma, and melphalan seems to achieve high efficacy with minimal toxicity, even after failure of prior therapy with melphalan alone.", "title": "High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma." }, { "docid": "17097974", "text": "Nitric oxide (NO) is produced in the vascular endothelium and is a potent vasodilator substance that participates in the regulation of local vascular tone. Exercise causes peculiar changes in systemic and regional blood flow, i.e., an increase of systemic blood flow and a redistribution of local tissue blood flow, by which the blood flow is greatly increased in the working muscles, whereas it is decreased in some organs such as the kidney and intestine. Thus we hypothesized that exercise causes a tissue-specific change of NO production in some internal organs. We studied whether exercise affects expression of NO synthase (NOS) mRNA and protein, NOS activity, and tissue level of nitrite/nitrate (stable end products of NO) in the kidneys (in which blood flow during exercise is decreased) and lungs (in which blood flow during exercise is increased with the increase of cardiac output) of rat. Rats ran on a treadmill for 45 min at a speed of 25 m/min. Immediately after this exercise, kidneys and lungs were quickly removed. Control rats remained at rest during this 45-min period. Expression of endothelial NOS (eNOS) mRNA in the kidneys was markedly lower in exercise rats than in control rats, whereas that in the lungs was significantly higher in exercise rats than in control rats. Western blot analysis confirmed down- and upregulation of eNOS protein in the kidney and lung, respectively, after exercise. On the other hand, neither expression of neuronal NOS (nNOS) mRNA and nNOS protein nor inducible NOS (iNOS) mRNA and iNOS protein in the kidneys and lungs differed between exercise and control rats. NOS activity in the kidney was significantly lower in exercise rats than in control rats, whereas that in the lung was significantly higher in exercise rats than in control rats. On the other hand, the iNOS activity in the kidneys and lungs did not differ between exercise rats and control rats. Tissue nitrite/nitrate level in the kidneys was markedly lower in exercise rats, whereas that in the lungs was significantly higher in exercise rats. The present results show that production of NO is markedly and tissue-specifically changed in the kidney and lung by exercise.", "title": "Exercise causes a tissue-specific change of NO production in the kidney and lung." }, { "docid": "1122279", "text": "BACKGROUND Endothelium-dependent modulation of coronary tone is impaired in the collateral-dependent coronary microcirculation. We used a porcine model of chronic coronary occlusion and collateral development to evaluate the hypothesis that exercise training enhances endothelium-mediated relaxation and increases endothelial nitric oxide synthase (ecNOS) mRNA levels of collateral-dependent microvasculature. \n METHODS AND RESULTS Adult female miniature swine were subjected to chronic, progressive ameroid occlusion of the proximal left circumflex coronary artery (LCx); after 2 months, animals were randomly exposed to 16-week exercise-training (EX group; treadmill running) or sedentary (SED group; cage confinement) protocols. After completion of EX or SED programs, coronary arterioles ( approximately 100 microm in diameter) were isolated from collateral-dependent LCx (distal to occlusion) and nonoccluded left anterior descending coronary artery (LAD) regions of each heart. Arterioles were studied by in vitro videomicroscopy or frozen for ecNOS mRNA analysis (RT-PCR techniques). Relaxation to the endothelium-dependent vasodilator bradykinin was decreased (P<0.05) in arterioles isolated from collateral-dependent LCx versus nonoccluded LAD regions of SED animals. Bradykinin-mediated relaxation, however, was not different in LCx versus LAD arterioles isolated from EX animals. Nitroprusside-induced relaxation was unaffected by either chronic occlusion or exercise. Importantly, ecNOS mRNA expression was significantly decreased in arterioles isolated from LCx versus LAD regions of SED animals. After training, ecNOS mRNA expression was not different between LAD and LCx arterioles. \n CONCLUSIONS These data indicate that exercise training enhances bradykinin-mediated relaxation of collateral-dependent LCx arterioles isolated after chronic coronary occlusion, most likely because of effects on ecNOS mRNA expression and increased production of NO.", "title": "Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training." } ]
934
Perigenital skin is not the primary site of HIV acquisition.
[ { "docid": "8563659", "text": "To explore the mechanism by which herpes simplex virus (HSV)-2 infection is related to HIV-1 acquisition, we conducted in situ analysis of the cellular infiltrate from sequential biopsies of HSV-2 lesions from patients on and off antiviral therapy. CD4(+) and CD8(+) T cells and a mixed population of plasmacytoid and myeloid dendritic cells (DCs), including cells expressing the C-type lectin receptor DC-SIGN, persisted at sites of HSV-2 reactivation for months after healing, even with daily antiviral therapy. The CD4(+) T cells that persisted reacted to HSV-2 antigen, were enriched for expression of the chemokine receptor CCR5, and were contiguous to DCs expressing the interleukin-3 receptor CD123 or DC-SIGN. Ex vivo infection with a CCR5-tropic strain of HIV-1 revealed greater concentrations of integrated HIV-1 DNA in cells derived from healed genital lesion biopsies than in cells from control skin biopsies. The persistence and enrichment of HIV receptor-positive inflammatory cells in the genitalia help explain the inability of anti-HSV-2 therapy to reduce HIV acquisition.", "title": "Persistence of HIV-1 Receptor-Positive Cells after HSV-2 Reactivation: A Potential Mechanism for Increased HIV-1 Acquisition" } ]
[ { "docid": "28821565", "text": "To prevent acquisition of HIV through oral sex, drugs used for preexposure prophylaxis (Prep) need to diffuse in saliva. We measured tenofovir (TFV) and emtricitabine (FTC) concentrations simultaneously in the plasma and saliva of 41 HIV-infected patients under stable antiretroviral treatment. Mean ratios of saliva/plasma concentration were 3% (±4%) and 86.9% (±124%) for TFV and FTC, respectively. Tenofovir disoproxil fumarate (TDF) should be used in combination with FTC to prevent oral acquisition of HIV.", "title": "Concentrations of tenofovir and emtricitabine in saliva: implications for preexposure prophylaxis of oral HIV acquisition." }, { "docid": "11238951", "text": "Kaposi's sarcoma-associated herpesvirus (KSHV), also termed human herpesvirus type 8, is consistently identified in Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. Here we report four cases of KSHV-bearing solid lymphomas that occurred in AIDS patients (cases 1 to 3) and in a human immunodeficiency virus (HIV)-seronegative person (case 4). The patients presented extranodal masses in the abdomen (cases 1, 3, and 4) or skin (case 2), and nodal involvement, together with Kaposi's sarcoma (case 3). The gastrointestinal tract was involved in two patients (cases 1 and 3). The patients did not develop a lymphomatous effusion. KSHV was detected in the tumor cells of all cases by immunohistochemistry and by polymerase chain reaction. Epstein-Barr virus was detected in two of the HIV-related cases. All KSHV-positive solid lymphomas exhibited PEL-like cell morphology. To investigate the relationship of these disorders to PEL and to other AIDS-associated diffuse large cell lymphomas, KSHV-positive solid lymphomas were tested for the expression of a set of genes that were previously shown by gene profiling analysis to define PEL tumor cells. The results showed that expression of this set of genes in KSHV-positive lymphomas is similar to that of PEL but distinct from KSHV-negative AIDS-associated diffuse large cell lymphomas. Because pathobiological features of KSHV-positive solid lymphomas closely mimic those of PEL, our results suggest that KSHV-positive solid lymphomas should be considered as a tissue-based variant of classical PEL, irrespective of HIV status.", "title": "Kaposi's sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma." }, { "docid": "24082820", "text": "Drug concentrations associated with protection from HIV-1 acquisition have not been determined. We evaluated drug concentrations among men who have sex with men in a substudy of the iPrEx trial (1). In this randomized placebo-controlled trial, daily oral doses of emtricitabine/tenofovir disoproxil fumarate were used as pre-exposure prophylaxis (PrEP) in men who have sex with men. Drug was detected less frequently in blood plasma and in viable cryopreserved peripheral blood mononuclear cells (PBMCs) in HIV-infected cases at the visit when HIV was first discovered compared with controls at the matched time point of the study (8% versus 44%; P < 0.001) and in the 90 days before that visit (11% versus 51%; P < 0.001). An intracellular concentration of the active form of tenofovir, tenofovir-diphosphate (TFV-DP), of 16 fmol per million PBMCs was associated with a 90% reduction in HIV acquisition relative to the placebo arm. Directly observed dosing in a separate study, the STRAND trial, yielded TFV-DP concentrations that, when analyzed according to the iPrEx model, corresponded to an HIV-1 risk reduction of 76% for two doses per week, 96% for four doses per week, and 99% for seven doses per week. Prophylactic benefits were observed over a range of doses and drug concentrations, suggesting ways to optimize PrEP regimens for this population.", "title": "Emtricitabine-tenofovir concentrations and pre-exposure prophylaxis efficacy in men who have sex with men." }, { "docid": "3512154", "text": "CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages.", "title": "CRISPR adaptation biases explain preference for acquisition of foreign DNA" }, { "docid": "437924", "text": "As the global incidence of HIV exceeds 2 million new infections annually, effective interventions to decrease HIV transmission are needed. Randomized, placebo-controlled studies have demonstrated that daily oral antiretroviral pre-exposure prophylaxis (PrEP) with a fixed-dose combination tablet containing tenofovir disoproxil fumarate and emtricitabine can significantly reduce HIV incidence among diverse at-risk populations. In these studies, the efficacy of PrEP was correlated with levels of adherence. Official guidelines recommend provision of PrEP to people at greatest risk of HIV acquisition, and demonstration projects suggest that high levels of uptake and adherence are possible outside of controlled studies. However, several potential barriers to implementing PrEP remain. These challenges include low awareness and utilization of PrEP by at-risk individuals, uncertainty about adherence in ‘real-world’ settings, the majority of healthcare providers being untrained in PrEP provision, limited data about potential adverse effects from long-term use of tenofovir–emtricitabine, high costs of PrEP medications, and stigma associated with PrEP use and the behaviors that would warrant PrEP. Innovative pharmacologic chemoprophylactic approaches could provide solutions to some of these challenges. Less-than-daily oral dosing regimens and long-acting injectable medications could reduce pill burdens and facilitate adherence, and local delivery of PrEP medications to genital compartments via gels, rings and films may limit systemic drug exposure and potential toxicities. As the portfolio of chemoprophylactic agents and delivery systems expands to meet the diverse sexual health needs and product preferences of individuals who may benefit from PrEP, it is hoped that antiretroviral chemoprophylaxis could become an acceptable, feasible, and highly effective addition to existing HIV prevention strategies.", "title": "Pre-Exposure Prophylaxis to Prevent HIV Infection: Current Status, Future Opportunities and Challenges" }, { "docid": "45461275", "text": "BACKGROUND PEPFAR, national governments, and other stakeholders are investing unprecedented resources to provide HIV treatment in developing countries. This study reports empirical data on costs and cost trends in a large sample of HIV treatment sites. \n DESIGN In 2006-2007, we conducted cost analyses at 43 PEPFAR-supported outpatient clinics providing free comprehensive HIV treatment in Botswana, Ethiopia, Nigeria, Uganda, and Vietnam. \n METHODS We collected data on HIV treatment costs over consecutive 6-month periods starting from scale-up of dedicated HIV treatment services at each site. The study included all patients receiving HIV treatment and care at study sites [62,512 antiretroviral therapy (ART) and 44,394 pre-ART patients]. Outcomes were costs per patient and total program costs, subdivided by major cost categories. \n RESULTS Median annual economic costs were US$ 202 (2009 USD) for pre-ART patients and US$ 880 for ART patients. Excluding antiretrovirals, per patient ART costs were US$ 298. Care for newly initiated ART patients cost 15-20% more than for established patients. Per patient costs dropped rapidly as sites matured, with per patient ART costs dropping 46.8% between first and second 6-month periods after the beginning of scale-up, and an additional 29.5% the following year. PEPFAR provided 79.4% of funding for service delivery, and national governments provided 15.2%. \n CONCLUSION Treatment costs vary widely between sites, and high early costs drop rapidly as sites mature. Treatment costs vary between countries and respond to changes in antiretroviral regimen costs and the package of services. Whereas cost reductions may allow near-term program growth, programs need to weigh the trade-off between improving services for current patients and expanding coverage to new patients.", "title": "The cost of providing comprehensive HIV treatment in PEPFAR-supported programs." }, { "docid": "21216726", "text": "Little is known about the epidemiology of human herpesvirus 8 (HHV-8) infections among women. A cross-sectional study was conducted of HHV-8 infection among human immunodeficiency virus (HIV)-infected and high-risk HIV-uninfected women. Serological tests with noninduced (latent) and induced (lytic) HHV-8 antigens were used to detect infection among 2483 participants of a multisite cohort. Reactivity to latent antigen was present in 4.1% and to induced antigens in 12.0% of women. Seven of 8 women who reported Kaposi's sarcoma had HHV-8 antibodies. Among HIV-positive women, HHV-8 infection was associated with use of crack, cocaine, or heroin (76% vs. 65%; P<.001), past syphilis (29% vs. 20%; P<.001), an injection drug-using male sex partner (61% vs. 53%; P=.014), black race (P=.010), and enrollment site (P=.015). In multivariate analysis, HIV infection, older age, past syphilis, black race, and enrollment site were independently associated with HHV-8 infection. In this cohort of North American women, HHV-8 infection was associated with HIV infection, drug use, and risky sexual behavior.", "title": "Human herpesvirus 8 infection and Kaposi's sarcoma among human immunodeficiency virus-infected and -uninfected women." }, { "docid": "26038789", "text": "3BNC117 is a broad and potent neutralizing antibody to HIV-1 that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1–infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 affects host antibody responses in viremic individuals. In comparison to untreated controls that showed little change in their neutralizing activity over a 6-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1.", "title": "HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1" }, { "docid": "25606339", "text": "TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetic modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests that TLR3 can act as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects.", "title": "Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication." }, { "docid": "6501747", "text": "Dendritic cells (DCs) play a critical role in the immune response to viral infection through the facilitation of cell-intrinsic antiviral activity and the activation of adaptive immunity. HIV-1 infection of DCs triggers an IRF3-dependent innate immune response, which requires the activity of cyclic GAMP synthase (cGAS). We report the results of a targeted RNAi screen utilizing primary human monocyte-derived DCs (MDDCs) to identify immune regulators that directly interface with HIV-1-encoded features to initiate this innate response. Polyglutamine binding protein 1 (PQBP1) emerged as a strong candidate through this analysis. We found that PQBP1 directly binds to reverse-transcribed HIV-1 DNA and interacts with cGAS to initiate an IRF3-dependent innate response. MDDCs derived from Renpenning syndrome patients, who harbor mutations in the PQBP1 locus, possess a severely attenuated innate immune response to HIV-1 challenge, underscoring the role of PQBP1 as a proximal innate sensor of a HIV-1 infection.", "title": "PQBP1 Is a Proximal Sensor of the cGAS-Dependent Innate Response to HIV-1" }, { "docid": "4421578", "text": "Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein.", "title": "Broad and potent neutralization of HIV-1 by a gp41-specific human antibody" }, { "docid": "19736671", "text": "Human tumors show a high level of genetic heterogeneity, but the processes that influence the timing and route of metastatic dissemination of the subclones are unknown. Here we have used whole-exome sequencing of 103 matched benign, malignant and metastatic skin tumors from genetically heterogeneous mice to demonstrate that most metastases disseminate synchronously from the primary tumor, supporting parallel rather than linear evolution as the predominant model of metastasis. Shared mutations between primary carcinomas and their matched metastases have the distinct A-to-T signature of the initiating carcinogen dimethylbenzanthracene, but non-shared mutations are primarily G-to-T, a signature associated with oxidative stress. The existence of carcinomas that either did or did not metastasize in the same host animal suggests that there are tumor-intrinsic factors that influence metastatic seeding. We also demonstrate the importance of germline polymorphisms in determining allele-specific mutations, and we identify somatic genetic alterations that are specifically related to initiation of carcinogenesis by Hras or Kras mutations. Mouse tumors that mimic the genetic heterogeneity of human cancers can aid our understanding of the clonal evolution of metastasis and provide a realistic model for the testing of novel therapies.", "title": "Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers" }, { "docid": "39389082", "text": "We report here crystal structures of human RNase H1 complexed with an RNA/DNA substrate. Unlike B. halodurans RNase H1, human RNase H1 has a basic protrusion, which forms a DNA-binding channel and together with the conserved phosphate-binding pocket confers specificity for the B form and 2'-deoxy DNA. The RNA strand is recognized by four consecutive 2'-OH groups and cleaved by a two-metal ion mechanism. Although RNase H1 is overall positively charged, the substrate interface is neutral to acidic in character, which likely contributes to the catalytic specificity. Positions of the scissile phosphate and two catalytic metal ions are interdependent and highly coupled. Modeling of HIV reverse transcriptase (RT) with RNA/DNA in its RNase H active site suggests that the substrate cannot simultaneously occupy the polymerase active site and must undergo a conformational change to toggle between the two catalytic centers. The region that accommodates this conformational change offers a target to develop HIV-specific inhibitors.", "title": "Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription." }, { "docid": "37444589", "text": "Although 13 years have passed since identification of human immunodeficiency virus-1 (HIV-1) as the cause of AIDS, we do not yet know how HIV kills its primary target, the T cell that carries the CD4 antigen. We and others have shown an increase in the percentage of apoptotic cells among circulating CD4+ (and CD8+) T cells of HIV-seropositive individuals and an increase in frequency of apoptosis with disease progression. However, it is not known if this apoptosis occurs in infected or uninfected T cells. We show here, using in situ labelling of lymph nodes from HIV-infected children and SIV-infected macaques, that apoptosis occurs predominantly in bystander cells and not in the productively infected cells themselves. These data have implications for pathogenesis and therapy, namely, arguing that rational drug therapy may involve combination agents targeting viral replication in infected cells and apoptosis of uninfected cells.", "title": "Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes" }, { "docid": "46202852", "text": "Several recent reports indicate that cholesterol might play an important role in human immunodeficiency virus type 1 (HIV-1) replication. We investigated the effects of HIV-1 infection on cholesterol biosynthesis and uptake using microarrays. HIV-1 increased gene expression of cholesterol genes in both transformed T-cell lines and primary CD4(+) T cells. Consistent with our microarray data, (14)C-labeled mevalonate and acetate incorporation was increased in HIV-1-infected cells. Our data also demonstrate that changes in cholesterol biosynthesis and uptake are only observed in the presence of functional Nef, suggesting that increased cholesterol synthesis may contribute to Nef-mediated enhancement of virion infectivity and viral replication.", "title": "Nef induces multiple genes involved in cholesterol synthesis and uptake in human immunodeficiency virus type 1-infected T cells." }, { "docid": "46353045", "text": "Late presentation remains a major concern despite the dramatically improved prognosis realized by ART. We define a first presentation for HIV care during the course of HIV infection as 'late' if an AIDS-defining opportunistic disease is apparent, or if CD4+ T-cells are <200/microl. In the Western world, approximately 10 and 30% of HIV-infected individuals still present with CD4+ T-cells <50 and <200/microl, respectively; estimates are substantially higher for developing countries. Diagnosis and treatment of opportunistic diseases and intense supportive in-hospital care take precedence over ART. Benefits of starting ART without delay, that is, when opportunistic diseases are still active, include faster resolution of opportunistic diseases and a decreased risk of recurrence. The downside of starting ART without delay could include toxicity, drug interactions and immune reconstitution inflammatory syndrome (IRIS). Among asymptomatic or oligosymptomatic individuals presenting late, where ART and primary prophylaxis are initiated, approximately 10-20% will become symptomatic from drug toxicity or undiagnosed opportunistic complications, including IRIS, which require appropriate therapies. In this review we describe late presentation to HIV care, the scale of the problem, the evaluation of a late-presenting patient and challenges associated with initiation of potent antiretroviral therapy (ART) in the setting of acute opportunistic infections and other comorbidities.", "title": "Late presentation of HIV-infected individuals." }, { "docid": "17077004", "text": "OBJECTIVES To explore the association between a stable partnership and clinical outcome in HIV infected patients receiving highly active antiretroviral therapy (HAART). \n DESIGN Prospective cohort study of adults with HIV (Swiss HIV cohort study). \n SETTING Seven outpatient clinics throughout Switzerland. \n PARTICIPANTS The 3736 patients in the cohort who started HAART before 2002 (median age 36 years, 29% female, median follow up 3.6 years). \n MAIN OUTCOME MEASURES Time to AIDS or death (primary endpoint), death alone, increases in CD4 cell count of at least 50 and 100 above baseline, optimal viral suppression (a viral load below 400 copies/ml), and viral rebound. \n RESULTS During follow up 2985 (80%) participants reported a stable partnership on at least one occasion. When starting HAART, 52% (545/1042) of participants reported a stable partnership; after five years of follow up 46% (190/412) of participants reported a stable partnership. In an analysis stratified by previous antiretroviral therapy and clinical stage when starting HAART (US Centers for Disease Control and Prevention group A, B, or C), the adjusted hazard ratio for progression to AIDS or death was 0.79 (95% confidence interval 0.63 to 0.98) for participants with a stable partnership compared with those without. Adjusted hazards ratios for other endpoints were 0.59 (0.44 to 0.79) for progression to death, 1.15 (1.06 to 1.24) for an increase in CD4 cells of 100 counts/microl or more, and 1.06 (0.98 to 1.14) for optimal viral suppression. \n CONCLUSIONS A stable partnership is associated with a slower rate of progression to AIDS or death in HIV infected patients receiving HAART.", "title": "Stable partnership and progression to AIDS or death in HIV infected patients receiving highly active antiretroviral therapy: Swiss HIV cohort study." }, { "docid": "13469921", "text": "Recent cross-sectional analyses of HIV-1+ plasmas have indicated that broadly cross-reactive neutralizing antibody responses are developed by 10%-30% of HIV-1+ subjects. The timing of the initial development of such anti-viral responses is unknown. It is also unknown whether the emergence of these responses coincides with the appearance of antibody specificities to a single or multiple regions of the viral envelope glycoprotein (Env). Here we analyzed the cross-neutralizing antibody responses in longitudinal plasmas collected soon after and up to seven years after HIV-1 infection. We find that anti-HIV-1 cross-neutralizing antibody responses first become evident on average at 2.5 years and, in rare cases, as early as 1 year following infection. If cross-neutralizing antibody responses do not develop during the first 2-3 years of infection, they most likely will not do so subsequently. Our results indicate a potential link between the development of cross-neutralizing antibody responses and specific activation markers on T cells, and with plasma viremia levels. The earliest cross-neutralizing antibody response targets a limited number of Env regions, primarily the CD4-binding site and epitopes that are not present on monomeric Env, but on the virion-associated trimeric Env form. In contrast, the neutralizing activities of plasmas from subjects that did not develop cross-neutralizing antibody responses target epitopes on monomeric gp120 other than the CD4-BS. Our study provides information that is not only relevant to better understanding the interaction of the human immune system with HIV but may guide the development of effective immunization protocols. Since antibodies to complex epitopes that are present on the virion-associated envelope spike appear to be key components of earliest cross-neutralizing activities of HIV-1+ plasmas, then emphasis should be made to elicit similar antibodies by vaccination.", "title": "Characteristics of the Earliest Cross-Neutralizing Antibody Response to HIV-1" }, { "docid": "3566945", "text": "Broadly neutralizing antibodies (bnAbs) to HIV-1 can evolve after years of an iterative process of virus escape and antibody adaptation that HIV-1 vaccine design seeks to mimic. To enable this, properties that render HIV-1 envelopes (Env) capable of eliciting bnAb responses need to be defined. Here, we followed the evolution of the V2 apex directed bnAb lineage VRC26 in the HIV-1 subtype C superinfected donor CAP256 to investigate the phenotypic changes of the virus populations circulating before and during the early phases of bnAb induction. Longitudinal viruses that evolved from the VRC26-resistant primary infecting (PI) virus, the VRC26-sensitive superinfecting (SU) virus and ensuing PI-SU recombinants revealed substantial phenotypic changes in Env, with a switch in Env properties coinciding with early resistance to VRC26. Decreased sensitivity of SU-like viruses to VRC26 was linked with reduced infectivity, altered entry kinetics and lower sensitivity to neutralization after CD4 attachment. VRC26 maintained neutralization activity against cell-associated CAP256 virus, indicating that escape through the cell-cell transmission route is not a dominant escape pathway. Reduced fitness of the early escape variants and sustained sensitivity in cell-cell transmission are both features that limit virus replication, thereby impeding rapid escape. This supports a scenario where VRC26 allowed only partial viral escape for a prolonged period, possibly increasing the time window for bnAb maturation. Collectively, our data highlight the phenotypic plasticity of the HIV-1 Env in evading bnAb pressure and the need to consider phenotypic traits when selecting and designing Env immunogens. Combinations of Env variants with differential phenotypic patterns and bnAb sensitivity, as we describe here for CAP256, may maximize the potential for inducing bnAb responses by vaccination.", "title": "Phenotypic deficits in the HIV-1 envelope are associated with the maturation of a V2-directed broadly neutralizing antibody lineage" } ]
935
Peroxynitrite is required for induction of T cell tolerance.
[ { "docid": "5483793", "text": "Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide–major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex. This process makes CD8-expressing T cells unable to bind pMHC and to respond to the specific peptide, although they retain their ability to respond to nonspecific stimulation. Nitration of TCR-CD8 is induced by MDSCs through hyperproduction of reactive oxygen species and peroxynitrite during direct cell-cell contact. Molecular modeling suggests specific sites of nitration that might affect the conformational flexibility of TCR-CD8 and its interaction with pMHC. These data identify a previously unknown mechanism of T-cell tolerance in cancer that is also pertinent to many pathological conditions associated with accumulation of MDSCs.", "title": "Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer" } ]
[ { "docid": "42693833", "text": "Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis.", "title": "Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis." }, { "docid": "18237384", "text": "Induction of tumor-specific immunity requires that dendritic cells (DCs) efficiently capture and present tumor antigens to result in the expansion and activation of tumor-specific cytotoxic T cells. The transition from antigen capture to T cell stimulation requires a maturation signal; in its absence tolerance, rather than immunity may develop. While immune complexes (ICs) are able to enhance antigen capture, they can be poor at inducing DC maturation, naive T cell activation and protective immunity. We now demonstrate that interfering with the inhibitory signal delivered by FcγRIIB on DCs converts ICs to potent maturation agents and results in T cell activation. Applying this approach to immunization with DCs pulsed ex-vivo with ICs, we have generated antigen-specific CD8+ T cells in vivo and achieved efficient protective immunity in a murine melanoma model. These data imply that ICs may normally function to maintain tolerance through the binding to inhibitory FcγRs on DCs, but they can be converted to potent immunogenic stimuli by selective engagement of activating FcγRs. This mechanism suggests a novel approach to the development of tumor vaccines.", "title": "Inducing Tumor Immunity through the Selective Engagement of Activating Fcγ Receptors on Dendritic Cells" }, { "docid": "994800", "text": "T cell receptor (TCR) ligation is required for the extrathymic differentiation of forkhead box p3(+) (Foxp3(+)) regulatory T cells. Several lines of evidence indicate that weak TCR stimulation favors induction of Foxp3 in the periphery; however, it remains to be determined how TCR ligand potency influences this process. We characterized the density and affinity of TCR ligand favorable for Foxp3 induction and found that a low dose of a strong agonist resulted in maximal induction of Foxp3 in vivo. Initial Foxp3 induction by weak agonist peptide could be enhanced by disruption of TCR-peptide major histocompatibility complex (pMHC) interactions or alteration of peptide dose. However, time course experiments revealed that Foxp3-positive cells induced by weak agonist stimulation are deleted, along with their Foxp3-negative counterparts, whereas Foxp3-positive cells induced by low doses of the strong agonist persist. Our results suggest that, together, pMHC ligand potency, density, and duration of TCR interactions define a cumulative quantity of TCR stimulation that determines initial peripheral Foxp3 induction. However, in the persistence of induced Foxp3(+) T cells, TCR ligand potency and density are noninterchangeable factors that influence the route to peripheral tolerance.", "title": "TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo" }, { "docid": "24069089", "text": "Modified anti-CD3 mAbs are emerging as a possible means of inducing immunologic tolerance in settings including transplantation and autoimmunity such as in type 1 diabetes. In a trial of a modified anti-CD3 mAb [hOKT3gamma1(Ala-Ala)] in patients with type 1 diabetes, we identified clinical responders by an increase in the number of peripheral blood CD8+ cells following treatment with the mAb. Here we show that the anti-CD3 mAb caused activation of CD8+ T cells that was similar in vitro and in vivo and induced regulatory CD8+CD25+ T cells. These cells inhibited the responses of CD4+ cells to the mAb itself and to antigen. The regulatory CD8+CD25+ cells were CTLA4 and Foxp3 and required contact for inhibition. Foxp3 was also induced on CD8+ T cells in patients during mAb treatment, which suggests a potential mechanism of the anti-CD3 mAb immune modulatory effects involving induction of a subset of regulatory CD8+ T cells.", "title": "TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs." }, { "docid": "10190778", "text": "As the immune system develops, T cells are selected or regulated to become tolerant of self antigens and reactive against foreign antigens. In mice, the induction of such tolerance is thought to be attributable to the deletion of self-reactive cells. Here, we show that the human fetal immune system takes advantage of an additional mechanism: the generation of regulatory T cells (Tregs) that suppress fetal immune responses. We find that substantial numbers of maternal cells cross the placenta to reside in fetal lymph nodes, inducing the development of CD4+CD25highFoxP3+ Tregs that suppress fetal antimaternal immunity and persist at least until early adulthood. These findings reveal a form of antigen-specific tolerance in humans, induced in utero and probably active in regulating immune responses after birth.", "title": "Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero." }, { "docid": "301838", "text": "The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation.", "title": "Rank Signaling Links the Development of Invariant γδ T Cell Progenitors and Aire+ Medullary Epithelium" }, { "docid": "20155713", "text": "Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity. Here we identified medullary thymic epithelial cells as being a unique cell type that expresses a diverse range of tissue-specific antigens. We found that this promiscuous gene expression was a cell-autonomous property of medullary epithelial cells and was maintained during the entire period of thymic T cell output. It may facilitate tolerance induction to self-antigens that would otherwise be temporally or spatially secluded from the immune system. However, the array of promiscuously expressed self-antigens appeared random rather than selected and was not confined to secluded self-antigens.", "title": "Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self" }, { "docid": "6123924", "text": "Immune tolerance and activation depend on precise control over the number and function of immunosuppressive Foxp3(+) regulatory T (T reg) cells, and the importance of IL-2 in maintaining tolerance and preventing autoimmunity is clear. However, the homeostatic requirement for IL-2 among specific populations of peripheral T reg cells remains poorly understood. We show that IL-2 selectively maintains a population of quiescent CD44(lo)CD62L(hi) T reg cells that gain access to paracrine IL-2 produced in the T cell zones of secondary lymphoid tissues due to their expression of the chemokine receptor CCR7. In contrast, CD44(hi)CD62L(lo)CCR7(lo) T reg cells that populate nonlymphoid tissues do not access IL-2-prevalent regions in vivo and are insensitive to IL-2 blockade; instead, their maintenance depends on continued signaling through the co-stimulatory receptor ICOS (inducible co-stimulator). Thus, we define a fundamental homeostatic subdivision in T reg cell populations based on their localization and provide an integrated framework for understanding how T reg cell abundance and function are controlled by unique signals in different tissue environments.", "title": "CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets" }, { "docid": "39550665", "text": "BACKGROUND & AIMS Chronic infection with the bacterial pathogen Helicobacter pylori causes gastric disorders, ranging from chronic gastritis to gastric adenocarcinoma. Only a subset of infected persons will develop overt disease; most remains asymptomatic despite lifelong colonization. This study aims to elucidate the differential susceptibility to H pylori that is found both across and within populations. \n METHODS We have established a C57BL/6 mouse model of H pylori infection with a strain that is capable of delivering the virulence factor cytotoxin-associated gene A (CagA) into host cells through the activity of a Cag-pathogenicity island-encoded type IV secretion system. \n RESULTS Mice infected at 5-6 weeks of age with CagA(+)H pylori rapidly develop gastritis, gastric atrophy, epithelial hyperplasia, and metaplasia in a type IV secretion system-dependent manner. In contrast, mice infected during the neonatal period with the same strain are protected from preneoplastic lesions. Their protection results from the development of H pylori-specific peripheral immunologic tolerance, which requires transforming growth factor-β signaling and is mediated by long-lived, inducible regulatory T cells, and which controls the local CD4(+) T-cell responses that trigger premalignant transformation. Tolerance to H pylori develops in the neonatal period because of a biased ratio of T-regulatory to T-effector cells and is favored by prolonged low-dose exposure to antigen. \n CONCLUSIONS Using a novel CagA(+)H pylori infection model, we report here that the development of tolerance to H pylori protects from gastric cancer precursor lesions. The age at initial infection may thus account for the differential susceptibility of infected persons to H pylori-associated disease manifestations.", "title": "Tolerance rather than immunity protects from Helicobacter pylori-induced gastric preneoplasia." }, { "docid": "23100962", "text": "Besides synthesizing nitric oxide (NO), purified neuronal NO synthase (nNOS) can produce superoxide (.O2-) at lower L-Arg concentrations. By using electron paramagnetic resonance spin-trapping techniques, we monitored NO and .O2- formation in nNOS-transfected human kidney 293 cells. In control transfected cells, the Ca2+ ionophore A23187 triggered NO generation but no .O2- was seen. With cells in L-Arg-free medium, we observed .O2- formation that increased as the cytosolic L-Arg levels decreased, while NO generation declined. .O2- formation was virtually abolished by the specific NOS blocker, N-nitro-L-arginine methyl ester (L-NAME). Nitrotyrosine, a specific nitration product of peroxynitrite, accumulated in L-Arg-depleted cells but not in control cells. Activation by A23187 was cytotoxic to L-Arg-depleted, but not to control cells, with marked lactate dehydrogenase release. The cytotoxicity was largely prevented by either superoxide dismutase or L-NAME. Thus, with reduced L-Arg availability NOS elicits cytotoxicity by generating .O2- and NO that interact to form the potent oxidant peroxynitrite. Regulating arginine levels may provide a therapeutic approach to disorders involving .O2-/NO-mediated cellular injury.", "title": "Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury." }, { "docid": "7343711", "text": "Successful cancer treatment requires understanding host immune response against tumor cells. PD-1 belongs to the CD28 superfamily of receptors that work as “checkpoints” of immune activation. PD-1 maintains immune self-tolerance to prevent autoimmunity and controls T-cell reaction during infection to prevent excessive tissue damage. Tumor cells that arise from normal tissue acquire mutations that can be targeted by lymphocytes. Accumulating lines of evidence suggest that tumor cells evade host immune attack by expressing physiological PD-1 ligands and stimulating PD-1 on the lymphocytes. Based on this idea, researchers have successfully demonstrated that systemic administration of monoclonal antibodies that inhibit the binding of PD-1 to the ligands reactivated T cells and augmented the anti-cancer immune response. In this review, I summarize the basics of T-cell biology and its regulation by PD-1 and discuss the current understanding and questions about this multifaceted molecule.", "title": "Basics of PD-1 in self-tolerance, infection, and cancer immunity" }, { "docid": "5003144", "text": "Maintenance of immunological self-tolerance requires lymphocytes carrying self-reactive antigen receptors to be selectively prevented from mounting destructive or inflammatory effector responses. Classically, self-tolerance is viewed in terms of the removal, editing, or silencing of B and T cells that have formed self-reactive antigen receptors during their early development. However, B cells activated by foreign antigen can enter germinal centers (GCs), where they further modify their antigen receptor by somatic hypermutation (SHM) of their immunoglobulin genes. The inevitable emergence of activated, self-reactive GC B cells presents a unique challenge to the maintenance of self-tolerance that must be rapidly countered to avoid autoantibody production. Here we discuss current knowledge of the mechanisms that enforce B cell self-tolerance, with particular focus on the control of self-reactive GC B cells. We also consider how self-reactive GC B cells can escape self-tolerance to initiate autoantibody production or instead be redeemed via SHM and used in productive antibody responses.", "title": "Self-Reactive B Cells in the Germinal Center Reaction." }, { "docid": "36642096", "text": "BACKGROUND Type 1 diabetes mellitus is a chronic autoimmune disease caused by the pathogenic action of T lymphocytes on insulin-producing beta cells. Previous clinical studies have shown that continuous immune suppression temporarily slows the loss of insulin production. Preclinical studies suggested that a monoclonal antibody against CD3 could reverse hyperglycemia at presentation and induce tolerance to recurrent disease. \n METHODS We studied the effects of a nonactivating humanized monoclonal antibody against CD3--hOKT3gamma1(Ala-Ala)--on the loss of insulin production in patients with type 1 diabetes mellitus. Within 6 weeks after diagnosis, 24 patients were randomly assigned to receive either a single 14-day course of treatment with the monoclonal antibody or no antibody and were studied during the first year of disease. \n RESULTS Treatment with the monoclonal antibody maintained or improved insulin production after one year in 9 of the 12 patients in the treatment group, whereas only 2 of the 12 controls had a sustained response (P=0.01). The treatment effect on insulin responses lasted for at least 12 months after diagnosis. Glycosylated hemoglobin levels and insulin doses were also reduced in the monoclonal-antibody group. No severe side effects occurred, and the most common side effects were fever, rash, and anemia. Clinical responses were associated with a change in the ratio of CD4+ T cells to CD8+ T cells 30 and 90 days after treatment. \n CONCLUSIONS Treatment with hOKT3gamma1(Ala-Ala) mitigates the deterioration in insulin production and improves metabolic control during the first year of type 1 diabetes mellitus in the majority of patients. The mechanism of action of the anti-CD3 monoclonal antibody may involve direct effects on pathogenic T cells, the induction of populations of regulatory cells, or both.", "title": "Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus." }, { "docid": "33499189", "text": "T cell receptor (TCR-CD3) triggering involves both receptor clustering and conformational changes at the cytoplasmic tails of the CD3 subunits. The mechanism by which TCRalphabeta ligand binding confers conformational changes to CD3 is unknown. By using well-defined ligands, we showed that induction of the conformational change requires both multivalent engagement and the mobility restriction of the TCR-CD3 imposed by the plasma membrane. The conformational change is elicited by cooperative rearrangements of two TCR-CD3 complexes and does not require accompanying changes in the structure of the TCRalphabeta ectodomains. This conformational change at CD3 reverts upon ligand dissociation and is required for T cell activation. Thus, our permissive geometry model provides a molecular mechanism that rationalizes how the information of ligand binding to TCRalphabeta is transmitted to the CD3 subunits and to the intracellular signaling machinery.", "title": "Full activation of the T cell receptor requires both clustering and conformational changes at CD3." }, { "docid": "2734421", "text": "Medullary thymic epithelial cells (mTECs) establish T cell self-tolerance through the expression of autoimmune regulator (Aire) and peripheral tissue-specific self-antigens. However, signals underlying mTEC development remain largely unclear. Here, we demonstrate crucial regulation of mTEC development by receptor activator of NF-kappaB (RANK) and CD40 signals. Whereas only RANK signaling was essential for mTEC development during embryogenesis, in postnatal mice, cooperation between CD40 and RANK signals was required for mTEC development to successfully establish the medullary microenvironment. Ligation of RANK or CD40 on fetal thymic stroma in vitro induced mTEC development in a tumor necrosis factor-associated factor 6 (TRAF6)-, NF-kappaB inducing kinase (NIK)-, and IkappaB kinase beta (IKKbeta)-dependent manner. These results show that developmental-stage-dependent cooperation between RANK and CD40 promotes mTEC development, thereby establishing self-tolerance.", "title": "The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance." }, { "docid": "10162553", "text": "Immunosuppressive drugs and cytotoxic chemotherapy agents are designed to kill or suppress autoreactive, alloaggressive, or hyperinflammatory T cells, or disseminated malignancies. However, they also cause severe immunological side effects ranging from interrupted thymopoiesis and general immunodeficiency to, paradoxically, autoimmunity. Consistent with the cross-talk between thymocytes and stromal cells, we now show that these common therapeutic agents have major effects on murine thymic epithelial cells (TEC), crucially required to rebuild immunity posttreatment. We show that the immunosuppressant cyclosporine A, which has been linked to a thymus-dependent autoimmune syndrome in some patients, causes extensive loss of autoimmune regulator (Aire(+)) tolerance-inducing MHC class II(high) medullary TEC (mTEC(high)). Post-cyclosporine A, Aire expression was restored within 7 days. Full recovery of the mTEC(high) subset occurred within 10 days and was linked to a decrease in a relatively resistant MHC class II(low) mTEC subset (mTEC(low)), consistent with a previously described precursor-product relationship. Cyclophosphamide and dexamethasone caused more extensive ablation of thymocytes and stromal cells but again severely depleted tolerance-inducing mTEC(high). Together, these data show that Aire(+) mTECs are highly sensitive to damage and that mTEC regeneration follows a conserved pattern regardless of the treatment regimen used.", "title": "Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment." }, { "docid": "21185923", "text": "CD25+CD4+ regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance. We show here that glucocorticoid-induced tumor necrosis factor receptor family–related gene (GITR, also known as TNFRSF18)—a member of the tumor necrosis factor–nerve growth factor (TNF-NGF) receptor gene superfamily—is predominantly expressed on CD25+CD4+ T cells and on CD25+CD4+CD8− thymocytes in normal naïve mice. We found that stimulation of GITR abrogated CD25+CD4+ T cell–mediated suppression. In addition, removal of GITR-expressing T cells or administration of a monoclonal antibody to GITR produced organ-specific autoimmune disease in otherwise normal mice. Thus, GITR plays a key role in dominant immunological self-tolerance maintained by CD25+CD4+ regulatory T cells and could be a suitable molecular target for preventing or treating autoimmune disease.", "title": "Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance" }, { "docid": "14644164", "text": "TLR sense microbial infections, and control activation of immune responses. Dendritic cells, macrophages, and B lymphocytes express TLR and the TLR-signaling adaptor protein MyD88. The impact of TLR-activated B cells on T cell-mediated inflammation is unknown. In this study, we have used mice carrying B cell-restricted deficiencies in MyD88 or in distinct TLR to examine the impact of TLR-activated B cells on a T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis (EAE). We demonstrate that TLR-signaling in B cells suppresses inflammatory T cell responses (both Th1 and Th17), and stimulates recovery from EAE. Only certain TLR are required on B cells for resolution of EAE, and these are dispensable for disease initiation, indicating that a category of TLR agonists preferentially triggers a suppressive function in B cells and thereby limits autoimmune disease. The TLR agonists controlling the regulatory function of B cells are provided by components of Mycobacterium tuberculosis present in the adjuvant. Thus, MyD88 signaling in B cells antagonizes MyD88 signaling in other cells, which drives differentiation of Th17 cells and is required for induction of EAE. Altogether, our data indicate that B cells link recognition of microbial products via TLR to suppression of a T cell-mediated autoimmune disease.", "title": "TLR-activated B cells suppress T cell-mediated autoimmunity." }, { "docid": "9507605", "text": "The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein–tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136–143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.", "title": "Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCKindependent mechanism" } ]
938
Persister cells provide relapse resistance in cancer patients.
[ { "docid": "26231129", "text": "Molecular targeted therapy has the potential to dramatically improve survival in patients with cancer. However, complete and durable responses to targeted therapy are rare in individuals with advanced-stage solid cancers. Even the most effective targeted therapies generally do not induce a complete tumor response, resulting in residual disease and tumor progression that limits patient survival. We discuss the emerging need to more fully understand the molecular basis of residual disease as a prelude to designing therapeutic strategies to minimize or eliminate residual disease so that we can move from temporary to chronic control of disease, or a cure, for patients with advanced-stage solid cancers. Ultimately, we propose a shift from the current reactive paradigm of analyzing and treating acquired drug resistance to a pre-emptive paradigm of defining the mechanisms that result in residual disease, to target and limit this disease reservoir.", "title": "A framework for understanding and targeting residual disease in oncogene-driven solid cancers" } ]
[ { "docid": "25895285", "text": "Acquired drug resistance impacts the majority of patients being treated with tyrosine kinase inhibitors (TKIs) and remains a key challenge in modern anti-cancer therapy. The lack of clinically effective therapies to overcome resistance represents an unmet need. Understanding the signalling that drives drug resistance will facilitate the development of new salvage therapies to treat patients with secondary TKI resistance. In this study, we utilise mass spectrometry to characterise the global phosphoproteomic alterations that accompany the acquisition of resistance to two FDA-approved TKIs, pazopanib and dasatinib, in the A204 rhabdoid tumour cell line. Our analysis finds that only 6% and 9.7% of the quantified phosphoproteome is altered upon the acquisition of pazopanib and dasatinib resistance, respectively. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways while dasatinib resistant cells show an upregulation of the insulin receptor/IGF-1R signalling pathway. Drug response profiling rediscovers several previously reported vulnerabilities associated with pazopanib and dasatinib resistance and identifies a new dependency to the second generation HSP90 inhibitor NVP-AUY-922. This study provides a useful resource detailing the candidate signalling determinants of acquired TKI resistance; and reveals a therapeutic approach of inhibiting HSP90 function as a means of salvage therapy to overcome pazopanib and dasatinib resistance. SIGNIFICANCE Pazopanib and dasatinib are tyrosine kinase inhibitors (TKIs) approved for the treatment of multiple cancer types. Patients who are treated with these drugs are prone to the development of drug resistance and consequently tumour relapse. Here we use quantitative phosphoproteomics to characterise the signalling pathways which are enriched in cells that have acquired resistance to these two drugs. Furthermore, targeted drug screens were used to identify salvage therapies capable of overcoming pazopanib and dasatinib resistance. This data advances our understanding of the mechanisms of TKI resistance and highlights candidate targets for cancer therapy.", "title": "Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib" }, { "docid": "18682109", "text": "Tyrosine kinase inhibitors are effective treatments for non-small-cell lung cancers (NSCLCs) with epidermal growth factor receptor (EGFR) mutations. However, relapse typically occurs after an average of 1 year of continuous treatment. A fundamental histological transformation from NSCLC to small-cell lung cancer (SCLC) is observed in a subset of the resistant cancers, but the molecular changes associated with this transformation remain unknown. Analysis of tumour samples and cell lines derived from resistant EGFR mutant patients revealed that Retinoblastoma (RB) is lost in 100% of these SCLC transformed cases, but rarely in those that remain NSCLC. Further, increased neuroendocrine marker and decreased EGFR expression as well as greater sensitivity to BCL2 family inhibition are observed in resistant SCLC transformed cancers compared with resistant NSCLCs. Together, these findings suggest that this subset of resistant cancers ultimately adopt many of the molecular and phenotypic characteristics of classical SCLC.", "title": "RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer" }, { "docid": "6421792", "text": "Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.", "title": "Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL" }, { "docid": "18062308", "text": "STUDY OBJECTIVE We assessed whether transpleural methods for diagnosing peripheral lung cancer, such as needle aspiration or tumor excision, affect relapse and prognosis, because these techniques have potential to spread malignant cells from the tumor. \n DESIGN A retrospective study. \n SETTING National referral hospital. \n PATIENTS We reviewed 239 patients who underwent surgery between 1990 and 1998 and for whom non-small cell lung cancer (NSCLC) of < 3 cm in maximum diameter was completely resected. The duration of postoperative follow-up ranged from 12 to 105 months, with a median period of 45 months. \n INTERVENTIONS We defined the transbronchial method as using a bronchoscope, and the transpleural method as using needle aspiration cytology or tumor excision. Dichotomous variables included gender, histologic type of squamous cell carcinoma or other type of carcinoma, pathologic stage, and whether the diagnostic method was the transbronchial type only (first-line method) or the transpleural type (second-line method). \n RESULTS NSCLC was diagnosed in 45 patients by the transpleural technique and in 194 patients by the transbronchial technique. There were no significant statistical differences in age of patients, gender, histologic type, pathologic stage, and tumor size. There were 42 relapses, 7 in the transpleural technique group and 35 in the transbronchial technique group (p = 0.90). Of the 7 patients in the transpleural group, there were 4 distant metastasis and 3 local relapses; of the 35 patients in the transbronchial group, there were 20 distant metastasis and 15 local relapses (p = 0.99). Pleural carcinomatosis occurred in none of the 45 patients in the transpleural group and in 1 case (0.5%) in the 194 patients in the transbronchial group (p = 0.99). Patients in the transpleural group had a statistically better 5-year survival rate than patients in the transbronchial group (79.4% vs 60.3%, p = 0.04). This is also confirmed as an independent prognostic factor in a multivariate analysis. \n CONCLUSIONS Transpleural methods seem to be an advisable way to diagnose operable lung cancer that is difficult to diagnose using bronchoscopy, because these methods did not affect relapse and prognosis in the patients in our study.", "title": "Operable non-small cell lung cancer diagnosed by transpleural techniques : do they affect relapse and prognosis?" }, { "docid": "31591262", "text": "The aim of the present study was to investigate whether the gene expression levels of LKB1 and LGR5 correlated with clinical outcome in patients with locally advanced rectal cancer treated with preoperative chemoradiotherapy (CRT). Residual cancer cells were obtained from 52 patients with locally advanced rectal cancer treated with preoperative CRT. Total RNA was then isolated from formalin-fixed, paraffin-embedded specimens using microdissection. The expression levels of LKB1 and LGR5 genes were measured using real-time reverse-transcription polymerase chain reaction and by immunohistochemistry. In addition, in vitro studies were performed using colon cancer cell lines to study the serial changes of LKB1, LGR5 and PRKAA1 (AMPK) gene expression levels after irradiation. Our data demonstrate that specimens obtained from patients with poor pathological response and tumor recurrence had significantly higher gene expression levels of LKB1 and LGR5 than those without them (P < 0.05), and there was a significant positive correlation between LKB1 and LGR5 gene expression after CRT (Spearman’s ρ: 0.429, P = 0.0023). The patients with high expression levels of both LKB1 and LGR5 had a significantly lower recurrence-free survival compared with the other group (P = 0.0055, 95 % confidence interval: 1.39–11.08). Lastly, in vitro studies demonstrated a similar pattern of serial gene expression among LKB1, LGR5 and PRKAA1 after irradiation. Our results suggest that LKB1 and LGR5 expression may be implicated in resistance to CRT, therefore contributing to tumor relapse in patients with locally advanced rectal cancer treated with preoperative CRT.", "title": "Significant correlation between LKB1 and LGR5 gene expression and the association with poor recurrence-free survival in rectal cancer after preoperative chemoradiotherapy" }, { "docid": "6491532", "text": "SETTING Tuberculosis (TB) program, Damien Foundation Projects, Bangladesh. \n OBJECTIVE To summarize the outcome and its determinants of the first treatment for multidrug-resistant TB using a standardized regimen consisting of a minimum 9 months. \n DESIGN This was a prospective, observational study of a gatifloxacin (GFX) based directly observed regimen, mainly with initial hospitalization. The 4-month intensive phase was extended until sputum smear conversion. Patients were monitored using culture for up to 2 years after treatment completion. \n RESULTS Of the 515 patients who met the study inclusion criteria and were successively enrolled from 2005 to 2011, 84.4% had a bacteriologically favorable outcome. Due to extensive disease with delayed sputum conversion, only half of the patients completed treatment within 9 months; however, 95% were able to complete treatment within 12 months. Eleven patients failed or relapsed, and 93.1% of the 435 patients who were successfully treated completed at least 12 months post-treatment follow-up. The strongest risk factor for a bacteriologically unfavorable outcome was high-level fluoroquinolone (FQ) resistance, particularly when compounded by initial pyrazinamide (PZA) resistance. Low-level FQ resistance had no unfavorable effect on treatment outcome. Amplification of drug resistance occurred only once, in a patient strain that was initially only susceptible to kanamycin and clofazimine. \n CONCLUSION The excellent outcome of the Bangladesh regimen was largely maintained. Bacteriological treatment failures and relapses were rare, except among patients with high-level GFX resistance, notably in the presence of PZA resistance.", "title": "Successful '9-month Bangladesh regimen' for multidrug-resistant tuberculosis among over 500 consecutive patients." }, { "docid": "31902335", "text": "Common cancer theories hold that tumor is an uncontrolled somatic cell proliferation caused by the progressive addition of random mutations in critical genes that control cell growth. Nevertheless, various contradictions related to the mutation theory have been reported previously. These events may be elucidated by the persistence of residual tumor cells, called Cancer Stem Cells (CSCs) responsible for tumorigenesis, tumor maintenance, tumor spread, and tumor relapse. Herein, we summarize the current understanding of CSCs, with a focus on the possibility to identify specific markers of CSCs, and discuss the clinical application of targeting CSCs for cancer treatment.", "title": "The cancer stem cell hypothesis: a guide to potential molecular targets." }, { "docid": "5132358", "text": "Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.", "title": "Chimeric antigen receptor-modified T cells for acute lymphoid leukemia." }, { "docid": "4468861", "text": "Immune checkpoint inhibitors result in impressive clinical responses, but optimal results will require combination with each other and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here we report major tumour regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation, and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumours, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T-cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires radiation, anti-CTLA4 and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T-regulatory cells (Treg cells), thereby increasing the CD8 T-cell to Treg (CD8/Treg) ratio. Radiation enhances the diversity of the T-cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while radiation shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T-cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligoclonal T-cell expansion. Similarly to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to radiation plus anti-CTLA4, demonstrated persistent T-cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumours to escape anti-CTLA4-based therapy, and the combination of radiation, anti-CTLA4 and anti-PD-L1 promotes response and immunity through distinct mechanisms.", "title": "Radiation and Dual Checkpoint Blockade Activates Non-Redundant Immune Mechanisms in Cancer" }, { "docid": "27910499", "text": "Delayed T cell recovery and restricted T cell receptor (TCR) diversity after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are associated with increased risks of infection and cancer relapse. Technical challenges have limited faithful measurement of TCR diversity after allo-HSCT. Here we combined 5' rapid amplification of complementary DNA ends PCR with deep sequencing to quantify TCR diversity in 28 recipients of allo-HSCT using a single oligonucleotide pair. Analysis of duplicate blood samples confirmed that we accurately determined the frequency of individual TCRs. After 6 months, cord blood-graft recipients approximated the TCR diversity of healthy individuals, whereas recipients of T cell-depleted peripheral-blood stem cell grafts had 28-fold and 14-fold lower CD4(+) and CD8(+) T cell diversities, respectively. After 12 months, these deficiencies had improved for the CD4(+) but not the CD8(+) T cell compartment. Overall, this method provides unprecedented views of T cell repertoire recovery after allo-HSCT and may identify patients at high risk of infection or relapse.", "title": "Quantitative assessment of T-cell repertoire recovery after hematopoietic stem cell transplantation" }, { "docid": "641786", "text": "Relapsed childhood acute lymphoblastic leukemia (ALL) carries a poor prognosis, despite intensive retreatment, owing to intrinsic drug resistance. The biological pathways that mediate resistance are unknown. Here, we report the transcriptome profiles of matched diagnosis and relapse bone marrow specimens from ten individuals with pediatric B-lymphoblastic leukemia using RNA sequencing. Transcriptome sequencing identified 20 newly acquired, novel nonsynonymous mutations not present at initial diagnosis, with 2 individuals harboring relapse-specific mutations in the same gene, NT5C2, encoding a 5'-nucleotidase. Full-exon sequencing of NT5C2 was completed in 61 further relapse specimens, identifying additional mutations in 5 cases. Enzymatic analysis of mutant proteins showed that base substitutions conferred increased enzymatic activity and resistance to treatment with nucleoside analog therapies. Clinically, all individuals who harbored NT5C2 mutations relapsed early, within 36 months of initial diagnosis (P = 0.03). These results suggest that mutations in NT5C2 are associated with the outgrowth of drug-resistant clones in ALL.", "title": "Relapse specific mutations in NT5C2 in childhood acute lymphoblastic leukemia" }, { "docid": "15997009", "text": "BACKGROUND Treatment regimens for active tuberculosis (TB) that are intermittent, or use rifampin during only the initial phase, offer practical advantages, but their efficacy has been questioned. We conducted a systematic review of treatment regimens for active TB, to assess the effect of duration and intermittency of rifampin use on TB treatment outcomes. \n METHODS AND FINDINGS PubMed, Embase, and the Cochrane CENTRAL database for clinical trials were searched for randomized controlled trials, published in English, French, or Spanish, between 1965 and June 2008. Selected studies utilized standardized treatment with rifampin-containing regimens. Studies reported bacteriologically confirmed failure and/or relapse in previously untreated patients with bacteriologically confirmed pulmonary TB. Pooled cumulative incidences of treatment outcomes and association with risk factors were computed with stratified random effects meta-analyses. Meta-regression was performed using a negative binomial regression model. A total of 57 trials with 312 arms and 21,472 participants were included in the analysis. Regimens utilizing rifampin only for the first 1-2 mo had significantly higher rates of failure, relapse, and acquired drug resistance, as compared to regimens that used rifampin for 6 mo. This was particularly evident when there was initial drug resistance to isoniazid, streptomycin, or both. On the other hand, there was little evidence of difference in failure or relapse with daily or intermittent schedules of treatment administration, although there was insufficient published evidence of the efficacy of twice-weekly rifampin administration throughout therapy. \n CONCLUSIONS TB treatment outcomes were significantly worse with shorter duration of rifampin, or with initial drug resistance to isoniazid and/or streptomycin. Treatment outcomes were similar with all intermittent schedules evaluated, but there is insufficient evidence to support administration of treatment twice weekly throughout therapy.", "title": "Effect of Duration and Intermittency of Rifampin on Tuberculosis Treatment Outcomes: A Systematic Review and Meta-Analysis" }, { "docid": "22908536", "text": "Nonreplicating and metabolically quiescent bacteria are implicated in latent tuberculosis infections and relapses following \"sterilizing\" chemotherapy. However, evidence linking bacterial dormancy and persistence in vivo is largely inconclusive. Here we measure the single-cell dynamics of Mycobacterium tuberculosis replication and ribosomal activity using quantitative time-lapse microscopy and a reporter of ribosomal RNA gene expression. Single-cell dynamics exhibit heterogeneity under standard growth conditions, which is amplified by stressful conditions such as nutrient limitation, stationary phase, intracellular replication, and growth in mouse lungs. Additionally, the lungs of chronically infected mice harbor a subpopulation of nongrowing but metabolically active bacteria, which are absent in mice lacking interferon-γ, a cytokine essential for antituberculosis immunity. These cryptic bacterial forms are prominent in mice treated with the antituberculosis drug isoniazid, suggesting a role in postchemotherapeutic relapses. Thus, amplification of bacterial phenotypic heterogeneity in response to host immunity and drug pressure may contribute to tuberculosis persistence.", "title": "Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms." }, { "docid": "9929089", "text": "BACKGROUND Patients with advanced or metastatic non-small cell lung cancer (NSCLC) can develop acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib. Here, we report the successful treatment with alternating chemotherapy and TKIs of two cases of advanced NSCLC who developed resistance to TKI. CASE PRESENTATION Two patients with advanced or metastatic NSCLC were treated with palliative chemotherapy followed by erlotinib/gefitinib. When TKI therapy failed, two cycles of chemotherapy were provided, which were followed by re-challenge with erlotinib or gefitinib. \n CONCLUSION NSCLC patients with acquired TKI resistance should be managed aggressively whenever possible. Subsequent chemotherapy and target treatment is one of the reasonable choices for those with an initial dramatic clinical response with erlotinib/gefitinib treatment. Further studies are warranted to substantiate the association of erlotinib /gefitinib treatment with the efficacy of NSCLC patients with acquired TKI failure.", "title": "Subsequent chemotherapy reverses acquired tyrosine kinase inhibitor resistance and restores response to tyrosine kinase inhibitor in advanced non-small-cell lung cancer" }, { "docid": "7568596", "text": "Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched 'on' by engagement with bone-lining cells or osteoblasts, and switched 'off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse.", "title": "Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche" }, { "docid": "3462075", "text": "Background CD19‐specific chimeric antigen receptor (CAR) T cells induce high rates of initial response among patients with relapsed B‐cell acute lymphoblastic leukemia (ALL) and long‐term remissions in a subgroup of patients. Methods We conducted a phase 1 trial involving adults with relapsed B‐cell ALL who received an infusion of autologous T cells expressing the 19‐28z CAR at the Memorial Sloan Kettering Cancer Center (MSKCC). Safety and long‐term outcomes were assessed, as were their associations with demographic, clinical, and disease characteristics. Results A total of 53 adults received 19‐28z CAR T cells that were manufactured at MSKCC. After infusion, severe cytokine release syndrome occurred in 14 of 53 patients (26%; 95% confidence interval [CI], 15 to 40); 1 patient died. Complete remission was observed in 83% of the patients. At a median follow‐up of 29 months (range, 1 to 65), the median event‐free survival was 6.1 months (95% CI, 5.0 to 11.5), and the median overall survival was 12.9 months (95% CI, 8.7 to 23.4). Patients with a low disease burden (<5% bone marrow blasts) before treatment had markedly enhanced remission duration and survival, with a median event‐free survival of 10.6 months (95% CI, 5.9 to not reached) and a median overall survival of 20.1 months (95% CI, 8.7 to not reached). Patients with a higher burden of disease (≥5% bone marrow blasts or extramedullary disease) had a greater incidence of the cytokine release syndrome and neurotoxic events and shorter long‐term survival than did patients with a low disease burden. Conclusions In the entire cohort, the median overall survival was 12.9 months. Among patients with a low disease burden, the median overall survival was 20.1 months and was accompanied by a markedly lower incidence of the cytokine release syndrome and neurotoxic events after 19‐28z CAR T‐cell infusion than was observed among patients with a higher disease burden. (Funded by the Commonwealth Foundation for Cancer Research and others; ClinicalTrials.gov number, NCT01044069.)", "title": "Long‐Term Follow‐up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia" }, { "docid": "667451", "text": "Clonal evolution is a key feature of cancer progression and relapse. We studied intratumoral heterogeneity in 149 chronic lymphocytic leukemia (CLL) cases by integrating whole-exome sequence and copy number to measure the fraction of cancer cells harboring each somatic mutation. We identified driver mutations as predominantly clonal (e.g., MYD88, trisomy 12, and del(13q)) or subclonal (e.g., SF3B1 and TP53), corresponding to earlier and later events in CLL evolution. We sampled leukemia cells from 18 patients at two time points. Ten of twelve CLL cases treated with chemotherapy (but only one of six without treatment) underwent clonal evolution, predominantly involving subclones with driver mutations (e.g., SF3B1 and TP53) that expanded over time. Furthermore, presence of a subclonal driver mutation was an independent risk factor for rapid disease progression. Our study thus uncovers patterns of clonal evolution in CLL, providing insights into its stepwise transformation, and links the presence of subclones with adverse clinical outcomes.", "title": "Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia" }, { "docid": "3329824", "text": "BACKGROUND Central nervous system (CNS) disease as the site of first relapse after exposure to adjuvant trastuzumab has been reported. We carried out comprehensive meta-analysis to determine the risk of CNS metastases as the first site of recurrence in patients with HER2-positive breast cancer who received adjuvant trastuzumab. \n METHODS Eligible studies include randomized trials of adjuvant trastuzumab administered for 1 year to patients with HER2-positive breast cancer who reported CNS metastases as first site of disease recurrence. Statistical analyses were conducted to calculate the incidence, relative risk (RR), and 95% confidence intervals (CIs) using fixed-effects inverse variance and random-effects models. \n RESULTS A total of 9020 patients were included. The incidence of CNS metastases as first site of disease recurrence in HER2-positive patients receiving adjuvant trastuzumab was 2.56% (95% CI 2.07% to 3.01%) compared with 1.94% (95% CI 1.54% to 2.38%) in HER2-positive patients who did not receive adjuvant trastuzumab. The RR of the CNS as first site of relapse in trastuzumab-treated patients was 1.35 (95% CI 1.02-1.78, P = 0.038) compared with control arms without trastuzumab therapy. The ratio of CNS metastases to total number of recurrence events was 16.94% (95% CI 10.85% to 24.07%) and 8.33% (95% CI 6.49% to 10.86%) for the trastuzumab-treated and control groups, respectively. No statistically significant differences were found based on trastuzumab schedule or median follow-up time. No evidence of publication bias was observed. \n CONCLUSIONS Adjuvant trastuzumab is associated with a significant increased risk of CNS metastases as the site of first recurrence in HER2-positive breast cancer patients.", "title": "Incidence and risk of central nervous system metastases as site of first recurrence in patients with HER2-positive breast cancer treated with adjuvant trastuzumab." }, { "docid": "20754359", "text": "After cell-to-cell transmission, HTLV-I increases its viral genome by de novo infection and proliferation of infected cells. Proliferation of infected cells is clonal and persistent in vivo. During the carrier state, infected cells are selected in vivo by the host's immune system, the genetic and epigenetic environment of proviral integration sites, and other factors. In leukemic cells, tax gene expression is frequently impaired by genetic and epigenetic mechanisms. Such loss of Tax expression enables ATL cells to escape the host immune system. On the other hand, ATL cells acquire the ability to proliferate without Tax by intracellular genetic and epigenetic changes. Despite advances in support and the development of novel treatment agents, the prognosis for ATLL remains poor. A number of therapies, however, do appear to improve prognosis compared to CHOP (VEPA). These include interferon-α plus zidovudine (probably after 1–2 cycles of CHOP), intensive chemotherapy as in LSG-15 with G-CSF support and Allo-SCT (which includes the potential for cure). Emerging novel approaches include HDAC inhibitors, monoclonal antibodies, and proteasome inhibitors. Comparison between different therapeutic approaches is complicated by the range of natural history of ATLL, different recruitments of naïve-to-therapy, refractory or relapsed patients, and variations in the reporting of outcome that frequently excludes difficult-to-evaluate patients. Moreover, results from relatively small proof-of-principle studies have not been extended with randomized, controlled trials. As a result, currently, there is no clear evidence to support the value of any particular treatment approach over others. To avoid further unnecessary patient suffering and to identify optimal therapy as rapidly as possible, large randomized, controlled trials encompassing multicenter, international collaborations will be necessary.", "title": "Natural history of adult T-cell leukemia/lymphoma and approaches to therapy" }, { "docid": "6790197", "text": "PURPOSE To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. EXPERIMENTAL DESIGN Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays composed of 6,200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative reverse transcription-PCR. \n RESULTS Comparative analyses identified 954 transcript alterations associated with cancer (q < 0.01%), including 149 differentially expressed genes with no known functional roles. Gene expression changes associated with ischemia and surgical removal of the prostate gland were absent. Genes up-regulated in prostate cancer were statistically enriched in categories related to cellular metabolism, energy use, signal transduction, and molecular transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of androgen receptor expression changes was noted. In exploratory analyses, androgen receptor down-regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. \n CONCLUSIONS Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation.", "title": "Prostate cancer-associated gene expression alterations determined from needle biopsies." } ]
939
Persistor cells are one reason for incomplete responses to Tyrosine kinase inhibitor (TKI) therapy in cancer patients.
[ { "docid": "26231129", "text": "Molecular targeted therapy has the potential to dramatically improve survival in patients with cancer. However, complete and durable responses to targeted therapy are rare in individuals with advanced-stage solid cancers. Even the most effective targeted therapies generally do not induce a complete tumor response, resulting in residual disease and tumor progression that limits patient survival. We discuss the emerging need to more fully understand the molecular basis of residual disease as a prelude to designing therapeutic strategies to minimize or eliminate residual disease so that we can move from temporary to chronic control of disease, or a cure, for patients with advanced-stage solid cancers. Ultimately, we propose a shift from the current reactive paradigm of analyzing and treating acquired drug resistance to a pre-emptive paradigm of defining the mechanisms that result in residual disease, to target and limit this disease reservoir.", "title": "A framework for understanding and targeting residual disease in oncogene-driven solid cancers" } ]
[ { "docid": "9929089", "text": "BACKGROUND Patients with advanced or metastatic non-small cell lung cancer (NSCLC) can develop acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib. Here, we report the successful treatment with alternating chemotherapy and TKIs of two cases of advanced NSCLC who developed resistance to TKI. CASE PRESENTATION Two patients with advanced or metastatic NSCLC were treated with palliative chemotherapy followed by erlotinib/gefitinib. When TKI therapy failed, two cycles of chemotherapy were provided, which were followed by re-challenge with erlotinib or gefitinib. \n CONCLUSION NSCLC patients with acquired TKI resistance should be managed aggressively whenever possible. Subsequent chemotherapy and target treatment is one of the reasonable choices for those with an initial dramatic clinical response with erlotinib/gefitinib treatment. Further studies are warranted to substantiate the association of erlotinib /gefitinib treatment with the efficacy of NSCLC patients with acquired TKI failure.", "title": "Subsequent chemotherapy reverses acquired tyrosine kinase inhibitor resistance and restores response to tyrosine kinase inhibitor in advanced non-small-cell lung cancer" }, { "docid": "25895285", "text": "Acquired drug resistance impacts the majority of patients being treated with tyrosine kinase inhibitors (TKIs) and remains a key challenge in modern anti-cancer therapy. The lack of clinically effective therapies to overcome resistance represents an unmet need. Understanding the signalling that drives drug resistance will facilitate the development of new salvage therapies to treat patients with secondary TKI resistance. In this study, we utilise mass spectrometry to characterise the global phosphoproteomic alterations that accompany the acquisition of resistance to two FDA-approved TKIs, pazopanib and dasatinib, in the A204 rhabdoid tumour cell line. Our analysis finds that only 6% and 9.7% of the quantified phosphoproteome is altered upon the acquisition of pazopanib and dasatinib resistance, respectively. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways while dasatinib resistant cells show an upregulation of the insulin receptor/IGF-1R signalling pathway. Drug response profiling rediscovers several previously reported vulnerabilities associated with pazopanib and dasatinib resistance and identifies a new dependency to the second generation HSP90 inhibitor NVP-AUY-922. This study provides a useful resource detailing the candidate signalling determinants of acquired TKI resistance; and reveals a therapeutic approach of inhibiting HSP90 function as a means of salvage therapy to overcome pazopanib and dasatinib resistance. SIGNIFICANCE Pazopanib and dasatinib are tyrosine kinase inhibitors (TKIs) approved for the treatment of multiple cancer types. Patients who are treated with these drugs are prone to the development of drug resistance and consequently tumour relapse. Here we use quantitative phosphoproteomics to characterise the signalling pathways which are enriched in cells that have acquired resistance to these two drugs. Furthermore, targeted drug screens were used to identify salvage therapies capable of overcoming pazopanib and dasatinib resistance. This data advances our understanding of the mechanisms of TKI resistance and highlights candidate targets for cancer therapy.", "title": "Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib" }, { "docid": "2272614", "text": "Activating mutations in the EGF receptor (EGFR) are associated with clinical responsiveness to EGFR tyrosine kinase inhibitors (TKI), such as erlotinib and gefitinib. However, resistance eventually arises, often due to a second EGFR mutation, most commonly T790M. Through a genome-wide siRNA screen in a human lung cancer cell line and analyses of murine mutant EGFR-driven lung adenocarcinomas, we found that erlotinib resistance was associated with reduced expression of neurofibromin, the RAS GTPase-activating protein encoded by the NF1 gene. Erlotinib failed to fully inhibit RAS-ERK signaling when neurofibromin levels were reduced. Treatment of neurofibromin-deficient lung cancers with a MAP-ERK kinase (MEK) inhibitor restored sensitivity to erlotinib. Low levels of NF1 expression were associated with primary and acquired resistance of lung adenocarcinomas to EGFR TKIs in patients. These findings identify a subgroup of patients with EGFR-mutant lung adenocarcinoma who might benefit from combination therapy with EGFR and MEK inhibitors.", "title": "Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer." }, { "docid": "17462437", "text": "Clinical implications of KRAS mutations in advanced non-small cell lung cancer remain unclear. We retrospectively evaluated the prognostic and predictive value of KRAS mutations in patients with advanced NSCLC. Among 484 patients with available results for both KRAS and EGFR mutations, 39 (8%) had KRAS and 182 (38%) EGFR mutations, with two cases having both mutations. The median overall survivals for patients with KRAS mutations, EGFR mutations, or both wild types were 7.7, 38.0, and 15.0 months, respectively (P<0.001). The KRAS mutation was an independent poor prognostic factor in the multivariate analysis (hazard ratio = 2.6, 95% CI: 1.8-3.7). Response rates and progression-free survival (PFS) for the pemetrexed-based regimen in the KRAS mutation group were 14% and 2.1 months, inferior to those (28% and 3.9 months) in the KRAS wild type group. KRAS mutation tended to be associated with inferior treatment outcomes after gemcitabine-based chemotherapy, while there was no difference regarding taxane-based regimen. Although the clinical outcomes to EGFR tyrosine kinase inhibitors (TKIs) seemed to be better in patients with KRAS wild type than those with KRAS mutations, there was no statistical difference in response rates and PFS according to KRAS mutation status when EGFR mutation status was considered. Two patients with both KRAS and EGFR mutations showed partial response to EGFR TKIs. Although G12D mutation appeared more frequently in never smokers, there was no difference in clinical outcomes according to KRAS genotypes. These results suggested KRAS mutations have an independent prognostic value but a limited predictive role for EGFR TKIs or cytotoxic chemotherapy in advanced NSCLC.", "title": "Prognostic and Predictive Value of KRAS Mutations in Advanced Non-Small Cell Lung Cancer" }, { "docid": "9505402", "text": "Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for the T790M mutation before treatment, but upon developing AZD9291 resistance three molecular subtypes emerged: six cases acquired the C797S mutation, five cases maintained the T790M mutation but did not acquire the C797S mutation and four cases lost the T790M mutation despite the presence of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies that are able to overcome resistance mediated by the EGFR C797S mutation.", "title": "Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M" }, { "docid": "711256", "text": "Malignant pleural effusion (MPE) is a useful specimen allowing for the evaluation of EGFR status in nonsmall cell lung cancer (NSCLC). However, direct sequencing of genomic DNA from MPE samples was found not to be sensitive for EGFR mutation detection. To test whether EGFR analysis from RNA is less prone to interference from nontumour cells that have no or lower EGFR expression, we compared three methods (sequencing from cell-derived RNA versus sequencing and mass-spectrometric analysis from genomic DNA), in parallel, for EGFR mutation detection from MPE samples in 150 lung adenocarcinoma patients receiving first-line tyrosine kinase inhibitors (TKIs). Among these MPE samples, EGFR mutations were much more frequently identified by sequencing using RNA than by sequencing and mass-spectrometric analysis from genomic DNA (for all mutations, 67.3 versus 44.7 and 46.7%; for L858R or exon 19 deletions, 61.3 versus 41.3 and 46.7%, respectively). The better mutation detection yield of sequencing from RNA was coupled with the superior prediction of clinical efficacy of first-line TKIs. In patients with acquired resistance, EGFR sequencing from RNA provided satisfactory detection of T790M (54.2%). These results demonstrated that EGFR sequencing using RNA as template greatly improves sensitivity for EGFR mutation detection from samples of MPE, highlighting RNA as the favourable source for analysing EGFR mutations from heterogeneous MPE specimens in NSCLC.", "title": "RNA is favourable for analysing EGFR mutations in malignant pleural effusion of lung cancer." }, { "docid": "26079071", "text": "BACKGROUND Chromosomal rearrangements of the gene encoding ROS1 proto-oncogene receptor tyrosine kinase (ROS1) define a distinct molecular subgroup of non-small-cell lung cancers (NSCLCs) that may be susceptible to therapeutic ROS1 kinase inhibition. Crizotinib is a small-molecule tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK), ROS1, and another proto-oncogene receptor tyrosine kinase, MET. \n METHODS We enrolled 50 patients with advanced NSCLC who tested positive for ROS1 rearrangement in an expansion cohort of the phase 1 study of crizotinib. Patients were treated with crizotinib at the standard oral dose of 250 mg twice daily and assessed for safety, pharmacokinetics, and response to therapy. ROS1 fusion partners were identified with the use of next-generation sequencing or reverse-transcriptase-polymerase-chain-reaction assays. \n RESULTS The objective response rate was 72% (95% confidence interval [CI], 58 to 84), with 3 complete responses and 33 partial responses. The median duration of response was 17.6 months (95% CI, 14.5 to not reached). Median progression-free survival was 19.2 months (95% CI, 14.4 to not reached), with 25 patients (50%) still in follow-up for progression. Among 30 tumors that were tested, we identified 7 ROS1 fusion partners: 5 known and 2 novel partner genes. No correlation was observed between the type of ROS1 rearrangement and the clinical response to crizotinib. The safety profile of crizotinib was similar to that seen in patients with ALK-rearranged NSCLC. \n CONCLUSIONS In this study, crizotinib showed marked antitumor activity in patients with advanced ROS1-rearranged NSCLC. ROS1 rearrangement defines a second molecular subgroup of NSCLC for which crizotinib is highly active. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.).", "title": "Crizotinib in ROS1-rearranged non-small-cell lung cancer." }, { "docid": "1065627", "text": "Stiffness is a biophysical property of the extracellular matrix that modulates cellular functions, including proliferation, invasion, and differentiation, and it also may affect therapeutic responses. Therapeutic durability in cancer treatments remains a problem for both chemotherapies and pathway-targeted drugs, but the reasons for this are not well understood. Tumor progression is accompanied by changes in the biophysical properties of the tissue, and we asked whether matrix rigidity modulated the sensitive versus resistant states in HER2-amplified breast cancer cell responses to the HER2-targeted kinase inhibitor lapatinib. The antiproliferative effect of lapatinib was inversely proportional to the elastic modulus of the adhesive substrata. Down-regulation of the mechanosensitive transcription coactivators YAP and TAZ, either by siRNA or with the small-molecule YAP/TEAD inhibitor verteporfin, eliminated modulus-dependent lapatinib resistance. Reduction of YAP in vivo in mice also slowed the growth of implanted HER2-amplified tumors, showing a trend of increasing sensitivity to lapatinib as YAP decreased. Thus we address the role of stiffness in resistance to and efficacy of a HER2 pathway-targeted therapeutic via the mechanotransduction arm of the Hippo pathway.", "title": "Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors." }, { "docid": "23863551", "text": "We examined the effects of an inhibitor of PI3K, XL147, against human breast cancer cell lines with constitutive PI3K activation. Treatment with XL147 resulted in dose-dependent inhibition of cell growth and levels of pAKT and pS6, signal transducers in the PI3K/AKT/TOR pathway. In HER2-overexpressing cells, inhibition of PI3K was followed by up-regulation of expression and phosphorylation of multiple receptor tyrosine kinases, including HER3. Knockdown of FoxO1 and FoxO3a transcription factors suppressed the induction of HER3, InsR, IGF1R, and FGFR2 mRNAs upon inhibition of PI3K. In HER2(+) cells, knockdown of HER3 with siRNA or cotreatment with the HER2 inhibitors trastuzumab or lapatinib enhanced XL147-induced cell death and inhibition of pAKT and pS6. Trastuzumab and lapatinib each synergized with XL147 for inhibition of pAKT and growth of established BT474 xenografts. These data suggest that PI3K antagonists will inhibit AKT and relieve suppression of receptor tyrosine kinase expression and their activity. Relief of this feedback limits the sustained inhibition of the PI3K/AKT pathway and attenuates the response to these agents. As a result, PI3K pathway inhibitors may have limited clinical activity overall if used as single agents. In patients with HER2-overexpressing breast cancer, PI3K inhibitors should be used in combination with HER2/HER3 antagonists.", "title": "Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors." }, { "docid": "17876040", "text": "Owing to their integral involvement in cell cycle regulation, the Polo-like kinase (Plk) family, particularly Plk1, has emerged as an attractive therapeutic target in oncology. In recent years, several Plk1 inhibitors have been developed, with some agents showing encouraging results in early-phase clinical trials. This review focuses on volasertib (BI 6727; an investigational agent), a potent and selective Plk inhibitor. Volasertib has shown promising activity in various cancer cell lines and xenograft models of human cancer. Trials performed to date suggest that volasertib has clinical efficacy in a range of malignancies, with the most promising results seen in patients with acute myeloid leukemia (AML). Encouragingly, recent phase II data have demonstrated that volasertib combined with low-dose cytarabine (LDAC) was associated with higher response rates and improved event-free survival than LDAC alone in patients with previously untreated AML. Based on these observations, and its presumably manageable safety profile, volasertib is currently in phase III development as a potential treatment for patients with AML who are ineligible for intensive remission induction therapy. Given that many patients with AML are of an older age and frail, this constitutes an area of major unmet need. In this review, we discuss the biologic rationale for Plk1 inhibitors in cancer, the clinical development of volasertib to date in solid tumors and AML, and the future identification of biomarkers that might predict response to volasertib and help determine the role of this agent in the clinic.", "title": "Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy" }, { "docid": "19752008", "text": "Phosphatidylinositol (PtdIns) 3-kinase is an enzyme implicated in growth factor signal transduction by associating with receptor and nonreceptor tyrosine kinases, including the platelet-derived growth factor receptor. Inhibitors of PtdIns 3-kinase could potentially give a better understanding of the function and regulatory mechanisms of the enzyme. Quercetin, a naturally occurring bioflavinoid, was previously shown to inhibit PtdIns 3-kinase with an IC50 of 1.3 microgram/ml (3.8 microM); inhibition appeared to be directed at the ATP-binding site of the kinase. Analogs of quercetin were investigated as PtdIns 3-kinase inhibitors, with the most potent ones exhibiting IC50 values in the range of 1.7-8.4 micrograms/ml. In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 > 30 micrograms/ml). Since quercetin has also been shown to inhibit other PtdIns and protein kinases, other chromones were evaluated as inhibitors of PtdIns 3-kinase without affecting PtdIns 4-kinase or selected protein kinases. One such compound, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (also known as 2-(4-morpholinyl)-8-phenylchromone, LY294002), completely and specifically abolished PtdIns 3-kinase activity (IC50 = 0.43 microgram/ml; 1.40 microM) but did not inhibit PtdIns 4-kinase or tested protein and lipid kinases. Analogs of LY294002 demonstrated a very selective structure-activity relationship, with slight changes in structure causing marked decreases in inhibition. LY294002 was shown to completely abolish PtdIns 3-kinase activity in fMet-Leu-Phe-stimulated human neutrophils, as well as inhibit proliferation of smooth muscle cells in cultured rabbit aortic segments. Since PtdIns 3-kinase appears to be centrally involved with growth factor signal transduction, the development of specific inhibitors against the kinase may be beneficial in the treatment of proliferative diseases as well as in elucidating the biological role of the kinase in cellular proliferation and growth factor response.", "title": "A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002)." }, { "docid": "23420807", "text": "Angiogenesis, the formation of new blood vessels from an existing vasculature, is requisite for tumor growth. It entails intercellular coordination of endothelial and tumor cells through angiogenic growth factor signaling. Interruption of these events has implications in the suppression of tumor growth. PD166285, a broad-spectrum receptor tyrosine kinase (RTK) inhibitor, and PD173074, a selective FGFR1TK inhibitor, were evaluated for their anti-angiogenic activity and anti-tumor efficacy in combination with photodynamic therapy (PDT). To evaluate the anti-angiogenic and anti-tumor activities of these compounds, RTK assays, in vitro tumor cell growth and microcapillary formation assays, in vivo murine angiogenesis and anti-tumor efficacy studies utilizing RTK inhibitors in combination with photodynamic therapy were performed. PD166285 inhibited PDGFR-β-, EGFR-, and FGFR1TKs and c-src TK by 50% (IC50) at concentrations between 7−85nM. PD173074 displayed selective inhibitory activity towards FGFR1TK at 26nM. PD173074 demonstrated (>100 fold) selective growth inhibitory action towards human umbilical vein endothelial cells compared with a panel of tumor cell lines. Both PD166285 and PD173074 (at 10nM) inhibited the formation of microcapillaries on Matrigel-coated plastic. In vivo anti-angiogenesis studies in mice revealed that oral administration (p.o.) of either PD166285 (1−25 mg/kg) or PD173074 (25−100 mg/kg) generated dose dependent inhibition of angiogenesis. Against a murine mammary 16c tumor, significantly prolonged tumor regressions were achieved with daily p.o. doses of PD166285 (5−10 mg/kg) or PD173074 (30−60 mg/kg) following PDT compared with PDT alone (p<0.001). Many long-term survivors were also noted in combination treatment groups. PD166285 and PD173074 displayed potent anti-angiogenic and anti-tumor activity and prolonged the duration of anti-tumor response to PDT. Interference in membrane signal transduction by inhibitors of specific RTKs (e.g. FGFR1TK) should result in new chemotherapeutic agents having the ability to limit tumor angiogenesis and regrowth following cytoreductive treatments such as PDT.", "title": "Anti-Angiogenic Activity of Selected Receptor Tyrosine Kinase Inhibitors, PD166285 and PD173074: Implications for Combination Treatment with Photodynamic Therapy" }, { "docid": "85665741", "text": "5247 Constitutive ERK signaling is common in human cancer and is often the result of activating mutations of BRAF, RAS and upstream receptor tyrosine kinases. Missense BRAF kinase domain mutations are frequently observed in melanoma, colon and thyroid cancers and less frequently in lung and other cancer types. The vast majority (>90%) involve a glutamic acid for valine substitution at codon 600 (V600E), which results in elevated BRAF kinase activity. BRAF kinase domain mutations with intermediate and impaired kinase activity have also been identified, most frequently in NSCLC. We have previously reported that tumors with V600E BRAF mutation are selectively sensitive to MEK inhibition. Using the potent and selective MEK1/2 inhibitor PD0325901 (Pfizer), we examined a panel of NSCLC cell lines with mutant EGFR, KRAS, and/or low, intermediate and high-activity BRAF kinase domain mutations for MEK dependence. In all but one case, EGFR, KRAS and BRAF mutations were mutually exclusive with the exception being a cell line with concurrent NRAS and intermediate activity BRAF mutations. Consistent with our prior results, NSCLC cells with V600E BRAF mutation were exquisitely sensitive to MEK inhibition (PD0325901 IC50 of 2nM). The proliferation of cells with non-V600E mutations, including those with high (G469A), intermediate (L597V) and impaired (G466V) kinase activities, was also MEK dependent with IC50’s ranging between 2.7 and 80 nM. Inhibition of MEK in these cells resulted in downregulation of cyclin D1 and G1 growth arrest, with variable induction of apoptosis. Despite high basal ERK activity, NSCLC tumor cells with EGFR mutation were uniformly resistant to MEK inhibition (at doses of up to 500nM), despite effective and prolonged inhibition of ERK phosphorylation. Tumor cells with RAS mutation had a more variable response, with some cell lines demonstrating sensitivity, while others were completely resistant. There was no correlation between basal ERK activity and sensitivity to MEK inhibition. A strong inverse correlation between Akt activity and PD0325901 sensitivity was observed. These results suggest that MEK inhibition may be useful therapeutically in tumors with V600E and non-V600E BRAF kinase domain mutations. The results also suggest that inhibition of both MEK and Akt signaling may be required in NSCLC tumors with high basal AKT activity.", "title": "BRAF mutation predicts for MEK-dependence in non-small cell lung cancer (NSCLC)." }, { "docid": "5270265", "text": "Trastuzumab is a successful rationally designed ERBB2-targeted therapy. However, about half of individuals with ERBB2-overexpressing breast cancer do not respond to trastuzumab-based therapies, owing to various resistance mechanisms. Clinically applicable regimens for overcoming trastuzumab resistance of different mechanisms are not yet available. We show that the nonreceptor tyrosine kinase c-SRC (SRC) is a key modulator of trastuzumab response and a common node downstream of multiple trastuzumab resistance pathways. We find that SRC is activated in both acquired and de novo trastuzumab-resistant cells and uncover a novel mechanism of SRC regulation involving dephosphorylation by PTEN. Increased SRC activation conferred considerable trastuzumab resistance in breast cancer cells and correlated with trastuzumab resistance in patients. Targeting SRC in combination with trastuzumab sensitized multiple lines of trastuzumab-resistant cells to trastuzumab and eliminated trastuzumab-resistant tumors in vivo, suggesting the potential clinical application of this strategy to overcome trastuzumab resistance.", "title": "Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways" }, { "docid": "15322518", "text": "Subunits of the SWI/SNF chromatin remodeling complex are mutated in a significant proportion of human cancers. Malignant rhabdoid tumors (MRTs) are lethal pediatric cancers characterized by a deficiency in the SWI/SNF subunit SMARCB1. Here, we employ an integrated molecular profiling and chemical biology approach to demonstrate that the receptor tyrosine kinases (RTKs) PDGFRα and FGFR1 are coactivated in MRT cells and that dual blockade of these receptors has synergistic efficacy. Inhibitor combinations targeting both receptors and the dual inhibitor ponatinib suppress the AKT and ERK1/2 pathways leading to apoptosis. MRT cells that have acquired resistance to the PDGFRα inhibitor pazopanib are susceptible to FGFR inhibitors. We show that PDGFRα levels are regulated by SMARCB1 expression, and assessment of clinical specimens documents the expression of both PDGFRα and FGFR1 in rhabdoid tumor patients. Our findings support a therapeutic approach in cancers with SWI/SNF deficiencies by exploiting RTK coactivation dependencies.", "title": "Dual Targeting of PDGFRα and FGFR1 Displays Synergistic Efficacy in Malignant Rhabdoid Tumors" }, { "docid": "29321530", "text": "The central role of phosphoinositide 3-kinase (PI3K) activation in tumour cell biology has prompted a sizeable effort to target PI3K and/or downstream kinases such as AKT and mammalian target of rapamycin (mTOR) in cancer. However, emerging clinical data show limited single-agent activity of inhibitors targeting PI3K, AKT or mTOR at tolerated doses. One exception is the response to PI3Kδ inhibitors in chronic lymphocytic leukaemia, where a combination of cell-intrinsic and -extrinsic activities drive efficacy. Here, we review key challenges and opportunities for the clinical development of inhibitors targeting the PI3K–AKT–mTOR pathway. Through a greater focus on patient selection, increased understanding of immune modulation and strategic application of rational combinations, it should be possible to realize the potential of this promising class of targeted anticancer agents.", "title": "PI3K and cancer: lessons, challenges and opportunities" }, { "docid": "20738970", "text": "Epithelial and endothelial tyrosine kinase (Etk), also known as Bmx (bone marrow X kinase) plays an important role in apoptosis of epithelial cells. The goal of this study was to investigate whether Etk is involved in apoptosis of small cell lung cancer (SCLC) cells and correlated with the expression levels of apoptosis-associated proteins such as Bcl-2, Bcl-X(L) and p53. One hundred and seventy-one cases of lung cancer specimens including seventy-one SCLCs and one hundred NSCLCs were immunostained for Etk, Bcl-2, Bcl-X(L) and p53. Parental SCLC H446 cell line, and its subline (H446-Etk) that overexpresses Etk, were used to study the role of Etk in apoptosis induced by doxorubicin. It was found that high expression of Etk occurs in 74.6% of SCLC cases, but only in 40% of NSCLC cases, and there is marked difference in the expression levels of Bcl-2, Bcl-X(L) and p53 between Etk-positive and Etk-negative SCLC cases. Furthermore, the levels of Bcl-2 and Bcl-X(L) significantly increased in H446-Etk cells than that in H446 cells after doxorubicin treatment, and were positively associated with Etk expression. However, p53 did not correspond with Etk expression although its expression decreased greatly with apoptosis both in H446-Etk and H446 cells. After doxorubicin treatment, the cell viability was significantly higher in H446-Etk cells than in parental H446 cells. Downregulation of Etk by Etk siRNA sensitized H446 cells to doxorubicin. Our results indicate that upregulation of tyrosine kinase Etk may be a new mechanism involved in protection of SCLC cells from apoptosis. Bcl-2 and Bcl-X(L) but not p53 may contribute to doxorubicin-induced apoptosis through Etk pathway.", "title": "Non-receptor tyrosine kinase Etk is involved in the apoptosis of small cell lung cancer cells." }, { "docid": "25915873", "text": "PURPOSE Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. \n RESULTS Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. EXPERIMENTAL DESIGN We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. \n CONCLUSION Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.", "title": "Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation." }, { "docid": "17648235", "text": "De-regulation of the wingless and integration site growth factor (WNT) signaling pathway via mutations in APC and Axin, proteins that target β-catenin for destruction, have been linked to various types of human cancer. These genetic alterations rarely, if ever, are observed in breast tumors. However, various lines of evidence suggest that WNT signaling may also be de-regulated in breast cancer. Most breast tumors show hypermethylation of the promoter region of secreted Frizzled-related protein 1 (sFRP1), a negative WNT pathway regulator, leading to downregulation of its expression. As a consequence, WNT signaling is enhanced and may contribute to proliferation of human breast tumor cells. We previously demonstrated that, in addition to the canonical WNT/β-catenin pathway, WNT signaling activates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in mouse mammary epithelial cells via epidermal growth factor receptor (EGFR) transactivation. Using the WNT modulator sFRP1 and short interfering RNA-mediated Dishevelled (DVL) knockdown, we interfered with autocrine WNT signaling at the ligand-receptor level. The impact on proliferation was measured by cell counting, YOPRO, and the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay; β-catenin, EGFR, ERK1/2 activation, and PARP (poly [ADP-ribose]polymerase) cleavages were assessed by Western blotting after treatment of human breast cancer cell lines with conditioned media, purified proteins, small-molecule inhibitors, or blocking antibodies. Phospho-DVL and stabilized β-catenin are present in many breast tumor cell lines, indicating autocrine WNT signaling activity. Interfering with this loop decreases active β-catenin levels, lowers ERK1/2 activity, blocks proliferation, and induces apoptosis in MDA-MB-231, BT474, SkBr3, JIMT-1, and MCF-7 cells. The effects of WNT signaling are mediated partly by EGFR transactivation in human breast cancer cells in a metalloprotease- and Src-dependent manner. Furthermore, Wnt1 rescues estrogen receptor-positive (ER+) breast cancer cells from the anti-proliferative effects of 4-hydroxytamoxifen (4-HT) and this activity can be blocked by an EGFR tyrosine kinase inhibitor. Our data show that interference with autocrine WNT signaling in human breast cancer reduces proliferation and survival of human breast cancer cells and rescues ER+ tumor cells from 4-HT by activation of the canonical WNT pathway and EGFR transactivation. These findings suggest that interference with WNT signaling at the ligand-receptor level in combination with other targeted therapies may improve the efficiency of breast cancer treatments.", "title": "Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation" }, { "docid": "7975937", "text": "The mechanisms by which melanoma and other cancer cells evade anti-tumor immunity remain incompletely understood. Here, we show that the growth of tumors formed by mutant Braf(V600E) mouse melanoma cells in an immunocompetent host requires their production of prostaglandin E2, which suppresses immunity and fuels tumor-promoting inflammation. Genetic ablation of cyclooxygenases (COX) or prostaglandin E synthases in Braf(V600E) mouse melanoma cells, as well as in Nras(G12D) melanoma or in breast or colorectal cancer cells, renders them susceptible to immune control and provokes a shift in the tumor inflammatory profile toward classic anti-cancer immune pathways. This mouse COX-dependent inflammatory signature is remarkably conserved in human cutaneous melanoma biopsies, arguing for COX activity as a driver of immune suppression across species. Pre-clinical data demonstrate that inhibition of COX synergizes with anti-PD-1 blockade in inducing eradication of tumors, implying that COX inhibitors could be useful adjuvants for immune-based therapies in cancer patients.", "title": "Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity" } ]
940
Pharmacist attendance at ward rounds increases adverse events in wards.
[ { "docid": "12258338", "text": "CONTEXT Pharmacist review of medication orders in the intensive care unit (ICU) has been shown to prevent errors, and pharmacist consultation has reduced drug costs. However, whether pharmacist participation in the ICU at the time of drug prescribing reduces adverse events has not been studied. \n OBJECTIVE To measure the effect of pharmacist participation on medical rounds in the ICU on the rate of preventable adverse drug events (ADEs) caused by ordering errors. \n DESIGN Before-after comparison between phase 1 (baseline) and phase 2 (after intervention implemented) and phase 2 comparison with a control unit that did not receive the intervention. \n SETTING A medical ICU (study unit) and a coronary care unit (control unit) in a large urban teaching hospital. \n PATIENTS Seventy-five patients randomly selected from each of 3 groups: all admissions to the study unit from February 1, 1993, through July 31, 1993 (baseline) and all admissions to the study unit (postintervention) and control unit from October 1, 1994, through July 7, 1995. In addition, 50 patients were selected at random from the control unit during the baseline period. \n INTERVENTION A senior pharmacist made rounds with the ICU team and remained in the ICU for consultation in the morning, and was available on call throughout the day. \n MAIN OUTCOME MEASURES Preventable ADEs due to ordering (prescribing) errors and the number, type, and acceptance of interventions made by the pharmacist. Preventable ADEs were identified by review of medical records of the randomly selected patients during both preintervention and postintervention phases. Pharmacists recorded all recommendations, which were then analyzed by type and acceptance. \n RESULTS The rate of preventable ordering ADEs decreased by 66% from 10.4 per 1000 patient-days (95% confidence interval [CI], 7-14) before the intervention to 3.5 (95% CI, 1-5; P<.001) after the intervention. In the control unit, the rate was essentially unchanged during the same time periods: 10.9 (95% CI, 6-16) and 12.4 (95% CI, 8-17) per 1000 patient-days. The pharmacist made 366 recommendations related to drug ordering, of which 362 (99%) were accepted by physicians. \n CONCLUSIONS The presence of a pharmacist on rounds as a full member of the patient care team in a medical ICU was associated with a substantially lower rate of ADEs caused by prescribing errors. Nearly all the changes were readily accepted by physicians.", "title": "Pharmacist participation on physician rounds and adverse drug events in the intensive care unit." } ]
[ { "docid": "21260231", "text": "The validity and reliability of observational methods for studying medication administration errors (MAEs) were studied. Between January and June 1998, two pharmacists observed consecutive drug administration rounds by nurses on two wards in a U.K. hospital and recorded all MAEs identified. The observers intervened in cases of potentially harmful errors. MAE records were audited to determine the percentage of omitted doses for which a corresponding reason was documented for the observation periods and for nonobservation periods. Error rates for each drug administration round were analyzed according to whether they were for the nurse's first, second, third (and so on) observed round. Error rates were calculated before and after the first intervention with nurses for whom an intervention was made. Observer reliability was calculated by comparing the rates of errors identified by the two observers. There was no difference between the observation and nonobservation periods in the percentage of omitted doses for which a reason was documented, and there was no change in the error rate with repeated observations. There was no difference in error rates before and after the first intervention for each nurse. There was also no difference in error detection between the two observers and no change with increasing duration of observation. Observation of nurses during drug administration at a U.K. hospital did not significantly affect the MAE rate; nor did tactful interventions by the observers. Observer reliability was high. Concerns about the validity and reliability of observational methods for identifying MAEs may be unfounded.", "title": "Validity and reliability of observational methods for studying medication administration errors." }, { "docid": "16495649", "text": "OBJECTIVES To determine the incidence and clinical importance of errors in the preparation and administration of intravenous drugs and the stages of the process in which errors occur. \n DESIGN Prospective ethnographic study using disguised observation. \n PARTICIPANTS Nurses who prepared and administered intravenous drugs. \n SETTING 10 wards in a teaching and non-teaching hospital in the United Kingdom. \n MAIN OUTCOME MEASURES Number, type, and clinical importance of errors. \n RESULTS 249 errors were identified. At least one error occurred in 212 out of 430 intravenous drug doses (49%, 95% confidence interval 45% to 54%). Three doses (1%) had potentially severe errors, 126 (29%) potentially moderate errors, and 83 (19%) potentially minor errors. Most errors occurred when giving bolus doses or making up drugs that required multiple step preparation. \n CONCLUSIONS The rate of intravenous drug errors was high. Although most errors would cause only short term adverse effects, a few could have been serious. A combination of reducing the amount of preparation on the ward, training, and technology to administer slow bolus doses would probably have the greatest effect on error rates.", "title": "Ethnographic study of incidence and severity of intravenous drug errors." }, { "docid": "13843341", "text": "OBJECTIVE To evaluate the cost effectiveness of standard treatment with and without the addition of ward based non-invasive ventilation in patients admitted to hospital with an acute exacerbation of chronic obstructive pulmonary disease. \n DESIGN Incremental cost effectiveness analysis of a randomised controlled trial. \n SETTING Medical wards in 14 hospitals in the United Kingdom. \n PARTICIPANTS The trial comprised 236 patients admitted to hospital with an acute exacerbation of chronic obstructive pulmonary disease and mild to moderate acidosis (pH 7.25-7.35) secondary to respiratory failure. The economic analysis compared the costs of treatment that these patients received after randomisation. \n MAIN OUTCOME MEASURE Incremental cost per in-hospital death. \n RESULTS 24/118 died in the group receiving standard treatment and 12/118 in the group receiving non-invasive ventilation (P=0.05). Allocation to the group receiving non-invasive ventilation was associated with a reduction in costs of 49362 pounds sterling (78741 dollars; 73109 euros), mainly through reduced use of intensive care units. The incremental cost effectiveness ratio was -645 pounds sterling per death avoided (95% confidence interval -2310 pounds sterling to 386 pounds sterling), indicating a dominant (more effective and less costly) strategy. Modelling of these data indicates that a typical UK hospital providing a non-invasive ventilation service will avoid six deaths and three to nine admissions to intensive care units per year, with an associated cost reduction of 12000-53000 pounds sterling per year. \n CONCLUSIONS Non-invasive ventilation is a highly cost effective treatment that both reduced total costs and improved mortality in hospital.", "title": "Cost effectiveness of ward based non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease: economic analysis of randomised controlled trial." }, { "docid": "42404093", "text": "OBJECTIVES To assess incidence and preventability of adverse drug events (ADEs) and potential ADEs. To analyze preventable events to develop prevention strategies. \n DESIGN Prospective cohort study. \n PARTICIPANTS All 4031 adult admissions to a stratified random sample of 11 medical and surgical units in two tertiary care hospitals over a 6-month period. Units included two medical and three surgical intensive care units and four medical and two surgical general care units. \n MAIN OUTCOME MEASURES Adverse drug events and potential ADEs. \n METHODS Incidents were detected by stimulated self-report by nurses and pharmacists and by daily review of all charts by nurse investigators. Incidents were subsequently classified by two independent reviewers as to whether they represented ADEs or potential ADEs and as to severity and preventability. \n RESULTS Over 6 months, 247 ADEs and 194 potential ADEs were identified. Extrapolated event rates were 6.5 ADEs and 5.5 potential ADEs per 100 nonobstetrical admissions, for mean numbers per hospital per year of approximately 1900 ADEs and 1600 potential ADEs. Of all ADEs, 1% were fatal (none preventable), 12% life-threatening, 30% serious, and 57% significant. Twenty-eight percent were judged preventable. Of the life-threatening and serious ADEs, 42% were preventable, compared with 18% of significant ADEs. Errors resulting in preventable ADEs occurred most often at the stages of ordering (56%) and administration (34%); transcription (6%) and dispensing errors (4%) were less common. Errors were much more likely to be intercepted if the error occurred earlier in the process: 48% at the ordering stage vs 0% at the administration stage. \n CONCLUSION Adverse drug events were common and often preventable; serious ADEs were more likely to be preventable. Most resulted from errors at the ordering stage, but many also occurred at the administration stage. Prevention strategies should target both stages of the drug delivery process.", "title": "Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group." }, { "docid": "1259359", "text": "The incidence of the acquired immunodeficiency syndrome (AIDS) in Malawi is one of the highest in Central Africa. Since tuberculosis is an important initial manifestations of the disease, consecutive patients admitted to the tuberculosis (TB) wards of Zomba General Hospital, Malawi, were asked for permission to undergo a human immunodeficiency virus (HIV)-antibodies test. In addition, two other studies were done: from September 1986 all medical in-patients, clinically suspected for immune deficiency and from April 1988 all blood donors were tested for HIV seropositivity. Seventy-five percent of the TB patients volunteered; 32 out of 125 (26%) were seropositive. In the high-risk age groups (20-40 years) this percentage rose to 32. Among the medical in-patients suspected of immune deficiency the seropositivity rose sharply from April 1987 to October 1988. Among the blood donors tested, 20% were seropositive.", "title": "HIV seropositivity and tuberculosis in a large general hospital in Malawi." }, { "docid": "24241932", "text": "OBJECTIVE To examine the effect of ethnicity on the relation between tuberculosis and deprivation. \n DESIGN Retrospective ecological study comparing incidence of tuberculosis in white and south Asian residents of the 39 electoral wards in Birmingham with ethnic specific indices of deprivation. \n SETTING Birmingham, 1989-93. SUBJECTS 1516 notified cases of tuberculosis. \n MAIN OUTCOME MEASURES Rates of tuberculosis and measures of deprivation. \n RESULTS Univariate analysis showed significant associations of tuberculosis rates for the whole population with several indices of deprivation (P<0.01) and with the proportion of the population of south Asian origin (P<0.01). All deprivation covariates were positively associated with each other but on multiple regression, higher level of overcrowding was independently associated with tuberculosis rates. For the white population, overcrowding was associated with tuberculosis rates independently of other variables (P=0.0036). No relation with deprivation was found for the south Asian population in either single or multivariable analyses. \n CONCLUSIONS Poverty is significantly associated with tuberculosis in the white population, but no such relation exists for those of Asian ethnicity. These findings suggest that causal factors, and therefore potential interventions, will also differ by ethnic group.", "title": "Ecological analysis of ethnic differences in relation between tuberculosis and poverty." }, { "docid": "12991445", "text": "OBJECTIVE To determine the effects of smoking, plasma lipids, lipoproteins, apolipoproteins, and fibrinogen on the patency of saphenous vein femoropopliteal bypass grafts at one year. \n DESIGN Prospective study of patients with saphenous vein femoropopliteal bypass grafts entered into a multicentre trial. \n SETTING Surgical wards, outpatient clinics, and home visits coordinated by two tertiary referral centres in London and Birmingham. \n PATIENTS 157 Patients (mean age 66.6 (SD 8.2) years), 113 with patent grafts and 44 with occluded grafts one year after bypass. \n MAIN OUTCOME MEASURE Cumulative percentage patency at one year. \n RESULTS Markers for smoking (blood carboxyhaemoglobin concentration (p less than 0.05) and plasma thiocyanate concentration (p less than 0.01) and plasma concentrations of fibrinogen (p less than 0.001) and apolipoproteins AI (p less than 0.04) and (a) (p less than 0.05) were significantly higher in patients with occluded grafts. Serum cholesterol concentrations were significantly higher in patients with grafts that remained patent one year after bypass (p less than 0.005). Analysis of the smoking markers indicated that a quarter of patients (40) were untruthful in their claims to have stopped smoking. Based on smoking markers, patency of grafts in smokers was significantly lower at one year by life table analysis than in non-smokers (63% v 84%, p less than 0.02). Patency was significantly higher by life table analysis in patients with a plasma fibrinogen concentration below the median than in those with a concentration above (90% v 57%, p less than 0.0002). Surprisingly, increased plasma low density lipoprotein cholesterol concentration was significantly associated with improved patency at one year (85%) at values above the median compared with patency (only 68%) at values in the lower half of the range (p less than 0.02). \n CONCLUSIONS Plasma fibrinogen concentration was the most important variable predicting graft occlusion, followed by smoking markers. A more forceful approach is needed to stop patients smoking; therapeutic measures to improve patency of vein grafts should focus on decreasing plasma fibrinogen concentration rather than serum cholesterol concentration.", "title": "Influence of smoking and plasma factors on patency of femoropopliteal vein grafts." }, { "docid": "29845974", "text": "Medicines are a major treatment modality for many mental illnesses, and with the growing burden of mental disorders worldwide pharmacists are ideally positioned to play a greater role in supporting people with a mental illness. This narrative review aims to describe the evidence for pharmacist-delivered services in mental health care and address the barriers and facilitators to increasing the uptake of pharmacist services as part of the broader mental health care team. This narrative review is divided into three main sections: (1) the role of the pharmacist in mental health care in multidisciplinary teams and in supporting early detection of mental illness; (2) the pharmacists' role in supporting quality use of medicines in medication review, strategies to improve medication adherence and antipsychotic polypharmacy, and shared decision making; and (3) barriers and facilitators to the implementation of mental health pharmacy services with a focus on organizational culture and mental health stigma. In the first section, the review presents new roles for pharmacists within multidisciplinary teams, such as in case conferencing or collaborative drug therapy management; and new roles that would benefit from increased pharmacist involvement, such as the early detection of mental health conditions, development of care plans and follow up of people with mental health problems. The second section describes the impact of medication review services and other pharmacist-led interventions designed to reduce inappropriate use of psychotropic medicines and improve medication adherence. Other new potential roles discussed include the management of antipsychotic polypharmacy and involvement in patient-centered care. Finally, barriers related to pharmacists' attitudes, stigma and skills in the care of patients with mental health problems and barriers affecting pharmacist-physician collaboration are described, along with strategies to reduce mental health stigma.", "title": "New Roles for Pharmacists in Community Mental Health Care: A Narrative Review" }, { "docid": "5596332", "text": "IMPORTANCE Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. \n OBJECTIVE To evaluate and, as needed, update definitions for sepsis and septic shock. PROCESS A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). KEY FINDINGS FROM EVIDENCE SYNTHESIS Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. RECOMMENDATIONS Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. \n CONCLUSIONS AND RELEVANCE These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.", "title": "The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)." }, { "docid": "24077493", "text": "BACKGROUND With increasing restrictions placed on physician-industry interactions, industry marketing may target other health professionals. Recent health policy developments confer even greater importance on the decision making of non-physician clinicians. The purpose of this systematic review is to examine the types and implications of non-physician clinician-industry interactions in clinical practice. \n METHODS AND FINDINGS We searched MEDLINE and Web of Science from January 1, 1946, through June 24, 2013, according to PRISMA guidelines. Non-physician clinicians eligible for inclusion were: Registered Nurses, nurse prescribers, Physician Assistants, pharmacists, dieticians, and physical or occupational therapists; trainee samples were excluded. Fifteen studies met inclusion criteria. Data were synthesized qualitatively into eight outcome domains: nature and frequency of industry interactions; attitudes toward industry; perceived ethical acceptability of interactions; perceived marketing influence; perceived reliability of industry information; preparation for industry interactions; reactions to industry relations policy; and management of industry interactions. Non-physician clinicians reported interacting with the pharmaceutical and infant formula industries. Clinicians across disciplines met with pharmaceutical representatives regularly and relied on them for practice information. Clinicians frequently received industry \"information,\" attended sponsored \"education,\" and acted as distributors for similar materials targeted at patients. Clinicians generally regarded this as an ethical use of industry resources, and felt they could detect \"promotion\" while benefiting from industry \"information. \" Free samples were among the most approved and common ways that clinicians interacted with industry. Included studies were observational and of varying methodological rigor; thus, these findings may not be generalizable. This review is, however, the first to our knowledge to provide a descriptive analysis of this literature. \n CONCLUSIONS Non-physician clinicians' generally positive attitudes toward industry interactions, despite their recognition of issues related to bias, suggest that industry interactions are normalized in clinical practice across non-physician disciplines. Industry relations policy should address all disciplines and be implemented consistently in order to mitigate conflicts of interest and address such interactions' potential to affect patient care. Please see later in the article for the Editors' Summary.", "title": "Interactions between Non-Physician Clinicians and Industry: A Systematic Review" }, { "docid": "31612088", "text": "Efforts to improve the outcomes of patients with mental illness often have involved incorporating the skills of a variety of health care professionals into collaborative care models. For over 30 years, clinical pharmacists have contributed to these care models in capacities ranging from educator to consultant to provider. This systematic review evaluates the quantity and quality of medical literature examining the impact of pharmacists in mental health from 1972-2003. Although we identified approximately 35 publications describing the roles of clinical pharmacists in this regard, only 16 were of sufficient scientific rigor to permit evaluation and comparison. The 16 studies were divided equally between inpatient and outpatient settings and were conducted in a variety of health care organizations (e.g., Veterans Administration, health maintenance organizations, community mental health clinics, and nursing homes). Nine of the studies examined the role of pharmacists in providing treatment recommendations and patient education, five featured pharmacists as providers (with prescriptive authority), and the remaining two described the impact pharmacists have in delivering education to the psychiatric staff. Six of the 16 studies were prospective, but only three of these incorporated a randomization procedure for patients or facilities. Collectively, the results of the 16 studies were positive, demonstrating improvements in outcomes, prescribing practices, patient satisfaction, and resource use. Unfortunately, most of the investigations were small, and significant limitations in study design limited further comparison. Given the long history and anecdotal success of pharmacists in mental health care settings, additional multicenter cost-effectiveness trials are warranted to further support the role of the psychiatric pharmacist.", "title": "Evaluating the impact of pharmacists in mental health: a systematic review." }, { "docid": "5114940", "text": "BACKGROUND Smoking is the leading preventable cause of illness and premature death worldwide. Some medications have been proven to help people to quit, with three licensed for this purpose in Europe and the USA: nicotine replacement therapy (NRT), bupropion, and varenicline. Cytisine (a treatment pharmacologically similar to varenicline) is also licensed for use in Russia and some of the former socialist economy countries. Other therapies, including nortriptyline, have also been tested for effectiveness. \n OBJECTIVES How do NRT, bupropion and varenicline compare with placebo and with each other in achieving long-term abstinence (six months or longer)? How do the remaining treatments compare with placebo in achieving long-term abstinence? How do the risks of adverse and serious adverse events (SAEs) compare between the treatments, and are there instances where the harms may outweigh the benefits? \n METHODS The overview is restricted to Cochrane reviews, all of which include randomised trials. Participants are usually adult smokers, but we exclude reviews of smoking cessation for pregnant women and in particular disease groups or specific settings. We cover nicotine replacement therapy (NRT), antidepressants (bupropion and nortriptyline), nicotine receptor partial agonists (varenicline and cytisine), anxiolytics, selective type 1 cannabinoid receptor antagonists (rimonabant), clonidine, lobeline, dianicline, mecamylamine, Nicobrevin, opioid antagonists, nicotine vaccines, and silver acetate. Our outcome for benefit is continuous or prolonged abstinence at least six months from the start of treatment. Our outcome for harms is the incidence of serious adverse events associated with each of the treatments. We searched the Cochrane Database of Systematic Reviews (CDSR) in The Cochrane Library, for any reviews with 'smoking' in the title, abstract or keyword fields. The last search was conducted in November 2012. We assessed methodological quality using a revised version of the AMSTAR scale. For NRT, bupropion and varenicline we conducted network meta-analyses, comparing each with the others and with placebo for benefit, and varenicline and bupropion for risks of serious adverse events. \n MAIN RESULTS We identified 12 treatment-specific reviews. The analyses covered 267 studies, involving 101,804 participants. Both NRT and bupropion were superior to placebo (odds ratios (OR) 1.84; 95% credible interval (CredI) 1.71 to 1.99, and 1.82; 95% CredI 1.60 to 2.06 respectively). Varenicline increased the odds of quitting compared with placebo (OR 2.88; 95% CredI 2.40 to 3.47). Head-to-head comparisons between bupropion and NRT showed equal efficacy (OR 0.99; 95% CredI 0.86 to 1.13). Varenicline was superior to single forms of NRT (OR 1.57; 95% CredI 1.29 to 1.91), and to bupropion (OR 1.59; 95% CredI 1.29 to 1.96). Varenicline was more effective than nicotine patch (OR 1.51; 95% CredI 1.22 to 1.87), than nicotine gum (OR 1.72; 95% CredI 1.38 to 2.13), and than 'other' NRT (inhaler, spray, tablets, lozenges; OR 1.42; 95% CredI 1.12 to 1.79), but was not more effective than combination NRT (OR 1.06; 95% CredI 0.75 to 1.48). Combination NRT also outperformed single formulations. The four categories of NRT performed similarly against each other, apart from 'other' NRT, which was marginally more effective than NRT gum (OR 1.21; 95% CredI 1.01 to 1.46). Cytisine (a nicotine receptor partial agonist) returned positive findings (risk ratio (RR) 3.98; 95% CI 2.01 to 7.87), without significant adverse events or SAEs. Across the 82 included and excluded bupropion trials, our estimate of six seizures in the bupropion arms versus none in the placebo arms was lower than the expected rate (1:1000), at about 1:1500. SAE meta-analysis of the bupropion studies demonstrated no excess of neuropsychiatric (RR 0.88; 95% CI 0.31 to 2.50) or cardiovascular events (RR 0.77; 95% CI 0.37 to 1.59). SAE meta-analysis of 14 varenicline trials found no difference between the varenicline and placebo arms (RR 1.06; 95% CI 0.72 to 1.55), and subgroup analyses detected no significant excess of neuropsychiatric events (RR 0.53; 95% CI 0.17 to 1.67), or of cardiac events (RR 1.26; 95% CI 0.62 to 2.56). Nortriptyline increased the chances of quitting (RR 2.03; 95% CI 1.48 to 2.78). Neither nortriptyline nor bupropion were shown to enhance the effect of NRT compared with NRT alone. Clonidine increased the chances of quitting (RR 1.63; 95% CI 1.22 to 2.18), but this was offset by a dose-dependent rise in adverse events. Mecamylamine in combination with NRT may increase the chances of quitting, but the current evidence is inconclusive. Other treatments failed to demonstrate a benefit compared with placebo. Nicotine vaccines are not yet licensed for use as an aid to smoking cessation or relapse prevention. Nicobrevin's UK license is now revoked, and the manufacturers of rimonabant, taranabant and dianicline are no longer supporting the development or testing of these treatments. AUTHORS' CONCLUSIONS NRT, bupropion, varenicline and cytisine have been shown to improve the chances of quitting. Combination NRT and varenicline are equally effective as quitting aids. Nortriptyline also improves the chances of quitting. On current evidence, none of the treatments appear to have an incidence of adverse events that would mitigate their use. Further research is warranted into the safety of varenicline and into cytisine's potential as an effective and affordable treatment, but not into the efficacy and safety of NRT.", "title": "Pharmacological interventions for smoking cessation: an overview and network meta-analysis." }, { "docid": "38799797", "text": "Interventions by the pharmacists have always been considered as a valuable input by the health care community in the patient care process by reducing the medication errors, rationalizing the therapy and reducing the cost of therapy. The primary objective of this study was to determine the number and types of medication errors intervened by the dispensing pharmacists at OPD pharmacy in the Khoula Hospital during 2009 retrospectively. The interventions filed by the pharmacists and assistant pharmacists in OPD pharmacy were collected. Then they were categorized and analyzed after a detailed review. The results show that 72.3% of the interventions were minor of which 40.5% were about change medication order. Comparatively more numbers of prescriptions were intervened in female patients than male patients. 98.2% of the interventions were accepted by the prescribers reflecting the awareness of the doctors about the importance of the pharmacy practice. In this study only 688 interventions were due to prescribing errors of which 40.5% interventions were done in changing the medication order of clarifying the medicine. 14.9% of the interventions were related to administrative issues, 8.7% of the interventions were related to selection of medications as well as errors due to ignorance of history of patients. 8.2% of the interventions were to address the overdose of medications. Moderately significant interventions were observed in 19.4% and 7.5% of them were having the impact on major medication errors. Pharmacists have intervened 20.8% of the prescriptions to prevent complications, 25.1% were to rationalize the treatment, 7.9% of them were to improve compliance. Based on the results we conclude that the role of pharmacist in improving the health care system is vital. We recommend more number of such research based studies to bring awareness among health care professionals, provide solution to the prescription and dispensing problems, as it can also improve the documentation system, emphasize the importance of it, reduce prescribing errors, and update the knowledge of pharmacists and other health care professionals.", "title": "Interventions by pharmacists in out-patient pharmaceutical care." }, { "docid": "17591478", "text": "Effective and tolerable vaccination is an essential strategy to prevent Japanese encephalitis (JE) in endemic areas. Although the live attenuated SA 14-14-2 JE vaccine (LAJEV) has been widely used since its introduction, the systemic data of LAJEV was very rarely available in Korea. We conducted the open-label, prospective cohort study to assess the immunogenicity and safety of this vaccine. Ninety subjects were enrolled, and LAJEV in a 2-dose primary series was given with a 12-month interval. Neutralizing antibody titers were measured before and after each vaccination, and active monitoring for adverse events was performed. After the first dose, 91.1% of subjects had seroprotection with a geometric mean titer (GMT) of 40.9. Seroprotection rate after the second dose was 97%, and GMT showed an increase of 6.5-fold. Most adverse events following immunization were self-limited, and no serious adverse events were reported until 42 days after each dose. The 2-dose administration of LAJEV in the primary immunization schedule appeared to be highly immunogenic and safe.", "title": "The Immunogenicity and Safety of the Live-attenuated SA 14-14-2 Japanese Encephalitis Vaccine Given with a Two-dose Primary Schedule in Children" }, { "docid": "37118634", "text": "BACKGROUND Umbilical cord infection (omphalitis) is a risk factor for neonatal sepsis and mortality in low-resource settings where home deliveries are common. We aimed to assess the effect of umbilical-cord cleansing with 4% chlorhexidine (CHX) solution, with or without handwashing with antiseptic soap, on the incidence of omphalitis and neonatal mortality. \n METHODS We did a two-by-two factorial, cluster-randomised trial in Dadu, a rural area of Sindh province, Pakistan. Clusters were defined as the population covered by a functional traditional birth attendant (TBA), and were randomly allocated to one of four groups (groups A to D) with a computer-generated random number sequence. Implementation and data collection teams were masked to allocation. Liveborn infants delivered by participating TBAs who received birth kits were eligible for enrolment in the study. One intervention comprised birth kits containing 4% CHX solution for application to the cord at birth by TBAs and once daily by family members for up to 14 days along with soap and educational messages promoting handwashing. One intervention was CHX solution only and another was handwashing only. Standard dry cord care was promoted in the control group. The primary outcomes were incidence of neonatal omphalitis and neonatal mortality. The trial is registered with ClinicalTrials.gov, number NCT00682006. \n FINDINGS 187 clusters were randomly allocated to one of the four study groups. Of 9741 newborn babies delivered by participating TBAs, factorial analysis indicated a reduction in risk of omphalitis with CHX application (risk ratio [RR]=0·58, 95% CI 0·41-0·82; p=0·002) but no evidence of an effect of handwashing (RR=0·83, 0·61-1·13; p=0·24). We recorded strong evidence of a reduction in neonatal mortality in neonates who received CHX cleansing (RR=0·62, 95 % CI 0·45-0·85; p=0·003) but no evidence of an effect of handwashing promotion on neonatal mortality (RR=1·08, 0·79-1·48; p=0·62). We recorded no serious adverse events. \n INTERPRETATION Application of 4% CHX to the umbilical cord was effective in reducing the risk of omphalitis and neonatal mortality in rural Pakistan. Provision of CHX in birth kits might be a useful strategy for the prevention of neonatal mortality in high-mortality settings. \n FUNDING The United States Agency for International Development.", "title": "Topical application of chlorhexidine to neonatal umbilical cords for prevention of omphalitis and neonatal mortality in a rural district of Pakistan: a community-based, cluster-randomised trial." }, { "docid": "6085365", "text": "BACKGROUND Few studies have examined whether physician knowledge, attitudes, or practice patterns might contribute to gender disparities in the primary prevention of coronary heart disease (CHD), including among physicians caring for the largest number of reproductive-age women, obstetricians and gynecologists (OB/GYNs). We sought to identify barriers affecting the provision of recommended coronary risk factor therapies in women. \n METHODS We surveyed internists and OB/GYNs who attended Grand Rounds presentations developed for the New York State Women and Heart Disease Physician Education Initiative. This program was designed to improve screening and management of coronary risk factors in women. Attendees were asked to complete a 7-minute questionnaire. \n RESULTS The mean age of the 529 respondents was 40.3 years (standard deviation = 12.3), 75.1% were internists (n=378), and 42.7% (n=226) were women. Physicians correctly responded to 71.5% of the 13 questions assessing knowledge of coronary risk prevention (range, 4-13). Almost one third of internists and half of the OB/GYNs did not know that tobacco use was the leading cause of myocardial infarction in young women. For patients who smoked tobacco, only two thirds of internists and 55.4% of OB/GYNs reported suggesting a quit date (p=.007). After controlling for covariates, physicians who did not perceive time as a barrier were more likely to discuss smoking cessation (odds ratio=1.7 [1.1-2.7]). \n CONCLUSIONS Among the internists and OB/GYNs surveyed, time was perceived as a barrier to implementing risk prevention. These physicians also underestimated the impact of tobacco use as a risk factor for CHD in young women. To lessen gender disparities in CHD prevention, both specialties need time-efficient educational programs that reflect specialty differences.", "title": "Physician knowledge levels and barriers to coronary risk prevention in women: survey results from the Women and Heart Disease Physician Education Initiative." }, { "docid": "37628989", "text": "BACKGROUND Confocal laser endomicroscopy (CLE) is rapidly emerging as a valuable tool for gastrointestinal endoscopic imaging. Fluorescent contrast agents are used to optimize imaging with CLE, and intravenous fluorescein is the most widely used contrast agent. Fluorescein is FDA-cleared for diagnostic angiography of the retina. For these indications, the safety profile of fluorescein has been well-documented; however, to date, fluorescein is not cleared for use with CLE. AIMS To estimate the rate of serious and total adverse events attributable to intravenous fluorescein when used for gastrointestinal CLE. \n METHODS We performed a cross sectional survey of 16 International Academic Medical Centres with active research protocols in CLE that involved intravenous fluorescein. Centres using i.v. fluorescein for CLE who were actively monitored for adverse events were included. \n RESULTS Sixteen centres performed 2272 gastrointestinal CLE procedures. The most common dose of contrast agent was 2.5-5 mL of 10% sodium fluorescein. No serious adverse events were reported. Mild adverse events occurred in 1.4% of individuals, including nausea/vomiting, transient hypotension without shock, injection site erythema, diffuse rash and mild epigastric pain. The limitation is that only immediate post procedure events were actively monitored. \n CONCLUSIONS Use of intravenous fluorescein for gastrointestinal CLE appears to be safe with few acute complications.", "title": "The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract." }, { "docid": "43226130", "text": "Multiple sclerosis (MS), a chronic inflammatory demyelina-ting and degenerative disease of the central nervous system, is a frequent cause of neurological disability in young adults. Female predominance has increased over the last decades. Although female gender carries a higher risk of developing relapsing remitting MS, being female and at child-bearing age also appears to provide some protection against cognitive decline and against progressive onset MS, an adverse predictive factor when considering long-term disability in MS. The risk of MS in women has been associated with an earlier age at menarche. In most studies, parity did not impact MS risk. However, the recently published association of higher parity and offspring number with a reduced risk of a first demyelinating event suggests a potential suppressive effect. Pregnancy in MS patients has been associated with a reduced relapse rate and a reduction of neurological symptoms, especially in the third trimester. Despite the increased relapse risk in the postpartum period, there is no indication of an adverse effect of childbirth on the long-term course of MS. Fertility treatment in MS has been associated with an increased relapse risk in the following 3-month period, especially when the procedure did not result in pregnancy and gonadotrophin-releasing hormone agonists were used. Altogether, there is substantial evidence to support a regulatory role of sex steroid hormones in MS. In the absence of correlations with single hormone blood levels, we can only speculate about the underlying mechanisms. In conclusion, the increased MS risk in women and the changes in relapse and progression risk in association with reproductive events suggest significant and complex interactions between immune, neuroendocrine and reproductive systems in MS.", "title": "Female Gender and Reproductive Factors Affecting Risk, Relapses and Progression in Multiple Sclerosis" }, { "docid": "583260", "text": "Adverse drug events (ADEs) are the harms associated with uses of given medications at normal dosages, which are crucial for a drug to be approved in clinical use or continue to stay on the market. Many ADEs are not identified in trials until the drug is approved for clinical use, which results in adverse morbidity and mortality. To date, millions of ADEs have been reported around the world. Methods to avoid or reduce ADEs are an important issue for drug discovery and development. Here, we reported a comprehensive database of adverse drug events (namely MetaADEDB), which included more than 520,000 drug-ADE associations among 3059 unique compounds (including 1330 drugs) and 13,200 ADE items by data integration and text mining. All compounds and ADEs were annotated with the most commonly used concepts defined in Medical Subject Headings (MeSH). Meanwhile, a computational method, namely the phenotypic network inference model (PNIM), was developed for prediction of potential ADEs based on the database. The area under the receive operating characteristic curve (AUC) is more than 0.9 by 10-fold cross validation, while the AUC value was 0.912 for an external validation set extracted from the US-FDA Adverse Events Reporting System, which indicated that the prediction capability of the method was reliable. MetaADEDB is accessible free of charge at http://www.lmmd.org/online_services/metaadedb/. The database and the method provide us a useful tool to search for known side effects or predict potential side effects for a given drug or compound.", "title": "Adverse drug events: database construction and in silico prediction." } ]
941
Pharmacist attendance at ward rounds reduces adverse events in wards.
[ { "docid": "12258338", "text": "CONTEXT Pharmacist review of medication orders in the intensive care unit (ICU) has been shown to prevent errors, and pharmacist consultation has reduced drug costs. However, whether pharmacist participation in the ICU at the time of drug prescribing reduces adverse events has not been studied. \n OBJECTIVE To measure the effect of pharmacist participation on medical rounds in the ICU on the rate of preventable adverse drug events (ADEs) caused by ordering errors. \n DESIGN Before-after comparison between phase 1 (baseline) and phase 2 (after intervention implemented) and phase 2 comparison with a control unit that did not receive the intervention. \n SETTING A medical ICU (study unit) and a coronary care unit (control unit) in a large urban teaching hospital. \n PATIENTS Seventy-five patients randomly selected from each of 3 groups: all admissions to the study unit from February 1, 1993, through July 31, 1993 (baseline) and all admissions to the study unit (postintervention) and control unit from October 1, 1994, through July 7, 1995. In addition, 50 patients were selected at random from the control unit during the baseline period. \n INTERVENTION A senior pharmacist made rounds with the ICU team and remained in the ICU for consultation in the morning, and was available on call throughout the day. \n MAIN OUTCOME MEASURES Preventable ADEs due to ordering (prescribing) errors and the number, type, and acceptance of interventions made by the pharmacist. Preventable ADEs were identified by review of medical records of the randomly selected patients during both preintervention and postintervention phases. Pharmacists recorded all recommendations, which were then analyzed by type and acceptance. \n RESULTS The rate of preventable ordering ADEs decreased by 66% from 10.4 per 1000 patient-days (95% confidence interval [CI], 7-14) before the intervention to 3.5 (95% CI, 1-5; P<.001) after the intervention. In the control unit, the rate was essentially unchanged during the same time periods: 10.9 (95% CI, 6-16) and 12.4 (95% CI, 8-17) per 1000 patient-days. The pharmacist made 366 recommendations related to drug ordering, of which 362 (99%) were accepted by physicians. \n CONCLUSIONS The presence of a pharmacist on rounds as a full member of the patient care team in a medical ICU was associated with a substantially lower rate of ADEs caused by prescribing errors. Nearly all the changes were readily accepted by physicians.", "title": "Pharmacist participation on physician rounds and adverse drug events in the intensive care unit." } ]
[ { "docid": "21260231", "text": "The validity and reliability of observational methods for studying medication administration errors (MAEs) were studied. Between January and June 1998, two pharmacists observed consecutive drug administration rounds by nurses on two wards in a U.K. hospital and recorded all MAEs identified. The observers intervened in cases of potentially harmful errors. MAE records were audited to determine the percentage of omitted doses for which a corresponding reason was documented for the observation periods and for nonobservation periods. Error rates for each drug administration round were analyzed according to whether they were for the nurse's first, second, third (and so on) observed round. Error rates were calculated before and after the first intervention with nurses for whom an intervention was made. Observer reliability was calculated by comparing the rates of errors identified by the two observers. There was no difference between the observation and nonobservation periods in the percentage of omitted doses for which a reason was documented, and there was no change in the error rate with repeated observations. There was no difference in error rates before and after the first intervention for each nurse. There was also no difference in error detection between the two observers and no change with increasing duration of observation. Observation of nurses during drug administration at a U.K. hospital did not significantly affect the MAE rate; nor did tactful interventions by the observers. Observer reliability was high. Concerns about the validity and reliability of observational methods for identifying MAEs may be unfounded.", "title": "Validity and reliability of observational methods for studying medication administration errors." }, { "docid": "16495649", "text": "OBJECTIVES To determine the incidence and clinical importance of errors in the preparation and administration of intravenous drugs and the stages of the process in which errors occur. \n DESIGN Prospective ethnographic study using disguised observation. \n PARTICIPANTS Nurses who prepared and administered intravenous drugs. \n SETTING 10 wards in a teaching and non-teaching hospital in the United Kingdom. \n MAIN OUTCOME MEASURES Number, type, and clinical importance of errors. \n RESULTS 249 errors were identified. At least one error occurred in 212 out of 430 intravenous drug doses (49%, 95% confidence interval 45% to 54%). Three doses (1%) had potentially severe errors, 126 (29%) potentially moderate errors, and 83 (19%) potentially minor errors. Most errors occurred when giving bolus doses or making up drugs that required multiple step preparation. \n CONCLUSIONS The rate of intravenous drug errors was high. Although most errors would cause only short term adverse effects, a few could have been serious. A combination of reducing the amount of preparation on the ward, training, and technology to administer slow bolus doses would probably have the greatest effect on error rates.", "title": "Ethnographic study of incidence and severity of intravenous drug errors." }, { "docid": "13843341", "text": "OBJECTIVE To evaluate the cost effectiveness of standard treatment with and without the addition of ward based non-invasive ventilation in patients admitted to hospital with an acute exacerbation of chronic obstructive pulmonary disease. \n DESIGN Incremental cost effectiveness analysis of a randomised controlled trial. \n SETTING Medical wards in 14 hospitals in the United Kingdom. \n PARTICIPANTS The trial comprised 236 patients admitted to hospital with an acute exacerbation of chronic obstructive pulmonary disease and mild to moderate acidosis (pH 7.25-7.35) secondary to respiratory failure. The economic analysis compared the costs of treatment that these patients received after randomisation. \n MAIN OUTCOME MEASURE Incremental cost per in-hospital death. \n RESULTS 24/118 died in the group receiving standard treatment and 12/118 in the group receiving non-invasive ventilation (P=0.05). Allocation to the group receiving non-invasive ventilation was associated with a reduction in costs of 49362 pounds sterling (78741 dollars; 73109 euros), mainly through reduced use of intensive care units. The incremental cost effectiveness ratio was -645 pounds sterling per death avoided (95% confidence interval -2310 pounds sterling to 386 pounds sterling), indicating a dominant (more effective and less costly) strategy. Modelling of these data indicates that a typical UK hospital providing a non-invasive ventilation service will avoid six deaths and three to nine admissions to intensive care units per year, with an associated cost reduction of 12000-53000 pounds sterling per year. \n CONCLUSIONS Non-invasive ventilation is a highly cost effective treatment that both reduced total costs and improved mortality in hospital.", "title": "Cost effectiveness of ward based non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease: economic analysis of randomised controlled trial." }, { "docid": "42404093", "text": "OBJECTIVES To assess incidence and preventability of adverse drug events (ADEs) and potential ADEs. To analyze preventable events to develop prevention strategies. \n DESIGN Prospective cohort study. \n PARTICIPANTS All 4031 adult admissions to a stratified random sample of 11 medical and surgical units in two tertiary care hospitals over a 6-month period. Units included two medical and three surgical intensive care units and four medical and two surgical general care units. \n MAIN OUTCOME MEASURES Adverse drug events and potential ADEs. \n METHODS Incidents were detected by stimulated self-report by nurses and pharmacists and by daily review of all charts by nurse investigators. Incidents were subsequently classified by two independent reviewers as to whether they represented ADEs or potential ADEs and as to severity and preventability. \n RESULTS Over 6 months, 247 ADEs and 194 potential ADEs were identified. Extrapolated event rates were 6.5 ADEs and 5.5 potential ADEs per 100 nonobstetrical admissions, for mean numbers per hospital per year of approximately 1900 ADEs and 1600 potential ADEs. Of all ADEs, 1% were fatal (none preventable), 12% life-threatening, 30% serious, and 57% significant. Twenty-eight percent were judged preventable. Of the life-threatening and serious ADEs, 42% were preventable, compared with 18% of significant ADEs. Errors resulting in preventable ADEs occurred most often at the stages of ordering (56%) and administration (34%); transcription (6%) and dispensing errors (4%) were less common. Errors were much more likely to be intercepted if the error occurred earlier in the process: 48% at the ordering stage vs 0% at the administration stage. \n CONCLUSION Adverse drug events were common and often preventable; serious ADEs were more likely to be preventable. Most resulted from errors at the ordering stage, but many also occurred at the administration stage. Prevention strategies should target both stages of the drug delivery process.", "title": "Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group." }, { "docid": "1259359", "text": "The incidence of the acquired immunodeficiency syndrome (AIDS) in Malawi is one of the highest in Central Africa. Since tuberculosis is an important initial manifestations of the disease, consecutive patients admitted to the tuberculosis (TB) wards of Zomba General Hospital, Malawi, were asked for permission to undergo a human immunodeficiency virus (HIV)-antibodies test. In addition, two other studies were done: from September 1986 all medical in-patients, clinically suspected for immune deficiency and from April 1988 all blood donors were tested for HIV seropositivity. Seventy-five percent of the TB patients volunteered; 32 out of 125 (26%) were seropositive. In the high-risk age groups (20-40 years) this percentage rose to 32. Among the medical in-patients suspected of immune deficiency the seropositivity rose sharply from April 1987 to October 1988. Among the blood donors tested, 20% were seropositive.", "title": "HIV seropositivity and tuberculosis in a large general hospital in Malawi." }, { "docid": "24241932", "text": "OBJECTIVE To examine the effect of ethnicity on the relation between tuberculosis and deprivation. \n DESIGN Retrospective ecological study comparing incidence of tuberculosis in white and south Asian residents of the 39 electoral wards in Birmingham with ethnic specific indices of deprivation. \n SETTING Birmingham, 1989-93. SUBJECTS 1516 notified cases of tuberculosis. \n MAIN OUTCOME MEASURES Rates of tuberculosis and measures of deprivation. \n RESULTS Univariate analysis showed significant associations of tuberculosis rates for the whole population with several indices of deprivation (P<0.01) and with the proportion of the population of south Asian origin (P<0.01). All deprivation covariates were positively associated with each other but on multiple regression, higher level of overcrowding was independently associated with tuberculosis rates. For the white population, overcrowding was associated with tuberculosis rates independently of other variables (P=0.0036). No relation with deprivation was found for the south Asian population in either single or multivariable analyses. \n CONCLUSIONS Poverty is significantly associated with tuberculosis in the white population, but no such relation exists for those of Asian ethnicity. These findings suggest that causal factors, and therefore potential interventions, will also differ by ethnic group.", "title": "Ecological analysis of ethnic differences in relation between tuberculosis and poverty." }, { "docid": "29845974", "text": "Medicines are a major treatment modality for many mental illnesses, and with the growing burden of mental disorders worldwide pharmacists are ideally positioned to play a greater role in supporting people with a mental illness. This narrative review aims to describe the evidence for pharmacist-delivered services in mental health care and address the barriers and facilitators to increasing the uptake of pharmacist services as part of the broader mental health care team. This narrative review is divided into three main sections: (1) the role of the pharmacist in mental health care in multidisciplinary teams and in supporting early detection of mental illness; (2) the pharmacists' role in supporting quality use of medicines in medication review, strategies to improve medication adherence and antipsychotic polypharmacy, and shared decision making; and (3) barriers and facilitators to the implementation of mental health pharmacy services with a focus on organizational culture and mental health stigma. In the first section, the review presents new roles for pharmacists within multidisciplinary teams, such as in case conferencing or collaborative drug therapy management; and new roles that would benefit from increased pharmacist involvement, such as the early detection of mental health conditions, development of care plans and follow up of people with mental health problems. The second section describes the impact of medication review services and other pharmacist-led interventions designed to reduce inappropriate use of psychotropic medicines and improve medication adherence. Other new potential roles discussed include the management of antipsychotic polypharmacy and involvement in patient-centered care. Finally, barriers related to pharmacists' attitudes, stigma and skills in the care of patients with mental health problems and barriers affecting pharmacist-physician collaboration are described, along with strategies to reduce mental health stigma.", "title": "New Roles for Pharmacists in Community Mental Health Care: A Narrative Review" }, { "docid": "38799797", "text": "Interventions by the pharmacists have always been considered as a valuable input by the health care community in the patient care process by reducing the medication errors, rationalizing the therapy and reducing the cost of therapy. The primary objective of this study was to determine the number and types of medication errors intervened by the dispensing pharmacists at OPD pharmacy in the Khoula Hospital during 2009 retrospectively. The interventions filed by the pharmacists and assistant pharmacists in OPD pharmacy were collected. Then they were categorized and analyzed after a detailed review. The results show that 72.3% of the interventions were minor of which 40.5% were about change medication order. Comparatively more numbers of prescriptions were intervened in female patients than male patients. 98.2% of the interventions were accepted by the prescribers reflecting the awareness of the doctors about the importance of the pharmacy practice. In this study only 688 interventions were due to prescribing errors of which 40.5% interventions were done in changing the medication order of clarifying the medicine. 14.9% of the interventions were related to administrative issues, 8.7% of the interventions were related to selection of medications as well as errors due to ignorance of history of patients. 8.2% of the interventions were to address the overdose of medications. Moderately significant interventions were observed in 19.4% and 7.5% of them were having the impact on major medication errors. Pharmacists have intervened 20.8% of the prescriptions to prevent complications, 25.1% were to rationalize the treatment, 7.9% of them were to improve compliance. Based on the results we conclude that the role of pharmacist in improving the health care system is vital. We recommend more number of such research based studies to bring awareness among health care professionals, provide solution to the prescription and dispensing problems, as it can also improve the documentation system, emphasize the importance of it, reduce prescribing errors, and update the knowledge of pharmacists and other health care professionals.", "title": "Interventions by pharmacists in out-patient pharmaceutical care." }, { "docid": "12991445", "text": "OBJECTIVE To determine the effects of smoking, plasma lipids, lipoproteins, apolipoproteins, and fibrinogen on the patency of saphenous vein femoropopliteal bypass grafts at one year. \n DESIGN Prospective study of patients with saphenous vein femoropopliteal bypass grafts entered into a multicentre trial. \n SETTING Surgical wards, outpatient clinics, and home visits coordinated by two tertiary referral centres in London and Birmingham. \n PATIENTS 157 Patients (mean age 66.6 (SD 8.2) years), 113 with patent grafts and 44 with occluded grafts one year after bypass. \n MAIN OUTCOME MEASURE Cumulative percentage patency at one year. \n RESULTS Markers for smoking (blood carboxyhaemoglobin concentration (p less than 0.05) and plasma thiocyanate concentration (p less than 0.01) and plasma concentrations of fibrinogen (p less than 0.001) and apolipoproteins AI (p less than 0.04) and (a) (p less than 0.05) were significantly higher in patients with occluded grafts. Serum cholesterol concentrations were significantly higher in patients with grafts that remained patent one year after bypass (p less than 0.005). Analysis of the smoking markers indicated that a quarter of patients (40) were untruthful in their claims to have stopped smoking. Based on smoking markers, patency of grafts in smokers was significantly lower at one year by life table analysis than in non-smokers (63% v 84%, p less than 0.02). Patency was significantly higher by life table analysis in patients with a plasma fibrinogen concentration below the median than in those with a concentration above (90% v 57%, p less than 0.0002). Surprisingly, increased plasma low density lipoprotein cholesterol concentration was significantly associated with improved patency at one year (85%) at values above the median compared with patency (only 68%) at values in the lower half of the range (p less than 0.02). \n CONCLUSIONS Plasma fibrinogen concentration was the most important variable predicting graft occlusion, followed by smoking markers. A more forceful approach is needed to stop patients smoking; therapeutic measures to improve patency of vein grafts should focus on decreasing plasma fibrinogen concentration rather than serum cholesterol concentration.", "title": "Influence of smoking and plasma factors on patency of femoropopliteal vein grafts." }, { "docid": "583260", "text": "Adverse drug events (ADEs) are the harms associated with uses of given medications at normal dosages, which are crucial for a drug to be approved in clinical use or continue to stay on the market. Many ADEs are not identified in trials until the drug is approved for clinical use, which results in adverse morbidity and mortality. To date, millions of ADEs have been reported around the world. Methods to avoid or reduce ADEs are an important issue for drug discovery and development. Here, we reported a comprehensive database of adverse drug events (namely MetaADEDB), which included more than 520,000 drug-ADE associations among 3059 unique compounds (including 1330 drugs) and 13,200 ADE items by data integration and text mining. All compounds and ADEs were annotated with the most commonly used concepts defined in Medical Subject Headings (MeSH). Meanwhile, a computational method, namely the phenotypic network inference model (PNIM), was developed for prediction of potential ADEs based on the database. The area under the receive operating characteristic curve (AUC) is more than 0.9 by 10-fold cross validation, while the AUC value was 0.912 for an external validation set extracted from the US-FDA Adverse Events Reporting System, which indicated that the prediction capability of the method was reliable. MetaADEDB is accessible free of charge at http://www.lmmd.org/online_services/metaadedb/. The database and the method provide us a useful tool to search for known side effects or predict potential side effects for a given drug or compound.", "title": "Adverse drug events: database construction and in silico prediction." }, { "docid": "37118634", "text": "BACKGROUND Umbilical cord infection (omphalitis) is a risk factor for neonatal sepsis and mortality in low-resource settings where home deliveries are common. We aimed to assess the effect of umbilical-cord cleansing with 4% chlorhexidine (CHX) solution, with or without handwashing with antiseptic soap, on the incidence of omphalitis and neonatal mortality. \n METHODS We did a two-by-two factorial, cluster-randomised trial in Dadu, a rural area of Sindh province, Pakistan. Clusters were defined as the population covered by a functional traditional birth attendant (TBA), and were randomly allocated to one of four groups (groups A to D) with a computer-generated random number sequence. Implementation and data collection teams were masked to allocation. Liveborn infants delivered by participating TBAs who received birth kits were eligible for enrolment in the study. One intervention comprised birth kits containing 4% CHX solution for application to the cord at birth by TBAs and once daily by family members for up to 14 days along with soap and educational messages promoting handwashing. One intervention was CHX solution only and another was handwashing only. Standard dry cord care was promoted in the control group. The primary outcomes were incidence of neonatal omphalitis and neonatal mortality. The trial is registered with ClinicalTrials.gov, number NCT00682006. \n FINDINGS 187 clusters were randomly allocated to one of the four study groups. Of 9741 newborn babies delivered by participating TBAs, factorial analysis indicated a reduction in risk of omphalitis with CHX application (risk ratio [RR]=0·58, 95% CI 0·41-0·82; p=0·002) but no evidence of an effect of handwashing (RR=0·83, 0·61-1·13; p=0·24). We recorded strong evidence of a reduction in neonatal mortality in neonates who received CHX cleansing (RR=0·62, 95 % CI 0·45-0·85; p=0·003) but no evidence of an effect of handwashing promotion on neonatal mortality (RR=1·08, 0·79-1·48; p=0·62). We recorded no serious adverse events. \n INTERPRETATION Application of 4% CHX to the umbilical cord was effective in reducing the risk of omphalitis and neonatal mortality in rural Pakistan. Provision of CHX in birth kits might be a useful strategy for the prevention of neonatal mortality in high-mortality settings. \n FUNDING The United States Agency for International Development.", "title": "Topical application of chlorhexidine to neonatal umbilical cords for prevention of omphalitis and neonatal mortality in a rural district of Pakistan: a community-based, cluster-randomised trial." }, { "docid": "5596332", "text": "IMPORTANCE Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. \n OBJECTIVE To evaluate and, as needed, update definitions for sepsis and septic shock. PROCESS A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). KEY FINDINGS FROM EVIDENCE SYNTHESIS Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. RECOMMENDATIONS Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. \n CONCLUSIONS AND RELEVANCE These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.", "title": "The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)." }, { "docid": "70516463", "text": "Human beings, make errors Healthcare Services is a complex industry prone to accidents. The IOM Report [1] points out that some systems are more prone to accidents than others. When a system fails there are often multiple faults. In healthcare,human errors are the greatest contributors to accidents,however when human error is to blame it often depends upon failures within the system. These failures exists in the system before the error occurs, the same as with latent errors which are difficult to identify since they may be hidden in computers or within the various managerial layers. Most of the errors can be prevented by designing systems that make it hard for people to do the wrong thing and easy for people to do the right thing. In healthcare, this means designing processes that are able to ensure that patients are safe from accidental injury. As healthcare and the system that delivers it become more complex, the opportunities for errors abound. The IOM report “To Err is Human” proposes an approach for reducing medical errors and improving patient safety. The environment within which this occurs has a critical influence on quality. This influence may contain two dimensions; the first consists of the domain of quality which includes the practice that is consistent with current medical knowledge. The second dimension consists of forces in the external environment that can drive quality improvement in the delivery system. Although the risk of dying as a result of a medical error, far surpasses the risk of dying in an airline accident, public attention has been more focused on improving safety in the airline industry than in healthcare systems. Because of the absence of standardized nomenclature, it is important to define what an error is and what is an adverse event, the IOM Report defines them in the following way: “An error is the failure of a planned action to be completed as intended or the use of a wrong plan to achieve an aim. ” An adverse event is an injury caused by medical management rather than the underlying condition of the patient. An adverse event attributable to error is a “preventable adverse event”.", "title": "To err is human. Building a safer health system" }, { "docid": "31612088", "text": "Efforts to improve the outcomes of patients with mental illness often have involved incorporating the skills of a variety of health care professionals into collaborative care models. For over 30 years, clinical pharmacists have contributed to these care models in capacities ranging from educator to consultant to provider. This systematic review evaluates the quantity and quality of medical literature examining the impact of pharmacists in mental health from 1972-2003. Although we identified approximately 35 publications describing the roles of clinical pharmacists in this regard, only 16 were of sufficient scientific rigor to permit evaluation and comparison. The 16 studies were divided equally between inpatient and outpatient settings and were conducted in a variety of health care organizations (e.g., Veterans Administration, health maintenance organizations, community mental health clinics, and nursing homes). Nine of the studies examined the role of pharmacists in providing treatment recommendations and patient education, five featured pharmacists as providers (with prescriptive authority), and the remaining two described the impact pharmacists have in delivering education to the psychiatric staff. Six of the 16 studies were prospective, but only three of these incorporated a randomization procedure for patients or facilities. Collectively, the results of the 16 studies were positive, demonstrating improvements in outcomes, prescribing practices, patient satisfaction, and resource use. Unfortunately, most of the investigations were small, and significant limitations in study design limited further comparison. Given the long history and anecdotal success of pharmacists in mental health care settings, additional multicenter cost-effectiveness trials are warranted to further support the role of the psychiatric pharmacist.", "title": "Evaluating the impact of pharmacists in mental health: a systematic review." }, { "docid": "24077493", "text": "BACKGROUND With increasing restrictions placed on physician-industry interactions, industry marketing may target other health professionals. Recent health policy developments confer even greater importance on the decision making of non-physician clinicians. The purpose of this systematic review is to examine the types and implications of non-physician clinician-industry interactions in clinical practice. \n METHODS AND FINDINGS We searched MEDLINE and Web of Science from January 1, 1946, through June 24, 2013, according to PRISMA guidelines. Non-physician clinicians eligible for inclusion were: Registered Nurses, nurse prescribers, Physician Assistants, pharmacists, dieticians, and physical or occupational therapists; trainee samples were excluded. Fifteen studies met inclusion criteria. Data were synthesized qualitatively into eight outcome domains: nature and frequency of industry interactions; attitudes toward industry; perceived ethical acceptability of interactions; perceived marketing influence; perceived reliability of industry information; preparation for industry interactions; reactions to industry relations policy; and management of industry interactions. Non-physician clinicians reported interacting with the pharmaceutical and infant formula industries. Clinicians across disciplines met with pharmaceutical representatives regularly and relied on them for practice information. Clinicians frequently received industry \"information,\" attended sponsored \"education,\" and acted as distributors for similar materials targeted at patients. Clinicians generally regarded this as an ethical use of industry resources, and felt they could detect \"promotion\" while benefiting from industry \"information. \" Free samples were among the most approved and common ways that clinicians interacted with industry. Included studies were observational and of varying methodological rigor; thus, these findings may not be generalizable. This review is, however, the first to our knowledge to provide a descriptive analysis of this literature. \n CONCLUSIONS Non-physician clinicians' generally positive attitudes toward industry interactions, despite their recognition of issues related to bias, suggest that industry interactions are normalized in clinical practice across non-physician disciplines. Industry relations policy should address all disciplines and be implemented consistently in order to mitigate conflicts of interest and address such interactions' potential to affect patient care. Please see later in the article for the Editors' Summary.", "title": "Interactions between Non-Physician Clinicians and Industry: A Systematic Review" }, { "docid": "43226130", "text": "Multiple sclerosis (MS), a chronic inflammatory demyelina-ting and degenerative disease of the central nervous system, is a frequent cause of neurological disability in young adults. Female predominance has increased over the last decades. Although female gender carries a higher risk of developing relapsing remitting MS, being female and at child-bearing age also appears to provide some protection against cognitive decline and against progressive onset MS, an adverse predictive factor when considering long-term disability in MS. The risk of MS in women has been associated with an earlier age at menarche. In most studies, parity did not impact MS risk. However, the recently published association of higher parity and offspring number with a reduced risk of a first demyelinating event suggests a potential suppressive effect. Pregnancy in MS patients has been associated with a reduced relapse rate and a reduction of neurological symptoms, especially in the third trimester. Despite the increased relapse risk in the postpartum period, there is no indication of an adverse effect of childbirth on the long-term course of MS. Fertility treatment in MS has been associated with an increased relapse risk in the following 3-month period, especially when the procedure did not result in pregnancy and gonadotrophin-releasing hormone agonists were used. Altogether, there is substantial evidence to support a regulatory role of sex steroid hormones in MS. In the absence of correlations with single hormone blood levels, we can only speculate about the underlying mechanisms. In conclusion, the increased MS risk in women and the changes in relapse and progression risk in association with reproductive events suggest significant and complex interactions between immune, neuroendocrine and reproductive systems in MS.", "title": "Female Gender and Reproductive Factors Affecting Risk, Relapses and Progression in Multiple Sclerosis" }, { "docid": "15648443", "text": "BACKGROUND Observational studies report reduced colorectal cancer in regular aspirin consumers. Randomised controlled trials have shown reduced risk of adenomas but none have employed prevention of colorectal cancer as a primary endpoint. The CAPP2 trial aimed to investigate the antineoplastic effects of aspirin and a resistant starch in carriers of Lynch syndrome, the major form of hereditary colorectal cancer; we now report long-term follow-up of participants randomly assigned to aspirin or placebo. \n METHODS In the CAPP2 randomised trial, carriers of Lynch syndrome were randomly assigned in a two-by-two factorial design to 600 mg aspirin or aspirin placebo or 30 g resistant starch or starch placebo, for up to 4 years. Randomisation was in blocks of 16 with provision for optional single-agent randomisation and extended postintervention double-blind follow-up; participants and investigators were masked to treatment allocation. The primary endpoint was development of colorectal cancer. Analysis was by intention to treat and per protocol. This trial is registered, ISRCTN59521990. \n RESULTS 861 participants were randomly assigned to aspirin or aspirin placebo. At a mean follow-up of 55·7 months, 48 participants had developed 53 primary colorectal cancers (18 of 427 randomly assigned to aspirin, 30 of 434 to aspirin placebo). Intention-to-treat analysis of time to first colorectal cancer showed a hazard ratio (HR) of 0·63 (95% CI 0·35-1·13, p=0·12). Poisson regression taking account of multiple primary events gave an incidence rate ratio (IRR) of 0·56 (95% CI 0·32-0·99, p=0·05). For participants completing 2 years of intervention (258 aspirin, 250 aspirin placebo), per-protocol analysis yielded an HR of 0·41 (0·19-0·86, p=0·02) and an IRR of 0·37 (0·18-0·78, p=0·008). No data for adverse events were available postintervention; during the intervention, adverse events did not differ between aspirin and placebo groups. \n INTERPRETATION 600 mg aspirin per day for a mean of 25 months substantially reduced cancer incidence after 55·7 months in carriers of hereditary colorectal cancer. Further studies are needed to establish the optimum dose and duration of aspirin treatment. \n FUNDING European Union; Cancer Research UK; Bayer Corporation; National Starch and Chemical Co; UK Medical Research Council; Newcastle Hospitals trustees; Cancer Council of Victoria Australia; THRIPP South Africa; The Finnish Cancer Foundation; SIAK Switzerland; Bayer Pharma.", "title": "Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial" }, { "docid": "52874170", "text": "CONTEXT Diagnostic lumbar punctures (LPs), commonly used to rule out meningitis, are associated with adverse events. \n OBJECTIVE To systematically review the evidence about diagnostic LP techniques that may decrease the risk of adverse events and the evidence about test accuracy of cerebrospinal fluid (CSF) analysis in adult patients with suspected bacterial meningitis. \n DATA SOURCES We searched the Cochrane Library, MEDLINE (using Ovid and PubMed) from 1966 to January 2006 and EMBASE from 1980 to January 2006 without language restrictions to identify relevant studies and identified others from the bibliographies of retrieved articles. STUDY SELECTION We included randomized trials of patients aged 18 years or older undergoing interventions to facilitate a successful diagnostic LP or to potentially reduce adverse events. Studies assessing the accuracy of biochemical analysis of the CSF for possible bacterial meningitis were also identified. \n DATA EXTRACTION Two investigators independently appraised study quality and extracted relevant data. For studies of the LP technique, data on the intervention and the outcome were extracted. For studies of the laboratory diagnosis of bacterial meningitis, data on the reference standard and test accuracy were extracted. \n DATA SYNTHESIS We found 15 randomized trials. A random-effects model was used for quantitative synthesis. Five studies of 587 patients compared atraumatic needles with standard needles and found a nonsignificant decrease in the odds of headache with an atraumatic needle (absolute risk reduction [ARR], 12.3%; 95% confidence interval [CI], -1.72% to 26.2%). Reinsertion of the stylet before needle removal decreased the risk of headache (ARR, 11.3%; 95% CI, 6.50%-16.2%). The combined results from 4 studies of 717 patients showed a nonsignificant decrease in headache in patients who were mobilized after LP (ARR, 2.9%; 95% CI, -3.4 to 9.3%). Four studies on the accuracy of biochemical analysis of CSF in patients with suspected meningitis met inclusion criteria. A CSF-blood glucose ratio of 0.4 or less (likelihood ratio [LR], 18; 95% CI, 12-27]), CSF white blood cell count of 500/muL or higher (LR, 15; 95% CI, 10-22), and CSF lactate level of 31.53 mg/dL or more (> or =3.5 mmol/L; LR, 21; 95% CI, 14-32) accurately diagnosed bacterial meningitis. \n CONCLUSIONS These data suggest that small-gauge, atraumatic needles may decrease the risk of headache after diagnostic LP. Reinsertion of the stylet before needle removal should occur and patients do not require bed rest after the procedure. Future research should focus on evaluating interventions to optimize the success of a diagnostic LP and to enhance training in procedural skills.", "title": "How do I perform a lumbar puncture and analyze the results to diagnose bacterial meningitis?" }, { "docid": "6085365", "text": "BACKGROUND Few studies have examined whether physician knowledge, attitudes, or practice patterns might contribute to gender disparities in the primary prevention of coronary heart disease (CHD), including among physicians caring for the largest number of reproductive-age women, obstetricians and gynecologists (OB/GYNs). We sought to identify barriers affecting the provision of recommended coronary risk factor therapies in women. \n METHODS We surveyed internists and OB/GYNs who attended Grand Rounds presentations developed for the New York State Women and Heart Disease Physician Education Initiative. This program was designed to improve screening and management of coronary risk factors in women. Attendees were asked to complete a 7-minute questionnaire. \n RESULTS The mean age of the 529 respondents was 40.3 years (standard deviation = 12.3), 75.1% were internists (n=378), and 42.7% (n=226) were women. Physicians correctly responded to 71.5% of the 13 questions assessing knowledge of coronary risk prevention (range, 4-13). Almost one third of internists and half of the OB/GYNs did not know that tobacco use was the leading cause of myocardial infarction in young women. For patients who smoked tobacco, only two thirds of internists and 55.4% of OB/GYNs reported suggesting a quit date (p=.007). After controlling for covariates, physicians who did not perceive time as a barrier were more likely to discuss smoking cessation (odds ratio=1.7 [1.1-2.7]). \n CONCLUSIONS Among the internists and OB/GYNs surveyed, time was perceived as a barrier to implementing risk prevention. These physicians also underestimated the impact of tobacco use as a risk factor for CHD in young women. To lessen gender disparities in CHD prevention, both specialties need time-efficient educational programs that reflect specialty differences.", "title": "Physician knowledge levels and barriers to coronary risk prevention in women: survey results from the Women and Heart Disease Physician Education Initiative." } ]
942
Phase information is useful for predicting donor-recipient matches in organ transplantation.
[ { "docid": "11527199", "text": "Background Current criteria for the selection of unrelated donors for hematopoietic cell transplantation (HCT) include matching for the alleles of each human leukocyte antigen (HLA) locus within the major histocompatibility complex (MHC). Graft-versus-host disease (GVHD), however, remains a significant and potentially life-threatening complication even after HLA-identical unrelated HCT. The MHC harbors more than 400 genes, but the total number of transplantation antigens is unknown. Genes that influence transplantation outcome could be identified by using linkage disequilibrium (LD)-mapping approaches, if the extended MHC haplotypes of the unrelated donor and recipient could be defined.", "title": "MHC Haplotype Matching for Unrelated Hematopoietic Cell Transplantation" } ]
[ { "docid": "16737210", "text": "CONTEXT Blood type and crossmatch incompatibility will exclude at least one third of patients in need from receiving a live donor kidney transplant. Kidney paired donation (KPD) offers incompatible donor/recipient pairs the opportunity to match for compatible transplants. Despite its increasing popularity, very few transplants have resulted from KPD. \n OBJECTIVE To determine the potential impact of improved matching schemes on the number and quality of transplants achievable with KPD. \n DESIGN, SETTING, AND POPULATION We developed a model that simulates pools of incompatible donor/recipient pairs. We designed a mathematically verifiable optimized matching algorithm and compared it with the scheme currently used in some centers and regions. Simulated patients from the general community with characteristics drawn from distributions describing end-stage renal disease patients eligible for renal transplantation and their willing and eligible live donors. \n MAIN OUTCOME MEASURES Number of kidneys matched, HLA mismatch of matched kidneys, and number of grafts surviving 5 years after transplantation. \n RESULTS A national optimized matching algorithm would result in more transplants (47.7% vs 42.0%, P<.001), better HLA concordance (3.0 vs 4.5 mismatched antigens; P<.001), more grafts surviving at 5 years (34.9% vs 28.7%; P<.001), and a reduction in the number of pairs required to travel (2.9% vs 18.4%; P<.001) when compared with an extension of the currently used first-accept scheme to a national level. Furthermore, highly sensitized patients would benefit 6-fold from a national optimized scheme (2.3% vs 14.1% successfully matched; P<.001). Even if only 7% of patients awaiting kidney transplantation participated in an optimized national KPD program, the health care system could save as much as $750 million. \n CONCLUSIONS The combination of a national KPD program and a mathematically optimized matching algorithm yields more matches with lower HLA disparity. Optimized matching affords patients the flexibility of customizing their matching priorities and the security of knowing that the greatest number of high-quality matches will be found and distributed equitably.", "title": "Kidney paired donation and optimizing the use of live donor organs." }, { "docid": "7034001", "text": "Donor kidney exchange is an established method to overcome incompatibility of donor-recipient pairs (DRP). A computerized algorithm was devised to exchange donor kidney and was tested in a multicenter setting. The algorithm was made according to the consensus of participating centers. It makes all possible exchange combinations not only between two incompatible DRP but also circularly among three DRP and selects an optimum set of exchange combinations, considering several factors that can affect the outcome of the exchanged transplant. The algorithm was implemented as a web-based program, and matching was performed five times. Fifty-three DRP were enrolled from five transplant centers. The numbers of DRP that were enrolled in each matching were 38 (25:13), 39 (34:5), 33 (31:2), 32 (28:4), and 34 (30:4) (carryover:newcomer). The numbers of generated exchange combinations were 4:11, 3:17, 2:12, 2:3, and 2:3 (two-pair exchange:three-pair exchange), and the numbers of DRP in selected exchange combinations were six, 12, six, five, and four in each matching. The numbers of DRP with blood type O recipient or AB donor were five and one, respectively, in selected exchange combinations. Six DRP of two-pair exchange combinations and six DRP of three-pair exchange combinations underwent transplantation successfully. Computerized algorithm of donor kidney exchange was tried not only between two incompatible DRP but also circularly among three DRP. It showed that the algorithm has potential to improve the outcome of donor kidney exchange, especially for disadvantaged DRP with blood type O recipients or AB donors.", "title": "Outcome of multipair donor kidney exchange by a web-based algorithm." }, { "docid": "21203899", "text": "Kidney donor exchanges enable recipients with immunologically incompatible donors to receive compatible living donor grafts; however, the financial management of these exchanges, especially when an organ is shipped, is complex and thus has the potential to impede the broader implementation of donor exchange programs. Representatives from transplant centers that utilize the National Kidney Registry database to facilitate donor exchange transplants developed a financial model applicable to paired donor exchanges and donor chain transplants. The first tenet of the model is to eliminate financial liability to the donor. Thereafter, it accounts for the donor evaluation, donor nephrectomy hospital costs, donor nephrectomy physician fees, organ transport, donor complications and recipient inpatient services. Billing between hospitals is based on Medicare cost report defined costs rather than charges. We believe that this model complies with current federal regulations and effectively captures costs of the donor and recipient services. It could be considered as a financial paradigm for the United Network for Organ Sharing managed donor exchange program.", "title": "Managing finances of shipping living donor kidneys for donor exchanges." }, { "docid": "41774099", "text": "We propose a Medicare Demonstration Project to develop a standard acquisition charge for kidney paired donation. A new payment strategy is required because Medicare and commercial insurance companies may not directly pay living donor costs intended to lead to transplantation of a beneficiary of a different insurance provider. Until the 1970s, when organ procurement organizations were empowered to serve as financial intermediaries to pay the upfront recovery expenses for deceased donor kidneys before knowing the identity of the recipient, there existed similar limitations in the recovery and placement of deceased donor organs. Analogous to the recovery of deceased donor kidneys, kidney paired donation requires the evaluation of living donors before identifying their recipient. Tissue typing, crossmatching and transportation of living donors or their kidneys represent additional financial barriers. Finally, the administrative expenses of the organizations that identify and coordinate kidney paired donation transplantation require reimbursement akin to that necessary for organ procurement organizations. To expand access to kidney paired donation for more patients, we propose a model to reimburse paired donation expenses analogous to the proven strategy used for over 30 years to pay for deceased donor solid organ transplantation in America.", "title": "Call to Develop a Standard Acquisition Charge Model for Kidney Paired Donation" }, { "docid": "33535222", "text": "CD4+CD25+ regulatory T cells (Treg's) play a pivotal role in preventing organ-specific autoimmune diseases and in inducing tolerance to allogeneic organ transplants. We and others recently demonstrated that high numbers of Treg's can also modulate graft-versus-host disease (GVHD) if administered in conjunction with allogeneic hematopoietic stem cell transplantation in mice. In a clinical setting, it would be impossible to obtain enough freshly purified Treg's from a single donor to have a therapeutic effect. Thus, we performed regulatory T cell expansion ex vivo by stimulation with allogeneic APCs, which has the additional effect of producing alloantigen-specific regulatory T cells. Here we show that regulatory T cells specific for recipient-type alloantigens control GVHD while favoring immune reconstitution. Irrelevant regulatory T cells only mediate a partial protection from GVHD. Preferential survival of specific regulatory T cells, but not of irrelevant regulatory T cells, was observed in grafted animals. Additionally, the use of specific regulatory T cells was compatible with some form of graft-versus-tumor activity. These data suggest that recipient-type specific Treg's could be preferentially used in the control of GVHD in future clinical trials.", "title": "Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia." }, { "docid": "24825841", "text": "The likelihood for immunological rejection of Human Leukocyte Antigens (HLA)-mismatched induced pluripotent stem cells (iPSCs) limits their therapeutic potential. Here we show how a tissue bank from 150 selected homozygous HLA-typed volunteers could match 93% of the UK population with a minimal requirement for immunosuppression. Our model provides a practical approach for using existing HLA-typed samples to generate an iPSC stem cell bank that circumvents prospective typing of a large number of individuals.", "title": "Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types." }, { "docid": "21859699", "text": "Providing transplantation opportunities for patients with incompatible live donors through kidney paired donation (KPD) is seen as one of the important strategies for easing the crisis in organ availability. It has been estimated that an additional 1000-2000 transplants per year could be accomplished if a national KPD program were implemented in the United States. While most of these transplants could be arranged within the participants' local or regional area, patients with hard-to-match blood types or broad HLA sensitization would benefit from matching across larger geographic areas. In this case, either patients or organs would need to travel in order to obtain maximum benefit from a national program. In this study, we describe how a triple KPD enabled a highly sensitized patient (PRA 96%) to receive a well-matched kidney from a live donor on the opposite coast. The kidney was removed in San Francisco and transported to Baltimore where it was reperfused 8 h later. The patient had prompt function and 1 year later has a serum creatinine of 1.1 mg/dl. This case provides a blueprint for solving some of the complexities that are inherent in the implementation of a national KPD program in a large country like the United States.", "title": "Successful three-way kidney paired donation with cross-country live donor allograft transport." }, { "docid": "27243019", "text": "Umbilical cord blood (UCB) is now widely used as an alternative hematopoietic stem cell source for patients lacking closely matched related or unrelated adult donors. UCB transplantation has traditionally been associated with delayed engraftment, poor immune reconstitution and consequent increased risk of infection. More recent clinical studies, however, suggest that conditioning regimens and in particular the omission of in vivo T-cell depletion may play a crucial role in post-transplant T-cell expansion, facilitating a uniquely rapid immune recovery after UCB transplantation. The peculiar characteristics of UCB cells, the importance of thymic function and the role of conditioning regimens and graft-versus-host disease influencing immune reconstitution are described. The last part of the review reports available data on UCB, as well as third-party peripheral blood derived anti-viral cell therapy, which provides a novel approach to rescue UCB recipients with viral complications in the post-transplant period.", "title": "Immune reconstitution after cord blood transplantation: peculiarities, clinical implications and management strategies." }, { "docid": "33684572", "text": "Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility.", "title": "Transmission of atherosclerosis susceptibility with gut microbial transplantation." }, { "docid": "14647747", "text": "Strategies to prevent organ transplant rejection whilst minimizing long-term immunosuppression are currently under intense investigation with regulatory T cells (Tregs) nearing clinical application. The clinical trial, ThRIL, recently commenced at King's College London, proposes to use Treg cell therapy to induce tolerance in liver transplant recipients, the success of which has the potential to revolutionize the management of these patients and enable a future of drug-free transplants. This is the first report of the manufacture of clinical grade Tregs from prospective liver transplant recipients via a CliniMACS-based GMP isolation technique and expanded using anti-CD3/CD28 beads, IL-2 and rapamycin. We report the enrichment of a pure, stable population of Tregs (>95% CD4(+)CD25(+)FOXP3(+)), reaching adequate numbers for their clinical application. Our protocol proved successful in, influencing the expansion of superior functional Tregs, as compared to freshly isolated cells, whilst also preventing their conversion to Th17 cells under pro-inflammatory conditions. We conclude with the manufacture of the final Treg product in the clinical research facility (CRF), a prerequisite for the clinical application of these cells. The data presented in this manuscript together with the much-anticipated clinical results from ThRIL, will undoubtedly inform the improved management of the liver transplant recipient.", "title": "Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation" }, { "docid": "43587663", "text": "How the infection risks compare after umbilical cord blood (UCB) and bone marrow (BM) transplantation is not known. Therefore, we compared serious infections in the 2 years after pediatric myeloablative unrelated donor transplantation with unmanipulated BM (n = 52), T cell-depleted (TCD) BM (n = 24), or UCB (n = 60) for the treatment of hematologic malignancy. Overall, the cumulative incidence of 1 or more serious infections was comparable between groups (BM, 81%; TCD, 83%; UCB, 90%; P = .12). Furthermore, by taking all serious infections into account and using multivariate techniques with unmanipulated BM as the reference, there were also no significant differences between groups (TCD relative risk [RR], 1.6; P = .10; UCB RR, 1.0; P = .84). Within the time periods days 0 to 42, days 43 to 100, and days 101 to 180, the only difference was a greater risk of viral infections from days 0 to 42 in TCD recipients (RR, 3.5; P = .02). Notably, after day 180, TCD recipients had a significantly increased infection risk (RR, 3.1; P = .03), whereas the risk in UCB recipients (RR, 0.5; P = .23) was comparable to that in BM recipients. Other factors associated with an increased infection risk in the 2 years after transplantation were age > or = 8 years, graft failure, and severe acute graft-versus-host disease. These data suggest that the risk of serious infection after pediatric UCB transplantation is comparable to that with unmanipulated BM.", "title": "Serious infections after unrelated donor transplantation in 136 children: impact of stem cell source." }, { "docid": "11349166", "text": "BACKGROUND Since 2004, several reported transfusion transmissions of variant Creutzfeldt-Jakob disease (vCJD) in the United Kingdom have reawakened concerns about the possible risk of similar transmissions of nonvariant or classic forms of CJD. STUDY DESIGN AND METHODS Patients with a CJD diagnosis and a history of donating blood were reported to the study coordinator. Through review of blood distribution and hospital records, the recipients of blood components from these donors were identified. We then determined each recipient's vital status and, if deceased, the cause(s) of death identified by matching the recipient's personal identifiers with the Centers for Disease Control and Prevention's National Death Index database. We conducted such searches after recipients were enrolled in this study and annually thereafter for those who remained alive. \n RESULTS The study included a total of 36 blood donors who subsequently developed CJD and 436 recipients. Through 2006, 91 of these recipients were still alive, 329 were deceased, and 16 were lost to follow-up. After transfusion, these three groups had survived a total of 2096.0 person-years. A total of 144 recipients survived 5 years or longer after transfusion and 68 of them had received blood donated 60 or fewer months before the onset of CJD in the donor. We identified no recipient with CJD. \n CONCLUSIONS The current results of this large, ongoing lookback study show no evidence of transfusion transmission of CJD. They reinforce the conclusion that the risk, if any, of transfusion transmission of prion disease by CJD donors is significantly lower than the comparable risk of such transmission by vCJD donors.", "title": "Lack of evidence of transfusion transmission of Creutzfeldt-Jakob disease in a US surveillance study." }, { "docid": "7583161", "text": "In semisyngeneic heterotopic bone marrow transplants the donor or recipient origin of cells of osteogenic and hematopoietic tissues was identified by chromosome markers (T6) and by reverse transplantation into the initial donor line. In syngeneic and semisyngeneic grafts of bone marrow under the renal capsule bone and bone marrow are formed. In allogeneic grafts only bone is formed; this bone is subsequently resorbed. In 14-month semisyngeneic transplants the bone marrow consists of recipient cells. This is true for both the proliferating pool and the stem cells of hematopoietic tissue. At the same time, osteogenic precursor cells and bone tissue in these transplants are of donor origin. A discussion is presented of the interrelationship between determinated osteogenic precursor cells (preosteoblasts) and hematopoietic stem cells (or their descendants) in which osteogenesis is inducible.", "title": "Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues." }, { "docid": "26105746", "text": "Solid organ transplant recipients receiving chronic immunosuppressive agents are at increased risk to acquire influenza virus despite vaccination. Myocarditis is a known but rare complication of influenza infection. We present the first adult liver transplant recipient who received prophylactic vaccination but developed influenza A myocarditis. This may occur in solid organ transplant recipients, because they have reduced response to protein vaccines, which may leave them vulnerable to infections. Studies are needed to evaluate if antiviral chemoprophylaxis in solid organ transplant recipients during influenza season would be an effective preventive therapy against influenza in this high-risk population.", "title": "Influenza A myocarditis developing in an adult liver transplant recipient despite vaccination: a case report and review of the literature." }, { "docid": "21232018", "text": "We investigated the capacity of young ovaries, transplanted into old ovariectomized CBA mice, to improve remaining life expectancy of the hosts. Donor females were sexually mature 2-month-olds; recipients were prepubertally ovariectomized at 3 weeks and received transplants at 5, 8 or 11 months of age. Relative to ovariectomized control females, life expectancy at 11 months was increased by 60% in 11-month recipient females and by 40% relative to intact control females. Only 20% of the 11-month transplant females died in the 300-day period following ovarian transplantation, whereas nearly 65% of the ovariectomized control females died during this same period. The 11-month-old recipient females resumed oestrus and continued to cycle up to several months beyond the age of control female reproductive senescence. Across the three recipient age groups, transplantation of young ovaries increased life expectancy in proportion to the relative youth of the ovary. Our results relate to recent findings on the gonadal input upon aging in Caenorhabditis elegans and may suggest how the mammalian gonad, including that of humans, could regulate aging and determine longevity.", "title": "Age of ovary determines remaining life expectancy in old ovariectomized mice." }, { "docid": "9056874", "text": "Prolonged or intensive immunosuppressive therapy used after organ transplantation is complicated by an increased incidence of cancer. Striking differences in incidence are observed in heart and heart-lung transplant recipients when compared with renal transplant patients. The most significant increase was in the incidence of lymphomas in cardiac versus renal patients. Moreover, a two-fold greater increase of all neoplasms was found in cardiac recipients, with nearly a six-fold increase in visceral tumors. Several factors may account for these differences. In cardiac allograft recipients, intensive immunosuppression is frequently used to reverse acute rejection and the highest number of cardiac transplants was performed in the era of polypharmacy, usually consisting of triple therapy.", "title": "Incidence of cancer after immunosuppressive treatment for heart transplantation." }, { "docid": "24795767", "text": "The current study evaluates the role of quantitative measurement of peripheral lymphocyte subsets, especially CD4+ helper T-cell recovery, in predicting transplant outcomes including overall survival (OS) and non-relapse mortality (NRM) after allogeneic stem cell transplantation. A total of 69 allogeneic recipients were included with following diagnoses: acute myeloid leukemia 42, acute lymphoblastic leukemia 5, chronic myeloid leukemia 15, non-Hodgkin's lymphoma 5 and high-risk myelodysplastic syndrome 2. The peripheral lymphocyte subset counts (CD3+ T cells, CD3+4+ helper T cells, CD3+8+ cytotoxic T cells, CD19+ B cells, and CD56+ natural killer cells) were measured at 3, 6 and 12 months. The CD4+ helper T-cell reconstitution at 3 months was strongly correlated with OS (P<0.0001), NRM (P=0.0007), and opportunistic infections (P=0.0108) at the cutoff value of 200 × 106/l CD4+ helper T cells. Rapid CD4+ helper T-cell recovery was also associated with a higher CD4+ helper T-cell transplant dose (P=0.006) and donor type (P<0.001). An early CD4+ helper T-cell recovery at 3 months correlated with a subsequent faster helper T-cell recovery until 12 months, yet not with B-cell recovery. In a multivariate analysis, rapid recovery of CD4+ helper T cells at 3 months was a favorable prognostic factor together with higher CD34+ cell transplant dose in terms of OS (P=0.001) and NRM (P=0.005).", "title": "Rapid helper T-cell recovery above 200 × 106/l at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation" }, { "docid": "8190282", "text": "CONTEXT Noninvasive ventilation (NIV) has been associated with lower rates of endotracheal intubation in populations of patients with acute respiratory failure. \n OBJECTIVE To compare NIV with standard treatment using supplemental oxygen administration to avoid endotracheal intubation in recipients of solid organ transplantation with acute hypoxemic respiratory failure. \n DESIGN AND SETTING Prospective randomized study conducted at a 14-bed, general intensive care unit of a university hospital. \n PATIENTS Of 238 patients who underwent solid organ transplantation from December 1995 to October 1997, 51 were treated for acute respiratory failure. Of these, 40 were eligible and 20 were randomized to each group. \n INTERVENTION Noninvasive ventilation vs standard treatment with supplemental oxygen administration. \n MAIN OUTCOME MEASURES The need for endotracheal intubation and mechanical ventilation at any time during the study, complications not present on admission, duration of ventilatory assistance, length of hospital stay, and intensive care unit mortality. \n RESULTS The 2 groups were similar at study entry. Within the first hour of treatment, 14 patients (70%) in the NIV group, and 5 patients (25%) in the standard treatment group improved their ratio of the PaO2 to the fraction of inspired oxygen (FIO2). Over time, a sustained improvement in PaO2 to FIO2 was noted in 12 patients (60%) in the NIV group, and in 5 patients (25%) randomized to standard treatment (P = .03). The use of NIV was associated with a significant reduction in the rate of endotracheal intubation (20% vs 70%; P = .002), rate of fatal complications (20% vs 50%; P = .05), length of stay in the intensive care unit by survivors (mean [SD] days, 5.5 [3] vs 9 [4]; P = .03), and intensive care unit mortality (20% vs 50%; P = .05). Hospital mortality did not differ. \n CONCLUSIONS These results indicate that transplantation programs should consider NIV in the treatment of selected recipients of transplantation with acute respiratory failure.", "title": "Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial." }, { "docid": "10582939", "text": "CONTEXT Antibody-based induction therapy plus calcineurin inhibitors (CNIs) reduce acute rejection rates in kidney recipients; however, opportunistic infections and toxic CNI effects remain challenging. Reportedly, mesenchymal stem cells (MSCs) have successfully treated graft-vs-host disease. \n OBJECTIVE To assess autologous MSCs as replacement of antibody induction for patients with end-stage renal disease who undergo ABO-compatible, cross-match-negative kidney transplants from a living-related donor. \n DESIGN, SETTING, AND PATIENTS One hundred fifty-nine patients were enrolled in this single-site, prospective, open-label, randomized study from February 2008-May 2009, when recruitment was completed. \n INTERVENTION Patients were inoculated with marrow-derived autologous MSC (1-2 x 10(6)/kg) at kidney reperfusion and two weeks later. Fifty-three patients received standard-dose and 52 patients received low-dose CNIs (80% of standard); 51 patients in the control group received anti-IL-2 receptor antibody plus standard-dose CNIs. \n MAIN OUTCOME MEASURES The primary measure was 1-year incidence of acute rejection and renal function (estimated glomerular filtration rate [eGFR]); the secondary measure was patient and graft survival and incidence of adverse events. \n RESULTS Patient and graft survival at 13 to 30 months was similar in all groups. After 6 months, 4 of 53 patients (7.5%) in the autologous MSC plus standard-dose CNI group (95% CI, 0.4%-14.7%; P = .04) and 4 of 52 patients (7.7%) in the low-dose group (95% CI, 0.5%-14.9%; P = .046) compared with 11 of 51 controls (21.6%; 95% CI, 10.5%-32.6%) had biopsy-confirmed acute rejection. None of the patients in either autologous MSC group had glucorticoid-resistant rejection, whereas 4 patients (7.8%) in the control group did (95% CI, 0.6%-15.1%; overall P = .02). Renal function recovered faster among both MSC groups showing increased eGFR levels during the first month after surgery than the control group. Patients receiving standard-dose CNI had a mean difference of 6.2 mL/min per 1.73 m(2) (95% CI, 0.4-11.9; P=.04) and those in the low-dose CNI of 10.0 mL/min per 1.73 m(2) (95% CI, 3.8-16.2; P=.002). Also, during the 1-year follow-up, combined analysis of MSC-treated groups revealed significantly decreased risk of opportunistic infections than the control group (hazard ratio, 0.42; 95% CI, 0.20-0.85, P=.02) CONCLUSION Among patients undergoing renal transplant, the use of autologous MSCs compared with anti-IL-2 receptor antibody induction therapy resulted in lower incidence of acute rejection, decreased risk of opportunistic infection, and better estimated renal function at 1 year. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00658073.", "title": "Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial." } ]
944
Physical activity does not improve cognitive function in individuals with Alzheimers.
[ { "docid": "1642727", "text": "CONTEXT Many observational studies have shown that physical activity reduces the risk of cognitive decline; however, evidence from randomized trials is lacking. \n OBJECTIVE To determine whether physical activity reduces the rate of cognitive decline among older adults at risk. \n DESIGN AND SETTING Randomized controlled trial of a 24-week physical activity intervention conducted between 2004 and 2007 in metropolitan Perth, Western Australia. Assessors of cognitive function were blinded to group membership. \n PARTICIPANTS We recruited volunteers who reported memory problems but did not meet criteria for dementia. Three hundred eleven individuals aged 50 years or older were screened for eligibility, 89 were not eligible, and 52 refused to participate. A total of 170 participants were randomized and 138 participants completed the 18-month assessment. \n INTERVENTION Participants were randomly allocated to an education and usual care group or to a 24-week home-based program of physical activity. \n MAIN OUTCOME MEASURE Change in Alzheimer Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores (possible range, 0-70) over 18 months. \n RESULTS In an intent-to-treat analysis, participants in the intervention group improved 0.26 points (95% confidence interval, -0.89 to 0.54) and those in the usual care group deteriorated 1.04 points (95% confidence interval, 0.32 to 1.82) on the ADAS-Cog at the end of the intervention. The absolute difference of the outcome measure between the intervention and control groups was -1.3 points (95% confidence interval,-2.38 to -0.22) at the end of the intervention. At 18 months, participants in the intervention group improved 0.73 points (95% confidence interval, -1.27 to 0.03) on the ADAS-Cog, and those in the usual care group improved 0.04 points (95% confidence interval, -0.46 to 0.88). Word list delayed recall and Clinical Dementia Rating sum of boxes improved modestly as well, whereas word list total immediate recall, digit symbol coding, verbal fluency, Beck depression score, and Medical Outcomes 36-Item Short-Form physical and mental component summaries did not change significantly. \n CONCLUSIONS In this study of adults with subjective memory impairment, a 6-month program of physical activity provided a modest improvement in cognition over an 18-month follow-up period. \n TRIAL REGISTRATION anzctr.org.au Identifier: ACTRN12605000136606.", "title": "Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial." } ]
[ { "docid": "45336190", "text": "OBJECTIVE To evaluate the safety, tolerability, and amyloid beta (Abeta) response to the gamma-secretase inhibitor LY450139 in Alzheimer disease. \n DESIGN Multicenter, randomized, double-blind, dose-escalation, placebo-controlled trial. \n SETTING Community-based clinical research centers. Patients Fifty-one individuals with mild to moderate Alzheimer disease were randomized to receive placebo (n=15) or LY450139 (100 mg [n=22] or 140 mg [n=14]), with 43 completing the treatment phase. Intervention The LY450139 groups received 60 mg/d for 2 weeks, then 100 mg/d for 6 weeks, and then either 100 or 140 mg/d for 6 additional weeks. \n MAIN OUTCOME MEASURES Primary outcome measures were adverse events, plasma and cerebrospinal fluid Abeta levels, vital signs, electrocardiographic data, and laboratory safety test results. Secondary outcome measures included the Alzheimer's Disease Assessment Scale cognitive subscale and the Alzheimer's Disease Cooperative Study Activities of Daily Living Scale. \n RESULTS Group differences were seen in skin and subcutaneous tissue concerns (P=.05), including 3 possible drug rashes and 3 reports of hair color change in the treatment groups. There were 3 adverse event-related discontinuations, including 1 transient bowel obstruction. The plasma Abeta(40) concentration was reduced by 58.2% for the 100-mg group and 64.6% for the 140-mg group (P<.001). No significant reduction was seen in cerebrospinal fluid Abeta levels. No group differences were seen in cognitive or functional measures. \n CONCLUSIONS LY450139 was generally well tolerated at doses of up to 140 mg/d for 14 weeks, with several findings indicating the need for close clinical monitoring in future studies. Decreases in plasma Abeta concentrations were consistent with inhibition of gamma-secretase. Trial Registration clinicaltrials.gov Identifier: NCT00244322.", "title": "Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease." }, { "docid": "10190462", "text": "Background: Reduced brain insulin signaling and low CSF-to-plasma insulin ratios have been observed in patients with Alzheimer disease (AD). Furthermore, intracerebroventricular or IV insulin administration improve memory, alter evoked potentials, and modulate neurotransmitters, possibly by augmenting low brain levels. After intranasal administration, insulin-like peptides follow extracellular pathways to the brain within 15 minutes. Objective: We tested the hypothesis that daily intranasal insulin treatment would facilitate cognition in patients with early AD or its prodrome, amnestic mild cognitive impairment (MCI). The proportion of verbal information retained after a delay period was the planned primary outcome measure. Secondary outcome measures included attention, caregiver rating of functional status, and plasma levels of insulin, glucose, β-amyloid, and cortisol. Methods: Twenty-five participants were randomly assigned to receive either placebo (n = 12) or 20 IU BID intranasal insulin treatment (n = 13) using an electronic atomizer, and 24 participants completed the study. Participants, caregivers, and all clinical evaluators were blinded to treatment assignment. Cognitive measures and blood were obtained at baseline and after 21 days of treatment. Results: Fasting plasma glucose and insulin were unchanged with treatment. The insulin-treated group retained more verbal information after a delay compared with the placebo-assigned group ( p = 0.0374). Insulin-treated subjects also showed improved attention ( p = 0.0108) and functional status ( p = 0.0410). Insulin treatment raised fasting plasma concentrations of the short form of the β-amyloid peptide (Aβ40; p = 0.0471) without affecting the longer isoform (Aβ42), resulting in an increased Aβ40/42 ratio ( p = 0.0207). Conclusions: The results of this pilot study support further investigation of the benefits of intranasal insulin for patients with Alzheimer disease, and suggest that intranasal peptide administration may be a novel approach to the treatment of neurodegenerative disorders.", "title": "INTRANASAL INSULIN IMPROVES COGNITION AND MODULATES β-AMYLOID IN EARLY AD" }, { "docid": "4407385", "text": "Memory function often declines with age, and is believed to deteriorate initially because of changes in synaptic function rather than loss of neurons. Some individuals then go on to develop Alzheimer's disease with neurodegeneration. Here we use Tg2576 mice, which express a human amyloid-β precursor protein (APP) variant linked to Alzheimer's disease, to investigate the cause of memory decline in the absence of neurodegeneration or amyloid-β protein amyloidosis. Young Tg2576 mice (< 6 months old) have normal memory and lack neuropathology, middle-aged mice (6–14 months old) develop memory deficits without neuronal loss, and old mice (> 14 months old) form abundant neuritic plaques containing amyloid-β (refs 3–6). We found that memory deficits in middle-aged Tg2576 mice are caused by the extracellular accumulation of a 56-kDa soluble amyloid-β assembly, which we term Aβ*56 (Aβ star 56). Aβ*56 purified from the brains of impaired Tg2576 mice disrupts memory when administered to young rats. We propose that Aβ*56 impairs memory independently of plaques or neuronal loss, and may contribute to cognitive deficits associated with Alzheimer's disease.", "title": "A specific amyloid-β protein assembly in the brain impairs memory" }, { "docid": "24865781", "text": "Forty-one recurrent tension headache sufferers were randomly assigned to either cognitive-behavioral therapy (administered in a primarily home-based treatment protocol) or to amitriptyline therapy (with dosage individualized at 25, 50, or 75 mg/day). Cognitive-behavioral therapy and amitriptyline each yielded clinically significant improvements in headache activity, both when improvement was assessed with patient daily recordings (56% and 27% reduction in headache index, respectively), and when improvement was assessed with neurologist ratings of clinical improvement (94% and 69% of patients rated at least moderately improved, respectively). In instances where differences in treatment effectiveness were observed (headache index, somatic complaints, perceptions of control of headache activity), cognitive-behavioral therapy yielded somewhat more positive outcomes than did amitriptyline. Neither treatment, however, eliminated headache problems.", "title": "A comparison of pharmacological (amitriptyline HCL) and nonpharmacological (cognitive-behavioral) therapies for chronic tension headaches." }, { "docid": "26688294", "text": "Hypofunction of the N-methyl D-aspartate subtype of glutamate receptor (NMDAR) is hypothesized to be a mechanism underlying cognitive dysfunction in individuals with schizophrenia. For the schizophrenia-linked genes NRG1 and ERBB4, NMDAR hypofunction is thus considered a key detrimental consequence of the excessive NRG1-ErbB4 signaling found in people with schizophrenia. However, we show here that neuregulin 1β–ErbB4 (NRG1β-ErbB4) signaling does not cause general hypofunction of NMDARs. Rather, we find that, in the hippocampus and prefrontal cortex, NRG1β-ErbB4 signaling suppresses the enhancement of synaptic NMDAR currents by the nonreceptor tyrosine kinase Src. NRG1β-ErbB4 signaling prevented induction of long-term potentiation at hippocampal Schaffer collateral–CA1 synapses and suppressed Src-dependent enhancement of NMDAR responses during theta-burst stimulation. Moreover, NRG1β-ErbB4 signaling prevented theta burst–induced phosphorylation of GluN2B by inhibiting Src kinase activity. We propose that NRG1-ErbB4 signaling participates in cognitive dysfunction in schizophrenia by aberrantly suppressing Src-mediated enhancement of synaptic NMDAR function.", "title": "Schizophrenia susceptibility pathway neuregulin 1–ErbB4 suppresses Src upregulation of NMDA receptors" }, { "docid": "21274919", "text": "OBJECTIVE Chronic physical comorbidity is common in dementia. However, there is an absence of evidence to support good practice guidelines for attention to these problems. We aimed to study the extent of this comorbidity and its impact on cognitive function and disability in population-based studies in low and middle income countries, where chronic diseases and impairments are likely to be both common and undertreated. \n METHODS A multicentre cross-sectional survey of all over 65 year old residents (n = 15 022) in 11 catchment areas in China, India, Cuba, Dominican Republic, Venezuela, Mexico and Peru. We estimated the prevalence of pain, incontinence, hearing and visual impairments, mobility impairment and undernutrition according to the presence of dementia and its severity, and, among those with dementia, the independent contribution of these impairments to cognitive function and disability, adjusting for age, gender, education and dementia severity. \n RESULTS Incontinence, hearing impairment, mobility impairment and undernutrition were consistently linearly associated with the presence of dementia and its severity across regions. Among people with dementia, incontinence, hearing impairment and mobility impairment were independently associated with disability in all regions while the contributions of pain, visual impairment and undernutrition were inconsistent. Only hearing impairment made a notable independent contribution to cognitive impairment. \n CONCLUSIONS There is an urgent need for clinical trials of the feasibility, efficacy and cost-effectiveness of regular physical health checks and remediation of identified pathologies, given the considerable comorbidity identified in our population based studies, and the strong evidence for independent impact upon functioning.", "title": "The association between common physical impairments and dementia in low and middle income countries, and, among people with dementia, their association with cognitive function and disability. A 10/66 Dementia Research Group population-based study." }, { "docid": "17691617", "text": "OBJECTIVES To investigate the effects of a high-intensity functional exercise program on independence in activities of daily living (ADLs) and balance in older people with dementia and whether exercise effects differed between dementia types. \n DESIGN Cluster-randomized controlled trial: Umeå Dementia and Exercise (UMDEX) study. \n SETTING Residential care facilities, Umeå, Sweden. \n PARTICIPANTS Individuals aged 65 and older with a dementia diagnosis, a Mini-Mental State Examination score of 10 or greater, and dependence in ADLs (N=186). \n INTERVENTION Ninety-three participants each were allocated to the high-intensity functional exercise program, comprising lower limb strength and balance exercises, and 93 to a seated control activity. \n MEASUREMENTS Blinded assessors measured ADL independence using the Functional Independence Measure (FIM) and Barthel Index (BI) and balance using the Berg Balance Scale (BBS) at baseline and 4 (directly after intervention completion) and 7 months. \n RESULTS Linear mixed models showed no between-group effect on ADL independence at 4 (FIM=1.3, 95% confidence interval (CI)=-1.6-4.3; BI=0.6, 95% CI=-0.2-1.4) or 7 (FIM=0.8, 95% CI=-2.2-3.8; BI=0.6, 95% CI=-0.3-1.4) months. A significant between-group effect on balance favoring exercise was observed at 4 months (BBS=4.2, 95% CI=1.8-6.6). In interaction analyses, exercise effects differed significantly between dementia types. Positive between-group exercise effects were found in participants with non-Alzheimer's dementia according to the FIM at 7 months and BI and BBS at 4 and 7 months. \n CONCLUSION In older people with mild to moderate dementia living in residential care facilities, a 4-month high-intensity functional exercise program appears to slow decline in ADL independence and improve balance, albeit only in participants with non-Alzheimer's dementia.", "title": "Effects of a High-Intensity Functional Exercise Program on Dependence in Activities of Daily Living and Balance in Older Adults with Dementia" }, { "docid": "37583120", "text": "OBJECTIVE Obesity and being overweight during adulthood have been consistently linked to increased risk for development of dementia later in life, especially Alzheimer's disease. They have also been associated with cognitive dysfunction and brain structural alterations in otherwise healthy adults. Although proton magnetic resonance spectroscopy may distinguish between neuronal and glial components of the brain and may point to neurobiological mechanisms underlying brain atrophy and cognitive changes, no spectroscopic studies have yet assessed the relationships between adiposity and brain metabolites. \n METHODS We have utilized magnetic resonance imaging and proton magnetic resonance spectroscopic imaging data from 50 healthy middle-aged participants (mean age, 41.7 +/- 8.5 years; 17 women), who were scanned as control subjects for another study. \n RESULTS After adjustment for age and sex, greater body mass indices (BMIs) correlated with: (1) lower concentrations of N-acetylaspartate (spectroscopic marker of neuronal viability) in frontal (p = 0.001), parietal (p = 0.006), and temporal (p = 0.008) white matter; (2) lower N-acetylaspartate in frontal gray matter (p = 0.01); and (3) lower concentrations of choline-containing metabolites (associated with membrane metabolism) in frontal white matter (p = 0.05). \n INTERPRETATION These results suggest that increased BMI at midlife is associated with neuronal and/or myelin abnormalities, primarily in the frontal lobe. Because white matter in the frontal lobes is more prone to the effects of aging than in other lobes, our results may reflect accelerated aging in individuals with high levels of adiposity. Thus, greater BMI may increase the odds of developing an age-related disease, such as Alzheimer's disease.", "title": "Body mass index and magnetic resonance markers of brain integrity in adults." }, { "docid": "12631697", "text": "Limited neural input results in muscle weakness in neuromuscular disease because of a reduction in the density of muscle innervation, the rate of neuromuscular junction activation or the efficiency of synaptic transmission. We developed a small-molecule fast-skeletal-troponin activator, CK-2017357, as a means to increase muscle strength by amplifying the response of muscle when neural input is otherwise diminished secondary to neuromuscular disease. Binding selectively to the fast-skeletal-troponin complex, CK-2017357 slows the rate of calcium release from troponin C and sensitizes muscle to calcium. As a consequence, the force-calcium relationship of muscle fibers shifts leftwards, as does the force-frequency relationship of a nerve-muscle pair, so that CK-2017357 increases the production of muscle force in situ at sub-maximal nerve stimulation rates. Notably, we show that sensitization of the fast-skeletal-troponin complex to calcium improves muscle force and grip strength immediately after administration of single doses of CK-2017357 in a model of the neuromuscular disease myasthenia gravis. Troponin activation may provide a new therapeutic approach to improve physical activity in diseases where neuromuscular function is compromised.", "title": "Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases" }, { "docid": "14079881", "text": "OBJECTIVE To determine whether perceived age correlates with survival and important age related phenotypes. \n DESIGN Follow-up study, with survival of twins determined up to January 2008, by which time 675 (37%) had died. \n SETTING Population based twin cohort in Denmark. \n PARTICIPANTS 20 nurses, 10 young men, and 11 older women (assessors); 1826 twins aged >or=70. \n MAIN OUTCOME MEASURES Assessors: perceived age of twins from photographs. Twins: physical and cognitive tests and molecular biomarker of ageing (leucocyte telomere length). \n RESULTS For all three groups of assessors, perceived age was significantly associated with survival, even after adjustment for chronological age, sex, and rearing environment. Perceived age was still significantly associated with survival after further adjustment for physical and cognitive functioning. The likelihood that the older looking twin of the pair died first increased with increasing discordance in perceived age within the twin pair-that is, the bigger the difference in perceived age within the pair, the more likely that the older looking twin died first. Twin analyses suggested that common genetic factors influence both perceived age and survival. Perceived age, controlled for chronological age and sex, also correlated significantly with physical and cognitive functioning as well as with leucocyte telomere length. \n CONCLUSION Perceived age-which is widely used by clinicians as a general indication of a patient's health-is a robust biomarker of ageing that predicts survival among those aged >or=70 and correlates with important functional and molecular ageing phenotypes.", "title": "Perceived age as clinically useful biomarker of ageing: cohort study." }, { "docid": "10010651", "text": "Cancer survivors are often highly motivated to seek information about food choices, physical activity, and dietary supplements to improve their treatment outcomes, quality of life, and overall survival. To address these concerns, the American Cancer Society (ACS) convened a group of experts in nutrition, physical activity, and cancer survivorship to evaluate the scientific evidence and best clinical practices related to optimal nutrition and physical activity after the diagnosis of cancer. This report summarizes their findings and is intended to present health care providers with the best possible information with which to help cancer survivors and their families make informed choices related to nutrition and physical activity. The report discusses nutrition and physical activity guidelines during the continuum of cancer care, briefly highlighting important issues during cancer treatment and for patients with advanced cancer, but focusing largely on the needs of the population of individuals who are disease free or who have stable disease following their recovery from treatment. It also discusses select nutrition and physical activity issues such as body weight, food choices, food safety, and dietary supplements; issues related to selected cancer sites; and common questions about diet, physical activity, and cancer survivorship.", "title": "Nutrition and physical activity guidelines for cancer survivors." }, { "docid": "5402581", "text": "CONTEXT Atypical antipsychotic medications are widely used to treat delusions, aggression, and agitation in people with Alzheimer disease and other dementia; however, concerns have arisen about the increased risk for cerebrovascular adverse events, rapid cognitive decline, and mortality with their use. \n OBJECTIVE To assess the evidence for increased mortality from atypical antipsychotic drug treatment for people with dementia. \n DATA SOURCES MEDLINE (1966 to April 2005), the Cochrane Controlled Trials Register (2005, Issue 1), meetings presentations (1997-2004), and information from the sponsors were searched using the terms for atypical antipsychotic drugs (aripiprazole, clozapine, olanzapine, quetiapine, risperidone, and ziprasidone), dementia, Alzheimer disease, and clinical trial. STUDY SELECTION Published and unpublished randomized placebo-controlled, parallel-group clinical trials of atypical antipsychotic drugs marketed in the United States to treat patients with Alzheimer disease or dementia were selected by consensus of the authors. \n DATA EXTRACTION Trials, baseline characteristics, outcomes, all-cause dropouts, and deaths were extracted by one reviewer; treatment exposure was obtained or estimated. Data were checked by a second reviewer. \n DATA SYNTHESIS Fifteen trials (9 unpublished), generally 10 to 12 weeks in duration, including 16 contrasts of atypical antipsychotic drugs with placebo met criteria (aripiprazole [n = 3], olanzapine [n = 5], quetiapine [n = 3], risperidone [n = 5]). A total of 3353 patients were randomized to study drug and 1757 were randomized to placebo. Outcomes were assessed using standard methods (with random- or fixed-effects models) to calculate odds ratios (ORs) and risk differences based on patients randomized and relative risks based on total exposure to treatment. There were no differences in dropouts. Death occurred more often among patients randomized to drugs (118 [3.5%] vs 40 [2.3%]. The OR by meta-analysis was 1.54; 95% confidence interval [CI], 1.06-2.23; P = .02; and risk difference was 0.01; 95% CI, 0.004-0.02; P = .01). Sensitivity analyses did not show evidence for differential risks for individual drugs, severity, sample selection, or diagnosis. \n CONCLUSIONS Atypical antipsychotic drugs may be associated with a small increased risk for death compared with placebo. This risk should be considered within the context of medical need for the drugs, efficacy evidence, medical comorbidity, and the efficacy and safety of alternatives. Individual patient analyses modeling survival and causes of death are needed.", "title": "Risk of death with atypical antipsychotic drug treatment for dementia: meta-analysis of randomized placebo-controlled trials." }, { "docid": "58564850", "text": "Background We aimed to determine the prevalence and gap in use of mental health services for late-life depression in four European regions (Western Europe, Scandinavia, Southern Europe and Central and Eastern Europe) and explore socio-demographic, social and health-related factors associated with it. Methods We conducted a cross-sectional study based on data from the Survey on Health, Ageing and Retirement in Europe. Participants were a population-based sample of 28 796 persons (53% women, mean age 74 years old) residing in Europe. Mental health service use was estimated using information about the diagnosis or treatment for depression. Results The prevalence of late-life depression was 29% in the whole sample and was highest in Southern Europe (35%), followed by Central and Eastern Europe (32%), Western Europe (26%) and lowest in Scandinavia (17%). Factors that had the strongest association with depression were total number of chronic diseases, pain, limitations in instrumental activities of daily living, grip strength and cognitive impairment. The gap in mental health service use was 79%. Conclusions We suggest that interventions to decrease the burden of late-life depression should be targeted at individuals that are affected by chronic somatic comorbidities and are limited in mental and physical functioning. Promotion of help-seeking of older adults, de-stigmatization of mental illness and education of general practitioners could help decrease the gap in mental health service utilization.", "title": "Prevalence of late-life depression and gap in mental health service use across European regions." }, { "docid": "25483562", "text": "Insulin-regulated aminopeptidase (IRAP or oxytocinase) is a membrane-bound zinc-metallopeptidase that cleaves neuroactive peptides in the brain and produces memory enhancing effects when inhibited. We have determined the crystal structure of human IRAP revealing a closed, four domain arrangement with a large, mostly buried cavity abutting the active site. The structure reveals that the GAMEN exopeptidase loop adopts a very different conformation from other aminopeptidases, thus explaining IRAP's unique specificity for cyclic peptides such as oxytocin and vasopressin. Computational docking of a series of IRAP-specific cognitive enhancers into the crystal structure provides a molecular basis for their structure-activity relationships and demonstrates that the structure will be a powerful tool in the development of new classes of cognitive enhancers for treating a variety of memory disorders such as Alzheimer's disease.", "title": "Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides." }, { "docid": "24285403", "text": "OBJECTIVES To determine whether the ankle brachial index (ABI, a marker of generalized atherosclerosis) is associated with cognitive impairment after 10 years in older people. \n DESIGN Cohort study (Edinburgh Artery Study). \n SETTING Eleven general practices in Edinburgh, Scotland. \n PARTICIPANTS Seven hundred seventeen men and women aged 55 to 74 from the general population, followed for 10 years. \n MEASUREMENTS ABI measured at baseline and major cognitive functions (including premorbid function using the National Adult Reading Test, NART) tested after 10 years. \n RESULTS After adjustment for age and sex, a low ABI was associated with lower scoring (bottom tertile vs top tertile) on Raven's Matrices (odds ratio (OR)=1.6, 95% confidence interval (CI) =1.0-2.6), Verbal Fluency (OR =1.8, 95% CI =1.1-3.0), and Digit Symbol Test (OR =2.3, 95% CI =1.3-4.2), suggesting that the ABI is predictive of poorer performance in nonverbal reasoning, verbal fluency, and information processing speed. The association between ABI and the Digit Symbol Test remained significant after further adjustment for premorbid cognitive function (tested using the NART), suggesting that the ABI is also predictive of decline in information processing speed (from premorbid ability to that measured here in older age). \n CONCLUSION The ABI may be useful in identifying older individuals at higher risk of cognitive impairment. In the future, preventive measures developed to target individuals with a low ABI should consider measures to reduce vascular-related cognitive decline as well as cardiovascular events, in an effort to reduce the incidence and consequences of subsequent cognitive impairment and dementia.", "title": "Ankle brachial index as a predictor of cognitive impairment in the general population: ten-year follow-up of the Edinburgh Artery Study." }, { "docid": "46565020", "text": "BACKGROUND AN1792 (beta-amyloid [Abeta]1-42) immunization reduces Abeta plaque burden and preserves cognitive function in APP transgenic mice. The authors report the results of a phase IIa immunotherapy trial of AN1792(QS-21) in patients with mild to moderate Alzheimer disease (AD) that was interrupted because of meningoencephalitis in 6% of immunized patients. \n METHODS This randomized, multicenter, placebo-controlled, double-blind trial of IM AN1792 225 microg plus the adjuvant QS-21 50 microg (300 patients) and saline (72 patients) included patients aged 50 to 85 years with probable AD, Mini-Mental State Examination (MMSE) 15 to 26. Injections were planned for months 0, 1, 3, 6, 9, and 12. Safety and tolerability were evaluated, and pilot efficacy (AD Assessment Scale-Cognitive Subscale [ADAS-Cog], MRI, neuropsychological test battery [NTB], CSF tau, and Abeta42) was assessed in anti-AN1792 antibody responder patients (immunoglobulin G titer > or = 1:2,200). \n RESULTS Following reports of meningoencephalitis (overall 18/300 [6%]), immunization was stopped after one (2 patients), two (274 patients), or three (24 patients) injections. Of the 300 AN1792(QS-21)-treated patients, 59 (19.7%) developed the predetermined antibody response. Double-blind assessments were maintained for 12 months. No significant differences were found between antibody responder and placebo groups for ADAS-Cog, Disability Assessment for Dementia, Clinical Dementia Rating, MMSE, or Clinical Global Impression of Change, but analyses of the z-score composite across the NTB revealed differences favoring antibody responders (0.03 +/- 0.37 vs -0.20 +/- 0.45; p = 0.020). In the small subset of subjects who had CSF examinations, CSF tau was decreased in antibody responders (n = 11) vs placebo subjects (n = 10; p < 0.001). \n CONCLUSION Although interrupted, this trial provides an indication that Abeta immunotherapy may be useful in Alzheimer disease.", "title": "Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial." }, { "docid": "37156349", "text": "Independent mobility in early childhood has been associated with the development of various cognitive and psychosocial skills. However, children with physical disabilities are not always able to move independently and may be at risk for delays in these areas. Early provision of powered mobility can offer young children an opportunity for independent mobility. Despite this, there is little information to help determine when a young child has the cognitive skills necessary to operate a powered wheelchair safely. This current research aims to identify these skills. A cognitive assessment battery and a wheelchair mobility training and assessment program were developed. Twenty-six children with physical disabilities between the ages of 20 and 36 months were evaluated on the cognitive assessment and participated in the wheelchair training and assessment program. A stepwise regression analysis was used to determine which of the cognitive skills predicted wheelchair mobility performance. The cognitive domains of spatial relations and problem solving were found to be significant and accounted for 57% of the variance in wheelchair skills. Developmental cut-off points on these scales as they relate to wheelchair skills are presented and clinical applications are discussed.", "title": "Cognitive predictors of young children's readiness for powered mobility." }, { "docid": "32463364", "text": "OBJECTIVES Prevention of cognitive decline and dementia with blood pressure lowering treatments has shown inconsistent results. We compared the effects of different classes of antihypertensive drugs on the incidence of dementia, and on cognitive function. \n METHODS We conducted a systematic review and included 19 randomized trials (18 515 individuals) and 11 studies (831 674 individuals) analysing the effects of antihypertensive treatment on cognition and on the incidence of dementia, respectively, in hypertensive patients without prior cerebrovascular disorders. Network meta-analysis was used for the comparison of antihypertensive classes. \n RESULTS Antihypertensive treatment, regardless of the drug class, had benefits on overall cognition [effect size 0.05, 95% confidence interval (CI) 0.02-0.07] and all cognitive functions except language. Antihypertensive treatment reduced the risk of all-cause dementia by 9%, with reference to the control group (hazard ratio 0.91, 95% CI 0.89-0.94), when randomized trials and observationnal studies were combined (n = 15). Result was not significant with randomized trials alone (n = 4). Angiotensin II receptor blockers (ARBs) had larger benefits than placebo on overall cognition (adjusted effect size 0.60 ± 0.18, P = 0.02). ARBs were more effective than β-blockers (0.67 ± 0.18, P = 0.01), diuretics (0.54 ± 0.19, P = 0.04) and angiotensin-converting enzyme inhibitors (0.47 ± 0.17, P = 0.04) in rank. The mean change in blood pressure did not differ significantly between the different antihypertensive drug classes. \n CONCLUSION Our results support the notion that antihypertensive treatment has beneficial effects on cognitive decline and prevention of dementia, and indicate that these effects may differ between drug classes with ARBs possibly being the most effective.", "title": "Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis." }, { "docid": "7239105", "text": "Remarkable advances have been made in recent years towards therapeutics for cognitive impairment in individuals with Down syndrome (DS) by using mouse models. In this review, we briefly describe the phenotypes of mouse models that represent outcome targets for drug testing, the behavioral tests used to assess impairments in cognition and the known mechanisms of action of several drugs that are being used in preclinical studies or are likely to be tested in clinical trials. Overlaps in the distribution of targets and in the pathways that are affected by these diverse drugs in the trisomic brain suggest new avenues for DS research and drug development.", "title": "The use of mouse models to understand and improve cognitive deficits in Down syndrome" } ]
945
Physical activity level has no association with the difference in maximal oxygen consumption between black and white youth.
[ { "docid": "8428935", "text": "CONTEXT Physical inactivity contributes to weight gain in adults, but whether this relationship is true for children of different ethnic groups is not well established. \n OBJECTIVE To assess participation in vigorous activity and television watching habits and their relationship to body weight and fatness in US children. \n DESIGN Nationally representative cross-sectional survey with an in-person interview and medical examination. \n SETTING AND PARTICIPANTS Between 1988 and 1994, 4063 children aged 8 through 16 years were examined as part of the National Health and Nutrition Examination Survey III. Mexican Americans and non-Hispanic blacks were oversampled to produce reliable estimates for these groups. \n MAIN OUTCOME MEASURES Episodes of weekly vigorous activity and daily hours of television watched, and their relationship to body mass index and body fatness. \n RESULTS Eighty percent of US children reported performing 3 or more bouts of vigorous activity each week. This rate was lower in non-Hispanic black and Mexican American girls (69% and 73%, respectively). Twenty percent of US children participated in 2 or fewer bouts of vigorous activity perweek, and the rate was higher in girls (26%) than in boys (17%). Overall, 26% of US children watched 4 or more hours of television per day and 67% watched at least 2 hours per day. Non-Hispanic black children had the highest rates of watching 4 or more hours of television per day (42%). Boys and girls who watch 4 or more hours of television each day had greater body fat (P<.001) and had a greater body mass index (P<.001) than those who watched less than 2 hours per day. \n CONCLUSIONS Many US children watch a great deal of television and are inadequately vigorously active. Vigorous activity levels are lowest among girls, non-Hispanic blacks, and Mexican Americans. Intervention strategies to promote lifelong physical activity among US children are needed to stem the adverse health consequences of inactivity.", "title": "Relationship of physical activity and television watching with body weight and level of fatness among children: results from the Third National Health and Nutrition Examination Survey." }, { "docid": "26112696", "text": "The purpose of this study was to examine differences in resting, submaximal, and maximal (VO2max) oxygen consumption (VO2) in African-American (n = 44) and Caucasian (n = 31) prepubertal children aged 5-10 yr. Resting VO2 was measured via indirect calorimetry in the fasted state. Submaximal VO2 and VO2max were determined during an all out, progressive treadmill exercise test appropriate for children. Dual-energy X-ray absorptiometry was used to determine total fat mass (FM), soft lean tissue mass (LTM), and leg soft LTM. Doubly labeled water was used to determine total energy expenditure (TEE) and activity energy expenditure (AEE). A significant effect of ethnicity (P < 0.01) was found for VO2max but not resting or submaximal VO2, with African-American children having absolute VO2max approximately 15% lower than Caucasian children (1.21 +/- 0.032 vs. 1.43 +/- 0.031 l/min, respectively). The lower VO2max persisted in African-American children after adjustment for soft LTM (1.23 +/- 0.025 vs. 1.39 +/- 0.031 l/min; P < 0.01), leg soft LTM (1.20 +/- 0.031 vs. 1.43 +/- 0.042 l/min; P < 0.01), and soft LTM and FM (1.23 +/- 0.025 vs. 1.39 +/- 0.031 l/min; P < 0.01). The lower VO2max persisted also after adjustment for TEE (1.20 +/- 0.02 vs. 1.38 +/- 0.0028 l/min P < 0.001) and AEE (1.20 +/- 0.024 vs. 1.38 +/- 0.028 l/min; P < 0.001). In conclusion, our data indicate that African-American and Caucasian children have similar rates of VO2 at rest and during submaximal exercise, but VO2max is approximately 15% lower in African-American children, independent of soft LTM, FM, leg LTM, TEE, and AEE.", "title": "Maximal aerobic capacity in African-American and Caucasian prepubertal children." }, { "docid": "4463588", "text": "BACKGROUND Little is known about how the intensity of exercise influences cardiovascular fitness and body composition, especially in obese adolescents. \n OBJECTIVE Our goal was to determine the effects of physical training intensity on the cardiovascular fitness, percentage of body fat (%BF), and visceral adipose tissue (VAT) of obese adolescents. \n DESIGN Obese 13-16-y-olds (n = 80) were assigned to 1) biweekly lifestyle education (LSE), 2) LSE + moderate-intensity physical training, or 3) LSE + high-intensity physical training. The intervention lasted 8 mo. Physical training was offered 5 d/wk, and the target energy expenditure for all subjects in physical training groups was 1047 kJ (250 kcal)/session. Cardiovascular fitness was measured with a multistage treadmill test, %BF with dual-energy X-ray absorptiometry, and VAT with magnetic resonance imaging. \n RESULTS The increase in cardiovascular fitness in the high-intensity physical training group, but not in the moderate-intensity group, was significantly greater than that in the LSE alone group (P = 0.009); no other comparisons of the 3 groups were significant. Compared with the LSE alone group, a group composed of subjects in both physical training groups combined who attended training sessions >or=2 d/wk showed favorable changes in cardiovascular fitness (P < 0.001), %BF (P = 0.001), and VAT (P = 0.029). We found no evidence that the high-intensity physical training was more effective than the moderate-intensity physical training in enhancing body composition. \n CONCLUSIONS The cardiovascular fitness of obese adolescents was significantly improved by physical training, especially high-intensity physical training. The physical training also reduced both visceral and total-body adiposity, but there was no clear effect of the intensity of physical training.", "title": "Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents." }, { "docid": "13083189", "text": "OBJECTIVES Despite recognition of the important influence of environmental determinants on physical activity patterns, minimal empirical research has been done to assess the impact of environmental/contextual determinants of physical activity. This article aims to investigate environmental and sociodemographic determinants of physical activity and inactivity patterns among subpopulations of US adolescents. We define environmental determinants as modifiable factors in the physical environment that impose a direct influence on the opportunity to engage in physical activity. The present research examines environmental and sociodemographic determinants of physical activity and inactivity with the implication that these findings can point toward societal-level intervention strategies for increasing physical activity and decreasing inactivity among adolescents. STUDY DESIGN AND METHODOLOGY The study population consists of nationally representative data from the 1996 National Longitudinal Study of Adolescent Health on 17 766 US adolescents enrolled in US middle and high schools (including 3933 non-Hispanic blacks, 3148 Hispanics, and 1337 Asians). Hours/week of inactivity (TV/video viewing and video/computer games) and times/week of moderate to vigorous physical activity were collected by questionnaire. Outcome variables were moderate to vigorous physical activity and inactivity, which were broken into categories (physical activity: 0-2 times/week, 3-4 times/week, and >/=5 times/week; inactivity: 0-10 hours/week, 11-24 hours/week, and >/=25 hours/week). Sociodemographic and environmental correlates of physical activity and inactivity were used as exposure and control variables and included sex, age, urban residence, participation in school physical education program, use of community recreation center, total reported incidents of serious crime in neighborhood, socioeconomic status, ethnicity, generation of residence in the United States, presence of mother/father in household, pregnancy status, work status, in-school status, region, and month of interview. Logistic regression models of high versus low and medium physical activity and inactivity were used to investigate sex and ethnic interactions in relation to environmental and sociodemographic factors to examine evidence for the potential impact of physical education and recreation programs and sociodemographic factors on physical activity and inactivity patterns. \n RESULTS Moderate to vigorous physical activity was lower and inactivity higher for non-Hispanic black and Hispanic adolescents. Participation in school physical education programs was considerably low for these adolescents and decreased with age. Participation in daily school physical education (PE) program classes (adjusted odds ratio [AOR]: 2.21; confidence interval [CI]: 1.82-2.68) and use of a community recreation center (AOR: 1.75; CI: 1.56-1.96) were associated with an increased likelihood of engaging in high level moderate to vigorous physical activity. Maternal education was inversely associated with high inactivity patterns; for example, having a mother with a graduate or professional degree was associated with an AOR of.61 (CI:.48-.76) for high inactivity. High family income was associated with increased moderate to vigorous physical activity (AOR: 1.43; CI: 1.22-1.67) and decreased inactivity (AOR:.70; CI:.59-.82). High neighborhood serious crime level was associated with a decreased likelihood of falling in the highest category of moderate to vigorous physical activity (AOR:.77; CI:.66-.91). \n CONCLUSIONS These results show important associations between modifiable environmental factors, such as participation in school PE and community recreation programs, with activity patterns of adolescents. Despite the marked and significant impact of participation in school PE programs on physical activity patterns of US adolescents, few adolescents participated in such school PE programs; only 21.3% of all adolescents", "title": "Determinants of adolescent physical activity and inactivity patterns." } ]
[ { "docid": "18537148", "text": "The purpose of this investigation was to determine whether maximal oxygen consumption (VO2max) differed between two selected groups of black and white children and whether a difference existed to determine whether it was related to hematologic profiles, body composition, and/or physical activity/inactivity level. Forty-five prepubertal and 42 pubertal, clinically normal black and white children participated. Dual-energy x-ray absorptiometry was used to determine body composition. A computed tomography scan of the abdomen was used to determine visceral adipose tissue and s.c. adipose tissue. Daily physical activity/inactivity was assessed by questionnaire. Black prepubertal and pubertal children had lower VO2max values when compared with white children (28.8 ± 7.8 versus 35.0 ± 6.5 mL · kg−1 · min−1, p < 0.01; 33.7 ± 6.4 versus 40.4 ± 10.2 mL · kg−1 · min−1, p < 0.05; respectively). Black prepubertal and pubertal children had lower Hb concentrations ([Hb]) and hematocrits than white children (prepubertal: 12.1 ± 0.5 versus 12.8 ± 0.9 g/dL, p < 0.001; 35.6 ± 1.4 versus 37.4 ± 2.3%, p < 0.01, respectively; pubertal: 13.0 ± 0.9 versus 13.6 ± 0.7 g/dL, p < 0.05; 37.7 ± 2.5 versus 39.5 ± 2.1%, p < 0.05, respectively). In conclusion, these findings indicate that black prepubertal and pubertal children had lower VO2max when compared with their white peers matched for age, pubertal stage, and body mass index. This difference in VO2max could be attributed at least in part to comparatively lower [Hb] and more sedentary lifestyle in the black children. Further investigations should study Hb flow rate (a function of [Hb] × maximal cardiac output) in black and white children as it relates to VO2max.", "title": "Comparison of Maximal Oxygen Consumption Between Black and White Prepubertal and Pubertal Children" }, { "docid": "13230773", "text": "CONTEXT Population surveys indicate that physical activity levels are low in the United States. One consequence of inactivity, low cardiorespiratory fitness, is an established risk factor for cardiovascular disease (CVD) morbidity and mortality, but the prevalence of cardiorespiratory fitness has not been quantified in representative US population samples. \n OBJECTIVES To describe the prevalence of low fitness in the US population aged 12 through 49 years and to relate low fitness to CVD risk factors in this population. \n DESIGN, SETTING, AND PARTICIPANTS Inception cohort study using data from the cross-sectional nationally representative National Health and Nutrition Examination Survey 1999-2002. Participants were adolescents (aged 12-19 years; n = 3110) and adults (aged 20-49 years; n = 2205) free from previously diagnosed CVD who underwent submaximal graded exercise treadmill testing to achieve at least 75% to 90% of their age-predicted maximum heart rate. Maximal oxygen consumption (VO2max) was estimated by measuring the heart rate response to reference levels of submaximal work. \n MAIN OUTCOME MEASURES Low fitness defined using percentile cut points of estimated VO2max from existing external referent populations; anthropometric and other CVD risk factors measured according to standard methods. \n RESULTS Low fitness was identified in 33.6% of adolescents (approximately 7.5 million US adolescents) and 13.9% of adults (approximately 8.5 million US adults); the prevalence was similar in adolescent females (34.4%) and males (32.9%) (P = .40) but was higher in adult females (16.2%) than in males (11.8%) (P = .03). Non-Hispanic blacks and Mexican Americans were less fit than non-Hispanic whites. In all age-sex groups, body mass index and waist circumference were inversely associated with fitness; age- and race-adjusted odds ratios of overweight or obesity (body mass index > or =25) ranged from 2.1 to 3.7 (P<.01 for all), comparing persons with low fitness with those with moderate or high fitness. Total cholesterol levels and systolic blood pressure were higher and levels of high-density lipoprotein cholesterol were lower among participants with low vs high fitness. \n CONCLUSION Low fitness in adolescents and adults is common in the US population and is associated with an increased prevalence of CVD risk factors.", "title": "Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults." }, { "docid": "11201004", "text": "Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.", "title": "Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity." }, { "docid": "52865789", "text": "OBJECTIVE IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues. \n METHODS Control and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells. \n RESULTS Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues. \n CONCLUSIONS Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome.", "title": "Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues" }, { "docid": "29460384", "text": "OBJECTIVE To describe the sources of protein intake in a sample of the US adult population and among subgroups defined by race-ethnicity, age, and gender. \n DESIGN The Third National Health and Nutrition Examination Survey, 1988-1991, is a stratified random sample of the total civilian noninstitutionalized population, drawn from the 50 United States and the District of Columbia. For all foods consumed by the participants, based on a 24-hour dietary recall, protein sources and the contribution of each protein type to the total protein intake were determined. SUBJECTS Adult participants in the third National Health and Nutrition Examination Survey (n = 7,924). STATISTICAL ANALYSES Weighted total, age-specific, and age-adjusted mean protein intakes were calculated using SAS and WesVarPC. Statistical differences were determined by 2-tailed t tests. \n RESULTS The main protein source in the American diet is animal protein (69%). Meat, fish, and poultry protein combined contributed the most to animal protein (42%), followed by dairy protein (20%). Grains (18%) contributed the most to plant protein consumption. Women consumed a lower percentage of beef (14%) and pork (7%) protein than did men (18% and 9%, respectively). Women also consumed a higher percentage of poultry (13%), dairy (22%), and fruit and vegetable (11%) protein than did men (11%, 19%, and 9%, respectively). Blacks reported eating a higher percentage of poultry (18%) and pork (11%) protein and a lower percent of dairy protein (14%) than did whites (12%, 7%, and 22%, respectively) and Mexican-Americans (11%, 8%, and 17%, respectively). Mexican-Americans consumed a higher percentage of legume (7%) and egg (7%) protein than did whites (4% and 4%, respectively) and blacks (4% and 5%, respectively). Whites consumed a higher percentage of grain protein (19%) than did blacks (16%) and Mexican-Americans (15%). \n CONCLUSIONS These results show that, although the percentage of total energy from protein may be similar among race-ethnicities and between men and women, their sources of protein are different. These differences should be taken into account when providing nutrition education for specific populations.", "title": "Estimates of animal and plant protein intake in US adults: results from the Third National Health and Nutrition Examination Survey, 1988-1991." }, { "docid": "46277811", "text": "Background: The relationship of LPA single nucleotide polymorphisms (SNPs), apolipoprotein(a) isoforms, and lipoprotein(a) [Lp(a)] levels with major adverse cardiovascular events (MACE) in different ethnic groups is not well known. Methods: LPA SNPs, apolipoprotein(a) isoforms, Lp(a), and oxidized phospholipids on apolipoprotein B-100 (OxPL-apoB) levels were measured in 1792 black, 1030 white, and 597 Hispanic subjects enrolled in the Dallas Heart Study. Their interdependent relationships and prospective association with MACE after median 9.5-year follow-up were determined. Results: LPA SNP rs3798220 was most prevalent in Hispanics (42.38%), rs10455872 in whites (14.27%), and rs9457951 in blacks (32.92%). The correlation of each of these SNPs with the major apolipoprotein(a) isoform size was highly variable and in different directions among ethnic groups. In the entire cohort, Cox regression analysis with multivariable adjustment revealed that quartiles 4 of Lp(a) and OxPL-apoB were associated with hazard ratios (95% confidence interval) for time to MACE of 2.35 (1.50–3.69, P<0.001) and 1.89 (1.26–2.84, P=0.003), respectively, versus quartile 1. Addition of the major apolipoprotein(a) isoform and the 3 LPA SNPs to these models attenuated the risk, but significance was maintained for both Lp(a) and OxPL-apoB. Evaluating time to MACE in specific ethnic groups, Lp(a) was a positive predictor and the size of the major apolipoprotein(a) isoform was an inverse predictor in blacks, the size of the major apolipoprotein(a) isoform was an inverse predictor in whites, and OxPL-apoB was a positive predictor in Hispanics. Conclusions: The prevalence and association of LPA SNPs with size of apolipoprotein(a) isoforms, Lp(a), and OxPL-apoB levels are highly variable and ethnicity-specific. The relationship to MACE is best explained by elevated plasma Lp(a) or OxPL-apoB levels, despite significant ethnic differences in LPA genetic markers.", "title": "LPA Gene, Ethnicity, and Cardiovascular Events" }, { "docid": "12224536", "text": "BACKGROUND Reducing sugar-sweetened beverage (SSB) consumption is a recommended strategy to promote optimal health. \n OBJECTIVE The objective was to describe trends in SSB consumption among youth and adults in the United States. \n DESIGN We analyzed energy intake from SSBs among 22,367 youth aged 2-19 y and 29,133 adults aged ≥20 y who participated in a 24-h dietary recall as part of NHANES, a nationally representative sample of the US population with a cross-sectional design, between 1999 and 2010. SSBs included soda, fruit drinks, sports and energy drinks, sweetened coffee and tea, and other sweetened beverages. Patterns of SSB consumption, including location of consumption and meal occasion associated with consumption, were also examined. \n RESULTS In 2009-2010, youth consumed a mean (±SE) of 155 ± 7 kcal/d from SSBs, and adults consumed an age-adjusted mean (±SE) of 151 ± 5 kcal/d from SSBs--a decrease from 1999 to 2000 of 68 kcal/d and 45 kcal/d, respectively (P-trend < 0.001 for each). In 2009-2010, SSBs contributed 8.0% ± 0.4% and 6.9% ± 0.2% of daily energy intake among youth and adults, respectively, which reflected a decrease compared with 1999-2000 (P-trend < 0.001 for both). Decreases in SSB consumption, both in the home and away from home and also with both meals and snacks, occurred over the 12-y study duration (P-trend < 0.01 for each). \n CONCLUSION A decrease in SSB consumption among youth and adults in the United States was observed between 1999 and 2010.", "title": "Trends in sugar-sweetened beverage consumption among youth and adults in the United States: 1999-2010." }, { "docid": "4449524", "text": "The concentration of hemoglobin in blacks was found to be 0.5 to 1.0 g/dl lower than that of income-matched whites in several large surveys. This difference could be a racial characteristic of blacks, or it might be due to a higher frequency of genetic traits such as thalassemia minor and hemoglobinopathies, or to environmental factors such as iron deficiency. To help in making this distinction, we analyzed the data from multiphasic examinations (1973 to 1975) on 1718 white, 741 black, and 315 Oriental healthy, nonindigent children between 5 and 14 years of age. In the entire population, the median hemoglobin concentration averaged 0.5 g/dl lower in blacks than in whites of both sexes (t test, P less than 0.001). The differences still averaged 0.5 g/dl (P less than 0.001) after exclusion of all those with abnormal hemoglobin by electrophoresis (Hgb S and C) and those whose mean corpuscular volume was more than 5% below the normal mean for age (to exclude iron deficiency or thalassemia minor). The data strengthen the impression that blacks normally have a concentration of hemoglobin averaging about 0.5 g/dl less than in whites. If this is the case, about 10% of normal blacks will be mistakenly designated anemic, if the same norms are applied.", "title": "Hemoglobin concentration in white, black, and Oriental children: is there a need for separate criteria in screening for anemia?" }, { "docid": "752423", "text": "BACKGROUND A reduction in compliance of the large-sized cardiothoracic (central) arteries is an independent risk factor for the development of cardiovascular disease with advancing age. \n METHODS AND RESULTS We determined the role of habitual exercise on the age-related decrease in central arterial compliance by using both cross-sectional and interventional approaches. First, we studied 151 healthy men aged 18 to 77 years: 54 were sedentary, 45 were recreationally active, and 53 were endurance exercise-trained. Central arterial compliance (simultaneous B-mode ultrasound and arterial applanation tonometry on the common carotid artery) was lower (P:<0.05) in middle-aged and older men than in young men in all 3 groups. There were no significant differences between sedentary and recreationally active men at any age. However, arterial compliance in the endurance-trained middle-aged and older men was 20% to 35% higher than in the 2 less active groups (P:<0.01). As such, age-related differences in central arterial compliance were smaller in the endurance-trained men than in the sedentary and recreationally active men. Second, we studied 20 middle-aged and older (53+/-2 years) sedentary healthy men before and after a 3-month aerobic exercise intervention (primarily walking). Regular exercise increased central arterial compliance (P:<0.01) to levels similar to those of the middle-aged and older endurance-trained men. These effects were independent of changes in body mass, adiposity, arterial blood pressure, or maximal oxygen consumption. \n CONCLUSIONS Regular aerobic-endurance exercise attenuates age-related reductions in central arterial compliance and restores levels in previously sedentary healthy middle-aged and older men. This may be one mechanism by which habitual exercise lowers the risk of cardiovascular disease in this population.", "title": "Aging, habitual exercise, and dynamic arterial compliance." }, { "docid": "18256197", "text": "BACKGROUND AND PURPOSE The level of total homocysteine (tHcy) that confers a risk of ischemic stroke is unsettled, and no prospective cohort studies have included sufficient elderly minority subjects. We investigated the association between mild to moderate fasting tHcy level and the incidence of ischemic stroke, myocardial infarction, and vascular death in a multiethnic prospective study. \n METHODS A population-based cohort was followed for vascular events (stroke, myocardial infarction, and vascular death). Baseline values of tHcy and methylmalonic acid were measured among 2939 subjects (mean age, 69+/-10; 61% women, 53% Hispanics, 24% blacks, and 20% whites). Cox proportional models were used to calculate hazard ratios (HRs) and 95% CIs in tHcy categories after adjusting for age, race, education, renal insufficiency, B12 deficiency, and other risk factors. \n RESULTS The adjusted HR for a tHcy level > or =15 micromol/L compared with <10 micromol/L was greatest for vascular death (HR=6.04; 95% CI, 3.44 to 10.60), followed by combined vascular events (HR=2.27; 95% CI, 1.51 to 3.43), ischemic stroke (HR=2.01; 95% CI, 1.00 to 4.05), and nonvascular death (HR=2.02; 95% CI, 1.31 to 3.14). Mild to moderate elevations of tHcy of 10 to 15 micromol/L were not significantly predictive of ischemic stroke, but increased the risk of vascular death (2.27; 95% CI, 1.44 to 3.60) and combined vascular events (1.42; 95% CI, 1.06 to 1.88). The effect of tHcy was stronger among whites and Hispanics, but not a significant risk factor for blacks. \n CONCLUSIONS Total Hcy elevations above 15 micromol/L are an independent risk factor for ischemic stroke, whereas mild elevations of tHcy of 10 to 15 micromol/L are less predictive. The vascular effects of tHcy are greatest among whites and Hispanics, and less among blacks.", "title": "Homocysteine and the risk of ischemic stroke in a triethnic cohort: the NOrthern MAnhattan Study." }, { "docid": "2820454", "text": "BACKGROUND Pulmonary hypertension (PH) is associated with restricted physical capacity, limited quality of life, and a poor prognosis because of right heart failure. The present study is the first prospective randomized study to evaluate the effects of exercise and respiratory training in patients with severe symptomatic PH. \n METHODS AND RESULTS Thirty patients with PH (21 women; mean age, 50+/-13 years; mean pulmonary artery pressure, 50+/-15 mm Hg; mean World Health Organization [WHO] class, 2.9+/-0.5; pulmonary arterial hypertension, n=23; chronic thromboembolic PH, n=7) on stable disease-targeted medication were randomly assigned to a control (n=15) and a primary training (n=15) group. Medication remained unchanged during the study period. Primary end points were the changes from baseline to week 15 in the distance walked in 6 minutes and in scores of the Short Form Health Survey quality-of-life questionnaire. Changes in WHO functional class, Borg scale, and parameters of echocardiography and gas exchange also were assessed. At week 15, patients in the primary and secondary training groups had an improved 6-minute walking distance; the mean difference between the control and the primary training group was 111 m (95% confidence interval, 65 to 139 m; P<0.001). Exercise training was well tolerated and improved scores of quality of life, WHO functional class, peak oxygen consumption, oxygen consumption at the anaerobic threshold, and achieved workload. Systolic pulmonary artery pressure values at rest did not change significantly after 15 weeks of exercise and respiratory training (from 61+/-18 to 54+/-18 mm Hg) within the training group. \n CONCLUSIONS This study indicates that respiratory and physical training could be a promising adjunct to medical treatment in severe PH. The effects add to the beneficial results of modern medical treatment.", "title": "Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension." }, { "docid": "25157790", "text": "This study investigated the association between green tea consumption and leukemia. A total of 252 cases (90.3% response) and 637 controls (53.4% response) were enrolled. Controls were matched for cases on age and gender. Information was collected on participants’ living habits, including tea consumption. Green tea was used as a standard to estimate the total amount of individual catechin consumption. We stratified individual consumption of catechins into four levels. Conditional logistic regression models were fit to subjects aged 0–15 and 16–29 years to evaluate separate associations between leukemia and catechin consumption. A significant inverse association between green tea consumption and leukemia risk was found in individuals aged 16–29 years, whereas no significant association was found in the younger age groups. For the older group with higher amounts of tea consumption (>550 units of catechins), the adjusted odds ratio (OR) compared with the group without tea consumption was 0.47 [95% confidence interval (CI) = 0.23–0.97]. After we adjusted for smoking status and medical irradiation exposure, the overall OR for all participants was 0.49 (95% CI = 0.27–0.91), indicating an inverse relation between large amounts of catechins and leukemia. Drinking sufficient amounts of tea, especially green tea, which contains more catechins than oolong tea and black tea, may reduce the risk of leukemia.", "title": "A population-based, case–control study of green tea consumption and leukemia risk in southwestern Taiwan" }, { "docid": "6078882", "text": "It has been demonstrated for some cancers that the frequency of somatic oncogenic mutations may vary in ancestral populations. To determine whether key driver alterations might occur at different frequencies in colorectal cancer, we applied a high-throughput genotyping platform (OncoMap) to query 385 mutations across 33 known cancer genes in colorectal cancer DNA from 83 Asian, 149 Black and 195 White patients. We found that Asian patients had fewer canonical oncogenic mutations in the genes tested (60% vs Black 79% (P = 0.011) and White 77% (P = 0.015)), and that BRAF mutations occurred at a higher frequency in White patients (17% vs Asian 4% (P = 0.004) and Black 7% (P = 0.014)). These results suggest that the use of genomic approaches to elucidate the different ancestral determinants harbored by patient populations may help to more precisely and effectively treat colorectal cancer.", "title": "Colorectal Cancers from Distinct Ancestral Populations Show Variations in BRAF Mutation Frequency" }, { "docid": "31890716", "text": "Resistin, a recently discovered proinflammatory cytokine, has been variably associated with insulin resistance, inflammation, and renal dysfunction. We investigated the association of plasma resistin with estimated glomerular filtration rate and albuminuria in 1575 hypertensive adults without known coronary heart disease or stroke (857 blacks and 718 non-Hispanic whites). Resistin was measured by a solid phase sandwich immunoassay, estimated glomerular filtration rate was estimated from serum creatinine, and albuminuria was expressed as urine albumin:creatinine ratio. After adjustment for coronary heart disease risk factors (age, sex, body mass index, smoking history, systolic blood pressure, diabetes, and total and high-density lipoprotein cholesterol) and use of renin-angiotensin blockers and statins, higher plasma resistin levels were associated with lower estimated glomerular filtration rate in both ethnic groups (each P<0.0001); the association remained significant after further adjustment for a marker of insulin resistance (homeostasis model assessment for insulin resistance) and a marker of inflammation (plasma C-reactive protein) and was seen in subjects with and without diabetes (each P<0.0001) in both ethnic groups. Higher plasma resistin levels were associated with a higher urine albumin:creatinine ratio in black subjects with diabetes (P<0.0001) and non-Hispanic white subjects with diabetes (P=0.032), independent of coronary heart disease risk factors, hypertension medication use, and statin use; the association remained significant after additional adjustment for homeostasis model assessment for insulin resistance and C-reactive protein. In adults with hypertension, higher circulating resistin levels were associated with a lower estimated glomerular filtration rate and with increased urine albumin:creatinine ratio in the presence of concomitant diabetes. This association was independent of coronary heart disease risk factors and markers of insulin resistance and inflammation.", "title": "Association of plasma resistin with glomerular filtration rate and albuminuria in hypertensive adults." }, { "docid": "2605032", "text": "We investigated if whether intrauterine protein restriction in combination with overfeeding during lactation would cause adult-onset obesity and metabolic disorders. After birth, litters from dams fed with control (17% protein) and low protein (6% protein) diets were adjusted to a size of four (CO and LO groups, respectively) or eight (CC and LC groups, respectively) pups. All of the offspring were fed a diet containing 12% protein from the time of weaning until they were 90 d old. Compared to the CC and LC groups, the CO and LO groups had higher relative and absolute food intakes, oxygen consumption and carbon dioxide production; lower brown adipose tissue weight and lipid content and greater weight gain and absolute and relative white adipose tissue weight and absolute lipid content. Compared with the CO and CC rats, the LC and LO rats exhibited higher relative food intake, brown adipose tissue weight and lipid content, reduced oxygen consumption, carbon dioxide production and spontaneous activity, increased relative retroperitoneal adipose tissue weight and unaltered absolute white adipose tissue weight and lipid content. The fasting serum glucose was similar among the groups. The area under the glucose curve was higher in the LO and CO rats than in the LC and CC rats. The basal insulinemia and homeostasis model assessment of insulin resistance (HOMA-IR) were lower in the LO group than in the other groups. The total area under the insulin curve for the LO rats was similar to the CC rats, and both were lower than the CO and LC rats. Kitt was higher in the LO, LC and CO groups than in the CC group. Thus, intrauterine protein restriction followed by overfeeding during lactation did not induce obesity, but produced glucose intolerance by impairing pancreatic function in adulthood.", "title": "Intrauterine protein restriction combined with early postnatal overfeeding was not associated with adult-onset obesity but produced glucose intolerance by pancreatic dysfunction" }, { "docid": "1568684", "text": "The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans.", "title": "The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity." }, { "docid": "25135304", "text": "The purpose of this study was to examine the relation of leptin to metabolic and dietary factors in college-age adults. Young adult women and men (n = 32) were recruited and underwent testing for measurement of body mass index, body composition, peak oxygen consumption (VO2peak), dietary intake, and plasma levels of leptin and insulin. Ln leptin was significantly greater for women than for men (2.1 versus 1.2 ng/mL, respectively). This difference remained significant even after adjusting ln leptin for fat mass and fat-free mass as covariates in separate analyses. VO2peak was higher for men than for women and this remained significant after adjustment for differences in fat-free mass and total body mass. Significant correlations were found between ln leptin and indicators of fat mass in women and men, with higher correlations for similar variables observed in men (r = 0.548, 0.674, and 0.732 for body mass index, percentage of body fat, and fat mass [kg] for women, respectively, and r = 0.740, 0.888, 0.858 for body mass index, percentage of body fat, and fat mass [kg] for men, respectively). Ln leptin showed a significant inverse relationship with VO2peak (r = -0.751) in men only. After adjusting ln leptin for body fat mass using partial correlations, ln leptin was not significantly associated with any of the measured variables. Alternatively, after normalization of ln leptin using fat mass as the divisor, a less adequate statistical analysis method, men showed statistical significant correlations between ln leptin and dietary intake and VO2peak. Although plasma leptin values were higher in women, stronger associations were evident for men than for women between leptin and metabolic and dietary factors.", "title": "Relation of plasma leptin concentrations to sex, body fat, dietary intake, and peak oxygen uptake in young adult women and men." } ]
946
Physical activity level is associated with the difference in maximal oxygen consumption between black and white youth.
[ { "docid": "8428935", "text": "CONTEXT Physical inactivity contributes to weight gain in adults, but whether this relationship is true for children of different ethnic groups is not well established. \n OBJECTIVE To assess participation in vigorous activity and television watching habits and their relationship to body weight and fatness in US children. \n DESIGN Nationally representative cross-sectional survey with an in-person interview and medical examination. \n SETTING AND PARTICIPANTS Between 1988 and 1994, 4063 children aged 8 through 16 years were examined as part of the National Health and Nutrition Examination Survey III. Mexican Americans and non-Hispanic blacks were oversampled to produce reliable estimates for these groups. \n MAIN OUTCOME MEASURES Episodes of weekly vigorous activity and daily hours of television watched, and their relationship to body mass index and body fatness. \n RESULTS Eighty percent of US children reported performing 3 or more bouts of vigorous activity each week. This rate was lower in non-Hispanic black and Mexican American girls (69% and 73%, respectively). Twenty percent of US children participated in 2 or fewer bouts of vigorous activity perweek, and the rate was higher in girls (26%) than in boys (17%). Overall, 26% of US children watched 4 or more hours of television per day and 67% watched at least 2 hours per day. Non-Hispanic black children had the highest rates of watching 4 or more hours of television per day (42%). Boys and girls who watch 4 or more hours of television each day had greater body fat (P<.001) and had a greater body mass index (P<.001) than those who watched less than 2 hours per day. \n CONCLUSIONS Many US children watch a great deal of television and are inadequately vigorously active. Vigorous activity levels are lowest among girls, non-Hispanic blacks, and Mexican Americans. Intervention strategies to promote lifelong physical activity among US children are needed to stem the adverse health consequences of inactivity.", "title": "Relationship of physical activity and television watching with body weight and level of fatness among children: results from the Third National Health and Nutrition Examination Survey." }, { "docid": "26112696", "text": "The purpose of this study was to examine differences in resting, submaximal, and maximal (VO2max) oxygen consumption (VO2) in African-American (n = 44) and Caucasian (n = 31) prepubertal children aged 5-10 yr. Resting VO2 was measured via indirect calorimetry in the fasted state. Submaximal VO2 and VO2max were determined during an all out, progressive treadmill exercise test appropriate for children. Dual-energy X-ray absorptiometry was used to determine total fat mass (FM), soft lean tissue mass (LTM), and leg soft LTM. Doubly labeled water was used to determine total energy expenditure (TEE) and activity energy expenditure (AEE). A significant effect of ethnicity (P < 0.01) was found for VO2max but not resting or submaximal VO2, with African-American children having absolute VO2max approximately 15% lower than Caucasian children (1.21 +/- 0.032 vs. 1.43 +/- 0.031 l/min, respectively). The lower VO2max persisted in African-American children after adjustment for soft LTM (1.23 +/- 0.025 vs. 1.39 +/- 0.031 l/min; P < 0.01), leg soft LTM (1.20 +/- 0.031 vs. 1.43 +/- 0.042 l/min; P < 0.01), and soft LTM and FM (1.23 +/- 0.025 vs. 1.39 +/- 0.031 l/min; P < 0.01). The lower VO2max persisted also after adjustment for TEE (1.20 +/- 0.02 vs. 1.38 +/- 0.0028 l/min P < 0.001) and AEE (1.20 +/- 0.024 vs. 1.38 +/- 0.028 l/min; P < 0.001). In conclusion, our data indicate that African-American and Caucasian children have similar rates of VO2 at rest and during submaximal exercise, but VO2max is approximately 15% lower in African-American children, independent of soft LTM, FM, leg LTM, TEE, and AEE.", "title": "Maximal aerobic capacity in African-American and Caucasian prepubertal children." }, { "docid": "4463588", "text": "BACKGROUND Little is known about how the intensity of exercise influences cardiovascular fitness and body composition, especially in obese adolescents. \n OBJECTIVE Our goal was to determine the effects of physical training intensity on the cardiovascular fitness, percentage of body fat (%BF), and visceral adipose tissue (VAT) of obese adolescents. \n DESIGN Obese 13-16-y-olds (n = 80) were assigned to 1) biweekly lifestyle education (LSE), 2) LSE + moderate-intensity physical training, or 3) LSE + high-intensity physical training. The intervention lasted 8 mo. Physical training was offered 5 d/wk, and the target energy expenditure for all subjects in physical training groups was 1047 kJ (250 kcal)/session. Cardiovascular fitness was measured with a multistage treadmill test, %BF with dual-energy X-ray absorptiometry, and VAT with magnetic resonance imaging. \n RESULTS The increase in cardiovascular fitness in the high-intensity physical training group, but not in the moderate-intensity group, was significantly greater than that in the LSE alone group (P = 0.009); no other comparisons of the 3 groups were significant. Compared with the LSE alone group, a group composed of subjects in both physical training groups combined who attended training sessions >or=2 d/wk showed favorable changes in cardiovascular fitness (P < 0.001), %BF (P = 0.001), and VAT (P = 0.029). We found no evidence that the high-intensity physical training was more effective than the moderate-intensity physical training in enhancing body composition. \n CONCLUSIONS The cardiovascular fitness of obese adolescents was significantly improved by physical training, especially high-intensity physical training. The physical training also reduced both visceral and total-body adiposity, but there was no clear effect of the intensity of physical training.", "title": "Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents." }, { "docid": "13083189", "text": "OBJECTIVES Despite recognition of the important influence of environmental determinants on physical activity patterns, minimal empirical research has been done to assess the impact of environmental/contextual determinants of physical activity. This article aims to investigate environmental and sociodemographic determinants of physical activity and inactivity patterns among subpopulations of US adolescents. We define environmental determinants as modifiable factors in the physical environment that impose a direct influence on the opportunity to engage in physical activity. The present research examines environmental and sociodemographic determinants of physical activity and inactivity with the implication that these findings can point toward societal-level intervention strategies for increasing physical activity and decreasing inactivity among adolescents. STUDY DESIGN AND METHODOLOGY The study population consists of nationally representative data from the 1996 National Longitudinal Study of Adolescent Health on 17 766 US adolescents enrolled in US middle and high schools (including 3933 non-Hispanic blacks, 3148 Hispanics, and 1337 Asians). Hours/week of inactivity (TV/video viewing and video/computer games) and times/week of moderate to vigorous physical activity were collected by questionnaire. Outcome variables were moderate to vigorous physical activity and inactivity, which were broken into categories (physical activity: 0-2 times/week, 3-4 times/week, and >/=5 times/week; inactivity: 0-10 hours/week, 11-24 hours/week, and >/=25 hours/week). Sociodemographic and environmental correlates of physical activity and inactivity were used as exposure and control variables and included sex, age, urban residence, participation in school physical education program, use of community recreation center, total reported incidents of serious crime in neighborhood, socioeconomic status, ethnicity, generation of residence in the United States, presence of mother/father in household, pregnancy status, work status, in-school status, region, and month of interview. Logistic regression models of high versus low and medium physical activity and inactivity were used to investigate sex and ethnic interactions in relation to environmental and sociodemographic factors to examine evidence for the potential impact of physical education and recreation programs and sociodemographic factors on physical activity and inactivity patterns. \n RESULTS Moderate to vigorous physical activity was lower and inactivity higher for non-Hispanic black and Hispanic adolescents. Participation in school physical education programs was considerably low for these adolescents and decreased with age. Participation in daily school physical education (PE) program classes (adjusted odds ratio [AOR]: 2.21; confidence interval [CI]: 1.82-2.68) and use of a community recreation center (AOR: 1.75; CI: 1.56-1.96) were associated with an increased likelihood of engaging in high level moderate to vigorous physical activity. Maternal education was inversely associated with high inactivity patterns; for example, having a mother with a graduate or professional degree was associated with an AOR of.61 (CI:.48-.76) for high inactivity. High family income was associated with increased moderate to vigorous physical activity (AOR: 1.43; CI: 1.22-1.67) and decreased inactivity (AOR:.70; CI:.59-.82). High neighborhood serious crime level was associated with a decreased likelihood of falling in the highest category of moderate to vigorous physical activity (AOR:.77; CI:.66-.91). \n CONCLUSIONS These results show important associations between modifiable environmental factors, such as participation in school PE and community recreation programs, with activity patterns of adolescents. Despite the marked and significant impact of participation in school PE programs on physical activity patterns of US adolescents, few adolescents participated in such school PE programs; only 21.3% of all adolescents", "title": "Determinants of adolescent physical activity and inactivity patterns." } ]
[ { "docid": "18537148", "text": "The purpose of this investigation was to determine whether maximal oxygen consumption (VO2max) differed between two selected groups of black and white children and whether a difference existed to determine whether it was related to hematologic profiles, body composition, and/or physical activity/inactivity level. Forty-five prepubertal and 42 pubertal, clinically normal black and white children participated. Dual-energy x-ray absorptiometry was used to determine body composition. A computed tomography scan of the abdomen was used to determine visceral adipose tissue and s.c. adipose tissue. Daily physical activity/inactivity was assessed by questionnaire. Black prepubertal and pubertal children had lower VO2max values when compared with white children (28.8 ± 7.8 versus 35.0 ± 6.5 mL · kg−1 · min−1, p < 0.01; 33.7 ± 6.4 versus 40.4 ± 10.2 mL · kg−1 · min−1, p < 0.05; respectively). Black prepubertal and pubertal children had lower Hb concentrations ([Hb]) and hematocrits than white children (prepubertal: 12.1 ± 0.5 versus 12.8 ± 0.9 g/dL, p < 0.001; 35.6 ± 1.4 versus 37.4 ± 2.3%, p < 0.01, respectively; pubertal: 13.0 ± 0.9 versus 13.6 ± 0.7 g/dL, p < 0.05; 37.7 ± 2.5 versus 39.5 ± 2.1%, p < 0.05, respectively). In conclusion, these findings indicate that black prepubertal and pubertal children had lower VO2max when compared with their white peers matched for age, pubertal stage, and body mass index. This difference in VO2max could be attributed at least in part to comparatively lower [Hb] and more sedentary lifestyle in the black children. Further investigations should study Hb flow rate (a function of [Hb] × maximal cardiac output) in black and white children as it relates to VO2max.", "title": "Comparison of Maximal Oxygen Consumption Between Black and White Prepubertal and Pubertal Children" }, { "docid": "13230773", "text": "CONTEXT Population surveys indicate that physical activity levels are low in the United States. One consequence of inactivity, low cardiorespiratory fitness, is an established risk factor for cardiovascular disease (CVD) morbidity and mortality, but the prevalence of cardiorespiratory fitness has not been quantified in representative US population samples. \n OBJECTIVES To describe the prevalence of low fitness in the US population aged 12 through 49 years and to relate low fitness to CVD risk factors in this population. \n DESIGN, SETTING, AND PARTICIPANTS Inception cohort study using data from the cross-sectional nationally representative National Health and Nutrition Examination Survey 1999-2002. Participants were adolescents (aged 12-19 years; n = 3110) and adults (aged 20-49 years; n = 2205) free from previously diagnosed CVD who underwent submaximal graded exercise treadmill testing to achieve at least 75% to 90% of their age-predicted maximum heart rate. Maximal oxygen consumption (VO2max) was estimated by measuring the heart rate response to reference levels of submaximal work. \n MAIN OUTCOME MEASURES Low fitness defined using percentile cut points of estimated VO2max from existing external referent populations; anthropometric and other CVD risk factors measured according to standard methods. \n RESULTS Low fitness was identified in 33.6% of adolescents (approximately 7.5 million US adolescents) and 13.9% of adults (approximately 8.5 million US adults); the prevalence was similar in adolescent females (34.4%) and males (32.9%) (P = .40) but was higher in adult females (16.2%) than in males (11.8%) (P = .03). Non-Hispanic blacks and Mexican Americans were less fit than non-Hispanic whites. In all age-sex groups, body mass index and waist circumference were inversely associated with fitness; age- and race-adjusted odds ratios of overweight or obesity (body mass index > or =25) ranged from 2.1 to 3.7 (P<.01 for all), comparing persons with low fitness with those with moderate or high fitness. Total cholesterol levels and systolic blood pressure were higher and levels of high-density lipoprotein cholesterol were lower among participants with low vs high fitness. \n CONCLUSION Low fitness in adolescents and adults is common in the US population and is associated with an increased prevalence of CVD risk factors.", "title": "Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults." }, { "docid": "11201004", "text": "Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.", "title": "Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity." }, { "docid": "52865789", "text": "OBJECTIVE IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues. \n METHODS Control and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells. \n RESULTS Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues. \n CONCLUSIONS Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome.", "title": "Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues" }, { "docid": "29460384", "text": "OBJECTIVE To describe the sources of protein intake in a sample of the US adult population and among subgroups defined by race-ethnicity, age, and gender. \n DESIGN The Third National Health and Nutrition Examination Survey, 1988-1991, is a stratified random sample of the total civilian noninstitutionalized population, drawn from the 50 United States and the District of Columbia. For all foods consumed by the participants, based on a 24-hour dietary recall, protein sources and the contribution of each protein type to the total protein intake were determined. SUBJECTS Adult participants in the third National Health and Nutrition Examination Survey (n = 7,924). STATISTICAL ANALYSES Weighted total, age-specific, and age-adjusted mean protein intakes were calculated using SAS and WesVarPC. Statistical differences were determined by 2-tailed t tests. \n RESULTS The main protein source in the American diet is animal protein (69%). Meat, fish, and poultry protein combined contributed the most to animal protein (42%), followed by dairy protein (20%). Grains (18%) contributed the most to plant protein consumption. Women consumed a lower percentage of beef (14%) and pork (7%) protein than did men (18% and 9%, respectively). Women also consumed a higher percentage of poultry (13%), dairy (22%), and fruit and vegetable (11%) protein than did men (11%, 19%, and 9%, respectively). Blacks reported eating a higher percentage of poultry (18%) and pork (11%) protein and a lower percent of dairy protein (14%) than did whites (12%, 7%, and 22%, respectively) and Mexican-Americans (11%, 8%, and 17%, respectively). Mexican-Americans consumed a higher percentage of legume (7%) and egg (7%) protein than did whites (4% and 4%, respectively) and blacks (4% and 5%, respectively). Whites consumed a higher percentage of grain protein (19%) than did blacks (16%) and Mexican-Americans (15%). \n CONCLUSIONS These results show that, although the percentage of total energy from protein may be similar among race-ethnicities and between men and women, their sources of protein are different. These differences should be taken into account when providing nutrition education for specific populations.", "title": "Estimates of animal and plant protein intake in US adults: results from the Third National Health and Nutrition Examination Survey, 1988-1991." }, { "docid": "46277811", "text": "Background: The relationship of LPA single nucleotide polymorphisms (SNPs), apolipoprotein(a) isoforms, and lipoprotein(a) [Lp(a)] levels with major adverse cardiovascular events (MACE) in different ethnic groups is not well known. Methods: LPA SNPs, apolipoprotein(a) isoforms, Lp(a), and oxidized phospholipids on apolipoprotein B-100 (OxPL-apoB) levels were measured in 1792 black, 1030 white, and 597 Hispanic subjects enrolled in the Dallas Heart Study. Their interdependent relationships and prospective association with MACE after median 9.5-year follow-up were determined. Results: LPA SNP rs3798220 was most prevalent in Hispanics (42.38%), rs10455872 in whites (14.27%), and rs9457951 in blacks (32.92%). The correlation of each of these SNPs with the major apolipoprotein(a) isoform size was highly variable and in different directions among ethnic groups. In the entire cohort, Cox regression analysis with multivariable adjustment revealed that quartiles 4 of Lp(a) and OxPL-apoB were associated with hazard ratios (95% confidence interval) for time to MACE of 2.35 (1.50–3.69, P<0.001) and 1.89 (1.26–2.84, P=0.003), respectively, versus quartile 1. Addition of the major apolipoprotein(a) isoform and the 3 LPA SNPs to these models attenuated the risk, but significance was maintained for both Lp(a) and OxPL-apoB. Evaluating time to MACE in specific ethnic groups, Lp(a) was a positive predictor and the size of the major apolipoprotein(a) isoform was an inverse predictor in blacks, the size of the major apolipoprotein(a) isoform was an inverse predictor in whites, and OxPL-apoB was a positive predictor in Hispanics. Conclusions: The prevalence and association of LPA SNPs with size of apolipoprotein(a) isoforms, Lp(a), and OxPL-apoB levels are highly variable and ethnicity-specific. The relationship to MACE is best explained by elevated plasma Lp(a) or OxPL-apoB levels, despite significant ethnic differences in LPA genetic markers.", "title": "LPA Gene, Ethnicity, and Cardiovascular Events" }, { "docid": "12224536", "text": "BACKGROUND Reducing sugar-sweetened beverage (SSB) consumption is a recommended strategy to promote optimal health. \n OBJECTIVE The objective was to describe trends in SSB consumption among youth and adults in the United States. \n DESIGN We analyzed energy intake from SSBs among 22,367 youth aged 2-19 y and 29,133 adults aged ≥20 y who participated in a 24-h dietary recall as part of NHANES, a nationally representative sample of the US population with a cross-sectional design, between 1999 and 2010. SSBs included soda, fruit drinks, sports and energy drinks, sweetened coffee and tea, and other sweetened beverages. Patterns of SSB consumption, including location of consumption and meal occasion associated with consumption, were also examined. \n RESULTS In 2009-2010, youth consumed a mean (±SE) of 155 ± 7 kcal/d from SSBs, and adults consumed an age-adjusted mean (±SE) of 151 ± 5 kcal/d from SSBs--a decrease from 1999 to 2000 of 68 kcal/d and 45 kcal/d, respectively (P-trend < 0.001 for each). In 2009-2010, SSBs contributed 8.0% ± 0.4% and 6.9% ± 0.2% of daily energy intake among youth and adults, respectively, which reflected a decrease compared with 1999-2000 (P-trend < 0.001 for both). Decreases in SSB consumption, both in the home and away from home and also with both meals and snacks, occurred over the 12-y study duration (P-trend < 0.01 for each). \n CONCLUSION A decrease in SSB consumption among youth and adults in the United States was observed between 1999 and 2010.", "title": "Trends in sugar-sweetened beverage consumption among youth and adults in the United States: 1999-2010." }, { "docid": "4449524", "text": "The concentration of hemoglobin in blacks was found to be 0.5 to 1.0 g/dl lower than that of income-matched whites in several large surveys. This difference could be a racial characteristic of blacks, or it might be due to a higher frequency of genetic traits such as thalassemia minor and hemoglobinopathies, or to environmental factors such as iron deficiency. To help in making this distinction, we analyzed the data from multiphasic examinations (1973 to 1975) on 1718 white, 741 black, and 315 Oriental healthy, nonindigent children between 5 and 14 years of age. In the entire population, the median hemoglobin concentration averaged 0.5 g/dl lower in blacks than in whites of both sexes (t test, P less than 0.001). The differences still averaged 0.5 g/dl (P less than 0.001) after exclusion of all those with abnormal hemoglobin by electrophoresis (Hgb S and C) and those whose mean corpuscular volume was more than 5% below the normal mean for age (to exclude iron deficiency or thalassemia minor). The data strengthen the impression that blacks normally have a concentration of hemoglobin averaging about 0.5 g/dl less than in whites. If this is the case, about 10% of normal blacks will be mistakenly designated anemic, if the same norms are applied.", "title": "Hemoglobin concentration in white, black, and Oriental children: is there a need for separate criteria in screening for anemia?" }, { "docid": "752423", "text": "BACKGROUND A reduction in compliance of the large-sized cardiothoracic (central) arteries is an independent risk factor for the development of cardiovascular disease with advancing age. \n METHODS AND RESULTS We determined the role of habitual exercise on the age-related decrease in central arterial compliance by using both cross-sectional and interventional approaches. First, we studied 151 healthy men aged 18 to 77 years: 54 were sedentary, 45 were recreationally active, and 53 were endurance exercise-trained. Central arterial compliance (simultaneous B-mode ultrasound and arterial applanation tonometry on the common carotid artery) was lower (P:<0.05) in middle-aged and older men than in young men in all 3 groups. There were no significant differences between sedentary and recreationally active men at any age. However, arterial compliance in the endurance-trained middle-aged and older men was 20% to 35% higher than in the 2 less active groups (P:<0.01). As such, age-related differences in central arterial compliance were smaller in the endurance-trained men than in the sedentary and recreationally active men. Second, we studied 20 middle-aged and older (53+/-2 years) sedentary healthy men before and after a 3-month aerobic exercise intervention (primarily walking). Regular exercise increased central arterial compliance (P:<0.01) to levels similar to those of the middle-aged and older endurance-trained men. These effects were independent of changes in body mass, adiposity, arterial blood pressure, or maximal oxygen consumption. \n CONCLUSIONS Regular aerobic-endurance exercise attenuates age-related reductions in central arterial compliance and restores levels in previously sedentary healthy middle-aged and older men. This may be one mechanism by which habitual exercise lowers the risk of cardiovascular disease in this population.", "title": "Aging, habitual exercise, and dynamic arterial compliance." }, { "docid": "18256197", "text": "BACKGROUND AND PURPOSE The level of total homocysteine (tHcy) that confers a risk of ischemic stroke is unsettled, and no prospective cohort studies have included sufficient elderly minority subjects. We investigated the association between mild to moderate fasting tHcy level and the incidence of ischemic stroke, myocardial infarction, and vascular death in a multiethnic prospective study. \n METHODS A population-based cohort was followed for vascular events (stroke, myocardial infarction, and vascular death). Baseline values of tHcy and methylmalonic acid were measured among 2939 subjects (mean age, 69+/-10; 61% women, 53% Hispanics, 24% blacks, and 20% whites). Cox proportional models were used to calculate hazard ratios (HRs) and 95% CIs in tHcy categories after adjusting for age, race, education, renal insufficiency, B12 deficiency, and other risk factors. \n RESULTS The adjusted HR for a tHcy level > or =15 micromol/L compared with <10 micromol/L was greatest for vascular death (HR=6.04; 95% CI, 3.44 to 10.60), followed by combined vascular events (HR=2.27; 95% CI, 1.51 to 3.43), ischemic stroke (HR=2.01; 95% CI, 1.00 to 4.05), and nonvascular death (HR=2.02; 95% CI, 1.31 to 3.14). Mild to moderate elevations of tHcy of 10 to 15 micromol/L were not significantly predictive of ischemic stroke, but increased the risk of vascular death (2.27; 95% CI, 1.44 to 3.60) and combined vascular events (1.42; 95% CI, 1.06 to 1.88). The effect of tHcy was stronger among whites and Hispanics, but not a significant risk factor for blacks. \n CONCLUSIONS Total Hcy elevations above 15 micromol/L are an independent risk factor for ischemic stroke, whereas mild elevations of tHcy of 10 to 15 micromol/L are less predictive. The vascular effects of tHcy are greatest among whites and Hispanics, and less among blacks.", "title": "Homocysteine and the risk of ischemic stroke in a triethnic cohort: the NOrthern MAnhattan Study." }, { "docid": "2820454", "text": "BACKGROUND Pulmonary hypertension (PH) is associated with restricted physical capacity, limited quality of life, and a poor prognosis because of right heart failure. The present study is the first prospective randomized study to evaluate the effects of exercise and respiratory training in patients with severe symptomatic PH. \n METHODS AND RESULTS Thirty patients with PH (21 women; mean age, 50+/-13 years; mean pulmonary artery pressure, 50+/-15 mm Hg; mean World Health Organization [WHO] class, 2.9+/-0.5; pulmonary arterial hypertension, n=23; chronic thromboembolic PH, n=7) on stable disease-targeted medication were randomly assigned to a control (n=15) and a primary training (n=15) group. Medication remained unchanged during the study period. Primary end points were the changes from baseline to week 15 in the distance walked in 6 minutes and in scores of the Short Form Health Survey quality-of-life questionnaire. Changes in WHO functional class, Borg scale, and parameters of echocardiography and gas exchange also were assessed. At week 15, patients in the primary and secondary training groups had an improved 6-minute walking distance; the mean difference between the control and the primary training group was 111 m (95% confidence interval, 65 to 139 m; P<0.001). Exercise training was well tolerated and improved scores of quality of life, WHO functional class, peak oxygen consumption, oxygen consumption at the anaerobic threshold, and achieved workload. Systolic pulmonary artery pressure values at rest did not change significantly after 15 weeks of exercise and respiratory training (from 61+/-18 to 54+/-18 mm Hg) within the training group. \n CONCLUSIONS This study indicates that respiratory and physical training could be a promising adjunct to medical treatment in severe PH. The effects add to the beneficial results of modern medical treatment.", "title": "Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension." }, { "docid": "25157790", "text": "This study investigated the association between green tea consumption and leukemia. A total of 252 cases (90.3% response) and 637 controls (53.4% response) were enrolled. Controls were matched for cases on age and gender. Information was collected on participants’ living habits, including tea consumption. Green tea was used as a standard to estimate the total amount of individual catechin consumption. We stratified individual consumption of catechins into four levels. Conditional logistic regression models were fit to subjects aged 0–15 and 16–29 years to evaluate separate associations between leukemia and catechin consumption. A significant inverse association between green tea consumption and leukemia risk was found in individuals aged 16–29 years, whereas no significant association was found in the younger age groups. For the older group with higher amounts of tea consumption (>550 units of catechins), the adjusted odds ratio (OR) compared with the group without tea consumption was 0.47 [95% confidence interval (CI) = 0.23–0.97]. After we adjusted for smoking status and medical irradiation exposure, the overall OR for all participants was 0.49 (95% CI = 0.27–0.91), indicating an inverse relation between large amounts of catechins and leukemia. Drinking sufficient amounts of tea, especially green tea, which contains more catechins than oolong tea and black tea, may reduce the risk of leukemia.", "title": "A population-based, case–control study of green tea consumption and leukemia risk in southwestern Taiwan" }, { "docid": "2605032", "text": "We investigated if whether intrauterine protein restriction in combination with overfeeding during lactation would cause adult-onset obesity and metabolic disorders. After birth, litters from dams fed with control (17% protein) and low protein (6% protein) diets were adjusted to a size of four (CO and LO groups, respectively) or eight (CC and LC groups, respectively) pups. All of the offspring were fed a diet containing 12% protein from the time of weaning until they were 90 d old. Compared to the CC and LC groups, the CO and LO groups had higher relative and absolute food intakes, oxygen consumption and carbon dioxide production; lower brown adipose tissue weight and lipid content and greater weight gain and absolute and relative white adipose tissue weight and absolute lipid content. Compared with the CO and CC rats, the LC and LO rats exhibited higher relative food intake, brown adipose tissue weight and lipid content, reduced oxygen consumption, carbon dioxide production and spontaneous activity, increased relative retroperitoneal adipose tissue weight and unaltered absolute white adipose tissue weight and lipid content. The fasting serum glucose was similar among the groups. The area under the glucose curve was higher in the LO and CO rats than in the LC and CC rats. The basal insulinemia and homeostasis model assessment of insulin resistance (HOMA-IR) were lower in the LO group than in the other groups. The total area under the insulin curve for the LO rats was similar to the CC rats, and both were lower than the CO and LC rats. Kitt was higher in the LO, LC and CO groups than in the CC group. Thus, intrauterine protein restriction followed by overfeeding during lactation did not induce obesity, but produced glucose intolerance by impairing pancreatic function in adulthood.", "title": "Intrauterine protein restriction combined with early postnatal overfeeding was not associated with adult-onset obesity but produced glucose intolerance by pancreatic dysfunction" }, { "docid": "6078882", "text": "It has been demonstrated for some cancers that the frequency of somatic oncogenic mutations may vary in ancestral populations. To determine whether key driver alterations might occur at different frequencies in colorectal cancer, we applied a high-throughput genotyping platform (OncoMap) to query 385 mutations across 33 known cancer genes in colorectal cancer DNA from 83 Asian, 149 Black and 195 White patients. We found that Asian patients had fewer canonical oncogenic mutations in the genes tested (60% vs Black 79% (P = 0.011) and White 77% (P = 0.015)), and that BRAF mutations occurred at a higher frequency in White patients (17% vs Asian 4% (P = 0.004) and Black 7% (P = 0.014)). These results suggest that the use of genomic approaches to elucidate the different ancestral determinants harbored by patient populations may help to more precisely and effectively treat colorectal cancer.", "title": "Colorectal Cancers from Distinct Ancestral Populations Show Variations in BRAF Mutation Frequency" }, { "docid": "31890716", "text": "Resistin, a recently discovered proinflammatory cytokine, has been variably associated with insulin resistance, inflammation, and renal dysfunction. We investigated the association of plasma resistin with estimated glomerular filtration rate and albuminuria in 1575 hypertensive adults without known coronary heart disease or stroke (857 blacks and 718 non-Hispanic whites). Resistin was measured by a solid phase sandwich immunoassay, estimated glomerular filtration rate was estimated from serum creatinine, and albuminuria was expressed as urine albumin:creatinine ratio. After adjustment for coronary heart disease risk factors (age, sex, body mass index, smoking history, systolic blood pressure, diabetes, and total and high-density lipoprotein cholesterol) and use of renin-angiotensin blockers and statins, higher plasma resistin levels were associated with lower estimated glomerular filtration rate in both ethnic groups (each P<0.0001); the association remained significant after further adjustment for a marker of insulin resistance (homeostasis model assessment for insulin resistance) and a marker of inflammation (plasma C-reactive protein) and was seen in subjects with and without diabetes (each P<0.0001) in both ethnic groups. Higher plasma resistin levels were associated with a higher urine albumin:creatinine ratio in black subjects with diabetes (P<0.0001) and non-Hispanic white subjects with diabetes (P=0.032), independent of coronary heart disease risk factors, hypertension medication use, and statin use; the association remained significant after additional adjustment for homeostasis model assessment for insulin resistance and C-reactive protein. In adults with hypertension, higher circulating resistin levels were associated with a lower estimated glomerular filtration rate and with increased urine albumin:creatinine ratio in the presence of concomitant diabetes. This association was independent of coronary heart disease risk factors and markers of insulin resistance and inflammation.", "title": "Association of plasma resistin with glomerular filtration rate and albuminuria in hypertensive adults." }, { "docid": "25135304", "text": "The purpose of this study was to examine the relation of leptin to metabolic and dietary factors in college-age adults. Young adult women and men (n = 32) were recruited and underwent testing for measurement of body mass index, body composition, peak oxygen consumption (VO2peak), dietary intake, and plasma levels of leptin and insulin. Ln leptin was significantly greater for women than for men (2.1 versus 1.2 ng/mL, respectively). This difference remained significant even after adjusting ln leptin for fat mass and fat-free mass as covariates in separate analyses. VO2peak was higher for men than for women and this remained significant after adjustment for differences in fat-free mass and total body mass. Significant correlations were found between ln leptin and indicators of fat mass in women and men, with higher correlations for similar variables observed in men (r = 0.548, 0.674, and 0.732 for body mass index, percentage of body fat, and fat mass [kg] for women, respectively, and r = 0.740, 0.888, 0.858 for body mass index, percentage of body fat, and fat mass [kg] for men, respectively). Ln leptin showed a significant inverse relationship with VO2peak (r = -0.751) in men only. After adjusting ln leptin for body fat mass using partial correlations, ln leptin was not significantly associated with any of the measured variables. Alternatively, after normalization of ln leptin using fat mass as the divisor, a less adequate statistical analysis method, men showed statistical significant correlations between ln leptin and dietary intake and VO2peak. Although plasma leptin values were higher in women, stronger associations were evident for men than for women between leptin and metabolic and dietary factors.", "title": "Relation of plasma leptin concentrations to sex, body fat, dietary intake, and peak oxygen uptake in young adult women and men." }, { "docid": "22800314", "text": "Interleukin-15 (IL-15) is a cytokine produced in the normal brain that acts on its specific receptor IL-15Rα and co-receptors IL-2Rβ and IL-2Rγ in neuronal cells. The functions of the cerebral IL-15 system, however, are not yet clear. To test the hypothesis that IL-15Rα regulates metabolic activity and body temperature, we quantified the specific metabolic phenotype of IL-15Rα knockout mice. These normal-appearing mice were leaner with lower fat composition. During the entire circadian cycle, the knockout mice had a significantly higher acrophase in locomotor activity and heat dissipation. During the light phase, there was significantly greater food intake, oxygen consumption, and carbon dioxide production. The difference in the dark and light phases suggests that IL-15Rα participates in circadian rhythm regulation. The higher oxygen consumption in the light phase indicates adaptive thermogenesis in the knockout mice. The body temperature of the receptor knockout mice was significantly higher than the control in the light phase, and this was mainly caused by a large difference occurring between 0600 and 0900 h. In addition to the metabolic chamber studies and circadian rhythm analyses, qPCR of hypothalamic homogenates indicated higher mRNA expression of orexin and transient receptor potential vanilloid 4 cation channels. Consistent with a direct role of IL-15Rα in the hypothalamus, IL-15 treatment of the wild-type mice induced c-Fos expression in the preoptic area. We conclude that activation of hypothalamic neurons by IL-15 in mice contributes to thermoregulation and modifies the metabolic phenotype.", "title": "IL-15 Receptor Deletion Results in Circadian Changes of Locomotor and Metabolic Activity" } ]
949
Physical injury represses transgultaminase activity.
[ { "docid": "13578199", "text": "Human transglutaminase 2 (TG2), a member of a large family of enzymes that catalyze protein crosslinking, plays an important role in the extracellular matrix biology of many tissues and is implicated in the gluten-induced pathogenesis of celiac sprue. Although vertebrate transglutaminases have been studied extensively, thus far all structurally characterized members of this family have been crystallized in conformations with inaccessible active sites. We have trapped human TG2 in complex with an inhibitor that mimics inflammatory gluten peptide substrates and have solved, at 2-A resolution, its x-ray crystal structure. The inhibitor stabilizes TG2 in an extended conformation that is dramatically different from earlier transglutaminase structures. The active site is exposed, revealing that catalysis takes place in a tunnel, bridged by two tryptophan residues that separate acyl-donor from acyl-acceptor and stabilize the tetrahedral reaction intermediates. Site-directed mutagenesis was used to investigate the acyl-acceptor side of the tunnel, yielding mutants with a marked increase in preference for hydrolysis over transamidation. By providing the ability to visualize this activated conformer, our results create a foundation for understanding the catalytic as well as the non-catalytic roles of TG2 in biology, and for dissecting the process by which the autoantibody response to TG2 is induced in celiac sprue patients.", "title": "Transglutaminase 2 Undergoes a Large Conformational Change upon Activation " } ]
[ { "docid": "16905344", "text": "Injured axons of the adult CNS undergo lengthy retraction from the initial site of axotomy after spinal cord injury. Macrophage infiltration correlates spatiotemporally with this deleterious phenomenon, but the direct involvement of these inflammatory cells has not been demonstrated. In the present study, we examined the role of macrophages in axonal retraction within the dorsal columns after spinal cord injury in vivo and found that retraction occurred between days 2 and 28 after lesion and that the ends of injured axons were associated with ED-1+ cells. Clodronate liposome-mediated depletion of infiltrating macrophages resulted in a significant reduction in axonal retraction; however, we saw no evidence of regeneration. We used time-lapse imaging of adult dorsal root ganglion neurons in an in vitro model of the glial scar to examine macrophage-axon interactions and observed that adhesive contacts and considerable physical interplay between macrophages and dystrophic axons led to extensive axonal retraction. The induction of retraction was dependent on both the growth state of the axon and the activation state of the macrophage. Only dystrophic adult axons were susceptible to macrophage \"attack. \" Unlike intrinsically active cell line macrophages, both primary macrophages and microglia required activation to induce axonal retraction. Contact with astrocytes had no deleterious effect on adult dystrophic axons, suggesting that the induction of extensive retraction was specific to phagocytic cells. Our data are the first to indicate a direct role of activated macrophages in axonal retraction by physical cell-cell interactions with injured axons.", "title": "Another Barrier to Regeneration in the CNS: Activated Macrophages Induce Extensive Retraction of Dystrophic Axons through Direct Physical Interactions" }, { "docid": "41493639", "text": "Burns are one of the most devastating conditions encountered in medicine. The injury represents an assault on all aspects of the patient, from the physical to the psychological. It affects all ages, from babies to elderly people, and is a problem in both the developed and developing world. All of us have experienced the severe pain that even a small burn can bring. However the pain and distress caused by a large burn are not limited to the immediate event. The visible physical and the invisible psychological scars are long lasting and often lead to chronic disability. Burn injuries represent a diverse and varied challenge to medical and paramedical staff. Correct management requires a skilled multidisciplinary approach that addresses all the problems facing a burn patient. This series provides an overview of the most important aspects of burn injuries for hospital and non-hospital healthcare workers.​workers. Figure 1 Top: Child with 70% full thickness burns, which required resuscitation, intensive care support, and extensive debridement and skin grafting. Left: The same child one year later at a burns camp, having made a good recovery. A reasonable outcome is possible ...", "title": "ABC of burns. Introduction." }, { "docid": "13777706", "text": "Polycomb repressor complexes (PRCs) are important chromatin modifiers fundamentally implicated in pluripotency and cancer. Polycomb silencing in embryonic stem cells (ESCs) can be accompanied by active chromatin and primed RNA polymerase II (RNAPII), but the relationship between PRCs and RNAPII remains unclear genome-wide. We mapped PRC repression markers and four RNAPII states in ESCs using ChIP-seq, and found that PRC targets exhibit a range of RNAPII variants. First, developmental PRC targets are bound by unproductive RNAPII (S5p(+)S7p(-)S2p(-)) genome-wide. Sequential ChIP, Ring1B depletion, and genome-wide correlations show that PRCs and RNAPII-S5p physically bind to the same chromatin and functionally synergize. Second, we identify a cohort of genes marked by PRC and elongating RNAPII (S5p(+)S7p(+)S2p(+)); they produce mRNA and protein, and their expression increases upon PRC1 knockdown. We show that this group of PRC targets switches between active and PRC-repressed states within the ESC population, and that many have roles in metabolism.", "title": "Polycomb Associates Genome-wide with a Specific RNA Polymerase II Variant, and Regulates Metabolic Genes in ESCs" }, { "docid": "37204802", "text": "Jumonji domain-containing 6 (JMJD6) is a member of the Jumonji C domain-containing family of proteins. Compared to other members of the family, the cellular activity of JMJD6 is still not clearly defined and its biological function is still largely unexplored. Here we report that JMJD6 is physically associated with the tumor suppressor p53. We demonstrated that JMJD6 acts as an α-ketoglutarate- and Fe(II)-dependent lysyl hydroxylase to catalyze p53 hydroxylation. We found that p53 indeed exists as a hydroxylated protein in vivo and that the hydroxylation occurs mainly on lysine 382 of p53. We showed that JMJD6 antagonizes p53 acetylation, promotes the association of p53 with its negative regulator MDMX, and represses transcriptional activity of p53. Depletion of JMJD6 enhances p53 transcriptional activity, arrests cells in the G1 phase, promotes cell apoptosis, and sensitizes cells to DNA damaging agent-induced cell death. Importantly, knockdown of JMJD6 represses p53-dependent colon cell proliferation and tumorigenesis in vivo, and significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results reveal a novel posttranslational modification for p53 and support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention.", "title": "JMJD6 Promotes Colon Carcinogenesis through Negative Regulation of p53 by Hydroxylation" }, { "docid": "5172048", "text": "Exuberant fibroproliferation is a common complication after injury for reasons that are not well understood. One key component of wound repair that is often overlooked is mechanical force, which regulates cell-matrix interactions through intracellular focal adhesion components, including focal adhesion kinase (FAK). Here we report that FAK is activated after cutaneous injury and that this process is potentiated by mechanical loading. Fibroblast-specific FAK knockout mice have substantially less inflammation and fibrosis than control mice in a model of hypertrophic scar formation. We show that FAK acts through extracellular-related kinase (ERK) to mechanically trigger the secretion of monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), a potent chemokine that is linked to human fibrotic disorders. Similarly, MCP-1 knockout mice form minimal scars, indicating that inflammatory chemokine pathways are a major mechanism by which FAK mechanotransduction induces fibrosis. Small-molecule inhibition of FAK blocks these effects in human cells and reduces scar formation in vivo through attenuated MCP-1 signaling and inflammatory cell recruitment. These findings collectively indicate that physical force regulates fibrosis through inflammatory FAK–ERK–MCP-1 pathways and that molecular strategies targeting FAK can effectively uncouple mechanical force from pathologic scar formation.", "title": "Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling" }, { "docid": "8582337", "text": "IMPORTANCE Understanding the major health problems in the United States and how they are changing over time is critical for informing national health policy. \n OBJECTIVES To measure the burden of diseases, injuries, and leading risk factors in the United States from 1990 to 2010 and to compare these measurements with those of the 34 countries in the Organisation for Economic Co-operation and Development (OECD) countries. \n DESIGN We used the systematic analysis of descriptive epidemiology of 291 diseases and injuries, 1160 sequelae of these diseases and injuries, and 67 risk factors or clusters of risk factors from 1990 to 2010 for 187 countries developed for the Global Burden of Disease 2010 Study to describe the health status of the United States and to compare US health outcomes with those of 34 OECD countries. Years of life lost due to premature mortality (YLLs) were computed by multiplying the number of deaths at each age by a reference life expectancy at that age. Years lived with disability (YLDs) were calculated by multiplying prevalence (based on systematic reviews) by the disability weight (based on population-based surveys) for each sequela; disability in this study refers to any short- or long-term loss of health. Disability-adjusted life-years (DALYs) were estimated as the sum of YLDs and YLLs. Deaths and DALYs related to risk factors were based on systematic reviews and meta-analyses of exposure data and relative risks for risk-outcome pairs. Healthy life expectancy (HALE) was used to summarize overall population health, accounting for both length of life and levels of ill health experienced at different ages. \n RESULTS US life expectancy for both sexes combined increased from 75.2 years in 1990 to 78.2 years in 2010; during the same period, HALE increased from 65.8 years to 68.1 years. The diseases and injuries with the largest number of YLLs in 2010 were ischemic heart disease, lung cancer, stroke, chronic obstructive pulmonary disease, and road injury. Age-standardized YLL rates increased for Alzheimer disease, drug use disorders, chronic kidney disease, kidney cancer, and falls. The diseases with the largest number of YLDs in 2010 were low back pain, major depressive disorder, other musculoskeletal disorders, neck pain, and anxiety disorders. As the US population has aged, YLDs have comprised a larger share of DALYs than have YLLs. The leading risk factors related to DALYs were dietary risks, tobacco smoking, high body mass index, high blood pressure, high fasting plasma glucose, physical inactivity, and alcohol use. Among 34 OECD countries between 1990 and 2010, the US rank for the age-standardized death rate changed from 18th to 27th, for the age-standardized YLL rate from 23rd to 28th, for the age-standardized YLD rate from 5th to 6th, for life expectancy at birth from 20th to 27th, and for HALE from 14th to 26th. \n CONCLUSIONS AND RELEVANCE From 1990 to 2010, the United States made substantial progress in improving health. Life expectancy at birth and HALE increased, all-cause death rates at all ages decreased, and age-specific rates of years lived with disability remained stable. However, morbidity and chronic disability now account for nearly half of the US health burden, and improvements in population health in the United States have not kept pace with advances in population health in other wealthy nations.", "title": "The state of US health, 1990-2010: burden of diseases, injuries, and risk factors." }, { "docid": "13083189", "text": "OBJECTIVES Despite recognition of the important influence of environmental determinants on physical activity patterns, minimal empirical research has been done to assess the impact of environmental/contextual determinants of physical activity. This article aims to investigate environmental and sociodemographic determinants of physical activity and inactivity patterns among subpopulations of US adolescents. We define environmental determinants as modifiable factors in the physical environment that impose a direct influence on the opportunity to engage in physical activity. The present research examines environmental and sociodemographic determinants of physical activity and inactivity with the implication that these findings can point toward societal-level intervention strategies for increasing physical activity and decreasing inactivity among adolescents. STUDY DESIGN AND METHODOLOGY The study population consists of nationally representative data from the 1996 National Longitudinal Study of Adolescent Health on 17 766 US adolescents enrolled in US middle and high schools (including 3933 non-Hispanic blacks, 3148 Hispanics, and 1337 Asians). Hours/week of inactivity (TV/video viewing and video/computer games) and times/week of moderate to vigorous physical activity were collected by questionnaire. Outcome variables were moderate to vigorous physical activity and inactivity, which were broken into categories (physical activity: 0-2 times/week, 3-4 times/week, and >/=5 times/week; inactivity: 0-10 hours/week, 11-24 hours/week, and >/=25 hours/week). Sociodemographic and environmental correlates of physical activity and inactivity were used as exposure and control variables and included sex, age, urban residence, participation in school physical education program, use of community recreation center, total reported incidents of serious crime in neighborhood, socioeconomic status, ethnicity, generation of residence in the United States, presence of mother/father in household, pregnancy status, work status, in-school status, region, and month of interview. Logistic regression models of high versus low and medium physical activity and inactivity were used to investigate sex and ethnic interactions in relation to environmental and sociodemographic factors to examine evidence for the potential impact of physical education and recreation programs and sociodemographic factors on physical activity and inactivity patterns. \n RESULTS Moderate to vigorous physical activity was lower and inactivity higher for non-Hispanic black and Hispanic adolescents. Participation in school physical education programs was considerably low for these adolescents and decreased with age. Participation in daily school physical education (PE) program classes (adjusted odds ratio [AOR]: 2.21; confidence interval [CI]: 1.82-2.68) and use of a community recreation center (AOR: 1.75; CI: 1.56-1.96) were associated with an increased likelihood of engaging in high level moderate to vigorous physical activity. Maternal education was inversely associated with high inactivity patterns; for example, having a mother with a graduate or professional degree was associated with an AOR of.61 (CI:.48-.76) for high inactivity. High family income was associated with increased moderate to vigorous physical activity (AOR: 1.43; CI: 1.22-1.67) and decreased inactivity (AOR:.70; CI:.59-.82). High neighborhood serious crime level was associated with a decreased likelihood of falling in the highest category of moderate to vigorous physical activity (AOR:.77; CI:.66-.91). \n CONCLUSIONS These results show important associations between modifiable environmental factors, such as participation in school PE and community recreation programs, with activity patterns of adolescents. Despite the marked and significant impact of participation in school PE programs on physical activity patterns of US adolescents, few adolescents participated in such school PE programs; only 21.3% of all adolescents", "title": "Determinants of adolescent physical activity and inactivity patterns." }, { "docid": "18895793", "text": "The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose) and repression (by glucose) of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome \"remodeler\" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the action of SWI/SNF recruited by the activator, and a slower one that does not-clarifies our understanding of the early events of gene activation, and in particular corrects earlier reports that SWI/SNF plays no role in GAL gene induction. Our finding that chromatin structure is irrelevant for repression as studied here-that is, repression sets in as efficiently whether or not promoter nucleosomes are allowed to reform-contradicts the widely held, but little tested, idea that nucleosomes are required for repression. These findings were made possible by our nucleosome occupancy assay. The assay, we believe, will prove useful in studying other outstanding issues in the field.", "title": "Activator Control of Nucleosome Occupancy in Activation and Repression of Transcription" }, { "docid": "6647414", "text": "IMPORTANCE The 2008 Physical Activity Guidelines for Americans recommended a minimum of 75 vigorous-intensity or 150 moderate-intensity minutes per week (7.5 metabolic-equivalent hours per week) of aerobic activity for substantial health benefit and suggested additional benefits by doing more than double this amount. However, the upper limit of longevity benefit or possible harm with more physical activity is unclear. \n OBJECTIVE To quantify the dose-response association between leisure time physical activity and mortality and define the upper limit of benefit or harm associated with increased levels of physical activity. \n DESIGN, SETTING, AND PARTICIPANTS We pooled data from 6 studies in the National Cancer Institute Cohort Consortium (baseline 1992-2003). Population-based prospective cohorts in the United States and Europe with self-reported physical activity were analyzed in 2014. A total of 661,137 men and women (median age, 62 years; range, 21-98 years) and 116,686 deaths were included. We used Cox proportional hazards regression with cohort stratification to generate multivariable-adjusted hazard ratios (HRs) and 95% CIs. Median follow-up time was 14.2 years. EXPOSURES Leisure time moderate- to vigorous-intensity physical activity. \n MAIN OUTCOMES AND MEASURES The upper limit of mortality benefit from high levels of leisure time physical activity. \n RESULTS Compared with individuals reporting no leisure time physical activity, we observed a 20% lower mortality risk among those performing less than the recommended minimum of 7.5 metabolic-equivalent hours per week (HR, 0.80 [95% CI, 0.78-0.82]), a 31% lower risk at 1 to 2 times the recommended minimum (HR, 0.69 [95% CI, 0.67-0.70]), and a 37% lower risk at 2 to 3 times the minimum (HR, 0.63 [95% CI, 0.62-0.65]). An upper threshold for mortality benefit occurred at 3 to 5 times the physical activity recommendation (HR, 0.61 [95% CI, 0.59-0.62]); however, compared with the recommended minimum, the additional benefit was modest (31% vs 39%). There was no evidence of harm at 10 or more times the recommended minimum (HR, 0.69 [95% CI, 0.59-0.78]). A similar dose-response relationship was observed for mortality due to cardiovascular disease and to cancer. \n CONCLUSIONS AND RELEVANCE Meeting the 2008 Physical Activity Guidelines for Americans minimum by either moderate- or vigorous-intensity activities was associated with nearly the maximum longevity benefit. We observed a benefit threshold at approximately 3 to 5 times the recommended leisure time physical activity minimum and no excess risk at 10 or more times the minimum. In regard to mortality, health care professionals should encourage inactive adults to perform leisure time physical activity and do not need to discourage adults who already participate in high-activity levels.", "title": "Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship." }, { "docid": "10010651", "text": "Cancer survivors are often highly motivated to seek information about food choices, physical activity, and dietary supplements to improve their treatment outcomes, quality of life, and overall survival. To address these concerns, the American Cancer Society (ACS) convened a group of experts in nutrition, physical activity, and cancer survivorship to evaluate the scientific evidence and best clinical practices related to optimal nutrition and physical activity after the diagnosis of cancer. This report summarizes their findings and is intended to present health care providers with the best possible information with which to help cancer survivors and their families make informed choices related to nutrition and physical activity. The report discusses nutrition and physical activity guidelines during the continuum of cancer care, briefly highlighting important issues during cancer treatment and for patients with advanced cancer, but focusing largely on the needs of the population of individuals who are disease free or who have stable disease following their recovery from treatment. It also discusses select nutrition and physical activity issues such as body weight, food choices, food safety, and dietary supplements; issues related to selected cancer sites; and common questions about diet, physical activity, and cancer survivorship.", "title": "Nutrition and physical activity guidelines for cancer survivors." }, { "docid": "26107000", "text": "RATIONALE Physical activity is reduced in patients with chronic obstructive pulmonary disease (COPD). COPD has a systemic component that includes significant extrapulmonary effects that may contribute to its severity in individual patients. \n OBJECTIVES To investigate the association of extrapulmonary effects of the disease and its comorbidities with reduced physical activity in patients with COPD. \n METHODS In a cross-sectional study, 170 outpatients with COPD (GOLD [Global Initiative for Chronic Obstructive Lung Disease] stages I-IV; BODE [body mass index, airway obstruction, dyspnea, and exercise capacity] score 0-10) underwent a series of tests. Physical activity was assessed over 5 to 6 consecutive days by using a multisensor accelerometer armband that records steps per day and the physical activity level (total daily energy expenditure divided by whole-night sleeping energy expenditure). Cardiovascular status was assessed by echocardiography, vascular Doppler sonography, and levels of N-terminal pro-B-type natriuretic peptide. Mental status, metabolic/muscular status, systemic inflammation, and anemia were assessed by Beck Depression Inventory, bioelectrical impedance analysis, handgrip strength, high-sensitivity C-reactive protein/fibrinogen, and hemoglobin, respectively. \n MEASUREMENTS AND MAIN RESULTS In a multivariate linear regression analysis using either steps per day or physical activity level as a dependent variable, the extrapulmonary parameters that were associated with reduced physical activity in patients with COPD independently of GOLD stages or BODE score were N-terminal pro-B-type natriuretic peptide levels, echocardiographically measured left ventricular diastolic function, and systemic inflammation. \n CONCLUSIONS Higher values of systemic inflammation and left cardiac dysfunction are associated with reduced physical activity in patients with COPD.", "title": "Extrapulmonary effects of chronic obstructive pulmonary disease on physical activity: a cross-sectional study." }, { "docid": "9199796", "text": "Among lower eukaryotes, glucose repression is a conserved, widely spread mechanism regulating carbon catabolism. The yeast Snf1 kinase, the Mig1 DNA-binding repressor and the Mig1-interacting co-repressor complex Cyc8(Ssn6)-Tup1 are central components of this pathway. Previous experiments suggested that cytoplasmic translocation of Mig1, upon its phosphorylation by Snf1 in the nucleus, is the key regulatory step for releasing glucose repression. In this report we re-evaluate this model. We establish the coordinated repressive action of Mig1 and Cyc8-Tup1 on GAL1 transcription, but we find that Cyc8-Tup1 is not tethered by Mig1 to the promoter DNA. We demonstrate that both negative regulators occupy GAL1 continuously under either repression or activation conditions, although the majority of the Mig1 is redistributed to the cytoplasm upon activation. We show that Snf1-dependent phosphorylation of Mig1 abolishes interaction with Cyc8-Tup1, and we propose that regulation of this interaction, not the Mig1 cytoplasmic localization, is the molecular switch that controls transcriptional repression/de-repression.", "title": "The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor." }, { "docid": "16626264", "text": "Histone variants help specialize chromatin regions; however, their impact on transcriptional regulation is largely unknown. Here, we determined the genome-wide localization and dynamics of Htz1, the yeast histone H2A variant. Htz1 localizes to hundreds of repressed/basal Pol II promoters and prefers TATA-less promoters. Specific Htz1 deposition requires the SWR1 complex, which largely colocalizes with Htz1. Htz1 occupancy correlates with particular histone modifications, and Htz1 deposition is partially reliant on Gcn5 (a histone acetyltransferase) and Bdf1, an SWR1 complex member that binds acetylated histones. Changes in growth conditions cause a striking redistribution of Htz1 from activated to repressed/basal promoters. Furthermore, Htz1 promotes full gene activation but does not generally impact repression. Importantly, Htz1 releases from purified chromatin in vitro under conditions where H2A and H3 remain associated. We suggest that Htz1-bearing nucleosomes are deposited at repressed/basal promoters but facilitate activation through their susceptibility to loss, thereby helping to expose promoter DNA.", "title": "Genome-Wide Dynamics of Htz1, a Histone H2A Variant that Poises Repressed/Basal Promoters for Activation through Histone Loss" }, { "docid": "21868715", "text": "Molecular mechanisms leading to myocardial injury during warm or cold ischemia are insufficiently understood. Although proteasomes are thought to contribute to myocardial ischemia-reperfusion injury, their roles during the ischemic period remain elusive. Because donor hearts are commonly exposed to prolonged global cold ischemia prior to cardiac transplantation, we evaluated the role and regulation of the proteasome during cold ischemic storage of rat hearts in context of the myocardial ATP content. When measured at the actual tissue ATP concentration, cardiac proteasome peptidase activity increased by 225% as ATP declined during cold ischemic storage of hearts in University of Wisconsin (UW) solution for up to 48h. Addition of the specific proteasome inhibitor epoxomicin to the UW solution inhibited proteasome activity in the cardiac extracts, significantly reduced edema formation and preserved the ultrastructural integrity of the cardiomyocyte. Utilizing purified 20S/26S proteasome enzyme preparations, we demonstrate that this activation can be attributed to a subset of 26S proteasomes which are stable at ATP concentrations far below physiological levels, that ATP negatively regulates its activity and that maximal activation occurs at ATP concentrations in the low mumol/L range. These data suggest that proteasome activation is a pathophysiologically relevant mechanism of cold ischemic myocardial injury. A subset of 26S proteasomes appears to be a cell-destructive protease that is activated as ATP levels decline. Proteasome inhibition during cold ischemia preserves the ultrastructural integrity of the cardiomyocyte.", "title": "A subset of 26S proteasomes is activated at critically low ATP concentrations and contributes to myocardial injury during cold ischemia." }, { "docid": "1642727", "text": "CONTEXT Many observational studies have shown that physical activity reduces the risk of cognitive decline; however, evidence from randomized trials is lacking. \n OBJECTIVE To determine whether physical activity reduces the rate of cognitive decline among older adults at risk. \n DESIGN AND SETTING Randomized controlled trial of a 24-week physical activity intervention conducted between 2004 and 2007 in metropolitan Perth, Western Australia. Assessors of cognitive function were blinded to group membership. \n PARTICIPANTS We recruited volunteers who reported memory problems but did not meet criteria for dementia. Three hundred eleven individuals aged 50 years or older were screened for eligibility, 89 were not eligible, and 52 refused to participate. A total of 170 participants were randomized and 138 participants completed the 18-month assessment. \n INTERVENTION Participants were randomly allocated to an education and usual care group or to a 24-week home-based program of physical activity. \n MAIN OUTCOME MEASURE Change in Alzheimer Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores (possible range, 0-70) over 18 months. \n RESULTS In an intent-to-treat analysis, participants in the intervention group improved 0.26 points (95% confidence interval, -0.89 to 0.54) and those in the usual care group deteriorated 1.04 points (95% confidence interval, 0.32 to 1.82) on the ADAS-Cog at the end of the intervention. The absolute difference of the outcome measure between the intervention and control groups was -1.3 points (95% confidence interval,-2.38 to -0.22) at the end of the intervention. At 18 months, participants in the intervention group improved 0.73 points (95% confidence interval, -1.27 to 0.03) on the ADAS-Cog, and those in the usual care group improved 0.04 points (95% confidence interval, -0.46 to 0.88). Word list delayed recall and Clinical Dementia Rating sum of boxes improved modestly as well, whereas word list total immediate recall, digit symbol coding, verbal fluency, Beck depression score, and Medical Outcomes 36-Item Short-Form physical and mental component summaries did not change significantly. \n CONCLUSIONS In this study of adults with subjective memory impairment, a 6-month program of physical activity provided a modest improvement in cognition over an 18-month follow-up period. \n TRIAL REGISTRATION anzctr.org.au Identifier: ACTRN12605000136606.", "title": "Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial." }, { "docid": "14380875", "text": "Glucocorticoids repress NFkappaB-mediated activation of proinflammatory genes such as interleukin-8 (IL-8) and ICAM-1. Our experiments suggest that the glucocorticoid receptor (GR) confers this effect by associating through protein-protein interactions with NFkappaB bound at each of these genes. That is, we show that the GR zinc binding region (ZBR), which includes the DNA binding and dimerization functions of the receptor, binds directly to the dimerization domain of the RelA subunit of NFkappaB in vitro and that the ZBR is sufficient to associate with RelA bound at NFkappaB response elements in vivo. Moreover, we demonstrate in vivo and in vitro that GR does not disrupt DNA binding by NFkappaB. In transient transfections, we found that the GR ligand binding domain is essential for repression of NFkappaB but not for association with it and that GR can repress an NFkappaB derivative bearing a heterologous activation domain. We used chromatin immunoprecipitation assays in untransfected A549 cells to infer the mechanism by which the tethered GR represses NFkappaB-activated transcription. As expected, we found that the inflammatory signal TNFalpha stimulated preinitiation complex (PIC) assembly at the IL-8 and ICAM-1 promoters and that the largest subunit of RNA polymerase II (pol II) in those complexes became phosphorylated at serines 2 and 5 in its carboxy-terminal domain (CTD) heptapeptide repeats (YSPTSPS); these modifications are required for transcription initiation. Remarkably, GR did not inhibit PIC assembly under repressing conditions, but rather interfered with phosphorylation of serine 2 of the pol II CTD.", "title": "The Glucocorticoid Receptor Inhibits" }, { "docid": "28783084", "text": "The involvement of the immune system in the response to tissue injury has raised the possibility that it might influence tissue, organ or appendage regeneration following injury. One hypothesis that has been discussed is that inflammatory aspects may preclude the occurrence of regeneration, but there is also evidence for more positive roles of immune components. The vertebrate eye is an immunoprivileged site where inflammatory aspects are inhibited by several immunomodulatory mechanisms. In various newt species the ocular tissues such as the lens are regenerative and it has recently been shown that the response to local injury of the lens involves activation of antigen-presenting cells which traffic to the spleen and return to displace and engulf the lens, thereby inducing regeneration from the dorsal iris. The activation of thrombin from prothrombin in the dorsal iris is one aspect of the injury response that is important in the initiation of regeneration. The possible relationships between the immune response and the regenerative response are considered with respect to phylogenetic variation of regeneration in general, and lens regeneration in particular.", "title": "Regeneration, tissue injury and the immune response." }, { "docid": "13613916", "text": "Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression.", "title": "Glucose repression in Saccharomyces cerevisiae" }, { "docid": "2405259", "text": "Epigenetic modifiers have fundamental roles in defining unique cellular identity through the establishment and maintenance of lineage-specific chromatin and methylation status. Several DNA modifications such as 5-hydroxymethylcytosine (5hmC) are catalysed by the ten eleven translocation (Tet) methylcytosine dioxygenase family members, and the roles of Tet proteins in regulating chromatin architecture and gene transcription independently of DNA methylation have been gradually uncovered. However, the regulation of immunity and inflammation by Tet proteins independent of their role in modulating DNA methylation remains largely unknown. Here we show that Tet2 selectively mediates active repression of interleukin-6 (IL-6) transcription during inflammation resolution in innate myeloid cells, including dendritic cells and macrophages. Loss of Tet2 resulted in the upregulation of several inflammatory mediators, including IL-6, at late phase during the response to lipopolysaccharide challenge. Tet2-deficient mice were more susceptible to endotoxin shock and dextran-sulfate-sodium-induced colitis, displaying a more severe inflammatory phenotype and increased IL-6 production compared to wild-type mice. IκBζ, an IL-6-specific transcription factor, mediated specific targeting of Tet2 to the Il6 promoter, further indicating opposite regulatory roles of IκBζ at initial and resolution phases of inflammation. For the repression mechanism, independent of DNA methylation and hydroxymethylation, Tet2 recruited Hdac2 and repressed transcription of Il6 via histone deacetylation. We provide mechanistic evidence for the gene-specific transcription repression activity of Tet2 via histone deacetylation and for the prevention of constant transcription activation at the chromatin level for resolving inflammation.", "title": "Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6" }, { "docid": "31141365", "text": "Using mouse skin, where bountiful reservoirs of synchronized hair follicle stem cells (HF-SCs) fuel cycles of regeneration, we explore how adult SCs remodel chromatin in response to activating cues. By profiling global mRNA and chromatin changes in quiescent and activated HF-SCs and their committed, transit-amplifying (TA) progeny, we show that polycomb-group (PcG)-mediated H3K27-trimethylation features prominently in HF-lineage progression by mechanisms distinct from embryonic-SCs. In HF-SCs, PcG represses nonskin lineages and HF differentiation. In TA progeny, nonskin regulators remain PcG-repressed, HF-SC regulators acquire H3K27me3-marks, and HF-lineage regulators lose them. Interestingly, genes poised in embryonic stem cells, active in HF-SCs, and PcG-repressed in TA progeny encode not only key transcription factors, but also signaling regulators. We document their importance in balancing HF-SC quiescence, underscoring the power of chromatin mapping in dissecting SC behavior. Our findings explain how HF-SCs cycle through quiescent and activated states without losing stemness and define roles for PcG-mediated repression in governing a fate switch irreversibly.", "title": "Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage." } ]
951
Piezo1 channels are sensors for cell migration in epithelial cells.
[ { "docid": "21414718", "text": "Trefoil factor family 1 (TFF1) is a member of the TFF-domain peptide family involved in epithelial restitution and cell motility. Recently, we screened Piezo1 as a candidate TFF1-binding protein. We aimed to confirm Piezo1 as a novel TFF1 binding protein and to assess the role of this interaction in mediating gastric cancer cell mobility. This interaction was confirmed by co-immunoprecipitation and co-localisation of TFF1 and Piezo1 in GES-1 cells. We used stable RNA interference to knockdown Piezo1 protein expression and restored the expression of TFF1 in the gastric cancer cell lines SGC-7901 and BGC-823. Cell motility was evaluated using invasion assay and migration assay in vitro. The expression levels of the integrin subunits β1, β5, α1 as well as the expression of β-catenin and E-cadherin were detected by Western blot. We demonstrate that TFF1, but not TFF2 or TFF3, bind to and co-localize with Piezo1 in the cytoplasm in vitro. TFF1 interacts with the C-terminal portion of the Piezo1 protein. Wound healing and trans-well assays demonstrated that the restored expression of TFF1 promoted cell mobility in gastric cancer cells, and this effect was attenuated by the knockdown of Piezo1. Western blots demonstrated the decreased expression of integrin β1 in Piezo1-knockdown cells. Our data demonstrate that Piezo1 is a novel TFF1 binding protein that is important for TFF1-mediated cell migration and suggest that this interaction may be a therapeutic target in the invasion and metastasis of gastric cancer.", "title": "Piezo1 Is as a Novel Trefoil Factor Family 1 Binding Protein that Promotes Gastric Cancer Cell Mobility In Vitro" } ]
[ { "docid": "4422723", "text": "For an epithelium to provide a protective barrier, it must maintain homeostatic cell numbers by matching the number of dividing cells with the number of dying cells. Although compensatory cell division can be triggered by dying cells, it is unknown how cell death might relieve overcrowding due to proliferation. When we trigger apoptosis in epithelia, dying cells are extruded to preserve a functional barrier. Extrusion occurs by cells destined to die signalling to surrounding epithelial cells to contract an actomyosin ring that squeezes the dying cell out. However, it is not clear what drives cell death during normal homeostasis. Here we show in human, canine and zebrafish cells that overcrowding due to proliferation and migration induces extrusion of live cells to control epithelial cell numbers. Extrusion of live cells occurs at sites where the highest crowding occurs in vivo and can be induced by experimentally overcrowding monolayers in vitro. Like apoptotic cell extrusion, live cell extrusion resulting from overcrowding also requires sphingosine 1-phosphate signalling and Rho-kinase-dependent myosin contraction, but is distinguished by signalling through stretch-activated channels. Moreover, disruption of a stretch-activated channel, Piezo1, in zebrafish prevents extrusion and leads to the formation of epithelial cell masses. Our findings reveal that during homeostatic turnover, growth and division of epithelial cells on a confined substratum cause overcrowding that leads to their extrusion and consequent death owing to the loss of survival factors. These results suggest that live cell extrusion could be a tumour-suppressive mechanism that prevents the accumulation of excess epithelial cells.", "title": "Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia" }, { "docid": "26047921", "text": "Cells can respond to mechanical stress by gating mechanosensitive ion channels (MSCs). The cloning of Piezo1, a eukaryotic cation selective MSC, defines a new system for studying mechanical transduction at the cellular level. Because Piezo1 has electrophysiological properties similar to those of endogenous cationic MSCs that are selectively inhibited by the peptide GsMTx4, we tested whether the peptide targets Piezo1 activity. Extracellular GsMTx4 at micromolar concentrations reversibly inhibited ∼80% of the mechanically induced current of outside-out patches from transfected HEK293 cells. The inhibition was voltage insensitive, and as seen with endogenous MSCs, the mirror image d enantiomer inhibited like the l. The rate constants for binding and unbinding based on Piezo1 current kinetics provided association and dissociation rates of 7.0 × 10(5) M(-1) s(-1) and 0.11 s(-1), respectively, and a K(D) of ∼155 nM, similar to values previously reported for endogenous MSCs. Consistent with predicted gating modifier behavior, GsMTx4 produced an ∼30 mmHg rightward shift in the pressure-gating curve and was active on closed channels. In contrast, streptomycin, a nonspecific inhibitor of cationic MSCs, showed the use-dependent inhibition characteristic of open channel block. The peptide did not block currents of the mechanical channel TREK-1 on outside-out patches. Whole-cell Piezo1 currents were also reversibly inhibited by GsMTx4, and although the off rate was nearly identical to that of outside-out patches, differences were observed for the on rate. The ability of GsMTx4 to target the mechanosensitivity of Piezo1 supports the use of this channel in high-throughput screens for pharmacological agents and diagnostic assays.", "title": "The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4." }, { "docid": "2727303", "text": "Stromal-interaction molecule 1 (STIM1) is an endoplasmic reticulum Ca(2+) storage sensor that promotes cell growth, migration, and angiogenesis in breast and cervical cancers. Here, we report that the microtubule-associated histone deacetylase 6 (HDAC6) differentially regulates activation of STIM1-mediated store-operated Ca(2+) entry (SOCE) between cervical cancer cells and normal cervical epithelial cells. Confocal microscopy of living cells indicated that microtubule integrity was necessary for STIM1 trafficking to the plasma membrane and interaction with Orai1, an essential pore subunit of SOCE. Cancer cells overexpressed both STIM1 and Orai1 compared with normal cervical epithelial cells. HDAC6 upregulation in cancer cells was accompanied by hypoacetylated α-tubulin. Tubastatin-A, a specific HDAC6 inhibitor, inhibited STIM1 translocation to plasma membrane and blocked SOCE activation in cancer cells but not normal epithelial cells. Genetic or pharmacologic inhibition of HDAC6 blocked STIM1 membrane trafficking and downstream Ca(2+) influx, as evidenced by total internal reflection fluorescent images and intracellular Ca(2+) determination. In contrast, HDAC6 inhibition did not affect interactions between STIM1 and the microtubule plus end-binding protein EB1. Analysis of surgical specimens confirmed that most cervical cancer tissues overexpressed STIM1 and Orai1, accompanied by hypoacetylated α-tubulin. Together, our results identify HDAC6 as a candidate target to disrupt STIM1-mediated SOCE as a general strategy to block malignant cell behavior.", "title": "Microtubule-associated histone deacetylase 6 supports the calcium store sensor STIM1 in mediating malignant cell behaviors." }, { "docid": "7736860", "text": "Store-operated Ca(2+) entry (SOCE) is the principal Ca(2+) entry mechanism in nonexcitable cells. Stromal-interaction molecule 1 (STIM1) is an endoplasmic reticulum Ca(2+) sensor that triggers SOCE activation. However, the role of STIM1 in regulating cancer progression remains controversial and its clinical relevance is unclear. Here we show that STIM1-dependent signaling is important for cervical cancer cell proliferation, migration, and angiogenesis. STIM1 overexpression in tumor tissue is noted in 71% cases of early-stage cervical cancer. In tumor tissues, the level of STIM1 expression is significantly associated with the risk of metastasis and survival. EGF-stimulated cancer cell migration requires STIM1 expression and EGF increases the interaction between STIM1 and Orai1 in juxta-membrane areas, and thus induces Ca(2+) influx. STIM1 involves the activation of Ca(2+)-regulated protease calpain, as well as Ca(2+)-regulated cytoplasmic kinase Pyk2, which regulate the focal-adhesion dynamics of migratory cervical cancer cells. Because of an increase of p21 protein levels and a decrease of Cdc25C protein levels, STIM1-silencing in cervical cancer cells significantly inhibits cell proliferation by arresting the cell cycle at the S and G2/M phases. STIM1 also regulates the production of VEGF in cervical cancer cells. Interference with STIM1 expression or blockade of SOCE activity inhibits tumor angiogenesis and growth in animal models, confirming the crucial role of STIM1-mediated Ca(2+) influx in aggravating tumor development in vivo. These results make STIM1-dependent signaling an attractive target for therapeutic intervention.", "title": "Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis." }, { "docid": "1241113", "text": "Scribble (Scrib) is a conserved polarity protein required in Drosophila melanogaster for synaptic function, neuroblast differentiation, and epithelial polarization. It is also a tumor suppressor. In rodents, Scrib has been implicated in receptor recycling and planar polarity but not in apical/basal polarity. We now show that knockdown of Scrib disrupts adhesion between Madin–Darby canine kidney epithelial cells. As a consequence, the cells acquire a mesenchymal appearance, migrate more rapidly, and lose directionality. Although tight junction assembly is delayed, confluent monolayers remain polarized. These effects are independent of Rac activation or Scrib binding to βPIX. Rather, Scrib depletion disrupts E-cadherin–mediated cell–cell adhesion. The changes in morphology and migration are phenocopied by E-cadherin knockdown. Adhesion is partially rescued by expression of an E-cadherin–α-catenin fusion protein but not by E-cadherin–green fluorescent protein. These results suggest that Scrib stabilizes the coupling between E-cadherin and the catenins and are consistent with the idea that mammalian Scrib could behave as a tumor suppressor by regulating epithelial cell adhesion and migration.", "title": "The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin" }, { "docid": "6308416", "text": "Coordinated cell movements in epithelial layers are essential for proper tissue morphogenesis and homeostasis, but our understanding of the mechanisms that coordinate the behavior of multiple cells in these processes is far from complete. Recent experiments with Madin-Darby canine kidney epithelial monolayers revealed a wave-like pattern of injury-induced MAPK activation and showed that it is essential for collective cell migration after wounding. To investigate the effects of the different aspects of wounding on cell sheet migration, we engineered a system that allowed us to dissect the classic wound healing assay. We studied Madin-Darby canine kidney sheet migration under three different conditions: 1) the classic wound healing assay, 2) empty space induction, where a confluent monolayer is grown adjacent to a slab of polydimethylsiloxane and the monolayer is not injured but allowed to migrate upon removal of the slab, and 3) injury via polydimethylsiloxane membrane peel-off, where an injured monolayer migrates onto plain tissue culture surface, as in the case of empty space induction allowing for direct comparison. By tracking the motion of individual cells within the sheet under these three conditions, we show how the dynamics of the individual cells' motion is responsible for the coordinated migration of the sheet and is coordinated with the activation of ERK1/2 MAPK. In addition, we demonstrate that the propagation of the waves of MAPK activation depends on the generation of reactive oxygen species at the wound edge.", "title": "Role of boundary conditions in an experimental model of epithelial wound healing." }, { "docid": "1379127", "text": "Tumor metastasis is the primary cause of death of cancer patients. Understanding the molecular mechanisms underlying tumor metastasis will provide potential drug targets. We report here that Orai1 and STIM1, both of which are involved in store-operated calcium entry, are essential for breast tumor cell migration in vitro and tumor metastasis in mice. Reduction of Orai1 or STIM1 by RNA interference in highly metastatic human breast cancer cells or treatment with a pharmacological inhibitor of store-operated calcium channels decreased tumor metastasis in animal models. Our data demonstrate a role for Orai1 and STIM1 in tumor metastasis and suggest store-operated calcium entry channels as potential cancer therapeutic targets.", "title": "Orai1 and STIM1 are critical for breast tumor cell migration and metastasis." }, { "docid": "3720107", "text": "Cadherin-mediated cell-cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell-cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell-cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell-cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell-cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair.", "title": "Formin-mediated actin polymerization at cell–cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair" }, { "docid": "32250572", "text": "Rat and human cDNAs were isolated that both encoded a 360 amino acid polypeptide with a tertiary structure typical of inwardly rectifying K+ channel (Kir) subunits. The new proteins, termed Kir7.1, were <37% identical to other Kir subunits and showed various unique residues at conserved sites, particularly near the pore region. High levels of Kir7.1 transcripts were detected in rat brain, lung, kidney, and testis. In situ hybridization of rat brain sections demonstrated that Kir7.1 mRNA was absent from neurons and glia but strongly expressed in the secretory epithelial cells of the choroid plexus (as confirmed by in situ patch-clamp measurements). In cRNA-injected Xenopus oocytes Kir7.1 generated macroscopic Kir currents that showed a very shallow dependence on external K+ ([K+]e), which is in marked contrast to all other Kir channels. At a holding potential of -100 mV, the inward current through Kir7.1 averaged -3.8 +/- 1.04 microA with 2 mM [K+]e and -4.82 +/- 1.87 microA with 96 mM [K+]e. Kir7.1 has a methionine at position 125 in the pore region where other Kir channels have an arginine. When this residue was replaced by the conserved arginine in mutant Kir7.1 channels, the pronounced dependence of K+ permeability on [K+]e, characteristic for other Kir channels, was restored and the Ba2+ sensitivity was increased by a factor of approximately 25 (Ki = 27 microM). These findings support the important role of this site in the regulation of K+ permeability in Kir channels by extracellular cations.", "title": "The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties." }, { "docid": "123859", "text": "Podocytes are critical in the maintenance of a healthy glomerular filter; however, they have been difficult to study in the intact kidney because of technical limitations. Here we report the development of serial multiphoton microscopy (MPM) of the same glomeruli over several days to visualize the motility of podocytes and parietal epithelial cells (PECs) in vivo. In podocin-GFP mice, podocytes formed sporadic multicellular clusters after unilateral ureteral ligation and migrated into the parietal Bowman's capsule. The tracking of single cells in podocin-confetti mice featuring cell-specific expression of CFP, GFP, YFP or RFP revealed the simultaneous migration of multiple podocytes. In phosphoenolpyruvate carboxykinase (PEPCK)-GFP mice, serial MPM found PEC-to-podocyte migration and nanotubule connections. Our data support a highly dynamic rather than a static nature of the glomerular environment and cellular composition. Future application of this new approach should advance our understanding of the mechanisms of glomerular injury and regeneration.", "title": "Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in novel mouse models with fluorescent lineage tags" }, { "docid": "4340358", "text": "The cellular and molecular mechanisms that enable us to sense cold are not well understood. Insights into this process have come from the use of pharmacological agents, such as menthol, that elicit a cooling sensation. Here we have characterized and cloned a menthol receptor from trigeminal sensory neurons that is also activated by thermal stimuli in the cool to cold range. This cold- and menthol-sensitive receptor, CMR1, is a member of the TRP family of excitatory ion channels, and we propose that it functions as a transducer of cold stimuli in the somatosensory system. These findings, together with our previous identification of the heat-sensitive channels VR1 and VRL-1, demonstrate that TRP channels detect temperatures over a wide range and are the principal sensors of thermal stimuli in the mammalian peripheral nervous system.", "title": "Identification of a cold receptor reveals a general role for TRP channels in thermosensation" }, { "docid": "30041895", "text": "KEY POINTS The gastrointestinal epithelial enterochromaffin (EC) cell synthesizes the vast majority of the body's serotonin. As a specialized mechanosensor, the EC cell releases this serotonin in response to mechanical forces. However, the molecular mechanism of EC cell mechanotransduction is unknown. In the present study, we show, for the first time, that the mechanosensitive ion channel Piezo2 is specifically expressed by the human and mouse EC cells. Activation of Piezo2 by mechanical forces results in a characteristic ionic current, the release of serotonin and stimulation of gastrointestinal secretion. Piezo2 inhibition by drugs or molecular knockdown decreases mechanosensitive currents, serotonin release and downstream physiological effects. The results of the present study suggest that the mechanosensitive ion channel Piezo2 is specifically expressed by the EC cells of the human and mouse small bowel and that it is important for EC cell mechanotransduction. ABSTRACT The enterochromaffin (EC) cell in the gastrointestinal (GI) epithelium is the source of nearly all systemic serotonin (5-hydroxytryptamine; 5-HT), which is an important neurotransmitter and endocrine, autocrine and paracrine hormone. The EC cell is a specialized mechanosensor, and it is well known that it releases 5-HT in response to mechanical forces. However, the EC cell mechanotransduction mechanism is unknown. The present study aimed to determine whether Piezo2 is involved in EC cell mechanosensation. Piezo2 mRNA was expressed in human jejunum and mouse mucosa from all segments of the small bowel. Piezo2 immunoreactivity localized specifically within EC cells of human and mouse small bowel epithelium. The EC cell model released 5-HT in response to stretch, and had Piezo2 mRNA and protein, as well as a mechanically-sensitive inward non-selective cation current characteristic of Piezo2. Both inward currents and 5-HT release were inhibited by Piezo2 small interfering RNA and antagonists (Gd3+ and D-GsMTx4). Jejunum mucosal pressure increased 5-HT release and short-circuit current via submucosal 5-HT3 and 5-HT4 receptors. Pressure-induced secretion was inhibited by the mechanosensitive ion channel antagonists gadolinium, ruthenium red and D-GsMTx4. We conclude that the EC cells in the human and mouse small bowel GI epithelium selectively express the mechanosensitive ion channel Piezo2, and also that activation of Piezo2 by force leads to inward currents, 5-HT release and an increase in mucosal secretion. Therefore, Piezo2 is critical to EC cell mechanosensitivity and downstream physiological effects.", "title": "Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces" }, { "docid": "19561411", "text": "Orai1 and stromal interaction molecule 1 (STIM1) mediate store-operated Ca(2+) entry (SOCE) in immune cells. STIM1, an endoplasmic reticulum (ER) Ca(2+) sensor, detects store depletion and interacts with plasma membrane (PM)-resident Orai1 channels at the ER-PM junctions. However, the molecular composition of these junctions in T cells remains poorly understood. Here, we show that junctophilin-4 (JP4), a member of junctional proteins in excitable cells, is expressed in T cells and localized at the ER-PM junctions to regulate Ca(2+) signaling. Silencing or genetic manipulation of JP4 decreased ER Ca(2+) content and SOCE in T cells, impaired activation of the nuclear factor of activated T cells (NFAT) and extracellular signaling-related kinase (ERK) signaling pathways, and diminished expression of activation markers and cytokines. Mechanistically, JP4 directly interacted with STIM1 via its cytoplasmic domain and facilitated its recruitment into the junctions. Accordingly, expression of this cytoplasmic fragment of JP4 inhibited SOCE. Furthermore, JP4 also formed a complex with junctate, a Ca(2+)-sensing ER-resident protein, previously shown to mediate STIM1 recruitment into the junctions. We propose that the junctate-JP4 complex located at the junctions cooperatively interacts with STIM1 to maintain ER Ca(2+) homeostasis and mediate SOCE in T cells.", "title": "Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells." }, { "docid": "17188921", "text": "Cell migration is a process which is essential during embryonic development, throughout adult life and in some pathological conditions. Cadherins, and more specifically the neural cell adhesion molecule N-cadherin, play an important role in migration. In embryogenesis, N-cadherin is the key molecule during gastrulation and neural crest development. N-cadherin mediated contacts activate several pathways like Rho GTPases and function in tyrosine kinase signalling (for example via the fibroblast growth factor receptor). In cancer, cadherins control the balance between suppression and promotion of invasion. E-cadherin functions as an invasion suppressor and is downregulated in most carcinomas, while N-cadherin, as an invasion promoter, is frequently upregulated. Expression of N-cadherin in epithelial cells induces changes in morphology to a fibroblastic phenotype, rendering the cells more motile and invasive. However in some cancers, like osteosarcoma, N-cadherin may behave as a tumour suppressor. N-cadherin can have multiple functions: promoting adhesion or induction of migration dependent on the cellular context.", "title": "N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling." }, { "docid": "24670522", "text": "The intracellular Ca(2+) concentration of many nonexcitable cells is regulated by calcium store release and store-operated calcium entry (SOCE). In platelets, STIM1 was recently identified as the main calcium sensor expressed in the endoplasmic reticulum. To evaluate the role of the SOC channel moiety, Orai1, in platelet SOCE, we generated mice expressing a mutated, inactive form of Orai1 in blood cells only (Orai1(R93W)). Platelets expressing Orai1(R93W) were characterized by markedly reduced SOCE and impaired agonist-induced increases in [Ca(2+)](i). Orai1(R93W) platelets showed reduced integrin activation and impaired degranulation when stimulated with low agonist concentrations under static conditions. This defect, however, did not significantly affect the ability of Orai1(R93W) platelets to aggregate or to adhere to collagen under arterial flow conditions ex vivo. In contrast, these adherent Orai1(R93W) platelets were defective in surface phosphatidylserine exposure, suggesting that Orai1 is crucial for the platelets' procoagulant response rather than for other Ca(2+)-dependent cellular responses.", "title": "R93W mutation in Orai1 causes impaired calcium influx in platelets." }, { "docid": "25238950", "text": "Fibroblast growth factors (FGFs) have mitogenic activity toward a wide variety of cells of mesenchymal, neuronal, and epithelial origin and regulate events in normal embryonic development, angiogenesis, wound repair, and neoplasia. FGF-2 is expressed in many normal adult tissues and can regulate migration and replication of intestinal epithelial cells in culture. However, little is known about the effects of FGF-2 on intestinal epithelial stem cells during either normal epithelial renewal or regeneration of a functional epithelium after injury. In this study, we investigated the expression of FGF-2 in the mouse small intestine after irradiation and determined the effect of exogenous FGF-2 on crypt stem cell survival after radiation injury. Expression of FGF-2 mRNA and protein began to increase at 12 h after gamma-irradiation, and peak levels were observed from 48 to 120 h after irradiation. At all times after irradiation, the higher molecular mass isoform ( approximately 24 kDa) of FGF-2 was the predominant form expressed in the small intestine. Immunohistochemical analysis of FGF-2 expression after radiation injury demonstrated that FGF-2 was predominantly found in the mesenchyme surrounding regenerating crypts. Exogenous recombinant human FGF-2 (rhFGF-2) markedly enhanced crypt stem cell survival when given before irradiation. We conclude that expression of FGF-2 is induced by radiation injury and that rhFGF-2 can enhance crypt stem cell survival after subsequent injury.", "title": "FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury." }, { "docid": "15335331", "text": "BACKGROUND Both tumor-associated macrophages (TAMs) and the epithelial to mesenchymal transition (EMT) of cancer cells play key roles in promoting tumor progression. However, whether TAMs could induce EMT in the progression of oral squamous cell carcinoma (OSCC) remains undefined. \n RESULTS Here we detected the expression of macrophages markers CD68 and CD163, epithelial marker E-cadherin and mesenchymal marker vimentin in 127 OSCC patients by using semi-quantitative immunohistochemistry. CD68 and CD163 expression was not confined to the infiltrating TAMs, but also detected in cancer cells. The high number of CD68-positive macrophages was correlated with poor overall survival. Meanwhile, the expression of CD163 both in macrophages and in cancer cells was associated with poor overall survival and had a significant prognostic impact in OSCC. Importantly, the expression of CD163 in cancer cells had a significant relationship with E-cadherin and vimentin. Furthermore, the incubation of TAMs conditioned medium resulted in a fibroblast-like appearance of cancer cells (HN4, HN6 and SCC9) together with the decreased/increased expression of E-cadherin/ vimentin, which were correlated with the enhanced ability of migration and invasion. \n CONCLUSIONS Our results indicate that TAMs could promote the EMT of cancer cells, thereby leading to the progression of oral cancer.", "title": "Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma" }, { "docid": "7583725", "text": "TRPM7 encodes a Ca2+-permeable nonselective cation channel with kinase activity. TRPM7 has been implicated in control of cell adhesion and migration, but whether TRPM7 activity contributes to cancer progression has not been established. Here we report that high levels of TRPM7 expression independently predict poor outcome in breast cancer patients and that it is functionally required for metastasis formation in a mouse xenograft model of human breast cancer. Mechanistic investigation revealed that TRPM7 regulated myosin II-based cellular tension, thereby modifying focal adhesion number, cell-cell adhesion and polarized cell movement. Our findings therefore suggest that TRPM7 is part of a mechanosensory complex adopted by cancer cells to drive metastasis formation.", "title": "TRPM7 is required for breast tumor cell metastasis." }, { "docid": "15727984", "text": "Non-small cell lung cancer (NSCLC) cells with somatic mutations in K-ras recruit to the tumor a variety of cell types (hereafter collectively termed \"stromal cells\") that can promote or inhibit tumorigenesis by mechanisms that have not been fully elucidated. Here, we postulated that stromal cells in the tumor microenvironment alter the tumor cell secretome, including those proteins required for tumor growth and dissemination, and we developed an in vitro model to test this hypothesis. Coculturing a murine K-ras mutant lung adenocarcinoma cell line (LKR-13) with a murine lung stromal cell (macrophage, endothelial cell, or fibroblast) enhanced stromal cell migration, induced endothelial tube formation, increased LKR-13 cell proliferation, and regulated the secretion of proteins involved in angiogenesis, inflammation, cell proliferation, and epithelial-to-mesenchymal transition. Among these proteins, CXCL1 has been reported to promote NSCLC development, whereas interleukin-18 (IL-18) has an undefined role. Genetic and pharmacologic strategies to inhibit CXCL1 and IL-18 revealed that stromal cell migration, LKR-13 cell proliferation, and LKR-13 cell tumorigenicity required one or both of these proteins. We conclude that stromal cells enhanced LKR-13 cell tumorigenicity partly through their effects on the secretome of LKR-13 cells. Strategies to inhibit tumor/stromal cell interactions may be useful as therapeutic approaches in NSCLC patients.", "title": "Identification of secreted proteins that mediate cell-cell interactions in an in vitro model of the lung cancer microenvironment." } ]
952
Pioglitazone use is not associated with an increased risk of prostate cancer.
[ { "docid": "3355397", "text": "IMPORTANCE Studies suggest pioglitazone use may increase risk of cancers. \n OBJECTIVE To examine whether pioglitazone use for diabetes is associated with risk of bladder and 10 additional cancers. \n DESIGN, SETTING, AND PARTICIPANTS Cohort and nested case-control analyses among persons with diabetes. A bladder cancer cohort followed 193,099 persons aged 40 years or older in 1997-2002 until December 2012; 464 case patients and 464 matched controls were surveyed about additional confounders. A cohort analysis of 10 additional cancers included 236,507 persons aged 40 years or older in 1997-2005 and followed until June 2012. Cohorts were from Kaiser Permanente Northern California. EXPOSURES Ever use, duration, cumulative dose, and time since initiation of pioglitazone as time dependent. \n MAIN OUTCOMES AND MEASURES Incident cancer, including bladder, prostate, female breast, lung/bronchus, endometrial, colon, non-Hodgkin lymphoma, pancreas, kidney/renal pelvis, rectum, and melanoma. \n RESULTS Among 193,099 persons in the bladder cancer cohort, 34,181 (18%) received pioglitazone (median duration, 2.8 years; range, 0.2-13.2 years) and 1261 had incident bladder cancer. Crude incidences of bladder cancer in pioglitazone users and nonusers were 89.8 and 75.9 per 100,000 person-years, respectively. Ever use of pioglitazone was not associated with bladder cancer risk (adjusted hazard ratio [HR], 1.06; 95% CI, 0.89-1.26). Results were similar in case-control analyses (pioglitazone use: 19.6% among case patients and 17.5% among controls; adjusted odds ratio, 1.18; 95% CI, 0.78-1.80). In adjusted analyses, there was no association with 8 of the 10 additional cancers; ever use of pioglitazone was associated with increased risk of prostate cancer (HR, 1.13; 95% CI, 1.02-1.26) and pancreatic cancer (HR, 1.41; 95% CI, 1.16-1.71). Crude incidences of prostate and pancreatic cancer in pioglitazone users vs nonusers were 453.3 vs 449.3 and 81.1 vs 48.4 per 100,000 person-years, respectively. No clear patterns of risk for any cancer were observed for time since initiation, duration, or dose. \n CONCLUSIONS AND RELEVANCE Pioglitazone use was not associated with a statistically significant increased risk of bladder cancer, although an increased risk, as previously observed, could not be excluded. The increased prostate and pancreatic cancer risks associated with ever use of pioglitazone merit further investigation to assess whether they are causal or are due to chance, residual confounding, or reverse causality.", "title": "Pioglitazone Use and Risk of Bladder Cancer and Other Common Cancers in Persons With Diabetes." } ]
[ { "docid": "31229233", "text": "BACKGROUND Patients with type 2 diabetes have a 40% increased risk of bladder cancer. Thiazolidinediones, especially pioglitazone, may increase the risk. We conducted a systematic review and meta-analysis to evaluate the risk of bladder cancer among adults with type 2 diabetes taking thiazolidinediones. \n METHODS We searched key biomedical databases (including MEDLINE, Embase and Scopus) and sources of grey literature from inception through March 2012 for published and unpublished studies, without language restrictions. We included randomized controlled trials (RCTs), cohort studies and case-control studies that reported incident bladder cancer among people with type 2 diabetes who ever (v. never) were exposed to pioglitazone (main outcome), rosiglitazone or any thiazolidinedione. \n RESULTS Of the 1787 studies identified, we selected 4 RCTs, 5 cohort studies and 1 case-control study. The total number of patients was 2,657,365, of whom 3643 had newly diagnosed bladder cancer, for an overall incidence of 53.1 per 100,000 person-years. The one RCT that reported on pioglitazone use found no significant association with bladder cancer (risk ratio [RR] 2.36, 95% confidence interval [CI] 0.91-6.13). The cohort studies of thiazolidinediones (pooled RR 1.15, 95% CI 1.04-1.26; I(2) = 0%) and of pioglitazone specifically (pooled RR 1.22, 95% CI 1.07-1.39; I(2) = 0%) showed significant associations with bladder cancer. No significant association with bladder cancer was observed in the two RCTs that evaluated rosiglitazone use (pooled RR 0.87, 95% CI 0.34-2.23; I(2) = 0%). \n INTERPRETATION The limited evidence available supports the hypothesis that thiazolidinediones, particularly pioglitazone, are associated with an increased risk of bladder cancer among adults with type 2 diabetes.", "title": "Use of thiazolidinediones and the risk of bladder cancer among people with type 2 diabetes: a meta-analysis." }, { "docid": "24581365", "text": "CONTEXT The appropriate therapy for men with clinically localized prostate cancer is uncertain. A recent study suggested an increasing prostate cancer mortality rate for men who are alive more than 15 years following diagnosis. \n OBJECTIVE To estimate 20-year survival based on a competing risk analysis of men who were diagnosed with clinically localized prostate cancer and treated with observation or androgen withdrawal therapy alone, stratified by age at diagnosis and histological findings. \n DESIGN, SETTING, AND PATIENTS A retrospective population-based cohort study using Connecticut Tumor Registry data supplemented by hospital record and histology review of 767 men aged 55 to 74 years with clinically localized prostate cancer diagnosed between January 1, 1971, and December 31, 1984. Patients were treated with either observation or immediate or delayed androgen withdrawal therapy, with a median observation of 24 years. \n MAIN OUTCOME MEASURES Probability of mortality from prostate cancer or other competing medical conditions, given a patient's age at diagnosis and tumor grade. \n RESULTS The prostate cancer mortality rate was 33 per 1000 person-years during the first 15 years of follow-up (95% confidence interval [CI], 28-38) and 18 per 1000 person-years after 15 years of follow-up (95% CI, 10-29). The mortality rates for these 2 follow-up periods were not statistically different, after adjusting for differences in tumor histology (rate ratio, 1.1; 95% CI, 0.6-1.9). Men with low-grade prostate cancers have a minimal risk of dying from prostate cancer during 20 years of follow-up (Gleason score of 2-4, 6 deaths per 1000 person-years; 95% CI, 2-11). Men with high-grade prostate cancers have a high probability of dying from prostate cancer within 10 years of diagnosis (Gleason score of 8-10, 121 deaths per 1000 person-years; 95% CI, 90-156). Men with Gleason score of 5 or 6 tumors have an intermediate risk of prostate cancer death. \n CONCLUSION The annual mortality rate from prostate cancer appears to remain stable after 15 years from diagnosis, which does not support aggressive treatment for localized low-grade prostate cancer.", "title": "20-year outcomes following conservative management of clinically localized prostate cancer." }, { "docid": "4828631", "text": "BACKGROUND High body-mass index (BMI) predisposes to several site-specific cancers, but a large-scale systematic and detailed characterisation of patterns of risk across all common cancers adjusted for potential confounders has not previously been undertaken. We aimed to investigate the links between BMI and the most common site-specific cancers. \n METHODS With primary care data from individuals in the Clinical Practice Research Datalink with BMI data, we fitted Cox models to investigate associations between BMI and 22 of the most common cancers, adjusting for potential confounders. We fitted linear then non-linear (spline) models; investigated effect modification by sex, menopausal status, smoking, and age; and calculated population effects. \n FINDINGS 5·24 million individuals were included; 166,955 developed cancers of interest. BMI was associated with 17 of 22 cancers, but effects varied substantially by site. Each 5 kg/m(2) increase in BMI was roughly linearly associated with cancers of the uterus (hazard ratio [HR] 1·62, 99% CI 1·56-1·69; p<0·0001), gallbladder (1·31, 1·12-1·52; p<0·0001), kidney (1·25, 1·17-1·33; p<0·0001), cervix (1·10, 1·03-1·17; p=0·00035), thyroid (1·09, 1·00-1·19; p=0·0088), and leukaemia (1·09, 1·05-1·13; p≤0·0001). BMI was positively associated with liver (1·19, 1·12-1·27), colon (1·10, 1·07-1·13), ovarian (1·09, 1.04-1.14), and postmenopausal breast cancers (1·05, 1·03-1·07) overall (all p<0·0001), but these effects varied by underlying BMI or individual-level characteristics. We estimated inverse associations with prostate and premenopausal breast cancer risk, both overall (prostate 0·98, 0·95-1·00; premenopausal breast cancer 0·89, 0·86-0·92) and in never-smokers (prostate 0·96, 0·93-0·99; premenopausal breast cancer 0·89, 0·85-0·94). By contrast, for lung and oral cavity cancer, we observed no association in never smokers (lung 0·99, 0·93-1·05; oral cavity 1·07, 0·91-1·26): inverse associations overall were driven by current smokers and ex-smokers, probably because of residual confounding by smoking amount. Assuming causality, 41% of uterine and 10% or more of gallbladder, kidney, liver, and colon cancers could be attributable to excess weight. We estimated that a 1 kg/m(2) population-wide increase in BMI would result in 3790 additional annual UK patients developing one of the ten cancers positively associated with BMI. \n INTERPRETATION BMI is associated with cancer risk, with substantial population-level effects. The heterogeneity in the effects suggests that different mechanisms are associated with different cancer sites and different patient subgroups. \n FUNDING National Institute for Health Research, Wellcome Trust, and Medical Research Council.", "title": "Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults" }, { "docid": "12009265", "text": "CONTEXT Many individuals take vitamins in the hopes of preventing chronic diseases such as cancer, and vitamins E and C are among the most common individual supplements. A large-scale randomized trial suggested that vitamin E may reduce risk of prostate cancer; however, few trials have been powered to address this relationship. No previous trial in men at usual risk has examined vitamin C alone in the prevention of cancer. \n OBJECTIVE To evaluate whether long-term vitamin E or C supplementation decreases risk of prostate and total cancer events among men. \n DESIGN, SETTING, AND PARTICIPANTS The Physicians' Health Study II is a randomized, double-blind, placebo-controlled factorial trial of vitamins E and C that began in 1997 and continued until its scheduled completion on August 31, 2007. A total of 14,641 male physicians in the United States initially aged 50 years or older, including 1307 men with a history of prior cancer at randomization, were enrolled. \n INTERVENTION Individual supplements of 400 IU of vitamin E every other day and 500 mg of vitamin C daily. \n MAIN OUTCOME MEASURES Prostate and total cancer. \n RESULTS During a mean follow-up of 8.0 years, there were 1008 confirmed incident cases of prostate cancer and 1943 total cancers. Compared with placebo, vitamin E had no effect on the incidence of prostate cancer (active and placebo vitamin E groups, 9.1 and 9.5 events per 1000 person-years; hazard ratio [HR], 0.97; 95% confidence interval [CI], 0.85-1.09; P = .58) or total cancer (active and placebo vitamin E groups, 17.8 and 17.3 cases per 1000 person-years; HR, 1.04; 95% CI, 0.95-1.13; P = .41). There was also no significant effect of vitamin C on total cancer (active and placebo vitamin C groups, 17.6 and 17.5 events per 1000 person-years; HR, 1.01; 95% CI, 0.92-1.10; P = .86) or prostate cancer (active and placebo vitamin C groups, 9.4 and 9.2 cases per 1000 person-years; HR, 1.02; 95% CI, 0.90-1.15; P = .80). Neither vitamin E nor vitamin C had a significant effect on colorectal, lung, or other site-specific cancers. Adjustment for adherence and exclusion of the first 4 or 6 years of follow-up did not alter the results. Stratification by various cancer risk factors demonstrated no significant modification of the effect of vitamin E on prostate cancer risk or either agent on total cancer risk. \n CONCLUSIONS In this large, long-term trial of male physicians, neither vitamin E nor C supplementation reduced the risk of prostate or total cancer. These data provide no support for the use of these supplements for the prevention of cancer in middle-aged and older men. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00270647.", "title": "Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians' Health Study II randomized controlled trial." }, { "docid": "8512633", "text": "Long noncoding RNAs (IncRNAs) are increasingly implicated in cancer biology, contributing to essential cancer cell functions such as proliferation, invasion, and metastasis. In prostate cancer, several lncRNAs have been nominated as critical actors in disease pathogenesis. Among these, expression of PCGEM1 and PRNCR1 has been identified as a possible component in disease progression through the coordination of androgen receptor (AR) signaling (Yang et al., Nature 2013, see ref. [1]). However, concerns regarding the robustness of these findings have been suggested. Here, we sought to evaluate whether PCGEM1 and PRNCR1 are associated with prostate cancer. Through a comprehensive analysis of RNA-sequencing data (RNA-seq), we find evidence that PCGEM1 but not PRNCR1 is associated with prostate cancer. We employ a large cohort of >230 high-risk prostate cancer patients with long-term outcomes data to show that, in contrast to prior reports, neither gene is associated with poor patient outcomes. We further observe no evidence that PCGEM1 nor PRNCR1 interact with AR, and neither gene is a component of AR signaling. Thus, we conclusively demonstrate that PCGEM1 and PRNCR1 are not prognostic lncRNAs in prostate cancer and we refute suggestions that these lncRNAs interact in AR signaling.", "title": "The lncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer" }, { "docid": "6790197", "text": "PURPOSE To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. EXPERIMENTAL DESIGN Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays composed of 6,200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative reverse transcription-PCR. \n RESULTS Comparative analyses identified 954 transcript alterations associated with cancer (q < 0.01%), including 149 differentially expressed genes with no known functional roles. Gene expression changes associated with ischemia and surgical removal of the prostate gland were absent. Genes up-regulated in prostate cancer were statistically enriched in categories related to cellular metabolism, energy use, signal transduction, and molecular transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of androgen receptor expression changes was noted. In exploratory analyses, androgen receptor down-regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. \n CONCLUSIONS Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation.", "title": "Prostate cancer-associated gene expression alterations determined from needle biopsies." }, { "docid": "10430148", "text": "CONTEXT No antidiabetic regimen has demonstrated the ability to reduce progression of coronary atherosclerosis. Commonly used oral glucose-lowering agents include sulfonylureas, which are insulin secretagogues, and thiazolidinediones, which are insulin sensitizers. \n OBJECTIVE To compare the effects of an insulin sensitizer, pioglitazone, with an insulin secretagogue, glimepiride, on the progression of coronary atherosclerosis in patients with type 2 diabetes. \n DESIGN, SETTING, AND PARTICIPANTS Double-blind, randomized, multicenter trial at 97 academic and community hospitals in North and South America (enrollment August 2003-March 2006) in 543 patients with coronary disease and type 2 diabetes. \n INTERVENTIONS A total of 543 patients underwent coronary intravascular ultrasonography and were randomized to receive glimepiride, 1 to 4 mg, or pioglitazone, 15 to 45 mg, for 18 months with titration to maximum dosage, if tolerated. Atherosclerosis progression was measured by repeat intravascular ultrasonography examination in 360 patients at study completion. \n MAIN OUTCOME MEASURE Change in percent atheroma volume (PAV) from baseline to study completion. \n RESULTS Least squares mean PAV increased 0.73% (95% CI, 0.33% to 1.12%) with glimepiride and decreased 0.16% (95% CI, -0.57% to 0.25%) with pioglitazone(P = .002). An alternative analysis imputing values for noncompleters based on baseline characteristics showed an increase in PAV of 0.64% (95% CI, 0.23% to 1.05%) for glimepiride and a decrease of 0.06% (-0.47% to 0.35%) for pioglitazone (between-group P = .02). Mean (SD) baseline HbA(1c) levels were 7.4% (1.0%) in both groups and declined during treatment an average 0.55% (95% CI, -0.68% to -0.42%) with pioglitazone and 0.36% (95% CI, -0.48% to -0.24%) with glimepiride (between-group P = .03). In the pioglitazone group, compared with glimepiride, high-density lipoprotein levels increased 5.7 mg/dL (95% CI, 4.4 to 7.0 mg/dL; 16.0%) vs 0.9 mg/dL (95% CI, -0.3 to 2.1 mg/dL; 4.1%), and median triglyceride levels decreased 16.3 mg/dL (95% CI, -27.7 to -11.0 mg/dL; 15.3%) vs an increase of 3.3 mg/dL (95% CI, -10.7 to 11.7 mg/dL; 0.6%) (P < .001 for both comparisons). Median fasting insulin levels decreased with pioglitazone and increased with glimepiride (P < .001). Hypoglycemia was more common in the glimepiride group and edema, fractures, and decreased hemoglobin levels occurred more frequently in the pioglitazone group. \n CONCLUSION In patients with type 2 diabetes and coronary artery disease, treatment with pioglitazone resulted in a significantly lower rate of progression of coronary atherosclerosis compared with glimepiride. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00225277.", "title": "Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial." }, { "docid": "10024681", "text": "Deregulation of microRNA (miRNA) expression can have a critical role in carcinogenesis. Here we show in prostate cancer that miRNA-205 (miR-205) transcription is commonly repressed and the MIR-205 locus is hypermethylated. LOC642587, the MIR-205 host gene of unknown function, is also concordantly inactivated. We show that miR-205 targets mediator 1 (MED1, also called TRAP220 and PPARBP) for transcriptional silencing in normal prostate cells, leading to reduction in MED1 mRNA levels, and in total and active phospho-MED1 protein. Overexpression of miR-205 in prostate cancer cells negatively affects cell viability, consistent with a tumor suppressor function. We found that hypermethylation of the MIR-205 locus was strongly related with a decrease in miR-205 expression and an increase in MED1 expression in primary tumor samples (n=14), when compared with matched normal prostate (n=7). An expanded patient cohort (tumor n=149, matched normal n=30) also showed significant MIR-205 DNA methylation in tumors compared with normal, and MIR-205 hypermethylation is significantly associated with biochemical recurrence (hazard ratio=2.005, 95% confidence interval (1.109, 3.625), P=0.02), in patients with low preoperative prostate specific antigen. In summary, these results suggest that miR-205 is an epigenetically regulated tumor suppressor that targets MED1 and may provide a potential biomarker in prostate cancer management.", "title": "Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer" }, { "docid": "8037453", "text": "PURPOSE Three large, randomized trials of patients with bone metastases recently demonstrated that zoledronic acid reduces the risk of skeletal-related events. These trials provide an opportunity for investigating the correlation between bone metabolism and clinical outcome during bisphosphonate therapy. \n PATIENTS AND METHODS Urinary measurements of N-telopeptide (Ntx) and serum bone alkaline phosphatase (BAP) were obtained in 1,824 bisphosphonate-treated patients-1,462 with zoledronic acid (breast, 490; prostate, 411; myeloma, 210; non-small-cell lung, 183; other, 168) and 362 with pamidronate (breast, 254; myeloma, 108). This exploratory cohort analysis grouped patients by baseline and most recent levels of Ntx as low (< 50 nmol/mmol creatinine), moderate (50 to 99 nmol/mmol creatinine), or high (> or = 100 nmol/mmol creatinine), and BAP as low (< 146 U/L) or high (> or = 146 U/L). The relative risks for negative clinical outcomes were estimated for each group using multiple-event and Cox regression models with time-varying covariates. \n RESULTS Patients with high and moderate Ntx levels had 2-fold increases in their risk of skeletal complications and disease progression compared with patients with low Ntx levels (P < .001 for all). High Ntx levels in each solid tumor category were associated with a 4- to 6-fold increased risk of death on study, and moderate Ntx levels a 2- to 4-fold increased risk compared with low Ntx levels (P < .001 for all). Bone alkaline phosphatase also showed some correlation with risk of negative clinical outcomes. \n CONCLUSION The bone resorption marker Ntx provides valuable prognostic information in patients with bone metastases receiving bisphosphonates.", "title": "Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid." }, { "docid": "10699587", "text": "PURPOSE Gleason score (GS), T stage, and pathologic lymph node status have been described as major independent predictors of death due to prostate cancer in men treated with external beam radiotherapy (XRT). In this analysis we combine these three factors to define prognostic subgroups that correlate with disease-specific survival (DSS) death from prostate cancer. \n METHODS AND MATERIALS Men entered on one of four Radiation Therapy Oncology Group (RTOG) Phase III randomized trials between 1975 and 1992, for clinically localized prostate cancer (CAP) (n = 1557), were selected for this analysis. Patients were included if: 1) they were evaluable, and eligible for the trial; 2) they received no hormonal therapy with their initial treatment; and 3) follow-up was available. For this study a DSS event was declared if: 1) death was certified as due to CAP; 2) death was due to complications of treatment; or 3) death was from unknown causes with active malignancy. The median follow-up for patients treated on early and late RTOG studies exceeded 11 and 6 years respectively. Subgroups were identified based on their pretreatment GS, T-stage, and lymph node such that patients with similar risk of dying from prostate cancer were combined. \n RESULTS By combining patients with similar DSS, four subgroups were identified. Risk Group 1 patients had a GS = 2-6, and T1-2Nx; Group 2: GS = 2-6, T3Nx; or GS = 2-6, N+, or GS = 7, T1-2Nx; Group 3: T3Nx, GS = 7; or N+, GS = 7, or T1-2Nx, GS = 8-10; and Group 4 patients were T3Nx, GS = 8-10, or N+, GS = 8-10. The 5-, 10-, and 15-year DSS was 96%, 86%, and 72%; 94%, 75%, and 61%; 83%, 62%, and 39%; and 64%, 34%, and 27% for Groups 1 through 4, respectively. \n CONCLUSIONS Recognition of these four risk groups provides a basis for estimating the long-term DSS for men treated with XRT alone and should facilitate the design of future prospective randomized trials.", "title": "Four prognostic groups predict long-term survival from prostate cancer following radiotherapy alone on Radiation Therapy Oncology Group clinical trials." }, { "docid": "6327940", "text": "Amino acids modulate the secretion of both insulin and glucagon; the composition of dietary protein therefore has the potential to influence the balance of glucagon and insulin activity. Soy protein, as well as many other vegan proteins, are higher in non-essential amino acids than most animal-derived food proteins, and as a result should preferentially favor glucagon production. Acting on hepatocytes, glucagon promotes (and insulin inhibits) cAMP-dependent mechanisms that down-regulate lipogenic enzymes and cholesterol synthesis, while up-regulating hepatic LDL receptors and production of the IGF-I antagonist IGFBP-1. The insulin-sensitizing properties of many vegan diets--high in fiber, low in saturated fat--should amplify these effects by down-regulating insulin secretion. Additionally, the relatively low essential amino acid content of some vegan diets may decrease hepatic IGF-I synthesis. Thus, diets featuring vegan proteins can be expected to lower elevated serum lipid levels, promote weight loss, and decrease circulating IGF-I activity. The latter effect should impede cancer induction (as is seen in animal studies with soy protein), lessen neutrophil-mediated inflammatory damage, and slow growth and maturation in children. In fact, vegans tend to have low serum lipids, lean physiques, shorter stature, later puberty, and decreased risk for certain prominent 'Western' cancers; a vegan diet has documented clinical efficacy in rheumatoid arthritis. Low-fat vegan diets may be especially protective in regard to cancers linked to insulin resistance--namely, breast and colon cancer--as well as prostate cancer; conversely, the high IGF-I activity associated with heavy ingestion of animal products may be largely responsible for the epidemic of 'Western' cancers in wealthy societies. Increased phytochemical intake is also likely to contribute to the reduction of cancer risk in vegans. Regression of coronary stenoses has been documented during low-fat vegan diets coupled with exercise training; such regimens also tend to markedly improve diabetic control and lower elevated blood pressure. Risk of many other degenerative disorders may be decreased in vegans, although reduced growth factor activity may be responsible for an increased risk of hemorrhagic stroke. By altering the glucagon/insulin balance, it is conceivable that supplemental intakes of key non-essential amino acids could enable omnivores to enjoy some of the health advantages of a vegan diet. An unnecessarily high intake of essential amino acids--either in the absolute sense or relative to total dietary protein--may prove to be as grave a risk factor for 'Western' degenerative diseases as is excessive fat intake.", "title": "Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity." }, { "docid": "24450344", "text": "PURPOSE We evaluated the long-term outcome of radical prostatectomy for pathological Gleason score 8 or greater prostate cancer and characterized the prognostic significance of other pathological variables. MATERIALS AND METHODS A total of 6,419 patients underwent radical prostatectomy between 1987 and 1996. There were 407 patients classified as having pathological Gleason 8 or greater, including 8 in 48%, 9 in 49% and 10 in 3%. Adjuvant treatment was used in 45% of patients and adjuvant hormonal therapy was administered to 155 (38%). Progression-free, including local or systemic, and/or prostate specific antigen (PSA) 0.4 ng./ml. or greater, and cancer specific survival were determined by the Kaplan-Meier method. The effect of pathological grade and stage, preoperative PSA, DNA ploidy, margin status, tumor dimension, seminal vesicle invasion, and adjuvant treatment was assessed with the univariate and multivariate analyses. \n RESULTS Pathological stage distribution was pT2 in 26% of patients, pT3 48% and pTxN+ 27%. Overall and progression-free survival at 10 years was 67% and 36%, respectively, compared to cancer specific survival 85%. Adjuvant treatment, pathological stage, preoperative PSA and pathological grade were significant (less than 0.05) univariate predictors of progression-free survival. Pathological stage, margin status and ploidy were univariately associated with cancer specific survival. Progression-free survival at 10 years of those patients who did and did not receive adjuvant treatment was 52% and 23%, respectively. In the multivariate analysis pathological grade (p=0.02), preoperative PSA (p <0.0001), adjuvant therapy (p <0.0001) and pathological stage (p=0.036) were significant independent predictors of progression-free survival. \n CONCLUSIONS High grade prostate cancer can be controlled with radical prostatectomy in some patients with disease confined pathologically, and 10-year cause specific survival is 96%. Predictors of outcome in patients with Gleason 8 disease or greater are similar to established predictors derived by using all grades. Although adjuvant hormonal therapy appears to improve disease progression rates after radical prostatectomy on the basis of this nonrandomized study, it may not affect prostate cancer death rates within 10 years in patients with high grade cancer.", "title": "Radical prostatectomy for pathological Gleason 8 or greater prostate cancer: influence of concomitant pathological variables." }, { "docid": "27167110", "text": "BACKGROUND Androgens play a critical role in the growth of both androgen dependent and castration-resistant prostate cancer (CRPC). Only a few micro-RNAs (miRNAs) have been suggested to be androgen regulated. We aim to identify androgen regulated miRNAs. \n METHODS We utilized LNCaP derived model, we have established, and which overexpresses the androgen receptor (AR), the VCaP cell line, and 13 intact-castrated prostate cancer (PC) xenograft pairs, as well as clinical specimens of untreated (PC) and CRPC. The expression of miRNAs was analyzed by microarrays and quantitative RT-PCR (Q-RT-PCR). Transfection of pre-miR-141 and anti-miR-141 was also used. \n RESULTS Seventeen miRNAs were > 1.5-fold up- or downregulated upon dihydrotestosterone (DHT) treatment in the cell lines, and 42 after castration in the AR-positive xenografts. Only four miRNAs (miR-10a, miR-141, miR-150*, and miR-1225-5p) showed similar androgen regulation in both cell lines and xenografts. Of those, miR-141 was found to be expressed more in PC and CRPC compared to benign prostate hyperplasia. Additionally, the overexpression of miR-141 enhanced growth of parental LNCaP cells while inhibition of miR-141 by anti-miR-141 suppressed the growth of the LNCaP subline overexpressing AR. \n CONCLUSIONS Only a few miRNAs were found to be androgen-regulated in both cell lines and xenografts models. Of those, the expression of miR-141 was upregulated in cancer. The ectopic overexpression of miR-141 increased growth of LNCaP cell suggesting it may contribute to the progression of PC.", "title": "Androgen regulation of micro-RNAs in prostate cancer." }, { "docid": "24873253", "text": "Patients with metastatic bone disease are at risk for developing skeletal-related events that can negatively influence quality of life, contributing to loss of autonomy and functional capabilities. Bisphosphonates have become an important component in the treatment of patients with bone metastases as they delay the onset and reduce the risk of skeletal-related events and also palliate or control bone pain in multiple cancer types, thus preserving quality of life. Zoledronic acid has proven efficacy and safety in patients with bone lesions from breast cancer, prostate cancer, lung cancer, and other solid tumors, as well as in patients with multiple myeloma. Current data suggest that early treatment with zoledronic acid (before the onset of bone pain) may provide additional clinical benefits and also positive effects on survival in subsets of patients who have elevated levels of N-telopeptide of type I collagen (NTX), a biochemical marker of bone resorption. Studies have shown that in patients with breast cancer, prostate cancer, lung cancer, or other solid tumors, normalization of elevated levels of NTX was observed in the majority of patients who received zoledronic acid. Furthermore, normalization of NTX values correlated with extended survival.", "title": "Clinical benefits and considerations of bisphosphonate treatment in metastatic bone disease." }, { "docid": "25513319", "text": "Metabolic pathway reprogramming is a hallmark of cancer cell growth and survival and supports the anabolic and energetic demands of these rapidly dividing cells. The underlying regulators of the tumor metabolic program are not completely understood; however, these factors have potential as cancer therapy targets. Here, we determined that upregulation of the oncogenic transcriptional coregulator steroid receptor coactivator 2 (SRC-2), also known as NCOA2, drives glutamine-dependent de novo lipogenesis, which supports tumor cell survival and eventual metastasis. SRC-2 was highly elevated in a variety of tumors, especially in prostate cancer, in which SRC-2 was amplified and overexpressed in 37% of the metastatic tumors evaluated. In prostate cancer cells, SRC-2 stimulated reductive carboxylation of α-ketoglutarate to generate citrate via retrograde TCA cycling, promoting lipogenesis and reprogramming of glutamine metabolism. Glutamine-mediated nutrient signaling activated SRC-2 via mTORC1-dependent phosphorylation, which then triggered downstream transcriptional responses by coactivating SREBP-1, which subsequently enhanced lipogenic enzyme expression. Metabolic profiling of human prostate tumors identified a massive increase in the SRC-2-driven metabolic signature in metastatic tumors compared with that seen in localized tumors, further implicating SRC-2 as a prominent metabolic coordinator of cancer metastasis. Moreover, SRC-2 inhibition in murine models severely attenuated the survival, growth, and metastasis of prostate cancer. Together, these results suggest that the SRC-2 pathway has potential as a therapeutic target for prostate cancer.", "title": "Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis." }, { "docid": "25121903", "text": "The number of cancer survivors continues to increase due to the aging and growth of the population and improvements in early detection and treatment. In order for the public health community to better serve these survivors, the American Cancer Society and the National Cancer Institute collaborated to estimate the number of current and future cancer survivors using data from the Surveillance, Epidemiology, and End Results (SEER) program registries. In addition, current treatment patterns for the most common cancer types are described based on information in the National Cancer Data Base and the SEER and SEER-Medicare linked databases; treatment-related side effects are also briefly described. Nearly 14.5 million Americans with a history of cancer were alive on January 1, 2014; by January 1, 2024, that number will increase to nearly 19 million. The 3 most common prevalent cancers among males are prostate cancer (43%), colorectal cancer (9%), and melanoma (8%), and those among females are cancers of the breast (41%), uterine corpus (8%), and colon and rectum (8%). The age distribution of survivors varies substantially by cancer type. For example, the majority of prostate cancer survivors (62%) are aged 70 years or older, whereas less than one-third (32%) of melanoma survivors are in this older age group. It is important for clinicians to understand the unique medical and psychosocial needs of cancer survivors and to proactively assess and manage these issues. There are a growing number of resources that can assist patients, caregivers, and health care providers in navigating the various phases of cancer survivorship.", "title": "Cancer treatment and survivorship statistics, 2014." }, { "docid": "22180793", "text": "The transition from androgen-dependent to castration-resistant prostate cancer (CRPC) is a lethal event of uncertain molecular etiology. Comparing gene expression in isogenic androgen-dependent and CRPC xenografts, we found a reproducible increase in N-cadherin expression, which was also elevated in primary and metastatic tumors of individuals with CRPC. Ectopic expression of N-cadherin in nonmetastatic, androgen-dependent prostate cancer models caused castration resistance, invasion and metastasis. Monoclonal antibodies against the ectodomain of N-cadherin reduced proliferation, adhesion and invasion of prostate cancer cells in vitro. In vivo, these antibodies slowed the growth of multiple established CRPC xenografts, blocked local invasion and metastasis and, at higher doses, led to complete regression. N-cadherin–specific antibodies markedly delayed the time to emergence of castration resistance, markedly affected tumor histology and angiogenesis, and reduced both AKT serine-threonine kinase activity and serum interleukin-8 (IL-8) secretion. These data indicate that N-cadherin is a major cause of both prostate cancer metastasis and castration resistance. Therapeutic targeting of this factor with monoclonal antibodies may have considerable clinical benefit.", "title": "Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance" }, { "docid": "5372432", "text": "BACKGROUND There is some previous evidence that diagnosis of cancer at death, recorded as registry death certificate only records, is associated with problems of access to care. \n METHODS Records from the Northern and Yorkshire Cancer Registry for patients registered with breast, colorectal, lung, ovarian or prostate cancer between 1994 and 2002 were supplemented with measures of travel time to general practitioner and hospital services, and social deprivation. Logistic regression was used to identify predictors of records where diagnosis was at death. \n RESULTS There was no association between the odds diagnosis at death and access to primary care. For all sites except breast, the highest odds of being a cancer diagnosed at death fell among those living in the highest quartile of hospital travel time, although it was only statistically significant for colorectal and ovary tumours. Those in the most deprived and furthest travel time to hospital quartile were 2.6 times more likely to be a diagnosis at death case compared with those in the most affluent and proximal areas. \n CONCLUSIONS There is some evidence that poorer geographical access to tertiary care, in particular when coupled with social disadvantages, may be associated with increased odds of diagnosis at death.", "title": "Geographical access to healthcare in Northern England and post-mortem diagnosis of cancer." }, { "docid": "9956893", "text": "OBJECTIVE Advances made in the past ten years highlight the notion that peroxisome proliferator-activated receptors gamma (PPARγ) has protective properties in the pathophysiology of osteoarthritis (OA). The aim of this study was to define the roles of PPARγ in AGEs-induced inflammatory response in human chondrocytes. \n METHODS Primary human chondrocytes were stimulated with AGEs in the presence or absence of neutralizing antibody against RAGE (anti-RAGE), MAPK specific inhibitors and PPARγ agonist pioglitazone. The expression of IL-1, MMP-13, TNF-α, PPARγ, nuclear NF-κB p65 and cytosol IκBα was determined by western blotting and real-time PCR. \n RESULTS AGEs could enhance the expression of IL-1, TNF-α, and MMP-13, but the level of PPARγ was decreased in a time- and dose-dependent manner, which was inhibited by anti-RAGE, SB203580 (P38 MAPK specific inhibitor) and SP600125 (a selective inhibitor of JNK). PPARγ agonist pioglitazone could inhibit the effects of AGEs-induced inflammatory response and PPARγ down-regulation. In human chondrocytes, AGEs could induce cytosol IκBα degradation and increase the level of nuclear NF-κB p65, which was inhibited by PPARγ agonist pioglitazone. \n CONCLUSIONS In primary human chondrocytes, AGEs could down-regulate PPARγ expression and increase the inflammatory mediators, which could be reversed by PPARγ agonist pioglitazone. Activation of RAGE by AGEs triggers a cascade of downstream signaling, including MAPK JNK/ p38, PPARγ and NF-κB. Taken together, PPARγ could be a potential target for pharmacologic intervention in the treatment of OA.", "title": "The Role of PPARγ in Advanced Glycation End Products-Induced Inflammatory Response in Human Chondrocytes" } ]
953
Pioglitazone use is significantly associated with an increased risk of pancreatic cancer.
[ { "docid": "3355397", "text": "IMPORTANCE Studies suggest pioglitazone use may increase risk of cancers. \n OBJECTIVE To examine whether pioglitazone use for diabetes is associated with risk of bladder and 10 additional cancers. \n DESIGN, SETTING, AND PARTICIPANTS Cohort and nested case-control analyses among persons with diabetes. A bladder cancer cohort followed 193,099 persons aged 40 years or older in 1997-2002 until December 2012; 464 case patients and 464 matched controls were surveyed about additional confounders. A cohort analysis of 10 additional cancers included 236,507 persons aged 40 years or older in 1997-2005 and followed until June 2012. Cohorts were from Kaiser Permanente Northern California. EXPOSURES Ever use, duration, cumulative dose, and time since initiation of pioglitazone as time dependent. \n MAIN OUTCOMES AND MEASURES Incident cancer, including bladder, prostate, female breast, lung/bronchus, endometrial, colon, non-Hodgkin lymphoma, pancreas, kidney/renal pelvis, rectum, and melanoma. \n RESULTS Among 193,099 persons in the bladder cancer cohort, 34,181 (18%) received pioglitazone (median duration, 2.8 years; range, 0.2-13.2 years) and 1261 had incident bladder cancer. Crude incidences of bladder cancer in pioglitazone users and nonusers were 89.8 and 75.9 per 100,000 person-years, respectively. Ever use of pioglitazone was not associated with bladder cancer risk (adjusted hazard ratio [HR], 1.06; 95% CI, 0.89-1.26). Results were similar in case-control analyses (pioglitazone use: 19.6% among case patients and 17.5% among controls; adjusted odds ratio, 1.18; 95% CI, 0.78-1.80). In adjusted analyses, there was no association with 8 of the 10 additional cancers; ever use of pioglitazone was associated with increased risk of prostate cancer (HR, 1.13; 95% CI, 1.02-1.26) and pancreatic cancer (HR, 1.41; 95% CI, 1.16-1.71). Crude incidences of prostate and pancreatic cancer in pioglitazone users vs nonusers were 453.3 vs 449.3 and 81.1 vs 48.4 per 100,000 person-years, respectively. No clear patterns of risk for any cancer were observed for time since initiation, duration, or dose. \n CONCLUSIONS AND RELEVANCE Pioglitazone use was not associated with a statistically significant increased risk of bladder cancer, although an increased risk, as previously observed, could not be excluded. The increased prostate and pancreatic cancer risks associated with ever use of pioglitazone merit further investigation to assess whether they are causal or are due to chance, residual confounding, or reverse causality.", "title": "Pioglitazone Use and Risk of Bladder Cancer and Other Common Cancers in Persons With Diabetes." } ]
[ { "docid": "31229233", "text": "BACKGROUND Patients with type 2 diabetes have a 40% increased risk of bladder cancer. Thiazolidinediones, especially pioglitazone, may increase the risk. We conducted a systematic review and meta-analysis to evaluate the risk of bladder cancer among adults with type 2 diabetes taking thiazolidinediones. \n METHODS We searched key biomedical databases (including MEDLINE, Embase and Scopus) and sources of grey literature from inception through March 2012 for published and unpublished studies, without language restrictions. We included randomized controlled trials (RCTs), cohort studies and case-control studies that reported incident bladder cancer among people with type 2 diabetes who ever (v. never) were exposed to pioglitazone (main outcome), rosiglitazone or any thiazolidinedione. \n RESULTS Of the 1787 studies identified, we selected 4 RCTs, 5 cohort studies and 1 case-control study. The total number of patients was 2,657,365, of whom 3643 had newly diagnosed bladder cancer, for an overall incidence of 53.1 per 100,000 person-years. The one RCT that reported on pioglitazone use found no significant association with bladder cancer (risk ratio [RR] 2.36, 95% confidence interval [CI] 0.91-6.13). The cohort studies of thiazolidinediones (pooled RR 1.15, 95% CI 1.04-1.26; I(2) = 0%) and of pioglitazone specifically (pooled RR 1.22, 95% CI 1.07-1.39; I(2) = 0%) showed significant associations with bladder cancer. No significant association with bladder cancer was observed in the two RCTs that evaluated rosiglitazone use (pooled RR 0.87, 95% CI 0.34-2.23; I(2) = 0%). \n INTERPRETATION The limited evidence available supports the hypothesis that thiazolidinediones, particularly pioglitazone, are associated with an increased risk of bladder cancer among adults with type 2 diabetes.", "title": "Use of thiazolidinediones and the risk of bladder cancer among people with type 2 diabetes: a meta-analysis." }, { "docid": "26058927", "text": "Thiazolidinediones (TZDs) improve glycemic control and insulin sensitivity in patients with type 2 diabetes mellitus (T2DM). There is growing evidence from in vivo and in vitro studies that TZDs improve pancreatic beta-cell function. The aim of this study was to determine whether TZD-induced improvement in glycemic control is associated with improved beta-cell function. We studied 11 normal glucose-tolerant and 53 T2DM subjects [age 53+/-2 yr; BMI 29.4+/-0.8 kg/m2; fasting plasma glucose (FPG) 10.3+/-0.4 mM; Hb A1c 8.2+/-0.3%]. Diabetic patients were randomized to receive placebo or TZD for 4 mo. Subjects received 1) 2-h OGTT with determination of plasma glucose, insulin, and C-peptide concentrations and 2) two-step euglycemic insulin (40 and 160 mU.m-2.min-1) clamp with [3-(3)H]glucose. T2DM patients were then randomized to receive 4 mo of treatment with pioglitazone (45 mg/day), rosiglitazone (8 mg/day), or placebo. Pioglitazone and rosiglitazone similarly improved FPG, mean plasma glucose during OGTT, Hb A1c, and insulin-mediated total body glucose disposal (Rd) and decreased mean plasma FFA during OGTT (all P<0.01, ANOVA). The insulin secretion/insulin resistance (disposition) index [DeltaISR(AUC)/Deltaglucose(AUC)/IR] was significantly improved in all TZD-treated groups: +1.8+/-0.7 (PIO+drug-naïve diabetics), +0.7+/-0.3 (PIO+sulfonylurea-treated diabetics), and 0.7+/-0.2 (ROSI+sulfonylurea-withdrawn diabetics) vs. -0.2+/-0.3 in the two placebo groups (P<0.01, all TZDs vs. placebo, ANOVA). Improved insulin secretion correlated positively with increased body weight, fat mass, and Rd and inversely with decreased plasma glucose and FFA during the OGTT. In T2DM patients, TZD treatment leads to improved beta-cell function, which correlates strongly with improved glycemic control.", "title": "Thiazolidinediones improve beta-cell function in type 2 diabetic patients." }, { "docid": "4959368", "text": "Most patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed with advanced disease and survive less than 12 months. PDAC has been linked with obesity and glucose intolerance, but whether changes in circulating metabolites are associated with early cancer progression is unknown. To better understand metabolic derangements associated with early disease, we profiled metabolites in prediagnostic plasma from individuals with pancreatic cancer (cases) and matched controls from four prospective cohort studies. We find that elevated plasma levels of branched-chain amino acids (BCAAs) are associated with a greater than twofold increased risk of future pancreatic cancer diagnosis. This elevated risk was independent of known predisposing factors, with the strongest association observed among subjects with samples collected 2 to 5 years before diagnosis, when occult disease is probably present. We show that plasma BCAAs are also elevated in mice with early-stage pancreatic cancers driven by mutant Kras expression but not in mice with Kras-driven tumors in other tissues, and that breakdown of tissue protein accounts for the increase in plasma BCAAs that accompanies early-stage disease. Together, these findings suggest that increased whole-body protein breakdown is an early event in development of PDAC.", "title": "Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development" }, { "docid": "16630996", "text": "To identify predictive molecular markers for gemcitabine resistance, we investigated changes in the expression of four genes associated with gemcitabine transport and metabolism during the development of acquired gemcitabine resistance of pancreatic cancer cell lines. The expression levels of human equilibrative nucleoside transporter-1 (hENT1), deoxycytidine kinase (dCK), RRM1, and RRM2 mRNA were analysed by real-time light cycler-PCR in various subclones during the development of acquired resistance to gemcitabine. Real-time light cycler-PCR demonstrated that the expression levels of either RRM1 or RRM2 progressively increased during the development of gemcitabine resistance. Expression of dCK was slightly increased in cells resistant to lower concentrations of gemcitabine, but was decreased below the undetectable level in higher concentration-resistant subclones. Expression of hENT1 was increased in the development of gemcitabine resistance. As acquired resistance to gemcitabine seems to correlate with the balance of these four factors, we calculated the ratio of hENT1 × dCK/RRM1 × RRM2 gene expression in gemcitabine-resistant subclones. The ratio of gene expression decreased progressively with development of acquired resistance in gemcitabine-resistant subclones. Furthermore, the expression ratio significantly correlated with gemcitabine sensitivity in eight pancreatic cancer cell lines, whereas no single gene expression level correlated with the sensitivity. These results suggest that the sensitivity of pancreatic cancer cells to gemcitabine is determined by the ratio of four factors involved in gemcitabine transport and metabolism. The ratio of the four gene expression levels correlates with acquired gemcitabine-resistance in pancreatic cancer cells, and may be useful as a predictive marker for the efficacy of gemcitabine therapy in pancreatic cancer patients.", "title": "Gemcitabine chemoresistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells" }, { "docid": "9831859", "text": "Pancreatic stellate cells (PSC) produce the stromal reaction in pancreatic cancer, but their role in cancer progression is not fully elucidated. We examined the influence of PSCs on pancreatic cancer growth using (a) an orthotopic model of pancreatic cancer and (b) cultured human PSCs (hPSC) and human pancreatic cancer cell lines MiaPaCa-2 and Panc-1. Athymic mice received an intrapancreatic injection of saline, hPSCs, MiaPaCa-2 cells, or hPSCs + MiaPaCa-2. After 7 weeks, tumor size, metastases, and tumor histology were assessed. In vitro studies assessed the effect of cancer cell secretions on PSC migration and the effect of hPSC secretions on cancer cell proliferation, apoptosis, and migration. Possible mediators of the effects of hPSC secretions on cancer cell proliferation were examined using neutralizing antibodies. Compared with mice receiving MiaPaCa-2 cells alone, mice injected with hPSCs + MiaPaCa-2 exhibited (a) increased tumor size and regional and distant metastasis, (b) fibrotic bands (desmoplasia) containing activated PSCs within tumors, and (c) increased tumor cell numbers. In vitro studies showed that, in the presence of pancreatic cancer cells, PSC migration was significantly increased. Furthermore, hPSC secretions induced the proliferation and migration, but inhibited the apoptosis, of MiaPaCa-2 and Panc-1 cells. The proliferative effect of hPSC secretions on pancreatic cancer cells was inhibited in the presence of neutralizing antibody to platelet-derived growth factor. Our studies indicate a significant interaction between pancreatic cancer cells and stromal cells (PSCs) and imply that pancreatic cancer cells recruit stromal cells to establish an environment that promotes cancer progression.", "title": "Pancreatic stellate cells: partners in crime with pancreatic cancer cells." }, { "docid": "10430148", "text": "CONTEXT No antidiabetic regimen has demonstrated the ability to reduce progression of coronary atherosclerosis. Commonly used oral glucose-lowering agents include sulfonylureas, which are insulin secretagogues, and thiazolidinediones, which are insulin sensitizers. \n OBJECTIVE To compare the effects of an insulin sensitizer, pioglitazone, with an insulin secretagogue, glimepiride, on the progression of coronary atherosclerosis in patients with type 2 diabetes. \n DESIGN, SETTING, AND PARTICIPANTS Double-blind, randomized, multicenter trial at 97 academic and community hospitals in North and South America (enrollment August 2003-March 2006) in 543 patients with coronary disease and type 2 diabetes. \n INTERVENTIONS A total of 543 patients underwent coronary intravascular ultrasonography and were randomized to receive glimepiride, 1 to 4 mg, or pioglitazone, 15 to 45 mg, for 18 months with titration to maximum dosage, if tolerated. Atherosclerosis progression was measured by repeat intravascular ultrasonography examination in 360 patients at study completion. \n MAIN OUTCOME MEASURE Change in percent atheroma volume (PAV) from baseline to study completion. \n RESULTS Least squares mean PAV increased 0.73% (95% CI, 0.33% to 1.12%) with glimepiride and decreased 0.16% (95% CI, -0.57% to 0.25%) with pioglitazone(P = .002). An alternative analysis imputing values for noncompleters based on baseline characteristics showed an increase in PAV of 0.64% (95% CI, 0.23% to 1.05%) for glimepiride and a decrease of 0.06% (-0.47% to 0.35%) for pioglitazone (between-group P = .02). Mean (SD) baseline HbA(1c) levels were 7.4% (1.0%) in both groups and declined during treatment an average 0.55% (95% CI, -0.68% to -0.42%) with pioglitazone and 0.36% (95% CI, -0.48% to -0.24%) with glimepiride (between-group P = .03). In the pioglitazone group, compared with glimepiride, high-density lipoprotein levels increased 5.7 mg/dL (95% CI, 4.4 to 7.0 mg/dL; 16.0%) vs 0.9 mg/dL (95% CI, -0.3 to 2.1 mg/dL; 4.1%), and median triglyceride levels decreased 16.3 mg/dL (95% CI, -27.7 to -11.0 mg/dL; 15.3%) vs an increase of 3.3 mg/dL (95% CI, -10.7 to 11.7 mg/dL; 0.6%) (P < .001 for both comparisons). Median fasting insulin levels decreased with pioglitazone and increased with glimepiride (P < .001). Hypoglycemia was more common in the glimepiride group and edema, fractures, and decreased hemoglobin levels occurred more frequently in the pioglitazone group. \n CONCLUSION In patients with type 2 diabetes and coronary artery disease, treatment with pioglitazone resulted in a significantly lower rate of progression of coronary atherosclerosis compared with glimepiride. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00225277.", "title": "Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial." }, { "docid": "23577867", "text": "Conditions related to chronic hyperinsulinemia, such as obesity, noninsulin dependent diabetes mellitus and polycystic ovary syndrome, are associated with an increased risk of endometrial cancer. Elevated plasma IGF-I and decreased levels of IGF-binding proteins have been shown to be associated with increased risk of several cancer types that are frequent in affluent societies. We investigated for the first time in a prospective study the association of pre-diagnostic blood concentrations of C-peptide (a marker of pancreatic insulin production), IGF-I, IGFBP-1, -2 and -3 with endometrial cancer risk. A case-control study was nested within 3 cohorts in New York (USA), Umeå (Sweden) and Milan (Italy). It included 166 women with primary invasive endometrial cancer and 315 matched controls, of which 44 case and 78 control subjects were premenopausal at recruitment. Endometrial cancer risk increased with increasing levels of C-peptide (ptrend = 0.0002), up to an odds ratio (OR) of 4.76 [95% confidence interval (CI) = 1.91-11.8] for the highest quintile. This association remained after adjustment for BMI and other confounders [OR for the top quintile = 4.40 (1.65-11.7)]. IGFBP-1 levels were inversely related to endometrial cancer [ptrend = 0.002; OR in the upper quintile = 0.30 (0.15-0.62)], but the association was weakened and lost statistical significance after adjustment for confounders [ptrend = 0.06; OR in the upper quintile = 0.49 (0.22-1.07)]. Risk was unrelated to levels of IGF-I, IGFBP-2 and IGFBP-3. Chronic hyperinsulinemia, as reflected by increased circulating C-peptide, is associated with increased endometrial cancer risk. Decrease in the prevalence of chronic hyperinsulinemia, through changes in lifestyle or medication, is expected to prevent endometrial cancer.", "title": "Prediagnostic levels of C-peptide, IGF-I, IGFBP -1, -2 and -3 and risk of endometrial cancer." }, { "docid": "32850528", "text": "OBJECTIVE To evaluate serum amylase and lipase levels and the rate of acute pancreatitis in patients with type 2 diabetes and high cardiovascular risk randomized to liraglutide or placebo and observed for 3.5-5.0 years. RESEARCH DESIGN AND METHODS A total of 9,340 patients with type 2 diabetes were randomized to either liraglutide or placebo (median observation time 3.84 years). Fasting serum lipase and amylase were monitored. Acute pancreatitis was adjudicated in a blinded manner. \n RESULTS Compared with the placebo group, liraglutide-treated patients had increases in serum lipase and amylase of 28.0% and 7.0%, respectively. Levels were increased at 6 months and then remained stable. During the study, 18 (0.4% [1.1 events/1,000 patient-years of observation] [PYO]) liraglutide-treated and 23 (0.5% [1.7 events/1,000 PYO]) placebo patients had acute pancreatitis confirmed by adjudication. Most acute pancreatitis cases occurred ≥12 months after randomization. Liraglutide-treated patients with prior history of pancreatitis (n = 147) were not more likely to develop acute pancreatitis than similar patients in the placebo group (n = 120). Elevations of amylase and lipase levels did not predict future risk of acute pancreatitis (positive predictive value <1.0%) in patients treated with liraglutide. \n CONCLUSIONS In a population with type 2 diabetes at high cardiovascular risk, there were numerically fewer events of acute pancreatitis among liraglutide-treated patients (regardless of previous history of pancreatitis) compared with the placebo group. Liraglutide was associated with increases in serum lipase and amylase, which were not predictive of an event of subsequent acute pancreatitis.", "title": "Amylase, Lipase, and Acute Pancreatitis in People With Type 2 Diabetes Treated With Liraglutide: Results From the LEADER Randomized Trial." }, { "docid": "20888849", "text": "Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human PDA. We tested whether the delivery and efficacy of gemcitabine in the mice could be improved by coadministration of IPI-926, a drug that depletes tumor-associated stromal tissue by inhibition of the Hedgehog cellular signaling pathway. The combination therapy produced a transient increase in intratumoral vascular density and intratumoral concentration of gemcitabine, leading to transient stabilization of disease. Thus, inefficient drug delivery may be an important contributor to chemoresistance in pancreatic cancer.", "title": "Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer." }, { "docid": "29981186", "text": "BACKGROUND Venous thromboembolism (VTE) is a common complication in cancer patients and a significant cause of morbidity and mortality. However, little information is available on oncologists' perceptions of the risk of VTE and its management. The Fundamental Research in Oncology and Thrombosis (FRONTLINE) study is the first comprehensive global survey of thrombosis and cancer. The study was designed to collect data on the perceived risk and patterns of practice with regard to VTE in cancer patients undergoing surgical and medical management of their malignancy and to provide information on international and regional practice patterns, allowing for the design of research studies to answer the concerns of practicing clinicians. \n METHODS Literature reviews were performed to provide a current evidence base against which to compare the findings, and a survey was developed under the guidance of an advisory board. A paper-based reply-paid questionnaire was distributed globally between July and November 2001 to clinicians involved in cancer care and was made available on a dedicated website. \n FINDINGS A total of 3,891 completed responses were available for analysis. Brain and pancreatic tumors were considered to carry a high risk for VTE, and 80% of respondents considered the use of central venous lines to be associated with a high risk of VTE. Marked differences were seen in the use of thromboprophylaxis for surgical and medical cancer patients, with over 50% of surgeons reporting that they initiated thromboprophylaxis routinely, while most medical oncologists reported using thromboprophylaxis in less than 5% of medical patients. Low molecular weight heparin (LMWH) was the most popular method of thromboprophylaxis employed in both surgical and medical patients and was more favored by European than U.S. clinicians. Some 20% of respondents reported using aspirin for prophylaxis, despite there being no reliable evidence for this agent as effective in prevention in this population. For the treatment of VTE, LMWH was again the most common initial treatment, although, for the long-term, oral anticoagulation therapy was widely adopted. Many patients were treated for VTE on an outpatient basis, and secondary prevention of VTE was typically continued for 3 to 6 months after an episode of deep vein thrombosis or for longer in the case of pulmonary embolism. \n INTERPRETATION The results of the FRONTLINE survey demonstrate a need for guidelines to direct clinical practice in line with evidence-based data concerning cancer and VTE. Oncologists need to be educated regarding the true risks of VTE associated with certain cancers and on strategies for prevention and treatment to reduce the morbidity and mortality associated with VTE in all cancer patients. The study has also helped identify areas for future research.", "title": "Venous thrombosis in cancer patients: insights from the FRONTLINE survey." }, { "docid": "25589047", "text": "CONTEXT Fatal adverse events (FAEs) have been reported in cancer patients treated with the widely used angiogenesis inhibitor bevacizumab in combination with chemotherapy. Currently, the role of bevacizumab in treatment-related mortality is not clear. \n OBJECTIVE To perform a systematic review and meta-analysis of published randomized controlled trials (RCTs) to determine the overall risk of FAEs associated with bevacizumab. \n DATA SOURCES PubMed, EMBASE, and Web of Science databases as well as abstracts presented at American Society of Clinical Oncology conferences from January 1966 to October 2010 were searched to identify relevant studies. STUDY SELECTION AND DATA EXTRACTION Eligible studies included prospective RCTs in which bevacizumab in combination with chemotherapy or biological therapy was compared with chemotherapy or biological therapy alone. Summary incidence rates, relative risks (RRs), and 95% confidence intervals (CIs) were calculated using fixed- or random-effects models. \n DATA SYNTHESIS A total of 10,217 patients with a variety of advanced solid tumors from 16 RCTs were included in the analysis. The overall incidence of FAEs with bevacizumab was 2.5% (95% CI, 1.7%-3.9%). Compared with chemotherapy alone, the addition of bevacizumab was associated with an increased risk of FAEs, with an RR of 1.46 (95% CI, 1.09-1.94; P = .01; incidence, 2.5% vs 1.7%). This association varied significantly with chemotherapeutic agents (P = .045) but not with tumor types (P = .13) or bevacizumab doses (P = .16). Bevacizumab was associated with an increased risk of FAEs in patients receiving taxanes or platinum agents (RR, 3.49; 95% CI, 1.82-6.66; incidence, 3.3% vs 1.0%) but was not associated with increased risk of FAEs when used in conjunction with other agents (RR, 0.85; 95% CI, 0.25-2.88; incidence, 0.8% vs 0.9%). The most common causes of FAEs were hemorrhage (23.5%), neutropenia (12.2%), and gastrointestinal tract perforation (7.1%). \n CONCLUSION In a meta-analysis of RCTs, bevacizumab in combination with chemotherapy or biological therapy, compared with chemotherapy alone, was associated with increased treatment-related mortality.", "title": "Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis." }, { "docid": "6334188", "text": "BACKGROUND Chemotherapy-induced febrile neutropenia (FN) is a clinically important complication that affects patient outcome by delaying chemotherapy doses or reducing dose intensity. Risk of FN depends on chemotherapy- and patient-level factors. We sought to determine the effects of chronic comorbidities on risk of FN. \n DESIGN We conducted a cohort study to examine the association between a variety of chronic comorbidities and risk of FN in patients diagnosed with six types of cancer (non-Hodgkin lymphoma and breast, colorectal, lung, ovary, and gastric cancer) from 2000 to 2009 who were treated with chemotherapy at Kaiser Permanente Southern California, a large managed care organization. We excluded those patients who received primary prophylactic granulocyte colony-stimulating factor. History of comorbidities and FN events were identified using electronic medical records. Cox models adjusting for propensity score, stratified by cancer type, were used to determine the association between comorbid conditions and FN. Models that additionally adjusted for cancer stage, baseline neutrophil count, chemotherapy regimen, and dose reduction were also evaluated. \n RESULTS A total of 19 160 patients with mean age of 60 years were included; 963 (5.0%) developed FN in the first chemotherapy cycle. Chronic obstructive pulmonary disease [hazard ratio (HR) = 1.30 (1.07-1.57)], congestive heart failure [HR = 1.43 (1.00-1.98)], HIV infection [HR = 3.40 (1.90-5.63)], autoimmune disease [HR = 2.01 (1.10-3.33)], peptic ulcer disease [HR = 1.57 (1.05-2.26)], renal disease [HR = 1.60 (1.21-2.09)], and thyroid disorder [HR = 1.32 (1.06-1.64)] were all associated with a significantly increased FN risk. \n CONCLUSIONS These results provide evidence that history of several chronic comorbidities increases risk of FN, which should be considered when managing patients during chemotherapy.", "title": "History of chronic comorbidity and risk of chemotherapy-induced febrile neutropenia in cancer patients not receiving G-CSF prophylaxis." }, { "docid": "21009874", "text": "CONTEXT Whether immunosuppressive treatment adversely affects survival is unclear. \n OBJECTIVE To assess whether immunosuppressive drugs increase mortality. \n DESIGN Retrospective cohort study evaluating overall and cancer mortality in relation to immunosuppressive drug exposure among patients with ocular inflammatory diseases. Demographic, clinical, and treatment data derived from medical records, and mortality results from United States National Death Index linkage. The cohort's mortality risk was compared with US vital statistics using standardised mortality ratios. Overall and cancer mortality in relation to use or non-use of immunosuppressive drugs within the cohort was studied with survival analysis. \n SETTING Five tertiary ocular inflammation clinics. Patients 7957 US residents with non-infectious ocular inflammation, 2340 of whom received immunosuppressive drugs during follow up. Exposures Use of antimetabolites, T cell inhibitors, alkylating agents, and tumour necrosis factor inhibitors. \n MAIN OUTCOME MEASURES Overall mortality, cancer mortality. \n RESULTS Over 66 802 person years (17 316 after exposure to immunosuppressive drugs), 936 patients died (1.4/100 person years), 230 (24.6%) from cancer. For patients unexposed to immunosuppressive treatment, risks of death overall (standardised mortality ratio 1.02, 95% confidence interval [CI] 0.94 to 1.11) and from cancer (1.10, 0.93 to 1.29) were similar to those of the US population. Patients who used azathioprine, methotrexate, mycophenolate mofetil, ciclosporin, systemic corticosteroids, or dapsone had overall and cancer mortality similar to that of patients who never took immunosuppressive drugs. In patients who used cyclophosphamide, overall mortality was not increased and cancer mortality was non-significantly increased. Tumour necrosis factor inhibitors were associated with increased overall (adjusted hazard ratio [HR] 1.99, 95% CI 1.00 to 3.98) and cancer mortality (adjusted HR 3.83, 1.13 to 13.01). \n CONCLUSIONS Most commonly used immunosuppressive drugs do not seem to increase overall or cancer mortality. Our results suggesting that tumour necrosis factor inhibitors might increase mortality are less robust than the other findings; additional evidence is needed.", "title": "Overall and cancer related mortality among patients with ocular inflammation treated with immunosuppressive drugs: retrospective cohort study." }, { "docid": "4325398", "text": "Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.", "title": "Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes" }, { "docid": "36310858", "text": "Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates and frequently carries oncogenic KRAS mutation. However, KRAS has thus far not been a viable therapeutic target. We found that the abundance of YAP mRNA, which encodes Yes-associated protein (YAP), a protein regulated by the Hippo pathway during tissue development and homeostasis, was increased in human PDAC tissue compared with that in normal pancreatic epithelia. In genetically engineered KrasG12D and KrasG12D:Trp53R172H mouse models, pancreas-specific deletion of Yap halted the progression of early neoplastic lesions to PDAC without affecting normal pancreatic development and endocrine function. Although Yap was dispensable for acinar to ductal metaplasia (ADM), an initial step in the progression to PDAC, Yap was critically required for the proliferation of mutant Kras or Kras:Trp53 neoplastic pancreatic ductal cells in culture and for their growth and progression to invasive PDAC in mice. Yap functioned as a critical transcriptional switch downstream of the oncogenic KRAS–mitogen-activated protein kinase (MAPK) pathway, promoting the expression of genes encoding secretory factors that cumulatively sustained neoplastic proliferation, a tumorigenic stromal response in the tumor microenvironment, and PDAC progression in Kras and Kras:Trp53 mutant pancreas tissue. Together, our findings identified Yap as a critical oncogenic KRAS effector and a promising therapeutic target for PDAC and possibly other types of KRAS-mutant cancers.", "title": "Downstream of Mutant KRAS, the Transcription Regulator YAP Is Essential for Neoplastic Progression to Pancreatic Ductal Adenocarcinoma" }, { "docid": "9956893", "text": "OBJECTIVE Advances made in the past ten years highlight the notion that peroxisome proliferator-activated receptors gamma (PPARγ) has protective properties in the pathophysiology of osteoarthritis (OA). The aim of this study was to define the roles of PPARγ in AGEs-induced inflammatory response in human chondrocytes. \n METHODS Primary human chondrocytes were stimulated with AGEs in the presence or absence of neutralizing antibody against RAGE (anti-RAGE), MAPK specific inhibitors and PPARγ agonist pioglitazone. The expression of IL-1, MMP-13, TNF-α, PPARγ, nuclear NF-κB p65 and cytosol IκBα was determined by western blotting and real-time PCR. \n RESULTS AGEs could enhance the expression of IL-1, TNF-α, and MMP-13, but the level of PPARγ was decreased in a time- and dose-dependent manner, which was inhibited by anti-RAGE, SB203580 (P38 MAPK specific inhibitor) and SP600125 (a selective inhibitor of JNK). PPARγ agonist pioglitazone could inhibit the effects of AGEs-induced inflammatory response and PPARγ down-regulation. In human chondrocytes, AGEs could induce cytosol IκBα degradation and increase the level of nuclear NF-κB p65, which was inhibited by PPARγ agonist pioglitazone. \n CONCLUSIONS In primary human chondrocytes, AGEs could down-regulate PPARγ expression and increase the inflammatory mediators, which could be reversed by PPARγ agonist pioglitazone. Activation of RAGE by AGEs triggers a cascade of downstream signaling, including MAPK JNK/ p38, PPARγ and NF-κB. Taken together, PPARγ could be a potential target for pharmacologic intervention in the treatment of OA.", "title": "The Role of PPARγ in Advanced Glycation End Products-Induced Inflammatory Response in Human Chondrocytes" }, { "docid": "23665162", "text": "Global DNA hypomethylation has been associated with increased risk for cancers of the colorectum, bladder, breast, head and neck, and testicular germ cells. The aim of this study was to examine whether global hypomethylation in blood leukocyte DNA is associated with the risk of hepatocellular carcinoma (HCC). A total of 315 HCC cases and 356 age-, sex- and HBsAg status-matched controls were included. Global methylation in blood leukocyte DNA was estimated by analyzing long interspersed element-1 (LINE-1) repeats using bisulfite-polymerase chain reaction (PCR) and pyrosequencing. We observed that the median methylation level in HCC cases (percentage of 5-methylcytosine (5mC)=77.7%) was significantly lower than that in controls (79.5% 5mC) (P=0.004, Wilcoxon rank-sum test). The odds ratios (ORs) of HCC for individuals in the third, second, and first (lowest) quartiles of LINE-1 methylation were 1.1 (95% confidence interval (CI) 0.7–1.8), 1.4 (95% CI 0.8–2.2), and 2.6 (95% CI 1.7–4.1) (P for trend <0.001), respectively, compared to individuals in the fourth (highest) quartile. A 1.9-fold (95% CI 1.4–2.6) increased risk of HCC was observed among individuals with LINE-1 methylation below the median compared to individuals with higher (>median) LINE-1 methylation. Our results demonstrate for the first time that individuals with global hypomethylation measured in LINE-1 repeats in blood leukocyte DNA have an increased risk for HCC. Our data provide the evidence that global hypomethylation detected in the easily obtainable DNA source of blood leukocytes may help identify individuals at risk of HCC.", "title": "Association of hypomethylation of LINE-1 repetitive element in blood leukocyte DNA with an increased risk of hepatocellular carcinoma" }, { "docid": "27270151", "text": "In the past decade, insightful preclinical research has led to important breakthroughs in our understanding of pancreatic cancer. Even though the vast majority of pancreatic cancers are KRAS mutated, not all pancreatic cancer tumors are \"KRAS equal\"; there seems to be varying dependencies on the KRAS pathway. While KRAS-targeting therapies have been disappointing in the clinic, 'synthetic lethal' approaches hold promise in this setting. The pancreatic cancer stromal microenvironment appears to have contradictory roles. While there is evidence to suggest that stromal barrier prevents drug delivery, in other circumstances, stroma can play a protective role and its disruption enhances tumor dissemination. Clinical trials aimed at manipulating the various stromal components are in progress. BRCA mutation-related pancreatic tumors illustrate a unique subtype with enhanced susceptibility to DNA damaging agents and PARP-inhibition. DNA repair defects in cancer extend beyond germ line BRCA mutation and may extend the indications for DNA repair-targeting agents. Immune strategies are an area of active investigation in pancreatic cancer. Although the initial trials of single-agent checkpoint inhibitors have been negative, combinational approaches using immune-modifying agents and vaccines appear promising and goal is to identify an 'immune-therapy responsive' profile in pancreatic cancer.", "title": "Changing the course of pancreatic cancer--Focus on recent translational advances." }, { "docid": "20886584", "text": "Taxanes have resulted in improved survival for breast cancer patients, but often cause neurological toxicities. Identification of biomarkers related to toxicities could be important for dictating treatment regimen. We evaluated single nucleotide polymorphisms (SNPs) in the Fanconi Anemia (FA)/BRCA pathway in relation to grade 3/4 neurotoxicities in patients (n = 888) from SWOG0221, a phase III adjuvant trial for breast cancer of 4 dose/schedules of cyclophosphamide (C), doxorubicin (A), and paclitaxel (T). In a separate cohort, we measured the correlation of significant FANCD2 SNPs with corresponding gene expression. For FANCD2, permutation testing revealed that 4 (out of 20) SNPs were significantly associated with an almost two-fold increased risk of toxicity. Two FANCD2 haplotypes were also associated with neurological toxicity, with odds ratios (OR) in the overall population of 1.8 (95% confidence interval (CI) 1.3, 2.5) and 1.7 (95% CI, 1.2, 2.4). Although numbers were small, an African-American-specific haplotype was associated with an almost 3-fold increase in risk of neurologic toxicity (OR = 2.84, 95% CI = 1.2, 6.9). Expression analyses revealed that significant FANCD2 SNPs were associated with FANCD2 expression levels (P = 0.03). There were no associations between SNPs in BRCA1 and neurotoxicities. In this trial of CA+T for breast cancer, SNPs in FANCD2, but not in BRCA1, were associated with a 70–80% increase in the odds of grade 3/4 neurological toxicities and increased expression of the gene. If replicated, women with these genotypes should be closely monitored for toxicities and could be targeted for preventive measures or alternative therapeutic approaches.", "title": "Genetic predictors of taxane-induced neurotoxicity in a SWOG phase III intergroup adjuvant breast cancer treatment trial (S0221)" } ]
954
Pioglitazone use is significantly associated with an increased risk of prostate cancer.
[ { "docid": "3355397", "text": "IMPORTANCE Studies suggest pioglitazone use may increase risk of cancers. \n OBJECTIVE To examine whether pioglitazone use for diabetes is associated with risk of bladder and 10 additional cancers. \n DESIGN, SETTING, AND PARTICIPANTS Cohort and nested case-control analyses among persons with diabetes. A bladder cancer cohort followed 193,099 persons aged 40 years or older in 1997-2002 until December 2012; 464 case patients and 464 matched controls were surveyed about additional confounders. A cohort analysis of 10 additional cancers included 236,507 persons aged 40 years or older in 1997-2005 and followed until June 2012. Cohorts were from Kaiser Permanente Northern California. EXPOSURES Ever use, duration, cumulative dose, and time since initiation of pioglitazone as time dependent. \n MAIN OUTCOMES AND MEASURES Incident cancer, including bladder, prostate, female breast, lung/bronchus, endometrial, colon, non-Hodgkin lymphoma, pancreas, kidney/renal pelvis, rectum, and melanoma. \n RESULTS Among 193,099 persons in the bladder cancer cohort, 34,181 (18%) received pioglitazone (median duration, 2.8 years; range, 0.2-13.2 years) and 1261 had incident bladder cancer. Crude incidences of bladder cancer in pioglitazone users and nonusers were 89.8 and 75.9 per 100,000 person-years, respectively. Ever use of pioglitazone was not associated with bladder cancer risk (adjusted hazard ratio [HR], 1.06; 95% CI, 0.89-1.26). Results were similar in case-control analyses (pioglitazone use: 19.6% among case patients and 17.5% among controls; adjusted odds ratio, 1.18; 95% CI, 0.78-1.80). In adjusted analyses, there was no association with 8 of the 10 additional cancers; ever use of pioglitazone was associated with increased risk of prostate cancer (HR, 1.13; 95% CI, 1.02-1.26) and pancreatic cancer (HR, 1.41; 95% CI, 1.16-1.71). Crude incidences of prostate and pancreatic cancer in pioglitazone users vs nonusers were 453.3 vs 449.3 and 81.1 vs 48.4 per 100,000 person-years, respectively. No clear patterns of risk for any cancer were observed for time since initiation, duration, or dose. \n CONCLUSIONS AND RELEVANCE Pioglitazone use was not associated with a statistically significant increased risk of bladder cancer, although an increased risk, as previously observed, could not be excluded. The increased prostate and pancreatic cancer risks associated with ever use of pioglitazone merit further investigation to assess whether they are causal or are due to chance, residual confounding, or reverse causality.", "title": "Pioglitazone Use and Risk of Bladder Cancer and Other Common Cancers in Persons With Diabetes." } ]
[ { "docid": "31229233", "text": "BACKGROUND Patients with type 2 diabetes have a 40% increased risk of bladder cancer. Thiazolidinediones, especially pioglitazone, may increase the risk. We conducted a systematic review and meta-analysis to evaluate the risk of bladder cancer among adults with type 2 diabetes taking thiazolidinediones. \n METHODS We searched key biomedical databases (including MEDLINE, Embase and Scopus) and sources of grey literature from inception through March 2012 for published and unpublished studies, without language restrictions. We included randomized controlled trials (RCTs), cohort studies and case-control studies that reported incident bladder cancer among people with type 2 diabetes who ever (v. never) were exposed to pioglitazone (main outcome), rosiglitazone or any thiazolidinedione. \n RESULTS Of the 1787 studies identified, we selected 4 RCTs, 5 cohort studies and 1 case-control study. The total number of patients was 2,657,365, of whom 3643 had newly diagnosed bladder cancer, for an overall incidence of 53.1 per 100,000 person-years. The one RCT that reported on pioglitazone use found no significant association with bladder cancer (risk ratio [RR] 2.36, 95% confidence interval [CI] 0.91-6.13). The cohort studies of thiazolidinediones (pooled RR 1.15, 95% CI 1.04-1.26; I(2) = 0%) and of pioglitazone specifically (pooled RR 1.22, 95% CI 1.07-1.39; I(2) = 0%) showed significant associations with bladder cancer. No significant association with bladder cancer was observed in the two RCTs that evaluated rosiglitazone use (pooled RR 0.87, 95% CI 0.34-2.23; I(2) = 0%). \n INTERPRETATION The limited evidence available supports the hypothesis that thiazolidinediones, particularly pioglitazone, are associated with an increased risk of bladder cancer among adults with type 2 diabetes.", "title": "Use of thiazolidinediones and the risk of bladder cancer among people with type 2 diabetes: a meta-analysis." }, { "docid": "24581365", "text": "CONTEXT The appropriate therapy for men with clinically localized prostate cancer is uncertain. A recent study suggested an increasing prostate cancer mortality rate for men who are alive more than 15 years following diagnosis. \n OBJECTIVE To estimate 20-year survival based on a competing risk analysis of men who were diagnosed with clinically localized prostate cancer and treated with observation or androgen withdrawal therapy alone, stratified by age at diagnosis and histological findings. \n DESIGN, SETTING, AND PATIENTS A retrospective population-based cohort study using Connecticut Tumor Registry data supplemented by hospital record and histology review of 767 men aged 55 to 74 years with clinically localized prostate cancer diagnosed between January 1, 1971, and December 31, 1984. Patients were treated with either observation or immediate or delayed androgen withdrawal therapy, with a median observation of 24 years. \n MAIN OUTCOME MEASURES Probability of mortality from prostate cancer or other competing medical conditions, given a patient's age at diagnosis and tumor grade. \n RESULTS The prostate cancer mortality rate was 33 per 1000 person-years during the first 15 years of follow-up (95% confidence interval [CI], 28-38) and 18 per 1000 person-years after 15 years of follow-up (95% CI, 10-29). The mortality rates for these 2 follow-up periods were not statistically different, after adjusting for differences in tumor histology (rate ratio, 1.1; 95% CI, 0.6-1.9). Men with low-grade prostate cancers have a minimal risk of dying from prostate cancer during 20 years of follow-up (Gleason score of 2-4, 6 deaths per 1000 person-years; 95% CI, 2-11). Men with high-grade prostate cancers have a high probability of dying from prostate cancer within 10 years of diagnosis (Gleason score of 8-10, 121 deaths per 1000 person-years; 95% CI, 90-156). Men with Gleason score of 5 or 6 tumors have an intermediate risk of prostate cancer death. \n CONCLUSION The annual mortality rate from prostate cancer appears to remain stable after 15 years from diagnosis, which does not support aggressive treatment for localized low-grade prostate cancer.", "title": "20-year outcomes following conservative management of clinically localized prostate cancer." }, { "docid": "4828631", "text": "BACKGROUND High body-mass index (BMI) predisposes to several site-specific cancers, but a large-scale systematic and detailed characterisation of patterns of risk across all common cancers adjusted for potential confounders has not previously been undertaken. We aimed to investigate the links between BMI and the most common site-specific cancers. \n METHODS With primary care data from individuals in the Clinical Practice Research Datalink with BMI data, we fitted Cox models to investigate associations between BMI and 22 of the most common cancers, adjusting for potential confounders. We fitted linear then non-linear (spline) models; investigated effect modification by sex, menopausal status, smoking, and age; and calculated population effects. \n FINDINGS 5·24 million individuals were included; 166,955 developed cancers of interest. BMI was associated with 17 of 22 cancers, but effects varied substantially by site. Each 5 kg/m(2) increase in BMI was roughly linearly associated with cancers of the uterus (hazard ratio [HR] 1·62, 99% CI 1·56-1·69; p<0·0001), gallbladder (1·31, 1·12-1·52; p<0·0001), kidney (1·25, 1·17-1·33; p<0·0001), cervix (1·10, 1·03-1·17; p=0·00035), thyroid (1·09, 1·00-1·19; p=0·0088), and leukaemia (1·09, 1·05-1·13; p≤0·0001). BMI was positively associated with liver (1·19, 1·12-1·27), colon (1·10, 1·07-1·13), ovarian (1·09, 1.04-1.14), and postmenopausal breast cancers (1·05, 1·03-1·07) overall (all p<0·0001), but these effects varied by underlying BMI or individual-level characteristics. We estimated inverse associations with prostate and premenopausal breast cancer risk, both overall (prostate 0·98, 0·95-1·00; premenopausal breast cancer 0·89, 0·86-0·92) and in never-smokers (prostate 0·96, 0·93-0·99; premenopausal breast cancer 0·89, 0·85-0·94). By contrast, for lung and oral cavity cancer, we observed no association in never smokers (lung 0·99, 0·93-1·05; oral cavity 1·07, 0·91-1·26): inverse associations overall were driven by current smokers and ex-smokers, probably because of residual confounding by smoking amount. Assuming causality, 41% of uterine and 10% or more of gallbladder, kidney, liver, and colon cancers could be attributable to excess weight. We estimated that a 1 kg/m(2) population-wide increase in BMI would result in 3790 additional annual UK patients developing one of the ten cancers positively associated with BMI. \n INTERPRETATION BMI is associated with cancer risk, with substantial population-level effects. The heterogeneity in the effects suggests that different mechanisms are associated with different cancer sites and different patient subgroups. \n FUNDING National Institute for Health Research, Wellcome Trust, and Medical Research Council.", "title": "Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults" }, { "docid": "10024681", "text": "Deregulation of microRNA (miRNA) expression can have a critical role in carcinogenesis. Here we show in prostate cancer that miRNA-205 (miR-205) transcription is commonly repressed and the MIR-205 locus is hypermethylated. LOC642587, the MIR-205 host gene of unknown function, is also concordantly inactivated. We show that miR-205 targets mediator 1 (MED1, also called TRAP220 and PPARBP) for transcriptional silencing in normal prostate cells, leading to reduction in MED1 mRNA levels, and in total and active phospho-MED1 protein. Overexpression of miR-205 in prostate cancer cells negatively affects cell viability, consistent with a tumor suppressor function. We found that hypermethylation of the MIR-205 locus was strongly related with a decrease in miR-205 expression and an increase in MED1 expression in primary tumor samples (n=14), when compared with matched normal prostate (n=7). An expanded patient cohort (tumor n=149, matched normal n=30) also showed significant MIR-205 DNA methylation in tumors compared with normal, and MIR-205 hypermethylation is significantly associated with biochemical recurrence (hazard ratio=2.005, 95% confidence interval (1.109, 3.625), P=0.02), in patients with low preoperative prostate specific antigen. In summary, these results suggest that miR-205 is an epigenetically regulated tumor suppressor that targets MED1 and may provide a potential biomarker in prostate cancer management.", "title": "Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer" }, { "docid": "10430148", "text": "CONTEXT No antidiabetic regimen has demonstrated the ability to reduce progression of coronary atherosclerosis. Commonly used oral glucose-lowering agents include sulfonylureas, which are insulin secretagogues, and thiazolidinediones, which are insulin sensitizers. \n OBJECTIVE To compare the effects of an insulin sensitizer, pioglitazone, with an insulin secretagogue, glimepiride, on the progression of coronary atherosclerosis in patients with type 2 diabetes. \n DESIGN, SETTING, AND PARTICIPANTS Double-blind, randomized, multicenter trial at 97 academic and community hospitals in North and South America (enrollment August 2003-March 2006) in 543 patients with coronary disease and type 2 diabetes. \n INTERVENTIONS A total of 543 patients underwent coronary intravascular ultrasonography and were randomized to receive glimepiride, 1 to 4 mg, or pioglitazone, 15 to 45 mg, for 18 months with titration to maximum dosage, if tolerated. Atherosclerosis progression was measured by repeat intravascular ultrasonography examination in 360 patients at study completion. \n MAIN OUTCOME MEASURE Change in percent atheroma volume (PAV) from baseline to study completion. \n RESULTS Least squares mean PAV increased 0.73% (95% CI, 0.33% to 1.12%) with glimepiride and decreased 0.16% (95% CI, -0.57% to 0.25%) with pioglitazone(P = .002). An alternative analysis imputing values for noncompleters based on baseline characteristics showed an increase in PAV of 0.64% (95% CI, 0.23% to 1.05%) for glimepiride and a decrease of 0.06% (-0.47% to 0.35%) for pioglitazone (between-group P = .02). Mean (SD) baseline HbA(1c) levels were 7.4% (1.0%) in both groups and declined during treatment an average 0.55% (95% CI, -0.68% to -0.42%) with pioglitazone and 0.36% (95% CI, -0.48% to -0.24%) with glimepiride (between-group P = .03). In the pioglitazone group, compared with glimepiride, high-density lipoprotein levels increased 5.7 mg/dL (95% CI, 4.4 to 7.0 mg/dL; 16.0%) vs 0.9 mg/dL (95% CI, -0.3 to 2.1 mg/dL; 4.1%), and median triglyceride levels decreased 16.3 mg/dL (95% CI, -27.7 to -11.0 mg/dL; 15.3%) vs an increase of 3.3 mg/dL (95% CI, -10.7 to 11.7 mg/dL; 0.6%) (P < .001 for both comparisons). Median fasting insulin levels decreased with pioglitazone and increased with glimepiride (P < .001). Hypoglycemia was more common in the glimepiride group and edema, fractures, and decreased hemoglobin levels occurred more frequently in the pioglitazone group. \n CONCLUSION In patients with type 2 diabetes and coronary artery disease, treatment with pioglitazone resulted in a significantly lower rate of progression of coronary atherosclerosis compared with glimepiride. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00225277.", "title": "Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial." }, { "docid": "12009265", "text": "CONTEXT Many individuals take vitamins in the hopes of preventing chronic diseases such as cancer, and vitamins E and C are among the most common individual supplements. A large-scale randomized trial suggested that vitamin E may reduce risk of prostate cancer; however, few trials have been powered to address this relationship. No previous trial in men at usual risk has examined vitamin C alone in the prevention of cancer. \n OBJECTIVE To evaluate whether long-term vitamin E or C supplementation decreases risk of prostate and total cancer events among men. \n DESIGN, SETTING, AND PARTICIPANTS The Physicians' Health Study II is a randomized, double-blind, placebo-controlled factorial trial of vitamins E and C that began in 1997 and continued until its scheduled completion on August 31, 2007. A total of 14,641 male physicians in the United States initially aged 50 years or older, including 1307 men with a history of prior cancer at randomization, were enrolled. \n INTERVENTION Individual supplements of 400 IU of vitamin E every other day and 500 mg of vitamin C daily. \n MAIN OUTCOME MEASURES Prostate and total cancer. \n RESULTS During a mean follow-up of 8.0 years, there were 1008 confirmed incident cases of prostate cancer and 1943 total cancers. Compared with placebo, vitamin E had no effect on the incidence of prostate cancer (active and placebo vitamin E groups, 9.1 and 9.5 events per 1000 person-years; hazard ratio [HR], 0.97; 95% confidence interval [CI], 0.85-1.09; P = .58) or total cancer (active and placebo vitamin E groups, 17.8 and 17.3 cases per 1000 person-years; HR, 1.04; 95% CI, 0.95-1.13; P = .41). There was also no significant effect of vitamin C on total cancer (active and placebo vitamin C groups, 17.6 and 17.5 events per 1000 person-years; HR, 1.01; 95% CI, 0.92-1.10; P = .86) or prostate cancer (active and placebo vitamin C groups, 9.4 and 9.2 cases per 1000 person-years; HR, 1.02; 95% CI, 0.90-1.15; P = .80). Neither vitamin E nor vitamin C had a significant effect on colorectal, lung, or other site-specific cancers. Adjustment for adherence and exclusion of the first 4 or 6 years of follow-up did not alter the results. Stratification by various cancer risk factors demonstrated no significant modification of the effect of vitamin E on prostate cancer risk or either agent on total cancer risk. \n CONCLUSIONS In this large, long-term trial of male physicians, neither vitamin E nor C supplementation reduced the risk of prostate or total cancer. These data provide no support for the use of these supplements for the prevention of cancer in middle-aged and older men. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00270647.", "title": "Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians' Health Study II randomized controlled trial." }, { "docid": "8512633", "text": "Long noncoding RNAs (IncRNAs) are increasingly implicated in cancer biology, contributing to essential cancer cell functions such as proliferation, invasion, and metastasis. In prostate cancer, several lncRNAs have been nominated as critical actors in disease pathogenesis. Among these, expression of PCGEM1 and PRNCR1 has been identified as a possible component in disease progression through the coordination of androgen receptor (AR) signaling (Yang et al., Nature 2013, see ref. [1]). However, concerns regarding the robustness of these findings have been suggested. Here, we sought to evaluate whether PCGEM1 and PRNCR1 are associated with prostate cancer. Through a comprehensive analysis of RNA-sequencing data (RNA-seq), we find evidence that PCGEM1 but not PRNCR1 is associated with prostate cancer. We employ a large cohort of >230 high-risk prostate cancer patients with long-term outcomes data to show that, in contrast to prior reports, neither gene is associated with poor patient outcomes. We further observe no evidence that PCGEM1 nor PRNCR1 interact with AR, and neither gene is a component of AR signaling. Thus, we conclusively demonstrate that PCGEM1 and PRNCR1 are not prognostic lncRNAs in prostate cancer and we refute suggestions that these lncRNAs interact in AR signaling.", "title": "The lncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer" }, { "docid": "6790197", "text": "PURPOSE To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. EXPERIMENTAL DESIGN Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays composed of 6,200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative reverse transcription-PCR. \n RESULTS Comparative analyses identified 954 transcript alterations associated with cancer (q < 0.01%), including 149 differentially expressed genes with no known functional roles. Gene expression changes associated with ischemia and surgical removal of the prostate gland were absent. Genes up-regulated in prostate cancer were statistically enriched in categories related to cellular metabolism, energy use, signal transduction, and molecular transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of androgen receptor expression changes was noted. In exploratory analyses, androgen receptor down-regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. \n CONCLUSIONS Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation.", "title": "Prostate cancer-associated gene expression alterations determined from needle biopsies." }, { "docid": "8037453", "text": "PURPOSE Three large, randomized trials of patients with bone metastases recently demonstrated that zoledronic acid reduces the risk of skeletal-related events. These trials provide an opportunity for investigating the correlation between bone metabolism and clinical outcome during bisphosphonate therapy. \n PATIENTS AND METHODS Urinary measurements of N-telopeptide (Ntx) and serum bone alkaline phosphatase (BAP) were obtained in 1,824 bisphosphonate-treated patients-1,462 with zoledronic acid (breast, 490; prostate, 411; myeloma, 210; non-small-cell lung, 183; other, 168) and 362 with pamidronate (breast, 254; myeloma, 108). This exploratory cohort analysis grouped patients by baseline and most recent levels of Ntx as low (< 50 nmol/mmol creatinine), moderate (50 to 99 nmol/mmol creatinine), or high (> or = 100 nmol/mmol creatinine), and BAP as low (< 146 U/L) or high (> or = 146 U/L). The relative risks for negative clinical outcomes were estimated for each group using multiple-event and Cox regression models with time-varying covariates. \n RESULTS Patients with high and moderate Ntx levels had 2-fold increases in their risk of skeletal complications and disease progression compared with patients with low Ntx levels (P < .001 for all). High Ntx levels in each solid tumor category were associated with a 4- to 6-fold increased risk of death on study, and moderate Ntx levels a 2- to 4-fold increased risk compared with low Ntx levels (P < .001 for all). Bone alkaline phosphatase also showed some correlation with risk of negative clinical outcomes. \n CONCLUSION The bone resorption marker Ntx provides valuable prognostic information in patients with bone metastases receiving bisphosphonates.", "title": "Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid." }, { "docid": "10699587", "text": "PURPOSE Gleason score (GS), T stage, and pathologic lymph node status have been described as major independent predictors of death due to prostate cancer in men treated with external beam radiotherapy (XRT). In this analysis we combine these three factors to define prognostic subgroups that correlate with disease-specific survival (DSS) death from prostate cancer. \n METHODS AND MATERIALS Men entered on one of four Radiation Therapy Oncology Group (RTOG) Phase III randomized trials between 1975 and 1992, for clinically localized prostate cancer (CAP) (n = 1557), were selected for this analysis. Patients were included if: 1) they were evaluable, and eligible for the trial; 2) they received no hormonal therapy with their initial treatment; and 3) follow-up was available. For this study a DSS event was declared if: 1) death was certified as due to CAP; 2) death was due to complications of treatment; or 3) death was from unknown causes with active malignancy. The median follow-up for patients treated on early and late RTOG studies exceeded 11 and 6 years respectively. Subgroups were identified based on their pretreatment GS, T-stage, and lymph node such that patients with similar risk of dying from prostate cancer were combined. \n RESULTS By combining patients with similar DSS, four subgroups were identified. Risk Group 1 patients had a GS = 2-6, and T1-2Nx; Group 2: GS = 2-6, T3Nx; or GS = 2-6, N+, or GS = 7, T1-2Nx; Group 3: T3Nx, GS = 7; or N+, GS = 7, or T1-2Nx, GS = 8-10; and Group 4 patients were T3Nx, GS = 8-10, or N+, GS = 8-10. The 5-, 10-, and 15-year DSS was 96%, 86%, and 72%; 94%, 75%, and 61%; 83%, 62%, and 39%; and 64%, 34%, and 27% for Groups 1 through 4, respectively. \n CONCLUSIONS Recognition of these four risk groups provides a basis for estimating the long-term DSS for men treated with XRT alone and should facilitate the design of future prospective randomized trials.", "title": "Four prognostic groups predict long-term survival from prostate cancer following radiotherapy alone on Radiation Therapy Oncology Group clinical trials." }, { "docid": "6327940", "text": "Amino acids modulate the secretion of both insulin and glucagon; the composition of dietary protein therefore has the potential to influence the balance of glucagon and insulin activity. Soy protein, as well as many other vegan proteins, are higher in non-essential amino acids than most animal-derived food proteins, and as a result should preferentially favor glucagon production. Acting on hepatocytes, glucagon promotes (and insulin inhibits) cAMP-dependent mechanisms that down-regulate lipogenic enzymes and cholesterol synthesis, while up-regulating hepatic LDL receptors and production of the IGF-I antagonist IGFBP-1. The insulin-sensitizing properties of many vegan diets--high in fiber, low in saturated fat--should amplify these effects by down-regulating insulin secretion. Additionally, the relatively low essential amino acid content of some vegan diets may decrease hepatic IGF-I synthesis. Thus, diets featuring vegan proteins can be expected to lower elevated serum lipid levels, promote weight loss, and decrease circulating IGF-I activity. The latter effect should impede cancer induction (as is seen in animal studies with soy protein), lessen neutrophil-mediated inflammatory damage, and slow growth and maturation in children. In fact, vegans tend to have low serum lipids, lean physiques, shorter stature, later puberty, and decreased risk for certain prominent 'Western' cancers; a vegan diet has documented clinical efficacy in rheumatoid arthritis. Low-fat vegan diets may be especially protective in regard to cancers linked to insulin resistance--namely, breast and colon cancer--as well as prostate cancer; conversely, the high IGF-I activity associated with heavy ingestion of animal products may be largely responsible for the epidemic of 'Western' cancers in wealthy societies. Increased phytochemical intake is also likely to contribute to the reduction of cancer risk in vegans. Regression of coronary stenoses has been documented during low-fat vegan diets coupled with exercise training; such regimens also tend to markedly improve diabetic control and lower elevated blood pressure. Risk of many other degenerative disorders may be decreased in vegans, although reduced growth factor activity may be responsible for an increased risk of hemorrhagic stroke. By altering the glucagon/insulin balance, it is conceivable that supplemental intakes of key non-essential amino acids could enable omnivores to enjoy some of the health advantages of a vegan diet. An unnecessarily high intake of essential amino acids--either in the absolute sense or relative to total dietary protein--may prove to be as grave a risk factor for 'Western' degenerative diseases as is excessive fat intake.", "title": "Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity." }, { "docid": "24450344", "text": "PURPOSE We evaluated the long-term outcome of radical prostatectomy for pathological Gleason score 8 or greater prostate cancer and characterized the prognostic significance of other pathological variables. MATERIALS AND METHODS A total of 6,419 patients underwent radical prostatectomy between 1987 and 1996. There were 407 patients classified as having pathological Gleason 8 or greater, including 8 in 48%, 9 in 49% and 10 in 3%. Adjuvant treatment was used in 45% of patients and adjuvant hormonal therapy was administered to 155 (38%). Progression-free, including local or systemic, and/or prostate specific antigen (PSA) 0.4 ng./ml. or greater, and cancer specific survival were determined by the Kaplan-Meier method. The effect of pathological grade and stage, preoperative PSA, DNA ploidy, margin status, tumor dimension, seminal vesicle invasion, and adjuvant treatment was assessed with the univariate and multivariate analyses. \n RESULTS Pathological stage distribution was pT2 in 26% of patients, pT3 48% and pTxN+ 27%. Overall and progression-free survival at 10 years was 67% and 36%, respectively, compared to cancer specific survival 85%. Adjuvant treatment, pathological stage, preoperative PSA and pathological grade were significant (less than 0.05) univariate predictors of progression-free survival. Pathological stage, margin status and ploidy were univariately associated with cancer specific survival. Progression-free survival at 10 years of those patients who did and did not receive adjuvant treatment was 52% and 23%, respectively. In the multivariate analysis pathological grade (p=0.02), preoperative PSA (p <0.0001), adjuvant therapy (p <0.0001) and pathological stage (p=0.036) were significant independent predictors of progression-free survival. \n CONCLUSIONS High grade prostate cancer can be controlled with radical prostatectomy in some patients with disease confined pathologically, and 10-year cause specific survival is 96%. Predictors of outcome in patients with Gleason 8 disease or greater are similar to established predictors derived by using all grades. Although adjuvant hormonal therapy appears to improve disease progression rates after radical prostatectomy on the basis of this nonrandomized study, it may not affect prostate cancer death rates within 10 years in patients with high grade cancer.", "title": "Radical prostatectomy for pathological Gleason 8 or greater prostate cancer: influence of concomitant pathological variables." }, { "docid": "4500832", "text": "gamma-tocopherol is the major form of vitamin E in many plant seeds and in the US diet, but has drawn little attention compared with alpha-tocopherol, the predominant form of vitamin E in tissues and the primary form in supplements. However, recent studies indicate that gamma-tocopherol may be important to human health and that it possesses unique features that distinguish it from alpha-tocopherol. gamma-Tocopherol appears to be a more effective trap for lipophilic electrophiles than is alpha-tocopherol. gamma-Tocopherol is well absorbed and accumulates to a significant degree in some human tissues; it is metabolized, however, largely to 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), which is mainly excreted in the urine. gamma-CEHC, but not the corresponding metabolite derived from alpha-tocopherol, has natriuretic activity that may be of physiologic importance. Both gamma-tocopherol and gamma-CEHC, but not alpha-tocopherol, inhibit cyclooxygenase activity and, thus, possess antiinflammatory properties. Some human and animal studies indicate that plasma concentrations of gamma-tocopherol are inversely associated with the incidence of cardiovascular disease and prostate cancer. These distinguishing features of gamma-tocopherol and its metabolite suggest that gamma-tocopherol may contribute significantly to human health in ways not recognized previously. This possibility should be further evaluated, especially considering that high doses of alpha-tocopherol deplete plasma and tissue gamma-tocopherol, in contrast with supplementation with gamma-tocopherol, which increases both. We review current information on the bioavailability, metabolism, chemistry, and nonantioxidant activities of gamma-tocopherol and epidemiologic data concerning the relation between gamma-tocopherol and cardiovascular disease and cancer.", "title": "gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention." }, { "docid": "25589047", "text": "CONTEXT Fatal adverse events (FAEs) have been reported in cancer patients treated with the widely used angiogenesis inhibitor bevacizumab in combination with chemotherapy. Currently, the role of bevacizumab in treatment-related mortality is not clear. \n OBJECTIVE To perform a systematic review and meta-analysis of published randomized controlled trials (RCTs) to determine the overall risk of FAEs associated with bevacizumab. \n DATA SOURCES PubMed, EMBASE, and Web of Science databases as well as abstracts presented at American Society of Clinical Oncology conferences from January 1966 to October 2010 were searched to identify relevant studies. STUDY SELECTION AND DATA EXTRACTION Eligible studies included prospective RCTs in which bevacizumab in combination with chemotherapy or biological therapy was compared with chemotherapy or biological therapy alone. Summary incidence rates, relative risks (RRs), and 95% confidence intervals (CIs) were calculated using fixed- or random-effects models. \n DATA SYNTHESIS A total of 10,217 patients with a variety of advanced solid tumors from 16 RCTs were included in the analysis. The overall incidence of FAEs with bevacizumab was 2.5% (95% CI, 1.7%-3.9%). Compared with chemotherapy alone, the addition of bevacizumab was associated with an increased risk of FAEs, with an RR of 1.46 (95% CI, 1.09-1.94; P = .01; incidence, 2.5% vs 1.7%). This association varied significantly with chemotherapeutic agents (P = .045) but not with tumor types (P = .13) or bevacizumab doses (P = .16). Bevacizumab was associated with an increased risk of FAEs in patients receiving taxanes or platinum agents (RR, 3.49; 95% CI, 1.82-6.66; incidence, 3.3% vs 1.0%) but was not associated with increased risk of FAEs when used in conjunction with other agents (RR, 0.85; 95% CI, 0.25-2.88; incidence, 0.8% vs 0.9%). The most common causes of FAEs were hemorrhage (23.5%), neutropenia (12.2%), and gastrointestinal tract perforation (7.1%). \n CONCLUSION In a meta-analysis of RCTs, bevacizumab in combination with chemotherapy or biological therapy, compared with chemotherapy alone, was associated with increased treatment-related mortality.", "title": "Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis." }, { "docid": "6334188", "text": "BACKGROUND Chemotherapy-induced febrile neutropenia (FN) is a clinically important complication that affects patient outcome by delaying chemotherapy doses or reducing dose intensity. Risk of FN depends on chemotherapy- and patient-level factors. We sought to determine the effects of chronic comorbidities on risk of FN. \n DESIGN We conducted a cohort study to examine the association between a variety of chronic comorbidities and risk of FN in patients diagnosed with six types of cancer (non-Hodgkin lymphoma and breast, colorectal, lung, ovary, and gastric cancer) from 2000 to 2009 who were treated with chemotherapy at Kaiser Permanente Southern California, a large managed care organization. We excluded those patients who received primary prophylactic granulocyte colony-stimulating factor. History of comorbidities and FN events were identified using electronic medical records. Cox models adjusting for propensity score, stratified by cancer type, were used to determine the association between comorbid conditions and FN. Models that additionally adjusted for cancer stage, baseline neutrophil count, chemotherapy regimen, and dose reduction were also evaluated. \n RESULTS A total of 19 160 patients with mean age of 60 years were included; 963 (5.0%) developed FN in the first chemotherapy cycle. Chronic obstructive pulmonary disease [hazard ratio (HR) = 1.30 (1.07-1.57)], congestive heart failure [HR = 1.43 (1.00-1.98)], HIV infection [HR = 3.40 (1.90-5.63)], autoimmune disease [HR = 2.01 (1.10-3.33)], peptic ulcer disease [HR = 1.57 (1.05-2.26)], renal disease [HR = 1.60 (1.21-2.09)], and thyroid disorder [HR = 1.32 (1.06-1.64)] were all associated with a significantly increased FN risk. \n CONCLUSIONS These results provide evidence that history of several chronic comorbidities increases risk of FN, which should be considered when managing patients during chemotherapy.", "title": "History of chronic comorbidity and risk of chemotherapy-induced febrile neutropenia in cancer patients not receiving G-CSF prophylaxis." }, { "docid": "26058927", "text": "Thiazolidinediones (TZDs) improve glycemic control and insulin sensitivity in patients with type 2 diabetes mellitus (T2DM). There is growing evidence from in vivo and in vitro studies that TZDs improve pancreatic beta-cell function. The aim of this study was to determine whether TZD-induced improvement in glycemic control is associated with improved beta-cell function. We studied 11 normal glucose-tolerant and 53 T2DM subjects [age 53+/-2 yr; BMI 29.4+/-0.8 kg/m2; fasting plasma glucose (FPG) 10.3+/-0.4 mM; Hb A1c 8.2+/-0.3%]. Diabetic patients were randomized to receive placebo or TZD for 4 mo. Subjects received 1) 2-h OGTT with determination of plasma glucose, insulin, and C-peptide concentrations and 2) two-step euglycemic insulin (40 and 160 mU.m-2.min-1) clamp with [3-(3)H]glucose. T2DM patients were then randomized to receive 4 mo of treatment with pioglitazone (45 mg/day), rosiglitazone (8 mg/day), or placebo. Pioglitazone and rosiglitazone similarly improved FPG, mean plasma glucose during OGTT, Hb A1c, and insulin-mediated total body glucose disposal (Rd) and decreased mean plasma FFA during OGTT (all P<0.01, ANOVA). The insulin secretion/insulin resistance (disposition) index [DeltaISR(AUC)/Deltaglucose(AUC)/IR] was significantly improved in all TZD-treated groups: +1.8+/-0.7 (PIO+drug-naïve diabetics), +0.7+/-0.3 (PIO+sulfonylurea-treated diabetics), and 0.7+/-0.2 (ROSI+sulfonylurea-withdrawn diabetics) vs. -0.2+/-0.3 in the two placebo groups (P<0.01, all TZDs vs. placebo, ANOVA). Improved insulin secretion correlated positively with increased body weight, fat mass, and Rd and inversely with decreased plasma glucose and FFA during the OGTT. In T2DM patients, TZD treatment leads to improved beta-cell function, which correlates strongly with improved glycemic control.", "title": "Thiazolidinediones improve beta-cell function in type 2 diabetic patients." }, { "docid": "29366489", "text": "Deleted in liver cancer 1 (DLC-1), as its name implied, was originally isolated as a potential tumor suppressor gene often deleted in hepatocellular carcinoma. Further studies have indicated that down-expression of DLC-1 either by genomic deletion or DNA methylation is associated with a variety of cancer types including lung, breast, prostate, kidney, colon, uterus, ovary, and stomach. Re-expression of DLC-1 in cancer cells regulates the structure of actin cytoskeleton and focal adhesions and significantly inhibits cell growth, supporting its role as a tumor suppressor. This tumor suppressive function relies on DLC-1's RhoGTPase activating protein (RhoGAP) activity and steroidogenic acute regulatory (StAR)-related lipid transfer (START) domain, as well as its focal adhesion localization, which is recruited by the Src Homology 2 (SH2) domains of tensins in a phosphotyrosine-independent fashion. Therefore, the expression and subcellular localization of DLC-1 could be a useful molecular marker for cancer prognosis, whereas DLC-1 and its downstream signaling molecules might be therapeutic targets for the treatment of cancer.", "title": "Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver." }, { "docid": "27167110", "text": "BACKGROUND Androgens play a critical role in the growth of both androgen dependent and castration-resistant prostate cancer (CRPC). Only a few micro-RNAs (miRNAs) have been suggested to be androgen regulated. We aim to identify androgen regulated miRNAs. \n METHODS We utilized LNCaP derived model, we have established, and which overexpresses the androgen receptor (AR), the VCaP cell line, and 13 intact-castrated prostate cancer (PC) xenograft pairs, as well as clinical specimens of untreated (PC) and CRPC. The expression of miRNAs was analyzed by microarrays and quantitative RT-PCR (Q-RT-PCR). Transfection of pre-miR-141 and anti-miR-141 was also used. \n RESULTS Seventeen miRNAs were > 1.5-fold up- or downregulated upon dihydrotestosterone (DHT) treatment in the cell lines, and 42 after castration in the AR-positive xenografts. Only four miRNAs (miR-10a, miR-141, miR-150*, and miR-1225-5p) showed similar androgen regulation in both cell lines and xenografts. Of those, miR-141 was found to be expressed more in PC and CRPC compared to benign prostate hyperplasia. Additionally, the overexpression of miR-141 enhanced growth of parental LNCaP cells while inhibition of miR-141 by anti-miR-141 suppressed the growth of the LNCaP subline overexpressing AR. \n CONCLUSIONS Only a few miRNAs were found to be androgen-regulated in both cell lines and xenografts models. Of those, the expression of miR-141 was upregulated in cancer. The ectopic overexpression of miR-141 increased growth of LNCaP cell suggesting it may contribute to the progression of PC.", "title": "Androgen regulation of micro-RNAs in prostate cancer." }, { "docid": "24873253", "text": "Patients with metastatic bone disease are at risk for developing skeletal-related events that can negatively influence quality of life, contributing to loss of autonomy and functional capabilities. Bisphosphonates have become an important component in the treatment of patients with bone metastases as they delay the onset and reduce the risk of skeletal-related events and also palliate or control bone pain in multiple cancer types, thus preserving quality of life. Zoledronic acid has proven efficacy and safety in patients with bone lesions from breast cancer, prostate cancer, lung cancer, and other solid tumors, as well as in patients with multiple myeloma. Current data suggest that early treatment with zoledronic acid (before the onset of bone pain) may provide additional clinical benefits and also positive effects on survival in subsets of patients who have elevated levels of N-telopeptide of type I collagen (NTX), a biochemical marker of bone resorption. Studies have shown that in patients with breast cancer, prostate cancer, lung cancer, or other solid tumors, normalization of elevated levels of NTX was observed in the majority of patients who received zoledronic acid. Furthermore, normalization of NTX values correlated with extended survival.", "title": "Clinical benefits and considerations of bisphosphonate treatment in metastatic bone disease." } ]
955
Pioneer factor OCT3/4 interacts with major chromatin remodeling factors.
[ { "docid": "2078658", "text": "Oct4 is a well-known transcription factor that plays fundamental roles in stem cell self-renewal, pluripotency, and somatic cell reprogramming. However, limited information is available on Oct4-associated protein complexes and their intrinsic protein-protein interactions that dictate Oct4's critical regulatory activities. Here we employed an improved affinity purification approach combined with mass spectrometry to purify Oct4 protein complexes in mouse embryonic stem cells (mESCs), and discovered many novel Oct4 partners important for self-renewal and pluripotency of mESCs. Notably, we found that Oct4 is associated with multiple chromatin-modifying complexes with documented as well as newly proved functional significance in stem cell maintenance and somatic cell reprogramming. Our study establishes a solid biochemical basis for genetic and epigenetic regulation of stem cell pluripotency and provides a framework for exploring alternative factor-based reprogramming strategies.", "title": "Oct4 links multiple epigenetic pathways to the pluripotency network" }, { "docid": "30507607", "text": "Transcription factors, such as Oct4, are critical for establishing and maintaining pluripotent cell identity. Whereas the genomic locations of several pluripotency transcription factors have been reported, the spectrum of their interaction partners is underexplored. Here, we use an improved affinity protocol to purify Oct4-interacting proteins from mouse embryonic stem cells (ESCs). Subsequent purification of Oct4 partners Sall4, Tcfcp2l1, Dax1, and Esrrb resulted in an Oct4 interactome of 166 proteins, including transcription factors and chromatin-modifying complexes with documented roles in self-renewal, but also many factors not previously associated with the ESC network. We find that Esrrb associated with the basal transcription machinery and also detect interactions between transcription factors and components of the TGF-beta, Notch, and Wnt signaling pathways. Acute depletion of Oct4 reduced binding of Tcfcp2l1, Dax1, and Esrrb to several target genes. In conclusion, our purification protocol allowed us to bring greater definition to the circuitry controlling pluripotent cell identity.", "title": "An Oct4-Centered Protein Interaction Network in Embryonic Stem Cells" } ]
[ { "docid": "4896726", "text": "Pioneer transcription factors establish new cell-fate competence by triggering chromatin remodeling. However, many features of pioneer action, such as their kinetics and stability, remain poorly defined. Here, we show that Pax7, by opening a unique repertoire of enhancers, is necessary and sufficient for specification of one pituitary lineage. Pax7 binds its targeted enhancers rapidly, but chromatin remodeling and gene activation are slower. Enhancers opened by Pax7 show a loss of DNA methylation and acquire stable epigenetic memory, as evidenced by binding of nonpioneer factors after Pax7 withdrawal. This work shows that transient Pax7 expression is sufficient for stable specification of cell identity. Analysis of Pax7 dynamics during pituitary lineage specification shows that Pax7 binds rapidly at uniquely marked heterochromatin pioneer sites and initiates chromatin opening that remains stable after Pax7 withdrawal, with loss of DNA hypermethylation at pioneered enhancers.", "title": "Pioneer factor Pax7 deploys a stable enhancer repertoire for specification of cell fate" }, { "docid": "13242763", "text": "Trophectoderm (TE), the first differentiated cell lineage of mammalian embryogenesis, forms the placenta, a structure unique to mammalian development. The differentiation of TE is a hallmark event in early mammalian development, but molecular mechanisms underlying this first differentiation event remain obscure. Embryonic stem (ES) cells can be induced to differentiate into the TE lineage by forced repression of the POU-family transcription factor, Oct3/4. We show here that this event can be mimicked by overexpression of Caudal-related homeobox 2 (Cdx2), which is sufficient to generate proper trophoblast stem (TS) cells. Cdx2 is dispensable for trophectoderm differentiation induced by Oct3/4 repression but essential for TS cell self-renewal. In preimplantation embryos, Cdx2 is initially coexpressed with Oct3/4 and they form a complex for the reciprocal repression of their target genes in ES cells. This suggests that reciprocal inhibition between lineage-specific transcription factors might be involved in the first differentiation event of mammalian development.", "title": "Interaction between Oct3/4 and Cdx2 Determines Trophectoderm Differentiation" }, { "docid": "23208167", "text": "Pioneer transcription factors (TFs) function as genomic first responders, binding to inaccessible regions of chromatin to promote enhancer formation. The mechanism by which pioneer TFs gain access to chromatin remains an important unanswered question. Here we show that PARP-1, a nucleosome-binding protein, cooperates with intrinsic properties of the pioneer TF Sox2 to facilitate its binding to intractable genomic loci in embryonic stem cells. These actions of PARP-1 occur independently of its poly(ADP-ribosyl) transferase activity. PARP-1-dependent Sox2-binding sites reside in euchromatic regions of the genome with relatively high nucleosome occupancy and low co-occupancy by other transcription factors. PARP-1 stabilizes Sox2 binding to nucleosomes at suboptimal sites through cooperative interactions on DNA. Our results define intrinsic and extrinsic features that determine Sox2 pioneer activity. The conditional pioneer activity observed with Sox2 at a subset of binding sites may be a key feature of other pioneer TFs operating at intractable genomic loci.", "title": "Catalytic-Independent Functions of PARP-1 Determine Sox2 Pioneer Activity at Intractable Genomic Loci." }, { "docid": "11011905", "text": "Pioneer transcription factors (TFs) access silent chromatin and initiate cell-fate changes, using diverse types of DNA binding domains (DBDs). FoxA, the paradigm pioneer TF, has a winged helix DBD that resembles linker histone and thereby binds its target sites on nucleosomes and in compacted chromatin. Herein, we compare the nucleosome and chromatin targeting activities of Oct4 (POU DBD), Sox2 (HMG box DBD), Klf4 (zinc finger DBD), and c-Myc (bHLH DBD), which together reprogram somatic cells to pluripotency. Purified Oct4, Sox2, and Klf4 proteins can bind nucleosomes in vitro, and in vivo they preferentially target silent sites enriched for nucleosomes. Pioneer activity relates simply to the ability of a given DBD to target partial motifs displayed on the nucleosome surface. Such partial motif recognition can occur by coordinate binding between factors. Our findings provide insight into how pioneer factors can target naive chromatin sites.", "title": "Pioneer Transcription Factors Target Partial DNA Motifs on Nucleosomes to Initiate Reprogramming" }, { "docid": "2151983", "text": "Transcription factors (TFs) bind specifically to discrete regions of mammalian genomes called cis-regulatory elements. Among those are enhancers, which play key roles in regulation of gene expression during development and differentiation. Despite the recognized central regulatory role exerted by chromatin in control of TF functions, much remains to be learned regarding the chromatin structure of enhancers and how it is established. Here, we have analyzed on a genomic-scale enhancers that recruit FOXA1, a pioneer transcription factor that triggers transcriptional competency of these cis-regulatory sites. Importantly, we found that FOXA1 binds to genomic regions showing local DNA hypomethylation and that its cell-type-specific recruitment to chromatin is linked to differential DNA methylation levels of its binding sites. Using neural differentiation as a model, we showed that induction of FOXA1 expression and its subsequent recruitment to enhancers is associated with DNA demethylation. Concomitantly, histone H3 lysine 4 methylation is induced at these enhancers. These epigenetic changes may both stabilize FOXA1 binding and allow for subsequent recruitment of transcriptional regulatory effectors. Interestingly, when cloned into reporter constructs, FOXA1-dependent enhancers were able to recapitulate their cell type specificity. However, their activities were inhibited by DNA methylation. Hence, these enhancers are intrinsic cell-type-specific regulatory regions of which activities have to be potentiated by FOXA1 through induction of an epigenetic switch that includes notably DNA demethylation.", "title": "Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers." }, { "docid": "9732010", "text": "Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1.Pcr1. Chromatin remodeling occurs meiotically around M26. We examined the roles of HATs and ADCRs in chromatin remodeling around M26. Histones H3 and H4 around M26 were hyperacetylated in an M26- and Atf1-dependent manner early in meiosis. SpGcn5, the S. pombe homolog of Gcn5p, was required for the majority of histone H3 acetylation around M26 in vivo. Deletion of gcn5+ caused a significant delay in chromatin remodeling but only partial reduction of M26 meiotic recombination frequency. The snf22+ (a Swi2/Snf2-ADCR homologue) deletion and snf22+ gcn5+ double deletion abolished chromatin remodeling and significant reduction of meiotic recombination around M26. These results suggest that HATs and ADCRs cooperatively alter local chromatin structure, as in selective transcription activation, to activate meiotic recombination at M26 in a site-specific manner.", "title": "Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot." }, { "docid": "24530633", "text": "Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass (ICM) and the epiblast, and have been suggested to be a homogeneous population with characteristics intermediate between them. These cells express Oct3/4 and Rex1 genes, which have been used as markers to indicate the undifferentiated state of ES cells. Whereas Oct3/4 is expressed in totipotent and pluripotent cells in the mouse life cycle, Rex1 expression is restricted to the ICM, and is downregulated in pluripotent cell populations in the later stages, i.e. the epiblast and primitive ectoderm (PrE). To address whether ES cells comprise a homogeneous population equivalent to a certain developmental stage of pluripotent cells or a heterogeneous population composed of cells corresponding to various stages of differentiation, we established knock-in ES cell lines in which genes for fluorescent proteins were inserted into the Rex1 and Oct3/4 gene loci to visualize the expression of these genes. We found that undifferentiated ES cells included at least two different populations, Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells. The Rex1(-)/Oct3/4(+) and Rex1(+)/Oct3/4(+) populations could convert into each other in the presence of LIF. In accordance with our assumption that Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells have characteristics similar to those of ICM and early-PrE cells, Rex1(+)/Oct3/4(+) cells predominantly differentiated into primitive ectoderm and contributed to chimera formation, whereas Rex1(-)/Oct3/4(+) cells differentiated into cells of the somatic lineage more efficiently than non-fractionated ES cells in vitro and showed poor ability to contribute to chimera formation. These results confirmed that undifferentiated ES cell culture contains subpopulations corresponding to ICM, epiblast and PrE.", "title": "Identification and characterization of subpopulations in undifferentiated ES cell culture." }, { "docid": "18998807", "text": "The ectopic expression of transcription factors can reprogram cell fate, yet it is unknown how the initial binding of factors to the genome relates functionally to the binding seen in the minority of cells that become reprogrammed. We report a map of Oct4, Sox2, Klf4, and c-Myc (O, S, K, and M) on the human genome during the first 48 hr of reprogramming fibroblasts to pluripotency. Three striking aspects of the initial chromatin binding events include an unexpected role for c-Myc in facilitating OSK chromatin engagement, the primacy of O, S, and K as pioneer factors at enhancers of genes that promote reprogramming, and megabase-scale chromatin domains spanned by H3K9me3, including many genes required for pluripotency, that prevent initial OSKM binding and impede the efficiency of reprogramming. We find diverse aspects of initial factor binding that must be overcome in the minority of cells that become reprogrammed.", "title": "Facilitators and Impediments of the Pluripotency Reprogramming Factors' Initial Engagement with the Genome" }, { "docid": "20420780", "text": "DNA double-strand breaks (DSBs) are repaired via nonhomologous end-joining (NHEJ) or homologous recombination (HR), but cellular repair processes remain elusive. We show here that the ATP-dependent chromatin-remodeling factors, ACF1 and SNF2H, accumulate rapidly at DSBs and are required for DSB repair in human cells. If the expression of ACF1 or SNF2H is suppressed, cells become extremely sensitive to X-rays and chemical treatments producing DSBs, and DSBs remain unrepaired. ACF1 interacts directly with KU70 and is required for the accumulation of KU proteins at DSBs. The KU70/80 complex becomes physically more associated with the chromatin-remodeling factors of the CHRAC complex, which includes ACF1, SNF2H, CHRAC15, and CHRAC17, after treatments producing DSBs. Furthermore, the frequency of NHEJ as well as HR induced by DSBs in chromosomal DNA is significantly decreased in cells depleted of either of these factors. Thus, ACF1 and its complexes play important roles in DSBs repair.", "title": "The ACF1 complex is required for DNA double-strand break repair in human cells." }, { "docid": "22937815", "text": "Now that we have a good understanding of the DNA double strand break (DSB) repair mechanisms and DSB-induced damage signalling, attention is focusing on the changes to the chromatin environment needed for efficient DSB repair. Mutations in chromatin remodelling complexes have been identified in cancers, making it important to evaluate how they impact upon genomic stability. Our current understanding of the DSB repair pathways suggests that each one has distinct requirements for chromatin remodelling. Moreover, restricting the extent of chromatin modifications could be a significant factor regulating the decision of pathway usage. In this review, we evaluate the distinct DSB repair pathways for their potential need for chromatin remodelling and review the roles of ATP-driven chromatin remodellers in the pathways.", "title": "Roles of chromatin remodellers in DNA double strand break repair." }, { "docid": "335029", "text": "The eukaryotic genome consists of DNA molecules far longer than the cells that contain them. They reach their greatest compaction during chromosome condensation in mitosis. This process is aided by condensin, a structural maintenance of chromosomes (SMC) family member. The spatial organization of mitotic chromosomes and how condensin shapes chromatin architecture are not yet fully understood. Here we use chromosome conformation capture (Hi-C) to study mitotic chromosome condensation in the fission yeast Schizosaccharomyces pombe. This showed that the interphase landscape characterized by small chromatin domains is replaced by fewer but larger domains in mitosis. Condensin achieves this by setting up longer-range, intrachromosomal DNA interactions, which compact and individualize chromosomes. At the same time, local chromatin contacts are constrained by condensin, with profound implications for local chromatin function during mitosis. Our results highlight condensin as a major determinant that changes the chromatin landscape as cells prepare their genomes for cell division.", "title": "Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast" }, { "docid": "12462961", "text": "Cytochrome P450c17 catalyzes steroidogenic 17alpha-hydroxylase and 17,20 lyase activities. Expression of the gene for P450c17 is cAMP dependent, tissue specific, developmentally programmed, and varies among species. Binding of Sp1, Sp3, and NF1-C (nuclear factor 1-C) to the first 227 bp of 5'flanking DNA (-227/LUC) is crucial for basal transcription in human NCI-H295A adrenal cells. Human placental JEG-3 cells contain Sp1, Sp3, and NF1, but do not express -227/LUC, even when transfected with a vector expressing steroidogenic factor 1 (SF-1). Therefore, other factors are essential for basal expression of P450c17. Deoxyribonuclease I footprinting and EMSAs identified a GATA consensus site at -64/-58 and an SF-1 site at -58/-50. RT-PCR identified GATA-4, GATA-6, and SF-1 in NCI-H295A cells and GATA-2 and GATA-3, but not GATA-4, GATA-6, or SF-1 in JEG-3 cells. Cotransfection of either GATA-4 or GATA-6 without SF-1 activated -227/LUC in JEG-3 cells, but cotransfection of GATA-2 or GATA-3 with or without SF-1 did not. Surprisingly, mutation of the GATA binding site in -227/LUC increased GATA-4 or GATA-6 induced activity, whereas mutation of the Sp1/Sp3 site decreased it. Furthermore, promoter constructs including the GATA site, but excluding the Sp1/Sp3 site at -196/-188, were not activated by GATA-4 or GATA-6, suggesting an interaction between Sp1/Sp3 and GATA-4 or GATA-6. Glutathione-S-transferase pull-down experiments and coimmunoprecipitation demonstrated interaction between GATA-4 or GATA-6 and Sp1, but not Sp3. Chromatin immunoprecipitation assays confirmed that this GATA-4/6 interaction with Sp1 occurred at the Sp site in the P450c17 promoter in NCI-H295A cells. Demethylation with 5-aza-2-deoxycytidine permitted JEG-3 cells to express endogenous P450c17, SF-1, GATA-4, GATA-6, and transfected -227/LUC. Thus, GATA-4 or GATA-6 and Sp1 together regulate expression of P450c17 in adrenal NCI-H295A cells and methylation of P450c17, GATA-4 and GATA-6 silence the expression of P450c17 in placental JEG-3 cells.", "title": "GATA-4 and GATA-6 modulate tissue-specific transcription of the human gene for P450c17 by direct interaction with Sp1." }, { "docid": "9393969", "text": "Organisms are constantly challenged by stresses and privations and require adaptive responses for their survival. The forkhead box O (FOXO) transcription factor DAF-16 (hereafter referred to as DAF-16/FOXO) is a central nexus in these responses, but despite its importance little is known about how it regulates its target genes. Proteomic identification of DAF-16/FOXO-binding partners in Caenorhabditis elegans and their subsequent functional evaluation by RNA interference revealed several candidate DAF-16/FOXO cofactors, most notably the chromatin remodeller SWI/SNF. DAF-16/FOXO and SWI/SNF form a complex and globally co-localize at DAF-16/FOXO target promoters. We show that specifically for gene activation, DAF-16/FOXO depends on SWI/SNF, facilitating SWI/SNF recruitment to target promoters, to activate transcription by presumed remodelling of local chromatin. For the animal, this translates into an essential role for SWI/SNF in DAF-16/FOXO-mediated processes, in particular dauer formation, stress resistance and the promotion of longevity. Thus, we give insight into the mechanisms of DAF-16/FOXO-mediated transcriptional regulation and establish a critical link between ATP-dependent chromatin remodelling and lifespan regulation.", "title": "DAF-16/FOXO employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity" }, { "docid": "43711341", "text": "Transcriptional coactivators showing physical and functional interactions with PPARgamma include the protein acetyl transferase p300, the TRAP/Mediator complex that interacts with the general transcription machinery, and the highly regulated PGC-1alpha. We show that PGC-1alpha directly interacts with TRAP/Mediator, through the PPARgamma-interacting subunit TRAP220, and stimulates TRAP/Mediator-dependent function on DNA templates. Further, while ineffective by itself, PGC-1alpha stimulates p300-dependent histone acetylation and transcription on chromatin templates in response to PPARgamma. These functions are mediated by largely independent PPARgamma, p300, and TRAP220 interaction domains in PGC-1alpha, whereas p300 and TRAP220 show ligand-dependent interactions with a common region of PPARgamma. Apart from showing PGC-1alpha functions both in chromatin remodeling and in preinitiation complex formation or function (transcription), these results suggest a key role for PGC-1alpha, through concerted but dynamic interactions, in coordinating these steps.", "title": "Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha." }, { "docid": "26612216", "text": "ATP-dependent chromatin remodeling complexes are a notable group of epigenetic modifiers that use the energy of ATP hydrolysis to change the structure of chromatin, thereby altering its accessibility to nuclear factors. BAF250a (ARID1a) is a unique and defining subunit of the BAF chromatin remodeling complex with the potential to facilitate chromosome alterations critical during development. Our studies show that ablation of BAF250a in early mouse embryos results in developmental arrest (about embryonic day 6.5) and absence of the mesodermal layer, indicating its critical role in early germ-layer formation. Moreover, BAF250a deficiency compromises ES cell pluripotency, severely inhibits self-renewal, and promotes differentiation into primitive endoderm-like cells under normal feeder-free culture conditions. Interestingly, this phenotype can be partially rescued by the presence of embryonic fibroblast cells. DNA microarray, immunostaining, and RNA analyses revealed that BAF250a-mediated chromatin remodeling contributes to the proper expression of numerous genes involved in ES cell self-renewal, including Sox2, Utf1, and Oct4. Furthermore, the pluripotency defects in BAF250a mutant ES cells appear to be cell lineage-specific. For example, embryoid body-based analyses demonstrated that BAF250a-ablated stem cells are defective in differentiating into fully functional mesoderm-derived cardiomyocytes and adipocytes but are capable of differentiating into ectoderm-derived neurons. Our results suggest that BAF250a is a key component of the gene regulatory machinery in ES cells controlling self-renewal, differentiation, and cell lineage decisions.", "title": "ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a." }, { "docid": "6536598", "text": "Chromatin structure is modulated during deoxyribonucleic acid excision repair, but how this is achieved is unclear. Loss of the yeast Ino80 chromatin-remodeling complex (Ino80-C) moderately sensitizes cells to ultraviolet (UV) light. In this paper, we show that INO80 acts in the same genetic pathway as nucleotide excision repair (NER) and that the Ino80-C contributes to efficient UV photoproduct removal in a region of high nucleosome occupancy. Moreover, Ino80 interacts with the early NER damage recognition complex Rad4-Rad23 and is recruited to chromatin by Rad4 in a UV damage-dependent manner. Using a modified chromatin immunoprecipitation assay, we find that chromatin disruption during UV lesion repair is normal, whereas the restoration of nucleosome structure is defective in ino80 mutant cells. Collectively, our work suggests that Ino80 is recruited to sites of UV lesion repair through interactions with the NER apparatus and is required for the restoration of chromatin structure after repair.", "title": "The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair" }, { "docid": "20630805", "text": "Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes.", "title": "Histone phosphorylation: a chromatin modification involved in diverse nuclear events." }, { "docid": "12315072", "text": "At the cellular level, development progresses through successive regulatory states, each characterized by their specific gene expression profile. However, the molecular mechanisms regulating first the priming and then maintenance of gene expression within one developmental pathway are essentially unknown. The hematopoietic system represents a powerful experimental model to address these questions and here we have focused on a regulatory circuit playing a central role in myelopoiesis: the transcription factor PU.1, its target gene colony-stimulating-factor 1 receptor (Csf1r), and key upstream regulators such as RUNX1. We find that during ontogeny, chromatin unfolding precedes the establishment of active histone marks and the formation of stable transcription factor complexes at the Pu.1 locus and we show that chromatin remodeling is mediated by the transient binding of RUNX1 to Pu.1 cis-elements. By contrast, chromatin reorganization of Csf1r requires prior expression of PU.1 together with RUNX1 binding. Once the full hematopoietic program is established, stable transcription factor complexes and active chromatin can be maintained without RUNX1. Our experiments therefore demonstrate how individual transcription factors function in a differentiation stage-specific manner to differentially affect the initiation versus maintenance of a developmental program.", "title": "Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program." }, { "docid": "36547290", "text": "IL-6 is an immunoregulatory cytokine with multiple functions in hemopoiesis, proliferation, and tumorigenesis. IL-6 triggers phosphorylation, dimerization, and nuclear translocation of STAT3, which binds to target promoters and activates transcription. Brahma-related gene 1 (BRG1), the enzymatic engine of the yeast-mating type-switching and sucrose-nonfermenting chromatin-remodeling complex, is essential for recruitment of STAT1 or STAT1/STAT2-containing complexes to IFN targets. We hypothesized that BRG1 might also be required for STAT3 recruitment. In this study, we show that induction of a subset of human IL-6-responsive genes is BRG1 dependent. BRG1 is constitutively present at these targets and is required for STAT3 recruitment, downstream histone modifications, and IL-6-induced chromatin remodeling. IL-6-induced recruitment of STAT3 to the IFN regulatory factor 1 promoter and subsequent mRNA synthesis is BRG1 dependent, even though IFN-gamma-mediated STAT1 recruitment to this locus is BRG1 independent. BRG1 also increased basal expression of IFN-induced transmembrane protein 3 and IFN-gamma-induced protein 16, and the basal chromatin accessibility at the promoter of IFN regulatory factor 1. The effect on basal expression was STAT3 independent, as revealed by small interfering RNA knockdown. Together with prior observations, these data reveal that BRG1 has a broad role in mediating STAT accessibility at multiple cytokine-responsive promoters and exposes promoter specific differences in both the effect of BRG1 on basal chromatin accessibility and on access of different STAT proteins to the same target.", "title": "Brahma-related gene 1-dependent STAT3 recruitment at IL-6-inducible genes." }, { "docid": "11390393", "text": "Naive and primed pluripotency is characterized by distinct signaling requirements, transcriptomes, and developmental properties, but both cellular states share key transcriptional regulators: Oct4, Sox2, and Nanog. Here, we demonstrate that transition between these two pluripotent states is associated with widespread Oct4 relocalization, mirrored by global rearrangement of enhancer chromatin landscapes. Our genomic and biochemical analyses identified candidate mediators of primed state-specific Oct4 binding, including Otx2 and Zic2/3. Even when differentiation cues are blocked, premature Otx2 overexpression is sufficient to exit the naive state, induce transcription of a substantial subset of primed pluripotency-associated genes, and redirect Oct4 to previously inaccessible enhancer sites. However, the ability of Otx2 to engage new enhancer regions is determined by its levels, cis-encoded properties of the sites, and the signaling environment. Our results illuminate regulatory mechanisms underlying pluripotency and suggest that the capacity of transcription factors such as Otx2 and Oct4 to pioneer new enhancer sites is highly context dependent.", "title": "Reorganization of enhancer patterns in transition from naive to primed pluripotency." } ]
959
Polymeal nutrition increases cardiovascular mortality.
[ { "docid": "8780599", "text": "OBJECTIVE Although the Polypill concept (proposed in 2003) is promising in terms of benefits for cardiovascular risk management, the potential costs and adverse effects are its main pitfalls. The objective of this study was to identify a tastier and safer alternative to the Polypill: the Polymeal. \n METHODS Data on the ingredients of the Polymeal were taken from the literature. The evidence based recipe included wine, fish, dark chocolate, fruits, vegetables, garlic, and almonds. Data from the Framingham heart study and the Framingham offspring study were used to build life tables to model the benefits of the Polymeal in the general population from age 50, assuming multiplicative correlations. \n RESULTS Combining the ingredients of the Polymeal would reduce cardiovascular disease events by 76%. For men, taking the Polymeal daily represented an increase in total life expectancy of 6.6 years, an increase in life expectancy free from cardiovascular disease of 9.0 years, and a decrease in life expectancy with cardiovascular disease of 2.4 years. The corresponding differences for women were 4.8, 8.1, and 3.3 years. \n CONCLUSION The Polymeal promises to be an effective, non-pharmacological, safe, cheap, and tasty alternative to reduce cardiovascular morbidity and increase life expectancy in the general population.", "title": "The Polymeal: a more natural, safer, and probably tastier (than the Polypill) strategy to reduce cardiovascular disease by more than 75%." } ]
[ { "docid": "75636923", "text": "Metabolic syndrome is diagnosed when three or more of the following criteria are met: abdominal obesity (waist circumference more than 102 cm in men and 88 cm in women); hypertriglyceridemia of 150 mg/dl or above; a high-density lipoprotein (HDL) cholesterol level less than 40 mg/dl in men or 50 mg/dl in women; blood pressure of 130/85 mm Hg or higher; or fasting glucose of at least 110 mg/dl. Individuals with metabolic syndrome are likelier than others to develop diabetes and cardiovascular disease and have increased mortality from all causes (and from cardiovascular disease in particular). The investigators attempted to determine the prevalence of the syndrome in the United States by analyzing data on 8814 men and women 20 years of age or older who took part in the Third National Health and Nutrition Examination Survey in the years 1988 to 1994. This is a cross-sectional health survey of a sample of the noninstitutionalized civilian American population. The overall age-adjusted prevalence of metabolic syndrome was 23.7%. The prevalence rose from 6.7% in persons 20 to 29 years of age to 42% in those aged 70 years and more. There was virtually no gender-related difference in prevalence rates for the combined racial groups. Metabolic syndrome was most prevalent in Mexican Americans and least prevalent in whites, African Americans, and \"others. \" Among both African Americans and Mexican Americans, women had higher prevalence rates than men. Extrapolating from age-specific prevalence rates and US census counts from the year 2000, 47 million US residents have metabolic syndrome. Considering its prevalence, it seems important to estimate the direct medical costs of metabolic syndrome. In the great majority of cases the critical causes are improper nutrition and insufficient physical activity, emphasizing the importance of controlling obesity and encouraging physical activity in the United States.", "title": "Prevalence of the Metabolic Syndrome Among Us Adults: Findings From the Third National Health and Nutrition Examination Survey" }, { "docid": "6525844", "text": "BACKGROUND Damage to large arteries is a major factor in the high cardiovascular morbidity and mortality of patients with end-stage renal disease (ESRD). Increased arterial stiffness and intima-media thickness, together with increased pulse pressure, are the principal arterial alterations. Whether increased aortic pulse-wave velocity (PWV), a classic marker of increased arterial stiffness, may predict all-cause and/or cardiovascular mortality has never been investigated. \n METHODS AND RESULTS A cohort of 241 patients with ESRD undergoing hemodialysis was studied between April 1987 and April 1998. The mean duration of follow-up was 72+/-41 months (mean+/-SD). Mean age at entry was 51.5+/-16.3 years. Seventy-three deaths occurred, including 48 cardiovascular and 25 noncardiovascular fatal events. At entry, together with standard clinical and biochemical analyses, patients underwent echocardiography and aortic PWV measured by Doppler ultrasonography. On the basis of Cox analyses, 2 factors emerged as predictors of all-cause and cardiovascular mortality: age and aortic PWV. Hemoglobin and low diastolic pressure interfered to a smaller extent. After adjustment for all the confounding factors, an OR for PWV >12. 0 versus <9.4 m/s was 5.4 (95% CI, 2.4 to 11.9) for all-cause mortality and 5.9 (95% CI, 2.3 to 15.5) for cardiovascular mortality. For each PWV increase of 1 m/s in our study population, all-cause mortality-adjusted OR was 1.39 (95% CI, 1.19 to 1.62). \n CONCLUSIONS These results provide the first direct evidence that in patients with ESRD, increased aortic stiffness determined by measurement of aortic PWV is a strong independent predictor of all-cause and mainly cardiovascular mortality.", "title": "Impact of aortic stiffness on survival in end-stage renal disease." }, { "docid": "13230773", "text": "CONTEXT Population surveys indicate that physical activity levels are low in the United States. One consequence of inactivity, low cardiorespiratory fitness, is an established risk factor for cardiovascular disease (CVD) morbidity and mortality, but the prevalence of cardiorespiratory fitness has not been quantified in representative US population samples. \n OBJECTIVES To describe the prevalence of low fitness in the US population aged 12 through 49 years and to relate low fitness to CVD risk factors in this population. \n DESIGN, SETTING, AND PARTICIPANTS Inception cohort study using data from the cross-sectional nationally representative National Health and Nutrition Examination Survey 1999-2002. Participants were adolescents (aged 12-19 years; n = 3110) and adults (aged 20-49 years; n = 2205) free from previously diagnosed CVD who underwent submaximal graded exercise treadmill testing to achieve at least 75% to 90% of their age-predicted maximum heart rate. Maximal oxygen consumption (VO2max) was estimated by measuring the heart rate response to reference levels of submaximal work. \n MAIN OUTCOME MEASURES Low fitness defined using percentile cut points of estimated VO2max from existing external referent populations; anthropometric and other CVD risk factors measured according to standard methods. \n RESULTS Low fitness was identified in 33.6% of adolescents (approximately 7.5 million US adolescents) and 13.9% of adults (approximately 8.5 million US adults); the prevalence was similar in adolescent females (34.4%) and males (32.9%) (P = .40) but was higher in adult females (16.2%) than in males (11.8%) (P = .03). Non-Hispanic blacks and Mexican Americans were less fit than non-Hispanic whites. In all age-sex groups, body mass index and waist circumference were inversely associated with fitness; age- and race-adjusted odds ratios of overweight or obesity (body mass index > or =25) ranged from 2.1 to 3.7 (P<.01 for all), comparing persons with low fitness with those with moderate or high fitness. Total cholesterol levels and systolic blood pressure were higher and levels of high-density lipoprotein cholesterol were lower among participants with low vs high fitness. \n CONCLUSION Low fitness in adolescents and adults is common in the US population and is associated with an increased prevalence of CVD risk factors.", "title": "Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults." }, { "docid": "202259", "text": "BACKGROUND Patients undergoing dialysis have a substantially increased risk of cardiovascular mortality and morbidity. Although several trials have shown the cardiovascular benefits of lowering blood pressure in the general population, there is uncertainty about the efficacy and tolerability of reducing blood pressure in patients on dialysis. We did a systematic review and meta-analysis to assess the effect of blood pressure lowering in patients on dialysis. \n METHODS We systematically searched Medline, Embase, and the Cochrane Library database for trials reported between 1950 and November, 2008, without language restriction. We extracted a standardised dataset from randomised controlled trials of blood pressure lowering in patients on dialysis that reported cardiovascular outcomes. Meta-analysis was done with a random effects model. \n FINDINGS We identified eight relevant trials, which provided data for 1679 patients and 495 cardiovascular events. Weighted mean systolic blood pressure was 4.5 mm Hg lower and diastolic blood pressure 2.3 mm Hg lower in actively treated patients than in controls. Blood pressure lowering treatment was associated with lower risks of cardiovascular events (RR 0.71, 95% CI 0.55-0.92; p=0.009), all-cause mortality (RR 0.80, 0.66-0.96; p=0.014), and cardiovascular mortality (RR 0.71, 0.50-0.99; p=0.044) than control regimens. The effects seem to be consistent across a range of patient groups included in the studies. \n INTERPRETATION Treatment with agents that lower blood pressure should routinely be considered for individuals undergoing dialysis to reduce the very high cardiovascular morbidity and mortality rate in this population.", "title": "Effect of lowering blood pressure on cardiovascular events and mortality in patients on dialysis: a systematic review and meta-analysis of randomised controlled trials" }, { "docid": "5698494", "text": "OBJECTIVES To investigate whether statins reduce all cause mortality and major coronary and cerebrovascular events in people without established cardiovascular disease but with cardiovascular risk factors, and whether these effects are similar in men and women, in young and older (>65 years) people, and in people with diabetes mellitus. \n DESIGN Meta-analysis of randomised trials. \n DATA SOURCES Cochrane controlled trials register, Embase, and Medline. Data abstraction Two independent investigators identified studies on the clinical effects of statins compared with a placebo or control group and with follow-up of at least one year, at least 80% or more participants without established cardiovascular disease, and outcome data on mortality and major cardiovascular disease events. Heterogeneity was assessed using the Q and I(2) statistics. Publication bias was assessed by visual examination of funnel plots and the Egger regression test. \n RESULTS 10 trials enrolled a total of 70 388 people, of whom 23 681 (34%) were women and 16 078 (23%) had diabetes mellitus. Mean follow-up was 4.1 years. Treatment with statins significantly reduced the risk of all cause mortality (odds ratio 0.88, 95% confidence interval 0.81 to 0.96), major coronary events (0.70, 0.61 to 0.81), and major cerebrovascular events (0.81, 0.71 to 0.93). No evidence of an increased risk of cancer was observed. There was no significant heterogeneity of the treatment effect in clinical subgroups. \n CONCLUSION In patients without established cardiovascular disease but with cardiovascular risk factors, statin use was associated with significantly improved survival and large reductions in the risk of major cardiovascular events.", "title": "The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials" }, { "docid": "33740844", "text": "Current understanding of biologic processes indicates that women's nutritional status before and during early pregnancy may play an important role in determining early developmental processes and ensuring successful pregnancy outcomes. We conducted a systematic review of the evidence for the impact of maternal nutrition before and during early pregnancy (<12 weeks gestation) on maternal, neonatal and child health outcomes and included 45 articles (nine intervention trials and 32 observational studies) that were identified through PubMed and EMBASE database searches and examining review articles. Intervention trials and observational studies show that periconceptional (<12 weeks gestation) folic acid supplementation significantly reduced the risk of neural tube defects. Observational studies suggest that preconceptional and periconceptional intake of vitamin and mineral supplements is associated with a reduced risk of delivering offspring who are low birthweight and/or small-for-gestational age (SGA) and preterm deliveries (PTD). Some studies report that indicators of maternal prepregnancy size, low stature, underweight and overweight are associated with increased risks of PTD and SGA. The available data indicate the importance of women's nutrition prior to and during the first trimester of pregnancy, but there is a need for well-designed prospective studies and controlled trials in developing country settings that examine relationships with low birthweight, SGA, PTD, stillbirth and maternal and neonatal mortality. The knowledge gaps that need to be addressed include the evaluation of periconceptional interventions such as food supplements, multivitamin-mineral supplements and/or specific micronutrients (iron, zinc, iodine, vitamin B-6 and B-12) as well as the relationship between measures of prepregnancy body size and composition and maternal, neonatal and child health outcomes.", "title": "Effect of women's nutrition before and during early pregnancy on maternal and infant outcomes: a systematic review." }, { "docid": "27665523", "text": "Oxidative stress has been increasingly linked to the high incidence of cardiovascular events in patients with chronic kidney disease (CKD), especially as traditional cardiovascular risk factors seem to not be able to account for the huge cardiovascular morbidity and mortality in this population group. Oxidative stress is increased in patients with renal impairment as a result of increased oxidant activity and reduced antioxidant capacity, and this is increased in a graded manner with increasing renal dysfunction. Inflammation, which is also present in CKD, further amplifies the oxidant generation process. The two clinical sequelae of oxidative stress are endothelial dysfunction and left ventricular hypertrophy, which have adverse cardiovascular consequences. With our new understanding of oxidative stress, it is now important to assess treatment options that reduce it in the hope that they reverse endothelial dysfunction and left ventricular hypertrophy and the clinical sequelae of these abnormalities.", "title": "Oxidative stress in renal dysfunction: mechanisms, clinical sequelae and therapeutic options" }, { "docid": "12770738", "text": "BACKGROUND Questions remain as to whether higher levels of cardiorespiratory fitness, a measure of regular physical activity, are associated with lower risk of cardiovascular disease (CVD) mortality in overweight and obese individuals with diabetes. Our objective was to quantify the independent and joint relations of cardiorespiratory fitness (hereafter, fitness) and body mass index (BMI; calculated as weight in kilograms divided by the square of height in meters) with CVD mortality in men with diabetes. \n METHODS This study was conducted using prospective observational data from the Aerobics Center Longitudinal Study. Study participants comprised 2316 men with no history of stroke or myocardial infarction and who were diagnosed as having diabetes (mean [SD] age, 50 [10] years); had a medical examination, including a maximal exercise test during 1970 to 1997 with mortality surveillance to December 31, 1998; and had a BMI of 18.5 or greater and less than 35.0. The main outcome measure was CVD mortality across levels of fitness with stratification by BMI. \n RESULTS We identified 179 CVD deaths during a mean (SD) follow-up of 15.9 (7.9) years and 36,710 man-years of exposure. In a model containing age, examination year, fasting glucose level, systolic blood pressure, parental history of premature CVD, total cholesterol level, cigarette smoking, abnormal resting, and exercise electrocardiograms, a significantly higher adjusted risk of mortality was observed in men with a low fitness level who were normal weight (hazard ratio, 2.7 [95% confidence interval, 1.3-5.7]), overweight (hazard ratio, 2.7 [95% confidence interval, 1.4-5.1]), and class 1 obese (hazard ratio, 2.8 [95% confidence interval, 1.4-5.1]) compared with normal weight men with a high fitness level. \n CONCLUSION In this cohort of men with diabetes, low fitness level was associated with increased risk of CVD mortality within normal weight, overweight, and class 1 obese weight categories.", "title": "Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes." }, { "docid": "6793674", "text": "Circulating trimethylamine N-oxide (TMAO), a canonical metabolite from gut flora, has been related to the risk of cardiovascular disorders. However, the association between circulating TMAO and the risk of cardiovascular events has not been quantitatively evaluated. We performed a systematic review and meta-analysis of all available cohort studies regarding the association between baseline circulating TMAO and subsequent cardiovascular events. Embase and PubMed databases were searched for relevant cohort studies. The overall hazard ratios for the developing of cardiovascular events (CVEs) and mortality were extracted. Heterogeneity among the included studies was evaluated with Cochran's Q Test and I2 statistics. A random-effect model or a fixed-effect model was applied depending on the heterogeneity. Subgroup analysis and meta-regression were used to evaluate the source of heterogeneity. Among the 11 eligible studies, three reported both CVE and mortality outcome, one reported only CVEs and the other seven provided mortality data only. Higher circulating TMAO was associated with a 23% higher risk of CVEs (HR = 1.23, 95% CI: 1.07-1.42, I2 = 31.4%) and a 55% higher risk of all-cause mortality (HR = 1.55, 95% CI: 1.19-2.02, I2 = 80.8%). Notably, the latter association may be blunted by potential publication bias, although sensitivity analysis by omitting one study at a time did not significantly change the results. Further subgroup analysis and meta-regression did not support that the location of the study, follow-up duration, publication year, population characteristics or the samples of TMAO affect the results significantly. Higher circulating TMAO may independently predict the risk of subsequent cardiovascular events and mortality.", "title": "Circulating trimethylamine N‐oxide and the risk of cardiovascular diseases: a systematic review and meta‐analysis of 11 prospective cohort studies" }, { "docid": "25355575", "text": "Since the beginning of the 1990s the public health situation in Russia has been characterized by an extremely high mortality and a significant reduction in life expectancy. Cardiovascular diseases remained the major cause of death. Only a few large population studies were conducted in Russia during this period. A total of 1968 men and 1737 women aged 18–75 years participated in a health survey in Arkhangelsk, Russia, over the period 1999–2000. Investigation included assessment of classic cardiovascular risk factors (family history, smoking, blood pressure, and blood lipids) along with general health variables. The paper presents sex specific data on risk factors for coronary heart disease. Though the cardiovascular mortality is high in Russia, the calculated risk for coronary heart disease (the Framingham risk score and the Norwegian risk score) was lower in all age groups of men and women in Arkhangelsk compared with studies from the Western Europe and USA. Our data suggest that high cardiovascular mortality in Russia may be driven not only by the classic risk factors for coronary heart disease.", "title": "High cardiovascular mortality in Russia cannot be explained by the classical risk factors. The Arkhangelsk study 2000" }, { "docid": "21048969", "text": "OBJECTIVE To evaluate the association between vascular inflammation as measured by subacute C-reactive protein (CRP; 1-10 mg/l) and all-cause mortality and the association between change in CRP status (normal <or=3 mg/l and elevated >3 mg/l) and all-cause mortality. \n METHODS Probabilistic record linkage was used to match hospital episode data, laboratory reports and mortality statistics in a large urban population. Survival was evaluated using Cox proportional hazards regression models. \n RESULTS 22 962 patients had their first CRP measurement in the subacute range (1-10 mg/l). Analysis grouped by each additional unit increase in CRP across the subacute range was associated with a 7.3% (95% CI 5.4% to 9.2%) increase in the hazard ratio (HR) of death over 4 years, after controlling for confounding factors (p<0.001). Repeated CRP observations around 1 year apart were recorded in 5811 subjects. After controlling for confounding factors, in patients whose CRP changed from normal (<or=3 mg/l) to elevated (>3 mg/l), the HR increased 6.7-fold (p<0.001) relative to cases whose CRP remained normal. By comparison, among those subjects whose CRP was reduced from elevated to normal, the hazard ratio halved to 3.5 (p = 0.018). In an underpowered analysis of time to cardiovascular events, an identical pattern of risk emerged. \n CONCLUSIONS CRP level predicted all-cause mortality, and additional inclusion of prior change in CRP level and current CRP level more so. Increasing vascular inflammation, as measured by CRP, increases the likelihood of death.", "title": "Evaluation of the association between the first observation and the longitudinal change in C-reactive protein, and all-cause mortality." }, { "docid": "11748341", "text": "Maternal undernutrition contributes to 800,000 neonatal deaths annually through small for gestational age births; stunting, wasting, and micronutrient deficiencies are estimated to underlie nearly 3·1 million child deaths annually. Progress has been made with many interventions implemented at scale and the evidence for effectiveness of nutrition interventions and delivery strategies has grown since The Lancet Series on Maternal and Child Undernutrition in 2008. We did a comprehensive update of interventions to address undernutrition and micronutrient deficiencies in women and children and used standard methods to assess emerging new evidence for delivery platforms. We modelled the effect on lives saved and cost of these interventions in the 34 countries that have 90% of the world's children with stunted growth. We also examined the effect of various delivery platforms and delivery options using community health workers to engage poor populations and promote behaviour change, access and uptake of interventions. Our analysis suggests the current total of deaths in children younger than 5 years can be reduced by 15% if populations can access ten evidence-based nutrition interventions at 90% coverage. Additionally, access to and uptake of iodised salt can alleviate iodine deficiency and improve health outcomes. Accelerated gains are possible and about a fifth of the existing burden of stunting can be averted using these approaches, if access is improved in this way. The estimated total additional annual cost involved for scaling up access to these ten direct nutrition interventions in the 34 focus countries is Int$9·6 billion per year. Continued investments in nutrition-specific interventions to avert maternal and child undernutrition and micronutrient deficiencies through community engagement and delivery strategies that can reach poor segments of the population at greatest risk can make a great difference. If this improved access is linked to nutrition-sensitive approaches--ie, women's empowerment, agriculture, food systems, education, employment, social protection, and safety nets--they can greatly accelerate progress in countries with the highest burden of maternal and child undernutrition and mortality.", "title": "Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost?" }, { "docid": "30981192", "text": "Lowering low-density lipoprotein-cholesterol (LDL-C) is the primary target in the management of dyslipidemia in patients at high risk of cardiovascular disease. However, patients who have achieved LDL-C levels below the currently recommended targets may still experience cardiovascular events. This may result, in part, from elevated triglyceride (TG) levels and low levels of high-density lipoprotein-cholesterol (HDL-C). Low HDL-C and high TG levels are common and are recognized as independent risk factors for cardiovascular morbidity and mortality. Furthermore, atherogenic dyslipidemia, characterized by low levels of HDL-C, high TG, and small, dense LDL particles, is a typical phenotype of dyslipidemia in subjects with insulin resistance and metabolic syndrome. Therefore, to reduce further the risk of coronary heart disease (CHD), raising HDL-C and lowering TG may be the secondary therapeutic target for patients who achieve LDL-C levels below the currently recommended targets but are still at risk of CHD. However, whether increasing HDL-C levels alone reduces CHD has not yet been confirmed in large randomized clinical trials, and whether functional HDL is more important than HDL-C in reducing CHD remains controversial. Large CHD endpoint trials that include many patients with diabetes are underway to compare combination treatments with statin and niacin, fibrates, or cholesteryl ester transfer protein inhibitors with statin alone treatments. In this review, we discuss the rationale and importance of increasing HDL-C levels with and without lowering TG levels in the treatment and prevention of cardiovascular events.", "title": "How to control residual cardiovascular risk despite statin treatment: focusing on HDL-cholesterol." }, { "docid": "28894097", "text": "Patients with non-insulin-dependent diabetes (NIDDM) are at independent risk of cardiovascular death. The reason is only partially understood. The aim of our study was therefore to evaluate the impact of corrected QT interval length (QTc) and QT dispersion (QT-disp) on mortality in a cohort of 324 Caucasian NIDDM patients. A resting 12-lead ECG was recorded at baseline. Maximum (QT-max) and minimum QT (QT-min) intervals were measured, and QT-max was corrected for heart rate (QTc-max). QT-disp was defined as the difference between QT-max and QT-min. QTc-max was 454 (376-671) ms(1/2) (median (range)) and QT-disp 61 (0-240) ms. Prolonged QTc interval (PQTc), defined as QTc-max > 440 ms(1/2), was present in 67% of the patients and prolonged QT-disp (PQT-disp), defined as QT-disp > 50 ms, was present in 51%. During the 9-year follow-up period, 100 patients died (52 from cardiovascular diseases). Thirty-seven percent of the patients with PQTc died compared with 17% with normal QTc interval (p<0.001). The Cox proportional hazard model, including putative risk factors at baseline, revealed the following independent predictors of all cause mortality; QTc-max (p<0.05), age (p<0.0001), albuminuria (p<0.01), retinopathy (p<0.01), HbA1c (p<0.05), insulin treatment (p<0.01), total cholesterol (p<0.01), serum creatinine (p<0.05) and presence of cardiac heart disease based on Minnesota coded ECG (p<0.001). Whereas QT-disp was not a predictor, QTc-max interval was an independent predictor of cardiovascular mortality. Our study showed a high prevalence of QTc and QT-disp abnormalities and indicated that QTc-max but not QT-disp is an independent predictor of all cause and cardiovascular mortality in NIDDM patients.", "title": "QTc interval length and QT dispersion as predictors of mortality in patients with non-insulin-dependent diabetes." }, { "docid": "10209731", "text": "STUDY OBJECTIVE The aim of the study was to analyse differences in mortality from the main cardiovascular diseases (ischaemic heart disease, hypertensive disease, and cerebrovascular disease) among Chinese, Malays, and Indians in Singapore. \n DESIGN The study was a survey using national death registration data in Singapore for the five years 1980 to 1984. The underlying cause of death, coded according to the ninth revision of the International Classification of Diseases, was taken for the analyses. \n SETTING The study was confined to the independent island state of Singapore, population 2.53 million (Chinese 76.5%, Malays 14.8%, Indians 6.4%, Others 2.3%). Death registration is thought to be complete. SUBJECTS All registered deaths in the age range 30-69 years during the study period were analysed by ethnic group. \n MEASUREMENT AND MAIN RESULTS Indians had higher mortality from ischaemic heart disease than the other ethnic groups in both sexes, with age-standardised relative risks of Indian v Chinese (males 3.8, females 3.4), Indian v Malay (males 1.9, females 1.6), and Malay v Chinese (males 2.0, females 2.2). The excess mortality in Indians declined with age. For hypertensive disease Malays had the highest mortality, with age-standardised relative risks of Malay v Chinese (males 3.4, females 4.4), Malay v Indian (males 2.0, females 2.5), and Indian v Chinese (males 1.6, females 1.6). For cerebrovascular disease there was little ethnic difference except for lower rates in Chinese females, with age-standardised relative risks of Malay v Chinese (males 1.1, females 1.9), Malay v Indian (males 1.0, females 1.1), and Indian v Chinese (males 1.1, females 1.7). \n CONCLUSIONS There are significant differences in mortality from the three main cardiovascular diseases in the different ethnic groups in Singapore.", "title": "Cardiovascular diseases in Chinese, Malays, and Indians in Singapore. I. Differences in mortality." }, { "docid": "5884524", "text": "BACKGROUND Although unstable coronary artery disease is the most common reason for admission to a coronary care unit, the long-term prognosis of patients with this diagnosis is unknown. This is particularly true for patients with diabetes mellitus, who are known to have a high morbidity and mortality after an acute myocardial infarction. \n METHODS AND RESULTS Prospectively collected data from 6 different countries in the Organization to Assess Strategies for Ischemic Syndromes (OASIS) registry were analyzed to determine the 2-year prognosis of diabetic and nondiabetic patients who were hospitalized with unstable angina or non-Q-wave myocardial infarction. Overall, 1718 of 8013 registry patients (21%) had diabetes. Diabetic patients had a higher rate of coronary bypass surgery than nondiabetic patients (23% versus 20%, P:<0.001) but had similar rates of catheterization and angioplasty. Diabetes independently predicted mortality (relative risk [RR], 1.57; 95% CI, 1.38 to 1.81; P:<0.001), as well as cardiovascular death, new myocardial infarction, stroke, and new congestive heart failure. Moreover, compared with their nondiabetic counterparts, women had a significantly higher risk than men (RR, 1.98; 95% CI, 1.60 to 2.44; and RR, 1.28; 95% CI, 1.06 to 1.56, respectively). Interestingly, diabetic patients without prior cardiovascular disease had the same event rates for all outcomes as nondiabetic patients with previous vascular disease. \n CONCLUSIONS Hospitalization for unstable angina or non-Q-wave myocardial infarction predicts a high 2-year morbidity and mortality; this is especially evident for patients with diabetes. Diabetic patients with no previous cardiovascular disease have the same long-term morbidity and mortality as nondiabetic patients with established cardiovascular disease after hospitalization for unstable coronary artery disease.", "title": "Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry." }, { "docid": "53779698", "text": "INTRODUCTION Patients with symptomatic peripheral artery disease (PAD) exhibit reduced functional capacity and increased mortality due to cardiovascular disease. Although exercise has been a cornerstone for clinical treatment to improve walking capacity in patients with symptomatic PAD, its effects on cardiovascular parameters have been poorly explored. Areas covered: This review examines the role of exercise in improving blood pressure in patients with symptomatic PAD and summarizes the current evidence on the acute (single bout of exercise) and chronic effects of walking and resistance exercise on blood pressure and its determinants. Expert commentary: In patients with symptomatic PAD, exercise promotes acute and chronic reductions in blood pressure. These effects were observed particularly after walking and resistance exercise. Future studies are necessary to investigate the effects of other exercise modalities, especially non-painful exercises, on cardiovascular function in patients with symptomatic PAD.", "title": "Exercise as a therapeutic approach to improve blood pressure in patients with peripheral arterial disease: current literature and future directions." }, { "docid": "11939159", "text": "IMPORTANCE Among nontraditional cardiovascular risk factors, recent influenzalike infection is associated with fatal and nonfatal atherothrombotic events. \n OBJECTIVES To determine if influenza vaccination is associated with prevention of cardiovascular events. \n DATA SOURCES AND STUDY SELECTION A systematic review and meta-analysis of MEDLINE (1946-August 2013), EMBASE (1947-August 2013), and the Cochrane Library Central Register of Controlled Trials (inception-August 2013) for randomized clinical trials (RCTs) comparing influenza vaccine vs placebo or control in patients at high risk of cardiovascular disease, reporting cardiovascular outcomes either as efficacy or safety events. \n DATA EXTRACTION AND SYNTHESIS Two investigators extracted data independently on trial design, baseline characteristics, outcomes, and safety events from published manuscripts and unpublished supplemental data. High-quality studies were considered those that described an appropriate method of randomization, allocation concealment, blinding, and completeness of follow-up. \n MAIN OUTCOMES AND MEASURES Random-effects Mantel-Haenszel risk ratios (RRs) and 95% CIs were derived for composite cardiovascular events, cardiovascular mortality, all-cause mortality, and individual cardiovascular events. Analyses were stratified by subgroups of patients with and without a history of acute coronary syndrome (ACS) within 1 year of randomization. \n RESULTS Five published and 1 unpublished randomized clinical trials of 6735 patients (mean age, 67 years; 51.3% women; 36.2% with a cardiac history; mean follow-up time, 7.9 months) were included. Influenza vaccine was associated with a lower risk of composite cardiovascular events (2.9% vs 4.7%; RR, 0.64 [95% CI, 0.48-0.86], P = .003) in published trials. A treatment interaction was detected between patients with (RR, 0.45 [95% CI, 0.32-0.63]) and without (RR, 0.94 [95% CI, 0.55-1.61]) recent ACS (P for interaction = .02). Results were similar with the addition of unpublished data. \n CONCLUSIONS AND RELEVANCE In a meta-analysis of RCTs, the use of influenza vaccine was associated with a lower risk of major adverse cardiovascular events. The greatest treatment effect was seen among the highest-risk patients with more active coronary disease. A large, adequately powered, multicenter trial is warranted to address these findings and assess individual cardiovascular end points.", "title": "Association between influenza vaccination and cardiovascular outcomes in high-risk patients: a meta-analysis." }, { "docid": "35495268", "text": "BACKGROUND Weight loss is recommended for overweight or obese patients with type 2 diabetes on the basis of short-term studies, but long-term effects on cardiovascular disease remain unknown. We examined whether an intensive lifestyle intervention for weight loss would decrease cardiovascular morbidity and mortality among such patients. \n METHODS In 16 study centers in the United States, we randomly assigned 5145 overweight or obese patients with type 2 diabetes to participate in an intensive lifestyle intervention that promoted weight loss through decreased caloric intake and increased physical activity (intervention group) or to receive diabetes support and education (control group). The primary outcome was a composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for angina during a maximum follow-up of 13.5 years. \n RESULTS The trial was stopped early on the basis of a futility analysis when the median follow-up was 9.6 years. Weight loss was greater in the intervention group than in the control group throughout the study (8.6% vs. 0.7% at 1 year; 6.0% vs. 3.5% at study end). The intensive lifestyle intervention also produced greater reductions in glycated hemoglobin and greater initial improvements in fitness and all cardiovascular risk factors, except for low-density-lipoprotein cholesterol levels. The primary outcome occurred in 403 patients in the intervention group and in 418 in the control group (1.83 and 1.92 events per 100 person-years, respectively; hazard ratio in the intervention group, 0.95; 95% confidence interval, 0.83 to 1.09; P=0.51). \n CONCLUSIONS An intensive lifestyle intervention focusing on weight loss did not reduce the rate of cardiovascular events in overweight or obese adults with type 2 diabetes. (Funded by the National Institutes of Health and others; Look AHEAD ClinicalTrials.gov number, NCT00017953.).", "title": "Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes." } ]
962
Post-transcriptional handling of mitochondrial transcripts occurs in mitochondrial RNA granules.
[ { "docid": "13931771", "text": "Various specialized domains have been described in the cytosol and the nucleus; however, little is known about compartmentalization within the mitochondrial matrix. GRSF1 (G-rich sequence factor 1) is an RNA binding protein that was previously reported to localize in the cytosol. We found that an isoform of GRSF1 accumulates in discrete foci in the mitochondrial matrix. These foci are composed of nascent mitochondrial RNA and also contain RNase P, an enzyme that participates in mitochondrial RNA processing. GRSF1 was found to interact with RNase P and to be required for processing of both classical and tRNA-less RNA precursors. In its absence, cleavage of primary RNA transcripts is abnormal, leading to decreased expression of mitochondrially encoded proteins and mitochondrial dysfunction. Our findings suggest that the foci containing GRSF1 and RNase P correspond to sites where primary RNA transcripts converge to be processed. We have termed these large ribonucleoprotein structures \"mitochondrial RNA granules. \"", "title": "GRSF1 Regulates RNA Processing in Mitochondrial RNA Granules" }, { "docid": "935538", "text": "RNA-binding proteins are at the heart of posttranscriptional gene regulation, coordinating the processing, storage, and handling of cellular RNAs. We show here that GRSF1, previously implicated in the binding and selective translation of influenza mRNAs, is targeted to mitochondria where it forms granules that colocalize with foci of newly synthesized mtRNA next to mitochondrial nucleoids. GRSF1 preferentially binds RNAs transcribed from three contiguous genes on the light strand of mtDNA, the ND6 mRNA, and the long noncoding RNAs for cytb and ND5, each of which contains multiple consensus binding sequences. RNAi-mediated knockdown of GRSF1 leads to alterations in mitochondrial RNA stability, abnormal loading of mRNAs and lncRNAs on the mitochondrial ribosome, and impaired ribosome assembly. This results in a specific protein synthesis defect and a failure to assemble normal amounts of the oxidative phosphorylation complexes. These data implicate GRSF1 as a key regulator of posttranscriptional mitochondrial gene expression.", "title": "The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression." }, { "docid": "4306711", "text": "Human mitochondrial ribosomes are specialized in the synthesis of 13 proteins, which are fundamental components of the oxidative phosphorylation system. The pathway of mitoribosome biogenesis, the compartmentalization of the process, and factors involved remain largely unknown. Here, we have identified the DEAD-box protein DDX28 as an RNA granule component essential for the biogenesis of the mitoribosome large subunit (mt-LSU). DDX28 interacts with the 16S rRNA and the mt-LSU. RNAi-mediated DDX28 silencing in HEK293T cells does not affect mitochondrial mRNA stability or 16S rRNA processing or modification. However, it leads to reduced levels of 16S rRNA and mt-LSU proteins, impaired mt-LSU assembly, deeply attenuated mitochondrial protein synthesis, and consequent failure to assemble oxidative phosphorylation complexes. Our findings identify DDX28 as essential during the early stages of mitoribosome mt-LSU biogenesis, a process that takes place mainly near the mitochondrial nucleoids, in the compartment defined by the RNA granules.", "title": "The Human Mitochondrial DEAD-Box Protein DDX28 Resides in RNA Granules and Functions in Mitoribosome Assembly." } ]
[ { "docid": "20018321", "text": "Cytoplasmic RNA granules play a central role in mRNA metabolism, but the importance of mitochondrial RNA granules remains relatively unexplored. We characterized their proteome and found that they contain a large toolbox of proteins dedicated to RNA metabolism. Investigation of four uncharacterized putative RNA-binding proteins-two RNA helicases, DHX30 and DDX28, and two proteins of the Fas-activated serine-threonine kinase (FASTKD) family, FASTKD2 and FASTKD5-demonstrated that both helicases and FASTKD2 are required for mitochondrial ribosome biogenesis. RNA-sequencing (RNA-seq) analysis showed that DDX28 and FASTKD2 bound the 16S rRNA. FASTKD5 is required for maturing precursor mRNAs that are not flanked by tRNAs and that therefore cannot be processed by the canonical mRNA maturation pathway. Silencing FASTKD5 rendered mature COX I mRNA almost undetectable, which severely reduced the synthesis of COX I, resulting in a complex IV assembly defect. These data demonstrate that mitochondrial RNA granules are centers for posttranscriptional RNA processing and the biogenesis of mitochondrial ribosomes.", "title": "Mitochondrial RNA Granules Are Centers for Posttranscriptional RNA Processing and Ribosome Biogenesis." }, { "docid": "16242975", "text": "In mammalian mitochondria, 22 species of tRNAs encoded in mitochondrial DNA play crucial roles in the translation of 13 essential subunits of the respiratory chain complexes involved in oxidative phosphorylation. Following transcription, mitochondrial tRNAs are modified by nuclear-encoded tRNA-modifying enzymes. These modifications are required for the proper functioning of mitochondrial tRNAs (mt tRNAs), and the absence of these modifications can cause pathological consequences. To date, however, the information available about these modifications has been incomplete. To address this issue, we isolated all 22 species of mt tRNAs from bovine liver and comprehensively determined the post-transcriptional modifications in each tRNA by mass spectrometry. Here, we describe the primary structures with post-transcriptional modifications of seven species of mt tRNAs which were previously uncharacterized, and provide revised information regarding base modifications in five other mt tRNAs. In the complete set of bovine mt tRNAs, we found 15 species of modified nucleosides at 118 positions (7.48% of total bases). This result provides insight into the molecular mechanisms underlying the decoding system in mammalian mitochondria and enables prediction of candidate tRNA-modifying enzymes responsible for each modification of mt tRNAs.", "title": "A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs" }, { "docid": "27693891", "text": "Gene regulatory factors encoded by the nuclear genome are essential for mitochondrial biogenesis and function. Some of these factors act exclusively within the mitochondria to regulate the control of mitochondrial transcription, translation, and other functions. Others govern the expression of nuclear genes required for mitochondrial metabolism and organelle biogenesis. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators play a major role in transducing and integrating physiological signals governing metabolism, differentiation, and cell growth to the transcriptional machinery controlling mitochondrial functional capacity. Thus, the PGC-1 coactivators serve as a central component of the transcriptional regulatory circuitry that coordinately controls the energy-generating functions of mitochondria in accordance with the metabolic demands imposed by changing physiological conditions, senescence, and disease.", "title": "Transcriptional integration of mitochondrial biogenesis." }, { "docid": "3553087", "text": "Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element-binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RNA immunoprecipitation followed by sequencing (RIP-seq), RNA sequencing (RNA-seq), and gene expression and functional enrichment clustering analysis, we identified Irp2 as a regulator of mitochondrial function in the lungs of mice. Irp2 increased mitochondrial iron loading and levels of cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice, which had higher mitochondrial iron loading, showed impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas mice deficient in the synthesis of cytochrome c oxidase, which have reduced COX, were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-induced impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD.", "title": "Mitochondrial iron chelation ameliorates cigarette-smoke induced bronchitis and emphysema in mice" }, { "docid": "28249680", "text": "Proteasome inhibitors induce rapid death of cancer cells. We show that in epithelial cancer cells, such death is associated with dramatic and simultaneous up-regulation of several BH3-only proteins, including BIK, BIM, MCL-1S, NOXA, and PUMA, as well as p53. Elevated levels of these proteins seem to be the result of direct inhibition of their proteasomal degradation, induction of transcription, and active translation. Subsequent cell death is independent of BAX, and probably BAK, and proceeds through the intrinsic mitochondrial apoptosis pathway. We identify the cascade of molecular events responsible for cell death induced by a prototypical proteasome inhibitor, MG132, starting with rapid accumulation of BH3-only proteins in the mitochondria, proceeding through mitochondrial membrane permeabilization and subsequent loss of DeltaPsi(m), and leading to irreversible changes of mitochondrial ultrastructure, degradation of mitochondrial network, and detrimental impairment of crucial mitochondrial functions. Our results also establish a rationale for the broader use of proteasome inhibitors to kill apoptosis-resistant tumor cells that lack functional BAX/BAK proteins.", "title": "BAX/BAK-independent mitoptosis during cell death induced by proteasome inhibition?" }, { "docid": "13380011", "text": "Partial inhibition of mitochondrial respiratory complex I by rotenone reproduces aspects of Parkinson's disease in rodents. The hypothesis that rotenone enhancement of neuronal cell death is attributable to oxidative stress was tested in an acute glutamate excitotoxicity model using primary cultures of rat cerebellar granule neurons. As little as 5 nM rotenone increased mitochondrial superoxide (O2*-) levels and potentiated glutamate-induced cytoplasmic Ca2+ deregulation, the first irreversible stage of necrotic cell death. However, the potent cell-permeant O2*- trap manganese tetrakis (N-ethylpyridinium-2yl) porphyrin failed to prevent the effects of the inhibitor. The bioenergetic consequences of rotenone addition were quantified by monitoring cell respiration. Glutamate activation of NMDA receptors used the full respiratory capacity of the in situ mitochondria, and >80% of the glutamate-stimulated respiration was attributable to increased cellular ATP demand. Rotenone at 20 nM inhibited basal and carbonyl cyanide p-trifluoromethoxyphenylhydrazone-stimulated cell respiration and caused respiratory failure in the presence of glutamate. ATP synthase inhibition by oligomycin was also toxic in the presence of glutamate. We conclude that the cell vulnerability in the rotenone model of partial complex I deficiency under these specific conditions is primarily determined by spare respiratory capacity rather than oxidative stress.", "title": "Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone." }, { "docid": "2810997", "text": "The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system has been widely used for nuclear DNA editing to generate mutations or correct specific disease alleles. Despite its flexible application, it has not been determined if CRISPR/Cas9, originally identified as a bacterial defense system against virus, can be targeted to mitochondria for mtDNA editing. Here, we show that regular FLAG-Cas9 can localize to mitochondria to edit mitochondrial DNA with sgRNAs targeting specific loci of the mitochondrial genome. Expression of FLAG-Cas9 together with gRNA targeting Cox1 and Cox3 leads to cleavage of the specific mtDNA loci. In addition, we observed disruption of mitochondrial protein homeostasis following mtDNA truncation or cleavage by CRISPR/Cas9. To overcome nonspecific distribution of FLAG-Cas9, we also created a mitochondria-targeted Cas9 (mitoCas9). This new version of Cas9 localizes only to mitochondria; together with expression of gRNA targeting mtDNA, there is specific cleavage of mtDNA. MitoCas9-induced reduction of mtDNA and its transcription leads to mitochondrial membrane potential disruption and cell growth inhibition. This mitoCas9 could be applied to edit mtDNA together with gRNA expression vectors without affecting genomic DNA. In this brief study, we demonstrate that mtDNA editing is possible using CRISPR/Cas9. Moreover, our development of mitoCas9 with specific localization to the mitochondria should facilitate its application for mitochondrial genome editing.", "title": "Efficient Mitochondrial Genome Editing by CRISPR/Cas9" }, { "docid": "26336593", "text": "Although many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional and functional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered subcellular transport, and activation of the ER stress and unfolded protein response pathways. Functional studies demonstrated that these pathways were perturbed in a manner dependent on the SOD1 mutation. Finally, interrogation of stem-cell-derived motor neurons produced from ALS patients harboring a repeat expansion in C9orf72 indicates that at least a subset of these changes are more broadly conserved in ALS.", "title": "Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1." }, { "docid": "13123189", "text": "BACKGROUND RNA-Seq is revolutionizing the way transcript abundances are measured. A key challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple genes or isoforms. This issue is particularly important for quantification with de novo transcriptome assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of the number of reads, read length, and whether reads come from one or both ends of cDNA fragments. \n RESULTS We present RSEM, an user-friendly software package for quantifying gene and isoform abundances from single-end or paired-end RNA-Seq data. RSEM outputs abundance estimates, 95% credibility intervals, and visualization files and can also simulate RNA-Seq data. In contrast to other existing tools, the software does not require a reference genome. Thus, in combination with a de novo transcriptome assembler, RSEM enables accurate transcript quantification for species without sequenced genomes. On simulated and real data sets, RSEM has superior or comparable performance to quantification methods that rely on a reference genome. Taking advantage of RSEM's ability to effectively use ambiguously-mapping reads, we show that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads. On the other hand, estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired-end reads, depending on the number of possible splice forms for each gene. \n CONCLUSIONS RSEM is an accurate and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not rely on the existence of a reference genome, it is particularly useful for quantification with de novo transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost-efficient design of quantification experiments with RNA-Seq, which is currently relatively expensive.", "title": "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome" }, { "docid": "7820043", "text": "The mitochondrial antiviral signaling protein (MAVS; also known as IPS-1, VISA, and CARDIF) is essential for innate immune response against RNA viruses. MAVS transduces signals from the cytosolic RIG-I-like receptors, which bind to viral RNAs. But how MAVS activates downstream transcription factors such as IRF3 to induce type-I interferons is not well understood. We have established a cell-free system in which mitochondria derived from virus-infected cells activate IRF3 in the cytosol. Fractionation of the cytosol led to the identification of Ubc5 as a ubiquitin-conjugating enzyme (E2) required for IRF3 activation. Using an inducible RNAi strategy, we demonstrate that catalytically active Ubc5 is required for IRF3 activation by viral infection. The activation of IRF3 also requires two ubiquitin-binding domains of NEMO. Furthermore, we show that replacement of endogenous ubiquitin with its K63R mutant abolishes viral activation of IRF3, demonstrating that K63 polyubiquitination plays a key role in IRF3 activation.", "title": "Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3." }, { "docid": "39558597", "text": "Aging is associated with impaired fasted oxidation of nonesterified fatty acids (NEFA) suggesting a mitochondrial defect. Aging is also associated with deficiency of glutathione (GSH), an important mitochondrial antioxidant, and with insulin resistance. This study tested whether GSH deficiency in aging contributes to impaired mitochondrial NEFA oxidation and insulin resistance, and whether GSH restoration reverses these defects. Three studies were conducted: (i) in 82-week-old C57BL/6 mice, the effect of naturally occurring GSH deficiency and its restoration on mitochondrial (13) C1 -palmitate oxidation and glucose metabolism was compared with 22-week-old C57BL/6 mice; (ii) in 20-week C57BL/6 mice, the effect of GSH depletion on mitochondrial oxidation of (13) C1 -palmitate and glucose metabolism was studied; (iii) the effect of GSH deficiency and its restoration on fasted NEFA oxidation and insulin resistance was studied in GSH-deficient elderly humans, and compared with GSH-replete young humans. Chronic GSH deficiency in old mice and elderly humans was associated with decreased fasted mitochondrial NEFA oxidation and insulin resistance, and these defects were reversed with GSH restoration. Acute depletion of GSH in young mice resulted in lower mitochondrial NEFA oxidation, but did not alter glucose metabolism. These data suggest that GSH is a novel regulator of mitochondrial NEFA oxidation and insulin resistance in aging. Chronic GSH deficiency promotes impaired NEFA oxidation and insulin resistance, and GSH restoration reverses these defects. Supplementing diets of elderly humans with cysteine and glycine to correct GSH deficiency could provide significant metabolic benefits.", "title": "Impaired mitochondrial fatty acid oxidation and insulin resistance in aging: novel protective role of glutathione." }, { "docid": "16966326", "text": "Genetic mutations in TAR DNA-binding protein 43 (TARDBP, also known as TDP-43) cause amyotrophic lateral sclerosis (ALS), and an increase in the presence of TDP-43 (encoded by TARDBP) in the cytoplasm is a prominent histopathological feature of degenerating neurons in various neurodegenerative diseases. However, the molecular mechanisms by which TDP-43 contributes to ALS pathophysiology remain elusive. Here we have found that TDP-43 accumulates in the mitochondria of neurons in subjects with ALS or frontotemporal dementia (FTD). Disease-associated mutations increase TDP-43 mitochondrial localization. In mitochondria, wild-type (WT) and mutant TDP-43 preferentially bind mitochondria-transcribed messenger RNAs (mRNAs) encoding respiratory complex I subunits ND3 and ND6, impair their expression and specifically cause complex I disassembly. The suppression of TDP-43 mitochondrial localization abolishes WT and mutant TDP-43-induced mitochondrial dysfunction and neuronal loss, and improves phenotypes of transgenic mutant TDP-43 mice. Thus, our studies link TDP-43 toxicity directly to mitochondrial bioenergetics and propose the targeting of TDP-43 mitochondrial localization as a promising therapeutic approach for neurodegeneration.", "title": "The Inhibition of TDP-43 Mitochondrial Localization Blocks Its Neuronal Toxicity" }, { "docid": "15836115", "text": "Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo.", "title": "The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage" }, { "docid": "9091863", "text": "In a diverse group of organisms that includes Caenorhabditis elegans, Drosophila, planaria, hydra, trypanosomes, fungi and plants, the introduction of double-stranded RNAs inhibits gene expression in a sequence-specific manner. These responses, called RNA interference or post-transcriptional gene silencing, may provide anti-viral defence, modulate transposition or regulate gene expression. We have taken a biochemical approach towards elucidating the mechanisms underlying this genetic phenomenon. Here we show that 'loss-of-function' phenotypes can be created in cultured Drosophila cells by transfection with specific double-stranded RNAs. This coincides with a marked reduction in the level of cognate cellular messenger RNAs. Extracts of transfected cells contain a nuclease activity that specifically degrades exogenous transcripts homologous to transfected double-stranded RNA. This enzyme contains an essential RNA component. After partial purification, the sequence-specific nuclease co-fractionates with a discrete, approximately 25-nucleotide RNA species which may confer specificity to the enzyme through homology to the substrate mRNAs.", "title": "An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells." }, { "docid": "8654183", "text": "BACKGROUND AND AIMS Previous in vitro and in vivo studies have revealed an association between Helicobacter pylori infection and apoptosis in gastric epithelial cells. Although involvement of the Bcl-2 family of proteins as well as cytochrome c release has been demonstrated in H pylori induced cell death, the exact role of the mitochondria during this type of programmed cell death has not been fully elucidated. Therefore, we sought to determine whether or not Bax translocation and mitochondrial fragmentation occur on exposure of gastric epithelial cells to H pylori, resulting in cell death. \n METHODS Experiments were performed with human gastric adenocarcinoma (AGS) cells, AGS cells transfected with the HPV-E6 gene (which inactivates p53 function), AGS-neo cells (transfected with the backbone construct), mouse embryonic fibroblasts (MEFs), and p19(ARF) null (ARF(-/-)) MEFs. Cells were incubated with a cag positive H pylori strain for up to 24 hours, lysed, and cytoplasmic and mitochondrial membrane fractions were analysed by western blot for Bax translocation. \n RESULTS Bax translocation was detected in AGS, AGS-neo, and normal MEF cells after exposure to H pylori for three hours, but not in ARF(-/-) MEFs cells. Translocation of Bax after H pylori incubation was also detected in AGS-E6 cells (inactive p53 gene) but to a lesser degree than in AGS-neo cells. In parallel studies, the mitochondrial morphology of living cells infected with H pylori was assessed by confocal microscopy. Mitochondrial fragmentation was detectable after 10 hours of H pylori incubation with AGS cells and after seven hours with MEF cells. In wild-type MEFs, mitochondrial fragmentation was significantly increased in comparison with ARF null MEFs (43% v 10.4%, respectively). Furthermore, mitochondrial depolarisation and caspase-3 activity were initiated within four hours in cells incubated with H pylori, and these events were inhibited by forced expression of Bcl-2. \n CONCLUSIONS These data suggest that during H pylori induced apoptosis, Bax translocates to the mitochondria which subsequently undergo depolarisation and profound fragmentation. Functional ARF and p53 proteins may play an important role in H pylori induced mitochondrial modification.", "title": "Bax translocation and mitochondrial fragmentation induced by Helicobacter pylori." }, { "docid": "984825", "text": "Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function--it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1-4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.", "title": "Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells" }, { "docid": "2601324", "text": "Oligodendrocytes, the myelin-forming glial cells of the central nervous system, maintain long-term axonal integrity. However, the underlying support mechanisms are not understood. Here we identify a metabolic component of axon–glia interactions by generating conditional Cox10 (protoheme IX farnesyltransferase) mutant mice, in which oligodendrocytes and Schwann cells fail to assemble stable mitochondrial cytochrome c oxidase (COX, also known as mitochondrial complex IV). In the peripheral nervous system, Cox10 conditional mutants exhibit severe neuropathy with dysmyelination, abnormal Remak bundles, muscle atrophy and paralysis. Notably, perturbing mitochondrial respiration did not cause glial cell death. In the adult central nervous system, we found no signs of demyelination, axonal degeneration or secondary inflammation. Unlike cultured oligodendrocytes, which are sensitive to COX inhibitors, post-myelination oligodendrocytes survive well in the absence of COX activity. More importantly, by in vivo magnetic resonance spectroscopy, brain lactate concentrations in mutants were increased compared with controls, but were detectable only in mice exposed to volatile anaesthetics. This indicates that aerobic glycolysis products derived from oligodendrocytes are rapidly metabolized within white matter tracts. Because myelinated axons can use lactate when energy-deprived, our findings suggest a model in which axon–glia metabolic coupling serves a physiological function.", "title": "Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity" } ]
963
Pre-mRNAs associated with spliceosomal components are less stable than unassociated splicing substrates.
[ { "docid": "4162857", "text": "RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II (Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice sites are protected from nuclear degradation, presumably because the local concentration of the splicing machinery is sufficiently high to ensure its association over interactions with nucleases. Furthermore, the process of transcription influences alternative splicing of newly synthesized pre-mRNAs. Because other RNA polymerases do not provide similar protection from nucleases, and their RNA products display altered splicing patterns, the link between transcription and RNA processing is RNA Pol II-specific. We propose that the connection between transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs.", "title": "Linking Splicing to Pol II Transcription Stabilizes Pre-mRNAs and Influences Splicing Patterns" }, { "docid": "29828242", "text": "The development of in vitro assays to analyze pre-mRNA splicing resulted in the discovery of many fundamental features characterizing splicing signals and the machinery that completes this process. Because in vitro assays can be manipulated by various biochemical approaches, the versatility of investigating alternative pre-mRNA splicing in the test tube appears endless. Importantly, modifications in reaction conditions can lead to the accumulation, isolation, and characterization of reaction intermediates, a prerequisite for gaining mechanistic insights into how the spliceosome carries out intron removal, and how regulatory elements assist the general splicing machinery in defining splice sites and alternative exons. These considerable experimental advantages have made the in vitro splicing system a standard assay, even though this approach is independent from RNA transcription and other RNA processing events, and in some respects deviates from the natural process of mRNA biogenesis. Here, we describe the tools and techniques necessary to carry out in vitro splicing assays. Analyses of various experimental designs are presented to highlight the approaches taken to gain insights into the mechanisms by which splice site recognition and activation are communicated with the general splicing machinery. Methods to measure the kinetics of splicing, to observe the formation of the pre-spliceosomal complexes, and to manipulate and modify the in vitro system to resolve the regulatory influences in alternative splicing are presented.", "title": "Analyzing mechanisms of alternative pre-mRNA splicing using in vitro splicing assays." } ]
[ { "docid": "21330280", "text": "Ribonucleoproteins (RNPs) mediate key cellular functions such as gene expression and its regulation. Whereas most RNP enzymes are stable in composition and harbor preformed active sites, the spliceosome, which removes noncoding introns from precursor messenger RNAs (pre-mRNAs), follows fundamentally different strategies. In order to provide both accuracy to the recognition of reactive splice sites in the pre-mRNA and flexibility to the choice of splice sites during alternative splicing, the spliceosome exhibits exceptional compositional and structural dynamics that are exploited during substrate-dependent complex assembly, catalytic activation, and active site remodeling.", "title": "The Spliceosome: Design Principles of a Dynamic RNP Machine" }, { "docid": "4067274", "text": "Differential splice site pairing establishes alternative splicing patterns resulting in the generation of multiple mRNA isoforms. This process is carried out by the spliceosome, which is activated by a series of sequential structural rearrangements of its five core snRNPs. To determine when splice sites become functionally paired, we carried out a series of kinetic trap experiments using pre-mRNAs that undergo alternative 5' splice site selection or alternative exon inclusion. We show that commitment to splice site pairing in both cases occurs in the A complex, which is characterized by the ATP-dependent association of the U2 snRNP with the branch point. Interestingly, the timing of splice site pairing is independent of the intron or exon definition modes of splice site recognition. Using the ATP analog ATPgammaS, we showed that ATP hydrolysis is required for splice site pairing independent from U2 snRNP binding to the pre-mRNA. These results identify the A complex as the spliceosomal assembly step dedicated to splice site pairing and suggest that ATP hydrolysis locks splice sites into a splicing pattern after stable U2 snRNP association to the branch point.", "title": "Spliceosome assembly pathways for different types of alternative splicing converge during commitment to splice site pairing in the A complex." }, { "docid": "7860396", "text": "The pathway of gene expression in higher eukaryotes involves a highly complex network of physical and functional interactions among the different machines involved in each step of the pathway. Here we established an efficient in vitro system to determine how RNA polymerase II (RNAP II) transcription is functionally coupled to pre-mRNA splicing. Strikingly, our data show that nascent pre-messenger RNA (pre-mRNA) synthesized by RNAP II is immediately and quantitatively directed into the spliceosome assembly pathway. In contrast, nascent pre-mRNA synthesized by T7 RNA polymerase is quantitatively assembled into the nonspecific H complex, which consists of heterogeneous nuclear ribonucleoprotein (hnRNP) proteins and is inhibitory for spliceosome assembly. Consequently, RNAP II transcription results in a dramatic increase in both the kinetics of splicing and overall yield of spliced mRNA relative to that observed for T7 transcription. We conclude that RNAP II mediates the functional coupling of transcription to splicing by directing the nascent pre-mRNA into spliceosome assembly, thereby bypassing interaction of the pre-mRNA with the inhibitory hnRNP proteins.", "title": "Functional coupling of RNAP II transcription to spliceosome assembly." }, { "docid": "946756", "text": "A protein of molecular size 62,000 daltons (p62) was detected in HeLa cell nuclear extracts by UV cross-linking to mRNA precursors. p62 binds specifically to the polypyrimidine tract of the 3' splice site region of introns. p62 purified to homogeneity binds the polypyrimidine tract of pre-mRNAs. This binding does not require the AG dinucleotide at the 3' splice site. Alterations in the polypyrimidine tract that reduce the binding of p62 yield a corresponding reduction in the efficiency of formation of a U2 snRNP/pre-mRNA complex and splicing. The p62 protein is retained in the spliceosome, where it remains bound to the pre-mRNA. This polypyrimidine tract binding protein (pPTB) is proposed to be a critical component in recognition of the 3' splice site during splicing.", "title": "Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns." }, { "docid": "13384318", "text": "Pre-mRNA splicing is a fundamental process required for the expression of most metazoan genes. It is carried out by the spliceosome, which catalyzes the removal of noncoding intronic sequences to assemble exons into mature mRNAs prior to export and translation. Given the complexity of higher eukaryotic genes and the relatively low level of splice site conservation, the precision of the splicing machinery in recognizing and pairing splice sites is impressive. Introns ranging in size from <100 up to 100,000 bases are removed efficiently. At the same time, a large number of alternative splicing events are observed between different cell types, during development, or during other biological processes. This extensive alternative splicing implies a significant flexibility of the spliceosome to identify and process exons within a given pre-mRNA. To reach this flexibility, splice site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice site strength, the presence or absence of splicing regulators, RNA secondary structures, the exon/intron architecture, and the process of pre-mRNA synthesis itself. The relative contributions of each of these parameters control how efficiently splice sites are recognized and flanking introns are removed.", "title": "Combinatorial control of exon recognition." }, { "docid": "16929739", "text": "In higher eukaryotes, introns are spliced out of protein-coding mRNAs by the spliceosome, a massive complex comprising five non-coding RNAs (ncRNAs) and about 200 proteins. By comparing the differences between spliceosomal proteins from many basal eukaryotic lineages, it is possible to infer properties of the splicing system in the last common ancestor of extant eukaryotes, the eukaryotic ancestor. We begin with the hypothesis that, similar to intron length (that appears to have increased in multicellular eukaryotes), the spliceosome has increased in complexity throughout eukaryotic evolution. However, examination of the distribution of spliceosomal components indicates that not only was a spliceosome present in the eukaryotic ancestor but it also contained most of the key components found in today's eukaryotes. All the small nuclear ribonucleoproteins (snRNPs) protein components are likely to have been present, as well as many splicing-related proteins. Both major and trans-splicing are likely to have been present, and the spliceosome had already formed links with other cellular processes such as transcription and capping. However, there is no evidence as yet to suggest that minor (U12-dependent) splicing was present in the eukaryotic ancestor. Although the last common ancestor of extant eukaryotes appears to show much of the molecular complexity seen today, we do not, from this work, infer anything of the properties of the earlier \"first eukaryote. \"", "title": "Corresponding Author:" }, { "docid": "10423989", "text": "The nuclear matrix antigen recognized by the monoclonal antibody (mAb) B1C8 is a novel serine (S) and arginine (R)-rich protein associated with splicing complexes and is named here SRm160 (SR-related matrix protein of 160 kD). SRm160 contains multiple SR repeats, but unlike proteins of the SR family of splicing factors, lacks an RNA recognition motif. SRm160 and a related protein SRm300 (the 300-kD nuclear matrix antigen recognized by mAb B4A11) form a complex that is required for the splicing of specific pre-mRNAs. The SRm160/300 complex associates with splicing complexes and promotes splicing through interactions with SR family proteins. Binding of SRm160/300 to pre-mRNA is normally also dependent on U1 snRNP and is stabilized by U2 snRNP. Thus, SRm160/300 forms multiple interactions with components bound directly to important sites within pre-mRNA. The results suggest that a complex of the nuclear matrix proteins SRm160 and SRm300 functions as a coactivator of pre-mRNA splicing.", "title": "A coactivator of pre-mRNA splicing." }, { "docid": "20585600", "text": "To explore the structural basis of alternative splicing, we have analyzed the splicing of pre-mRNAs containing an optional exon, E4, from the preprotachykinin gene. This gene encodes substance P and related tachykinin peptides by alternative splicing of a common pre-mRNA. We have shown that alternative splicing of preprotachykinin pre-mRNA occurs by preferential skipping of optional E4. The competing mechanism that incorporates E4 into the final spliced RNA is constrained by an initial block to splicing of the immediate upstream intervening sequence (IVS), IVS3. This block is relieved by sequential splicing, in which the immediate downstream IVS4 is removed first. The structural change resulting from the first splicing event is directly responsible for activation of IVS3 splicing. This structural rearrangement replaces IVS4 sequences with E5 and its adjacent IVS5 sequences. To determine how this structural change promoted IVS3 splicing, we asked what structural change(s) would restore activity of IVS3 splicing-defective mutants. The most significant effect was observed by a 2-nucleotide substitution that converted the 5' splice site of E4 to an exact consensus match, GUAAGU. Exon 5 sequences alone were found not to promote splicing when present in one or multiple copies. However, when a 15-nucleotide segment of IVS5 containing GUAAGU was inserted into a splicing-defective mutant just downstream of the hybrid exon segment E4E5, splicing activity was recovered. Curiously, the 72-nucleotide L2 exon of adenovirus, without its associated 5' splice site, activates splicing when juxtaposed to E4. Models for the activation of splicing by an RNA structural change are discussed.", "title": "A Sequential splicing mechanism promotes selection of an optimal exon by repositioning a downstream 5' splice site in preprotachykinin pre-mRNA." }, { "docid": "20374609", "text": "We analyzed the in vitro splicing pathways of three multi-intervening-sequence (IVS) pre-mRNAs: human beta-globin, which contains two IVSs (K. M. Lang, V. L. van Santen, and R. A. Spritz, EMBO J. 4:1991-1996, 1985); rat alpha-lactalbumin, which contains three IVSs; and murine interleukin-3, which contains four IVSs. We found that there are highly preferred pathways of IVS removal from these multi-IVS pre-mRNAs in vitro. The three IVSs of rat alpha-lactalbumin pre-mRNA were excised sequentially from 5' to 3'; in most molecules, IVS1 was removed first, followed by IVS2 and finally by IVS3. The splicing pathway of interleukin-3 pre-mRNA in vitro was more complex. The four IVSs were excised in a highly preferred temporal order, but the order was not strictly sequential or directional. In most molecules, IVS1 and IVS4 were removed first, either simultaneously or in rapid succession. Subsequently, IVS2 was excised, followed by IVS3. The observed splicing pathways apparently resulted from differences in lag times and maximum excision rates of the different IVSs. We detected no exon skipping during splicing of these transcripts in vitro. These observations have implication for proposed models of splice site selection.", "title": "In vitro splicing pathways of pre-mRNAs containing multiple intervening sequences?" }, { "docid": "14610165", "text": "Antisense transcription is widespread in many genomes; however, how much is functional is hotly debated. We are investigating functionality of a set of long noncoding antisense transcripts, collectively called COOLAIR, produced at Arabidopsis FLOWERING LOCUS C (FLC). COOLAIR initiates just downstream of the major sense transcript poly(A) site and terminates either early or extends into the FLC promoter region. We now show that splicing of COOLAIR is functionally important. This was revealed through analysis of a hypomorphic mutation in the core spliceosome component PRP8. The prp8 mutation perturbs a cotranscriptional feedback mechanism linking COOLAIR processing to FLC gene body histone demethylation and reduced FLC transcription. The importance of COOLAIR splicing in this repression mechanism was confirmed by disrupting COOLAIR production and mutating the COOLAIR proximal splice acceptor site. Our findings suggest that altered splicing of a long noncoding transcript can quantitatively modulate gene expression through cotranscriptional coupling mechanisms.", "title": "Functional Consequences of Splicing of the Antisense Transcript COOLAIR on FLC Transcription" }, { "docid": "365896", "text": "We describe methods for obtaining a quantitative description of RNA processing at high resolution in budding yeast. As a model gene expression system, we constructed tetON (for induction studies) and tetOFF (for repression, derepression, and RNA degradation studies) yeast strains with a series of reporter genes integrated in the genome under the control of a tetO7 promoter. Reverse transcription and quantitative real-time-PCR (RT-qPCR) methods were adapted to allow the determination of mRNA abundance as the average number of copies per cell in a population. Fluorescence in situ hybridization (FISH) measurements of transcript numbers in individual cells validated the RT-qPCR approach for the average copy-number determination despite the broad distribution of transcript levels within a population of cells. In addition, RT-qPCR was used to distinguish the products of the different steps in splicing of the reporter transcripts, and methods were developed to map and quantify 3'-end cleavage and polyadenylation. This system permits pre-mRNA production, splicing, 3'-end maturation and degradation to be quantitatively monitored with unprecedented kinetic detail, suitable for mathematical modeling. Using this approach, we demonstrate that reporter transcripts are spliced prior to their 3'-end cleavage and polyadenylation, that is, cotranscriptionally.", "title": "RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3'-end processing in Saccharomyces cerevisiae." }, { "docid": "22544171", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.", "title": "Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome" }, { "docid": "4313478", "text": "Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.", "title": "Translational control of intron splicing in eukaryotes" }, { "docid": "30261663", "text": "In eukaryotes, a surveillance mechanism known as nonsense-mediated decay (NMD) degrades the mRNA when a premature-termination codon (PTC) is present. NMD requires translation to read the frame of the mRNA and detect the PTC. During pre-mRNA splicing, the exon-exon junction complex (EJC) is recruited to a region 20-24 nt upstream of the exon junction on the mature mRNA. The presence of a PTC upstream from the EJC elicits NMD. Eukaryotic initiation factor 4A (eIF4A) III is a nuclear protein that interacts physically or functionally with translation initiation factors eIF4G and eIF4B, respectively, and shares strikingly high identity with the initiation factors eIF4AI/II. Here we show that siRNA against eIF4AIII, but not against eIF4AI/II, inhibits NMD. Moreover, eIF4AIII, but not eIF4AI, is specifically recruited to the EJC during splicing. The observations that eIF4AIII is loaded onto the mRNA during splicing in the nucleus, has properties related to a translation initiation factor, and functions in NMD raises the possibility that eIF4AIII substitutes for eIF4AI/II during NMD.", "title": "A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay." }, { "docid": "5273056", "text": "Eukaryotes have numerous checkpoint pathways to protect genome fidelity during normal cell division and in response to DNA damage. Through a screen for G2/M checkpoint regulators in zebrafish, we identified ticrr (for TopBP1-interacting, checkpoint, and replication regulator), a previously uncharacterized gene that is required to prevent mitotic entry after treatment with ionizing radiation. Ticrr deficiency is embryonic-lethal in the absence of exogenous DNA damage because it is essential for normal cell cycle progression. Specifically, the loss of ticrr impairs DNA replication and disrupts the S/M checkpoint, leading to premature mitotic entry and mitotic catastrophe. We show that the human TICRR ortholog associates with TopBP1, a known checkpoint protein and a core component of the DNA replication preinitiation complex (pre-IC), and that the TICRR-TopBP1 interaction is stable without chromatin and requires BRCT motifs essential for TopBP1's replication and checkpoint functions. Most importantly, we find that ticrr deficiency disrupts chromatin binding of pre-IC, but not prereplication complex, components. Taken together, our data show that TICRR acts in association with TopBP1 and plays an essential role in pre-IC formation. It remains to be determined whether Ticrr represents the vertebrate ortholog of the yeast pre-IC component Sld3, or a hitherto unknown metazoan replication and checkpoint regulator.", "title": "A vertebrate gene, ticrr, is an essential checkpoint and replication regulator." }, { "docid": "39929509", "text": "Mutations in WT1 are associated with developmental syndromes that affect the urogenital system and neoplasms, including Wilms tumour, acute myeloid leukemia, and breast and prostate cancers. The WT1 protein belongs to the early growth response family of zinc-finger transcription factors. Uniquely to WT1, an evolutionarily conserved alternative splice event inserts the tripeptide KTS, between zinc fingers 3 and 4. Whereas -KTS isoforms bind DNA and activate or repress transcription, +KTS isoforms bind DNA less efficiently and interact with splice factors and RNA in vitro and in vivo. Although candidate DNA targets have been found, physiological mRNA targets are yet to be defined. We examined the distribution of WT1 in ribonucleoprotein (RNP) complexes in nuclear extract prepared from M15 cells, a mouse mesonephric fetal kidney cell line. WT1 cofractionated with the splice factor PSF in large RNP particles >or=2 MDa. We also found that PSF co-immunoprecipitated with WT1, suggesting a functional interaction between these 2 multifunctional proteins. Using yeast three-hybrid library constructed from the co-immunoprecipitated RNA we found that WT1 (+KTS) binds close to or at the start codon of alpha-actinin 1 (ACTN1) mRNA. A band shift assay confirmed the ability of the WT1 zinc-finger domain (+KTS) to bind this sequence in vitro. ACTN1 is the first likely physiological mRNA target of WT1.", "title": "The Wilms tumour suppressor protein WT1 (+KTS isoform) binds alpha-actinin 1 mRNA via its zinc-finger domain." }, { "docid": "57121667", "text": "The ART-adherence club model described here provides patient-friendly access to antiretroviral therapy (ART) for clinically stable patients. It reduces the burden that stable patients place on healthcare facilities, increasing clinical human resources for new patients, and those clinically unstable and at risk of failing treatment. In the model, 30 patients are allocated to an ART club. The group meets either at a facility or community venue for less than an hour every 2 months. Group meetings are facilitated by a lay club facilitator who provides a quick clinical assessment, referral where necessary, and dispenses pre-packed ART. From January 2011 to December 2012, after adoption for phased rollout by the Western Cape Government, more than 600 ART clubs were established in Cape Town, providing ART care to over 16 000 patients. This extensive, rapid rollout demonstrates active buy-in from patients and facility staff. South Africa should consider a similar model for national rollout.", "title": "ART adherence clubs: A long-term retention strategy for clinically stable patients receiving antiretroviral therapy" }, { "docid": "344240", "text": "Actions of protein products resulting from alternative splicing of the Igf1 gene have received increasing attention in recent years. However, the significance and functional relevance of these observations remain poorly defined. To address functions of IGF-I splice variants, we examined the impact of loss of IGF-IEa and IGF-IEb on the proliferation and differentiation of cultured mouse myoblasts. RNA interference-mediated reductions in total IGF-I, IGF-IEa alone, or IGF-IEb alone had no effect on cell viability in growth medium. However, cells deficient in total IGF-I or IGF-IEa alone proliferated significantly slower than control cells or cells deficient in IGF-IEb in serum-free media. Simultaneous loss of both or specific loss of either splice variant significantly inhibited myosin heavy chain (MyHC) immunoreactivity by 70-80% (P < 0.01) under differentiation conditions (48 h in 2% horse serum) as determined by Western immunoblotting. This loss in protein was associated with reduced MyHC isoform mRNAs, because reductions in total IGF-I or IGF-IEa mRNA significantly reduced MyHC mRNAs by approximately 50-75% (P < 0.05). Loss of IGF-IEb also reduced MyHC isoform mRNA significantly, with the exception of Myh7, but to a lesser degree (∼20-40%, P < 0.05). Provision of mature IGF-I, but not synthetic E peptides, restored Myh3 expression to control levels in cells deficient in IGF-IEa or IGF-IEb. Collectively, these data suggest that IGF-I splice variants may regulate myoblast differentiation through the actions of mature IGF-I and not the E peptides.", "title": "Loss of IGF-IEa or IGF-IEb impairs myogenic differentiation." } ]
964
Pre-mRNAs associated with spliceosomal components are more stable than unassociated splicing substrates.
[ { "docid": "4162857", "text": "RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II (Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice sites are protected from nuclear degradation, presumably because the local concentration of the splicing machinery is sufficiently high to ensure its association over interactions with nucleases. Furthermore, the process of transcription influences alternative splicing of newly synthesized pre-mRNAs. Because other RNA polymerases do not provide similar protection from nucleases, and their RNA products display altered splicing patterns, the link between transcription and RNA processing is RNA Pol II-specific. We propose that the connection between transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs.", "title": "Linking Splicing to Pol II Transcription Stabilizes Pre-mRNAs and Influences Splicing Patterns" }, { "docid": "29828242", "text": "The development of in vitro assays to analyze pre-mRNA splicing resulted in the discovery of many fundamental features characterizing splicing signals and the machinery that completes this process. Because in vitro assays can be manipulated by various biochemical approaches, the versatility of investigating alternative pre-mRNA splicing in the test tube appears endless. Importantly, modifications in reaction conditions can lead to the accumulation, isolation, and characterization of reaction intermediates, a prerequisite for gaining mechanistic insights into how the spliceosome carries out intron removal, and how regulatory elements assist the general splicing machinery in defining splice sites and alternative exons. These considerable experimental advantages have made the in vitro splicing system a standard assay, even though this approach is independent from RNA transcription and other RNA processing events, and in some respects deviates from the natural process of mRNA biogenesis. Here, we describe the tools and techniques necessary to carry out in vitro splicing assays. Analyses of various experimental designs are presented to highlight the approaches taken to gain insights into the mechanisms by which splice site recognition and activation are communicated with the general splicing machinery. Methods to measure the kinetics of splicing, to observe the formation of the pre-spliceosomal complexes, and to manipulate and modify the in vitro system to resolve the regulatory influences in alternative splicing are presented.", "title": "Analyzing mechanisms of alternative pre-mRNA splicing using in vitro splicing assays." } ]
[ { "docid": "21330280", "text": "Ribonucleoproteins (RNPs) mediate key cellular functions such as gene expression and its regulation. Whereas most RNP enzymes are stable in composition and harbor preformed active sites, the spliceosome, which removes noncoding introns from precursor messenger RNAs (pre-mRNAs), follows fundamentally different strategies. In order to provide both accuracy to the recognition of reactive splice sites in the pre-mRNA and flexibility to the choice of splice sites during alternative splicing, the spliceosome exhibits exceptional compositional and structural dynamics that are exploited during substrate-dependent complex assembly, catalytic activation, and active site remodeling.", "title": "The Spliceosome: Design Principles of a Dynamic RNP Machine" }, { "docid": "4067274", "text": "Differential splice site pairing establishes alternative splicing patterns resulting in the generation of multiple mRNA isoforms. This process is carried out by the spliceosome, which is activated by a series of sequential structural rearrangements of its five core snRNPs. To determine when splice sites become functionally paired, we carried out a series of kinetic trap experiments using pre-mRNAs that undergo alternative 5' splice site selection or alternative exon inclusion. We show that commitment to splice site pairing in both cases occurs in the A complex, which is characterized by the ATP-dependent association of the U2 snRNP with the branch point. Interestingly, the timing of splice site pairing is independent of the intron or exon definition modes of splice site recognition. Using the ATP analog ATPgammaS, we showed that ATP hydrolysis is required for splice site pairing independent from U2 snRNP binding to the pre-mRNA. These results identify the A complex as the spliceosomal assembly step dedicated to splice site pairing and suggest that ATP hydrolysis locks splice sites into a splicing pattern after stable U2 snRNP association to the branch point.", "title": "Spliceosome assembly pathways for different types of alternative splicing converge during commitment to splice site pairing in the A complex." }, { "docid": "7860396", "text": "The pathway of gene expression in higher eukaryotes involves a highly complex network of physical and functional interactions among the different machines involved in each step of the pathway. Here we established an efficient in vitro system to determine how RNA polymerase II (RNAP II) transcription is functionally coupled to pre-mRNA splicing. Strikingly, our data show that nascent pre-messenger RNA (pre-mRNA) synthesized by RNAP II is immediately and quantitatively directed into the spliceosome assembly pathway. In contrast, nascent pre-mRNA synthesized by T7 RNA polymerase is quantitatively assembled into the nonspecific H complex, which consists of heterogeneous nuclear ribonucleoprotein (hnRNP) proteins and is inhibitory for spliceosome assembly. Consequently, RNAP II transcription results in a dramatic increase in both the kinetics of splicing and overall yield of spliced mRNA relative to that observed for T7 transcription. We conclude that RNAP II mediates the functional coupling of transcription to splicing by directing the nascent pre-mRNA into spliceosome assembly, thereby bypassing interaction of the pre-mRNA with the inhibitory hnRNP proteins.", "title": "Functional coupling of RNAP II transcription to spliceosome assembly." }, { "docid": "946756", "text": "A protein of molecular size 62,000 daltons (p62) was detected in HeLa cell nuclear extracts by UV cross-linking to mRNA precursors. p62 binds specifically to the polypyrimidine tract of the 3' splice site region of introns. p62 purified to homogeneity binds the polypyrimidine tract of pre-mRNAs. This binding does not require the AG dinucleotide at the 3' splice site. Alterations in the polypyrimidine tract that reduce the binding of p62 yield a corresponding reduction in the efficiency of formation of a U2 snRNP/pre-mRNA complex and splicing. The p62 protein is retained in the spliceosome, where it remains bound to the pre-mRNA. This polypyrimidine tract binding protein (pPTB) is proposed to be a critical component in recognition of the 3' splice site during splicing.", "title": "Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns." }, { "docid": "13384318", "text": "Pre-mRNA splicing is a fundamental process required for the expression of most metazoan genes. It is carried out by the spliceosome, which catalyzes the removal of noncoding intronic sequences to assemble exons into mature mRNAs prior to export and translation. Given the complexity of higher eukaryotic genes and the relatively low level of splice site conservation, the precision of the splicing machinery in recognizing and pairing splice sites is impressive. Introns ranging in size from <100 up to 100,000 bases are removed efficiently. At the same time, a large number of alternative splicing events are observed between different cell types, during development, or during other biological processes. This extensive alternative splicing implies a significant flexibility of the spliceosome to identify and process exons within a given pre-mRNA. To reach this flexibility, splice site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice site strength, the presence or absence of splicing regulators, RNA secondary structures, the exon/intron architecture, and the process of pre-mRNA synthesis itself. The relative contributions of each of these parameters control how efficiently splice sites are recognized and flanking introns are removed.", "title": "Combinatorial control of exon recognition." }, { "docid": "16929739", "text": "In higher eukaryotes, introns are spliced out of protein-coding mRNAs by the spliceosome, a massive complex comprising five non-coding RNAs (ncRNAs) and about 200 proteins. By comparing the differences between spliceosomal proteins from many basal eukaryotic lineages, it is possible to infer properties of the splicing system in the last common ancestor of extant eukaryotes, the eukaryotic ancestor. We begin with the hypothesis that, similar to intron length (that appears to have increased in multicellular eukaryotes), the spliceosome has increased in complexity throughout eukaryotic evolution. However, examination of the distribution of spliceosomal components indicates that not only was a spliceosome present in the eukaryotic ancestor but it also contained most of the key components found in today's eukaryotes. All the small nuclear ribonucleoproteins (snRNPs) protein components are likely to have been present, as well as many splicing-related proteins. Both major and trans-splicing are likely to have been present, and the spliceosome had already formed links with other cellular processes such as transcription and capping. However, there is no evidence as yet to suggest that minor (U12-dependent) splicing was present in the eukaryotic ancestor. Although the last common ancestor of extant eukaryotes appears to show much of the molecular complexity seen today, we do not, from this work, infer anything of the properties of the earlier \"first eukaryote. \"", "title": "Corresponding Author:" }, { "docid": "10423989", "text": "The nuclear matrix antigen recognized by the monoclonal antibody (mAb) B1C8 is a novel serine (S) and arginine (R)-rich protein associated with splicing complexes and is named here SRm160 (SR-related matrix protein of 160 kD). SRm160 contains multiple SR repeats, but unlike proteins of the SR family of splicing factors, lacks an RNA recognition motif. SRm160 and a related protein SRm300 (the 300-kD nuclear matrix antigen recognized by mAb B4A11) form a complex that is required for the splicing of specific pre-mRNAs. The SRm160/300 complex associates with splicing complexes and promotes splicing through interactions with SR family proteins. Binding of SRm160/300 to pre-mRNA is normally also dependent on U1 snRNP and is stabilized by U2 snRNP. Thus, SRm160/300 forms multiple interactions with components bound directly to important sites within pre-mRNA. The results suggest that a complex of the nuclear matrix proteins SRm160 and SRm300 functions as a coactivator of pre-mRNA splicing.", "title": "A coactivator of pre-mRNA splicing." }, { "docid": "20374609", "text": "We analyzed the in vitro splicing pathways of three multi-intervening-sequence (IVS) pre-mRNAs: human beta-globin, which contains two IVSs (K. M. Lang, V. L. van Santen, and R. A. Spritz, EMBO J. 4:1991-1996, 1985); rat alpha-lactalbumin, which contains three IVSs; and murine interleukin-3, which contains four IVSs. We found that there are highly preferred pathways of IVS removal from these multi-IVS pre-mRNAs in vitro. The three IVSs of rat alpha-lactalbumin pre-mRNA were excised sequentially from 5' to 3'; in most molecules, IVS1 was removed first, followed by IVS2 and finally by IVS3. The splicing pathway of interleukin-3 pre-mRNA in vitro was more complex. The four IVSs were excised in a highly preferred temporal order, but the order was not strictly sequential or directional. In most molecules, IVS1 and IVS4 were removed first, either simultaneously or in rapid succession. Subsequently, IVS2 was excised, followed by IVS3. The observed splicing pathways apparently resulted from differences in lag times and maximum excision rates of the different IVSs. We detected no exon skipping during splicing of these transcripts in vitro. These observations have implication for proposed models of splice site selection.", "title": "In vitro splicing pathways of pre-mRNAs containing multiple intervening sequences?" }, { "docid": "20585600", "text": "To explore the structural basis of alternative splicing, we have analyzed the splicing of pre-mRNAs containing an optional exon, E4, from the preprotachykinin gene. This gene encodes substance P and related tachykinin peptides by alternative splicing of a common pre-mRNA. We have shown that alternative splicing of preprotachykinin pre-mRNA occurs by preferential skipping of optional E4. The competing mechanism that incorporates E4 into the final spliced RNA is constrained by an initial block to splicing of the immediate upstream intervening sequence (IVS), IVS3. This block is relieved by sequential splicing, in which the immediate downstream IVS4 is removed first. The structural change resulting from the first splicing event is directly responsible for activation of IVS3 splicing. This structural rearrangement replaces IVS4 sequences with E5 and its adjacent IVS5 sequences. To determine how this structural change promoted IVS3 splicing, we asked what structural change(s) would restore activity of IVS3 splicing-defective mutants. The most significant effect was observed by a 2-nucleotide substitution that converted the 5' splice site of E4 to an exact consensus match, GUAAGU. Exon 5 sequences alone were found not to promote splicing when present in one or multiple copies. However, when a 15-nucleotide segment of IVS5 containing GUAAGU was inserted into a splicing-defective mutant just downstream of the hybrid exon segment E4E5, splicing activity was recovered. Curiously, the 72-nucleotide L2 exon of adenovirus, without its associated 5' splice site, activates splicing when juxtaposed to E4. Models for the activation of splicing by an RNA structural change are discussed.", "title": "A Sequential splicing mechanism promotes selection of an optimal exon by repositioning a downstream 5' splice site in preprotachykinin pre-mRNA." }, { "docid": "14610165", "text": "Antisense transcription is widespread in many genomes; however, how much is functional is hotly debated. We are investigating functionality of a set of long noncoding antisense transcripts, collectively called COOLAIR, produced at Arabidopsis FLOWERING LOCUS C (FLC). COOLAIR initiates just downstream of the major sense transcript poly(A) site and terminates either early or extends into the FLC promoter region. We now show that splicing of COOLAIR is functionally important. This was revealed through analysis of a hypomorphic mutation in the core spliceosome component PRP8. The prp8 mutation perturbs a cotranscriptional feedback mechanism linking COOLAIR processing to FLC gene body histone demethylation and reduced FLC transcription. The importance of COOLAIR splicing in this repression mechanism was confirmed by disrupting COOLAIR production and mutating the COOLAIR proximal splice acceptor site. Our findings suggest that altered splicing of a long noncoding transcript can quantitatively modulate gene expression through cotranscriptional coupling mechanisms.", "title": "Functional Consequences of Splicing of the Antisense Transcript COOLAIR on FLC Transcription" }, { "docid": "365896", "text": "We describe methods for obtaining a quantitative description of RNA processing at high resolution in budding yeast. As a model gene expression system, we constructed tetON (for induction studies) and tetOFF (for repression, derepression, and RNA degradation studies) yeast strains with a series of reporter genes integrated in the genome under the control of a tetO7 promoter. Reverse transcription and quantitative real-time-PCR (RT-qPCR) methods were adapted to allow the determination of mRNA abundance as the average number of copies per cell in a population. Fluorescence in situ hybridization (FISH) measurements of transcript numbers in individual cells validated the RT-qPCR approach for the average copy-number determination despite the broad distribution of transcript levels within a population of cells. In addition, RT-qPCR was used to distinguish the products of the different steps in splicing of the reporter transcripts, and methods were developed to map and quantify 3'-end cleavage and polyadenylation. This system permits pre-mRNA production, splicing, 3'-end maturation and degradation to be quantitatively monitored with unprecedented kinetic detail, suitable for mathematical modeling. Using this approach, we demonstrate that reporter transcripts are spliced prior to their 3'-end cleavage and polyadenylation, that is, cotranscriptionally.", "title": "RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3'-end processing in Saccharomyces cerevisiae." }, { "docid": "22544171", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.", "title": "Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome" }, { "docid": "4313478", "text": "Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.", "title": "Translational control of intron splicing in eukaryotes" }, { "docid": "30261663", "text": "In eukaryotes, a surveillance mechanism known as nonsense-mediated decay (NMD) degrades the mRNA when a premature-termination codon (PTC) is present. NMD requires translation to read the frame of the mRNA and detect the PTC. During pre-mRNA splicing, the exon-exon junction complex (EJC) is recruited to a region 20-24 nt upstream of the exon junction on the mature mRNA. The presence of a PTC upstream from the EJC elicits NMD. Eukaryotic initiation factor 4A (eIF4A) III is a nuclear protein that interacts physically or functionally with translation initiation factors eIF4G and eIF4B, respectively, and shares strikingly high identity with the initiation factors eIF4AI/II. Here we show that siRNA against eIF4AIII, but not against eIF4AI/II, inhibits NMD. Moreover, eIF4AIII, but not eIF4AI, is specifically recruited to the EJC during splicing. The observations that eIF4AIII is loaded onto the mRNA during splicing in the nucleus, has properties related to a translation initiation factor, and functions in NMD raises the possibility that eIF4AIII substitutes for eIF4AI/II during NMD.", "title": "A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay." }, { "docid": "5273056", "text": "Eukaryotes have numerous checkpoint pathways to protect genome fidelity during normal cell division and in response to DNA damage. Through a screen for G2/M checkpoint regulators in zebrafish, we identified ticrr (for TopBP1-interacting, checkpoint, and replication regulator), a previously uncharacterized gene that is required to prevent mitotic entry after treatment with ionizing radiation. Ticrr deficiency is embryonic-lethal in the absence of exogenous DNA damage because it is essential for normal cell cycle progression. Specifically, the loss of ticrr impairs DNA replication and disrupts the S/M checkpoint, leading to premature mitotic entry and mitotic catastrophe. We show that the human TICRR ortholog associates with TopBP1, a known checkpoint protein and a core component of the DNA replication preinitiation complex (pre-IC), and that the TICRR-TopBP1 interaction is stable without chromatin and requires BRCT motifs essential for TopBP1's replication and checkpoint functions. Most importantly, we find that ticrr deficiency disrupts chromatin binding of pre-IC, but not prereplication complex, components. Taken together, our data show that TICRR acts in association with TopBP1 and plays an essential role in pre-IC formation. It remains to be determined whether Ticrr represents the vertebrate ortholog of the yeast pre-IC component Sld3, or a hitherto unknown metazoan replication and checkpoint regulator.", "title": "A vertebrate gene, ticrr, is an essential checkpoint and replication regulator." }, { "docid": "344240", "text": "Actions of protein products resulting from alternative splicing of the Igf1 gene have received increasing attention in recent years. However, the significance and functional relevance of these observations remain poorly defined. To address functions of IGF-I splice variants, we examined the impact of loss of IGF-IEa and IGF-IEb on the proliferation and differentiation of cultured mouse myoblasts. RNA interference-mediated reductions in total IGF-I, IGF-IEa alone, or IGF-IEb alone had no effect on cell viability in growth medium. However, cells deficient in total IGF-I or IGF-IEa alone proliferated significantly slower than control cells or cells deficient in IGF-IEb in serum-free media. Simultaneous loss of both or specific loss of either splice variant significantly inhibited myosin heavy chain (MyHC) immunoreactivity by 70-80% (P < 0.01) under differentiation conditions (48 h in 2% horse serum) as determined by Western immunoblotting. This loss in protein was associated with reduced MyHC isoform mRNAs, because reductions in total IGF-I or IGF-IEa mRNA significantly reduced MyHC mRNAs by approximately 50-75% (P < 0.05). Loss of IGF-IEb also reduced MyHC isoform mRNA significantly, with the exception of Myh7, but to a lesser degree (∼20-40%, P < 0.05). Provision of mature IGF-I, but not synthetic E peptides, restored Myh3 expression to control levels in cells deficient in IGF-IEa or IGF-IEb. Collectively, these data suggest that IGF-I splice variants may regulate myoblast differentiation through the actions of mature IGF-I and not the E peptides.", "title": "Loss of IGF-IEa or IGF-IEb impairs myogenic differentiation." }, { "docid": "3868322", "text": "Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP) gene have been associated with HDL levels, risk for coronary artery disease (CAD), and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5-7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4 × 10(-5), allele frequency 33%). In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9), has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8 × 10(-10)) and intron 8 polymorphism rs9930761-T>C (5.6 × 10(-8)) (in high linkage disequilibrium with allele frequencies 6-7%). rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6 × 10(-28) and rs5883 p = 8.6 × 10(-10), adjusted for rs247616). In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE), rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29-4.30), p = 0.005, n = 866). These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex-dependent CETP splicing effects on cardiovascular risk by a mechanism independent of circulating HDL-C levels.", "title": "Cholesteryl Ester Transfer Protein (CETP) Polymorphisms Affect mRNA Splicing, HDL Levels, and Sex-Dependent Cardiovascular Risk" }, { "docid": "5702790", "text": "Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.", "title": "Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease." } ]
965
Prescribed exercise training improves quality of life.
[ { "docid": "40817021", "text": "CONTEXT Findings from previous studies of the effects of exercise training on patient-reported health status have been inconsistent. \n OBJECTIVE To test the effects of exercise training on health status among patients with heart failure. \n DESIGN, SETTING, AND PATIENTS Multicenter, randomized controlled trial among 2331 medically stable outpatients with heart failure with left ventricular ejection fraction of 35% or less. Patients were randomized from April 2003 through February 2007. \n INTERVENTIONS Usual care plus aerobic exercise training (n = 1172), consisting of 36 supervised sessions followed by home-based training, vs usual care alone (n = 1159). Randomization was stratified by heart failure etiology, which was a covariate in all models. \n MAIN OUTCOME MEASURES Kansas City Cardiomyopathy Questionnaire (KCCQ) overall summary scale and key subscales at baseline, every 3 months for 12 months, and annually thereafter for up to 4 years. The KCCQ is scored from 0 to 100 with higher scores corresponding to better health status. Treatment group effects were estimated using linear mixed models according to the intention-to-treat principle. \n RESULTS Median follow-up was 2.5 years. At 3 months, usual care plus exercise training led to greater improvement in the KCCQ overall summary score (mean, 5.21; 95% confidence interval, 4.42 to 6.00) compared with usual care alone (3.28; 95% confidence interval, 2.48 to 4.09). The additional 1.93-point increase (95% confidence interval, 0.84 to 3.01) in the exercise training group was statistically significant (P < .001). After 3 months, there were no further significant changes in KCCQ score for either group (P = .85 for the difference between slopes), resulting in a sustained, greater improvement overall for the exercise group (P < .001). Results were similar on the KCCQ subscales, and no subgroup interactions were detected. \n CONCLUSIONS Exercise training conferred modest but statistically significant improvements in self-reported health status compared with usual care without training. Improvements occurred early and persisted over time. \n TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00047437.", "title": "Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial." } ]
[ { "docid": "2820454", "text": "BACKGROUND Pulmonary hypertension (PH) is associated with restricted physical capacity, limited quality of life, and a poor prognosis because of right heart failure. The present study is the first prospective randomized study to evaluate the effects of exercise and respiratory training in patients with severe symptomatic PH. \n METHODS AND RESULTS Thirty patients with PH (21 women; mean age, 50+/-13 years; mean pulmonary artery pressure, 50+/-15 mm Hg; mean World Health Organization [WHO] class, 2.9+/-0.5; pulmonary arterial hypertension, n=23; chronic thromboembolic PH, n=7) on stable disease-targeted medication were randomly assigned to a control (n=15) and a primary training (n=15) group. Medication remained unchanged during the study period. Primary end points were the changes from baseline to week 15 in the distance walked in 6 minutes and in scores of the Short Form Health Survey quality-of-life questionnaire. Changes in WHO functional class, Borg scale, and parameters of echocardiography and gas exchange also were assessed. At week 15, patients in the primary and secondary training groups had an improved 6-minute walking distance; the mean difference between the control and the primary training group was 111 m (95% confidence interval, 65 to 139 m; P<0.001). Exercise training was well tolerated and improved scores of quality of life, WHO functional class, peak oxygen consumption, oxygen consumption at the anaerobic threshold, and achieved workload. Systolic pulmonary artery pressure values at rest did not change significantly after 15 weeks of exercise and respiratory training (from 61+/-18 to 54+/-18 mm Hg) within the training group. \n CONCLUSIONS This study indicates that respiratory and physical training could be a promising adjunct to medical treatment in severe PH. The effects add to the beneficial results of modern medical treatment.", "title": "Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension." }, { "docid": "12672066", "text": "IMPORTANCE In 2011, the Centers for Medicare & Medicaid Services (CMS) approved intensive behavioral weight loss counseling for approximately 14 face-to-face, 10- to 15-minute sessions over 6 months for obese beneficiaries in primary care settings, when delivered by physicians and other CMS-defined primary care practitioners. \n OBJECTIVE To conduct a systematic review of behavioral counseling for overweight and obese patients recruited from primary care, as delivered by primary care practitioners working alone or with trained interventionists (eg, medical assistants, registered dietitians), or by trained interventionists working independently. EVIDENCE REVIEW We searched PubMed, CINAHL, and EMBASE for randomized controlled trials published between January 1980 and June 2014 that recruited overweight and obese patients from primary care; provided behavioral counseling (ie, diet, exercise, and behavioral therapy) for at least 3 months, with at least 6 months of postrandomization follow-up; included at least 15 participants per treatment group and objectively measured weights; and had a comparator, an intention-to-treat analysis, and attrition of less than 30% at 1 year or less than 40% at longer follow-up. \n FINDINGS Review of 3304 abstracts yielded 12 trials, involving 3893 participants, that met inclusion-exclusion criteria and prespecified quality ratings. No studies were found in which primary care practitioners delivered counseling that followed the CMS guidelines. Mean 6-month weight changes from baseline in the intervention groups ranged from a loss of 0.3 kg to 6.6 kg. In the control group, mean change ranged from a gain of 0.9 kg to a loss of 2.0 kg. Weight loss in both groups generally declined with longer follow-up (12-24 months). Interventions that prescribed both reduced energy intake (eg, ≥ 500 kcal/d) and increased physical activity (eg, ≥150 minutes a week of walking), with traditional behavioral therapy, generally produced larger weight loss than interventions without all 3 specific components. In the former trials, more treatment sessions, delivered in person or by telephone by trained interventionists, were associated with greater mean weight loss and likelihood of patients losing 5% or more of baseline weight. \n CONCLUSIONS AND RELEVANCE Intensive behavioral counseling can induce clinically meaningful weight loss, but there is little research on primary care practitioners providing such care. The present findings suggest that a range of trained interventionists, who deliver counseling in person or by telephone, could be considered for treating overweight or obesity in patients encountered in primary care settings.", "title": "Behavioral treatment of obesity in patients encountered in primary care settings: a systematic review." }, { "docid": "40631095", "text": "Increased dyspnea and reduced exercise capacity in pulmonary arterial hypertension (PAH) can be partly attributed to impaired respiratory muscle function. This prospective study was designed to assess the impact of exercise and respiratory training on respiratory muscle strength and 6-min walking distance (6MWD) in PAH patients. Patients with invasively confirmed PAH underwent 3 weeks of in-hospital exercise and respiratory training, which was continued at home for another 12 weeks. Medication remained constant during the study period. Blinded observers assessed efficacy parameters at baseline (I) and after 3 (II) and 15 weeks (III). Respiratory muscle function was assessed by twitch mouth pressure (TwPmo) during nonvolitional supramaximal magnetic phrenic nerve stimulation. Seven PAH patients (4 women; mean pulmonary artery pressure 45 ± 11 mmHg, median WHO functional class 3.1 ± 0.4, idiopathic/associated PAH n = 5/2) were included. The training program was feasible and well tolerated by all patients with excellent compliance. TwPmo was I: 0.86 ± 0.37 kPa, II: 1.04 ± 0.29 kPa, and III: 1.27 ± 0.44 kPa, respectively. 6MWD was I: 417 ± 51 m, II: 509 ± 39 m, and III: 498 ± 39 m, respectively. Both TwPmo (+0.41 ± 0.34 kPa, +56 ± 39 %) and 6MWD (+81 ± 30 m, +20 ± 9 %) increased significantly in the period between baseline and the final assessment (pairwise comparison: p = 0.012/<0.001; RM-ANOVA considering I, II, III: p = 0.037/<0.001). Exercise and respiratory training as an adjunct to medical therapy may be effective in patients with PAH to improve respiratory muscle strength and exercise capacity. Future, randomized, controlled trials should be carried out to further investigate these findings.", "title": "The Combination of Exercise and Respiratory Training Improves Respiratory Muscle Function in Pulmonary Hypertension" }, { "docid": "2242416", "text": "The present study was designed to determine the effects of physical training on the development of cancer induced by the injection of Ehrlich tumor cells in mice. Male Swiss mice were subjected to a swim training protocol (5 days/wk for 6 wk, 1 h at 50% of maximal capacity-trained groups) or remained sedentary in their cages (sedentary groups). The inoculation of Ehrlich tumor cells was performed at the end of the fourth week, and animals were killed after 6 wk of training. Heart and solid tumor weights were recorded, and tumor volumes were calculated. Portions of the tumors were used for the evaluation of macrophages and neutrophil accumulation or fixed in neutral 10% buffered formalin for histological analysis. The tumor volume and weight were, respectively, approximately 270% and 280% greater in sedentary mice than in trained mice. Macrophage infiltration in the tumor tissue was significantly lower in trained mice (0.65 +/- 0.16 vs. 1.78 +/- 0.43 macrophages x 10(3) in the sedentary group). Moreover, neutrophil accumulation in tumors was slightly reduced after exercise training, and the amount of tumor cells was reduced in trained mice. Exercise capacity was substantially increased in trained mice, as determined by a 440% increase in the exercise time at 50% of maximal capacity. In summary, swim training retarded the development of Ehrlich tumors in mice, accompanied by a reduction in macrophage infiltration and neutrophil accumulation. These findings provide conceptual support for clinical observations that controlled physical activities may be a therapeutically important approach to preventing cancer progression and may improve the outcome of cancer treatment.", "title": "Swim training suppresses tumor growth in mice." }, { "docid": "2028532", "text": "The aims of this randomised controlled trial were to determine if a high-intensity functional exercise program improves balance, gait ability, and lower-limb strength in older persons dependent in activities of daily living and if an intake of protein-enriched energy supplement immediately after the exercises increases the effects of the training. One hundred and ninety-one older persons dependent in activities of daily living, living in residential care facilities, and with a Mini-Mental State Examination (MMSE) score of ? 10 participated. They were randomised to a high-intensity functional exercise program or a control activity, which included 29 sessions over 3 months, as well as to protein-enriched energy supplement or placebo. Berg Balance Scale, self-paced and maximum gait speed, and one-repetition maximum in lower-limb strength were followed-up at three and six months and analysed by 2 x 2 factorial ANCOVA, using the intention-to-treat principle. At three months, the exercise group had improved significantly in self-paced gait speed compared with the control group (mean difference 0.04 m/s, p = 0.02). At six months, there were significant improvements favouring the exercise group for Berg Balance Scale (1.9 points, p = 0.05), self-paced gait speed (0.05 m/s, p = 0.009), and lower-limb strength (10.8 kg, p = 0.03). No interaction effects were seen between the exercise and nutrition interventions. In conclusion, a high-intensity functional exercise program has positive long-term effects in balance, gait ability, and lower-limb strength for older persons dependent in activities of daily living. An intake of protein-enriched energy supplement immediately after the exercises does not appear to increase the effects of the training.", "title": "High-intensity functional exercise program and protein-enriched energy supplement for older persons dependent in activities of daily living: a randomised controlled trial." }, { "docid": "2774906", "text": "Physical activity protects against cardiovascular disease, and physiological cardiac hypertrophy associated with regular exercise is usually beneficial, in marked contrast to pathological hypertrophy associated with disease. The p110alpha isoform of phosphoinositide 3-kinase (PI3K) plays a critical role in the induction of exercise-induced hypertrophy. Whether it or other genes activated in the athlete's heart might have an impact on cardiac function and survival in a setting of heart failure is unknown. To examine whether progressive exercise training and PI3K(p110alpha) activity affect survival and/or cardiac function in two models of heart disease, we subjected a transgenic mouse model of dilated cardiomyopathy (DCM) to swim training, genetically crossed cardiac-specific transgenic mice with increased or decreased PI3K(p110alpha) activity to the DCM model, and subjected PI3K(p110alpha) transgenics to acute pressure overload (ascending aortic constriction). Life-span, cardiac function, and molecular markers of pathological hypertrophy were examined. Exercise training and increased cardiac PI3K(p110alpha) activity prolonged survival in the DCM model by 15-20%. In contrast, reduced PI3K(p110alpha) activity drastically shortened lifespan by approximately 50%. Increased PI3K(p110alpha) activity had a favorable effect on cardiac function and fibrosis in the pressure-overload model and attenuated pathological growth. PI3K(p110alpha) signaling negatively regulated G protein-coupled receptor stimulated extracellular responsive kinase and Akt (via PI3K, p110gamma) activation in isolated cardiomyocytes. These findings suggest that exercise and enhanced PI3K(p110alpha) activity delay or prevent progression of heart disease, and that supraphysiologic activity can be beneficial. Identification of genes important for hypertrophy in the athlete's heart could offer new strategies for treating heart failure.", "title": "Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy." }, { "docid": "1122279", "text": "BACKGROUND Endothelium-dependent modulation of coronary tone is impaired in the collateral-dependent coronary microcirculation. We used a porcine model of chronic coronary occlusion and collateral development to evaluate the hypothesis that exercise training enhances endothelium-mediated relaxation and increases endothelial nitric oxide synthase (ecNOS) mRNA levels of collateral-dependent microvasculature. \n METHODS AND RESULTS Adult female miniature swine were subjected to chronic, progressive ameroid occlusion of the proximal left circumflex coronary artery (LCx); after 2 months, animals were randomly exposed to 16-week exercise-training (EX group; treadmill running) or sedentary (SED group; cage confinement) protocols. After completion of EX or SED programs, coronary arterioles ( approximately 100 microm in diameter) were isolated from collateral-dependent LCx (distal to occlusion) and nonoccluded left anterior descending coronary artery (LAD) regions of each heart. Arterioles were studied by in vitro videomicroscopy or frozen for ecNOS mRNA analysis (RT-PCR techniques). Relaxation to the endothelium-dependent vasodilator bradykinin was decreased (P<0.05) in arterioles isolated from collateral-dependent LCx versus nonoccluded LAD regions of SED animals. Bradykinin-mediated relaxation, however, was not different in LCx versus LAD arterioles isolated from EX animals. Nitroprusside-induced relaxation was unaffected by either chronic occlusion or exercise. Importantly, ecNOS mRNA expression was significantly decreased in arterioles isolated from LCx versus LAD regions of SED animals. After training, ecNOS mRNA expression was not different between LAD and LCx arterioles. \n CONCLUSIONS These data indicate that exercise training enhances bradykinin-mediated relaxation of collateral-dependent LCx arterioles isolated after chronic coronary occlusion, most likely because of effects on ecNOS mRNA expression and increased production of NO.", "title": "Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training." }, { "docid": "4164929", "text": "Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise.", "title": "The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise." }, { "docid": "4463588", "text": "BACKGROUND Little is known about how the intensity of exercise influences cardiovascular fitness and body composition, especially in obese adolescents. \n OBJECTIVE Our goal was to determine the effects of physical training intensity on the cardiovascular fitness, percentage of body fat (%BF), and visceral adipose tissue (VAT) of obese adolescents. \n DESIGN Obese 13-16-y-olds (n = 80) were assigned to 1) biweekly lifestyle education (LSE), 2) LSE + moderate-intensity physical training, or 3) LSE + high-intensity physical training. The intervention lasted 8 mo. Physical training was offered 5 d/wk, and the target energy expenditure for all subjects in physical training groups was 1047 kJ (250 kcal)/session. Cardiovascular fitness was measured with a multistage treadmill test, %BF with dual-energy X-ray absorptiometry, and VAT with magnetic resonance imaging. \n RESULTS The increase in cardiovascular fitness in the high-intensity physical training group, but not in the moderate-intensity group, was significantly greater than that in the LSE alone group (P = 0.009); no other comparisons of the 3 groups were significant. Compared with the LSE alone group, a group composed of subjects in both physical training groups combined who attended training sessions >or=2 d/wk showed favorable changes in cardiovascular fitness (P < 0.001), %BF (P = 0.001), and VAT (P = 0.029). We found no evidence that the high-intensity physical training was more effective than the moderate-intensity physical training in enhancing body composition. \n CONCLUSIONS The cardiovascular fitness of obese adolescents was significantly improved by physical training, especially high-intensity physical training. The physical training also reduced both visceral and total-body adiposity, but there was no clear effect of the intensity of physical training.", "title": "Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents." }, { "docid": "25822299", "text": "Vascular endothelial cells produce nitric oxide (NO), which is a potent vasodilator substance and has been proposed as having antiatherosclerotic property. Vascular endothelial cells also produce endothelin-1 (ET-1), which is a potent vasoconstrictor peptide and has potent proliferating activity on vascular smooth muscle cells. Therefore, ET-1 has been implicated in the progression of atheromatous vascular disease. Because exercise training has been reported to produce an alteration in the function of vascular endothelial cells in animals, we hypothesized that exercise training influences the production of NO and ET-1 in humans. The purpose of the present study was to examine whether chronic exercise could influence the plasma levels of NO (measured as the stable end product of NO, i.e., nitrite/nitrate [NOx]) and ET-1 in humans. Eight healthy young subjects (20.3 +/- 0.5 yr old) participated in the study and exercised by cycling on a leg ergometer (70% VO2max for 1 hour, 3-4 days/week) for 8 weeks. Venous plasma concentrations of NOx and ET-1 were measured before and after (immediately before the end of 8-week exercise training) the exercise training, and also after the 4th and 8th week after the cessation of training. The VO2max significantly increased after exercise training. After the exercise training, the plasma concentration of NOx significantly increased (30.69 +/- 3.20 vs. 48.64 +/- 8.16 micromol/L, p < 0.05), and the plasma concentration of ET-1 significantly decreased (1.65 +/- 0.14 vs. 1.23 +/- 0.12 pg/mL, p < 0.05). The increase in NOx level and the decrease in ET-1 level lasted to the 4th week after the cessation of exercise training and these levels (levels of NOx and ET-1) returned to the basal levels (the levels before the exercise training) in the 8th week after the cessation of exercise training. There was a significant negative correlation between plasma NOx concentration and plasma ET-1 concentration. The present study suggests that chronic exercise causes an increase in production of NO and a decrease in production of ET-1 in humans, which may produce beneficial effects (i.e., vasodilative and antiatherosclerotic) on the cardiovascular system.", "title": "Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans." }, { "docid": "35271381", "text": "Aerobic exercise training induces an increase in coronary blood flow capacity that is associated with altered control of coronary vascular resistance and, therefore, coronary blood flow. The relative importance of metabolic, myogenic, endothelium-mediated, and neurohumoral control systems varies throughout the coronary arterial tree, and these control systems contribute in parallel to regulating coronary vascular resistance to differing degrees at each level in the coronary arterial tree. In addition to this nonuniformity of the relative importance of vascular control systems in the coronary arterial tree, it appears that exercise training-induced adaptations are also distributed spatially, in a nonuniform manner throughout the coronary tree. As a result, it is necessary to examine training-induced adaptations throughout the coronary arterial tree. Adaptations in endothelium-mediated control play a role in training-induced changes in control of coronary vascular resistance, and there is evidence that the effects of training may be different in large coronary arteries than in the microcirculation. Also, there is evidence that the mode, frequency, and intensity of exercise training bouts and duration of training may influence the adaptive changes in endothelial function. Exercise training has also been shown to induce changes in responses of coronary vascular smooth muscle to vasoactive agents and alterations in the cellular-molecular control of intracellular Ca2+ in coronary vascular smooth muscle of conduit coronary arteries and to enhance myogenic reactivity of coronary resistance arteries. Exercise training also appears to have different effects on vascular smooth muscle in large coronary arteries than in the microcirculation. For example, adenosine sensitivity is increased in conduit coronary arteries and large resistance arteries after training but is not altered in small coronary resistance arteries of trained animals. Although much remains to be studied, evidence clearly indicates that chronic exercise alters the phenotype of coronary endothelial and vascular smooth muscle cells and that plasticity of these cells plays a role in adaptation of the cardiovascular system in exercise training.", "title": "Exercise training-induced adaptations in the coronary circulation." }, { "docid": "32322418", "text": "Vascular endothelial cells produce nitric oxide (NO), which is a potent vasodilator substance and is thought to have antiatherosclerotic properties. Therefore, it has also been proposed that NO may be useful to regulate vascular tonus and prevent progression of atherosclerosis. On the other hand, NO activity reduces with aging. We previously reported that the plasma nitrite/nitrate (NOx: the stable end product of NO) concentration was significantly increased by intense aerobic exercise training in healthy young humans. We hypothesized that lifestyle modification (e.g., even mild regular exercise training) can increase NO production in previously sedentary older humans. We measured the plasma NOx concentration before and after a mild aerobic exercise training regimen (cycling on a leg ergometer at 80% ventilatory threshold for 30 min, 5 days/week) for 3 months in elderly women. In addition, we assessed the plasma concentration of cyclic guanosine monophosphate (cGMP), a second messenger of NO, in the same samples. The individual ventilatory threshold increased significantly after the 3-month exercise training. The blood pressure at rest significantly decreased after exercise training. These results suggest that the 3-month exercise training in the older women produced favorable physiological effects. The plasma concentration of NOx significantly increased by the exercise training, and the plasma concentration of cGMP also increased by the exercise training. The present study suggests that even a mild regular aerobic-endurance exercise increases NO production in previously sedentary older humans, which may have beneficial effects (i.e., antihypertensive and antiatherosclerotic effects by endogenous NO) on the cardiovascular system.", "title": "Moderate regular exercise increases basal production of nitric oxide in elderly women." }, { "docid": "52175065", "text": "KEY POINTS The vascular endothelial growth factor (VEGF) responses to acute submaximal exercise and training effects in patients with heart failure with reduced ejection fraction (HFrEF) were investigated. Six patients and six healthy matched controls performed knee-extensor exercise (KE) at 50% of maximum work rate before and after (only patients) KE training. Muscle biopsies were taken to assess skeletal muscle structure and the angiogenic response. Before training, during this submaximal KE exercise, patients with HFrEF exhibited higher leg vascular resistance and greater noradrenaline spillover. Skeletal muscle structure and VEGF response were generally not different between groups. Following training, resistance was no longer elevated and noradrenaline spillover was curtailed in the patients. Although, in the trained state, VEGF did not respond to acute exercise, capillarity was augmented. Muscle fibre cross-sectional area and percentage area of type I fibres increased and mitochondrial volume density exceeded that of controls. Structural/functional plasticity and appropriate angiogenic signalling were observed in skeletal muscle of patients with HFrEF. ABSTRACT This study examined the response to acute submaximal exercise and the effect of training in patients with heart failure with reduced ejection fraction (HFrEF). The acute angiogenic response to submaximal exercise in HFrEF after small muscle mass training is debated. The direct Fick method, with vascular pressures, was performed across the leg during knee-extensor exercise (KE) at 50% of maximum work rate (WRmax ) in patients (n = 6) and controls (n = 6) and then after KE training in patients. Muscle biopsies facilitated the assessment of skeletal muscle structure and vascular endothelial growth factor (VEGF) mRNA levels. Prior to training, HFrEF exhibited significantly higher leg vascular resistance (LVR) (≈15%) and significantly greater noradrenaline spillover (≈385%). Apart from mitochondrial volume density, which was significantly lower (≈22%) in HFrEF, initial skeletal muscle structure, including capillarity, was not different between groups. Resting VEGF mRNA levels, and the increase with exercise, was not different between patients and controls. Following training, LVR was no longer elevated and noradrenaline spillover was curtailed. Skeletal muscle capillarity increased with training, as assessed by capillary-to-fibre ratio (≈13%) and number of capillaries around a fibre (NCAF ) (≈19%). VEGF mRNA was now not significantly increased by acute exercise. Muscle fibre cross-sectional area and percentage area of type I fibres both increased significantly with training (≈18% and ≈21%, respectively), while the percentage area of type II fibres fell significantly (≈11%), and mitochondrial volume density now exceeded that of controls. These data reveal structural and functional plasticity and appropriate angiogenic signalling in skeletal muscle of HFrEF patients.", "title": "Acute and chronic exercise in patients with heart failure with reduced ejection fraction: evidence of structural and functional plasticity and intact angiogenic signalling in skeletal muscle" }, { "docid": "5687200", "text": "AIMS The aim of this study was to compare the effects of calorie-restricted vegetarian and conventional diabetic diets alone and in combination with exercise on insulin resistance, visceral fat and oxidative stress markers in subjects with Type 2 diabetes. \n METHODS A 24-week, randomized, open, parallel design was used. Seventy-four patients with Type 2 diabetes were randomly assigned to either the experimental group (n = 37), which received a vegetarian diet, or the control group (n = 37), which received a conventional diabetic diet. Both diets were isocaloric, calorie restricted (-500 kcal/day). All meals during the study were provided. The second 12 weeks of the diet were combined with aerobic exercise. Participants were examined at baseline, 12 weeks and 24 weeks. Primary outcomes were: insulin sensitivity measured by hyperinsulinaemic isoglycaemic clamp; volume of visceral and subcutaneous fat measured by magnetic resonance imaging; and oxidative stress measured by thiobarbituric acid reactive substances. Analyses were by intention to treat. \n RESULTS Forty-three per cent of participants in the experimental group and 5% of participants in the control group reduced diabetes medication (P < 0.001). Body weight decreased more in the experimental group than in the control group [-6.2 kg (95% CI -6.6 to -5.3) vs. -3.2 kg (95% CI -3.7 to -2.5); interaction group × time P = 0.001]. An increase in insulin sensitivity was significantly greater in the experimental group than in the control group [30% (95% CI 24.5-39) vs. 20% (95% CI 14-25), P = 0.04]. A reduction in both visceral and subcutaneous fat was greater in the experimental group than in the control group (P = 0.007 and P = 0.02, respectively). Plasma adiponectin increased (P = 0.02) and leptin decreased (P = 0.02) in the experimental group, with no change in the control group. Vitamin C, superoxide dismutase and reduced glutathione increased in the experimental group (P = 0.002, P < 0.001 and P = 0.02, respectively). Differences between groups were greater after the addition of exercise training. Changes in insulin sensitivity and enzymatic oxidative stress markers correlated with changes in visceral fat. \n CONCLUSIONS A calorie-restricted vegetarian diet had greater capacity to improve insulin sensitivity compared with a conventional diabetic diet over 24 weeks. The greater loss of visceral fat and improvements in plasma concentrations of adipokines and oxidative stress markers with this diet may be responsible for the reduction of insulin resistance. The addition of exercise training further augmented the improved outcomes with the vegetarian diet.", "title": "Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes" }, { "docid": "10374686", "text": "Although 65% of people with cancer want to die at home, only about 30% are successful in doing so.1,2 A government committed to choice for patients must improve this figure.3 Developing palliative care services in primary care is essential for realising the expectations of dying people. Such services could also offer important opportunities for extending supportive humane care at an earlier stage, and to people not only with cancer but with chronic obstructive pulmonary disease, motor neurone disease, and cardiac failure, for example, who also often have palliative care needs. Primary care professionals have the potential and ability to provide end of life care for most patients, given adequate training, resources, and, when needed, specialist advice.4,5 They share common values with palliative care specialists—holistic, patient centred care, delivered in the context of families and friends.6 However, until recently, apart from Macmillan general practitioners and nurse facilitators, few comprehensive workforce initiatives have been undertaken in primary care that focus on end of life care. Many cancer patients and their carers experience existential distress long before they die.7 Recognising and alleviating such suffering is important, but it often goes unrecognised or is overlooked by services focusing on the terminal phase of illnesses. Primary care teams may know patients over long periods of time. They can readily identify patients from cancer and chronic disease registers who might benefit from an early palliative care approach. Such patients could be identified by clinicians asking one simple question of themselves: “Would I be surprised if my patient were to die in the next 12 months?”8 By identifying such patients proactively we could deliver, simultaneously, active treatment and patient centred supportive care, through a team with whom many patients have a valued long term relationship. Palliative care services need to be extended to patients with non-malignant conditions who have comparable concerns to and in some cases even greater unmet needs than cancer patients.9 Progress by palliative medicine specialists is hampered by issues such as uncertainty about the most effective models of care, lack of non-cancer expertise, and concerns about pressure on specialist services. General practitioners and community nurses can lead the way in providing a palliative care approach for patients with terminal organ failure illness. The first step in such an approach is for the goals of care to be discussed and agreed. Management plans are adjusted accordingly. Effective control of symptoms and maintaining quality of life are prioritised. In the light of these important opportunities it is regrettable that the new general medical services contract has not prioritised palliative care. By day, other developments to achieve the quality indicators are taking precedence. By night and at weekends, the new unscheduled care services (which are responsible for providing care for 75% of the hours in the week) are even less well configured than previous out of hours provision to facilitate dying at home. Such services specialise in dealing with acute emergencies and, as such, often struggle to meet the medical, nursing, and social care needs of dying people and their families. These changes will greatly affect care for dying people and may increase the number of hospital admissions. However, one important initiative is gaining momentum within primary care. The Gold Standards Framework is a resource for organising proactive palliative care in the community and is supported by funding from the Cancer Services Collaborative, Macmillan Cancer Relief, and the National Lottery.10 The framework provides a detailed guide to providing holistic, patient centred care and thereby facilitates effective care in the community. Other recently initiated mechanisms for developing primary palliative care include the training of general practitioners with a special interest in palliative care and the new end of life initiative in England to improve palliative care provision by generalists and to share examples of good practice. To support such developments it is essential that primary palliative care is supported by an adequate academic base.11 This is admittedly a challenging arena in which to undertake research, but progress has been made in recent years in developing conceptual models and research architectures for studying end of life issues. Now we need to build on this work to ensure that the understanding and insights gleaned can be translated into effective interventions. Every person with a progressive illness has a right to palliative care.12 Patients desire a reassuring professional presence in the face of death. General practitioners and community nurses are trusted by patients and are in a position to provide effective, equitable, and accessible palliative care. This will happen only if they have adequate time and resources and work in a system that encourages such care. Patients who receive holistic support in the community may be less likely to require expensive admission to hospital and often futile treatments at the end of their lives.", "title": "Developing primary palliative care." }, { "docid": "43566999", "text": "This study was designed to determine the influence of a long-term, moderate-intensity treadmill training program on the distribution of blood flow within and among muscles of rats during exercise. One group (T) of male Sprague-Dawley rats trained for 1 h/day for 13-17 wk at 30 m/min on a motor-driven treadmill. A second group (UT) of rats was conditioned for 10 min/day for 4 wk at the same speed. Muscle succinate dehydrogenase activities were higher in T than UT rats indicating a significant training effect. Blood flows (BFs) in 32 hindlimb muscles or muscle parts and other selected organs were measured in the two groups with radiolabeled microspheres during preexercise and while the rats ran for 30 s, 5 min, or 15 min at 30 m/min on the treadmill. The data indicate 1) there were no differences in total hindlimb muscle BF between UT and T rats at any time; however, 2) T rats had higher preexercise heart rates and higher muscle BFs in the deep red extensor muscles, suggesting a greater anticipatory response to the impending exercise; 3) T rats demonstrated more rapid elevations in BF in the red extensor muscles at the commencement of exercise; 4) T rats had higher BFs in red extensor muscles during exercise, whereas UT rats had higher BFs in white muscles; and 5) T rats maintained higher BFs in the visceral organs during exercise. These findings demonstrate that exercise training results in changes in the distribution of BF within and among muscles and among organs during exercise. Specifically, data indicate the high-oxidative motor units that are primarily recruited in the muscles during the initial stages of moderate treadmill exercise receive higher blood flows in the trained rats; this presumably contributes to increased resistance to fatigue.", "title": "Exercise blood flow patterns within and among rat muscles after training." }, { "docid": "12584053", "text": "OBJECTIVE To measure whether the benefits of a single education and self management structured programme for people with newly diagnosed type 2 diabetes mellitus are sustained at three years. \n DESIGN Three year follow-up of a multicentre cluster randomised controlled trial in primary care, with randomisation at practice level. \n SETTING 207 general practices in 13 primary care sites in the United Kingdom. \n PARTICIPANTS 731 of the 824 participants included in the original trial were eligible for follow-up. Biomedical data were collected on 604 (82.6%) and questionnaire data on 513 (70.1%) participants. \n INTERVENTION A structured group education programme for six hours delivered in the community by two trained healthcare professional educators compared with usual care. \n MAIN OUTCOME MEASURES The primary outcome was glycated haemoglobin (HbA(1c)) levels. The secondary outcomes were blood pressure, weight, blood lipid levels, smoking status, physical activity, quality of life, beliefs about illness, depression, emotional impact of diabetes, and drug use at three years. \n RESULTS HbA(1c) levels at three years had decreased in both groups. After adjusting for baseline and cluster the difference was not significant (difference -0.02, 95% confidence interval -0.22 to 0.17). The groups did not differ for the other biomedical and lifestyle outcomes and drug use. The significant benefits in the intervention group across four out of five health beliefs seen at 12 months were sustained at three years (P<0.01). Depression scores and quality of life did not differ at three years. \n CONCLUSION A single programme for people with newly diagnosed type 2 diabetes mellitus showed no difference in biomedical or lifestyle outcomes at three years although there were sustained improvements in some illness beliefs. \n TRIAL REGISTRATION Current Controlled Trials ISRCTN17844016.", "title": "Effectiveness of a diabetes education and self management programme (DESMOND) for people with newly diagnosed type 2 diabetes mellitus: three year follow-up of a cluster randomised controlled trial in primary care" }, { "docid": "37037012", "text": "This study was designed to determine whether cardiac vagal afferents exert an inhibitory influence on increases in regional vascular resistance during exercise and to determine whether endurance exercise training enhances the inhibitory influence of cardiac vagal afferents. We measured changes in regional vascular resistance in 12 rabbits at rest and during running at 12.6 m/min, 20% grade, before and after reversible denervation of cardiac afferents (intrapericardial procainamide HCl, 2%). In addition, these procedures were repeated in five of these rabbits following an 8-wk endurance exercise training program. Because intrapericardial injections of procainamide anesthetize both the efferent as well as the afferent innervation to the heart, it was necessary to determine the effects of blocking the efferent innervation on the regulation of regional vascular resistance during exercise. Rabbits were instrumented with Doppler ultrasonic flow probes around the renal (R), mesenteric (M), ascending, and terminal aortic (TA) arteries. Catheters were positioned in the central ear artery and vein and pericardial sac. Mean arterial pressure, heart rate, cardiac output, R, M, TA, and systemic (S) resistances were determined. Exercise changed R (+37 +/- 4%), M (+88 +/- 9%), TA (-62 +/- 6%), and S (-34 +/- 3) resistances. Subsequent cardiac efferent blockade alone had no significant effect on regional vascular resistance during exercise. Combined efferent and afferent blockade resulted in significant increases in R (+62 +/- 6%) and M resistance (+134 +/- 13%) but did not alter TA (-51 +/- 4%) or S (-27 +/- 2%) resistance during exercise. Exercise training significantly enhanced the inhibitory influence of cardiac afferents on R and M regional vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)", "title": "Regional vascular resistance during exercise: role of cardiac afferents and exercise training." }, { "docid": "2475059", "text": "OBJECTIVE Methylphenidate (MPH), the most commonly prescribed drug for attention-deficit/hyperactivity disorder (ADHD), has a short half-life, which necessitates multiple daily doses. The need for multiple doses produces problems with medication administration during school and after-school hours, and therefore with compliance. Previous long-acting stimulants and preparations have shown effects equivalent to twice-daily dosing of MPH. This study tests the efficacy and duration of action, in natural and laboratory settings, of an extended-release MPH preparation designed to last 12 hours and therefore be equivalent to 3-times-daily dosing. \n METHODS Sixty-eight children with ADHD, 6 to 12 years old, participated in a within-subject, double-blind comparison of placebo, immediate-release (IR) MPH 3 times a day (tid), and Concerta, a once-daily MPH formulation. Three dosing levels of medication were used: 5 mg IR MPH tid/18 mg Concerta once a day (qd); 10 mg IR MPH tid/36 mg Concerta qd; and 15 mg IR MPH tid/54 mg Concerta qd. All children were currently medicated with MPH at enrollment, and each child's dose level was based on that child's MPH dosing before the study. The doses of Concerta were selected to be comparable to the daily doses of MPH that each child received. To achieve the ascending rate of MPH delivery determined by initial investigations to provide the necessary continuous coverage, Concerta doses were 20% higher on a daily basis than a comparable tid regimen of IR MPH. Children received each medication condition for 7 days. The investigation was conducted in the context of a background clinical behavioral intervention in both the natural environment and the laboratory setting. Parents received behavioral parent training and teachers were taught to establish a school-home daily report card (DRC). A DRC is a list of individual target behaviors that represent a child's most salient areas of impairment. Teachers set daily goals for each child's impairment targets, and parents provided rewards at home for goal attainment. Each weekday, teachers completed the DRC, and it was used as a dependent measure of individualized medication response. Teachers and parents also completed weekly standardized ratings of behavior and treatment effectiveness. To evaluate the time course of medication effects, children spent 12 hours in a laboratory setting on Saturdays and medication effects were measured using procedures and methods adapted from our summer treatment program. Measures of classroom behavior and academic productivity/accuracy were taken in a laboratory classroom setting during which children completed independent math and reading worksheets. Measures of social behavior were taken in structured, small-group board game settings and unstructured recess settings. Measures included behavior frequency counts, academic problems completed and accuracy, independent observations, teacher and counselor ratings, and individualized behavioral target goals. Reports of adverse events, sleep quality, and appetite were collected. \n RESULTS On virtually all measures in all settings, both drug conditions were significantly different from placebo, and the 2 drugs were not different from each other. In children's regular school settings, both medications improved behavior as measured by teacher ratings and individualized target behaviors (the DRC); these effects were seen into the evening as measured by parent ratings. In the laboratory setting, effects of Concerta were equivalent to tid MPH and lasted at least through 12 hours after dosing. Concerta was significantly superior to tid MPH on 2 parent rating scores, and when asked, more parents preferred Concerta than preferred tid IR MPH or placebo. Side effects on children's sleep and appetite were similar for the 2 preparations. In the lab setting, both medications improved productivity and accuracy on arithmetic seatwork assignments, disruptive and on-task behavior, and classroom rule following. Both medications improved children's rule following and negative behavior in small group board games, as well as in unstructured recess settings. Individual target behaviors also showed significant improvement with medication across domains in the laboratory setting. Children's behavior across settings deteriorated across the laboratory day, and the primary effect of medication was to prevent this deterioration as the day wore on. Results support the use of background behavioral treatment in clinical trials of stimulant medication, and illustrate the utility of a measure of individualized daily target goals (ie, the DRC) as an objective measure of medication response in both the laboratory and natural school settings. \n CONCLUSION This investigation clearly supports the efficacy of the Concerta long-acting formulation of MPH for parents who desire to have medication benefits for their child throughout the day and early evening. (ABSTRACT TRUNCATED)", "title": "Once-a-day Concerta methylphenidate versus three-times-daily methylphenidate in laboratory and natural settings." } ]
969
PrimPol degrades short DNA replication intermediates on the leading strand during DNA replication.
[ { "docid": "19356271", "text": "Prim-pol is a recently identified DNA primase-polymerase belonging to the archaeao-eukaryotic primase (AEP) superfamily. Here, we characterize a previously unrecognized prim-pol in human cells, which we designate hPrimpol1 (human primase-polymerase 1). hPrimpol1 possesses primase and DNA polymerase activities in vitro, interacts directly with RPA1 and is recruited to sites of DNA damage and stalled replication forks in an RPA1-dependent manner. Cells depleted of hPrimpol1 display increased spontaneous DNA damage and defects in the restart of stalled replication forks. Both RPA1 binding and the primase activity of hPrimpol1 are required for its cellular function during DNA replication. Our results indicate that hPrimpol1 is a novel factor involved in the response to DNA replication stress.", "title": "hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity." }, { "docid": "17368516", "text": "We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication.", "title": "PrimPol, an Archaic Primase/Polymerase Operating in Human Cells" } ]
[ { "docid": "28904104", "text": "DNA replication forks that collapse during the process of genomic duplication lead to double-strand breaks and constitute a threat to genomic stability. The risk of fork collapse is higher in the presence of replication inhibitors or after UV irradiation, which introduces specific modifications in the structure of DNA. In these cases, fork progression may be facilitated by error-prone translesion synthesis (TLS) DNA polymerases. Alternatively, the replisome may skip the damaged DNA, leaving an unreplicated gap to be repaired after replication. This mechanism strictly requires a priming event downstream of the lesion. Here we show that PrimPol, a new human primase and TLS polymerase, uses its primase activity to mediate uninterrupted fork progression after UV irradiation and to reinitiate DNA synthesis after dNTP depletion. As an enzyme involved in tolerance to DNA damage, PrimPol might become a target for cancer therapy.", "title": "Repriming of DNA synthesis at stalled replication forks by human PrimPol" }, { "docid": "15077696", "text": "DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromosomal DNA replication. PrimPol is required for replication fork progression on ultraviolet (UV) light-damaged DNA templates, possibly mediated by its ability to catalyze translesion synthesis (TLS) of these lesions. This PrimPol UV lesion bypass pathway is not epistatic with the Pol η-dependent pathway and, as a consequence, protects xeroderma pigmentosum variant (XP-V) patient cells from UV-induced cytotoxicity. In addition, we establish that PrimPol is also required for efficient replication fork progression during an unperturbed S phase. These and other findings indicate that PrimPol is an important player in replication fork progression in eukaryotic cells.", "title": "PrimPol Bypasses UV Photoproducts during Eukaryotic Chromosomal DNA Replication" }, { "docid": "11401602", "text": "The effects of topoisomerases I and II on the replication of SV40 DNA were examined using an in vitro replication system of purified proteins that constitutes the monopolymerase system. In the presence of the two topoisomerases, two distinct nascent DNAs were formed. One product arising from the replication of the leading template strand was approximately half the size of the template DNA, whereas the other product derived from the lagging template strand consisted of short DNAs. These products were synthesized from both SV40 naked DNA and SV40 chromosomes. For the replication of SV40 naked DNA, either topoisomerase I or II maintained replication fork movement and supported complete leading strand synthesis. When SV40 chromosomes were replicated with the same proteins, reactions containing only topoisomerase I produced shorter leading strands. However, mature size DNA products accumulated in reactions supplemented with topoisomerase II, as well as in reactions containing only topoisomerase II. In the presence of crude extracts of HeLa cells, VP-16, a specific inhibitor of topoisomerase II, blocked elongation of the nascent DNA during the replication of SV40 chromosomes. These results indicate that topoisomerase II plays a crucial role as a swivelase in the late stage of SV40 chromosome replication in vitro.", "title": "Topoisomerase II plays an essential role as a swivelase in the late stage of SV40 chromosome replication in vitro." }, { "docid": "41314611", "text": "Numerous agents attack DNA, forming lesions that impair normal replication. Specialized DNA polymerases transiently replace the replicative polymerase and copy past lesions, thus generating mutations, the major initiating cause of cancer. We monitored, in Escherichia coli, the kinetics of replication of both strands of DNA molecules containing a single replication block in either the leading or lagging strand. Despite a block in the leading strand, lagging-strand synthesis proceeded further, implying transient uncoupling of concurrent strand synthesis. Replication through the lesion requires specialized DNA polymerases and is achieved with similar kinetics and efficiencies in both strands.", "title": "Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo." }, { "docid": "2758012", "text": "Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome-associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis.", "title": "BLM helicase facilitates telomere replication during leading strand synthesis of telomeres" }, { "docid": "4444861", "text": "Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.", "title": "Replication Fork Stability Confers Chemoresistance in BRCA-deficient Cells" }, { "docid": "37328025", "text": "Cells cope with blockage of replication fork progression in a manner that allows DNA synthesis to be completed and genomic instability minimized. Models for resolution of blocked replication involve fork regression to form Holliday junction structures. The human RecQ helicases WRN and BLM (deficient in Werner and Bloom syndromes, respectively) are critical for maintaining genomic stability and thought to function in accurate resolution of replication blockage. Consistent with this notion, WRN and BLM localize to sites of blocked replication after certain DNA-damaging treatments and exhibit enhanced activity on replication and recombination intermediates. Here we examine the actions of WRN and BLM on a special Holliday junction substrate reflective of a regressed replication fork. Our results demonstrate that, in reactions requiring ATP hydrolysis, both WRN and BLM convert this Holliday junction substrate primarily to a four-stranded replication fork structure, suggesting they target the Holliday junction to initiate branch migration. In agreement, the Holliday junction binding protein RuvA inhibits the WRN- and BLM-mediated conversion reactions. Importantly, this conversion product is suitable for replication with its leading daughter strand readily extended by DNA polymerases. Furthermore, binding to and conversion of this Holliday junction are optimal at low MgCl(2) concentrations, suggesting that WRN and BLM preferentially act on the square planar (open) conformation of Holliday junctions. Our findings suggest that, subsequent to fork regression events, WRN and/or BLM could re-establish functional replication forks to help overcome fork blockage. Such a function is highly consistent with phenotypes associated with WRN- and BLM-deficient cells.", "title": "The Werner and Bloom syndrome proteins help resolve replication blockage by converting (regressed) holliday junctions to functional replication forks." }, { "docid": "31514338", "text": "The eukaryotic replisome is a crucial determinant of genome stability, but its structure is still poorly understood. We found previously that many regulatory proteins assemble around the MCM2-7 helicase at yeast replication forks to form the replisome progression complex (RPC), which might link MCM2-7 to other replisome components. Here, we show that the RPC associates with DNA polymerase alpha that primes each Okazaki fragment during lagging strand synthesis. Our data indicate that a complex of the GINS and Ctf4 components of the RPC is crucial to couple MCM2-7 to DNA polymerase alpha. Others have found recently that the Mrc1 subunit of RPCs binds DNA polymerase epsilon, which synthesises the leading strand at DNA replication forks. We show that cells lacking both Ctf4 and Mrc1 experience chronic activation of the DNA damage checkpoint during chromosome replication and do not complete the cell cycle. These findings indicate that coupling MCM2-7 to replicative polymerases is an important feature of the regulation of chromosome replication in eukaryotes, and highlight a key role for Ctf4 in this process.", "title": "A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome." }, { "docid": "7151961", "text": "Double-strand breaks (DSBs) occur frequently during DNA replication. They are also caused by ionizing radiation, chemical damage or as part of the series of programmed events that occur during meiosis. In yeast, DSB repair requires RAD52, a protein that plays a critical role in homologous recombination. Here we describe the actions of human RAD52 protein in a model system for single-strand annealing (SSA) using tailed (i.e. exonuclease resected) duplex DNA molecules. Purified human RAD52 protein binds resected DSBs and promotes associations between complementary DNA termini. Heteroduplex intermediates of these recombination reactions have been visualized by electron microscopy, revealing the specific binding of multiple rings of RAD52 to the resected termini and the formation of large protein complexes at heteroduplex joints formed by RAD52-mediated annealing.", "title": "Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing." }, { "docid": "16217855", "text": "The product of the gene mutated in Bloom's syndrome, BLM, is a 3′–5′ DNA helicase belonging to the highly conserved RecQ family. In addition to a conventional DNA strand separation activity, BLM catalyzes both the disruption of non-B-form DNA, such as G-quadruplexes, and the branch migration of Holliday junctions. Here, we have characterized a new activity for BLM: the promotion of single-stranded DNA (ssDNA) annealing. This activity does not require Mg2+, is inhibited by ssDNA binding proteins and ATP, and is dependent on DNA length. Through analysis of various truncation mutants of BLM, we show that the C-terminal domain is essential for strand annealing and identify a 60 amino acid stretch of this domain as being important for both ssDNA binding and strand annealing. We present a model in which the ssDNA annealing activity of BLM facilitates its role in the processing of DNA intermediates that arise during repair of damaged replication forks.", "title": "The Bloom's syndrome helicase promotes the annealing of complementary single-stranded DNA" }, { "docid": "6812319", "text": "Chromosomal instability (CIN) is a hallmark of tumour initiation and progression. Some genomic regions are particularly unstable under replication stress, notably common fragile sites (CFSs) whose rearrangements in tumour cells contribute to cancer development. Recent work has shown that the Fanconi anaemia (FANC) pathway plays a role in preventing defective chromosome segregation and CIN under conditions of replication stress. Strikingly, FANCD2 is recruited to regions hosting CFSs on metaphase chromosomes. To decipher the mechanisms protecting CFSs in G2/M, we searched for proteins that co-localize with FANCD2 on mitotic chromosomes, and identified XPF–ERCC1 and MUS81–EME1, two structure-specific endonucleases. We show that depletion of either ERCC1 or MUS81–EME1 affects accurate processing of replication intermediates or under-replicated DNA that persist at CFSs until mitosis. Depletion of these endonucleases also leads to an increase in the frequency of chromosome bridges during anaphase that, in turn, favours accumulation of DNA damage in the following G1 phase.", "title": "ERCC1 and MUS81–EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis" }, { "docid": "25787749", "text": "The evolutionarily conserved G-quadruplexes (G4s) are faithfully inherited and serve a variety of cellular functions such as telomere maintenance, gene regulation, DNA replication initiation, and epigenetic regulation. Different from the Watson-Crick base-pairing found in duplex DNA, G4s are formed via Hoogsteen base pairing and are very stable and compact DNA structures. Failure of untangling them in the cell impedes DNA-based transactions and leads to genome instability. Cells have evolved highly specific helicases to resolve G4 structures. We used a recombinant nuclear form of Saccharomyces cerevisiae Pif1 to characterize Pif1-mediated DNA unwinding with a substrate mimicking an ongoing lagging strand synthesis stalled by G4s, which resembles a replication origin and a G4-structured flap in Okazaki fragment maturation. We find that the presence of G4 may greatly stimulate the Pif1 helicase to unwind duplex DNA. Further studies reveal that this stimulation results from G4-enhanced Pif1 dimerization, which is required for duplex DNA unwinding. This finding provides new insights into the properties and functions of G4s. We discuss the observed activation phenomenon in relation to the possible regulatory role of G4s in the rapid rescue of the stalled lagging strand synthesis by helping the replicator recognize and activate the replication origin as well as by quickly removing the G4-structured flap during Okazaki fragment maturation.", "title": "G-quadruplexes significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding." }, { "docid": "3512154", "text": "CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages.", "title": "CRISPR adaptation biases explain preference for acquisition of foreign DNA" }, { "docid": "19165076", "text": "Replication protein A [RPA; also known as replication factor A (RFA) and human single-stranded DNA-binding protein] is a single-stranded DNA-binding protein that is required for multiple processes in eukaryotic DNA metabolism, including DNA replication, DNA repair, and recombination. RPA homologues have been identified in all eukaryotic organisms examined and are all abundant heterotrimeric proteins composed of subunits of approximately 70, 30, and 14 kDa. Members of this family bind nonspecifically to single-stranded DNA and interact with and/or modify the activities of multiple proteins. In cells, RPA is phosphorylated by DNA-dependent protein kinase when RPA is bound to single-stranded DNA (during S phase and after DNA damage). Phosphorylation of RPA may play a role in coordinating DNA metabolism in the cell. RPA may also have a role in modulating gene expression.", "title": "Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism." }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" }, { "docid": "2679511", "text": "Werner's syndrome (WS) and Bloom's syndrome (BS) are cancer predisposition disorders caused by loss of function of the RecQ helicases WRN or BLM, respectively. BS and WS are characterized by replication defects, hyperrecombination events and chromosomal aberrations, which are hallmarks of cancer. Inefficient replication of the G-rich telomeric strand contributes to chromosome aberrations in WS cells, demonstrating a link between WRN, telomeres and genomic stability. Herein, we provide evidence that BLM also contributes to chromosome-end maintenance. Telomere defects (TDs) are observed in BLM-deficient cells at an elevated frequency, which is similar to cells lacking a functional WRN helicase. Loss of both helicases exacerbates TDs and chromosome aberrations, indicating that BLM and WRN function independently in telomere maintenance. BLM localization, particularly its recruitment to telomeres, changes in response to replication dysfunction, such as in WRN-deficient cells or after aphidicolin treatment. Exposure to replication challenge causes an increase in decatenated deoxyribonucleic acid (DNA) structures and late-replicating intermediates (LRIs), which are visible as BLM-covered ultra-fine bridges (UFBs) in anaphase. A subset of UFBs originates from telomeric DNA and their frequency correlates with telomere replication defects. We propose that the BLM complex contributes to telomere maintenance through its activity in resolving LRIs.", "title": "The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures" }, { "docid": "36606083", "text": "Many fundamental aspects of DNA replication, such as the exact locations where DNA synthesis is initiated and terminated, how frequently origins are used, and how fork progression is influenced by transcription, are poorly understood. Via the deep sequencing of Okazaki fragments, we comprehensively document replication fork directionality throughout the S. cerevisiae genome, which permits the systematic analysis of initiation, origin efficiency, fork progression, and termination. We show that leading-strand initiation preferentially occurs within a nucleosome-free region at replication origins. Using a strain in which late origins can be induced to fire early, we show that replication termination is a largely passive phenomenon that does not rely on cis-acting sequences or replication fork pausing. The replication profile is predominantly determined by the kinetics of origin firing, allowing us to reconstruct chromosome-wide timing profiles from an asynchronous culture.", "title": "Quantitative, genome-wide analysis of eukaryotic replication initiation and termination." }, { "docid": "29851836", "text": "We show that DNA replication activity in extracts of human HeLa cells decreases following UV irradiation. Alterations in replication activity in vitro parallel the UV-induced block in cell cycle progression of these cells in culture. UV irradiation also induces specific changes in the pattern of phosphorylation of the 34 kDa subunit of a DNA replication protein, human single-stranded DNA-binding protein (hSSB). The appearance of a hyperphosphorylated form of hSSB correlates with reduced in vitro DNA replication activity in extracts of UV-irradiated cells. Replication activity can be restored to these extracts in vitro by addition of purified hSSB. These results suggest that UV-induced DNA synthesis arrest may be mediated in part through phosphorylation-related alterations in the activity of hSSB, an essential component of the DNA replication apparatus.", "title": "UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein." }, { "docid": "9379687", "text": "DNA polymerase ε (Pol ε) is involved in DNA replication, repair, and cell-cycle checkpoint control in eukaryotic cells. Although the roles of replicative Pol α and Pol δ in chromosomal DNA replication are relatively well understood and well documented, the precise role of Pol ε in chromosomal DNA replication is not well understood. This study uses a Xenopus egg extract DNA replication system to further elucidate the replicative role(s) played by Pol ε. Previous studies show that the initiation timing and elongation of chromosomal DNA replication are markedly impaired in Pol ε-depleted Xenopus egg extracts, with reduced accumulation of replicative intermediates and products. This study shows that normal replication is restored by addition of Pol ε holoenzyme to Pol ε-depleted extracts, but not by addition of polymerase-deficient forms of Pol ε, including polymerase point or deletion mutants or incomplete enzyme complexes. Evidence is also provided that Pol ε holoenzyme interacts directly with GINS, Cdc45p and Cut5p, each of which plays an important role in initiation of chromosomal DNA replication in eukaryotic cells. These results indicate that the DNA polymerase activity of Pol ε holoenzyme plays an essential role in normal chromosomal DNA replication in Xenopus egg extracts. These are the first biochemical data to show the DNA polymerase activity of Pol ε holoenzyme is essential for chromosomal DNA replication in higher eukaryotes, unlike in yeasts.", "title": "The DNA polymerase activity of Pol ε holoenzyme is required for rapid and efficient chromosomal DNA replication in Xenopus egg extracts" } ]
970
PrimPol generates short DNA replication intermediates on the leading strand during DNA replication.
[ { "docid": "19356271", "text": "Prim-pol is a recently identified DNA primase-polymerase belonging to the archaeao-eukaryotic primase (AEP) superfamily. Here, we characterize a previously unrecognized prim-pol in human cells, which we designate hPrimpol1 (human primase-polymerase 1). hPrimpol1 possesses primase and DNA polymerase activities in vitro, interacts directly with RPA1 and is recruited to sites of DNA damage and stalled replication forks in an RPA1-dependent manner. Cells depleted of hPrimpol1 display increased spontaneous DNA damage and defects in the restart of stalled replication forks. Both RPA1 binding and the primase activity of hPrimpol1 are required for its cellular function during DNA replication. Our results indicate that hPrimpol1 is a novel factor involved in the response to DNA replication stress.", "title": "hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity." }, { "docid": "17368516", "text": "We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication.", "title": "PrimPol, an Archaic Primase/Polymerase Operating in Human Cells" } ]
[ { "docid": "28904104", "text": "DNA replication forks that collapse during the process of genomic duplication lead to double-strand breaks and constitute a threat to genomic stability. The risk of fork collapse is higher in the presence of replication inhibitors or after UV irradiation, which introduces specific modifications in the structure of DNA. In these cases, fork progression may be facilitated by error-prone translesion synthesis (TLS) DNA polymerases. Alternatively, the replisome may skip the damaged DNA, leaving an unreplicated gap to be repaired after replication. This mechanism strictly requires a priming event downstream of the lesion. Here we show that PrimPol, a new human primase and TLS polymerase, uses its primase activity to mediate uninterrupted fork progression after UV irradiation and to reinitiate DNA synthesis after dNTP depletion. As an enzyme involved in tolerance to DNA damage, PrimPol might become a target for cancer therapy.", "title": "Repriming of DNA synthesis at stalled replication forks by human PrimPol" }, { "docid": "15077696", "text": "DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromosomal DNA replication. PrimPol is required for replication fork progression on ultraviolet (UV) light-damaged DNA templates, possibly mediated by its ability to catalyze translesion synthesis (TLS) of these lesions. This PrimPol UV lesion bypass pathway is not epistatic with the Pol η-dependent pathway and, as a consequence, protects xeroderma pigmentosum variant (XP-V) patient cells from UV-induced cytotoxicity. In addition, we establish that PrimPol is also required for efficient replication fork progression during an unperturbed S phase. These and other findings indicate that PrimPol is an important player in replication fork progression in eukaryotic cells.", "title": "PrimPol Bypasses UV Photoproducts during Eukaryotic Chromosomal DNA Replication" }, { "docid": "11401602", "text": "The effects of topoisomerases I and II on the replication of SV40 DNA were examined using an in vitro replication system of purified proteins that constitutes the monopolymerase system. In the presence of the two topoisomerases, two distinct nascent DNAs were formed. One product arising from the replication of the leading template strand was approximately half the size of the template DNA, whereas the other product derived from the lagging template strand consisted of short DNAs. These products were synthesized from both SV40 naked DNA and SV40 chromosomes. For the replication of SV40 naked DNA, either topoisomerase I or II maintained replication fork movement and supported complete leading strand synthesis. When SV40 chromosomes were replicated with the same proteins, reactions containing only topoisomerase I produced shorter leading strands. However, mature size DNA products accumulated in reactions supplemented with topoisomerase II, as well as in reactions containing only topoisomerase II. In the presence of crude extracts of HeLa cells, VP-16, a specific inhibitor of topoisomerase II, blocked elongation of the nascent DNA during the replication of SV40 chromosomes. These results indicate that topoisomerase II plays a crucial role as a swivelase in the late stage of SV40 chromosome replication in vitro.", "title": "Topoisomerase II plays an essential role as a swivelase in the late stage of SV40 chromosome replication in vitro." }, { "docid": "41314611", "text": "Numerous agents attack DNA, forming lesions that impair normal replication. Specialized DNA polymerases transiently replace the replicative polymerase and copy past lesions, thus generating mutations, the major initiating cause of cancer. We monitored, in Escherichia coli, the kinetics of replication of both strands of DNA molecules containing a single replication block in either the leading or lagging strand. Despite a block in the leading strand, lagging-strand synthesis proceeded further, implying transient uncoupling of concurrent strand synthesis. Replication through the lesion requires specialized DNA polymerases and is achieved with similar kinetics and efficiencies in both strands.", "title": "Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo." }, { "docid": "2758012", "text": "Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome-associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis.", "title": "BLM helicase facilitates telomere replication during leading strand synthesis of telomeres" }, { "docid": "37328025", "text": "Cells cope with blockage of replication fork progression in a manner that allows DNA synthesis to be completed and genomic instability minimized. Models for resolution of blocked replication involve fork regression to form Holliday junction structures. The human RecQ helicases WRN and BLM (deficient in Werner and Bloom syndromes, respectively) are critical for maintaining genomic stability and thought to function in accurate resolution of replication blockage. Consistent with this notion, WRN and BLM localize to sites of blocked replication after certain DNA-damaging treatments and exhibit enhanced activity on replication and recombination intermediates. Here we examine the actions of WRN and BLM on a special Holliday junction substrate reflective of a regressed replication fork. Our results demonstrate that, in reactions requiring ATP hydrolysis, both WRN and BLM convert this Holliday junction substrate primarily to a four-stranded replication fork structure, suggesting they target the Holliday junction to initiate branch migration. In agreement, the Holliday junction binding protein RuvA inhibits the WRN- and BLM-mediated conversion reactions. Importantly, this conversion product is suitable for replication with its leading daughter strand readily extended by DNA polymerases. Furthermore, binding to and conversion of this Holliday junction are optimal at low MgCl(2) concentrations, suggesting that WRN and BLM preferentially act on the square planar (open) conformation of Holliday junctions. Our findings suggest that, subsequent to fork regression events, WRN and/or BLM could re-establish functional replication forks to help overcome fork blockage. Such a function is highly consistent with phenotypes associated with WRN- and BLM-deficient cells.", "title": "The Werner and Bloom syndrome proteins help resolve replication blockage by converting (regressed) holliday junctions to functional replication forks." }, { "docid": "31514338", "text": "The eukaryotic replisome is a crucial determinant of genome stability, but its structure is still poorly understood. We found previously that many regulatory proteins assemble around the MCM2-7 helicase at yeast replication forks to form the replisome progression complex (RPC), which might link MCM2-7 to other replisome components. Here, we show that the RPC associates with DNA polymerase alpha that primes each Okazaki fragment during lagging strand synthesis. Our data indicate that a complex of the GINS and Ctf4 components of the RPC is crucial to couple MCM2-7 to DNA polymerase alpha. Others have found recently that the Mrc1 subunit of RPCs binds DNA polymerase epsilon, which synthesises the leading strand at DNA replication forks. We show that cells lacking both Ctf4 and Mrc1 experience chronic activation of the DNA damage checkpoint during chromosome replication and do not complete the cell cycle. These findings indicate that coupling MCM2-7 to replicative polymerases is an important feature of the regulation of chromosome replication in eukaryotes, and highlight a key role for Ctf4 in this process.", "title": "A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome." }, { "docid": "7151961", "text": "Double-strand breaks (DSBs) occur frequently during DNA replication. They are also caused by ionizing radiation, chemical damage or as part of the series of programmed events that occur during meiosis. In yeast, DSB repair requires RAD52, a protein that plays a critical role in homologous recombination. Here we describe the actions of human RAD52 protein in a model system for single-strand annealing (SSA) using tailed (i.e. exonuclease resected) duplex DNA molecules. Purified human RAD52 protein binds resected DSBs and promotes associations between complementary DNA termini. Heteroduplex intermediates of these recombination reactions have been visualized by electron microscopy, revealing the specific binding of multiple rings of RAD52 to the resected termini and the formation of large protein complexes at heteroduplex joints formed by RAD52-mediated annealing.", "title": "Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing." }, { "docid": "4444861", "text": "Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.", "title": "Replication Fork Stability Confers Chemoresistance in BRCA-deficient Cells" }, { "docid": "16217855", "text": "The product of the gene mutated in Bloom's syndrome, BLM, is a 3′–5′ DNA helicase belonging to the highly conserved RecQ family. In addition to a conventional DNA strand separation activity, BLM catalyzes both the disruption of non-B-form DNA, such as G-quadruplexes, and the branch migration of Holliday junctions. Here, we have characterized a new activity for BLM: the promotion of single-stranded DNA (ssDNA) annealing. This activity does not require Mg2+, is inhibited by ssDNA binding proteins and ATP, and is dependent on DNA length. Through analysis of various truncation mutants of BLM, we show that the C-terminal domain is essential for strand annealing and identify a 60 amino acid stretch of this domain as being important for both ssDNA binding and strand annealing. We present a model in which the ssDNA annealing activity of BLM facilitates its role in the processing of DNA intermediates that arise during repair of damaged replication forks.", "title": "The Bloom's syndrome helicase promotes the annealing of complementary single-stranded DNA" }, { "docid": "6812319", "text": "Chromosomal instability (CIN) is a hallmark of tumour initiation and progression. Some genomic regions are particularly unstable under replication stress, notably common fragile sites (CFSs) whose rearrangements in tumour cells contribute to cancer development. Recent work has shown that the Fanconi anaemia (FANC) pathway plays a role in preventing defective chromosome segregation and CIN under conditions of replication stress. Strikingly, FANCD2 is recruited to regions hosting CFSs on metaphase chromosomes. To decipher the mechanisms protecting CFSs in G2/M, we searched for proteins that co-localize with FANCD2 on mitotic chromosomes, and identified XPF–ERCC1 and MUS81–EME1, two structure-specific endonucleases. We show that depletion of either ERCC1 or MUS81–EME1 affects accurate processing of replication intermediates or under-replicated DNA that persist at CFSs until mitosis. Depletion of these endonucleases also leads to an increase in the frequency of chromosome bridges during anaphase that, in turn, favours accumulation of DNA damage in the following G1 phase.", "title": "ERCC1 and MUS81–EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis" }, { "docid": "25787749", "text": "The evolutionarily conserved G-quadruplexes (G4s) are faithfully inherited and serve a variety of cellular functions such as telomere maintenance, gene regulation, DNA replication initiation, and epigenetic regulation. Different from the Watson-Crick base-pairing found in duplex DNA, G4s are formed via Hoogsteen base pairing and are very stable and compact DNA structures. Failure of untangling them in the cell impedes DNA-based transactions and leads to genome instability. Cells have evolved highly specific helicases to resolve G4 structures. We used a recombinant nuclear form of Saccharomyces cerevisiae Pif1 to characterize Pif1-mediated DNA unwinding with a substrate mimicking an ongoing lagging strand synthesis stalled by G4s, which resembles a replication origin and a G4-structured flap in Okazaki fragment maturation. We find that the presence of G4 may greatly stimulate the Pif1 helicase to unwind duplex DNA. Further studies reveal that this stimulation results from G4-enhanced Pif1 dimerization, which is required for duplex DNA unwinding. This finding provides new insights into the properties and functions of G4s. We discuss the observed activation phenomenon in relation to the possible regulatory role of G4s in the rapid rescue of the stalled lagging strand synthesis by helping the replicator recognize and activate the replication origin as well as by quickly removing the G4-structured flap during Okazaki fragment maturation.", "title": "G-quadruplexes significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding." }, { "docid": "3512154", "text": "CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages.", "title": "CRISPR adaptation biases explain preference for acquisition of foreign DNA" }, { "docid": "19165076", "text": "Replication protein A [RPA; also known as replication factor A (RFA) and human single-stranded DNA-binding protein] is a single-stranded DNA-binding protein that is required for multiple processes in eukaryotic DNA metabolism, including DNA replication, DNA repair, and recombination. RPA homologues have been identified in all eukaryotic organisms examined and are all abundant heterotrimeric proteins composed of subunits of approximately 70, 30, and 14 kDa. Members of this family bind nonspecifically to single-stranded DNA and interact with and/or modify the activities of multiple proteins. In cells, RPA is phosphorylated by DNA-dependent protein kinase when RPA is bound to single-stranded DNA (during S phase and after DNA damage). Phosphorylation of RPA may play a role in coordinating DNA metabolism in the cell. RPA may also have a role in modulating gene expression.", "title": "Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism." }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" }, { "docid": "2679511", "text": "Werner's syndrome (WS) and Bloom's syndrome (BS) are cancer predisposition disorders caused by loss of function of the RecQ helicases WRN or BLM, respectively. BS and WS are characterized by replication defects, hyperrecombination events and chromosomal aberrations, which are hallmarks of cancer. Inefficient replication of the G-rich telomeric strand contributes to chromosome aberrations in WS cells, demonstrating a link between WRN, telomeres and genomic stability. Herein, we provide evidence that BLM also contributes to chromosome-end maintenance. Telomere defects (TDs) are observed in BLM-deficient cells at an elevated frequency, which is similar to cells lacking a functional WRN helicase. Loss of both helicases exacerbates TDs and chromosome aberrations, indicating that BLM and WRN function independently in telomere maintenance. BLM localization, particularly its recruitment to telomeres, changes in response to replication dysfunction, such as in WRN-deficient cells or after aphidicolin treatment. Exposure to replication challenge causes an increase in decatenated deoxyribonucleic acid (DNA) structures and late-replicating intermediates (LRIs), which are visible as BLM-covered ultra-fine bridges (UFBs) in anaphase. A subset of UFBs originates from telomeric DNA and their frequency correlates with telomere replication defects. We propose that the BLM complex contributes to telomere maintenance through its activity in resolving LRIs.", "title": "The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures" }, { "docid": "8577229", "text": "Recombination-dependent DNA replication, often called break-induced replication (BIR), was initially invoked to explain recombination events in bacteriophage but it has recently been recognized as a fundamentally important mechanism to repair double-strand chromosome breaks in eukaryotes. This mechanism appears to be critically important in the restarting of stalled and broken replication forks and in maintaining the integrity of eroded telomeres. Although BIR helps preserve genome integrity during replication, it also promotes genome instability by the production of loss of heterozygosity and the formation of nonreciprocal translocations, as well as in the generation of complex chromosomal rearrangements.", "title": "Break-induced DNA replication." }, { "docid": "28271439", "text": "Completion of genome duplication is challenged by structural and topological barriers that impede progression of replication forks. Although this can seriously undermine genome integrity, the fate of DNA with unresolved replication intermediates is not known. Here, we show that mild replication stress increases the frequency of chromosomal lesions that are transmitted to daughter cells. Throughout G1, these lesions are sequestered in nuclear compartments marked by p53-binding protein 1 (53BP1) and other chromatin-associated genome caretakers. We show that the number of such 53BP1 nuclear bodies increases after genetic ablation of BLM, a DNA helicase associated with dissolution of entangled DNA. Conversely, 53BP1 nuclear bodies are partially suppressed by knocking down SMC2, a condensin subunit required for mechanical stability of mitotic chromosomes. Finally, we provide evidence that 53BP1 nuclear bodies shield chromosomal fragile sites sequestered in these compartments against erosion. Together, these data indicate that restoration of DNA or chromatin integrity at loci prone to replication problems requires mitotic transmission to the next cell generations.", "title": "53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress" }, { "docid": "25842866", "text": "Most eukaryotic telomeres contain a repeating motif with stretches of guanine residues that form a 3'-terminal overhang extending beyond the telomeric duplex region. The telomeric repeat of hypotrichous ciliates, d(T(4)G(4)), forms a 16-nucleotide 3'-overhang. Such sequences can adopt parallel-stranded as well as antiparallel-stranded quadruplex conformations in vitro. Although it has been proposed that guanine-quadruplex conformations may have important cellular roles including telomere function, recombination, and transcription, evidence for the existence of this DNA structure in vivo has been elusive to date. We have generated high-affinity single-chain antibody fragment (scFv) probes for the guanine-quadruplex formed by the Stylonychia telomeric repeat, by ribosome display from the Human Combinatorial Antibody Library. Of the scFvs selected, one (Sty3) had an affinity of K(d) = 125 pM for the parallel-stranded guanine-quadruplex and could discriminate with at least 1,000-fold specificity between parallel or antiparallel quadruplex conformations formed by the same sequence motif. A second scFv (Sty49) bound both the parallel and antiparallel quadruplex with similar (K(d) = 3--5 nM) affinity. Indirect immunofluorescence studies show that Sty49 reacts specifically with the macronucleus but not the micronucleus of Stylonychia lemnae. The replication band, the region where replication and telomere elongation take place, was also not stained, suggesting that the guanine-quadruplex is resolved during replication. Our results provide experimental evidence that the telomeres of Stylonychia macronuclei adopt in vivo a guanine-quadruplex structure, indicating that this structure may have an important role for telomere functioning.", "title": "In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei." } ]
972
Primary cervical cancer screening with HPV detection has lower longitudinal sensitivity than conventional cytology to detect cervical intraepithelial neoplasia grade 2.
[ { "docid": "46695481", "text": "BACKGROUND Screening for cervical cancer based on testing for human papillomavirus (HPV) increases the sensitivity of detection of high-grade (grade 2 or 3) cervical intraepithelial neoplasia, but whether this gain represents overdiagnosis or protection against future high-grade cervical epithelial neoplasia or cervical cancer is unknown. \n METHODS In a population-based screening program in Sweden, 12,527 women 32 to 38 years of age were randomly assigned at a 1:1 ratio to have an HPV test plus a Papanicolaou (Pap) test (intervention group) or a Pap test alone (control group). Women with a positive HPV test and a normal Pap test result were offered a second HPV test at least 1 year later, and those who were found to be persistently infected with the same high-risk type of HPV were then offered colposcopy with cervical biopsy. A similar number of double-blinded Pap smears and colposcopies with biopsy were performed in randomly selected women in the control group. Comprehensive registry data were used to follow the women for a mean of 4.1 years. The relative rates of grade 2 or 3 cervical intraepithelial neoplasia or cancer detected at enrollment and at subsequent screening examinations were calculated. \n RESULTS At enrollment, the proportion of women in the intervention group who were found to have lesions of grade 2 or 3 cervical intraepithelial neoplasia or cancer was 51% greater (95% confidence interval [CI], 13 to 102) than the proportion of women in the control group who were found to have such lesions. At subsequent screening examinations, the proportion of women in the intervention group who were found to have grade 2 or 3 lesions or cancer was 42% less (95% CI, 4 to 64) and the proportion with grade 3 lesions or cancer was 47% less (95% CI, 2 to 71) than the proportions of control women who were found to have such lesions. Women with persistent HPV infection remained at high risk for grade 2 or 3 lesions or cancer after referral for colposcopy. \n CONCLUSIONS The addition of an HPV test to the Pap test to screen women in their mid-30s for cervical cancer reduces the incidence of grade 2 or 3 cervical intraepithelial neoplasia or cancer detected by subsequent screening examinations. (ClinicalTrials.gov number, NCT00479375 [ClinicalTrials.gov].).", "title": "Human papillomavirus and Papanicolaou tests to screen for cervical cancer." }, { "docid": "27873158", "text": "BACKGROUND Human papillomavirus (HPV) testing is known to be more sensitive, but less specific than cytology for detecting cervical intraepithelial neoplasia (CIN). We assessed the efficacy of cervical-cancer screening policies that are based on HPV testing. \n METHODS Between March, 2004, and December, 2004, in two separate recruitment phases, women aged 25-60 years were randomly assigned to conventional cytology or to HPV testing in combination with liquid-based cytology (first phase) or alone (second phase). Randomisation was done by computer in two screening centres and by sequential opening of numbered sealed envelopes in the remaining seven centres. During phase one, women who were HPV-positive and aged 35-60 years were referred to colposcopy, whereas women aged 25-34 years were referred to colposcopy only if cytology was also abnormal or HPV testing was persistently positive. During phase two, women in the HPV group were referred for colposcopy if the HPV test was positive. Two rounds of screening occurred in each phase, and all women had cytology testing only at the second round. The primary endpoint was the detection of grade 2 and 3 CIN, and of invasive cervical cancers during the first and second screening rounds. Analysis was done by intention to screen. This trial is registered, number ISRCTN81678807. \n FINDINGS In total for both phases, 47,001 women were randomly assigned to the cytology group and 47,369 to HPV testing. 33,851 women from the cytology group and 32,998 from the HPV-testing group had a second round of screening. We also retrieved the histological diagnoses from screening done elsewhere. The detection of invasive cervical cancers was similar for the two groups in the first round of screening (nine in the cytology group vs seven in the HPV group, p=0.62); no cases were detected in the HPV group during round two, compared with nine in the cytology group (p=0.004). Overall, in the two rounds of screening, 18 invasive cancers were detected in the cytology group versus seven in the HPV group (p=0.028). Among women aged 35-60 years, at round one the relative detection (HPV vs cytology) was 2.00 (95% CI 1.44-2.77) for CIN2, 2.08 (1.47-2.95) for CIN3, and 2.03 (1.60-2.57) for CIN2 and 3 together. At round two the relative detection was 0.54 (0.23-1.28) for CIN2, 0.48 (0.21-1.11) for CIN3, and 0.51 (0.28-0.93) for CIN2 and 3 together. Among women aged 25-34 years, there was significant heterogeneity between phases in the relative detection of CIN3. At round one the relative detection was 0.93 (0.52-1.64) in phase one and 3.91 (2.02-7.57) in phase two. At round two the relative detection was 1.34 (0.46-3.84) in phase one and 0.20 (0.04-0.93) in phase two. Pooling both phases, the detection ratio of CIN2 for women aged 25-34 years was 4.09 (2.24-7.48) at round one and 0.64 (0.23-1.27) at round two. \n INTERPRETATION HPV-based screening is more effective than cytology in preventing invasive cervical cancer, by detecting persistent high-grade lesions earlier and providing a longer low-risk period. However, in younger women, HPV screening leads to over-diagnosis of regressive CIN2. \n FUNDING European Union, Italian Ministry of Health, Regional Health Administrations of Piemonte, Tuscany, Veneto and Emilia-Romagna, and Public Health Agency of Lazio.", "title": "Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial." }, { "docid": "28617573", "text": "More than ever, clinicians need regularly updated reviews given the continuously increasing amount of new information regarding innovative cervical cancer prevention methods. A summary is given from recent meta-analyses and systematic reviews on 3 possible clinical applications of human papillomavirus (HPV) testing: triage of women with equivocal or low-grade cytologic abnormalities; prediction of the therapeutic outcome after treatment of cervical intraepithelial neoplasia (CIN) lesions, and last not but not least, primary screening for cervical cancer and pre-cancer. Consistent evidence is available indicating that HPV-triage with the Hybrid Capture(®) 2 assay (Qiagen Gaithersburg, Inc., MD, USA [previously Digene Corp.] (HC2) is more accurate (higher sensitivity, similar specificity) than repeat cytology to triage women with equivocal Pap smear results. Several other tests show at least similar accuracy but mRNA testing with the APTIMA(®) (Gen-Probe Inc., San Diego, CA, USA) test is similarly sensitive but more specific compared to HC2. In triage of low-grade squamous intraepithelial lesions (LSIL), HC2 is more sensitive but its specificity is substantially lower compared to repeat cytology. The APTIMA(®) test is more specific than HC2 without showing a loss in sensitivity. Identification of DNA of HPV types 16 and/or 18, or RNA from the five most carcinogenic HPV types allow selecting women at highest risk for CIN3+ but the sensitivity and negative predictive value of these markers are lower than full-range high-risk HPV (hrHPV) testing. After conservative treatment of cervical pre-cancer, HPV testing picks up more quickly, with higher sensitivity and not lower specificity, residual or recurrent high-grade CIN than follow-up cytology. Primary screening for hrHPV generally detects more CIN2, CIN3 or cancer compared to cytology at cut-off atypical squamous cells of undetermined significance (ASC-US) or LSIL, but is less specific. Combined HPV and cytology screening provides a further small gain in sensitivity at the expense of a considerable loss in specificity if positive by either test is referred to colposcopy, in comparison with HPV testing only. Randomised trials and follow-up of cohort studies consistently demonstrate a significantly lower cumulative incidence of CIN3+ and even of cancer, in women aged 30 years or older, who were at enrollment hrHPV DNA negative compared to those who were cytologically negative. The difference in cumulative risk of CIN3+ or cancer for double negative (cytology & HPV) versus only HPV-negative women is small. HC2, GP5+/6+ PCR (polymerase chain reaction), cobas(®) 4800 PCR (Roche Molecular Systems Inc., Alameda, CA, USA) and Real Time PCR (Abbott Molecular, Des Plaines, IL, USA) can be considered as clinically validated for use in primary screening. The loss in specificity associated with primary HPV-based screening can be compensated by appropriate algorithms involving reflex cytology and/or HPV genotyping for HPV16 or 18. There exists a substantial evidence base to support that HPV testing is advantageous both in triage of women with equivocal abnormal cytology, in surveillance after treatment of CIN lesions and in primary screening of women aged 30 years or older. However, the possible advantages offered by HPV-based screening require a well organised program with good compliance with screening and triage policies. This article forms part of a special supplement entitled \"Comprehensive Control of HPV Infections and Related Diseases\" Vaccine Volume 30, Supplement 5, 2012.", "title": "Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer." }, { "docid": "9764256", "text": "BACKGROUND Human papillomavirus (HPV) testing is more sensitive for the detection of high-grade cervical lesions than is cytology, but detection of HPV by DNA screening in two screening rounds 5 years apart has not been assessed. The aim of this study was to assess whether HPV DNA testing in the first screen decreases detection of cervical intraepithelial neoplasia (CIN) grade 3 or worse, CIN grade 2 or worse, and cervical cancer in the second screening. \n METHODS In this randomised trial, women aged 29-56 years participating in the cervical screening programme in the Netherlands were randomly assigned to receive HPV DNA (GP5+/6+-PCR method) and cytology co-testing or cytology testing alone, from January, 1999, to September, 2002. Randomisation (in a 1:1 ratio) was done with computer-generated random numbers after the cervical specimen had been taken. At the second screening 5 years later, HPV DNA and cytology co-testing was done in both groups; researchers were masked to the patient's assignment. The primary endpoint was the number of CIN grade 3 or worse detected. Analysis was done by intention to screen. The trial is now finished and is registered, number ISRCTN20781131. \n FINDINGS 22,420 women were randomly assigned to the intervention group and 22 518 to the control group; 19 999 in the intervention group and 20,106 in the control group were eligible for analysis at the first screen. At the second screen, 19 579 women in the intervention group and 19,731 in the control group were eligible, of whom 16,750 and 16,743, respectively, attended the second screen. In the second round, CIN grade 3 or worse was less common in the intervention group than in the control group (88 of 19 579 in the intervention group vs 122 of 19,731 in the control group; relative risk 0·73, 95% CI 0·55-0·96; p=0·023). Cervical cancer was also less common in the intervention group than in the control group (four of 19 579 in the intervention group vs 14 of 19,731; 0·29, 0·10-0·87; p=0·031). In the baseline round, detection of CIN grade 3 or worse did not differ significantly between groups (171 of 19 999 vs 150 of 20,106; 1·15, 0·92-1·43; p=0·239) but was significantly more common in women with normal cytology (34 of 19,286 vs 12 of 19,373; 2·85, 1·47-5·49; p=0·001). Furthermore, significantly more cases of CIN grade 2 or worse were detected in the intervention group than in the control group (267 of 19 999 vs 215 of 20,106; 1·25, 1·05-1·50; p=0·015). In the second screen, fewer HPV16-positive CIN grade 3 or worse were detected in the intervention group than in the control group (17 of 9481 vs 35 of 9354; 0·48, 0·27-0·85; p=0·012); detection of non-HPV16-positive CIN grade 3 or worse did not differ between groups (25 of 9481 vs 25 of 9354; 0·99, 0·57-1·72; p=1·00). The cumulative detection of CIN grade 3 or worse and CIN grade 2 or worse did not differ significantly between study arms, neither for the whole study group (CIN grade 3 or worse: 259 of 19 999 vs 272 of 20,106; 0·96, 0·81-1·14, p=0·631; CIN grade 2 or worse: 427 of 19 999 vs 399 of 20,106; 1·08, 0·94-1·24; p=0·292), nor for subgroups of women invited for the first time (CIN grade 3 or worse in women aged 29-33 years: 102 of 3139 vs 105 of 3128; 0·97, 0·74-1·27; CIN grade 2 or worse in women aged 29-33 years: 153 of 3139 vs 151 of 3128; 1·01, 0·81-1·26; CIN grade 3 or worse in women aged 34-56 years: 157 of 16,860 vs 167 of 16 978; 0·95, 0·76-1·18; CIN grade 2 or worse in women aged 34-56 years: 274 of 16,860 vs 248 of 16 978; 1·11, 0·94-1·32). \n INTERPRETATION Implementation of HPV DNA testing in cervical screening leads to earlier detection of clinically relevant CIN grade 2 or worse, which when adequately treated, improves protection against CIN grade 3 or worse and cervical cancer. Early detection of high-grade cervical legions caused by HPV16 was a major component of this benefit. Our results lend support to the use of HPV DNA testing for all women aged 29 years and older. \n FUNDING Zorg Onderzoek Nederland (Netherlands Organisation for Health Research and Development).", "title": "Human papillomavirus testing for the detection of high-grade cervical intraepithelial neoplasia and cancer: final results of the POBASCAM randomised controlled trial." } ]
[ { "docid": "27446873", "text": "OBJECTIVE To assess the performance and impact of primary human papillomavirus (HPV) DNA screening with cytology triage compared with conventional cytology on cervical cancer and severe pre-cancerous lesions. \n DESIGN Randomised trial. \n SETTING Population based screening programme for cervical cancer in southern Finland in 2003-5. \n PARTICIPANTS 58 076 women, aged 30-60, invited to the routine population based screening programme for cervical cancer. \n INTERVENTIONS Primary HPV DNA test (hybrid capture II) with cytology triage if the result was positive or conventional cytological screening (reference). \n MAIN OUTCOME MEASURES Rate of cervical cancer, cervical intraepithelial neoplasia (CIN) grade III, and adenocarcinoma in situ (as a composite outcome referred to as CIN III+) during 2003-7 through record linkage between files from the screening registry and the national cancer registry. \n RESULTS In the HPV and conventional arms there were 95 600 and 95 700 woman years of follow-up and 76 and 53 cases of CIN III+, respectively (of which six and eight were cervical cancers). The relative rate of CIN III+ in the HPV arm versus the conventional arm was 1.44 (95% confidence interval 1.01 to 2.05) among all women invited for screening and 1.77 (1.16 to 2.74) among those who attended. Among women with a normal or negative test result, the relative rate of subsequent CIN III+ was 0.28 (0.04 to 1.17). The rate of cervical cancer between arms was 0.75 (0.25 to 2.16) among women invited for screening and 1.98 (0.52 to 9.38) among those who attended. \n CONCLUSIONS When incorporated into a well established organised screening programme, primary HPV screening with cytology triage was more sensitive than conventional cytology in detecting CIN III+ lesions. The number of cases of cervical cancer was small, but considering the high probability of progression of CIN III the findings are of importance regarding cancer prevention. \n TRIAL REGISTRATION Current Controlled Trials ISRCTN23885553.", "title": "Rate of cervical cancer, severe intraepithelial neoplasia, and adenocarcinoma in situ in primary HPV DNA screening with cytology triage: randomised study within organised screening programme." }, { "docid": "6561200", "text": "BACKGROUND Primary cervical screening with both human papillomavirus (HPV) DNA testing and cytological examination of cervical cells with a Pap test (cytology) has been evaluated in randomized clinical trials. Because the vast majority of women with positive cytology are also HPV DNA positive, screening strategies that use HPV DNA testing as the primary screening test may be more effective. \n METHODS We used the database from the intervention arm (n = 6,257 women) of a population-based randomized trial of double screening with cytology and HPV DNA testing to evaluate the efficacy of 11 possible cervical screening strategies that are based on HPV DNA testing alone, cytology alone, and HPV DNA testing combined with cytology among women aged 32-38 years. The main outcome measures were sensitivity for detection of cervical intraepithelial neoplasia grade 3 or worse (CIN3+) within 6 months of enrollment or at colposcopy for women with a persistent type-specific HPV infection and the number of screening tests and positive predictive value (PPV) for each screening strategy. All statistical tests were two-sided. \n RESULTS Compared with screening by cytology alone, double testing with cytology and for type-specific HPV persistence resulted in a 35% (95% confidence interval [CI] = 15% to 60%) increase in sensitivity to detect CIN3+, without a statistically significant reduction in the PPV (relative PPV = 0.76, 95% CI = 0.52 to 1.10), but with more than twice as many screening tests needed. Several strategies that incorporated screening for high-risk HPV subtypes were explored, but they resulted in reduced PPV compared with cytology. Compared with cytology, primary screening with HPV DNA testing followed by cytological triage and repeat HPV DNA testing of HPV DNA-positive women with normal cytology increased the CIN3+ sensitivity by 30% (95% CI = 9% to 54%), maintained a high PPV (relative PPV = 0.87, 95% CI = 0.60 to 1.26), and resulted in a mere 12% increase in the number of screening tests (from 6,257 to 7,019 tests). \n CONCLUSIONS Primary HPV DNA-based screening with cytology triage and repeat HPV DNA testing of cytology-negative women appears to be the most feasible cervical screening strategy.", "title": "Efficacy of HPV DNA testing with cytology triage and/or repeat HPV DNA testing in primary cervical cancer screening." }, { "docid": "19140422", "text": "CONTEXT Human papillomavirus (HPV) DNA testing of women having Papanicolaou (Pap) smears showing atypical squamous cells of undetermined significance (ASCUS) has clinical usefulness. Whether HPV DNA testing alone is useful in primary screening remains to be determined. \n OBJECTIVE To determine the accuracy of HPV DNA testing for detecting cervical intraepithelial neoplasia (CIN) grade 3 or cancer (the criterion standard). \n DESIGN, SETTING, AND PARTICIPANTS Between December 1997 and October 2000, 4075 women who attended Planned Parenthood clinics in Washington State were screened simultaneously using thin-layer Pap and HPV DNA testing by a polymerase chain reaction (PCR)-based method and by a liquid-based RNA-DNA hybridization capture with signal amplification assay (signal amplification). Women who were positive for high-risk HPV types, or had Pap results of ASCUS or higher, were considered to have positive screening test results and were referred for colposcopy and biopsy. Additionally, a random sample of women with negative screening test results was referred for colposcopy. Based on individual and combined thin-layer Pap, HPV PCR, and HPV signal amplification test results from the screening and the colposcopy visits, 7 colposcopy triage strategies were defined and evaluated. \n MAIN OUTCOME MEASURE Sensitivity and specificity for detecting cervical lesions graded CIN 3 or higher for each of the 7 triage strategies. \n RESULTS The estimated prevalence of CIN 3 or higher was 3.2%. The sensitivity (95% confidence interval) of thin-layer Pap (with a result of > or = ASCUS) for identifying women with CIN 3 or higher was only 61.3% (48.5%-70.9%) compared with 88.2% (78.9%-93.8%) for HPV testing by PCR and 90.8% (83.1%-95.8%) by signal amplification. Differences in specificities were also observed: 82.4% (81.8%-83.1%) for thin-layer Pap (with a result of > or = ASCUS), 78.8% (77.9%-79.7%) for PCR, and 72.6% (69.4%-75.0%) for signal amplification. Compared with referral for colposcopy of all women with ASCUS or higher, signal amplification testing of women with ASCUS and referral of those with a positive result was about as sensitive (61.3% vs 60.3%, respectively) and significantly more specific (82.4% vs 88.9%, respectively). The strategy requiring repeat positive PCR tests on 2 visits had a sensitivity of 84.2% (75.3%-91.0%) and a specificity of 86.2% (85.1%-87.3%). All tests were more specific and less sensitive in older (> or = 30 years) vs younger women. \n CONCLUSIONS Testing for HPV has higher sensitivity but lower specificity than thin-layer Pap screening. In some settings, particularly where screening intervals are long or haphazard, screening for HPV DNA may be a reasonable alternative to cytology-based screening of reproductive-age women.", "title": "Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral." }, { "docid": "16980892", "text": "BACKGROUND More than 2 million U.S. women receive an equivocal cervical cytologic diagnosis (atypical squamous cells of undetermined significance [ASCUS]) each year. Effective colposcopy triage strategies are needed to identify the minority of women who have clinically significant disease while avoiding excessive follow-up evaluation for others. \n METHODS The ASCUS/LSIL (i.e., low-grade squamous intraepithelial lesion) Triage Study (ALTS) is a multicenter, randomized trial comparing the sensitivity and specificity of the following three management strategies to detect cervical intraepithelial neoplasia grade 3 (CIN3): 1) immediate colposcopy (considered to be the reference standard), 2) triage to colposcopy based on human papillomavirus (HPV) results from Hybrid Capture 2(TM) (HC 2) and thin-layer cytology results, or 3) triage based on cytology results alone. This article summarizes the cross-sectional enrollment results for 3488 women with a referral diagnosis of ASCUS. All statistical tests are two-sided. \n RESULTS Among participants with ASCUS, the underlying prevalence of histologically confirmed CIN3 was 5.1%. Sensitivity to detect CIN3 or above by testing for cancer-associated HPV DNA was 96.3% (95% confidence interval [CI] = 91.6% to 98.8%), with 56.1% of women referred to colposcopy. Sensitivity of a single repeat cytology specimen with a triage threshold of HSIL or above was 44.1% (95% CI = 35.6% to 52.9%), with 6.9% referred. Sensitivity of a lower cytology triage threshold of ASCUS or above was 85.3% (95% CI = 78.2% to 90.8%), with 58.6% referred. \n CONCLUSIONS HC 2 testing for cancer-associated HPV DNA is a viable option in the management of women with ASCUS. It has greater sensitivity to detect CIN3 or above and specificity comparable to a single additional cytologic test indicating ASCUS or above.", "title": "2001. Comparison of three management strategies for patients with atypical squamous cells of undetermined significance. Baseline results from a randomized trial" }, { "docid": "829646", "text": "BACKGROUND Human papillomavirus (HPV) has been associated with cervical intraepithelial neoplasia, but the temporal relation between the infection and the neoplasia remains unclear, as does the relative importance of the specific type of HPV, other sexually transmitted diseases, and other risk factors. \n METHODS We studied prospectively a cohort of 241 women who presented for evaluation of sexually transmitted disease and had negative cervical cytologic tests. The women were followed every four months with cytologic and colposcopic examinations of the uterine cervix and tests for HPV DNA and other sexually transmitted diseases. \n RESULTS Cervical intraepithelial neoplasia grade 2 or 3 was confirmed by biopsy in 28 women. On the basis of survival analysis, the cumulative incidence of cervical intraepithelial neoplasia at two years was 28 percent among women with a positive test for HPV and 3 percent among those without detectable HPV DNA: The risk was highest among those with HPV type 16 or 18 infection (adjusted relative risk as compared with that in women without HPV infection, 11; 95 percent confidence interval, 4.6 to 26; attributable risk, 52 percent). All 24 cases of cervical intraepithelial neoplasia grade 2 or 3 among HPV-positive women were detected within 24 months after the first positive test for HPV. After adjustment for the presence of HPV infection, the development of cervical intraepithelial neoplasia was also associated with younger age at first intercourse, the presence of serum antibodies to Chlamydia trachomatis, the presence of serum antibodies to cytomegalovirus, and cervical infection with Neisseria gonorrhoeae. \n CONCLUSIONS Cervical intraepithelial neoplasia is a common and apparently early manifestation of cervical infection by HPV, particularly types 16 and 18.", "title": "A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection." }, { "docid": "20422174", "text": "Controversy exists in the United States regarding the proper evaluation and management of low-grade squamous intraepithelial lesion (LSIL) and equivocal (atypical squamous cells of undetermined significance [ASCUS, now ASC-US]) cervical cytologic interpretations. To address this issue, the National Cancer Institute initiated the ASCUS-LSIL Triage Study (ALTS). ALTS is a multicenter, randomized clinical trial designed to evaluate 3 alternative methods of management, namely, immediate colposcopy, cytologic follow-up, and triage by human papillomavirus (HPV) DNA testing. This article summarizes the major findings of ALTS that have been published to date. Patients with ASCUS (n = 3488) or LSIL (n = 1572) were randomly assigned to research arms between November 1996 and December 1998, and were monitored for 2 years. The disease outcome was histologic cervical intraepithelial neoplasia (CIN) 3/cancer. The prevalence of oncogenic HPV was too high to permit effective triage of LSIL using HPV DNA testing by Hybrid Capture 2. However, for the women referred with a cytologic interpretation of ASCUS, HPV triage proved useful, with sensitivity equivalent to immediate colposcopy and a halving of colposcopic referrals. Among older women with ASCUS, HPV testing remained sensitive for detecting CIN 3 and cancer, but the referral percentage was dramatically lower compared to younger women. ALTS yielded insight into the performance of cytology and histopathology; experienced pathologists differed significantly in their interpretations of cervical abnormalities, especially histologic CIN 1 and cytologic ASCUS. Nonetheless, it was possible to distinguish a relatively uncommon type of ASCUS, equivocal for high-grade squamous intraepithelial lesion, that has a high positive predictive value for identifying women with underlying high-grade CIN. Many additional analyses are underway.", "title": "Findings to date from the ASCUS-LSIL Triage Study (ALTS)." }, { "docid": "23136735", "text": "OBJECTIVE To evaluate the cumulative incidence of cervical intraepithelial neoplasia II or worse (grade II+) or cervical intraepithelial neoplasia grade III+ after short term persistence of prevalently detected carcinogenic human papillomavirus (HPV). \n DESIGN Population based cohort study. \n SETTING Guanacaste, Costa Rica. \n PARTICIPANTS 2282 sexually active women actively followed after enrolment. \n MAIN OUTCOME MEASURES Primary end points: three year and five year cumulative incidence of histologically confirmed cervical intraepithelial neoplasia grade II+ (n=70). Cervical specimens collected at each visit tested for more than 40 HPV genotypes. HPV 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 73, and 82 were considered the primary carcinogenic genotypes. \n RESULTS Women who tested positive for a carcinogenic HPV at enrolment and after about one year (9-21 months) (positive/positive) had a three year cumulative incidence of cervical intraepithelial neoplasia grade II+ of 17.0% (95% confidence interval 12.1% to 22.0%). Those who tested negative/positive (3.4%, 0.1% to 6.8%), positive/negative (1.2%, -0.2% to 2.5%), and negative/negative (0.5%, 0.1% to 0.9%) were at a significantly lower risk. There was little difference in the cumulative incidence of cervical intraepithelial neoplasia grade II+ between testing positive twice for any carcinogenic HPV genotype (same genotype or different genotypes) v testing positive twice for the same carcinogenic genotype (17.0% v 21.3%, respectively). Short term persistence of HPV 16 strongly predicted cervical intraepithelial neoplasia grade II+, with a three year cumulative incidence of 40.8% (26.4% to 55.1%). Similar patterns were observed for the five year cumulative incidence of grade II+ and for three year and five year cumulative incidence of grade III+. \n CONCLUSIONS Short term persistence of a prevalently detected carcinogenic HPV infection, especially HPV 16, strongly predicts a subsequent diagnosis of cervical intraepithelial neoplasia II+ over the next few years.", "title": "Short term persistence of human papillomavirus and risk of cervical precancer and cancer: population based cohort study" }, { "docid": "76415938", "text": "As more is learned about the development of cervical cancer, the value of annual Pap smear screening for all women is being questioned. This study was conducted to investigate whether women at higher risk for the development of cervical cancer could be identified by testing for the presence of human papillomavirus (HPV) in the cervical smear. These women could be followed annually, and the interval between screening Pap smears for women at lower risk could be increased. Study participants were women enrolled in the Kaiser Permanente healthcare plan in Portland, Oregon, who underwent annual Pap smear screening between April 1989, and November 1990. More than 20,000 women (20,810 of 23,702) had satisfactory cervical smears with sufficient samples for HPV testing, which was conducted using a polymerase chain reaction-based method with MYO9/11 primers. Most women (83.6%) had at least one follow-up smear during the study period; however, women with atypical squamous cells (ASC) or worse had more smears than women with normal results (mean, 4.4 vs. 3.3). Follow-up was conducted more or less annually for a total period of 122 months. HPV results were not used in deciding patient management. Ninety-six percent of the 20,810 baseline Pap smears were diagnosed as negative (N = 20,156). Thirteen percent of these patients tested positive for HPV. The baseline smears of 654 of the 20,810 women (3.1%) were classified as ASC or worse. Of these 654 smears, 417 (63.8%) were positive for HPV. One hundred seventy-eight women had a cytologic diagnosis of a low-grade squamous intraepithelial lesion or worse; of these, 143 (80.3%) tested positive for HPV. During the 10 years of follow-up, 171 patients developed cervical intraepithelial neoplasia (CIN) 3 or cervical cancer. The baseline smear was normal in 112 of these women and ASC or worse in 59 (34.5%). Only half (49.2%) of the 58 patients diagnosed within the first 45 months of follow-up had an abnormal baseline smear. During this first 45 months, 7.85% of the women whose initial Pap test was at least ASC were diagnosed with CIN 3 or cancer. The cumulative incidence at 10 years of follow-up was 10.2%. Sixty of the 171 women with CIN 3 or cervical cancer had a negative baseline HPV test. Of the 118 women who were diagnosed during the first 45 months of follow-up, 89 (79.4%) were HPV positive initially. The cumulative incidence of CIN 3 or cancer among the group with a positive baseline HPV test was 6.92% over 10 years but only 1.73% at 45 months. The risk of developing CIN 3 or cancer remained elevated throughout the study in those women with a positive baseline HPV test. The predictive ability of the baseline Pap smear diminished as the follow-up interval increased. Fifteen percent of the patients (N = 3216) had a positive Pap smear, a positive HPV test, or both at the initial examination. One hundred twenty-three (71.9%) were among the 171 women who developed CIN 3 or cancer. Eighty-six percent (102 of 123) of the patients who were diagnosed within the first 45 months were positive with at least one of the screening studies. The cumulative incidence over 45 months for women who had positive HPV testing and/or abnormal Pap smear results was 4.54%. Women with negative results in both screening tests had a cumulative risk of 0.16% for the same period. At 10 years the cumulative risk incidence for these two groups was 6.83% and 0.79%, respectively, yielding a negative predictive value of 99.1% for combined testing.", "title": "Baseline cytology, human papillomavirus testing, and risk for cervical neoplasia: A 10-year cohort analysis" }, { "docid": "5433667", "text": "PURPOSE To describe the long-term (≥ 10 years) benefits of clinical human papillomavirus (HPV) DNA testing for cervical precancer and cancer risk prediction. \n METHODS Cervicovaginal lavages collected from 19,512 women attending a health maintenance program were retrospectively tested for HPV using a clinical test. HPV positives were tested for HPV16 and HPV18 individually using a research test. A Papanicolaou (Pap) result classified as atypical squamous cells of undetermined significance (ASC-US) or more severe was considered abnormal. Women underwent follow-up prospectively with routine annual Pap testing up to 18 years. Cumulative incidence rates (CIRs) of ≥ grade 3 cervical intraepithelial neoplasia (CIN3+) or cancer for enrollment test results were calculated. \n RESULTS A baseline negative HPV test provided greater reassurance against CIN3+ over the 18-year follow-up than a normal Pap (CIR, 0.90% v 1.27%). Although both baseline Pap and HPV tests predicted who would develop CIN3+ within the first 2 years of follow-up, only HPV testing predicted who would develop CIN3+ 10 to 18 years later (P = .004). HPV16- and HPV18-positive women with normal Pap were at elevated risk of CIN3+ compared with other HPV-positive women with normal Pap and were at similar risk of CIN3+ compared with women with a low-grade squamous intraepithelial Pap. \n CONCLUSION HPV testing to rule out cervical disease followed by Pap testing and possibly combined with the detection of HPV16 and HPV18 among HPV positives to identify those at immediate risk of CIN3+ would be an efficient algorithm for cervical cancer screening, especially in women age 30 years or older.", "title": "Clinical human papillomavirus detection forecasts cervical cancer risk in women over 18 years of follow-up." }, { "docid": "13857083", "text": "Detection of persistent cervical carcinogenic human papillomavirus (HPV) DNA is used as a marker for cervical cancer risk in clinical trials. The authors performed a systematic review and meta-analysis of the association between persistent HPV DNA and high-grade cervical intraepithelial neoplasia (CIN2-3), high-grade squamous intraepithelial lesions (HSIL), and invasive cervical cancer (together designated CIN2-3/HSIL+) to evaluate the robustness of HPV persistence for clinical use. MEDLINE and Current Contents were searched through January 30, 2006. Relative risks (RRs) were stratified by HPV comparison group. Of 2,035 abstracts, 41 studies were eligible for inclusion in the meta-analysis. Over 22,500 women were included in calculation of RRs for persistent HPV DNA detection and cervical neoplasia. RRs ranged from 1.3 (95% confidence interval: 1.1, 1.5) to 813.0 (95% confidence interval: 168.2, 3,229.2) for CIN2-3/HSIL+ versus 12 months), wider testing intervals, CIN2-3/HSIL+, and use of an HPV-negative reference group were consistently associated with higher RRs. Thus, HPV persistence was consistently and strongly associated with CIN2-3/HSIL+, despite wide variation in definitions and study methods. The magnitude of association varied by duration of persistence and testing interval. Precise definition and standardization of HPV testing, sampling procedure, and test interval are needed for reliable clinical testing. These findings validate HPV persistence as a clinical marker and endpoint.", "title": "Persistent human papillomavirus infection and cervical neoplasia: a systematic review and meta-analysis." }, { "docid": "46355579", "text": "Health professionals and the public need to understand the natural history of human papillomavirus (HPV) infections of the cervix to best use the information provided by new molecular screening tests. We investigated outcomes of 800 carcinogenic HPV infections detected in 599 women at enrollment into a population-based cohort (Guanacaste, Costa Rica). For individual infections, we calculated cumulative proportions of three outcomes (viral clearance, persistence without cervical intraepithelial neoplasia grade 2 or worse [CIN2+], or persistence with new diagnosis of CIN2+) at successive 6-month time points for the first 30 months of follow-up. Cervical specimens were tested for carcinogenic HPV genotypes using an L1 degenerate-primer polymerase chain reaction method. Infections typically cleared rapidly, with 67% (95% confidence interval [CI] = 63% to 70%) clearing by 12 months. However, among infections that persisted at least 12 months, the risk of CIN2+ diagnosis by 30 months was 21% (95% CI = 15% to 28%). The risk of CIN2+ diagnosis was highest among women younger than 30 years with HPV-16 infections that persisted for at least 12 months (53%; 95% CI = 29% to 76%). These findings suggest that the medical community should emphasize persistence of cervical HPV infection, not single-time detection of HPV, in management strategies and health messages.", "title": "Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections." }, { "docid": "7650066", "text": "BACKGROUND Several studies have shown that testing for high-risk human papillomavirus (HPV) types results in an improved sensitivity for CIN2+, compared with cytology, although with a somewhat lower specificity. \n METHODS We obtained follow-up results, with at least one smear after participation in the HART study, which compared HPV testing (HC-II) with cytology as a primary screening modality. \n RESULTS With a median follow-up of 6 years, 42 additional cases of CIN2+ were identified; women who were HPV positive at baseline were more likely to develop CIN2+ than those who were HPV negative (hazard ratio (HR) 17.2; 95% confidence interval (CI) (9.3-31.6)) and the risk increased with increasing viral load. Compared with HPV-negative women (relative light unit (RLU) <1), the HR (95% CI) was 5.4 (1.6, 18.2) for 1-10 RLU and 25.5 (13.6, 47.9) for RLU > or = 10. Positive cytology (borderline or worse compared with negative) was also predictive of developing CIN2, although to a lesser extent (HR 8.7; 95% CI (4.5-17.1)). Only one case of CIN3 and three cases of CIN2 were found in women who showed a positive cytology result but were HPV negative at baseline. \n CONCLUSION After 5 years of follow-up, CIN2+ occurred in 0.23% of women who were HPV negative at baseline compared with 0.48% of women who showed a negative cytology result, indicating a much longer low-risk interval for CIN2+ after HPV testing.", "title": "Long-term follow-up of cervical disease in women screened by cytology and HPV testing: results from the HART study" }, { "docid": "32177659", "text": "In Catalonia, a screening protocol for cervical cancer, including human papillomavirus (HPV) DNA testing using the Digene Hybrid Capture 2 (HC2) assay, was implemented in 2006. In order to monitor interlaboratory reproducibility, a proficiency testing (PT) survey of the HPV samples was launched in 2008. The aim of this study was to explore the repeatability of the HC2 assay's performance. Participating laboratories provided 20 samples annually, 5 randomly chosen samples from each of the following relative light unit (RLU) intervals: <0.5, 0.5 to 0.99, 1 to 9.99, and ≥10. Kappa statistics were used to determine the agreement levels between the original and the PT readings. The nature and origin of the discrepant results were calculated by bootstrapping. A total of 946 specimens were retested. The kappa values were 0.91 for positive/negative categorical classification and 0.79 for the four RLU intervals studied. Sample retesting yielded systematically lower RLU values than the original test (P<0.005), independently of the time elapsed between the two determinations (median, 53 days), possibly due to freeze-thaw cycles. The probability for a sample to show clinically discrepant results upon retesting was a function of the RLU value; samples with RLU values in the 0.5 to 5 interval showed 10.80% probability to yield discrepant results (95% confidence interval [CI], 7.86 to 14.33) compared to 0.85% probability for samples outside this interval (95% CI, 0.17 to 1.69). Globally, the HC2 assay shows high interlaboratory concordance. We have identified differential confidence thresholds and suggested the guidelines for interlaboratory PT in the future, as analytical quality assessment of HPV DNA detection remains a central component of the screening program for cervical cancer prevention.", "title": "Interlaboratory reproducibility and proficiency testing within the human papillomavirus cervical cancer screening program in Catalonia, Spain." }, { "docid": "6748318", "text": "BACKGROUND In Spain, prophylactic vaccination against human papillomavirus (HPV) types 16 and 18 is being offered free-of-charge to one birth cohort of girls aged 11-14. Screening is opportunistic (annual/biannual) contributing to social and geographical disparities. \n METHODS A multi-HPV-type microsimulation model was calibrated to epidemiologic data from Spain utilising likelihood-based methods to assess the health and economic impact of adding HPV vaccination to cervical cancer screening. Strategies included (1) screening alone of women over age 25, varying frequency (every 1-5 years) and test (cytology, HPV DNA testing); (2) HPV vaccination of 11-year-old girls combined with screening. Outcomes included lifetime cancer risk, life expectancy, lifetime costs, number of clinical procedures and incremental cost-effectiveness ratios. \n RESULTS After the introduction of HPV vaccination, screening will need to continue, and strategies that incorporated HPV testing are more effective and cost-effective than those with cytology alone. For vaccinated girls, 5-year organised cytology with HPV testing as triage from ages 30 to 65 costs 24,350€ per year of life saved (YLS), assuming life-long vaccine immunity against HPV-16/18 by 3 doses with 90% coverage. Unvaccinated girls would benefit from organised cytology screening with HPV testing as triage; 5-year screening from ages 30 to 65 costs 16,060€/YLS and 4-year screening from ages 30 to 85 costs 38,250€/YLS. Interventions would be cost-effective depending on the cost-effectiveness threshold and the vaccine price. \n CONCLUSIONS In Spain, inequitable coverage and overuse of cytology make screening programmes inefficient. If high vaccination coverage among pre-adolescent girls is achieved, organised cytology screening with HPV triage starting at ages 30 to at least 65 every 4-5 years represents the best balance between costs and benefits.", "title": "Cost-effectiveness of human papillomavirus vaccination and screening in Spain." }, { "docid": "26067999", "text": "The U.S. Preventive Services Task Force (USPSTF) makes recommendations about the effectiveness of specific preventive care services for patients without related signs or symptoms. It bases its recommendations on the evidence of both the benefits and harms of the service and an assessment of the balance. The USPSTF does not consider the costs of providing a service in this assessment. The USPSTF recognizes that clinical decisions involve more considerations than evidence alone. Clinicians should understand the evidence but individualize decision making to the specific patient or situation. Similarly, the USPSTF notes that policy and coverage decisions involve considerations in addition to the evidence of clinical benefits and harms. Summary of Recommendation and Evidence The USPSTF recommends annual screening for lung cancer with low-dose computed tomography (LDCT) in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (B recommendation) See the Clinical Considerations section for suggestions for implementation in practice. See the Figure for a summary of the recommendation and suggestions for clinical practice. Figure. Screening for lung cancer: clinical summary of U.S. Preventive Services Task Force recommendation. Appendix Table 1 describes the USPSTF grades, and Appendix Table 2 describes the USPSTF classification of levels of certainty about net benefit. Appendix Table 1. What the USPSTF Grades Mean and Suggestions for Practice Appendix Table 2. USPSTF Levels of Certainty Regarding Net Benefit Supplement. Consumer Fact Sheet. Rationale Importance Lung cancer is the third most common cancer and the leading cause of cancer-related death in the United States (1). The most important risk factor for lung cancer is smoking, which results in approximately 85% of all U.S. lung cancer cases (2). Although the prevalence of smoking has decreased, approximately 37% of U.S. adults are current or former smokers (2). The incidence of lung cancer increases with age and occurs most commonly in persons aged 55 years or older. Increasing age and cumulative exposure to tobacco smoke are the 2 most common risk factors for lung cancer. Lung cancer has a poor prognosis, and nearly 90% of persons with lung cancer die of the disease. However, early-stage nonsmall cell lung cancer (NSCLC) has a better prognosis and can be treated with surgical resection. Detection Most lung cancer cases are NSCLC, and most screening programs focus on the detection and treatment of early-stage NSCLC. Although chest radiography and sputum cytologic evaluation have been used to screen for lung cancer, LDCT has greater sensitivity for detecting early-stage cancer (3). Benefits of Detection and Early Treatment Although lung cancer screening is not an alternative to smoking cessation, the USPSTF found adequate evidence that annual screening for lung cancer with LDCT in a defined population of high-risk persons can prevent a substantial number of lung cancerrelated deaths. Direct evidence from a large, well-conducted, randomized, controlled trial (RCT) provides moderate certainty of the benefit of lung cancer screening with LDCT in this population (4). The magnitude of benefit to the person depends on that person's risk for lung cancer because those who are at highest risk are most likely to benefit. Screening cannot prevent most lung cancerrelated deaths, and smoking cessation remains essential. Harms of Detection and Early Intervention and Treatment The harms associated with LDCT screening include false-negative and false-positive results, incidental findings, overdiagnosis, and radiation exposure. False-positive LDCT results occur in a substantial proportion of screened persons; 95% of all positive results do not lead to a diagnosis of cancer. In a high-quality screening program, further imaging can resolve most false-positive results; however, some patients may require invasive procedures. The USPSTF found insufficient evidence on the harms associated with incidental findings. Overdiagnosis of lung cancer occurs, but its precise magnitude is uncertain. A modeling study performed for the USPSTF estimated that 10% to 12% of screen-detected cancer cases are overdiagnosedthat is, they would not have been detected in the patient's lifetime without screening. Radiation harms, including cancer resulting from cumulative exposure to radiation, vary depending on the age at the start of screening; the number of scans received; and the person's exposure to other sources of radiation, particularly other medical imaging. USPSTF Assessment The USPSTF concludes with moderate certainty that annual screening for lung cancer with LDCT is of moderate net benefit in asymptomatic persons who are at high risk for lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking. The moderate net benefit of screening depends on limiting screening to persons who are at high risk, the accuracy of image interpretation being similar to that found in the NLST (National Lung Screening Trial), and the resolution of most false-positive results without invasive procedures (4). Clinical Considerations Patient Population Under Consideration The risk for lung cancer increases with age and cumulative exposure to tobacco smoke and decreases with time since quitting smoking. The best evidence for the benefit of screening comes from the NLST, which enrolled adults aged 55 to 74 years who had at least a 30 pack-year smoking history and were current smokers or had quit within the past 15 years. As with all screening trials, the NLST tested a specific intervention over a finite period. Because initial eligibility extended through age 74 years and participants received 3 annual screening computed tomographic scans, the oldest participants in the trial were aged 77 years. The USPSTF used modeling studies to predict the benefits and harms of screening programs that use different screening intervals, age ranges, smoking histories, and times since quitting. A program that annually screens adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years is projected to have a reasonable balance of benefits and harms. The model assumes that persons who achieve 15 years of smoking cessation during the screening program discontinue screening. This model predicts the outcomes of continuing the screening program used in the NLST through age 80 years. Screening may not be appropriate for patients with substantial comorbid conditions, particularly those at the upper end of the screening age range. The NLST excluded persons who were unlikely to complete curative lung cancer surgery and those with medical conditions that posed a substantial risk for death during the 8-year trial. The baseline characteristics of the NLST showed a relatively healthy sample, and fewer than 10% of enrolled participants were older than 70 years (5). Persons with serious comorbid conditions may experience net harm, no net benefit, or at least substantially less net benefit. Similarly, persons who are unwilling to have curative lung surgery are unlikely to benefit from a screening program. Assessment of Risk Age, total exposure to tobacco smoke, and years since quitting smoking are important risk factors for lung cancer and were used to determine eligibility in the NLST. Other risk factors include specific occupational exposures, radon exposure, family history, and history of pulmonary fibrosis or chronic obstructive lung disease. The incidence of lung cancer is relatively low in persons younger than 50 years but increases with age, especially after age 60 years. In current and former smokers, age-specific incidence rates increase with age and cumulative exposure to tobacco smoke. Smoking cessation substantially reduces a person's risk for developing and dying of lung cancer. Among persons enrolled in the NLST, those who were at highest risk because of additional risk factors or a greater cumulative exposure to tobacco smoke experienced most of the benefit (6). A validated multivariate model showed that persons in the highest 60% of risk accounted for 88% of all deaths preventable by screening. Screening Tests Low-dose computed tomography has shown high sensitivity and acceptable specificity for the detection of lung cancer in high-risk persons. Chest radiography and sputum cytologic evaluation have not shown adequate sensitivity or specificity as screening tests. Therefore, LDCT is currently the only recommended screening test for lung cancer. Treatment Surgical resection is the current standard of care for localized NSCLC. This type of cancer is treated with surgical resection when possible and also with radiation and chemotherapy. Annual LDCT screening may not be useful for patients with life-limiting comorbid conditions or poor functional status who may not be candidates for surgery. Other Approaches to Prevention Smoking cessation is the most important intervention to prevent NSCLC. Advising smokers to stop smoking and preventing nonsmokers from being exposed to tobacco smoke are the most effective ways to decrease the morbidity and mortality associated with lung cancer. Current smokers should be informed of their continuing risk for lung cancer and offered cessation treatments. Screening with LDCT should be viewed as an adjunct to tobacco cessation interventions. Useful Resources Clinicians have many resources to help patients stop smoking. The Centers for Disease Control and Prevention has developed a Web site with many such resources, including information on tobacco quit lines, available in several languages (www.cdc.gov/tobacco/campaign/tips). Quit l", "title": "Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement" }, { "docid": "1203035", "text": "Human papillomavirus (HPV) infection appears to be an early event in cervical carcinogenesis with additional abnormalities being required for biological transformation. We have analysed 179 low-grade cervical squamous intra-epithelial lesions (SILs) and 15 normal cervices for the presence of HPV using both in situ hybridization and polymerase chain reaction (PCR). PCR was performed with GP5+/GP6+ primers followed by hybridization using probes for low (HPV 6, 11, 40, 42, 43, 44), intermediate (HPV 31, 33, 35, 39, 51, 52, 58, 59, 66 and 68) and high-risk HPVs (HPV 16, 18, 45 and 56). Interphase cytogenetic analysis using pericentromeric probes for chromosomes 1, 3, 4, 6, 10, 11, 17, 18 and X was also performed to identify numerical chromosomal abnormalities. Tetrasomy of all nine chromosomes was identified within basal keratinocytes, was restricted to epithelia infected with high risk (17 of 46) or intermediate risk (23 of 83) HPVs but was not HPV type-specific. Tetrasomy was not identified in any of the epithelia infected with low risk HPVs (n = 62). These numbers include multiple infection. These findings indicate that the induction of tetrasomy is a property restricted to high and intermediate-risk HPV types but that it is not type-specific. The factors governing which lesions will develop this abnormality are as yet unclear. © 2000 Cancer Research Campaign", "title": "Basal keratinocyte tetrasomy in low-grade squamous intra-epithelial lesions of the cervix is restricted to high and intermediate risk HPV infection but is not type-specific" } ]
973
Primary cervical cytology screening with HPV detection has higher longitudinal sensitivity to detect severe cervical intraepithelial neoplasia than conventional cytology.
[ { "docid": "27446873", "text": "OBJECTIVE To assess the performance and impact of primary human papillomavirus (HPV) DNA screening with cytology triage compared with conventional cytology on cervical cancer and severe pre-cancerous lesions. \n DESIGN Randomised trial. \n SETTING Population based screening programme for cervical cancer in southern Finland in 2003-5. \n PARTICIPANTS 58 076 women, aged 30-60, invited to the routine population based screening programme for cervical cancer. \n INTERVENTIONS Primary HPV DNA test (hybrid capture II) with cytology triage if the result was positive or conventional cytological screening (reference). \n MAIN OUTCOME MEASURES Rate of cervical cancer, cervical intraepithelial neoplasia (CIN) grade III, and adenocarcinoma in situ (as a composite outcome referred to as CIN III+) during 2003-7 through record linkage between files from the screening registry and the national cancer registry. \n RESULTS In the HPV and conventional arms there were 95 600 and 95 700 woman years of follow-up and 76 and 53 cases of CIN III+, respectively (of which six and eight were cervical cancers). The relative rate of CIN III+ in the HPV arm versus the conventional arm was 1.44 (95% confidence interval 1.01 to 2.05) among all women invited for screening and 1.77 (1.16 to 2.74) among those who attended. Among women with a normal or negative test result, the relative rate of subsequent CIN III+ was 0.28 (0.04 to 1.17). The rate of cervical cancer between arms was 0.75 (0.25 to 2.16) among women invited for screening and 1.98 (0.52 to 9.38) among those who attended. \n CONCLUSIONS When incorporated into a well established organised screening programme, primary HPV screening with cytology triage was more sensitive than conventional cytology in detecting CIN III+ lesions. The number of cases of cervical cancer was small, but considering the high probability of progression of CIN III the findings are of importance regarding cancer prevention. \n TRIAL REGISTRATION Current Controlled Trials ISRCTN23885553.", "title": "Rate of cervical cancer, severe intraepithelial neoplasia, and adenocarcinoma in situ in primary HPV DNA screening with cytology triage: randomised study within organised screening programme." }, { "docid": "27873158", "text": "BACKGROUND Human papillomavirus (HPV) testing is known to be more sensitive, but less specific than cytology for detecting cervical intraepithelial neoplasia (CIN). We assessed the efficacy of cervical-cancer screening policies that are based on HPV testing. \n METHODS Between March, 2004, and December, 2004, in two separate recruitment phases, women aged 25-60 years were randomly assigned to conventional cytology or to HPV testing in combination with liquid-based cytology (first phase) or alone (second phase). Randomisation was done by computer in two screening centres and by sequential opening of numbered sealed envelopes in the remaining seven centres. During phase one, women who were HPV-positive and aged 35-60 years were referred to colposcopy, whereas women aged 25-34 years were referred to colposcopy only if cytology was also abnormal or HPV testing was persistently positive. During phase two, women in the HPV group were referred for colposcopy if the HPV test was positive. Two rounds of screening occurred in each phase, and all women had cytology testing only at the second round. The primary endpoint was the detection of grade 2 and 3 CIN, and of invasive cervical cancers during the first and second screening rounds. Analysis was done by intention to screen. This trial is registered, number ISRCTN81678807. \n FINDINGS In total for both phases, 47,001 women were randomly assigned to the cytology group and 47,369 to HPV testing. 33,851 women from the cytology group and 32,998 from the HPV-testing group had a second round of screening. We also retrieved the histological diagnoses from screening done elsewhere. The detection of invasive cervical cancers was similar for the two groups in the first round of screening (nine in the cytology group vs seven in the HPV group, p=0.62); no cases were detected in the HPV group during round two, compared with nine in the cytology group (p=0.004). Overall, in the two rounds of screening, 18 invasive cancers were detected in the cytology group versus seven in the HPV group (p=0.028). Among women aged 35-60 years, at round one the relative detection (HPV vs cytology) was 2.00 (95% CI 1.44-2.77) for CIN2, 2.08 (1.47-2.95) for CIN3, and 2.03 (1.60-2.57) for CIN2 and 3 together. At round two the relative detection was 0.54 (0.23-1.28) for CIN2, 0.48 (0.21-1.11) for CIN3, and 0.51 (0.28-0.93) for CIN2 and 3 together. Among women aged 25-34 years, there was significant heterogeneity between phases in the relative detection of CIN3. At round one the relative detection was 0.93 (0.52-1.64) in phase one and 3.91 (2.02-7.57) in phase two. At round two the relative detection was 1.34 (0.46-3.84) in phase one and 0.20 (0.04-0.93) in phase two. Pooling both phases, the detection ratio of CIN2 for women aged 25-34 years was 4.09 (2.24-7.48) at round one and 0.64 (0.23-1.27) at round two. \n INTERPRETATION HPV-based screening is more effective than cytology in preventing invasive cervical cancer, by detecting persistent high-grade lesions earlier and providing a longer low-risk period. However, in younger women, HPV screening leads to over-diagnosis of regressive CIN2. \n FUNDING European Union, Italian Ministry of Health, Regional Health Administrations of Piemonte, Tuscany, Veneto and Emilia-Romagna, and Public Health Agency of Lazio.", "title": "Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial." }, { "docid": "28617573", "text": "More than ever, clinicians need regularly updated reviews given the continuously increasing amount of new information regarding innovative cervical cancer prevention methods. A summary is given from recent meta-analyses and systematic reviews on 3 possible clinical applications of human papillomavirus (HPV) testing: triage of women with equivocal or low-grade cytologic abnormalities; prediction of the therapeutic outcome after treatment of cervical intraepithelial neoplasia (CIN) lesions, and last not but not least, primary screening for cervical cancer and pre-cancer. Consistent evidence is available indicating that HPV-triage with the Hybrid Capture(®) 2 assay (Qiagen Gaithersburg, Inc., MD, USA [previously Digene Corp.] (HC2) is more accurate (higher sensitivity, similar specificity) than repeat cytology to triage women with equivocal Pap smear results. Several other tests show at least similar accuracy but mRNA testing with the APTIMA(®) (Gen-Probe Inc., San Diego, CA, USA) test is similarly sensitive but more specific compared to HC2. In triage of low-grade squamous intraepithelial lesions (LSIL), HC2 is more sensitive but its specificity is substantially lower compared to repeat cytology. The APTIMA(®) test is more specific than HC2 without showing a loss in sensitivity. Identification of DNA of HPV types 16 and/or 18, or RNA from the five most carcinogenic HPV types allow selecting women at highest risk for CIN3+ but the sensitivity and negative predictive value of these markers are lower than full-range high-risk HPV (hrHPV) testing. After conservative treatment of cervical pre-cancer, HPV testing picks up more quickly, with higher sensitivity and not lower specificity, residual or recurrent high-grade CIN than follow-up cytology. Primary screening for hrHPV generally detects more CIN2, CIN3 or cancer compared to cytology at cut-off atypical squamous cells of undetermined significance (ASC-US) or LSIL, but is less specific. Combined HPV and cytology screening provides a further small gain in sensitivity at the expense of a considerable loss in specificity if positive by either test is referred to colposcopy, in comparison with HPV testing only. Randomised trials and follow-up of cohort studies consistently demonstrate a significantly lower cumulative incidence of CIN3+ and even of cancer, in women aged 30 years or older, who were at enrollment hrHPV DNA negative compared to those who were cytologically negative. The difference in cumulative risk of CIN3+ or cancer for double negative (cytology & HPV) versus only HPV-negative women is small. HC2, GP5+/6+ PCR (polymerase chain reaction), cobas(®) 4800 PCR (Roche Molecular Systems Inc., Alameda, CA, USA) and Real Time PCR (Abbott Molecular, Des Plaines, IL, USA) can be considered as clinically validated for use in primary screening. The loss in specificity associated with primary HPV-based screening can be compensated by appropriate algorithms involving reflex cytology and/or HPV genotyping for HPV16 or 18. There exists a substantial evidence base to support that HPV testing is advantageous both in triage of women with equivocal abnormal cytology, in surveillance after treatment of CIN lesions and in primary screening of women aged 30 years or older. However, the possible advantages offered by HPV-based screening require a well organised program with good compliance with screening and triage policies. This article forms part of a special supplement entitled \"Comprehensive Control of HPV Infections and Related Diseases\" Vaccine Volume 30, Supplement 5, 2012.", "title": "Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer." }, { "docid": "9764256", "text": "BACKGROUND Human papillomavirus (HPV) testing is more sensitive for the detection of high-grade cervical lesions than is cytology, but detection of HPV by DNA screening in two screening rounds 5 years apart has not been assessed. The aim of this study was to assess whether HPV DNA testing in the first screen decreases detection of cervical intraepithelial neoplasia (CIN) grade 3 or worse, CIN grade 2 or worse, and cervical cancer in the second screening. \n METHODS In this randomised trial, women aged 29-56 years participating in the cervical screening programme in the Netherlands were randomly assigned to receive HPV DNA (GP5+/6+-PCR method) and cytology co-testing or cytology testing alone, from January, 1999, to September, 2002. Randomisation (in a 1:1 ratio) was done with computer-generated random numbers after the cervical specimen had been taken. At the second screening 5 years later, HPV DNA and cytology co-testing was done in both groups; researchers were masked to the patient's assignment. The primary endpoint was the number of CIN grade 3 or worse detected. Analysis was done by intention to screen. The trial is now finished and is registered, number ISRCTN20781131. \n FINDINGS 22,420 women were randomly assigned to the intervention group and 22 518 to the control group; 19 999 in the intervention group and 20,106 in the control group were eligible for analysis at the first screen. At the second screen, 19 579 women in the intervention group and 19,731 in the control group were eligible, of whom 16,750 and 16,743, respectively, attended the second screen. In the second round, CIN grade 3 or worse was less common in the intervention group than in the control group (88 of 19 579 in the intervention group vs 122 of 19,731 in the control group; relative risk 0·73, 95% CI 0·55-0·96; p=0·023). Cervical cancer was also less common in the intervention group than in the control group (four of 19 579 in the intervention group vs 14 of 19,731; 0·29, 0·10-0·87; p=0·031). In the baseline round, detection of CIN grade 3 or worse did not differ significantly between groups (171 of 19 999 vs 150 of 20,106; 1·15, 0·92-1·43; p=0·239) but was significantly more common in women with normal cytology (34 of 19,286 vs 12 of 19,373; 2·85, 1·47-5·49; p=0·001). Furthermore, significantly more cases of CIN grade 2 or worse were detected in the intervention group than in the control group (267 of 19 999 vs 215 of 20,106; 1·25, 1·05-1·50; p=0·015). In the second screen, fewer HPV16-positive CIN grade 3 or worse were detected in the intervention group than in the control group (17 of 9481 vs 35 of 9354; 0·48, 0·27-0·85; p=0·012); detection of non-HPV16-positive CIN grade 3 or worse did not differ between groups (25 of 9481 vs 25 of 9354; 0·99, 0·57-1·72; p=1·00). The cumulative detection of CIN grade 3 or worse and CIN grade 2 or worse did not differ significantly between study arms, neither for the whole study group (CIN grade 3 or worse: 259 of 19 999 vs 272 of 20,106; 0·96, 0·81-1·14, p=0·631; CIN grade 2 or worse: 427 of 19 999 vs 399 of 20,106; 1·08, 0·94-1·24; p=0·292), nor for subgroups of women invited for the first time (CIN grade 3 or worse in women aged 29-33 years: 102 of 3139 vs 105 of 3128; 0·97, 0·74-1·27; CIN grade 2 or worse in women aged 29-33 years: 153 of 3139 vs 151 of 3128; 1·01, 0·81-1·26; CIN grade 3 or worse in women aged 34-56 years: 157 of 16,860 vs 167 of 16 978; 0·95, 0·76-1·18; CIN grade 2 or worse in women aged 34-56 years: 274 of 16,860 vs 248 of 16 978; 1·11, 0·94-1·32). \n INTERPRETATION Implementation of HPV DNA testing in cervical screening leads to earlier detection of clinically relevant CIN grade 2 or worse, which when adequately treated, improves protection against CIN grade 3 or worse and cervical cancer. Early detection of high-grade cervical legions caused by HPV16 was a major component of this benefit. Our results lend support to the use of HPV DNA testing for all women aged 29 years and older. \n FUNDING Zorg Onderzoek Nederland (Netherlands Organisation for Health Research and Development).", "title": "Human papillomavirus testing for the detection of high-grade cervical intraepithelial neoplasia and cancer: final results of the POBASCAM randomised controlled trial." } ]
[ { "docid": "6561200", "text": "BACKGROUND Primary cervical screening with both human papillomavirus (HPV) DNA testing and cytological examination of cervical cells with a Pap test (cytology) has been evaluated in randomized clinical trials. Because the vast majority of women with positive cytology are also HPV DNA positive, screening strategies that use HPV DNA testing as the primary screening test may be more effective. \n METHODS We used the database from the intervention arm (n = 6,257 women) of a population-based randomized trial of double screening with cytology and HPV DNA testing to evaluate the efficacy of 11 possible cervical screening strategies that are based on HPV DNA testing alone, cytology alone, and HPV DNA testing combined with cytology among women aged 32-38 years. The main outcome measures were sensitivity for detection of cervical intraepithelial neoplasia grade 3 or worse (CIN3+) within 6 months of enrollment or at colposcopy for women with a persistent type-specific HPV infection and the number of screening tests and positive predictive value (PPV) for each screening strategy. All statistical tests were two-sided. \n RESULTS Compared with screening by cytology alone, double testing with cytology and for type-specific HPV persistence resulted in a 35% (95% confidence interval [CI] = 15% to 60%) increase in sensitivity to detect CIN3+, without a statistically significant reduction in the PPV (relative PPV = 0.76, 95% CI = 0.52 to 1.10), but with more than twice as many screening tests needed. Several strategies that incorporated screening for high-risk HPV subtypes were explored, but they resulted in reduced PPV compared with cytology. Compared with cytology, primary screening with HPV DNA testing followed by cytological triage and repeat HPV DNA testing of HPV DNA-positive women with normal cytology increased the CIN3+ sensitivity by 30% (95% CI = 9% to 54%), maintained a high PPV (relative PPV = 0.87, 95% CI = 0.60 to 1.26), and resulted in a mere 12% increase in the number of screening tests (from 6,257 to 7,019 tests). \n CONCLUSIONS Primary HPV DNA-based screening with cytology triage and repeat HPV DNA testing of cytology-negative women appears to be the most feasible cervical screening strategy.", "title": "Efficacy of HPV DNA testing with cytology triage and/or repeat HPV DNA testing in primary cervical cancer screening." }, { "docid": "829646", "text": "BACKGROUND Human papillomavirus (HPV) has been associated with cervical intraepithelial neoplasia, but the temporal relation between the infection and the neoplasia remains unclear, as does the relative importance of the specific type of HPV, other sexually transmitted diseases, and other risk factors. \n METHODS We studied prospectively a cohort of 241 women who presented for evaluation of sexually transmitted disease and had negative cervical cytologic tests. The women were followed every four months with cytologic and colposcopic examinations of the uterine cervix and tests for HPV DNA and other sexually transmitted diseases. \n RESULTS Cervical intraepithelial neoplasia grade 2 or 3 was confirmed by biopsy in 28 women. On the basis of survival analysis, the cumulative incidence of cervical intraepithelial neoplasia at two years was 28 percent among women with a positive test for HPV and 3 percent among those without detectable HPV DNA: The risk was highest among those with HPV type 16 or 18 infection (adjusted relative risk as compared with that in women without HPV infection, 11; 95 percent confidence interval, 4.6 to 26; attributable risk, 52 percent). All 24 cases of cervical intraepithelial neoplasia grade 2 or 3 among HPV-positive women were detected within 24 months after the first positive test for HPV. After adjustment for the presence of HPV infection, the development of cervical intraepithelial neoplasia was also associated with younger age at first intercourse, the presence of serum antibodies to Chlamydia trachomatis, the presence of serum antibodies to cytomegalovirus, and cervical infection with Neisseria gonorrhoeae. \n CONCLUSIONS Cervical intraepithelial neoplasia is a common and apparently early manifestation of cervical infection by HPV, particularly types 16 and 18.", "title": "A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection." }, { "docid": "19140422", "text": "CONTEXT Human papillomavirus (HPV) DNA testing of women having Papanicolaou (Pap) smears showing atypical squamous cells of undetermined significance (ASCUS) has clinical usefulness. Whether HPV DNA testing alone is useful in primary screening remains to be determined. \n OBJECTIVE To determine the accuracy of HPV DNA testing for detecting cervical intraepithelial neoplasia (CIN) grade 3 or cancer (the criterion standard). \n DESIGN, SETTING, AND PARTICIPANTS Between December 1997 and October 2000, 4075 women who attended Planned Parenthood clinics in Washington State were screened simultaneously using thin-layer Pap and HPV DNA testing by a polymerase chain reaction (PCR)-based method and by a liquid-based RNA-DNA hybridization capture with signal amplification assay (signal amplification). Women who were positive for high-risk HPV types, or had Pap results of ASCUS or higher, were considered to have positive screening test results and were referred for colposcopy and biopsy. Additionally, a random sample of women with negative screening test results was referred for colposcopy. Based on individual and combined thin-layer Pap, HPV PCR, and HPV signal amplification test results from the screening and the colposcopy visits, 7 colposcopy triage strategies were defined and evaluated. \n MAIN OUTCOME MEASURE Sensitivity and specificity for detecting cervical lesions graded CIN 3 or higher for each of the 7 triage strategies. \n RESULTS The estimated prevalence of CIN 3 or higher was 3.2%. The sensitivity (95% confidence interval) of thin-layer Pap (with a result of > or = ASCUS) for identifying women with CIN 3 or higher was only 61.3% (48.5%-70.9%) compared with 88.2% (78.9%-93.8%) for HPV testing by PCR and 90.8% (83.1%-95.8%) by signal amplification. Differences in specificities were also observed: 82.4% (81.8%-83.1%) for thin-layer Pap (with a result of > or = ASCUS), 78.8% (77.9%-79.7%) for PCR, and 72.6% (69.4%-75.0%) for signal amplification. Compared with referral for colposcopy of all women with ASCUS or higher, signal amplification testing of women with ASCUS and referral of those with a positive result was about as sensitive (61.3% vs 60.3%, respectively) and significantly more specific (82.4% vs 88.9%, respectively). The strategy requiring repeat positive PCR tests on 2 visits had a sensitivity of 84.2% (75.3%-91.0%) and a specificity of 86.2% (85.1%-87.3%). All tests were more specific and less sensitive in older (> or = 30 years) vs younger women. \n CONCLUSIONS Testing for HPV has higher sensitivity but lower specificity than thin-layer Pap screening. In some settings, particularly where screening intervals are long or haphazard, screening for HPV DNA may be a reasonable alternative to cytology-based screening of reproductive-age women.", "title": "Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral." }, { "docid": "16980892", "text": "BACKGROUND More than 2 million U.S. women receive an equivocal cervical cytologic diagnosis (atypical squamous cells of undetermined significance [ASCUS]) each year. Effective colposcopy triage strategies are needed to identify the minority of women who have clinically significant disease while avoiding excessive follow-up evaluation for others. \n METHODS The ASCUS/LSIL (i.e., low-grade squamous intraepithelial lesion) Triage Study (ALTS) is a multicenter, randomized trial comparing the sensitivity and specificity of the following three management strategies to detect cervical intraepithelial neoplasia grade 3 (CIN3): 1) immediate colposcopy (considered to be the reference standard), 2) triage to colposcopy based on human papillomavirus (HPV) results from Hybrid Capture 2(TM) (HC 2) and thin-layer cytology results, or 3) triage based on cytology results alone. This article summarizes the cross-sectional enrollment results for 3488 women with a referral diagnosis of ASCUS. All statistical tests are two-sided. \n RESULTS Among participants with ASCUS, the underlying prevalence of histologically confirmed CIN3 was 5.1%. Sensitivity to detect CIN3 or above by testing for cancer-associated HPV DNA was 96.3% (95% confidence interval [CI] = 91.6% to 98.8%), with 56.1% of women referred to colposcopy. Sensitivity of a single repeat cytology specimen with a triage threshold of HSIL or above was 44.1% (95% CI = 35.6% to 52.9%), with 6.9% referred. Sensitivity of a lower cytology triage threshold of ASCUS or above was 85.3% (95% CI = 78.2% to 90.8%), with 58.6% referred. \n CONCLUSIONS HC 2 testing for cancer-associated HPV DNA is a viable option in the management of women with ASCUS. It has greater sensitivity to detect CIN3 or above and specificity comparable to a single additional cytologic test indicating ASCUS or above.", "title": "2001. Comparison of three management strategies for patients with atypical squamous cells of undetermined significance. Baseline results from a randomized trial" }, { "docid": "20422174", "text": "Controversy exists in the United States regarding the proper evaluation and management of low-grade squamous intraepithelial lesion (LSIL) and equivocal (atypical squamous cells of undetermined significance [ASCUS, now ASC-US]) cervical cytologic interpretations. To address this issue, the National Cancer Institute initiated the ASCUS-LSIL Triage Study (ALTS). ALTS is a multicenter, randomized clinical trial designed to evaluate 3 alternative methods of management, namely, immediate colposcopy, cytologic follow-up, and triage by human papillomavirus (HPV) DNA testing. This article summarizes the major findings of ALTS that have been published to date. Patients with ASCUS (n = 3488) or LSIL (n = 1572) were randomly assigned to research arms between November 1996 and December 1998, and were monitored for 2 years. The disease outcome was histologic cervical intraepithelial neoplasia (CIN) 3/cancer. The prevalence of oncogenic HPV was too high to permit effective triage of LSIL using HPV DNA testing by Hybrid Capture 2. However, for the women referred with a cytologic interpretation of ASCUS, HPV triage proved useful, with sensitivity equivalent to immediate colposcopy and a halving of colposcopic referrals. Among older women with ASCUS, HPV testing remained sensitive for detecting CIN 3 and cancer, but the referral percentage was dramatically lower compared to younger women. ALTS yielded insight into the performance of cytology and histopathology; experienced pathologists differed significantly in their interpretations of cervical abnormalities, especially histologic CIN 1 and cytologic ASCUS. Nonetheless, it was possible to distinguish a relatively uncommon type of ASCUS, equivocal for high-grade squamous intraepithelial lesion, that has a high positive predictive value for identifying women with underlying high-grade CIN. Many additional analyses are underway.", "title": "Findings to date from the ASCUS-LSIL Triage Study (ALTS)." }, { "docid": "46695481", "text": "BACKGROUND Screening for cervical cancer based on testing for human papillomavirus (HPV) increases the sensitivity of detection of high-grade (grade 2 or 3) cervical intraepithelial neoplasia, but whether this gain represents overdiagnosis or protection against future high-grade cervical epithelial neoplasia or cervical cancer is unknown. \n METHODS In a population-based screening program in Sweden, 12,527 women 32 to 38 years of age were randomly assigned at a 1:1 ratio to have an HPV test plus a Papanicolaou (Pap) test (intervention group) or a Pap test alone (control group). Women with a positive HPV test and a normal Pap test result were offered a second HPV test at least 1 year later, and those who were found to be persistently infected with the same high-risk type of HPV were then offered colposcopy with cervical biopsy. A similar number of double-blinded Pap smears and colposcopies with biopsy were performed in randomly selected women in the control group. Comprehensive registry data were used to follow the women for a mean of 4.1 years. The relative rates of grade 2 or 3 cervical intraepithelial neoplasia or cancer detected at enrollment and at subsequent screening examinations were calculated. \n RESULTS At enrollment, the proportion of women in the intervention group who were found to have lesions of grade 2 or 3 cervical intraepithelial neoplasia or cancer was 51% greater (95% confidence interval [CI], 13 to 102) than the proportion of women in the control group who were found to have such lesions. At subsequent screening examinations, the proportion of women in the intervention group who were found to have grade 2 or 3 lesions or cancer was 42% less (95% CI, 4 to 64) and the proportion with grade 3 lesions or cancer was 47% less (95% CI, 2 to 71) than the proportions of control women who were found to have such lesions. Women with persistent HPV infection remained at high risk for grade 2 or 3 lesions or cancer after referral for colposcopy. \n CONCLUSIONS The addition of an HPV test to the Pap test to screen women in their mid-30s for cervical cancer reduces the incidence of grade 2 or 3 cervical intraepithelial neoplasia or cancer detected by subsequent screening examinations. (ClinicalTrials.gov number, NCT00479375 [ClinicalTrials.gov].).", "title": "Human papillomavirus and Papanicolaou tests to screen for cervical cancer." }, { "docid": "76415938", "text": "As more is learned about the development of cervical cancer, the value of annual Pap smear screening for all women is being questioned. This study was conducted to investigate whether women at higher risk for the development of cervical cancer could be identified by testing for the presence of human papillomavirus (HPV) in the cervical smear. These women could be followed annually, and the interval between screening Pap smears for women at lower risk could be increased. Study participants were women enrolled in the Kaiser Permanente healthcare plan in Portland, Oregon, who underwent annual Pap smear screening between April 1989, and November 1990. More than 20,000 women (20,810 of 23,702) had satisfactory cervical smears with sufficient samples for HPV testing, which was conducted using a polymerase chain reaction-based method with MYO9/11 primers. Most women (83.6%) had at least one follow-up smear during the study period; however, women with atypical squamous cells (ASC) or worse had more smears than women with normal results (mean, 4.4 vs. 3.3). Follow-up was conducted more or less annually for a total period of 122 months. HPV results were not used in deciding patient management. Ninety-six percent of the 20,810 baseline Pap smears were diagnosed as negative (N = 20,156). Thirteen percent of these patients tested positive for HPV. The baseline smears of 654 of the 20,810 women (3.1%) were classified as ASC or worse. Of these 654 smears, 417 (63.8%) were positive for HPV. One hundred seventy-eight women had a cytologic diagnosis of a low-grade squamous intraepithelial lesion or worse; of these, 143 (80.3%) tested positive for HPV. During the 10 years of follow-up, 171 patients developed cervical intraepithelial neoplasia (CIN) 3 or cervical cancer. The baseline smear was normal in 112 of these women and ASC or worse in 59 (34.5%). Only half (49.2%) of the 58 patients diagnosed within the first 45 months of follow-up had an abnormal baseline smear. During this first 45 months, 7.85% of the women whose initial Pap test was at least ASC were diagnosed with CIN 3 or cancer. The cumulative incidence at 10 years of follow-up was 10.2%. Sixty of the 171 women with CIN 3 or cervical cancer had a negative baseline HPV test. Of the 118 women who were diagnosed during the first 45 months of follow-up, 89 (79.4%) were HPV positive initially. The cumulative incidence of CIN 3 or cancer among the group with a positive baseline HPV test was 6.92% over 10 years but only 1.73% at 45 months. The risk of developing CIN 3 or cancer remained elevated throughout the study in those women with a positive baseline HPV test. The predictive ability of the baseline Pap smear diminished as the follow-up interval increased. Fifteen percent of the patients (N = 3216) had a positive Pap smear, a positive HPV test, or both at the initial examination. One hundred twenty-three (71.9%) were among the 171 women who developed CIN 3 or cancer. Eighty-six percent (102 of 123) of the patients who were diagnosed within the first 45 months were positive with at least one of the screening studies. The cumulative incidence over 45 months for women who had positive HPV testing and/or abnormal Pap smear results was 4.54%. Women with negative results in both screening tests had a cumulative risk of 0.16% for the same period. At 10 years the cumulative risk incidence for these two groups was 6.83% and 0.79%, respectively, yielding a negative predictive value of 99.1% for combined testing.", "title": "Baseline cytology, human papillomavirus testing, and risk for cervical neoplasia: A 10-year cohort analysis" }, { "docid": "23136735", "text": "OBJECTIVE To evaluate the cumulative incidence of cervical intraepithelial neoplasia II or worse (grade II+) or cervical intraepithelial neoplasia grade III+ after short term persistence of prevalently detected carcinogenic human papillomavirus (HPV). \n DESIGN Population based cohort study. \n SETTING Guanacaste, Costa Rica. \n PARTICIPANTS 2282 sexually active women actively followed after enrolment. \n MAIN OUTCOME MEASURES Primary end points: three year and five year cumulative incidence of histologically confirmed cervical intraepithelial neoplasia grade II+ (n=70). Cervical specimens collected at each visit tested for more than 40 HPV genotypes. HPV 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 73, and 82 were considered the primary carcinogenic genotypes. \n RESULTS Women who tested positive for a carcinogenic HPV at enrolment and after about one year (9-21 months) (positive/positive) had a three year cumulative incidence of cervical intraepithelial neoplasia grade II+ of 17.0% (95% confidence interval 12.1% to 22.0%). Those who tested negative/positive (3.4%, 0.1% to 6.8%), positive/negative (1.2%, -0.2% to 2.5%), and negative/negative (0.5%, 0.1% to 0.9%) were at a significantly lower risk. There was little difference in the cumulative incidence of cervical intraepithelial neoplasia grade II+ between testing positive twice for any carcinogenic HPV genotype (same genotype or different genotypes) v testing positive twice for the same carcinogenic genotype (17.0% v 21.3%, respectively). Short term persistence of HPV 16 strongly predicted cervical intraepithelial neoplasia grade II+, with a three year cumulative incidence of 40.8% (26.4% to 55.1%). Similar patterns were observed for the five year cumulative incidence of grade II+ and for three year and five year cumulative incidence of grade III+. \n CONCLUSIONS Short term persistence of a prevalently detected carcinogenic HPV infection, especially HPV 16, strongly predicts a subsequent diagnosis of cervical intraepithelial neoplasia II+ over the next few years.", "title": "Short term persistence of human papillomavirus and risk of cervical precancer and cancer: population based cohort study" }, { "docid": "5433667", "text": "PURPOSE To describe the long-term (≥ 10 years) benefits of clinical human papillomavirus (HPV) DNA testing for cervical precancer and cancer risk prediction. \n METHODS Cervicovaginal lavages collected from 19,512 women attending a health maintenance program were retrospectively tested for HPV using a clinical test. HPV positives were tested for HPV16 and HPV18 individually using a research test. A Papanicolaou (Pap) result classified as atypical squamous cells of undetermined significance (ASC-US) or more severe was considered abnormal. Women underwent follow-up prospectively with routine annual Pap testing up to 18 years. Cumulative incidence rates (CIRs) of ≥ grade 3 cervical intraepithelial neoplasia (CIN3+) or cancer for enrollment test results were calculated. \n RESULTS A baseline negative HPV test provided greater reassurance against CIN3+ over the 18-year follow-up than a normal Pap (CIR, 0.90% v 1.27%). Although both baseline Pap and HPV tests predicted who would develop CIN3+ within the first 2 years of follow-up, only HPV testing predicted who would develop CIN3+ 10 to 18 years later (P = .004). HPV16- and HPV18-positive women with normal Pap were at elevated risk of CIN3+ compared with other HPV-positive women with normal Pap and were at similar risk of CIN3+ compared with women with a low-grade squamous intraepithelial Pap. \n CONCLUSION HPV testing to rule out cervical disease followed by Pap testing and possibly combined with the detection of HPV16 and HPV18 among HPV positives to identify those at immediate risk of CIN3+ would be an efficient algorithm for cervical cancer screening, especially in women age 30 years or older.", "title": "Clinical human papillomavirus detection forecasts cervical cancer risk in women over 18 years of follow-up." }, { "docid": "7650066", "text": "BACKGROUND Several studies have shown that testing for high-risk human papillomavirus (HPV) types results in an improved sensitivity for CIN2+, compared with cytology, although with a somewhat lower specificity. \n METHODS We obtained follow-up results, with at least one smear after participation in the HART study, which compared HPV testing (HC-II) with cytology as a primary screening modality. \n RESULTS With a median follow-up of 6 years, 42 additional cases of CIN2+ were identified; women who were HPV positive at baseline were more likely to develop CIN2+ than those who were HPV negative (hazard ratio (HR) 17.2; 95% confidence interval (CI) (9.3-31.6)) and the risk increased with increasing viral load. Compared with HPV-negative women (relative light unit (RLU) <1), the HR (95% CI) was 5.4 (1.6, 18.2) for 1-10 RLU and 25.5 (13.6, 47.9) for RLU > or = 10. Positive cytology (borderline or worse compared with negative) was also predictive of developing CIN2, although to a lesser extent (HR 8.7; 95% CI (4.5-17.1)). Only one case of CIN3 and three cases of CIN2 were found in women who showed a positive cytology result but were HPV negative at baseline. \n CONCLUSION After 5 years of follow-up, CIN2+ occurred in 0.23% of women who were HPV negative at baseline compared with 0.48% of women who showed a negative cytology result, indicating a much longer low-risk interval for CIN2+ after HPV testing.", "title": "Long-term follow-up of cervical disease in women screened by cytology and HPV testing: results from the HART study" }, { "docid": "13857083", "text": "Detection of persistent cervical carcinogenic human papillomavirus (HPV) DNA is used as a marker for cervical cancer risk in clinical trials. The authors performed a systematic review and meta-analysis of the association between persistent HPV DNA and high-grade cervical intraepithelial neoplasia (CIN2-3), high-grade squamous intraepithelial lesions (HSIL), and invasive cervical cancer (together designated CIN2-3/HSIL+) to evaluate the robustness of HPV persistence for clinical use. MEDLINE and Current Contents were searched through January 30, 2006. Relative risks (RRs) were stratified by HPV comparison group. Of 2,035 abstracts, 41 studies were eligible for inclusion in the meta-analysis. Over 22,500 women were included in calculation of RRs for persistent HPV DNA detection and cervical neoplasia. RRs ranged from 1.3 (95% confidence interval: 1.1, 1.5) to 813.0 (95% confidence interval: 168.2, 3,229.2) for CIN2-3/HSIL+ versus 12 months), wider testing intervals, CIN2-3/HSIL+, and use of an HPV-negative reference group were consistently associated with higher RRs. Thus, HPV persistence was consistently and strongly associated with CIN2-3/HSIL+, despite wide variation in definitions and study methods. The magnitude of association varied by duration of persistence and testing interval. Precise definition and standardization of HPV testing, sampling procedure, and test interval are needed for reliable clinical testing. These findings validate HPV persistence as a clinical marker and endpoint.", "title": "Persistent human papillomavirus infection and cervical neoplasia: a systematic review and meta-analysis." }, { "docid": "46355579", "text": "Health professionals and the public need to understand the natural history of human papillomavirus (HPV) infections of the cervix to best use the information provided by new molecular screening tests. We investigated outcomes of 800 carcinogenic HPV infections detected in 599 women at enrollment into a population-based cohort (Guanacaste, Costa Rica). For individual infections, we calculated cumulative proportions of three outcomes (viral clearance, persistence without cervical intraepithelial neoplasia grade 2 or worse [CIN2+], or persistence with new diagnosis of CIN2+) at successive 6-month time points for the first 30 months of follow-up. Cervical specimens were tested for carcinogenic HPV genotypes using an L1 degenerate-primer polymerase chain reaction method. Infections typically cleared rapidly, with 67% (95% confidence interval [CI] = 63% to 70%) clearing by 12 months. However, among infections that persisted at least 12 months, the risk of CIN2+ diagnosis by 30 months was 21% (95% CI = 15% to 28%). The risk of CIN2+ diagnosis was highest among women younger than 30 years with HPV-16 infections that persisted for at least 12 months (53%; 95% CI = 29% to 76%). These findings suggest that the medical community should emphasize persistence of cervical HPV infection, not single-time detection of HPV, in management strategies and health messages.", "title": "Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections." }, { "docid": "6748318", "text": "BACKGROUND In Spain, prophylactic vaccination against human papillomavirus (HPV) types 16 and 18 is being offered free-of-charge to one birth cohort of girls aged 11-14. Screening is opportunistic (annual/biannual) contributing to social and geographical disparities. \n METHODS A multi-HPV-type microsimulation model was calibrated to epidemiologic data from Spain utilising likelihood-based methods to assess the health and economic impact of adding HPV vaccination to cervical cancer screening. Strategies included (1) screening alone of women over age 25, varying frequency (every 1-5 years) and test (cytology, HPV DNA testing); (2) HPV vaccination of 11-year-old girls combined with screening. Outcomes included lifetime cancer risk, life expectancy, lifetime costs, number of clinical procedures and incremental cost-effectiveness ratios. \n RESULTS After the introduction of HPV vaccination, screening will need to continue, and strategies that incorporated HPV testing are more effective and cost-effective than those with cytology alone. For vaccinated girls, 5-year organised cytology with HPV testing as triage from ages 30 to 65 costs 24,350€ per year of life saved (YLS), assuming life-long vaccine immunity against HPV-16/18 by 3 doses with 90% coverage. Unvaccinated girls would benefit from organised cytology screening with HPV testing as triage; 5-year screening from ages 30 to 65 costs 16,060€/YLS and 4-year screening from ages 30 to 85 costs 38,250€/YLS. Interventions would be cost-effective depending on the cost-effectiveness threshold and the vaccine price. \n CONCLUSIONS In Spain, inequitable coverage and overuse of cytology make screening programmes inefficient. If high vaccination coverage among pre-adolescent girls is achieved, organised cytology screening with HPV triage starting at ages 30 to at least 65 every 4-5 years represents the best balance between costs and benefits.", "title": "Cost-effectiveness of human papillomavirus vaccination and screening in Spain." }, { "docid": "32177659", "text": "In Catalonia, a screening protocol for cervical cancer, including human papillomavirus (HPV) DNA testing using the Digene Hybrid Capture 2 (HC2) assay, was implemented in 2006. In order to monitor interlaboratory reproducibility, a proficiency testing (PT) survey of the HPV samples was launched in 2008. The aim of this study was to explore the repeatability of the HC2 assay's performance. Participating laboratories provided 20 samples annually, 5 randomly chosen samples from each of the following relative light unit (RLU) intervals: <0.5, 0.5 to 0.99, 1 to 9.99, and ≥10. Kappa statistics were used to determine the agreement levels between the original and the PT readings. The nature and origin of the discrepant results were calculated by bootstrapping. A total of 946 specimens were retested. The kappa values were 0.91 for positive/negative categorical classification and 0.79 for the four RLU intervals studied. Sample retesting yielded systematically lower RLU values than the original test (P<0.005), independently of the time elapsed between the two determinations (median, 53 days), possibly due to freeze-thaw cycles. The probability for a sample to show clinically discrepant results upon retesting was a function of the RLU value; samples with RLU values in the 0.5 to 5 interval showed 10.80% probability to yield discrepant results (95% confidence interval [CI], 7.86 to 14.33) compared to 0.85% probability for samples outside this interval (95% CI, 0.17 to 1.69). Globally, the HC2 assay shows high interlaboratory concordance. We have identified differential confidence thresholds and suggested the guidelines for interlaboratory PT in the future, as analytical quality assessment of HPV DNA detection remains a central component of the screening program for cervical cancer prevention.", "title": "Interlaboratory reproducibility and proficiency testing within the human papillomavirus cervical cancer screening program in Catalonia, Spain." }, { "docid": "26067999", "text": "The U.S. Preventive Services Task Force (USPSTF) makes recommendations about the effectiveness of specific preventive care services for patients without related signs or symptoms. It bases its recommendations on the evidence of both the benefits and harms of the service and an assessment of the balance. The USPSTF does not consider the costs of providing a service in this assessment. The USPSTF recognizes that clinical decisions involve more considerations than evidence alone. Clinicians should understand the evidence but individualize decision making to the specific patient or situation. Similarly, the USPSTF notes that policy and coverage decisions involve considerations in addition to the evidence of clinical benefits and harms. Summary of Recommendation and Evidence The USPSTF recommends annual screening for lung cancer with low-dose computed tomography (LDCT) in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (B recommendation) See the Clinical Considerations section for suggestions for implementation in practice. See the Figure for a summary of the recommendation and suggestions for clinical practice. Figure. Screening for lung cancer: clinical summary of U.S. Preventive Services Task Force recommendation. Appendix Table 1 describes the USPSTF grades, and Appendix Table 2 describes the USPSTF classification of levels of certainty about net benefit. Appendix Table 1. What the USPSTF Grades Mean and Suggestions for Practice Appendix Table 2. USPSTF Levels of Certainty Regarding Net Benefit Supplement. Consumer Fact Sheet. Rationale Importance Lung cancer is the third most common cancer and the leading cause of cancer-related death in the United States (1). The most important risk factor for lung cancer is smoking, which results in approximately 85% of all U.S. lung cancer cases (2). Although the prevalence of smoking has decreased, approximately 37% of U.S. adults are current or former smokers (2). The incidence of lung cancer increases with age and occurs most commonly in persons aged 55 years or older. Increasing age and cumulative exposure to tobacco smoke are the 2 most common risk factors for lung cancer. Lung cancer has a poor prognosis, and nearly 90% of persons with lung cancer die of the disease. However, early-stage nonsmall cell lung cancer (NSCLC) has a better prognosis and can be treated with surgical resection. Detection Most lung cancer cases are NSCLC, and most screening programs focus on the detection and treatment of early-stage NSCLC. Although chest radiography and sputum cytologic evaluation have been used to screen for lung cancer, LDCT has greater sensitivity for detecting early-stage cancer (3). Benefits of Detection and Early Treatment Although lung cancer screening is not an alternative to smoking cessation, the USPSTF found adequate evidence that annual screening for lung cancer with LDCT in a defined population of high-risk persons can prevent a substantial number of lung cancerrelated deaths. Direct evidence from a large, well-conducted, randomized, controlled trial (RCT) provides moderate certainty of the benefit of lung cancer screening with LDCT in this population (4). The magnitude of benefit to the person depends on that person's risk for lung cancer because those who are at highest risk are most likely to benefit. Screening cannot prevent most lung cancerrelated deaths, and smoking cessation remains essential. Harms of Detection and Early Intervention and Treatment The harms associated with LDCT screening include false-negative and false-positive results, incidental findings, overdiagnosis, and radiation exposure. False-positive LDCT results occur in a substantial proportion of screened persons; 95% of all positive results do not lead to a diagnosis of cancer. In a high-quality screening program, further imaging can resolve most false-positive results; however, some patients may require invasive procedures. The USPSTF found insufficient evidence on the harms associated with incidental findings. Overdiagnosis of lung cancer occurs, but its precise magnitude is uncertain. A modeling study performed for the USPSTF estimated that 10% to 12% of screen-detected cancer cases are overdiagnosedthat is, they would not have been detected in the patient's lifetime without screening. Radiation harms, including cancer resulting from cumulative exposure to radiation, vary depending on the age at the start of screening; the number of scans received; and the person's exposure to other sources of radiation, particularly other medical imaging. USPSTF Assessment The USPSTF concludes with moderate certainty that annual screening for lung cancer with LDCT is of moderate net benefit in asymptomatic persons who are at high risk for lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking. The moderate net benefit of screening depends on limiting screening to persons who are at high risk, the accuracy of image interpretation being similar to that found in the NLST (National Lung Screening Trial), and the resolution of most false-positive results without invasive procedures (4). Clinical Considerations Patient Population Under Consideration The risk for lung cancer increases with age and cumulative exposure to tobacco smoke and decreases with time since quitting smoking. The best evidence for the benefit of screening comes from the NLST, which enrolled adults aged 55 to 74 years who had at least a 30 pack-year smoking history and were current smokers or had quit within the past 15 years. As with all screening trials, the NLST tested a specific intervention over a finite period. Because initial eligibility extended through age 74 years and participants received 3 annual screening computed tomographic scans, the oldest participants in the trial were aged 77 years. The USPSTF used modeling studies to predict the benefits and harms of screening programs that use different screening intervals, age ranges, smoking histories, and times since quitting. A program that annually screens adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years is projected to have a reasonable balance of benefits and harms. The model assumes that persons who achieve 15 years of smoking cessation during the screening program discontinue screening. This model predicts the outcomes of continuing the screening program used in the NLST through age 80 years. Screening may not be appropriate for patients with substantial comorbid conditions, particularly those at the upper end of the screening age range. The NLST excluded persons who were unlikely to complete curative lung cancer surgery and those with medical conditions that posed a substantial risk for death during the 8-year trial. The baseline characteristics of the NLST showed a relatively healthy sample, and fewer than 10% of enrolled participants were older than 70 years (5). Persons with serious comorbid conditions may experience net harm, no net benefit, or at least substantially less net benefit. Similarly, persons who are unwilling to have curative lung surgery are unlikely to benefit from a screening program. Assessment of Risk Age, total exposure to tobacco smoke, and years since quitting smoking are important risk factors for lung cancer and were used to determine eligibility in the NLST. Other risk factors include specific occupational exposures, radon exposure, family history, and history of pulmonary fibrosis or chronic obstructive lung disease. The incidence of lung cancer is relatively low in persons younger than 50 years but increases with age, especially after age 60 years. In current and former smokers, age-specific incidence rates increase with age and cumulative exposure to tobacco smoke. Smoking cessation substantially reduces a person's risk for developing and dying of lung cancer. Among persons enrolled in the NLST, those who were at highest risk because of additional risk factors or a greater cumulative exposure to tobacco smoke experienced most of the benefit (6). A validated multivariate model showed that persons in the highest 60% of risk accounted for 88% of all deaths preventable by screening. Screening Tests Low-dose computed tomography has shown high sensitivity and acceptable specificity for the detection of lung cancer in high-risk persons. Chest radiography and sputum cytologic evaluation have not shown adequate sensitivity or specificity as screening tests. Therefore, LDCT is currently the only recommended screening test for lung cancer. Treatment Surgical resection is the current standard of care for localized NSCLC. This type of cancer is treated with surgical resection when possible and also with radiation and chemotherapy. Annual LDCT screening may not be useful for patients with life-limiting comorbid conditions or poor functional status who may not be candidates for surgery. Other Approaches to Prevention Smoking cessation is the most important intervention to prevent NSCLC. Advising smokers to stop smoking and preventing nonsmokers from being exposed to tobacco smoke are the most effective ways to decrease the morbidity and mortality associated with lung cancer. Current smokers should be informed of their continuing risk for lung cancer and offered cessation treatments. Screening with LDCT should be viewed as an adjunct to tobacco cessation interventions. Useful Resources Clinicians have many resources to help patients stop smoking. The Centers for Disease Control and Prevention has developed a Web site with many such resources, including information on tobacco quit lines, available in several languages (www.cdc.gov/tobacco/campaign/tips). Quit l", "title": "Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement" }, { "docid": "24205118", "text": "OBJECTIVE To investigate the clinical significance of Bmi-1 expression as a prognostic marker for cervical cancer. Design. Retrospectively collected data from a population-based cohort. \n SETTING Jiangsu Province Hospital. Population. Eighty-eight women diagnosed with cervical carcinoma between 2000 and 2003. \n METHODS RT-PCR assay was performed to determine Bmi-1 mRNA expression in 18 cervical cancer and noncancerous tissue samples and immunohistochemistry to detect Bmi-1 protein expression in 88 cervical cancer samples. The correlation between Bmi-1 expression and clinicopathological factors was analyzed. Additionally, statistical analyses were applied to test for prognostic associations. RNA interference was used to downregulate Bmi-1 expression in a cervical cancer cell line (HeLa). In vitro cytotoxicity was measured by the methylthiazoletetrazolium and colony formation assays. Effects of Bmi-1 inhibition on in vivo growth of cancer cells was detected by the tumorigenicity assay. Cell cycle distribution and cell apoptosis were measured by flow cytometry. \n MAIN OUTCOME MEASURES The levels of Bmi-1 mRNA and protein expression in tissues were evaluated by RT-PCR and Western Blot assays. \n RESULTS The level of Bmi-1 mRNA expression in cervical cancer tissues was significantly higher than that in corresponding noncancerous tissues. High Bmi-1 expression was significantly correlated with poor tumor differentiation, advanced International Federation of Gynecology and Obstetrics stage and positive lymph node metastasis. Patients with high Bmi-1 expression showed shorter overall survival than those with low expression. Univariate and multivariate analyses showed that high Bmi-1 expression was an independent prognostic factor. \n CONCLUSIONS RNA interference-mediated Bmi-1 inhibition could inhibit in vitro and in vivo growth, enhance apoptosis and induce cell cycle arrest of cervical cancer cells. Bmi-1 might be an independent prognostic marker for cervical cancer patients.", "title": "Clinicopathological and prognostic significance of Bmi-1 expression in human cervical cancer." } ]
976
Primary pro-inflammatory cytokines suppress secondary pro- and anti-inflammatory mediators.
[ { "docid": "5304891", "text": "Little is known about the inter-individual variation of cytokine responses to different pathogens in healthy individuals. To systematically describe cytokine responses elicited by distinct pathogens and to determine the effect of genetic variation on cytokine production, we profiled cytokines produced by peripheral blood mononuclear cells from 197 individuals of European origin from the 200 Functional Genomics (200FG) cohort in the Human Functional Genomics Project (http://www.humanfunctionalgenomics.org), obtained over three different years. We compared bacteria- and fungi-induced cytokine profiles and found that most cytokine responses were organized around a physiological response to specific pathogens, rather than around a particular immune pathway or cytokine. We then correlated genome-wide single-nucleotide polymorphism (SNP) genotypes with cytokine abundance and identified six cytokine quantitative trait loci (QTLs). Among them, a cytokine QTL at the NAA35-GOLM1 locus markedly modulated interleukin (IL)-6 production in response to multiple pathogens and was associated with susceptibility to candidemia. Furthermore, the cytokine QTLs that we identified were enriched among SNPs previously associated with infectious diseases and heart diseases. These data reveal and begin to explain the variability in cytokine production by human immune cells in response to pathogens.", "title": "Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi" } ]
[ { "docid": "29509926", "text": "Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-κB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses.", "title": "High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-κB/STAT1-IRF1 Signaling." }, { "docid": "343052", "text": "Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses.", "title": "Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model." }, { "docid": "30908508", "text": "Objective: To investigate the regulation of CD4+CD25+ Regulatory T cells (Tregs) on pro-inflammatory adhesion molecules, Krüppel-Like Factor-2 (KLF-2) and its downstream transcriptional targets in human umbilical vein endothelial cells (HUVECs) impaired by ox-LDL and the mechanisms of it. Methods and results: HUVECs were cultured in the continuous presence of ox-LDL(0 mg/L,25 mg/L,50 mg/L,100 mg/L) for 4, 6, 12 and 24 hours to allow identification of early-and late-induced genes, respectively, whereas non-stimulated controls were taken at 0 hours. The expression of pro-inflammatory adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), E-selectin, KLF-2 and its target genes eNOS, PAI-1 were determined by real time RT-PCR and/or western-blot analysis. Expression of pro-inflammatory adhesion molecules, KLF-2, eNOS and PAI-1 in HUVEC cultured alone or with anti-CD3 mAbs activated Tregs, followed by addition of ox-LDL (50 mg/L) for 6 hours, are compared to expression levels in control cultures. Ox-LDL treated HUVECs increased pro-inflammatory adhesion molecules expression, as well as increased PAI-1 but decreased eNOS expression accompanied with significant downregulating of KLF-2 at a dose and time dependent manner. Furthermore, ox-LDL increased pro-inflammatory adhesion molecules but inhibited KLF2 expression was reversed by addition of Tregs. Small interfering RNA reduced endogenous KLF-2 expression and partly reversed the suppressive effect of Tregs on HUVECs activation, which strongly implicate KLF-2 as a transcriptional regulator of the Tregs-mediated effects in endothelial cells. Mechanism studies reveal that Treg-mediated KLF2 expression in HUVECs impaired by ox-LDL requires cell contact as well as soluble factors. Conclusions: Tregs could protect endothelial function that is largely dependent on KLF2 and its downstream transcriptional targets regulation involving cell-to-cell contact and soluble factors.", "title": "CD4+CD25+Foxp3+Regulatory T Cells Protect Endothelial Function Impaired by Oxidized Low Density Lipoprotein via the KLF-2 Transcription Factor" }, { "docid": "6144969", "text": "Virally induced inflammatory responses, beta cell destruction and release of beta cell autoantigens may lead to autoimmune reactions culminating in type 1 diabetes. Therefore, viral capability to induce beta cell death and the nature of virus-induced immune responses are among key determinants of diabetogenic viruses. We hypothesised that enterovirus infection induces a specific gene expression pattern that results in islet destruction and that such a host response pattern is not shared among all enterovirus infections but varies between virus strains. The changes in global gene expression and secreted cytokine profiles induced by lytic or benign enterovirus infections were studied in primary human pancreatic islet using DNA microarrays and viral strains either isolated at the clinical onset of type 1 diabetes or capable of causing a diabetes-like condition in mice. The expression of pro-inflammatory cytokine genes (IL-1-α, IL-1-β and TNF-α) that also mediate cytokine-induced beta cell dysfunction correlated with the lytic potential of a virus. Temporally increasing gene expression levels of double-stranded RNA recognition receptors, antiviral molecules, cytokines and chemokines were detected for all studied virus strains. Lytic coxsackievirus B5 (CBV-5)-DS infection also downregulated genes involved in glycolysis and insulin secretion. The results suggest a distinct, virus-strain-specific, gene expression pattern leading to pancreatic islet destruction and pro-inflammatory effects after enterovirus infection. However, neither viral replication nor cytotoxic cytokine production alone are sufficient to induce necrotic cell death. More likely the combined effect of these and possibly cellular energy depletion lie behind the enterovirus-induced necrosis of islets.", "title": "Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction" }, { "docid": "4454788", "text": "Advances in our understanding of the mechanisms that bring about the resolution of acute inflammation have uncovered a new genus of pro-resolving lipid mediators that include the lipoxin, resolvin, protectin and maresin families, collectively called specialized pro-resolving mediators. Synthetic versions of these mediators have potent bioactions when administered in vivo. In animal experiments, the mediators evoke anti-inflammatory and novel pro-resolving mechanisms, and enhance microbial clearance. Although they have been identified in inflammation resolution, specialized pro-resolving mediators are conserved structures that also function in host defence, pain, organ protection and tissue remodelling. This Review covers the mechanisms of specialized pro-resolving mediators and omega-3 essential fatty acid pathways that could help us to understand their physiological functions.", "title": "Pro-resolving lipid mediators are leads for resolution physiology" }, { "docid": "3475317", "text": "Granulomas are the pathological hallmark of tuberculosis (TB). However, their function and mechanisms of formation remain poorly understood. To understand the role of granulomas in TB, we analyzed the proteomes of granulomas from subjects with tuberculosis in an unbiased manner. Using laser-capture microdissection, mass spectrometry and confocal microscopy, we generated detailed molecular maps of human granulomas. We found that the centers of granulomas have a pro-inflammatory environment that is characterized by the presence of antimicrobial peptides, reactive oxygen species and pro-inflammatory eicosanoids. Conversely, the tissue surrounding the caseum has a comparatively anti-inflammatory signature. These findings are consistent across a set of six human subjects and in rabbits. Although the balance between systemic pro- and anti-inflammatory signals is crucial to TB disease outcome, here we find that these signals are physically segregated within each granuloma. From the protein and lipid snapshots of human and rabbit lesions analyzed here, we hypothesize that the pathologic response to TB is shaped by the precise anatomical localization of these inflammatory pathways during the development of the granuloma.", "title": "Inflammatory signaling in human Tuberculosis granulomas is spatially organized" }, { "docid": "364522", "text": "OBJECTIVES Calcific aortic valve (AV) disease is known to be an inflammation-related process. High-mobility group box-1 (HMGB1) protein and Toll-like receptor 4 (TLR4) have been reported to participate in several inflammatory diseases. The purpose of the present study was to determine whether the HMGB1-TLR4 axis is involved in calcific AV disease, and to evaluate the effect of HMGB1, and its potential mechanisms, on the pro-osteogenic phenotype change of valvular interstitial cells (VICs). \n METHODS Expression of HMGB1 and TLR4 in human calcific AVs was evaluated using immunohistochemical staining and immunoblotting. Cultured VICs were used as an in vitro model. The VICs were stimulated with HMGB1 for analysis, with versus without TLR4 small interfering ribonucleic acid (siRNA), c-Jun N-terminal kinase mitogen-activated protein kinase (JNK MAPK), and nuclear factor kappa-B (NF-κB) inhibitors. \n RESULTS Enhanced accumulation of HMGB1 and TLR4 was observed in calcific valves. Moreover, we found that HMGB1 induced high levels of pro-inflammatory cytokine production and promoted the osteoblastic differentiation and calcification of VICs. In addition, HMGB1 induced phosphorylation of JNK MAPK and NF-κB. However, these effects were markedly suppressed by siRNA silencing of TLR4. In addition, blockade of JNK MAPK and NF-κB phosphorylation prohibited HMGB1-induced production of pro-osteogenic factors, and mineralization of VICs. \n CONCLUSIONS The HMGB1 protein may promote osteoblastic differentiation and calcification of VICs, through the TLR4-JNK-NF-κB signaling pathway.", "title": "High-mobility group box-1 protein induces osteogenic phenotype changes in aortic valve interstitial cells." }, { "docid": "52865789", "text": "OBJECTIVE IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues. \n METHODS Control and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells. \n RESULTS Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues. \n CONCLUSIONS Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome.", "title": "Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues" }, { "docid": "16863359", "text": "Inflammasomes are multiprotein complexes that link pathogen recognition and cellular stress to the processing of the proinflammatory cytokine interleukin-1β (IL-1β). Whereas inflammasome-mediated activation is heavily studied in hematopoietic macrophages and dendritic cells, much less is known about microglia, resident tissue macrophages of the brain that originate from a distinct progenitor. To directly compare inflammasome-mediated activation in different types of macrophages, we isolated primary microglia and hematopoietic macrophages from adult, healthy rhesus macaques. We analyzed the expression profile of NOD (nucleotide-binding oligomerization domain)-like receptors, adaptor proteins, and caspases and characterized inflammasome activation and regulation in detail. We here demonstrate that primary microglia can respond to the same innate stimuli as hematopoietic macrophages. However, microglial responses are more persistent due to lack of negative regulation on pro-IL-1β expression. In addition, we show that while caspase 1, 4, and 5 activation is pivotal for inflammasome-induced IL-1β secretion by hematopoietic macrophages, microglial secretion of IL-1β is only partially dependent on these inflammatory caspases. These results identify key cell type-specific differences that may aid the development of strategies to modulate innate immune responses in the brain.", "title": "Inflammasome-induced IL-1β secretion in microglia is characterized by delayed kinetics and is only partially dependent on inflammatory caspases." }, { "docid": "16058322", "text": "beta-Cell destruction in type 1 diabetes (T1D) is at least in part consequence of a 'dialog' between beta-cells and immune system. This dialog may be affected by the individual's genetic background. We presently evaluated whether modulation of MDA5 and PTPN2, two candidate genes for T1D, affects beta-cell responses to double-stranded RNA (dsRNA), a by-product of viral replication. These genes were selected following comparison between known candidate genes for T1D and genes expressed in pancreatic beta-cells, as identified in previous array analysis. INS-1E cells and primary fluorescence-activated cell sorting-purified rat beta-cells were transfected with small interference RNAs (siRNAs) targeting MDA5 or PTPN2 and subsequently exposed to intracellular synthetic dsRNA (polyinosinic-polycitidilic acid-PIC). Real-time RT-PCR, western blot and viability assays were performed to characterize gene/protein expression and viability. PIC increased MDA5 and PTPN2 mRNA expression, which was inhibited by the specific siRNAs. PIC triggered apoptosis in INS-1E and primary beta-cells and this was augmented by PTPN2 knockdown (KD), although inhibition of MDA5 did not modify PIC-induced apoptosis. In contrast, MDA5 silencing decreased PIC-induced cytokine and chemokine expression, although inhibition of PTPN2 induced minor or no changes in these inflammatory mediators. These findings indicate that changes in MDA5 and PTPN2 expression modify beta-cell responses to dsRNA. MDA5 regulates inflammatory signals, whereas PTPN2 may function as a defence mechanism against pro-apoptotic signals generated by dsRNA. These two candidate genes for T1D may thus modulate beta-cell apoptosis and/or local release of inflammatory mediators in the course of a viral infection by acting, at least in part, at the pancreatic beta-cell level.", "title": "MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic β-cell responses to the viral by-product double-stranded RNA" }, { "docid": "8702697", "text": "AIMS Tumor microenvironment is a strong determinant for the acquisition of metastatic potential of cancer cells. We have recently demonstrated that cancer-associated fibroblasts (CAFs) elicit a redox-dependent epithelial-mesenchymal transition (EMT) in prostate cancer (PCa) cells, driven by cycloxygenase-2/hypoxia-inducible factor-1 (HIF-1)/nuclear factor-κB pathway and enhancing tumor aggressiveness. Here, we investigated the involvement of microRNAs (miRNAs) in tumor-stroma interplay to identify possible tools to counteract oxidative stress and metastasis dissemination. \n RESULTS We found that miR-205 is the most downmodulated miRNA in PCa cells upon CAF stimulation, due to direct transcriptional repression by HIF-1, a known redox-sensitive transcription factor. Rescue experiments demonstrated that ectopic miR-205 overexpression in PCa cells counteracts CAF-induced EMT, thus impairing enhancement of cell invasion, acquisition of stem cell traits, tumorigenicity, and metastatic dissemination. In addition, miR-205 blocks tumor-driven activation of surrounding fibroblasts by reducing pro-inflammatory cytokine secretion. INNOVATION Overall, such findings suggest miR-205 as a brake against PCa metastasis by blocking both the afferent and efferent arms of the circuit between tumor cells and associated fibroblasts, thus interrupting the pro-oxidant and pro-inflammatory circuitries engaged by reactive stroma. \n CONCLUSION The evidence that miR-205 replacement in PCa cells is able not only to prevent but also to revert the oxidative/pro-inflammatory axis leading to EMT induced by CAFs sets the rationale for developing miRNA-based approaches to prevent and treat metastatic disease.", "title": "miR-205 hinders the malignant interplay between prostate cancer cells and associated fibroblasts." }, { "docid": "2316374", "text": "AIMS Vascular endothelial dysfunction and inflammation are hallmarks of atherosclerosis. Krüppel-like factor 2 (KLF2) is a key mediator of anti-inflammatory and anti-atherosclerotic properties of the endothelium. However, little is known of the molecular mechanisms for regulating KLF2 transcriptional activation. \n METHODS AND RESULTS Here, we found that histone deacetylase 5 (HDAC5) associates with KLF2 and represses KLF2 transcriptional activation. HDAC5 resided with KLF2 in the nuclei of human umbilical cord vein endothelial cells (HUVECs). Steady laminar flow attenuated the association of HDAC5 with KLF2 via stimulating HDAC5 phosphorylation-dependent nuclear export in HUVEC. We also mapped the KLF2-HDAC5-interacting domains and found that the N-terminal region of HDAC5 interacts with the C-terminal domain of KLF2. Chromatin immunoprecipitation and luciferase reporter assays showed that HDAC5 through a direct association with KLF2 suppressed KLF2 transcriptional activation. HDAC5 overexpression inhibited KLF2-dependent endothelial nitric oxide synthesis (eNOS) promoter activity in COS7 cell and gene expression in both HUVECs and bovine aortic endothelial cells (BAECs). Conversely, HDAC5 silencing enhanced KLF2 transcription and hence eNOS expression in HUVEC. Moreover, we observed that the level of eNOS protein in the thoracic aorta isolated from HDAC5 knockout mice was higher, whereas expression of pro-inflammatory vascular cell adhesion molecule 1 was lower, compared with those of HDAC5 wild-type mice. \n CONCLUSIONS We reveal a novel role of HDAC5 in modulating the KLF2 transcriptional activation and eNOS expression. These findings suggest that HDAC5, a binding partner and modulator of KLF2, could be a new therapeutic target to prevent vascular endothelial dysfunction associated with cardiovascular diseases.", "title": "Histone deacetylase 5 interacts with Krüppel-like factor 2 and inhibits its transcriptional activity in endothelium." }, { "docid": "21382907", "text": "Targeting of αVβ3 and αVβ5 integrins by cilengitide may reduce growth of solid tumors including head and neck squamous cell carcinoma (HNSCC). Preclinical investigations suggest increased activity of cilengitide in combination with other treatment modalities. The only published trial in HNSCC (ADVANTAGE) investigated cisplatin, 5-fluorouracil, and cetuximab (PFE) without or with once (PFE+CIL1W) or twice weekly cilengitide (PFE+CIL2W) in recurrent/metastatic HNSCC. ADVANTAGE showed good tolerability of the cilengitide arms and even lower adverse events (AEs) compared to PFE but not the benefit in overall survival expected based on preclinical data. As we found in the FLAVINO assay, a short-time ex vivo assay for prediction of chemosensitivity, only a subgroup of HNSCC had an increased suppressive effect of cilengitide containing combination therapies on colony formation of epithelial cells (CFec) and release of pro-angiogenetic and pro-inflammatory cytokines, whereas other HNSCC failed to respond. Response to αVβ3 and αVβ5 integrin targeting by cilengitide classifies HNSCC regarding outcome. We present FLAVINO data arguing for further development of cilengitide plus cetuximab in treatment of a subgroup of HNSCC potentially identified by the FLAVINO assay using a set of biomarkers for response evaluation.", "title": "Reduced Cytokine Release in Ex Vivo Response to Cilengitide and Cetuximab Is a Marker for Improved Survival of Head and Neck Cancer Patients" }, { "docid": "34378726", "text": "Early views of autoimmune disease cast IFNγ as a prototypic pro-inflammatory factor. It is now clear that IFNγ is capable of both pro- and anti-inflammatory activities with the functional outcome dependent on the physiological and pathological setting examined. Here, the major immune modulatory activities of IFNγ are reviewed and current evidence for the impact of IFNγ on pathology and regulation of several autoimmune diseases and disease models is summarized.", "title": "Interferon gamma in autoimmunity: A complicated player on a complex stage." }, { "docid": "10029891", "text": "In Major Depressive Disorder (MDD), the neuroendocrine and immune systems interactions are impaired. We investigated the pro/anti-inflammatory Th1/Th2 cytokine balance in MDD patients and in non-depressed control group. The MDD subjects showed higher levels of cortisol and TNF-alpha, increased CD3+CD8+ and NK percentages, diminished B cell counts and no significant variations in CD3+CD4+ lymphocyte. Moreover, higher levels of IL-4 and IL-13 (Th2) and significantly lower measurements of IL-2 and IFN-gamma (Th1) cytokines were also observed in the MDD group. Overall, we propose that all these changes could be related to the elevated cortisol levels seen in the MDD patients. Further studies are necessary to explore these findings and its implication in future therapeutic approach of MDD patients.", "title": "Th2 cytokine response in Major Depressive Disorder patients before treatment" }, { "docid": "17412260", "text": "Oncogene-induced senescence (OIS) is crucial for tumour suppression. Senescent cells implement a complex pro-inflammatory response termed the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence, activates immune surveillance and paradoxically also has pro-tumorigenic properties. Here, we present evidence that the SASP can also induce paracrine senescence in normal cells both in culture and in human and mouse models of OIS in vivo. Coupling quantitative proteomics with small-molecule screens, we identified multiple SASP components mediating paracrine senescence, including TGF-β family ligands, VEGF, CCL2 and CCL20. Amongst them, TGF-β ligands play a major role by regulating p15(INK4b) and p21(CIP1). Expression of the SASP is controlled by inflammasome-mediated IL-1 signalling. The inflammasome and IL-1 signalling are activated in senescent cells and IL-1α expression can reproduce SASP activation, resulting in senescence. Our results demonstrate that the SASP can cause paracrine senescence and impact on tumour suppression and senescence in vivo.", "title": "A complex secretory program orchestrated by the inflammasome controls paracrine senescence" }, { "docid": "20722510", "text": "Interleukin 6 (IL-6) has a broad effect on cells of the immune system and those not of the immune system and often displays hormone-like characteristics that affect homeostatic processes. IL-6 has context-dependent pro- and anti-inflammatory properties and is now regarded as a prominent target for clinical intervention. However, the signaling cassette that controls the activity of IL-6 is complicated, and distinct intervention strategies can inhibit this pathway. Clinical experience with antagonists of IL-6 has raised new questions about how and when to block this cytokine to improve disease outcome and patient wellbeing. Here we discuss the effect of IL-6 on innate and adaptive immunity and the possible advantages of various antagonists of IL-6 and consider how the immunobiology of IL-6 may inform clinical decisions.", "title": "IL-6 as a keystone cytokine in health and disease" }, { "docid": "44562221", "text": "Endogenous glucocorticoids (GC) play an important role in the termination of the inflammatory response following infection and tissue injury. However, recent findings indicate that stress can impair the anti-inflammatory capacities of these hormones. Lipopolysaccharide (LPS)-stimulated splenocytes of mice that were repeatedly subjected to social disruption (SDR) stress were less sensitive to the immunosuppressive effects of corticosterone (CORT) as demonstrated by an increased production of pro-inflammatory cytokines and enhanced cell survival. Myeloid cells expressing the marker CD11b were shown to play a key role in this process. Here we investigated the role of the bone marrow as a potential source of the GC-insensitive cells. The study revealed that LPS-stimulated bone marrow cells, in the absence of experimental stress, were virtually GC-resistant and retained high levels of cell viability after treatment with CORT. Recurrent exposure to the acute stressor over a period of 2, 4 or 6 days led to an increase in the GC sensitivity of the bone marrow cells. This increase in GC sensitivity was associated with enhanced mRNA expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), an increase in the number of myeloid progenitors, and a decrease in the proportion of mature CD11b+ cells. The changes in the cellular composition of the bone marrow were accompanied by an increase in splenic CD11b+ cell numbers. Simultaneous assessment of the GC sensitivity in bone marrow and spleen revealed a significant negative correlation between both tissues suggesting that social stress causes the redistribution of GC-insensitive myeloid cells from the bone marrow to the spleen.", "title": "Tissue-specific alterations in the glucocorticoid sensitivity of immune cells following repeated social defeat in mice" }, { "docid": "6580081", "text": "Ischemia-reperfusion injury is, at least in part, responsible for the morbidity associated with liver surgery under total vascular exclusion or after liver transplantation. The pathophysiology of hepatic ischemia-reperfusion includes a number of mechanisms that contribute to various degrees in the overall injury. Some of the topics discussed in this review include cellular mechanisms of injury, formation of pro- and anti-inflammatory mediators, expression of adhesion molecules, and the role of oxidant stress during the inflammatory response. Furthermore, the roles of nitric oxide in preventing microcirculatory disturbances and as a substrate for peroxynitrite formation are reviewed. In addition, emerging mechanisms of protection by ischemic preconditioning are discussed. On the basis of current knowledge, preconditioning or pharmacological interventions that mimic these effects have the greatest potential to improve clinical outcome in liver surgery involving ischemic stress and reperfusion.", "title": "Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning." }, { "docid": "45449835", "text": "Myelin-directed autoimmunity is considered to play a key role in the pathogenesis of multiple sclerosis (MS). Increased production of both pro- and anti-inflammatory cytokines is a common finding in MS. Interleukin-17 (IL-17) is a recently described cytokine produced in humans almost exclusively by activated memory T cells, which can induce the production of proinflammatory cytokines and chemokines from parenchymal cells and macrophages. In situ hybridisation with synthetic oligonucleotide probes was adopted to detect and enumerate IL-17 mRNA expressing mononuclear cells (MNC) in blood and cerebrospinal fluid (CSF) from patients with MS and control individuals. Numbers of IL-17 mRNA expressing blood MNC were higher in patients with MS and acute aseptic meningoencephalitis (AM) compared to healthy individuals. Higher numbers of IL-17 mRNA expressing blood MNC were detected in MS patients examined during clinical exacerbation compared to remission. Patients with MS had higher numbers of IL-17 mRNA expressing MNC in CSF compared to blood. This increase in numbers of IL-17 mRNA expressing MNC in CSF was not observed in patients with AM. Our results thus demonstrate increased numbers of IL-17 mRNA expressing MNC in MS with higher numbers in CSF than blood, and with the highest numbers in blood during clinical exacerbations.", "title": "Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis." } ]
977
Pro-inflammatory cytokines are up regulated during tumor development.
[ { "docid": "14075252", "text": "Paraneoplastic thrombocytosis is associated with many solid tumors and often correlates with reduced survival. Recent studies suggest that a pathogenic feed back loop may be operative between platelets and tumor cells, with reciprocal interactions between tumor growth/metastasis and thrombocytosis/platelet activation. Specific molecular pathways have been identified in which tumors can stimulate platelet production and activation; activated platelets can, in turn, promote tumor growth and metastasis. Taken together, these findings provide exciting new potential targets for therapeutic intervention.", "title": "Paraneoplastic thrombocytosis: the secrets of tumor self-promotion." }, { "docid": "39264456", "text": "OBJECTIVES We investigated the role of cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in cachexia development in newly diagnosed nonsmall cell lung cancer (NSCLC) patients. \n METHODS : We evaluated 44 (M/F:41/3) NSCLC patients and 12 (M/F:10/2) age matched healthy smokers. NSCLC cases with a weight loss of > or =10% consisted the cachectic group (n:23, M/F:21/2) and the ones with <10% weight loss consisted the noncachectic group (n:21, M/F:19/2). \n RESULTS Body mass index (BMI) of cachectics was significantly lower than that of noncachectics (21.0 +/- 2.9 versus 24.5 +/- 3.6, P = 0.02) and controls (21.0 +/- 2.9 versus 25.5 +/- 2.6, P = 0.01). Serum TNF-alpha level did not differ between cachectic and noncachectics (37.3 +/- 39.1 and 51.6 +/- 84.2 pg/mL, respectively). However, it was significantly higher in NSCLC patients compared with controls (44.1 +/- 64.3 and 15.1 +/- 14.3 pg/mL, P = 0.03). Serum IL-6 level was not different between 3 groups (6.4 +/- 4.1, 8.9 +/- 16.3, and 4.1 +/- 3.5 pg/mL, respectively) but it correlated significantly with TNF-alpha (r = 0.4, P = 0.006) and BMI (r = -0.3, P = 0.03). Erythrocyte sedimentation rate (ESR) correlated significantly with TNF-alpha (r = 0.4, P = 0.003) and BMI (r = -0.3, P = 0.03). Among 44 cases, survival of 12 and 17 patients was recorded in cachectics and noncachectics, with no statistical difference (12.2 +/- 3.7 and 11.2 +/- 1.0 months, respectively). \n CONCLUSIONS TNF-alpha and IL-6 levels did not differ significantly between cachectics and noncachectics. However, significant correlations between IL-6, BMI, and TNF-alpha suggested that these cytokines acted as cofactors in weight loss. Survival was neither influenced by BMI, nor the cytokine levels in the present study. The significant correlation of ESR with TNF-alpha suggested that ESR could provide valuable clue for considerable weight loss in the follow-up of NSCLC patients.", "title": "Impact of TNF-alpha and IL-6 levels on development of cachexia in newly diagnosed NSCLC patients." } ]
[ { "docid": "8702697", "text": "AIMS Tumor microenvironment is a strong determinant for the acquisition of metastatic potential of cancer cells. We have recently demonstrated that cancer-associated fibroblasts (CAFs) elicit a redox-dependent epithelial-mesenchymal transition (EMT) in prostate cancer (PCa) cells, driven by cycloxygenase-2/hypoxia-inducible factor-1 (HIF-1)/nuclear factor-κB pathway and enhancing tumor aggressiveness. Here, we investigated the involvement of microRNAs (miRNAs) in tumor-stroma interplay to identify possible tools to counteract oxidative stress and metastasis dissemination. \n RESULTS We found that miR-205 is the most downmodulated miRNA in PCa cells upon CAF stimulation, due to direct transcriptional repression by HIF-1, a known redox-sensitive transcription factor. Rescue experiments demonstrated that ectopic miR-205 overexpression in PCa cells counteracts CAF-induced EMT, thus impairing enhancement of cell invasion, acquisition of stem cell traits, tumorigenicity, and metastatic dissemination. In addition, miR-205 blocks tumor-driven activation of surrounding fibroblasts by reducing pro-inflammatory cytokine secretion. INNOVATION Overall, such findings suggest miR-205 as a brake against PCa metastasis by blocking both the afferent and efferent arms of the circuit between tumor cells and associated fibroblasts, thus interrupting the pro-oxidant and pro-inflammatory circuitries engaged by reactive stroma. \n CONCLUSION The evidence that miR-205 replacement in PCa cells is able not only to prevent but also to revert the oxidative/pro-inflammatory axis leading to EMT induced by CAFs sets the rationale for developing miRNA-based approaches to prevent and treat metastatic disease.", "title": "miR-205 hinders the malignant interplay between prostate cancer cells and associated fibroblasts." }, { "docid": "15521377", "text": "Cellular senescence is a stable form of cell-cycle arrest which is thought to limit the proliferative potential of premalignant cells [1]. The senescence phenotype was initially described by Hayflick and Moorhead in 1961 on human fibroblasts undergoing replicative exhaustion in culture [2]. It has been shown that senescence can be triggered in different cell types in response to diverse forms of cellular damage or stress (for review see [1]). Importantly, while senescence was denounced as a tissue culture phenomenon for many years, recent in vivo studies demonstrated that cellular senescence represents a potent failsafe mechanism against tumorigenesis and contributes to the cytotoxicity of certain anticancer agents (see for example [3-7]). Interestingly, senescent cells have also been observed in certain aged or damaged tissues and there is growing evidence that senescence checkpoints can affect the regenerative reserve of tissues and organismal aging [8-11]. However, senescence may also have positive effects on organ maintenance by limiting pathological responses to acute forms of injury such as fibrotic scarring in response to chemical induced liver injury [12]. Over the past years it was also shown that senescent cells can communicate with their environment by secreting a myriad of cytokines and growth factors. Interestingly, this \"senescence associated secretory phenotype (SASP)\" seems to be a double edged sword regarding tumor initiation and maintenance: i) On the one hand, it has been shown that the SASP can have pro-tumorigenic effects. In an experimental system it was shown that senescent mesenchymal cells can enhance the tumorigenicity of surrounding breast cancer cells [13]. ii) Similarly, it is possible that the SASP enhances selection of transformed cell clones in aged organ systems. It has been shown that loss of proliferative competition of non-transformed cells can accelerate leukemogenesis [14]. It remains to be seen whether aberrant secretion of cytokines and growth factors by the SASP can accelerated this process in aged and chronically damage organ systems. iii) In contrast to its pro-tumorigenic aspect, the SASP could also have anti-tumor effects. A recent study showed that in a mosaic liver cancer mouse model the activation of p53 induced senescence, an upregulation of inflammatory cytokines, and activation of innate immune responses leading to tumour cell clearance [15]. iv) In further support that the SASP could have anti-tumor activities, a series of recent papers showed that components of the SASP can stabilize the senescence cell cycle arrest via an autoregulatory feedback loop [16,17] or induces apoptosis of tumor cells [18]. In addition to its effects on tumorigenesis, the SASP could also influence tissue aging. Studies on aging telomere dysfunctional mice have provided direct experimental evidence for an in vivo activation of the SASP in response to telomere dysfunction [19]. Interestingly, this in vivo SASP provoked alterations in stem cell differentiation (skewing of hematopoiesis towards reduction in lymphopoiesis and enhancement of myelopoiesis) that are also characteristic signs of human aging. Figure 1. Different cellular stresses can induce senescence including telomere shortening, DNA damage, and oncogene activation. Senescence of tumor cells ... In light of the many possible roles o the SASP in aging and carcinogenesis, it appears to be of utmost importance to decipher regulatory pathways controlling the SASP. In a current publication, Bhaumik et al. have identified 2 microRNAs (miR-146a/b) that negatively regulate the secretion of IL-6 and IL-8 - two of the SASP [20]. The authors show that these microRNAs are up-regulated at late stages of senescence, many days after a permanent cell cycle arrest has been established. Interestingly, the inhibitory miRs are most strongly up-regulated in senescence of cell lines that show a strong SASP but not in cell lines characterized by a weak SASP. The authors propose a new concept indicating that miRs 146a and b function in a negative feedback loop preventing an over-activation of the SASP in senescent cells. The authors present some initial data suggesting that activation of this negative feedback loop involves IL-1 receptor, IRAK-1, and NFκB signalling leading to an up-regulation of miRs-146a and b. A direct proof that this proposed feedback loop suppresses over-activation of the SASP remains to be demonstrated in future studies. The authors show that blockage of IL-1-receptor signalling prevents both the up-regulation of miRs-146a and b as well as Il-6 secretion. To confirm their new concept, it would be important to show that a selective blockage of miRs-146a and b results in over-activation of the SASP. The work by Bhaumik et al. places mir-146a/b as central players to control IL-6 and IL-8 expression within the SASP. MicroRNAs are emerging therapeutic targets because their expression levels can be effectively modulated via the use of antagomirs (see for example [21]). Also, for increasing microRNA expression, microRNAs can be delivered into cellsin vivo (see for example [22]). Therefore, it will be interesting to functionally test the impact of mir-146 inhibition on tumorigenesis and aging in relevant mouse models. Such studies will be of particular interest, as recent work showed that IL-6 secretion by senescent cells is relevant for initiating and maintaining the senescene response via an autocrine loop [17]. A reduction of miR-146 could increase IL-6 levels in senescent cells, which should stabilize the senescence program and reduce the risk of malignant transformation. Furthermore, it can be speculated that reduction of mir-146 a/b will increase NfκB activation via IRAK1. As NfκB is modulating the expression of various inflammation associated genes, this may also lead to increased clearance of senescent tumor cells by the innate immune system. However, it should be mentioned that Il-6 secreted by senescent cells can also act as a mitogen for surrounding cells, thus potentially increasing the risk of malignant transformation [13,17]. Besides its function in SASP modulation, miR-146 was also reported to target the mRNAs of the BRCA1 and BRCA2 tumor suppressors. In a recent study a G to C polymorphism in miR-146, which leads to an increased processing and release of the mature microRNA, can predict an early onset of breast cancer [23]. Taken together, the study of Bhaumik et al. opens an interesting new research area dealing with the gene regulatory mechanisms that control activation of the SASP. Given the diverse roles of the SASP in modulating tumor progression, immune surveillance of damaged cells, and the stabilization of the senescence arrest itself, it will be of great interest to analyse the influence of SASP regulatory pathways during aging and cancer.", "title": "Keeping your senescent cells under control" }, { "docid": "6397191", "text": "Endothelin-1 (ET-1) is the predominant endothelin isopeptide generated by the vascular wall and therefore appears to be the most important peptide involved in regulation of cardiovascular events. Many pathologic conditions are associated with elevations of ET-1 in the blood vessel wall. Because these conditions are often cytokine driven, we examined the effects of a mixture of cytokines on ET-1 production in human vascular smooth muscle cells (VSMCs) derived from internal mammary artery and saphenous vein (SV). Incubation of IMA and SV VSMCs with tumor necrosis factor-alpha (10 ng/ml) and interferon-gamma (1000 U/ml) in combination for up to 48 h markedly elevated the expression of mRNA for prepro-ET-1 and the release of ET-1 into the culture medium. This cytokine-stimulated release of ET-1 was inhibited by a series of dual endothelin-converting enzyme (ECE)/neutral endopeptidase inhibitors, phosphoramidon, CGS 26303, and CGS 26393, with an accompanying increase in big ET-1 release but with no effect on expression of mRNA for prepro-ET-1. These same compounds were 10 times more potent at inhibiting the conversion of exogenously applied big ET-1 to ET-1. ECE-1b/c mRNA is present in SV VSMCs, however no ECE-1a is present in these cells. Thus VSMCs most probably contain, like endothelial cells, an intracellular ECE responsible for the endogenous synthesis of ET-1. Under the influence of pro-inflammatory mediators the vascular smooth muscle can therefore become an important site of ET-1 production, as has already been established for the dilator mediators nitric oxide, prostaglandin I2, and prostaglandin E2.", "title": "Endothelin-1 is induced by cytokines in human vascular smooth muscle cells: evidence for intracellular endothelin-converting enzyme." }, { "docid": "21382907", "text": "Targeting of αVβ3 and αVβ5 integrins by cilengitide may reduce growth of solid tumors including head and neck squamous cell carcinoma (HNSCC). Preclinical investigations suggest increased activity of cilengitide in combination with other treatment modalities. The only published trial in HNSCC (ADVANTAGE) investigated cisplatin, 5-fluorouracil, and cetuximab (PFE) without or with once (PFE+CIL1W) or twice weekly cilengitide (PFE+CIL2W) in recurrent/metastatic HNSCC. ADVANTAGE showed good tolerability of the cilengitide arms and even lower adverse events (AEs) compared to PFE but not the benefit in overall survival expected based on preclinical data. As we found in the FLAVINO assay, a short-time ex vivo assay for prediction of chemosensitivity, only a subgroup of HNSCC had an increased suppressive effect of cilengitide containing combination therapies on colony formation of epithelial cells (CFec) and release of pro-angiogenetic and pro-inflammatory cytokines, whereas other HNSCC failed to respond. Response to αVβ3 and αVβ5 integrin targeting by cilengitide classifies HNSCC regarding outcome. We present FLAVINO data arguing for further development of cilengitide plus cetuximab in treatment of a subgroup of HNSCC potentially identified by the FLAVINO assay using a set of biomarkers for response evaluation.", "title": "Reduced Cytokine Release in Ex Vivo Response to Cilengitide and Cetuximab Is a Marker for Improved Survival of Head and Neck Cancer Patients" }, { "docid": "16488405", "text": "Physical activity induces a subclinical inflammatory response, mediated in part by leukocytes, and manifested by elevated concentrations of circulating proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). However, the source of the cytokines that appear during exercise remains unknown. In this study, we examined exercise-induced changes in plasma cytokine concentrations and their corresponding mRNA expression in peripheral blood mononuclear cells. Ten healthy [peak oxygen uptake = 48.8 ± 6.5 (SD) ml · kg−1 · min−1] but untrained men [age = 25 ± 5 (SD) yr] undertook 3 h of exercise (cycling and inclined walking) at 60–65% peak oxygen uptake. Circulating leukocyte subset counts were elevated during and 2 h postexercise but returned to normal within 24 h. Plasma concentrations of IL-1β, IL-6, and TNF-α peaked at the end of exercise and remained elevated at 2 h (IL-6) and up to 24 h (IL-1β and TNF-α) postexercise. Cytokine gene expression in circulating mononucl...", "title": "Downloaded from" }, { "docid": "4418070", "text": "Regulatory T (Treg) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling Treg cell homeostasis and function, whereas the early Treg-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the Treg-cell-commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with Treg-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ∼300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt–Foxo1 signalling module controls a novel genetic program indispensable for Treg cell function.", "title": "Novel Foxo1-dependent transcriptional programs control Treg cell function" }, { "docid": "13070316", "text": "Tumor angiogenesis is an essential process for supplying rapidly growing malignant tissues with essential nutrients and oxygen. An angiogenic switch allows tumor cells to survive and grow, and provides them access to vasculature resulting in metastatic disease. Monocyte-derived macrophages recruited and reprogrammed by tumor cells serve as a major source of angiogenic factors boosting the angiogenic switch. Tumor endothelium releases angiopoietin-2 and further facilitates recruitment of TIE2 receptor expressing monocytes (TEM) into tumor sites. Tumor-associated macrophages (TAM) sense hypoxia in avascular areas of tumors, and react by production of angiogenic factors such as VEGFA. VEGFA stimulates chemotaxis of endothelial cells (EC) and macrophages. In some tumors, TAM appeared to be a major source of MMP9. Elevated expression of MMP9 by TAM mediates extracellular matrix (ECM) degradation and the release of bioactive VEGFA. Other angiogenic factors released by TAM include basic fibroblast growth factor (bFGF), thymidine phosphorylase (TP), urokinase-type plasminogen activator (uPA), and adrenomedullin (ADM). The same factors used by macrophages for the induction of angiogenesis [like vascular endothelial growth factor A (VEGF-A) and MMP9] support lymphangiogenesis. TAM can express LYVE-1, one of the established markers of lymphatic endothelium. TAM support tumor lymphangiogenesis not only by secretion of pro-lymphangiogenic factors but also by trans-differentiation into lymphatic EC. New pro-angiogenic factor YKL-40 belongs to a family of mammalian chitinase-like proteins (CLP) that act as cytokines or growth factors. Human CLP family comprises YKL-40, YKL-39, and SI-CLP. Production of all three CLP in macrophages is antagonistically regulated by cytokines. It was recently established that YKL-40 induces angiogenesis in vitro and in animal tumor models. YKL-40-neutralizing monoclonal antibody blocks tumor angiogenesis and progression. The role of YKL-39 and SI-CLP in tumor angiogenesis and lymphangiogenesis remains to be investigated.", "title": "Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis" }, { "docid": "17223891", "text": "NLRP12 is a member of the intracellular Nod-like receptor (NLR) family that has been suggested to downregulate the production of inflammatory cytokines, but its physiological role in regulating inflammation has not been characterized. We analyzed mice deficient in Nlrp12 to study its role in inflammatory diseases such as colitis and colorectal tumorigenesis. We show that Nlrp12-deficient mice are highly susceptible to colon inflammation and tumorigenesis, which is associated with increased production of inflammatory cytokines, chemokines, and tumorigenic factors. Enhanced colon inflammation and colorectal tumor development in Nlrp12-deficient mice are due to a failure to dampen NF-κB and ERK activation in macrophages. These results reveal a critical role for NLRP12 in maintaining intestinal homeostasis and providing protection against colorectal tumorigenesis.", "title": "The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis." }, { "docid": "16863359", "text": "Inflammasomes are multiprotein complexes that link pathogen recognition and cellular stress to the processing of the proinflammatory cytokine interleukin-1β (IL-1β). Whereas inflammasome-mediated activation is heavily studied in hematopoietic macrophages and dendritic cells, much less is known about microglia, resident tissue macrophages of the brain that originate from a distinct progenitor. To directly compare inflammasome-mediated activation in different types of macrophages, we isolated primary microglia and hematopoietic macrophages from adult, healthy rhesus macaques. We analyzed the expression profile of NOD (nucleotide-binding oligomerization domain)-like receptors, adaptor proteins, and caspases and characterized inflammasome activation and regulation in detail. We here demonstrate that primary microglia can respond to the same innate stimuli as hematopoietic macrophages. However, microglial responses are more persistent due to lack of negative regulation on pro-IL-1β expression. In addition, we show that while caspase 1, 4, and 5 activation is pivotal for inflammasome-induced IL-1β secretion by hematopoietic macrophages, microglial secretion of IL-1β is only partially dependent on these inflammatory caspases. These results identify key cell type-specific differences that may aid the development of strategies to modulate innate immune responses in the brain.", "title": "Inflammasome-induced IL-1β secretion in microglia is characterized by delayed kinetics and is only partially dependent on inflammatory caspases." }, { "docid": "13231899", "text": "Vaccines are largely ineffective for patients with established cancer, as advanced disease requires potent and sustained activation of CD8(+) cytotoxic T lymphocytes (CTLs) to kill tumor cells and clear the disease. Recent studies have found that subsets of dendritic cells (DCs) specialize in antigen cross-presentation and in the production of cytokines, which regulate both CTLs and T regulatory (Treg) cells that shut down effector T cell responses. Here, we addressed the hypothesis that coordinated regulation of a DC network, and plasmacytoid DCs (pDCs) and CD8(+) DCs in particular, could enhance host immunity in mice. We used functionalized biomaterials incorporating various combinations of an inflammatory cytokine, immune danger signal, and tumor lysates to control the activation and localization of host DC populations in situ. The numbers of pDCs and CD8(+) DCs, and the endogenous production of interleukin-12, all correlated strongly with the magnitude of protective antitumor immunity and the generation of potent CD8(+) CTLs. Vaccination by this method maintained local and systemic CTL responses for extended periods while inhibiting FoxP3 Treg activity during antigen clearance, resulting in complete regression of distant and established melanoma tumors. The efficacy of this vaccine as a monotherapy against large invasive tumors may be a result of the local activity of pDCs and CD8(+) DCs induced by persistent danger and antigen signaling at the vaccine site. These results indicate that a critical pattern of DC subsets correlates with the evolution of therapeutic antitumor responses and provide a template for future vaccine design.", "title": "In situ regulation of DC subsets and T cells mediates tumor regression in mice." }, { "docid": "29509926", "text": "Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-κB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses.", "title": "High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-κB/STAT1-IRF1 Signaling." }, { "docid": "52925737", "text": "BACKGROUND Exosomes are extracellular vesicles that mediate cellular communication in health and diseases. Neutrophils could be polarized to a pro-tumor phenotype by tumor. The function of tumor-derived exosomes in neutrophil regulation remains unclear. \n METHODS We investigated the effects of gastric cancer cell-derived exosomes (GC-Ex) on the pro-tumor activation of neutrophils and elucidated the underlying mechanisms. \n RESULTS GC-Ex prolonged neutrophil survival and induced expression of inflammatory factors in neutrophils. GC-Ex-activated neutrophils, in turn, promoted gastric cancer cell migration. GC-Ex transported high mobility group box-1 (HMGB1) that activated NF-κB pathway through interaction with TLR4, resulting in an increased autophagic response in neutrophils. Blocking HMGB1/TLR4 interaction, NF-κB pathway, and autophagy reversed GC-Ex-induced neutrophil activation. Silencing HMGB1 in gastric cancer cells confirmed HMGB1 as a key factor for GC-Ex-mediated neutrophil activation. Furthermore, HMGB1 expression was upregulated in gastric cancer tissues. Increased HMGB1 expression was associated with poor prognosis in patients with gastric cancer. Finally, gastric cancer tissue-derived exosomes acted similarly as exosomes derived from gastric cancer cell lines in neutrophil activation. \n CONCLUSION We demonstrate that gastric cancer cell-derived exosomes induce autophagy and pro-tumor activation of neutrophils via HMGB1/TLR4/NF-κB signaling, which provides new insights into mechanisms for neutrophil regulation in cancer and sheds lights on the multifaceted role of exosomes in reshaping tumor microenvironment.", "title": "Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration" }, { "docid": "343052", "text": "Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses.", "title": "Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model." }, { "docid": "6144969", "text": "Virally induced inflammatory responses, beta cell destruction and release of beta cell autoantigens may lead to autoimmune reactions culminating in type 1 diabetes. Therefore, viral capability to induce beta cell death and the nature of virus-induced immune responses are among key determinants of diabetogenic viruses. We hypothesised that enterovirus infection induces a specific gene expression pattern that results in islet destruction and that such a host response pattern is not shared among all enterovirus infections but varies between virus strains. The changes in global gene expression and secreted cytokine profiles induced by lytic or benign enterovirus infections were studied in primary human pancreatic islet using DNA microarrays and viral strains either isolated at the clinical onset of type 1 diabetes or capable of causing a diabetes-like condition in mice. The expression of pro-inflammatory cytokine genes (IL-1-α, IL-1-β and TNF-α) that also mediate cytokine-induced beta cell dysfunction correlated with the lytic potential of a virus. Temporally increasing gene expression levels of double-stranded RNA recognition receptors, antiviral molecules, cytokines and chemokines were detected for all studied virus strains. Lytic coxsackievirus B5 (CBV-5)-DS infection also downregulated genes involved in glycolysis and insulin secretion. The results suggest a distinct, virus-strain-specific, gene expression pattern leading to pancreatic islet destruction and pro-inflammatory effects after enterovirus infection. However, neither viral replication nor cytotoxic cytokine production alone are sufficient to induce necrotic cell death. More likely the combined effect of these and possibly cellular energy depletion lie behind the enterovirus-induced necrosis of islets.", "title": "Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction" }, { "docid": "43619625", "text": "Activated T cells secrete multiple osteoclastogenic cytokines which play a major role in the bone destruction associated with rheumatoid arthritis. While the role of T cells in osteoclastogenesis has received much attention recently, the effect of T cells on osteoblast formation and activity is poorly defined. In this study, we investigated the hypothesis that in chronic inflammation activated T cells contribute to enhanced bone turnover by promoting osteoblastic differentiation. We show that T cells produce soluble factors that induce alkaline phosphatase activity in bone marrow stromal cells and elevated expression of mRNA for Runx2 and osteocalcin. This data indicate that T cell derived factors have the capacity to stimulate the differentiation of bone marrow stromal cells into the osteoblast phenotype. RANKL mRNA was undetectable under any conditions in highly purified bone marrow stromal cells. In contrast, RANKL was constitutively expressed in primary osteoblasts and only moderately up-regulated by activated T cell conditioned medium. Interestingly, both bone marrow stromal cells and osteoblasts expressed mRNA for RANK, which was strongly up-regulated in both cell types by activated T cell conditioned medium. Although, mRNA for the RANKL decoy receptor, osteoprotegerin, was also up-regulated by activated T cell conditioned medium, it's inhibitory effects may be mitigated by a simultaneous rise in the osteoprotegerin competitor TNF-related apoptosis-inducing ligand. Based on our data we propose that during chronic inflammation, T cells regulate bone loss by a dual mechanism involving both direct stimulation of osteoclastogenesis, by production of osteoclastogenic cytokines, and indirectly by induction of osteoblast differentiation and up-regulation of bone turnover via coupling.", "title": "Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts." }, { "docid": "3475317", "text": "Granulomas are the pathological hallmark of tuberculosis (TB). However, their function and mechanisms of formation remain poorly understood. To understand the role of granulomas in TB, we analyzed the proteomes of granulomas from subjects with tuberculosis in an unbiased manner. Using laser-capture microdissection, mass spectrometry and confocal microscopy, we generated detailed molecular maps of human granulomas. We found that the centers of granulomas have a pro-inflammatory environment that is characterized by the presence of antimicrobial peptides, reactive oxygen species and pro-inflammatory eicosanoids. Conversely, the tissue surrounding the caseum has a comparatively anti-inflammatory signature. These findings are consistent across a set of six human subjects and in rabbits. Although the balance between systemic pro- and anti-inflammatory signals is crucial to TB disease outcome, here we find that these signals are physically segregated within each granuloma. From the protein and lipid snapshots of human and rabbit lesions analyzed here, we hypothesize that the pathologic response to TB is shaped by the precise anatomical localization of these inflammatory pathways during the development of the granuloma.", "title": "Inflammatory signaling in human Tuberculosis granulomas is spatially organized" }, { "docid": "41877386", "text": "CD4(+)CD25(+) regulatory T cells (T regs) play a major role in the maintenance of self-tolerance and immune suppression, although the mechanisms controlling T reg development and suppressor function remain incompletely understood. Herein, we provide evidence that Kruppel-like factor 10 (KLF10/TIEG1) constitutes an important regulator of T regulatory cell suppressor function and CD4(+)CD25(-) T cell activation through distinct mechanisms involving transforming growth factor (TGF)-beta1 and Foxp3. KLF10 overexpressing CD4(+)CD25(-) T cells induced both TGF-beta1 and Foxp3 expression, an effect associated with reduced T-Bet (Th1 marker) and Gata3 (Th2 marker) mRNA expression. Consistently, KLF10(-/-) CD4(+)CD25(-) T cells have enhanced differentiation along both Th1 and Th2 pathways and elaborate higher levels of Th1 and Th2 cytokines. Furthermore, KLF10(-/-) CD4(+)CD25(-) T cell effectors cannot be appropriately suppressed by wild-type T regs. Surprisingly, KLF10(-/-) T reg cells have reduced suppressor function, independent of Foxp3 expression, with decreased expression and elaboration of TGF-beta1, an effect completely rescued by exogenous treatment with TGF-beta1. Mechanistic studies demonstrate that in response to TGF-beta1, KLF10 can transactivate both TGF-beta1 and Foxp3 promoters, implicating KLF10 in a positive feedback loop that may promote cell-intrinsic control of T cell activation. Finally, KLF10(-/-) CD4(+)CD25(-) T cells promoted atherosclerosis by approximately 2-fold in ApoE(-/-)/scid/scid mice with increased leukocyte accumulation and peripheral pro-inflammatory cytokines. Thus, KLF10 is a critical regulator in the transcriptional network controlling TGF-beta1 in both CD4(+)CD25(-) T cells and T regs and plays an important role in regulating atherosclerotic lesion formation in mice.", "title": "Kruppel-like factor KLF10 targets transforming growth factor-beta1 to regulate CD4(+)CD25(-) T cells and T regulatory cells." }, { "docid": "25726838", "text": "The role of immune responses in tumor development is a central issue for tumor biology and immunology. IL-17 is an important cytokine for inflammatory and autoimmune diseases. Although IL-17-producing cells are detected in cancer patients and tumor-bearing mice, the role of IL-17 in tumor development is controversial, and mechanisms remain to be fully elucidated. In the current study, we found that the development of tumors was inhibited in IL-17R-deficient mice. A defect in IFN-gammaR increased tumor growth, whereas tumor growth was inhibited in mice that were deficient in both IL-17R and IFN-gammaR compared with wild-type animals. Further experiments showed that neutralization of IL-17 by Abs inhibited tumor growth in wild-type mice, whereas systemic administration of IL-17 promoted tumor growth. The IL-17R deficiency increased CD8 T cell infiltration, whereas it reduced the infiltration of myeloid-derived suppressor cells (MDSCs) in tumors. In contrast, administration of IL-17 inhibited CD8 T cell infiltration and increased MDSCs in tumors. Further analysis indicated that IL-17 was required for the development and tumor-promoting activity of MDSCs in tumor-bearing mice. These data demonstrate that IL-17-mediated responses promote tumor development through the induction of tumor-promoting microenvironments at tumor sites. IL-17-mediated regulation of MDSCs is a primary mechanism for its tumor-promoting effects. The study provides novel insights into the role of IL-17 in tumor development and has major implications for targeting IL-17 in treatment of tumors.", "title": "IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells." }, { "docid": "45449835", "text": "Myelin-directed autoimmunity is considered to play a key role in the pathogenesis of multiple sclerosis (MS). Increased production of both pro- and anti-inflammatory cytokines is a common finding in MS. Interleukin-17 (IL-17) is a recently described cytokine produced in humans almost exclusively by activated memory T cells, which can induce the production of proinflammatory cytokines and chemokines from parenchymal cells and macrophages. In situ hybridisation with synthetic oligonucleotide probes was adopted to detect and enumerate IL-17 mRNA expressing mononuclear cells (MNC) in blood and cerebrospinal fluid (CSF) from patients with MS and control individuals. Numbers of IL-17 mRNA expressing blood MNC were higher in patients with MS and acute aseptic meningoencephalitis (AM) compared to healthy individuals. Higher numbers of IL-17 mRNA expressing blood MNC were detected in MS patients examined during clinical exacerbation compared to remission. Patients with MS had higher numbers of IL-17 mRNA expressing MNC in CSF compared to blood. This increase in numbers of IL-17 mRNA expressing MNC in CSF was not observed in patients with AM. Our results thus demonstrate increased numbers of IL-17 mRNA expressing MNC in MS with higher numbers in CSF than blood, and with the highest numbers in blood during clinical exacerbations.", "title": "Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis." }, { "docid": "19130782", "text": "Interferon-gamma (IFN-γ) is a pleiotropic molecule with associated antiproliferative, pro-apoptotic and antitumor mechanisms. This effector cytokine, often considered as a major effector of immunity, has been used in the treatment of several diseases, despite its adverse effects. Although broad evidence implicating IFN-γ in tumor immune surveillance, IFN-γ-based therapies undergoing clinical trials have been of limited success. In fact, recent reports suggested that it may also play a protumorigenic role, namely, through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, and upregulation of indoleamine 2,3-dioxygenase and of checkpoint inhibitors, as programmed cell-death ligand 1. However, the IFN-γ-mediated responses are still positively associated with patient's survival in several cancers. Consequently, major research efforts are required to understand the immune contexture in which IFN-γ induces its intricate and highly regulated effects in the tumor microenvironment. This review discusses the current knowledge on the pro- and antitumorigenic effects of IFN-γ as part of the complex immune response to cancer, highlighting the relevance to identify IFN-γ responsive patients for the improvement of therapies that exploit associated signaling pathways.", "title": "Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion" } ]
978
Pro-inflammatory cytokines are up repressed during tumor development.
[ { "docid": "14075252", "text": "Paraneoplastic thrombocytosis is associated with many solid tumors and often correlates with reduced survival. Recent studies suggest that a pathogenic feed back loop may be operative between platelets and tumor cells, with reciprocal interactions between tumor growth/metastasis and thrombocytosis/platelet activation. Specific molecular pathways have been identified in which tumors can stimulate platelet production and activation; activated platelets can, in turn, promote tumor growth and metastasis. Taken together, these findings provide exciting new potential targets for therapeutic intervention.", "title": "Paraneoplastic thrombocytosis: the secrets of tumor self-promotion." } ]
[ { "docid": "8702697", "text": "AIMS Tumor microenvironment is a strong determinant for the acquisition of metastatic potential of cancer cells. We have recently demonstrated that cancer-associated fibroblasts (CAFs) elicit a redox-dependent epithelial-mesenchymal transition (EMT) in prostate cancer (PCa) cells, driven by cycloxygenase-2/hypoxia-inducible factor-1 (HIF-1)/nuclear factor-κB pathway and enhancing tumor aggressiveness. Here, we investigated the involvement of microRNAs (miRNAs) in tumor-stroma interplay to identify possible tools to counteract oxidative stress and metastasis dissemination. \n RESULTS We found that miR-205 is the most downmodulated miRNA in PCa cells upon CAF stimulation, due to direct transcriptional repression by HIF-1, a known redox-sensitive transcription factor. Rescue experiments demonstrated that ectopic miR-205 overexpression in PCa cells counteracts CAF-induced EMT, thus impairing enhancement of cell invasion, acquisition of stem cell traits, tumorigenicity, and metastatic dissemination. In addition, miR-205 blocks tumor-driven activation of surrounding fibroblasts by reducing pro-inflammatory cytokine secretion. INNOVATION Overall, such findings suggest miR-205 as a brake against PCa metastasis by blocking both the afferent and efferent arms of the circuit between tumor cells and associated fibroblasts, thus interrupting the pro-oxidant and pro-inflammatory circuitries engaged by reactive stroma. \n CONCLUSION The evidence that miR-205 replacement in PCa cells is able not only to prevent but also to revert the oxidative/pro-inflammatory axis leading to EMT induced by CAFs sets the rationale for developing miRNA-based approaches to prevent and treat metastatic disease.", "title": "miR-205 hinders the malignant interplay between prostate cancer cells and associated fibroblasts." }, { "docid": "15521377", "text": "Cellular senescence is a stable form of cell-cycle arrest which is thought to limit the proliferative potential of premalignant cells [1]. The senescence phenotype was initially described by Hayflick and Moorhead in 1961 on human fibroblasts undergoing replicative exhaustion in culture [2]. It has been shown that senescence can be triggered in different cell types in response to diverse forms of cellular damage or stress (for review see [1]). Importantly, while senescence was denounced as a tissue culture phenomenon for many years, recent in vivo studies demonstrated that cellular senescence represents a potent failsafe mechanism against tumorigenesis and contributes to the cytotoxicity of certain anticancer agents (see for example [3-7]). Interestingly, senescent cells have also been observed in certain aged or damaged tissues and there is growing evidence that senescence checkpoints can affect the regenerative reserve of tissues and organismal aging [8-11]. However, senescence may also have positive effects on organ maintenance by limiting pathological responses to acute forms of injury such as fibrotic scarring in response to chemical induced liver injury [12]. Over the past years it was also shown that senescent cells can communicate with their environment by secreting a myriad of cytokines and growth factors. Interestingly, this \"senescence associated secretory phenotype (SASP)\" seems to be a double edged sword regarding tumor initiation and maintenance: i) On the one hand, it has been shown that the SASP can have pro-tumorigenic effects. In an experimental system it was shown that senescent mesenchymal cells can enhance the tumorigenicity of surrounding breast cancer cells [13]. ii) Similarly, it is possible that the SASP enhances selection of transformed cell clones in aged organ systems. It has been shown that loss of proliferative competition of non-transformed cells can accelerate leukemogenesis [14]. It remains to be seen whether aberrant secretion of cytokines and growth factors by the SASP can accelerated this process in aged and chronically damage organ systems. iii) In contrast to its pro-tumorigenic aspect, the SASP could also have anti-tumor effects. A recent study showed that in a mosaic liver cancer mouse model the activation of p53 induced senescence, an upregulation of inflammatory cytokines, and activation of innate immune responses leading to tumour cell clearance [15]. iv) In further support that the SASP could have anti-tumor activities, a series of recent papers showed that components of the SASP can stabilize the senescence cell cycle arrest via an autoregulatory feedback loop [16,17] or induces apoptosis of tumor cells [18]. In addition to its effects on tumorigenesis, the SASP could also influence tissue aging. Studies on aging telomere dysfunctional mice have provided direct experimental evidence for an in vivo activation of the SASP in response to telomere dysfunction [19]. Interestingly, this in vivo SASP provoked alterations in stem cell differentiation (skewing of hematopoiesis towards reduction in lymphopoiesis and enhancement of myelopoiesis) that are also characteristic signs of human aging. Figure 1. Different cellular stresses can induce senescence including telomere shortening, DNA damage, and oncogene activation. Senescence of tumor cells ... In light of the many possible roles o the SASP in aging and carcinogenesis, it appears to be of utmost importance to decipher regulatory pathways controlling the SASP. In a current publication, Bhaumik et al. have identified 2 microRNAs (miR-146a/b) that negatively regulate the secretion of IL-6 and IL-8 - two of the SASP [20]. The authors show that these microRNAs are up-regulated at late stages of senescence, many days after a permanent cell cycle arrest has been established. Interestingly, the inhibitory miRs are most strongly up-regulated in senescence of cell lines that show a strong SASP but not in cell lines characterized by a weak SASP. The authors propose a new concept indicating that miRs 146a and b function in a negative feedback loop preventing an over-activation of the SASP in senescent cells. The authors present some initial data suggesting that activation of this negative feedback loop involves IL-1 receptor, IRAK-1, and NFκB signalling leading to an up-regulation of miRs-146a and b. A direct proof that this proposed feedback loop suppresses over-activation of the SASP remains to be demonstrated in future studies. The authors show that blockage of IL-1-receptor signalling prevents both the up-regulation of miRs-146a and b as well as Il-6 secretion. To confirm their new concept, it would be important to show that a selective blockage of miRs-146a and b results in over-activation of the SASP. The work by Bhaumik et al. places mir-146a/b as central players to control IL-6 and IL-8 expression within the SASP. MicroRNAs are emerging therapeutic targets because their expression levels can be effectively modulated via the use of antagomirs (see for example [21]). Also, for increasing microRNA expression, microRNAs can be delivered into cellsin vivo (see for example [22]). Therefore, it will be interesting to functionally test the impact of mir-146 inhibition on tumorigenesis and aging in relevant mouse models. Such studies will be of particular interest, as recent work showed that IL-6 secretion by senescent cells is relevant for initiating and maintaining the senescene response via an autocrine loop [17]. A reduction of miR-146 could increase IL-6 levels in senescent cells, which should stabilize the senescence program and reduce the risk of malignant transformation. Furthermore, it can be speculated that reduction of mir-146 a/b will increase NfκB activation via IRAK1. As NfκB is modulating the expression of various inflammation associated genes, this may also lead to increased clearance of senescent tumor cells by the innate immune system. However, it should be mentioned that Il-6 secreted by senescent cells can also act as a mitogen for surrounding cells, thus potentially increasing the risk of malignant transformation [13,17]. Besides its function in SASP modulation, miR-146 was also reported to target the mRNAs of the BRCA1 and BRCA2 tumor suppressors. In a recent study a G to C polymorphism in miR-146, which leads to an increased processing and release of the mature microRNA, can predict an early onset of breast cancer [23]. Taken together, the study of Bhaumik et al. opens an interesting new research area dealing with the gene regulatory mechanisms that control activation of the SASP. Given the diverse roles of the SASP in modulating tumor progression, immune surveillance of damaged cells, and the stabilization of the senescence arrest itself, it will be of great interest to analyse the influence of SASP regulatory pathways during aging and cancer.", "title": "Keeping your senescent cells under control" }, { "docid": "21382907", "text": "Targeting of αVβ3 and αVβ5 integrins by cilengitide may reduce growth of solid tumors including head and neck squamous cell carcinoma (HNSCC). Preclinical investigations suggest increased activity of cilengitide in combination with other treatment modalities. The only published trial in HNSCC (ADVANTAGE) investigated cisplatin, 5-fluorouracil, and cetuximab (PFE) without or with once (PFE+CIL1W) or twice weekly cilengitide (PFE+CIL2W) in recurrent/metastatic HNSCC. ADVANTAGE showed good tolerability of the cilengitide arms and even lower adverse events (AEs) compared to PFE but not the benefit in overall survival expected based on preclinical data. As we found in the FLAVINO assay, a short-time ex vivo assay for prediction of chemosensitivity, only a subgroup of HNSCC had an increased suppressive effect of cilengitide containing combination therapies on colony formation of epithelial cells (CFec) and release of pro-angiogenetic and pro-inflammatory cytokines, whereas other HNSCC failed to respond. Response to αVβ3 and αVβ5 integrin targeting by cilengitide classifies HNSCC regarding outcome. We present FLAVINO data arguing for further development of cilengitide plus cetuximab in treatment of a subgroup of HNSCC potentially identified by the FLAVINO assay using a set of biomarkers for response evaluation.", "title": "Reduced Cytokine Release in Ex Vivo Response to Cilengitide and Cetuximab Is a Marker for Improved Survival of Head and Neck Cancer Patients" }, { "docid": "6397191", "text": "Endothelin-1 (ET-1) is the predominant endothelin isopeptide generated by the vascular wall and therefore appears to be the most important peptide involved in regulation of cardiovascular events. Many pathologic conditions are associated with elevations of ET-1 in the blood vessel wall. Because these conditions are often cytokine driven, we examined the effects of a mixture of cytokines on ET-1 production in human vascular smooth muscle cells (VSMCs) derived from internal mammary artery and saphenous vein (SV). Incubation of IMA and SV VSMCs with tumor necrosis factor-alpha (10 ng/ml) and interferon-gamma (1000 U/ml) in combination for up to 48 h markedly elevated the expression of mRNA for prepro-ET-1 and the release of ET-1 into the culture medium. This cytokine-stimulated release of ET-1 was inhibited by a series of dual endothelin-converting enzyme (ECE)/neutral endopeptidase inhibitors, phosphoramidon, CGS 26303, and CGS 26393, with an accompanying increase in big ET-1 release but with no effect on expression of mRNA for prepro-ET-1. These same compounds were 10 times more potent at inhibiting the conversion of exogenously applied big ET-1 to ET-1. ECE-1b/c mRNA is present in SV VSMCs, however no ECE-1a is present in these cells. Thus VSMCs most probably contain, like endothelial cells, an intracellular ECE responsible for the endogenous synthesis of ET-1. Under the influence of pro-inflammatory mediators the vascular smooth muscle can therefore become an important site of ET-1 production, as has already been established for the dilator mediators nitric oxide, prostaglandin I2, and prostaglandin E2.", "title": "Endothelin-1 is induced by cytokines in human vascular smooth muscle cells: evidence for intracellular endothelin-converting enzyme." }, { "docid": "16488405", "text": "Physical activity induces a subclinical inflammatory response, mediated in part by leukocytes, and manifested by elevated concentrations of circulating proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). However, the source of the cytokines that appear during exercise remains unknown. In this study, we examined exercise-induced changes in plasma cytokine concentrations and their corresponding mRNA expression in peripheral blood mononuclear cells. Ten healthy [peak oxygen uptake = 48.8 ± 6.5 (SD) ml · kg−1 · min−1] but untrained men [age = 25 ± 5 (SD) yr] undertook 3 h of exercise (cycling and inclined walking) at 60–65% peak oxygen uptake. Circulating leukocyte subset counts were elevated during and 2 h postexercise but returned to normal within 24 h. Plasma concentrations of IL-1β, IL-6, and TNF-α peaked at the end of exercise and remained elevated at 2 h (IL-6) and up to 24 h (IL-1β and TNF-α) postexercise. Cytokine gene expression in circulating mononucl...", "title": "Downloaded from" }, { "docid": "18882947", "text": "The HMG-box factor Tcf1 is required during T-cell development in the thymus and mediates the nuclear response to Wnt signals. Tcf1(-/-) mice have previously been characterized and show developmental blocks at the CD4-CD8- double negative (DN) to CD4+CD8+ double positive transition. Due to the blocks in T-cell development, Tcf1(-/-) mice normally have a very small thymus. Unexpectedly, a large proportion of Tcf1(-/-) mice spontaneously develop thymic lymphomas with 50% of mice developing a thymic lymphoma/leukemia at the age of 16 wk. These lymphomas are clonal, highly metastatic, and paradoxically show high Wnt signaling when crossed with Wnt reporter mice and have high expression of Wnt target genes Lef1 and Axin2. In wild-type thymocytes, Tcf1 is higher expressed than Lef1, with a predominance of Wnt inhibitory isoforms. Loss of Tcf1 as repressor of Lef1 leads to high Wnt activity and is the initiating event in lymphoma development, which is exacerbated by activating Notch1 mutations. Thus, Notch1 and loss of Tcf1 functionally act as collaborating oncogenic events. Tcf1 deficiency predisposes to the development of thymic lymphomas by ectopic up-regulation of Lef1 due to lack of Tcf1 repressive isoforms and frequently by cooperating activating mutations in Notch1. Tcf1 therefore functions as a T-cell-specific tumor suppressor gene, besides its established role as a Wnt responsive transcription factor. Thus, Tcf1 acts as a molecular switch between proliferative and repressive signals during T-lymphocyte development in the thymus.", "title": "The Nuclear Effector of Wnt-Signaling, Tcf1, Functions as a T-Cell–Specific Tumor Suppressor for Development of Lymphomas" }, { "docid": "29509926", "text": "Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-κB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses.", "title": "High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-κB/STAT1-IRF1 Signaling." }, { "docid": "6144969", "text": "Virally induced inflammatory responses, beta cell destruction and release of beta cell autoantigens may lead to autoimmune reactions culminating in type 1 diabetes. Therefore, viral capability to induce beta cell death and the nature of virus-induced immune responses are among key determinants of diabetogenic viruses. We hypothesised that enterovirus infection induces a specific gene expression pattern that results in islet destruction and that such a host response pattern is not shared among all enterovirus infections but varies between virus strains. The changes in global gene expression and secreted cytokine profiles induced by lytic or benign enterovirus infections were studied in primary human pancreatic islet using DNA microarrays and viral strains either isolated at the clinical onset of type 1 diabetes or capable of causing a diabetes-like condition in mice. The expression of pro-inflammatory cytokine genes (IL-1-α, IL-1-β and TNF-α) that also mediate cytokine-induced beta cell dysfunction correlated with the lytic potential of a virus. Temporally increasing gene expression levels of double-stranded RNA recognition receptors, antiviral molecules, cytokines and chemokines were detected for all studied virus strains. Lytic coxsackievirus B5 (CBV-5)-DS infection also downregulated genes involved in glycolysis and insulin secretion. The results suggest a distinct, virus-strain-specific, gene expression pattern leading to pancreatic islet destruction and pro-inflammatory effects after enterovirus infection. However, neither viral replication nor cytotoxic cytokine production alone are sufficient to induce necrotic cell death. More likely the combined effect of these and possibly cellular energy depletion lie behind the enterovirus-induced necrosis of islets.", "title": "Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction" }, { "docid": "3475317", "text": "Granulomas are the pathological hallmark of tuberculosis (TB). However, their function and mechanisms of formation remain poorly understood. To understand the role of granulomas in TB, we analyzed the proteomes of granulomas from subjects with tuberculosis in an unbiased manner. Using laser-capture microdissection, mass spectrometry and confocal microscopy, we generated detailed molecular maps of human granulomas. We found that the centers of granulomas have a pro-inflammatory environment that is characterized by the presence of antimicrobial peptides, reactive oxygen species and pro-inflammatory eicosanoids. Conversely, the tissue surrounding the caseum has a comparatively anti-inflammatory signature. These findings are consistent across a set of six human subjects and in rabbits. Although the balance between systemic pro- and anti-inflammatory signals is crucial to TB disease outcome, here we find that these signals are physically segregated within each granuloma. From the protein and lipid snapshots of human and rabbit lesions analyzed here, we hypothesize that the pathologic response to TB is shaped by the precise anatomical localization of these inflammatory pathways during the development of the granuloma.", "title": "Inflammatory signaling in human Tuberculosis granulomas is spatially organized" }, { "docid": "45449835", "text": "Myelin-directed autoimmunity is considered to play a key role in the pathogenesis of multiple sclerosis (MS). Increased production of both pro- and anti-inflammatory cytokines is a common finding in MS. Interleukin-17 (IL-17) is a recently described cytokine produced in humans almost exclusively by activated memory T cells, which can induce the production of proinflammatory cytokines and chemokines from parenchymal cells and macrophages. In situ hybridisation with synthetic oligonucleotide probes was adopted to detect and enumerate IL-17 mRNA expressing mononuclear cells (MNC) in blood and cerebrospinal fluid (CSF) from patients with MS and control individuals. Numbers of IL-17 mRNA expressing blood MNC were higher in patients with MS and acute aseptic meningoencephalitis (AM) compared to healthy individuals. Higher numbers of IL-17 mRNA expressing blood MNC were detected in MS patients examined during clinical exacerbation compared to remission. Patients with MS had higher numbers of IL-17 mRNA expressing MNC in CSF compared to blood. This increase in numbers of IL-17 mRNA expressing MNC in CSF was not observed in patients with AM. Our results thus demonstrate increased numbers of IL-17 mRNA expressing MNC in MS with higher numbers in CSF than blood, and with the highest numbers in blood during clinical exacerbations.", "title": "Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis." }, { "docid": "52865789", "text": "OBJECTIVE IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues. \n METHODS Control and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells. \n RESULTS Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues. \n CONCLUSIONS Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome.", "title": "Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues" }, { "docid": "120626", "text": "Obesity is associated with an increased risk of developing insulin resistance and type 2 diabetes. In obese individuals, adipose tissue releases increased amounts of non-esterified fatty acids, glycerol, hormones, pro-inflammatory cytokines and other factors that are involved in the development of insulin resistance. When insulin resistance is accompanied by dysfunction of pancreatic islet β-cells — the cells that release insulin — failure to control blood glucose levels results. Abnormalities in β-cell function are therefore critical in defining the risk and development of type 2 diabetes. This knowledge is fostering exploration of the molecular and genetic basis of the disease and new approaches to its treatment and prevention.", "title": "Mechanisms linking obesity to insulin resistance and type 2 diabetes" }, { "docid": "13070316", "text": "Tumor angiogenesis is an essential process for supplying rapidly growing malignant tissues with essential nutrients and oxygen. An angiogenic switch allows tumor cells to survive and grow, and provides them access to vasculature resulting in metastatic disease. Monocyte-derived macrophages recruited and reprogrammed by tumor cells serve as a major source of angiogenic factors boosting the angiogenic switch. Tumor endothelium releases angiopoietin-2 and further facilitates recruitment of TIE2 receptor expressing monocytes (TEM) into tumor sites. Tumor-associated macrophages (TAM) sense hypoxia in avascular areas of tumors, and react by production of angiogenic factors such as VEGFA. VEGFA stimulates chemotaxis of endothelial cells (EC) and macrophages. In some tumors, TAM appeared to be a major source of MMP9. Elevated expression of MMP9 by TAM mediates extracellular matrix (ECM) degradation and the release of bioactive VEGFA. Other angiogenic factors released by TAM include basic fibroblast growth factor (bFGF), thymidine phosphorylase (TP), urokinase-type plasminogen activator (uPA), and adrenomedullin (ADM). The same factors used by macrophages for the induction of angiogenesis [like vascular endothelial growth factor A (VEGF-A) and MMP9] support lymphangiogenesis. TAM can express LYVE-1, one of the established markers of lymphatic endothelium. TAM support tumor lymphangiogenesis not only by secretion of pro-lymphangiogenic factors but also by trans-differentiation into lymphatic EC. New pro-angiogenic factor YKL-40 belongs to a family of mammalian chitinase-like proteins (CLP) that act as cytokines or growth factors. Human CLP family comprises YKL-40, YKL-39, and SI-CLP. Production of all three CLP in macrophages is antagonistically regulated by cytokines. It was recently established that YKL-40 induces angiogenesis in vitro and in animal tumor models. YKL-40-neutralizing monoclonal antibody blocks tumor angiogenesis and progression. The role of YKL-39 and SI-CLP in tumor angiogenesis and lymphangiogenesis remains to be investigated.", "title": "Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis" }, { "docid": "11328820", "text": "The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease.", "title": "NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis." }, { "docid": "17223891", "text": "NLRP12 is a member of the intracellular Nod-like receptor (NLR) family that has been suggested to downregulate the production of inflammatory cytokines, but its physiological role in regulating inflammation has not been characterized. We analyzed mice deficient in Nlrp12 to study its role in inflammatory diseases such as colitis and colorectal tumorigenesis. We show that Nlrp12-deficient mice are highly susceptible to colon inflammation and tumorigenesis, which is associated with increased production of inflammatory cytokines, chemokines, and tumorigenic factors. Enhanced colon inflammation and colorectal tumor development in Nlrp12-deficient mice are due to a failure to dampen NF-κB and ERK activation in macrophages. These results reveal a critical role for NLRP12 in maintaining intestinal homeostasis and providing protection against colorectal tumorigenesis.", "title": "The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis." }, { "docid": "343052", "text": "Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses.", "title": "Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model." }, { "docid": "1454773", "text": "The programmed death-1 (PD-1) receptor serves as an immunologic checkpoint, limiting bystander tissue damage and preventing the development of autoimmunity during inflammatory responses. PD-1 is expressed by activated T cells and downmodulates T-cell effector functions upon binding to its ligands, PD-L1 and PD-L2, on antigen-presenting cells. In patients with cancer, the expression of PD-1 on tumor-infiltrating lymphocytes and its interaction with the ligands on tumor and immune cells in the tumor microenvironment undermine antitumor immunity and support its rationale for PD-1 blockade in cancer immunotherapy. This report details the development and characterization of nivolumab, a fully human IgG4 (S228P) anti-PD-1 receptor-blocking monoclonal antibody. Nivolumab binds to PD-1 with high affinity and specificity, and effectively inhibits the interaction between PD-1 and its ligands. In vitro assays demonstrated the ability of nivolumab to potently enhance T-cell responses and cytokine production in the mixed lymphocyte reaction and superantigen or cytomegalovirus stimulation assays. No in vitro antibody-dependent cell-mediated or complement-dependent cytotoxicity was observed with the use of nivolumab and activated T cells as targets. Nivolumab treatment did not induce adverse immune-related events when given to cynomolgus macaques at high concentrations, independent of circulating anti-nivolumab antibodies where observed. These data provide a comprehensive preclinical characterization of nivolumab, for which antitumor activity and safety have been demonstrated in human clinical trials in various solid tumors.", "title": "In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates." }, { "docid": "39424916", "text": "Wedelolactone is a major coumarin of Eclipta prostrata, which is used for preventing liver damage. However the effects of wedelolactone on hepatic fibrosis remained unexplored. The purpose of this study was to demonstrate the anti-fibrotic effects of wedelolactone on activated human hepatic stellate cell (HSC) line LX-2 and the possible underlying mechanisms by means of MTT assay, Hoechst staining, as well as real-time quantitative PCR and western blot. The results showed that wedelolactone reduced the cellular viability of LX-2 in a time and dose-dependent manner. After treatment of wedelolactone, the expressions of collagen I and α-smooth muscle actin, two biomarkers of LX-2 activation, were remarkably decreased. The apoptosis of LX-2 cells was induced by wedelolactone accompanied with the decreasing expression of anti-apoptotic Bcl-2 and increasing expression of pro-apoptotic Bax. In addition, phosphorylated status of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was up-regulated, but not in p38. Moreover, wedelolactone significantly repressed the level of phosphorylated inhibitor of nuclear factor κB (IκB) and p65 in nucleus in spite of tumor necrosis factor-α stimulation. In conclusion, wedelolactone could significantly inhibit the activation of LX-2 cells, the underlying mechanisms of which included inducing Bcl-2 family involved apoptosis, up-regulating phosphorylated status of ERK and JNK expressions, and inhibiting nuclear factor-κB (NF-κB) mediated activity. Wedelolactone might present as a useful tool for the prevention and treatment of hepatic fibrosis.", "title": "Wedelolactone exhibits anti-fibrotic effects on human hepatic stellate cell line LX-2." }, { "docid": "364522", "text": "OBJECTIVES Calcific aortic valve (AV) disease is known to be an inflammation-related process. High-mobility group box-1 (HMGB1) protein and Toll-like receptor 4 (TLR4) have been reported to participate in several inflammatory diseases. The purpose of the present study was to determine whether the HMGB1-TLR4 axis is involved in calcific AV disease, and to evaluate the effect of HMGB1, and its potential mechanisms, on the pro-osteogenic phenotype change of valvular interstitial cells (VICs). \n METHODS Expression of HMGB1 and TLR4 in human calcific AVs was evaluated using immunohistochemical staining and immunoblotting. Cultured VICs were used as an in vitro model. The VICs were stimulated with HMGB1 for analysis, with versus without TLR4 small interfering ribonucleic acid (siRNA), c-Jun N-terminal kinase mitogen-activated protein kinase (JNK MAPK), and nuclear factor kappa-B (NF-κB) inhibitors. \n RESULTS Enhanced accumulation of HMGB1 and TLR4 was observed in calcific valves. Moreover, we found that HMGB1 induced high levels of pro-inflammatory cytokine production and promoted the osteoblastic differentiation and calcification of VICs. In addition, HMGB1 induced phosphorylation of JNK MAPK and NF-κB. However, these effects were markedly suppressed by siRNA silencing of TLR4. In addition, blockade of JNK MAPK and NF-κB phosphorylation prohibited HMGB1-induced production of pro-osteogenic factors, and mineralization of VICs. \n CONCLUSIONS The HMGB1 protein may promote osteoblastic differentiation and calcification of VICs, through the TLR4-JNK-NF-κB signaling pathway.", "title": "High-mobility group box-1 protein induces osteogenic phenotype changes in aortic valve interstitial cells." }, { "docid": "25315295", "text": "Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, such as brain-derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression's development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed.", "title": "Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications." } ]
979
Progerin induces premature aging in stem cells.
[ { "docid": "11659421", "text": "Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) resets their identity back to an embryonic age and, thus, presents a significant hurdle for modeling late-onset disorders. In this study, we describe a strategy for inducing aging-related features in human iPSC-derived lineages and apply it to the modeling of Parkinson's disease (PD). Our approach involves expression of progerin, a truncated form of lamin A associated with premature aging. We found that expression of progerin in iPSC-derived fibroblasts and neurons induces multiple aging-related markers and characteristics, including dopamine-specific phenotypes such as neuromelanin accumulation. Induced aging in PD iPSC-derived dopamine neurons revealed disease phenotypes that require both aging and genetic susceptibility, such as pronounced dendrite degeneration, progressive loss of tyrosine hydroxylase (TH) expression, and enlarged mitochondria or Lewy-body-precursor inclusions. Thus, our study suggests that progerin-induced aging can be used to reveal late-onset age-related disease features in hiPSC-based disease models.", "title": "Human iPSC-based modeling of late-onset disease via progerin-induced aging." } ]
[ { "docid": "16630060", "text": "Somatic stem cell depletion due to the accumulation of DNA damage has been implicated in the appearance of aging-related phenotypes. Hair graying, a typical sign of aging in mammals, is caused by the incomplete maintenance of melanocyte stem cells (MSCs) with age. Here, we report that irreparable DNA damage, as caused by ionizing radiation, abrogates renewal of MSCs in mice. Surprisingly, the DNA-damage response triggers MSC differentiation into mature melanocytes in the niche, rather than inducing their apoptosis or senescence. The resulting MSC depletion leads to irreversible hair graying. Furthermore, deficiency of Ataxia-telangiectasia mutated (ATM), a central transducer kinase of the DNA-damage response, sensitizes MSCs to ectopic differentiation, demonstrating that the kinase protects MSCs from their premature differentiation by functioning as a \"stemness checkpoint\" to maintain the stem cell quality and quantity.", "title": "Genotoxic Stress Abrogates Renewal of Melanocyte Stem Cells by Triggering Their Differentiation" }, { "docid": "40349336", "text": "Developmental abnormalities, cancer, and premature aging each have been linked to defects in the DNA damage response (DDR). Mutations in the ATR checkpoint regulator cause developmental defects in mice (pregastrulation lethality) and humans (Seckel syndrome). Here we show that eliminating ATR in adult mice leads to defects in tissue homeostasis and the rapid appearance of age-related phenotypes, such as hair graying, alopecia, kyphosis, osteoporosis, thymic involution, fibrosis, and other abnormalities. Histological and genetic analyses indicate that ATR deletion causes acute cellular loss in tissues in which continuous cell proliferation is required for maintenance. Importantly, thymic involution, alopecia, and hair graying in ATR knockout mice were associated with dramatic reductions in tissue-specific stem and progenitor cells and exhaustion of tissue renewal and homeostatic capacity. In aggregate, these studies suggest that reduced regenerative capacity in adults via deletion of a developmentally essential DDR gene is sufficient to cause the premature appearance of age-related phenotypes.", "title": "Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss." }, { "docid": "4457834", "text": "The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.", "title": "Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells" }, { "docid": "7506409", "text": "Human mesenchymal stem cells (hMSCs) have been widely studied as a source of primary adult stem cells for cell therapy because of their multidifferentiation potential; however, the growth arrest (also known as \"premature senescence\") often found in hMSCs cultured in vitro has been a major obstacle to the in-depth characterization of these cells. In addition, the inability to maintain constant cell growth hampers the development of additional genetic modifications aimed at achieving desired levels of differentiation to specific tissues; however, the molecular mechanisms that govern this phenomenon remain unclear, with the exception of a few studies demonstrating that induction of p16INK4a is responsible for this senescence-like event. Here, we observed that the premature growth arrest in hMSCs occurs in parallel with the induction of p16INK4a, following abrogation of inhibitory phosphorylation of retinoblastoma protein. These stress responses were concurrent with increased formation of reactive oxygen species (ROSs) from mitochondria and increased p38 mitogen-activated protein kinase (MAPK) activity. The introduction of Wip1 (wild-type p53 inducible phosphatase-1), a well-studied stress modulator, significantly lowered p16INK4a expression and led to p38 MAPK inactivation, although it failed to affect the levels of ROSs. Moreover, the suppression of stress responses by Wip1 apparently extended the life span of hMSCs, compared with control conditions, while maintaining their multilineage differentiation potential. Based on these results, we suggest that senescent growth arrest in hMSCs may result from activation of stress signaling pathways and consequent onset of stress responses, due in part to ROS production during prolonged in vitro culture.", "title": "Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways." }, { "docid": "7492250", "text": "The dentate gyrus has an important role in learning and memory, and adult neurogenesis in the subgranular zone of the dentate gyrus may play a role in the acquisition of new memories. The homeobox gene Prox1 is expressed in the dentate gyrus during embryonic development and adult neurogenesis. Here we show that Prox1 is necessary for the maturation of granule cells in the dentate gyrus during development and for the maintenance of intermediate progenitors during adult neurogenesis. We also demonstrate that Prox1-expressing intermediate progenitors are required for adult neural stem cell self-maintenance in the subgranular zone; thus, we have identified a previously unknown non-cell autonomous regulatory feedback mechanism that controls adult neurogenesis in this region of the mammalian brain. Finally, we show that the ectopic expression of Prox1 induces premature differentiation of neural stem cells.", "title": "Prox1 Is Required for Granule Cell Maturation and Intermediate Progenitor Maintenance During Brain Neurogenesis" }, { "docid": "803312", "text": "The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development. Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions. These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype. Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue.", "title": "Cerebral organoids model human brain development and microcephaly" }, { "docid": "35543846", "text": "Cellular senescence is considered a major tumour-suppressor mechanism in mammals, and many oncogenic insults, such as the activation of the ras proto-oncogene, trigger initiation of the senescence programme. Although it was shown that activation of the senescence programme involves the up-regulation of cell-cycle regulators such as the inhibitors of cyclin-dependent kinases p16INK4A and p21CIP-1, the mechanisms underlying the senescence response remain to be resolved. In the case of stress-induced premature senescence, reactive oxygen species are considered important intermediates contributing to the phenotype. Moreover, distinct alterations of the cellular carbohydrate metabolism are known to contribute to oncogenic transformation, as is best documented for the phenomenon of aerobic glycolysis. These findings suggest that metabolic alterations are involved in tumourigenesis and tumour suppression; however, little is known about the metabolic pathways that contribute to these processes. Using the human fibroblast model of in vitro senescence, we analysed age-dependent changes in the cellular carbohydrate metabolism. Here we show that senescent fibroblasts enter into a metabolic imbalance, associated with a strong reduction in the levels of ribonucleotide triphosphates, including ATP, which are required for nucleotide biosynthesis and hence proliferation. ATP depletion in senescent fibroblasts is due to dysregulation of glycolytic enzymes, and finally leads to a drastic increase in cellular AMP, which is shown here to induce premature senescence. These results suggest that metabolic regulation plays an important role during cellular senescence and hence tumour suppression.", "title": "Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence." }, { "docid": "22544171", "text": "Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.", "title": "Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome" }, { "docid": "9997636", "text": "The aim of this study was to confirm the presence of stem cells in the ovarian surface epithelium of patients with premature ovarian failure and no mature follicles and oocytes. In these patients, small round cells of unknown origin expressing SOX-2 marker of pluripotency were observed among the epithelial cells just after the ovarian surface epithelium scraping. These cells were an integral part of the ovarian surface epithelium. When the scraped cells were cultured in a medium with added follicular fluid to provide some ovarian niche, primitive oocyte-like cells and typical round-shaped cell clusters positively stained on alkaline phosphatase, and markers of pluripotency, such as SOX-2 and SSEA-4, were developed. These markers were expressed early and also later in the culture. Single oocyte-like cells expressed genes OCT4A, SOX-2, NANOG, NANOS, STELLA, CD9, LIN28, KLF4, GDF3, and MYC, characteristic for pluripotent stem cells. The results of this study confirmed the presence of putative stem cells in the ovarian surface epithelium of these patients and provided some basis to create a stem cell line in the future.", "title": "Ovarian Surface Epithelium in Patients with Severe Ovarian Infertility: A Potential Source of Cells Expressing Markers of Pluripotent/Multipotent Stem Cells" }, { "docid": "52868579", "text": "Epigenetic genome modifications are thought to be important for specifying the lineage and developmental stage of cells within a multicellular organism. Here, we show that the epigenetic profile of pluripotent embryonic stem cells (ES) is distinct from that of embryonic carcinoma cells, haematopoietic stem cells (HSC) and their differentiated progeny. Silent, lineage-specific genes replicated earlier in pluripotent cells than in tissue-specific stem cells or differentiated cells and had unexpectedly high levels of acetylated H3K9 and methylated H3K4. Unusually, in ES cells these markers of open chromatin were also combined with H3K27 trimethylation at some non-expressed genes. Thus, pluripotency of ES cells is characterized by a specific epigenetic profile where lineage-specific genes may be accessible but, if so, carry repressive H3K27 trimethylation modifications. H3K27 methylation is functionally important for preventing expression of these genes in ES cells as premature expression occurs in embryonic ectoderm development (Eed)-deficient ES cells. Our data suggest that lineage-specific genes are primed for expression in ES cells but are held in check by opposing chromatin modifications.", "title": "Chromatin signatures of pluripotent cell lines." }, { "docid": "33257464", "text": "CONTEXT Although cerebral palsy (CP) among extremely premature infants has been reported as a major morbidity outcome, there are difficulties comparing published CP rates from many sites over various birth years. \n OBJECTIVE To assess the changes in population-based, gestational age-specific prevalence rates of CP among extremely premature infants over 30 years. \n DESIGN Prospective population-based longitudinal outcome study. \n SETTING AND PARTICIPANTS In Northern Alberta, 2318 infants 20 to 27 weeks' gestational age with birth weights of 500 to 1249 g were liveborn from 1974 through 2003. By 2 years of age, 1437 (62%) had died, 23 (1%) were lost to follow-up, and 858 (37%) had received multidisciplinary neurodevelopmental assessment. \n MAIN OUTCOME MEASURE Population-based prevalence rates of CP were determined. Logistic regression with linear spline was used to assess changes in CP prevalence over time. \n RESULTS At age 2 years, 122 (14.2%) of 858 survivors had CP. This diagnosis was confirmed for each child by age 3 years or older. Among those whose gestational age was 20 to 25 weeks, population-based survival increased from 4% to 31% (P<.001), while CP prevalence per 1000 live births increased monotonically from 0 to 110 until the years 1992-1994 (P<.001) and decreased thereafter to 22 in the years 2001-2003 (P<.001). Among those whose gestational age was 26 to 27 weeks, population-based survival increased from 23% to between 75% and 80% (P<.001), while CP prevalence per 1000 live births increased monotonically from 15 to 155 until the years 1992-1994 (P<.001) and then decreased to 16 in the years 2001-2003 (P<.001). For all survivors born in the years 2001-2003, CP prevalence was 19 per 1000 live births. \n CONCLUSION Population-based CP prevalence rates for children whose gestational age was 20 to 27 weeks and whose birth weight ranged from 500 to 1249 g show steady reductions in the last decade with stable or reducing mortality, reversing trends prior to 1992-1994.", "title": "Changes in the prevalence of cerebral palsy for children born very prematurely within a population-based program over 30 years." }, { "docid": "34747208", "text": "Mutations in the nuclear structural protein lamin A cause the premature aging syndrome Hutchinson-Gilford progeria (HGPS). Whether lamin A plays any role in normal aging is unknown. We show that the same molecular mechanism responsible for HGPS is active in healthy cells. Cell nuclei from old individuals acquire defects similar to those of HGPS patient cells, including changes in histone modifications and increased DNA damage. Age-related nuclear defects are caused by sporadic use, in healthy individuals, of the same cryptic splice site in lamin A whose constitutive activation causes HGPS. Inhibition of this splice site reverses the nuclear defects associated with aging. These observations implicate lamin A in physiological aging.", "title": "Lamin A-dependent nuclear defects in human aging." }, { "docid": "2466614", "text": "Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of \"survival\" responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension.", "title": "Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms" }, { "docid": "19343151", "text": "The cell-cycle regulating gene, p16INK4A, encoding an inhibitor of cyclin-dependent kinases 4 and 6, is considered to play an important role in cellular aging and in premature senescence. Although there is an age-dependent increase of p16INK4A expression in human fibroblast senescence in vitro, no data are available regarding the age dependency of p16INK4A in vivo. To determine whether p16INK4A expression in human skin correlates with donor age, p16INK4A expression was analyzed by immunohistochemistry as well as the expression of the p16INK4A repressor BMI1. Samples from the age groups 0-20, 21-70, and 71-95 years were selected from a bank of healthy human skin. We show that the number of p16INK4A positive cells is significantly higher in elderly individuals compared to the younger age groups. The number of p16INK4A positive cells was found to be increased in both epidermis and dermis, compartments with strictly different proliferative activities. BMI1 gene expression was significantly down-regulated with increasing donor age, whereas no striking age differences were observed for Ki67. In immunofluorescence co-expression studies, Ki67-positive cells were negative for p16INK4A and BMI1-expressing cells also stained negatively for Ki67. In conclusion, we provide for the first time evidence that p16INK4A expression directly correlates with chronological aging of human skin in vivo. p16INK4A therefore is a biomarker for human aging in vivo. The data reported here suggest a model for changes in regulatory gene expression that drive aging in human skin.", "title": "p16INK4A is a robust in vivo biomarker of cellular aging in human skin." }, { "docid": "10273147", "text": "Human induced pluripotent stem cells (iPSCs) present exciting opportunities for studying development and for in vitro disease modeling. However, reported variability in the behavior of iPSCs has called their utility into question. We established a test set of 16 iPSC lines from seven individuals of varying age, sex and health status, and extensively characterized the lines with respect to pluripotency and the ability to terminally differentiate. Under standardized procedures in two independent laboratories, 13 of the iPSC lines gave rise to functional motor neurons with a range of efficiencies similar to that of human embryonic stem cells (ESCs). Although three iPSC lines were resistant to neural differentiation, early neuralization rescued their performance. Therefore, all 16 iPSC lines passed a stringent test of differentiation capacity despite variations in karyotype and in the expression of early pluripotency markers and transgenes. This iPSC and ESC test set is a robust resource for those interested in the basic biology of stem cells and their applications.", "title": "A functionally characterized test set of human induced pluripotent stem cells" }, { "docid": "25597580", "text": "New neurons are generated in the adult hippocampus throughout life by neural stem/progenitor cells (NSCs), and neurogenesis is a plastic process responsive to external stimuli. We show that canonical Notch signaling through RBP-J is required for hippocampal neurogenesis. Notch signaling distinguishes morphologically distinct Sox2(+) NSCs, and within these pools subpopulations can shuttle between mitotically active or quiescent. Radial and horizontal NSCs respond selectively to neurogenic stimuli. Physical exercise activates the quiescent radial population whereas epileptic seizures induce expansion of the horizontal NSC pool. Surprisingly, reduced neurogenesis correlates with a loss of active horizontal NSCs in aged mice rather than a total loss of stem cells, and the transition to a quiescent state is reversible to rejuvenate neurogenesis in the brain. The discovery of multiple NSC populations with Notch dependence but selective responses to stimuli and reversible quiescence has important implications for the mechanisms of adaptive learning and also for regenerative therapy.", "title": "Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging." }, { "docid": "10526279", "text": "Androgens are widely used for treating Fanconi anemia (FA) and other human bone marrow failure syndromes, but their mode of action remains incompletely understood. Aged Fancd2(-/-) mice were used to assess the therapeutic efficacy of oxymetholone (OXM) and its mechanism of action. Eighteen-month-old Fancd2(-/-) mice recapitulated key human FA phenotypes, including reduced bone marrow cellularity, red cell macrocytosis, and peripheral pancytopenia. As in humans, chronic OXM treatment significantly improved these hematological parameters and stimulated the proliferation of hematopoietic stem and progenitor cells. RNA-Seq analysis implicated downregulation of osteopontin as an important potential mechanism for the drug's action. Consistent with the increased stem cell proliferation, competitive repopulation assays demonstrated that chronic OXM therapy eventually resulted in stem cell exhaustion. These results expand our knowledge of the regulation of hematopoietic stem cell proliferation and have direct clinical implications for the treatment of bone marrow failure.", "title": "Oxymetholone Therapy of Fanconi Anemia Suppresses Osteopontin Transcription and Induces Hematopoietic Stem Cell Cycling" }, { "docid": "34198365", "text": "Covalent DNA-protein crosslinks (DPCs) are toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription. Little was known about DPC-specific repair mechanisms until the recent identification of a DPC-processing protease in yeast. The existence of a DPC protease in higher eukaryotes is inferred from data in Xenopus laevis egg extracts, but its identity remains elusive. Here we identify the metalloprotease SPRTN as the DPC protease acting in metazoans. Loss of SPRTN results in failure to repair DPCs and hypersensitivity to DPC-inducing agents. SPRTN accomplishes DPC processing through a unique DNA-induced protease activity, which is controlled by several sophisticated regulatory mechanisms. Cellular, biochemical, and structural studies define a DNA switch triggering its protease activity, a ubiquitin switch controlling SPRTN chromatin accessibility, and regulatory autocatalytic cleavage. Our data also provide a molecular explanation on how SPRTN deficiency causes the premature aging and cancer predisposition disorder Ruijs-Aalfs syndrome.", "title": "Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN" }, { "docid": "1848452", "text": "Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This Review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease.", "title": "Epigenetic Control of Stem Cell Potential during Homeostasis, Aging, and Disease." } ]
980
Propriospinal interneurons that play a role in the plastic reorganization of spinal circuits are integral for recovery from spinal cord injury.
[ { "docid": "20128547", "text": "Spinal cord injuries (SCIs) in humans and experimental animals are often associated with varying degrees of spontaneous functional recovery during the first months after injury. Such recovery is widely attributed to axons spared from injury that descend from the brain and bypass incomplete lesions, but its mechanisms are uncertain. To investigate the neural basis of spontaneous recovery, we used kinematic, physiological and anatomical analyses to evaluate mice with various combinations of spatially and temporally separated lateral hemisections with or without the excitotoxic ablation of intrinsic spinal cord neurons. We show that propriospinal relay connections that bypass one or more injury sites are able to mediate spontaneous functional recovery and supraspinal control of stepping, even when there has been essentially total and irreversible interruption of long descending supraspinal pathways in mice. Our findings show that pronounced functional recovery can occur after severe SCI without the maintenance or regeneration of direct projections from the brain past the lesion and can be mediated by the reorganization of descending and propriospinal connections. Targeting interventions toward augmenting the remodeling of relay connections may provide new therapeutic strategies to bypass lesions and restore function after SCI and in other conditions such as stroke and multiple sclerosis.", "title": "Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury" } ]
[ { "docid": "4447055", "text": "Contusive spinal cord injury leads to a variety of disabilities owing to limited neuronal regeneration and functional plasticity. It is well established that an upregulation of glial-derived chondroitin sulphate proteoglycans (CSPGs) within the glial scar and perineuronal net creates a barrier to axonal regrowth and sprouting. Protein tyrosine phosphatase σ (PTPσ), along with its sister phosphatase leukocyte common antigen-related (LAR) and the nogo receptors 1 and 3 (NgR), have recently been identified as receptors for the inhibitory glycosylated side chains of CSPGs. Here we find in rats that PTPσ has a critical role in converting growth cones into a dystrophic state by tightly stabilizing them within CSPG-rich substrates. We generated a membrane-permeable peptide mimetic of the PTPσ wedge domain that binds to PTPσ and relieves CSPG-mediated inhibition. Systemic delivery of this peptide over weeks restored substantial serotonergic innervation to the spinal cord below the level of injury and facilitated functional recovery of both locomotor and urinary systems. Our results add a new layer of understanding to the critical role of PTPσ in mediating the growth-inhibited state of neurons due to CSPGs within the injured adult spinal cord.", "title": "Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury" }, { "docid": "2335873", "text": "Bacterial chondroitinase ABC (ChaseABC) has been used to remove the inhibitory chondroitin sulfate chains from chondroitin sulfate proteoglycans to improve regeneration after rodent spinal cord injury. We hypothesized that the mammalian enzyme arylsulfatase B (ARSB) would also enhance recovery after mouse spinal cord injury. Application of the mammalian enzyme would be an attractive alternative to ChaseABC because of its more robust chemical stability and reduced immunogenicity. A one-time injection of human ARSB into injured mouse spinal cord eliminated immunoreactivity for chondroitin sulfates within five days, and up to 9 weeks after injury. After a moderate spinal cord injury, we observed improvements of locomotor recovery assessed by the Basso Mouse Scale (BMS) in ARSB treated mice, compared to the buffer-treated control group, at 6 weeks after injection. After a severe spinal cord injury, mice injected with equivalent units of ARSB or ChaseABC improved similarly and both groups achieved significantly more locomotor recovery than the buffer-treated control mice. Serotonin and tyrosine hydroxylase immunoreactive axons were more extensively present in mouse spinal cords treated with ARSB and ChaseABC, and the immunoreactive axons penetrated further beyond the injury site in ARSB or ChaseABC treated mice than in control mice. These results indicate that mammalian ARSB improves functional recovery after CNS injury. The structural/molecular mechanisms underlying the observed functional improvement remain to be elucidated.", "title": "Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury" }, { "docid": "39532074", "text": "INTRODUCTION The hostile environment after spinal cord injury (SCI) can compromise effects of regenerative therapies. We hypothesized that optimizing the post-traumatic environment with QL6 self-assembling peptides (SAPs) before neural precursor cell (NPC) transplantation would improve cell survival, differentiation and functional recovery. \n METHODS A total of 90 Wistar rats received a clip-compression SCI at C7. Within each of two study arms, animals were randomized into 5 groups (NPC, SAP, NPC+SAP, vehicle, and sham). SAPs and NPCs were injected into the spinal cord 1day and 14days post-injury, respectively. Animals received growth factors over 7days and were immunosuppressed. Rats were sacrificed at 4weeks and sections of the cervical spinal cord prepared for immunohistochemistry (first study arm). Neurological function was assessed weekly for 8weeks using a battery of behavioral tests. Nine weeks post-SCI, the corticospinal tract was assessed using fiber-tracking (second arm). \n RESULTS SAP-treated animals had significantly more surviving NPCs which showed increased differentiation to neurons and oligodendrocytes compared to controls. SAPs alone or in combination with NPCs resulted in smaller intramedullary cysts and larger volume of preserved tissue compared to other groups. The combined treatment group showed reduced astrogliosis and chondroitin sulfate proteoglycan deposition. Synaptic connectivity was increased in the NPC and combined treatment groups. Corticospinal tract preservation and behavioral outcomes improved with combinatorial treatment. \n CONCLUSION Injecting SAPs after SCI enhances subsequent NPC survival, integration and differentiation and improves functional recovery. STATEMENT OF SIGNIFICANCE The hostile environment after spinal cord injury (SCI) can compromise effects of regenerative therapies. We hypothesized that improving this environment with self-assembling peptides (SAPs) before neural precursor cell (NPC) transplantation would support their beneficial effects. SAPs assemble once injected, providing a supportive scaffold for repair and regeneration. We investigated this in a rat model of spinal cord injury. More NPCs survived in SAP-treated animals and these showed increased differentiation compared to controls. SAPS alone or in combination with NPCs resulted in smaller cysts and larger volume of preserved tissue with the combined treatment also reducing scarring and improving behavioral outcomes. Overall, injection of SAPs was shown to improve the efficacy of NPC treatment, a promising finding for those with SCIs.", "title": "Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury." }, { "docid": "6153754", "text": "In patients with spinal cord injury, the primary or mechanical trauma seldom causes total transection, even though the functional loss may be complete. In addition, biochemical and pathological changes in the cord may worsen after injury. To explain these phenomena, the concept of the secondary injury has evolved for which numerous pathophysiological mechanisms have been postulated. This paper reviews the concept of secondary injury with special emphasis on vascular mechanisms. Evidence is presented to support the theory of secondary injury and the hypothesis that a key mechanism is posttraumatic ischemia with resultant infarction of the spinal cord. Evidence for the role of vascular mechanisms has been obtained from a variety of models of acute spinal cord injury in several species. Many different angiographic methods have been used for assessing microcirculation of the cord and for measuring spinal cord blood flow after trauma. With these techniques, the major systemic and local vascular effects of acute spinal cord injury have been identified and implicated in the etiology of secondary injury. The systemic effects of acute spinal cord injury include hypotension and reduced cardiac output. The local effects include loss of autoregulation in the injured segment of the spinal cord and a marked reduction of the microcirculation in both gray and white matter, especially in hemorrhagic regions and in adjacent zones. The microcirculatory loss extends for a considerable distance proximal and distal to the site of injury. Many studies have shown a dose-dependent reduction of spinal cord blood flow varying with the severity of injury, and a reduction of spinal cord blood flow which worsens with time after injury. The functional deficits due to acute spinal cord injury have been measured electrophysiologically with techniques such as motor and somatosensory evoked potentials and have been found proportional to the degree of posttraumatic ischemia. The histological effects include early hemorrhagic necrosis leading to major infarction at the injury site. These posttraumatic vascular effects can be treated. Systemic normotension can be restored with volume expansion or vasopressors, and spinal cord blood flow can be improved with dopamine, steroids, nimodipine, or volume expansion. The combination of nimodipine and volume expansion improves posttraumatic spinal cord blood flow and spinal cord function measured by evoked potentials. These results provide strong evidence that posttraumatic ischemia is an important secondary mechanism of injury, and that it can be counteracted.", "title": "Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms." }, { "docid": "25988622", "text": "Monocyte-derived macrophages (mo-MΦs) and T cells have been shown to contribute to spinal cord repair. Recently, the remote brain choroid plexus epithelium (CP) was identified as a portal for monocyte recruitment, and its activation for leukocyte trafficking was found to be IFN-γ-dependent. Here, we addressed how the need for effector T cells can be reconciled with the role of inflammation-resolving immune cells in the repair process. Using an acute spinal cord injury model, we show that in mice deficient in IFN-γ-producing T cells, the CP was not activated, and recruitment of inflammation-resolving mo-MΦ to the spinal cord parenchyma was limited. We further demonstrate that mo-MΦ locally regulated recruitment of thymic-derived Foxp3(+) regulatory T (Treg) cells to the injured spinal cord parenchyma at the subacute/chronic phase. Importantly, an ablation protocol that resulted in reduced Tregs at this stage interfered with tissue remodeling, in contrast to Treg transient ablation, restricted to the 4 d period before the injury, which favored repair. The enhanced functional recovery observed following such a controlled decrease of Tregs suggests that reduced systemic immunosuppression at the time of the insult can enhance CNS repair. Overall, our data highlight a dynamic immune cell network needed for repair, acting in discrete compartments and stages, and involving effector and regulatory T cells, interconnected by mo-MΦ. Any of these populations may be detrimental to the repair process if their level or activity become dysregulated. Accordingly, therapeutic interventions must be both temporally and spatially controlled.", "title": "CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles." }, { "docid": "30553457", "text": "The role of transient receptor potential M4 (Trpm4), an unusual member of the Trp family of ion channels, is poorly understood. Using rodent models of spinal cord injury, we studied involvement of Trpm4 in the progressive expansion of secondary hemorrhage associated with capillary fragmentation, the most destructive mechanism of secondary injury in the central nervous system. Trpm4 mRNA and protein were abundantly upregulated in capillaries preceding their fragmentation and formation of petechial hemorrhages. Trpm4 expression in vitro rendered COS-7 cells highly susceptible to oncotic swelling and oncotic death following ATP depletion. After spinal cord injury, in vivo gene suppression in rats treated with Trpm4 antisense or in Trpm4−/− mice preserved capillary structural integrity, eliminated secondary hemorrhage, yielded a threefold to fivefold reduction in lesion volume and produced a substantial improvement in neurological function. To our knowledge, this is the first example of a Trp channel that must undergo de novo expression for manifestation of central nervous system pathology.", "title": "De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury" }, { "docid": "32665136", "text": "Traumatic spinal cord injury triggers a complex local inflammatory reaction capable of enhancing repair and exacerbating pathology. The composition and effector potential of the post-injury cellular and molecular immune cascade changes as a function of time and distance from the lesion. Production along this time-space continuum of cytokines, proteases, and growth factors establishes dynamic environments that lead to the death, damage, repair or growth of affected neurons and glia. Microenvironmental cues, therefore, generated by the cells therein, may determine these distinct fates of repair versus pathology. To harness repair, it is necessary to manipulate the assembly and phenotype of cells that comprise the neuroinflammatory response to injury. Here, the potential of the neuroinflammatory response to cause outcomes such as pain, regeneration, and functional recovery is reviewed.", "title": "Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration." }, { "docid": "41822527", "text": "Trauma to the central nervous system (CNS) triggers intraparenchymal inflammation and activation of systemic immunity with the capacity to exacerbate neuropathology and stimulate mechanisms of tissue repair. Despite our incomplete understanding of the mechanisms that control these divergent functions, immune-based therapies are becoming a therapeutic focus. This review will address the complexities and controversies of post-traumatic neuroinflammation, particularly in spinal cord. In addition, current therapies designed to target neuroinflammatory cascades will be discussed.", "title": "Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury." }, { "docid": "36830715", "text": "Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-β signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.", "title": "Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury." }, { "docid": "11254556", "text": "Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.", "title": "Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity" }, { "docid": "16905344", "text": "Injured axons of the adult CNS undergo lengthy retraction from the initial site of axotomy after spinal cord injury. Macrophage infiltration correlates spatiotemporally with this deleterious phenomenon, but the direct involvement of these inflammatory cells has not been demonstrated. In the present study, we examined the role of macrophages in axonal retraction within the dorsal columns after spinal cord injury in vivo and found that retraction occurred between days 2 and 28 after lesion and that the ends of injured axons were associated with ED-1+ cells. Clodronate liposome-mediated depletion of infiltrating macrophages resulted in a significant reduction in axonal retraction; however, we saw no evidence of regeneration. We used time-lapse imaging of adult dorsal root ganglion neurons in an in vitro model of the glial scar to examine macrophage-axon interactions and observed that adhesive contacts and considerable physical interplay between macrophages and dystrophic axons led to extensive axonal retraction. The induction of retraction was dependent on both the growth state of the axon and the activation state of the macrophage. Only dystrophic adult axons were susceptible to macrophage \"attack. \" Unlike intrinsically active cell line macrophages, both primary macrophages and microglia required activation to induce axonal retraction. Contact with astrocytes had no deleterious effect on adult dystrophic axons, suggesting that the induction of extensive retraction was specific to phagocytic cells. Our data are the first to indicate a direct role of activated macrophages in axonal retraction by physical cell-cell interactions with injured axons.", "title": "Another Barrier to Regeneration in the CNS: Activated Macrophages Induce Extensive Retraction of Dystrophic Axons through Direct Physical Interactions" }, { "docid": "11721676", "text": "Primary afferent fibers are originated from pseudounipolar sensory cells in dorsal root ganglia (DRG) and transmit external stimuli received in the skin to the spinal cord. Here we undertook a proteomic approach to uncover the polarity of primary afferent fibers. Lumbar spinal nerve segments, peripheral and central to DRG, were dissected from 5-wk-old Wistar rats and the lysates were subjected to large-sized 2-DE at pH 5-6. Among approximately 800 protein spots detected in the central and peripheral fractions, one of the unique spots in the peripheral fraction with MW of 60 kDa and pI of 5.6 was identified as an isoform of collapsin response mediator protein-2 (CRMP-2) by MALDI-TOF MS and Western blots with anti-CRMP-2 antibodies that recognize 1-17 and 486-528 residues. Since this novel spot was detected only in the peripheral fraction, but not in the central fraction, DRG, and other regions of the brain, it was named periCRMP-2. The C-terminal fragment of CRMP-2 was not detected in periCRMP-2 by MS analyses. Expression of periCRMP-2 decreased following sciatic nerve injury. These results suggest that periCRMP-2 is a C-terminal truncated isoform polarized in the peripheral side of spinal nerves and may be involved in nerve degeneration and regeneration.", "title": "Proteomic identification of a novel isoform of collapsin response mediator protein-2 in spinal nerves peripheral to dorsal root ganglia." }, { "docid": "22309946", "text": "BACKGROUND Technological advancements in neuroimaging and the increased use of these diagnostic modalities are responsible for the discovery of incidentally identified anomalies within the CNS. In addition to the identification of unanticipated brain MRI abnormalities suggestive of demyelinating disease in patients undergoing neuroimaging for a medical reason other than evaluation for multiple sclerosis (MS), asymptomatic spinal cord lesions are periodically identified. \n OBJECTIVE To determine if asymptomatic spinal cord lesions are associated with clinical progression in subjects with radiologically isolated syndrome (RIS). \n METHODS A retrospective review of RIS cases at the University of California, San Francisco Multiple Sclerosis Center was performed. The presence of asymptomatic cervical spinal cord MRI lesions was analyzed as a potential predictor for clinical progression. \n RESULTS Twenty-five of 71 subjects with RIS possessed findings within the cervical spine that were highly suggestive of demyelinating disease. Of these subjects, 21 (84%) progressed clinically to clinically isolated syndrome (n = 19) or primary progressive multiple sclerosis (n = 2) over a median time of 1.6 years from the date of RIS identification (interquartile range 0.8-3.8). The sensitivity, specificity, and positive predictive value of an asymptomatic spinal cord lesion for subsequent development of either a first demyelinating attack or primary progressive MS were 87.5%, 91.5%, and 84%, respectively. The odds ratio of clinical progression was 75.3 (95% confidence interval 16.1-350.0, p < 0.0001). This association remained significant after adjusting for potential confounders. \n CONCLUSION These findings suggest that the presence of asymptomatic spinal cord lesions place subjects with RIS at substantial risk for clinical conversion to either an acute or progressive event, a risk that is independent of brain lesions on MRI.", "title": "Asymptomatic spinal cord lesions predict disease progression in radiologically isolated syndrome." }, { "docid": "2139357", "text": "BACKGROUND The role of the diffusible messenger nitric oxide (NO) in the regulation of pain transmission is still a debate of matter, pro-nociceptive and/or anti-nociceptive. S-Nitrosylation, the reversible post-translational modification of selective cysteine residues in proteins, has emerged as an important mechanism by which NO acts as a signaling molecule. The occurrence of S-nitrosylation in the spinal cord and its targets that may modulate pain transmission remain unclarified. The \"biotin-switch\" method and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were employed for identifying S-nitrosylated proteins. \n RESULTS Here we show that actin was a major protein S-nitrosylated in the spinal cord by the NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP). Interestingly, actin was S-nitrosylated, more in the S2 fraction than in the P2 fraction of the spinal homogenate. Treatment of PC12 cells with SNAP caused rapid S-nitrosylation of actin and inhibited dopamine release from the cells. Just like cytochalasin B, which depolymerizes actin, SNAP decreased the amount of filamentous actin cytoskeleton just beneath the membrane. The inhibition of dopamine release was not attenuated by inhibitors of soluble guanylyl cyclase and cGMP-dependent protein kinase. \n CONCLUSION The present study demonstrates that actin is a major S-nitrosylated protein in the spinal cord and suggests that NO directly regulates neurotransmitter release by S-nitrosylation in addition to the well-known phosphorylation by cGMP-dependent protein kinase.", "title": "Involvement of S-nitrosylation of actin in inhibition of neurotransmitter release by nitric oxide" }, { "docid": "34630025", "text": "Eosinophils are abundant in inflammatory demyelinating lesions in neuromyelitis optica (NMO). We used cell culture, ex vivo spinal cord slices, and in vivo mouse models of NMO to investigate the role of eosinophils in NMO pathogenesis and the therapeutic potential of eosinophil inhibitors. Eosinophils cultured from mouse bone marrow produced antibody-dependent cell-mediated cytotoxicity (ADCC) in cell cultures expressing aquaporin-4 in the presence of NMO autoantibody (NMO-IgG). In the presence of complement, eosinophils greatly increased cell killing by a complement-dependent cell-mediated cytotoxicity (CDCC) mechanism. NMO pathology was produced in NMO-IgG-treated spinal cord slice cultures by inclusion of eosinophils or their granule toxins. The second-generation antihistamines cetirizine and ketotifen, which have eosinophil-stabilizing actions, greatly reduced NMO-IgG/eosinophil-dependent cytotoxicity and NMO pathology. In live mice, demyelinating NMO lesions produced by continuous intracerebral injection of NMO-IgG and complement showed marked eosinophil infiltration. Lesion severity was increased in transgenic hypereosinophilic mice. Lesion severity was reduced in mice made hypoeosinophilic by anti-IL-5 antibody or by gene deletion, and in normal mice receiving cetirizine orally. Our results implicate the involvement of eosinophils in NMO pathogenesis by ADCC and CDCC mechanisms and suggest the therapeutic utility of approved eosinophil-stabilizing drugs.", "title": "Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica." }, { "docid": "24632480", "text": "Aberrant protein misfolding may contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS) but the detailed mechanisms are largely unknown. Our previous study has shown that autophagy is altered in the mouse model of ALS. In the present study, we systematically investigated the correlation of the autophagic alteration with the motor neurons (MNs) degeneration in the ALS mice. We have demonstrated that the autophagic protein marker LC3-II is markedly and specifically increased in the spinal cord MNs of the ALS mice. Electron microscopy and immunochemistry studies have shown that autophagic vacuoles are significantly accumulated in the dystrophic axons of spinal cord MNs of the ALS mice. All these changes in the ALS mice appear at the age of 90 d when the ALS mice display modest clinical symptoms; and they become prominent at the age of 120 d. The clinical symptoms are correlated with the progression of MNs degeneration. Moreover, we have found that p62/SQSTM1 is accumulated progressively in the spinal cord, indicating that the possibility of impaired autophagic flux in the SOD1(G93A) mice. Furthermore, to our surprise, we have found that treatment with autophagy enhancer rapamycin accelerates the MNs degeneration, shortens the life span of the ALS mice, and has no obvious effects on the accumulation of SOD1 aggregates. In addition, we have demonstrated that rapamycin treatment in the ALS mice causes more severe mitochondrial impairment, higher Bax levels and greater caspase-3 activation. These findings suggest that selective degeneration of MNs is associated with the impairment of the autophagy pathway and that rapamycin treatment may exacerbate the pathological processing through apoptosis and other mechanisms in the ALS mice.", "title": "Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis." }, { "docid": "17482507", "text": "OBJECTIVE To review the evidence for the use of bisphosphonates to reduce skeletal morbidity in cancer patients with bone metastases. \n DATA SOURCES Electronic databases, scanning reference lists, and consultation with experts and pharmaceutical companies. Foreign language papers were included. STUDY SELECTION Included trials were randomised controlled trials of patients with malignant disease and bone metastases who were treated with oral or intravenous bisphosphonate compared with another bisphosphonate, placebo, or standard care. All trials measured at least one outcome of skeletal morbidity. \n RESULTS 95 articles were identified; 30 studies fulfilled inclusion criteria. In studies that lasted > or = 6 months, compared with placebo bisphosphonates significantly reduced the odds ratio for fractures (vertebral 0.69, 95% confidence interval 0.57 to 0.84, P < 0.0001; non-vertebral 0.65, 0.54 to 0.79, P < 0.0001; combined 0.65, 0.55 to 0.78, P < 0.0001), radiotherapy (0.67, 0.57 to 0.79, P < 0.0001), and hypercalcaemia (0.54, 0.36 to 0.81, P = 0.003) but not for orthopaedic surgery (0.70, 0.46 to 1.05, P = 0.086) or spinal cord compression (0.71, 0.47 to 1.08, P = 0.113). The reduction in orthopaedic surgery was significant in studies that lasted over a year (0.59, 0.39 to 0.88, P = 0.009). Use of bisphosphonates significantly increased time to first skeletal related event but did not increase survival. Subanalyses showed that most evidence supports use of intravenous aminobisphosphonates. \n CONCLUSIONS In people with metastatic bone disease bisphosphonates significantly decrease skeletal morbidity, except for spinal cord compression and increased time to first skeletal related event. Treatment should start when bone metastases are diagnosed and continue until it is no longer clinically relevant.", "title": "Systematic review of role of bisphosphonates on skeletal morbidity in metastatic cancer." }, { "docid": "14419116", "text": "Whole cell patch-clamp recordings were made from sympathetic preganglionic neurons (SPNs) in the intermediolateral cell column of thoracolumbar spinal cord slices of 12- to 16-day-old rats, and the effects of pituitary adenylate cyclase activating polypeptide (PACAP)-38 on N-methyl-D-aspartate (NMDA)- and kainate (KA)-induced inward currents were examined. PACAP, in concentrations (10-30 nM) that caused no significant change of holding currents, reversibly increased NMDA-induced currents but not KA-induced currents. At higher concentrations (>30 nM), the peptide produced a sustained inward current. The potentiating effect of PACAP was nullified by prior incubation of the slices with the adenylate cyclase inhibitor MDL-12,330A (25 microM). Further, superfusing the slices with the membrane-permeable cyclic AMP analogue N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (100-300 microM) in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (700 microM) increased the NMDA currents. This result suggests that PACAP selectively increases NMDA-receptor-mediated responses in the rat SPNs, probably via a cyclic-AMP-dependent mechanism, providing evidence that the peptide may be involved in synaptic plasticity.", "title": "Potentiation of NMDA currents by pituitary adenylate cyclase activating polypeptide in neonatal rat sympathetic preganglionic neurons." }, { "docid": "33535447", "text": "This study evaluates the expression of the chemorepellent semaphorin III (D)/collapsin-1 (sema III) following lesions to the rat CNS. Scar tissue, formed after penetrating injuries to the lateral olfactory tract (LOT), cortex, perforant pathway, and spinal cord, contained numerous spindle-shaped cells expressing high levels of sema III mRNA. The properties of these cells were investigated in detail in the lesioned LOT. Most sema III mRNA-positive cells were located in the core of the scar and expressed proteins characteristic for fibroblast-like cells. Neuropilin-1, a sema III receptor, was expressed in injured neurons with projections to the lesion site, in a subpopulation of scar-associated cells and in blood vessels around the scar. In contrast to lesions made in the mature CNS, LOT transection in neonates did not induce sema III mRNA expression within cells in the lesion and was followed by vigorous axonal regeneration. The concomitant expression of sema III and its receptor neuropilin-1 in the scar suggests that sema III/neuropilin-1-mediated mechanisms are involved in CNS scar formation. The expression of the secreted chemorepellent sema III following CNS injury provides the first evidence that chemorepulsive semaphorins may contribute to the inhibitory effects exerted by scars on the outgrowth of injured CNS neurites. The vigorous regrowth of injured axons in the absence of sema III following early neonatal lesions is consistent with this notion. The inactivation of sema III in scar tissue by either antibody perturbation or by genetic or pharmacological intervention could be a powerful means to promote long-distance regeneration in the adult CNS.", "title": "Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS." } ]
984
Pseudogene PTENP1 encodes a transcript that regulates PTEN expression.
[ { "docid": "6828370", "text": "The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs could possess a regulatory role that relies on their ability to compete for microRNA binding, independently of their protein-coding function. As a model for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene PTENP1 and the critical consequences of this interaction. We find that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role. We also show that the PTENP1 locus is selectively lost in human cancer. We extended our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. We also demonstrate that the transcripts of protein-coding genes such as PTEN are biologically active. These findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.", "title": "A coding-independent function of gene and pseudogene mRNAs regulates tumour biology" } ]
[ { "docid": "34071621", "text": "Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN-SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings.", "title": "Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation" }, { "docid": "16364639", "text": "By analyzing gene expression data in glioblastoma in combination with matched microRNA profiles, we have uncovered a posttranscriptional regulation layer of surprising magnitude, comprising more than 248,000 microRNA (miR)-mediated interactions. These include ∼7,000 genes whose transcripts act as miR \"sponges\" and 148 genes that act through alternative, nonsponge interactions. Biochemical analyses in cell lines confirmed that this network regulates established drivers of tumor initiation and subtype implementation, including PTEN, PDGFRA, RB1, VEGFA, STAT3, and RUNX1, suggesting that these interactions mediate crosstalk between canonical oncogenic pathways. siRNA silencing of 13 miR-mediated PTEN regulators, whose locus deletions are predictive of PTEN expression variability, was sufficient to downregulate PTEN in a 3'UTR-dependent manner and to increase tumor cell growth rates. Thus, miR-mediated interactions provide a mechanistic, experimentally validated rationale for the loss of PTEN expression in a large number of glioma samples with an intact PTEN locus.", "title": "An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma" }, { "docid": "15113221", "text": "Pathway-specific therapy is the future of cancer management. The oncogenic phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in solid tumors; however, currently, no reliable test for PI3K pathway activation exists for human tumors. Taking advantage of the observation that loss of PTEN, the negative regulator of PI3K, results in robust activation of this pathway, we developed and validated a microarray gene expression signature for immunohistochemistry (IHC)-detectable PTEN loss in breast cancer (BC). The most significant signature gene was PTEN itself, indicating that PTEN mRNA levels are the primary determinant of PTEN protein levels in BC. Some PTEN IHC-positive BCs exhibited the signature of PTEN loss, which was associated to moderately reduced PTEN mRNA levels cooperating with specific types of PIK3CA mutations and/or amplification of HER2. This demonstrates that the signature is more sensitive than PTEN IHC for identifying tumors with pathway activation. In independent data sets of breast, prostate, and bladder carcinoma, prediction of pathway activity by the signature correlated significantly to poor patient outcome. Stathmin, encoded by the signature gene STMN1, was an accurate IHC marker of the signature and had prognostic significance in BC. Stathmin was also pathway-pharmacodynamic in vitro and in vivo. Thus, the signature or its components such as stathmin may be clinically useful tests for stratification of patients for anti-PI3K pathway therapy and monitoring therapeutic efficacy. This study indicates that aberrant PI3K pathway signaling is strongly associated with metastasis and poor survival across carcinoma types, highlighting the enormous potential impact on patient survival that pathway inhibition could achieve.", "title": "Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity." }, { "docid": "13964633", "text": "BACKGROUND Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3'UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. \n METHODS AND FINDINGS Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3'UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3'UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3'UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3'UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3'UTR formed smaller tumors compared with cells transfected with a control vector. \n CONCLUSION Our results demonstrated that a 3'UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3'UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities.", "title": "Expression of Versican 3′-Untranslated Region Modulates Endogenous MicroRNA Functions" }, { "docid": "34016944", "text": "PURPOSE Tyrosine kinase (TK) inhibitors are emerging as a promising new approach to the treatment of HER overexpressing tumors, however optimal use of these agents awaits further definition of the downstream signaling pathways that mediate their effects. We reported previously that both EGFR- and Her2-overexpressing tumors are sensitive to the new EGFR-selective TK inhibitor gefitinib (ZD1839, \"Iressa\"), and sensitivity to this agent correlated with its ability to down-regulate Akt. However, EGFR-overexpressing MDA-468 cells, which lack PTEN function, are resistant to ZD1839, and ZD1839 is unable to down-regulate Akt activity in these cells. EXPERIMENTAL DESIGN To study the role of PTEN function, we generated MDA468 cells with tet-inducible PTEN expression. \n RESULTS We show here that the resistance of MDA-468 cells to ZD1839 is attributable to EGFR-independent constitutive Akt activation caused by loss of PTEN function in these cells. Reconstitution of PTEN function through tet-inducible expression restores ZD1839 sensitivity to these cells and reestablishes EGFR-stimulated Akt signaling. Although restoration of PTEN function to tumors is difficult to implement clinically, much of the effects of PTEN loss are attributable to overactive PI3K/Akt pathway signaling, and this overactivity can be modulated by pharmacologic approaches. We show here that pharmacologic down-regulation of constitutive PI3K/Akt pathway signaling using the PI3K inhibitor LY294002 similarly restores EGFR-stimulated Akt signaling and sensitizes MDA-468 cells to ZD1839. \n CONCLUSIONS Sensitivity to ZD1839 requires intact growth factor receptor-stimulated Akt signaling activity. PTEN loss leads to uncoupling of this signaling pathway and results in ZD1839 resistance, which can be reversed with reintroduction of PTEN or pharmacologic down-regulation of constitutive PI3K/Akt pathway activity. These data have important predictive and therapeutic clinical implications.", "title": "Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3'-kinase/Akt pathway signaling." }, { "docid": "16346504", "text": "BACKGROUND Growth arrest-specific 5 (GAS5) was reported to be implicated and aberrantly express in multiple cancers. However, the expression and mechanism of action of GAS5 were largely poor understood in endometrial carcinoma. \n RESULTS According to the result of real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and flow cytometry analysis, we identified that GAS5 was down-regulated in endometrial cancer cells and stimulated the apoptosis of endometrial cancer cells. To investigate the expression of GAS5, PTEN and miR-103, RT-PCR was performed. And we found that the expression of PTEN was up-regulated when endometrial cancer cells overexpressed GAS5. The prediction of bioinformatics online revealed that GAS5 could bind to miR-103, which was further found to be regulated by GAS5. Finally, we found that miR-103 mimic could decrease the mRNA and protein levels of PTEN through luciferase reporter assay and western blotting, and GAS5 plasmid may reverse this regulation effect in endometrial cancer cells. \n CONCLUSION In summary, we demonstrate that GAS5 acts as an tumor suppressor lncRNA in endometrial cancer. Through inhibiting the expression of miR-103, GAS5 significantly enhanced the expression of PTEN to promote cancer cell apoptosis, and, thus, could be an important mediator in the pathogenesis of endometrial cancer.", "title": "LncRNA-GAS5 induces PTEN expression through inhibiting miR-103 in endometrial cancer cells" }, { "docid": "22901758", "text": "The identification of brain tumor stem-like cells (BTSCs) has implicated a role of biological self-renewal mechanisms in clinical brain tumor initiation and propagation. The molecular mechanisms underlying the tumor-forming capacity of BTSCs, however, remain unknown. Here, we have generated molecular signatures of glioblastoma multiforme (GBM) using gene expression profiles of BTSCs and have identified both Sonic Hedgehog (SHH) signaling-dependent and -independent BTSCs and their respective glioblastoma surgical specimens. BTSC proliferation could be abrogated in a pathway-dependent fashion in vitro and in an intracranial tumor model in athymic mice. Both SHH-dependent and -independent brain tumor growth required phosphoinositide 3-kinase-mammalian target of rapamycin signaling. In human GBMs, the levels of SHH and PTCH1 expression were significantly higher in PTEN-expressing tumors than in PTEN-deficient tumors. In addition, we show that hyperactive SHH-GLI signaling in PTEN-coexpressing human GBM is associated with reduced survival time. Thus, distinct proliferation signaling dependence may underpin glioblastoma propagation by BTSCs. Modeling these BTSC proliferation mechanisms may provide a rationale for individualized glioblastoma treatment.", "title": "Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas." }, { "docid": "24294572", "text": "The PI3K signaling pathway regulates cell growth and movement and is heavily mutated in cancer. Class I PI3Ks synthesize the lipid messenger PI(3,4,5)P3. PI(3,4,5)P3 can be dephosphorylated by 3- or 5-phosphatases, the latter producing PI(3,4)P2. The PTEN tumor suppressor is thought to function primarily as a PI(3,4,5)P3 3-phosphatase, limiting activation of this pathway. Here we show that PTEN also functions as a PI(3,4)P2 3-phosphatase, both in vitro and in vivo. PTEN is a major PI(3,4)P2 phosphatase in Mcf10a cytosol, and loss of PTEN and INPP4B, a known PI(3,4)P2 4-phosphatase, leads to synergistic accumulation of PI(3,4)P2, which correlated with increased invadopodia in epidermal growth factor (EGF)-stimulated cells. PTEN deletion increased PI(3,4)P2 levels in a mouse model of prostate cancer, and it inversely correlated with PI(3,4)P2 levels across several EGF-stimulated prostate and breast cancer lines. These results point to a role for PI(3,4)P2 in the phenotype caused by loss-of-function mutations or deletions in PTEN.", "title": "PTEN Regulates PI(3,4)P2 Signaling Downstream of Class I PI3K" }, { "docid": "32721137", "text": "Although 75% of endometrial cancers are treated at an early stage, 15% to 20% of these recur. We performed an integrated analysis of genome-wide expression and copy-number data for primary endometrial carcinomas with extensive clinical and histopathological data to detect features predictive of recurrent disease. Unsupervised analysis of the expression data distinguished 2 major clusters with strikingly different phenotypes, including significant differences in disease-free survival. To identify possible mechanisms for these differences, we performed a global genomic survey of amplifications, deletions, and loss of heterozygosity, which identified 11 significantly amplified and 13 significantly deleted regions. Amplifications of 3q26.32 harboring the oncogene PIK3CA were associated with poor prognosis and segregated with the aggressive transcriptional cluster. Moreover, samples with PIK3CA amplification carried signatures associated with in vitro activation of PI3 kinase (PI3K), a signature that was shared by aggressive tumors without PIK3CA amplification. Tumors with loss of PTEN expression or PIK3CA overexpression that did not have PIK3CA amplification also shared the PI3K activation signature, high protein expression of the PI3K pathway member STMN1, and an aggressive phenotype in test and validation datasets. However, mutations of PTEN or PIK3CA were not associated with the same expression profile or aggressive phenotype. STMN1 expression had independent prognostic value. The results affirm the utility of systematic characterization of the cancer genome in clinically annotated specimens and suggest the particular importance of the PI3K pathway in patients who have aggressive endometrial cancer.", "title": "Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation." }, { "docid": "16201748", "text": "BACKGROUND Different molecular alterations have been described in endometrioid endometrial carcinoma (EECA). Among them the most frequently altered is loss of the PTEN protein, a tumor suppressor gene. The purpose of this study was to evaluate the expression pattern of PTEN gene in normal, hyperplastic and neoplastic endometrium. \n METHODS In a study in a referral gynecologic hospital in Tehran, Iran, immunohistochemical (IHC) evaluation of PTEN was performed on 87 consecutive specimens to the following three groups; group A- normal proliferative endometrium(n = 29); group B- hyperplastic endometrium [including simple hyperplasia without atypia(n = 21) and complex hyperplasia with atypia (n = 8)] and group C- EECA(n = 29). Immunostaining of cells was analyzed by arbitrary quantitative methods according to both slide's area staining and intensity of color reaction. \n RESULTS PTEN immunoreactivity was present in all normal proliferative endometrium, all simple hyperplasia, 75% of atypical complex hyperplasia and in 48% of EECA (P < 0.001). The intensity of PTEN reaction was significantly higher in group with proliferative endometrium than hyperplastic endometrium and EECA (P < 0.001). \n CONCLUSION PTEN expression was significantly higher in cyclical endometrium than in atypical hyperplasia and endometrioid carcinoma.", "title": "Altered PTEN expression; a diagnostic marker for differentiating normal, hyperplastic and neoplastic endometrium" }, { "docid": "1780819", "text": "BACKGROUND Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development. \n METHODS AND FINDINGS Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression. \n CONCLUSIONS HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies. Please see later in the article for the Editors' Summary.", "title": "Role of DNA Methylation and Epigenetic Silencing of HAND2 in Endometrial Cancer Development" }, { "docid": "25001628", "text": "To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.", "title": "Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins." }, { "docid": "35760786", "text": "The ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation, and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the unfolded protein response (UPR). Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter, and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover, these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest that a component of UPR induction in arv1Δ strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, CHOP (C/EBP homologous protein), and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis, resulting in a disruption of ER integrity, one consequence of which is induction of the UPR.", "title": "Loss of subcellular lipid transport due to ARV1 deficiency disrupts organelle homeostasis and activates the unfolded protein response." }, { "docid": "25994317", "text": "CACCC boxes are among the critical sequences present in regulatory elements of genes expressed in erythroid cells, as well as in selected other cell types. While an erythroid cell-specific CACCC-box-binding protein, EKLF, has been shown to be required in vivo for proper expression of the adult beta-globin gene, it is dispensable for the regulation of several other globin and nonglobin erythroid cell-expressed genes. In the work described here, we searched for additional CACCC-box transcription factors that might be active in murine erythroid cells. We identified a major gel shift activity (termed BKLF), present in yolk sac and fetal liver erythroid cells, that could be distinguished from EKLF by specific antisera. Through relaxed-stringency hybridization, we obtained the cDNA encoding BKLF, a highly basic, novel zinc finger protein that is related to EKLF and other Krüppel-like members in its DNA-binding domain but unrelated elsewhere. BKLF, which is widely but not ubiquitously expressed in cell lines, is highly expressed in the midbrain region of embryonic mice and appears to correspond to the gel shift activity TEF-2, a transcriptional activator implicated in regulation of the simian virus 40 enhancer and other CACCC-box-containing regulatory elements. Because BKLF binds with high affinity and preferentially over Sp1 to many CACCC sequences of erythroid cell expressed genes, it is likely to participate in the control of many genes whose expression appears independent of the action of EKLF.", "title": "Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells." }, { "docid": "22358449", "text": "The promyelocytic leukaemia zinc finger (Plzf) protein (encoded by the gene Zfp145) belongs to the POZ/zinc-finger family of transcription factors. Here we generate Zfp145−/− mice and show that Plzf is essential for patterning of the limb and axial skeleton. Plzf inactivation results in patterning defects affecting all skeletal structures of the limb, including homeotic transformations of anterior skeletal elements into posterior structures. We demonstrate that Plzf acts as a growth-inhibitory and pro-apoptotic factor in the limb bud. The expression of members of the abdominal b (Abdb) Hox gene complex, as well as genes encoding bone morphogenetic proteins (Bmps), is altered in the developing limb of Zfp145−/− mice. Plzf regulates the expression of these genes in the absence of aberrant polarizing activity and independently of known patterning genes. Zfp145−/− mice also exhibit anterior-directed homeotic transformation throughout the axial skeleton with associated alterations in Hox gene expression. Plzf is therefore a mediator of anterior-to-posterior (AP) patterning in both the axial and appendicular skeleton and acts as a regulator of Hox gene expression.", "title": "Plzf regulates limb and axial skeletal patterning" }, { "docid": "8856690", "text": "The hormonal metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D), initiates biological responses via binding to the vitamin D receptor (VDR). When occupied by 1,25D, VDR interacts with the retinoid X receptor (RXR) to form a heterodimer that binds to vitamin D responsive elements in the region of genes directly controlled by 1,25D. By recruiting complexes of either coactivators or corepressors, ligand-activated VDR-RXR modulates the transcription of genes encoding proteins that promulgate the traditional functions of vitamin D, including signaling intestinal calcium and phosphate absorption to effect skeletal and calcium homeostasis. Thus, vitamin D action in a particular cell depends upon the metabolic production or delivery of sufficient concentrations of the 1,25D ligand, expression of adequate VDR and RXR coreceptor proteins, and cell-specific programming of transcriptional responses to regulate select genes that encode proteins that function in mediating the effects of vitamin D. For example, 1,25D induces RANKL, SPP1 (osteopontin), and BGP (osteocalcin) to govern bone mineral remodeling; TRPV6, CaBP9k, and claudin 2 to promote intestinal calcium absorption; and TRPV5, klotho, and Npt2c to regulate renal calcium and phosphate reabsorption. VDR appears to function unliganded by 1,25D in keratinocytes to drive mammalian hair cycling via regulation of genes such as CASP14, S100A8, SOSTDC1, and others affecting Wnt signaling. Finally, alternative, low-affinity, non-vitamin D VDR ligands, e.g., lithocholic acid, docosahexaenoic acid, and curcumin, have been reported. Combined alternative VDR ligand(s) and 1,25D/VDR control of gene expression may delay chronic disorders of aging such as osteoporosis, type 2 diabetes, cardiovascular disease, and cancer.", "title": "Molecular Mechanisms of Vitamin D Action" }, { "docid": "13989491", "text": "Humans expressing a defective form of the transcription factor AIRE (autoimmune regulator) develop multiorgan autoimmune disease. We used aire- deficient mice to test the hypothesis that this transcription factor regulates autoimmunity by promoting the ectopic expression of peripheral tissue- restricted antigens in medullary epithelial cells of the thymus. This hypothesis proved correct. The mutant animals exhibited a defined profile of autoimmune diseases that depended on the absence of aire in stromal cells of the thymus. Aire-deficient thymic medullary epithelial cells showed a specific reduction in ectopic transcription of genes encoding peripheral antigens. These findings highlight the importance of thymically imposed \"central\" tolerance in controlling autoimmunity.", "title": "Acids: Structures, Properties, and Functions (University Science Books, Sausalito, CA, 2000)." }, { "docid": "28390999", "text": "Genes implicated in vertebrate sex determination and differentiation were studied in embryonic chicken gonads using reverse transcription and the polymerase chain reaction (RT-PCR). Expression profiles were obtained during gonadal sex differentiation for AMH, SOX9, SOX3, the Wilm's Tumour gene, WT1, and the orphan nuclear receptor genes, SF1 and DAX1. Some of these genes showed sexually dimorphic expression profiles during gonadal development, whereas others were expressed at similar levels in both sexes. The gene encoding Anti-Müllerian hormone (AMH) was expressed in both sexes prior to and during sexual differentiation of the gonads, with levels of expression consistently higher in males than in females. SOX9 expression was male-specific, and was up-regulated after the detection of AMH transcripts. SOX3 expression was observed prior to clear SOX9 expression and was up-regulated in both sexes at the onset of gonadal sex differentiation (but declined later in development). The WT1 gene was highly expressed in both sexes, whereas SF1 expression was clearly higher in developing ovaries compared to testes. DAX1 transcripts were observed in both sexes at all stages examined, but expression appeared somewhat higher in developing ovaries. These expression profiles are analysed in terms of current theories of vertebrate sex determination.", "title": "Gene expression during gonadogenesis in the chicken embryo." }, { "docid": "11271123", "text": "Endometrial cancer is associated with numeric and structural chromosomal abnormalities, microsatellite instability (MSI), and alterations that activate oncogenes and inactivate tumor suppressor genes. The aim of this study was to characterize a set of endometrial cancers using multiple molecular genetic and immunohistochemical techniques. Ninety-six cases were examined for genomic alterations by MSI, MLH1 promoter hypermethylation, p53 and mismatch repair protein expression (MLH1, MSH2, MSH6, PMS2), and PTEN, PIK3CA, KRAS, and BRAF mutation analysis. At least 1 alteration was identified in 48 of 87 (55%) specimens tested for PTEN, making it the most common abnormality in this study. A PIK3CA alteration was observed in 16 (17%) specimens. Twenty-nine of 94 (31%) MSI tested tumors exhibited an MSI-H phenotype. Of the 29 MSI-H cases, 24 (83%) were positive for methylation of the MLH1 promoter region. Twenty-three (82%) of the 28 MSI-H cases with immunohistochemistry results showed loss of expression of MLH1/PMS2 (n=19), MSH2/MSH6 (n=2), or MSH6 only (n=2). Of the 19 MSI-H cases with loss of MLH1/PMS2 on immunohistochemistry, 18 were positive, and 1 was equivocal for MLH1 promoter hypermethylation. Twelve of 94 cases (13%) analyzed for KRAS mutations were found to have a mutation. No BRAF V600E mutations were indentified. This study provides a comprehensive molecular genetic analysis of commonly analyzed targets in a large cohort of endometrial cancers.", "title": "Molecular characterization of endometrial cancer: a correlative study assessing microsatellite instability, MLH1 hypermethylation, DNA mismatch repair protein expression, and PTEN, PIK3CA, KRAS, and BRAF mutation analysis." } ]
988
Pseudoknots are not evolutionarily conserved in most eukaryotes.
[ { "docid": "3033830", "text": "RNases P and MRP are ribonucleoprotein complexes involved in tRNA and rRNA processing, respectively. The RNA subunits of these two enzymes are structurally related to each other and play an essential role in the enzymatic reaction. Both of the RNAs have a highly conserved helical region, P4, which is important in the catalytic reaction. We have used a bioinformatics approach based on conserved elements to computationally analyze available genomic sequences of eukaryotic organisms and have identified a large number of novel nuclear RNase P and MRP RNA genes. For MRP RNA for instance, this investigation increases the number of known sequences by a factor of three. We present secondary structure models of many of the predicted RNAs. Although all sequences are able to fold into the consensus secondary structure of P and MRP RNAs, a striking variation in size is observed, ranging from a Nosema locustae MRP RNA of 160 nt to much larger RNAs, e.g. a Plasmodium knowlesi P RNA of 696 nt. The P and MRP RNA genes appear in tandem in some protists, further emphasizing the close evolutionary relationship of these RNAs.", "title": "Identification and analysis of ribonuclease P and MRP RNA in a broad range of eukaryotes" } ]
[ { "docid": "1383826", "text": "RNA molecules fulfill a diverse set of biological functions within cells, from the transfer of genetic information from DNA to protein, to enzymatic catalysis. Reflecting this range of roles, simple linear strings of RNA—made up of uracil, guanine, cytosine, and adenine—form a variety of complex three-dimensional structures. Just as proteins form distinct structural motifs such as zinc fingers and beta barrels, certain structures are also commonly adopted by RNA molecules. Among the most prevalent RNA structures is a motif known as the pseudoknot. First recognized in the turnip yellow mosaic virus [1], a pseudoknot is an RNA structure that is minimally composed of two helical segments connected by single-stranded regions or loops (Figure 1). Although several distinct folding topologies of pseudoknots exist, the best characterized is the H type. In the H-type fold, the bases in the loop of a hairpin form intramolecular pairs with bases outside of the stem (Figure 1A and ​and1B).1B). This causes the formation of a second stem and loop, resulting in a pseudoknot with two stems and two loops (Figure 1C). The two stems are able to stack on top of each other to form a quasi-continuous helix with one continuous and one discontinuous strand. The single-stranded loop regions often interact with the adjacent stems (loop 1–stem 2 or loop 2–stem 1) to form hydrogen bonds and to participate in the overall structure of the molecule. Hence, this relatively simple fold can yield very complex and stable RNA structures. Due to variation of the lengths of the loops and stems, as well as the types of interactions between them, pseudoknots represent a structurally diverse group. It is fitting that they play a variety of diverse roles in biology. These roles include forming the catalytic core of various ribozymes [2,3], self-splicing introns [4], and telomerase [5]. Additionally, pseudoknots play critical roles in altering gene expression by inducing ribosomal frameshifting in many viruses [6–9].", "title": "Pseudoknots: RNA Structures with Diverse Functions" }, { "docid": "16686383", "text": "The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in eukaryotes. We identify posttranslational modifications of Saccharomyces cerevisiae CenH3, Cse4. Functional characterization of cse4 phosphorylation mutants shows growth and chromosome segregation defects when combined with kinetochore mutants okp1 and ame1. Using a phosphoserine-specific antibody, we show that the association of phosphorylated Cse4 with centromeres increases in response to defective microtubule attachment or reduced cohesion. We determine that evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 are reduced at centromeres in ipl1 strains in vivo, and in vitro assays show phosphorylation of Cse4 by Ipl1. Consistent with these results, we observe that a phosphomimetic cse4-4SD mutant suppresses the temperature-sensitive growth of ipl1-2 and Ipl1 substrate mutants dam1 spc34 and ndc80, which are defective for chromosome biorientation. Furthermore, cell biology approaches using a green fluorescent protein-labeled chromosome show that cse4-4SD suppresses chromosome segregation defects in dam1 spc34 strains. On the basis of these results, we propose that phosphorylation of Cse4 destabilizes defective kinetochores to promote biorientation and ensure faithful chromosome segregation. Taken together, our results provide a detailed analysis, in vivo and in vitro, of Cse4 phosphorylation and its role in promoting faithful chromosome segregation.", "title": "Phosphorylation of centromeric histone H3 variant regulates chromosome segregation in Saccharomyces cerevisiae" }, { "docid": "27900414", "text": "RuvBL1 is an evolutionarily highly conserved eukaryotic protein belonging to the AAA(+)-family of ATPases (ATPase associated with diverse cellular activities). It plays important roles in essential signaling pathways such as the c-Myc and Wnt pathways in chromatin remodeling, transcriptional and developmental regulation, and DNA repair and apoptosis. Herein we present the three-dimensional structure of the selenomethionine variant of human RuvBL1 refined using diffraction data to 2.2A of resolution. The crystal structure of the hexamer is formed of ADP-bound RuvBL1 monomers. The monomers contain three domains, of which the first and the third are involved in ATP binding and hydrolysis. Although it has been shown that ATPase activity of RuvBL1 is needed for several in vivo functions, we could only detect a marginal activity with the purified protein. Structural homology and DNA binding studies demonstrate that the second domain, which is unique among AAA(+) proteins and not present in the bacterial homolog RuvB, is a novel DNA/RNA-binding domain. We were able to demonstrate that RuvBL1 interacted with single-stranded DNA/RNA and double-stranded DNA. The structure of the RuvBL1.ADP complex, combined with our biochemical results, suggest that although RuvBL1 has all the structural characteristics of a molecular motor, even of an ATP-driven helicase, one or more as yet undetermined cofactors are needed for its enzymatic activity.", "title": "Crystal structure of the human AAA+ protein RuvBL1." }, { "docid": "4423220", "text": "Male infertility is a long-standing enigma of significant medical concern. The integrity of sperm chromatin is a clinical indicator of male fertility and in vitro fertilization potential: chromosome aneuploidy and DNA decondensation or damage are correlated with reproductive failure. Identifying conserved proteins important for sperm chromatin structure and packaging can reveal universal causes of infertility. Here we combine proteomics, cytology and functional analysis in Caenorhabditis elegans to identify spermatogenic chromatin-associated proteins that are important for fertility. Our strategy employed multiple steps: purification of chromatin from comparable meiotic cell types, namely those undergoing spermatogenesis or oogenesis; proteomic analysis by multidimensional protein identification technology (MudPIT) of factors that co-purify with chromatin; prioritization of sperm proteins based on abundance; and subtraction of common proteins to eliminate general chromatin and meiotic factors. Our approach reduced 1,099 proteins co-purified with spermatogenic chromatin, currently the most extensive catalogue, to 132 proteins for functional analysis. Reduction of gene function through RNA interference coupled with protein localization studies revealed conserved spermatogenesis-specific proteins vital for DNA compaction, chromosome segregation, and fertility. Unexpected roles in spermatogenesis were also detected for factors involved in other processes. Our strategy to find fertility factors conserved from C. elegans to mammals achieved its goal: of mouse gene knockouts corresponding to nematode proteins, 37% (7/19) cause male sterility. Our list therefore provides significant opportunity to identify causes of male infertility and targets for male contraceptives.", "title": "Sperm chromatin proteomics identifies evolutionarily conserved fertility factors" }, { "docid": "4411760", "text": "Eukaryotic cells express a wide variety of endogenous small regulatory RNAs that regulate heterochromatin formation, developmental timing, defence against parasitic nucleic acids and genome rearrangement. Many small regulatory RNAs are thought to function in nuclei. For instance, in plants and fungi, short interfering RNA (siRNAs) associate with nascent transcripts and direct chromatin and/or DNA modifications. To understand further the biological roles of small regulatory RNAs, we conducted a genetic screen to identify factors required for RNA interference (RNAi) in Caenorhabditis elegans nuclei. Here we show that the gene nuclear RNAi defective-2 (nrde-2) encodes an evolutionarily conserved protein that is required for siRNA-mediated silencing in nuclei. NRDE-2 associates with the Argonaute protein NRDE-3 within nuclei and is recruited by NRDE-3/siRNA complexes to nascent transcripts that have been targeted by RNAi. We find that nuclear-localized siRNAs direct an NRDE-2-dependent silencing of pre-messenger RNAs (pre-mRNAs) 3' to sites of RNAi, an NRDE-2-dependent accumulation of RNA polymerase (RNAP) II at genomic loci targeted by RNAi, and NRDE-2-dependent decreases in RNAP II occupancy and RNAP II transcriptional activity 3' to sites of RNAi. These results define NRDE-2 as a component of the nuclear RNAi machinery and demonstrate that metazoan siRNAs can silence nuclear-localized RNAs co-transcriptionally. In addition, these results establish a novel mode of RNAP II regulation: siRNA-directed recruitment of NRDE factors that inhibit RNAP II during the elongation phase of transcription.", "title": "Small regulatory RNAs inhibit RNA Polymerase II during the elongation phase of transcription" }, { "docid": "40447899", "text": "Archaea contain a variety of sequence-independent DNA binding proteins consistent with the evolution of several different, sometimes overlapping and exchangeable solutions to the problem of genome compaction. Some of these proteins undergo residue-specific post-translational lysine acetylation or methylation, hinting at analogues of the histone modifications that regulate eukaryotic chromatin structure and transcription. Archaeal transcription initiation most closely resembles the eukaryotic RNA polymerase II (RNAPII) system, but Archaea do not appear to have homologues of the multisubunit complexes that remodel eukaryotic chromatin and activate RNAPII initiation. In contrast, they have sequence-specific regulators that repress and perhaps activate archaeal transcription by mechanisms superficially similar to the bacterial paradigm of regulating promoter binding by RNAP. Repressors compete with archaeal TATA-box binding protein (TBP) and TFB for the TATA-box and TFB-recognition elements (BRE) of the archaeal promoter, or with archaeal RNAP for the site of transcription initiation. Transcript-specific regulation by repressors binding to sites of transcript initiation is consistent with such sites having very little sequence conservation. However, most Archaea have only one TBP and/or TFB that presumably must therefore bind to similar TATA-box and BRE sequences upstream of most genes. Repressors that function by competing with TBP and/or TFB binding must therefore also make additional contacts with transcript-specific regulatory sites adjacent or remote from the TATA-box/BRE region. The fate of the archaeal TBP and TFB following transcription initiation remains to be determined. Based on functional homology with their eukaryotic RNAPII-system counterparts, archaeal TBP and possibly also TFB should remain bound to the TATA-box/BRE region after transcription initiation. However, this seems unlikely as it might limit repressor competition at this site to only the first round of transcription initiation.", "title": "Archaeal chromatin and transcription." }, { "docid": "4313478", "text": "Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.", "title": "Translational control of intron splicing in eukaryotes" }, { "docid": "16167746", "text": "mRNA polyadenylation is an essential step for the maturation of almost all eukaryotic mRNAs, and is tightly coupled with termination of transcription in defining the 3'-end of genes. Large numbers of human and mouse genes harbor alternative polyadenylation sites [poly(A) sites] that lead to mRNA variants containing different 3'-untranslated regions (UTRs) and/or encoding distinct protein sequences. Here, we examined the conservation and divergence of different types of alternative poly(A) sites across human, mouse, rat and chicken. We found that the 3'-most poly(A) sites tend to be more conserved than upstream ones, whereas poly(A) sites located upstream of the 3'-most exon, also termed intronic poly(A) sites, tend to be much less conserved. Genes with longer evolutionary history are more likely to have alternative polyadenylation, suggesting gain of poly(A) sites through evolution. We also found that nonconserved poly(A) sites are associated with transposable elements (TEs) to a much greater extent than conserved ones, albeit less frequently utilized. Different classes of TEs have different characteristics in their association with poly(A) sites via exaptation of TE sequences into polyadenylation elements. Our results establish a conservation pattern for alternative poly(A) sites in several vertebrate species, and indicate that the 3'-end of genes can be dynamically modified by TEs through evolution.", "title": "Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3′-end of genes" }, { "docid": "5271210", "text": "MicroRNAs (miRNAs) are evolutionarily conserved small noncoding RNAs involved in the regulation of gene expression and protein translation. Many studies have shown that they play a crucial role in driving organ and tissue differentiation during embryogenesis and in the fine-tuning of fundamental biological processes, such as proliferation and apoptosis. Growing evidence indicates that their deregulation plays an important role in cancer onset and progression as well, where they act as oncogenes or oncosuppressors. In this review, we highlight the most recent findings regarding the role of miRNAs in hepatocellular carcinoma (HCC) by analyzing the possible mechanisms by which they contribute to this neoplasm. Moreover, we discuss the possible role of circulating miRNAs as biomarkers, a field that needs urgent improvement in the clinical surveillance of HCC, and the fascinating possibility of using them as therapeutic targets or drugs themselves.", "title": "MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma?" }, { "docid": "8126244", "text": "Biogenesis of ribosomes is an essential cellular process conserved across all eukaryotes and is known to require >170 genes for the assembly, modification, and trafficking of ribosome components through multiple cellular compartments. Despite intensive study, this pathway likely involves many additional genes. Here, we employ network-guided genetics-an approach for associating candidate genes with biological processes that capitalizes on recent advances in functional genomic and proteomic studies-to computationally identify additional ribosomal biogenesis genes. We experimentally evaluated >100 candidate yeast genes in a battery of assays, confirming involvement of at least 15 new genes, including previously uncharacterized genes (YDL063C, YIL091C, YOR287C, YOR006C/TSR3, YOL022C/TSR4). We associate the new genes with specific aspects of ribosomal subunit maturation, ribosomal particle association, and ribosomal subunit nuclear export, and we identify genes specifically required for the processing of 5S, 7S, 20S, 27S, and 35S rRNAs. These results reveal new connections between ribosome biogenesis and mRNA splicing and add >10% new genes-most with human orthologs-to the biogenesis pathway, significantly extending our understanding of a universally conserved eukaryotic process.", "title": "Rational Extension of the Ribosome Biogenesis Pathway Using Network-Guided Genetics" }, { "docid": "13384318", "text": "Pre-mRNA splicing is a fundamental process required for the expression of most metazoan genes. It is carried out by the spliceosome, which catalyzes the removal of noncoding intronic sequences to assemble exons into mature mRNAs prior to export and translation. Given the complexity of higher eukaryotic genes and the relatively low level of splice site conservation, the precision of the splicing machinery in recognizing and pairing splice sites is impressive. Introns ranging in size from <100 up to 100,000 bases are removed efficiently. At the same time, a large number of alternative splicing events are observed between different cell types, during development, or during other biological processes. This extensive alternative splicing implies a significant flexibility of the spliceosome to identify and process exons within a given pre-mRNA. To reach this flexibility, splice site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice site strength, the presence or absence of splicing regulators, RNA secondary structures, the exon/intron architecture, and the process of pre-mRNA synthesis itself. The relative contributions of each of these parameters control how efficiently splice sites are recognized and flanking introns are removed.", "title": "Combinatorial control of exon recognition." }, { "docid": "3153673", "text": "Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs) regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity in metazoans.", "title": "A Novel 3-Hydroxysteroid Dehydrogenase That Regulates Reproductive Development and Longevity" }, { "docid": "14496749", "text": "Oxidative stress influences cell survival and homeostasis, but the mechanisms underlying the biological effects of oxidative stress remain to be elucidated. Here, we demonstrate that the protein kinase MST1 mediates oxidative-stress-induced cell death in primary mammalian neurons by directly activating the FOXO transcription factors. MST1 phosphorylates FOXO proteins at a conserved site within the forkhead domain that disrupts their interaction with 14-3-3 proteins, promotes FOXO nuclear translocation, and thereby induces cell death in neurons. We also extend the MST-FOXO signaling link to nematodes. Knockdown of the C. elegans MST1 ortholog CST-1 shortens life span and accelerates tissue aging, while overexpression of cst-1 promotes life span and delays aging. The cst-1-induced life-span extension occurs in a daf-16-dependent manner. The identification of the FOXO transcription factors as major and evolutionarily conserved targets of MST1 suggests that MST kinases play important roles in diverse biological processes including cellular responses to oxidative stress and longevity.", "title": "A Conserved MST-FOXO Signaling Pathway Mediates Oxidative-Stress Responses and Extends Life Span" }, { "docid": "12805683", "text": "Mammalian nuclear hormone receptors (NHRs), such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs), precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid β-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.", "title": "Nuclear Hormone Receptor NHR-49 Controls Fat Consumption and Fatty Acid Composition in C. elegans" }, { "docid": "21479575", "text": "Mouse pluripotent stem cells (PSCs) are the best studied pluripotent system and are regarded as the \"gold standard\" to which human PSCs are compared. However, while the genomic integrity of human PSCs has recently drawn much attention, mouse PSCs have not been systematically evaluated in this regard. The genomic stability of PSCs is a matter of profound significance, as it affects their pluripotency, differentiation, and tumorigenicity. We thus performed a thorough analysis of the genomic integrity of 325 samples of mouse PSCs, including 127 induced pluripotent stem cell (iPSC) samples. We found that genomic aberrations occur frequently in mouse embryonic stem cells of various mouse strains, add in mouse iPSCs of various cell origins and derivation techniques. Four hotspots of chromosomal aberrations were detected: full trisomy 11 (with a minimally recurrent gain in 11qE2), full trisomy 8, and deletions in chromosomes 10qB and 14qC-14qE. The most recurrent aberration in mouse PSCs, gain 11qE2, turned out to be fully syntenic to the common aberration 17q25 in human PSCs, while other recurrent aberrations were found to be species specific. Analysis of chromosomal aberrations in 74 samples of rhesus macaque PSCs revealed a gain in chromosome 16q, syntenic to the hotspot in human 17q. Importantly, these common aberrations jeopardize the interpretation of published comparisons of PSCs, which were unintentionally conducted between normal and aberrant cells. Therefore, this work emphasizes the need to carefully monitor genomic integrity of PSCs from all species, for their proper use in biomedical research.", "title": "High prevalence of evolutionarily conserved and species-specific genomic aberrations in mouse pluripotent stem cells." }, { "docid": "11951999", "text": "Ten-Eleven Translocation-2 (TET2) inactivation through loss-of-function mutation, deletion and IDH1/2 (Isocitrate Dehydrogenase 1 and 2) gene mutation is a common event in myeloid and lymphoid malignancies. TET2 gene mutations similar to those observed in myeloid and lymphoid malignancies also accumulate with age in otherwise healthy subjects with clonal hematopoiesis. TET2 is one of the three proteins of the TET (Ten-Eleven Translocation) family, which are evolutionarily conserved dioxygenases that catalyze the conversion of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl-cytosine (5-hmC) and promote DNA demethylation. TET dioxygenases require 2-oxoglutarate, oxygen and Fe(II) for their activity, which is enhanced in the presence of ascorbic acid. TET2 is the most expressed TET gene in the hematopoietic tissue, especially in hematopoietic stem cells. In addition to their hydroxylase activity, TET proteins recruit the O-linked β-D-N-acetylglucosamine (O-GlcNAc) transferase (OGT) enzyme to chromatin, which promotes post-transcriptional modifications of histones and facilitates gene expression. The TET2 level is regulated by interaction with IDAX, originating from TET2 gene fission during evolution, and by the microRNA miR-22. TET2 has pleiotropic roles during hematopoiesis, including stem-cell self-renewal, lineage commitment and terminal differentiation of monocytes. Analysis of Tet2 knockout mice, which are viable and fertile, demonstrated that Tet2 functions as a tumor suppressor whose haploinsufficiency initiates myeloid and lymphoid transformations. This review summarizes the recently identified TET2 physiological and pathological functions and discusses how this knowledge influences our therapeutic approaches in hematological malignancies and possibly other tumor types.", "title": "The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases" }, { "docid": "9304312", "text": "Synaptic transmission depends on clathrin-mediated recycling of synaptic vesicles (SVs). How select SV proteins are targeted for internalization has remained elusive. Stonins are evolutionarily conserved adaptors dedicated to endocytic sorting of the SV protein synaptotagmin. Our data identify the molecular determinants for recognition of synaptotagmin by stonin 2 or its Caenorhabditis elegans orthologue UNC-41B. The interaction involves the direct association of clusters of basic residues on the surface of the cytoplasmic domain of synaptotagmin 1 and a beta strand within the mu-homology domain of stonin 2. Mutation of K783, Y784, and E785 to alanine within this stonin 2 beta strand results in failure of the mutant stonin protein to associate with synaptotagmin, to accumulate at synapses, and to facilitate synaptotagmin internalization. Synaptotagmin-binding-defective UNC-41B is unable to rescue paralysis in C. elegans stonin mutant animals, suggesting that the mechanism of stonin-mediated SV cargo recognition is conserved from worms to mammals.", "title": "Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2" }, { "docid": "1127562", "text": "Multicellular animals rapidly clear dying cells from their bodies. Many of the pathways that mediate this cell removal are conserved through evolution. Here, we identify srgp-1 as a negative regulator of cell clearance in both Caenorhabditis elegans and mammalian cells. Loss of srgp-1 function results in improved engulfment of apoptotic cells, whereas srgp-1 overexpression inhibits apoptotic cell corpse removal. We show that SRGP-1 functions in engulfing cells and functions as a GTPase activating protein (GAP) for CED-10 (Rac1). Interestingly, loss of srgp-1 function promotes not only the clearance of already dead cells, but also the removal of cells that have been brought to the verge of death through sublethal apoptotic, necrotic or cytotoxic insults. In contrast, impaired engulfment allows damaged cells to escape clearance, which results in increased long-term survival. We propose that C. elegans uses the engulfment machinery as part of a primitive, but evolutionarily conserved, survey mechanism that identifies and removes unfit cells within a tissue.", "title": "Loss of the RhoGAP SRGP-1 promotes the clearance of dead and injured cells in Caenorhabditis elegans" }, { "docid": "14544564", "text": "Sterol-sensing nuclear receptors and insulin-like growth factor signaling play evolutionarily conserved roles in the control of aging. In the nematode Caenorhabditis elegans, bile acid-like steroid hormones known as dafachronic acids (DAs) influence longevity by binding to and regulating the activity of the conserved nuclear receptor DAF-12, and the insulin receptor (InsR) ortholog DAF-2 controls life span by inhibiting the FoxO transcription factor DAF-16. How the DA/DAF-12 pathway interacts with DAF-2/InsR signaling to control life span is poorly understood. Here we specifically investigated the roles of liganded and unliganded DAF-12 in life span control in the context of reduced DAF-2/InsR signaling. In animals with reduced daf-2/InsR activity, mutations that either reduce DA biosynthesis or fully abrogate DAF-12 activity shorten life span, suggesting that liganded DAF-12 promotes longevity. In animals with reduced DAF-2/InsR activity induced by daf-2/InsR RNAi, both liganded and unliganded DAF-12 promote longevity. However, in daf-2/InsR mutants, liganded and unliganded DAF-12 act in opposition to control life span. Thus, multiple DAF-12 activities influence life span in distinct ways in contexts of reduced DAF-2/InsR signaling. Our findings establish new roles for a conserved steroid signaling pathway in life span control and elucidate interactions among DA biosynthetic pathways, DAF-12, and DAF-2/InsR signaling in aging.", "title": "Influence of Steroid Hormone Signaling on Life Span Control by Caenorhabditis elegans Insulin-Like Signaling" }, { "docid": "13794374", "text": "Lipid droplets are ubiquitous triglyceride and sterol ester storage organelles required for energy storage homeostasis and biosynthesis. Although little is known about lipid droplet formation and regulation, it is clear that members of the PAT (perilipin, adipocyte differentiation related protein, tail interacting protein of 47 kDa) protein family coat the droplet surface and mediate interactions with lipases that remobilize the stored lipids. We identified key Drosophila candidate genes for lipid droplet regulation by RNA interference (RNAi) screening with an image segmentation-based optical read-out system, and show that these regulatory functions are conserved in the mouse. Those include the vesicle-mediated Coat Protein Complex I (COPI) transport complex, which is required for limiting lipid storage. We found that COPI components regulate the PAT protein composition at the lipid droplet surface, and promote the association of adipocyte triglyceride lipase (ATGL) with the lipid droplet surface to mediate lipolysis. Two compounds known to inhibit COPI function, Exo1 and Brefeldin A, phenocopy COPI knockdowns. Furthermore, RNAi inhibition of ATGL and simultaneous drug treatment indicate that COPI and ATGL function in the same pathway. These data indicate that the COPI complex is an evolutionarily conserved regulator of lipid homeostasis, and highlight an interaction between vesicle transport systems and lipid droplets.", "title": "COPI Complex Is a Regulator of Lipid Homeostasis" } ]
989
Pure neural progenitor cell (NPC) populations can only be obtained from cell cultures that undergo passaging, filtration, or other isolation and cell sorting methods.
[ { "docid": "9988425", "text": "Pluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying differentiation. These homogenous cultures will enable delineation of molecular mechanisms that define a tissue-specific stem cell and allow direct comparison with pluripotent ES cells.", "title": "Niche-Independent Symmetrical Self-Renewal of a Mammalian Tissue Stem Cell" } ]
[ { "docid": "19756935", "text": "Isolated pure human beta cells would be helpful for a number of research purposes. However, lack of beta cell-specific surface antigens has been a major problem. We aimed to develop a simple method for human beta cell isolation based on the initial elimination of ductal cells by their expression of carbohydrate antigen 19-9 (CA19-9), followed by positive selection of beta cells by their expression of polysialic acid–neural cell adhesion molecule (PSA-NCAM). Cell type-specific expression of CA19-9, NCAM and PSA-NCAM was studied in sections of adult human pancreas and in cultured primary endocrine and exocrine cells. Dispersed human islet cells were purified in two steps, after 4 days of suspension culture, by binding to magnetic microbeads coupled to antibodies against CA19-9 and PSA-NCAM. NCAM expression was detected in ducts and islets in the human pancreas. In contrast, PSA-NCAM immunoreactivity was detected only in islets. PSA-NCAM staining in dispersed cells revealed that the marker is expressed in all endocrine cell types, but not in duct cells. Purification of dispersed islet cells using PSA-NCAM microbeads alone did not completely eliminate contaminating duct cells. However, elimination of the duct cells by CA19-9 microbeads followed by positive sorting of the PSA-NCAM-positive cells in five consecutive islet preparations resulted in 90 to 98% pure endocrine cells, of which 89 to 97% were beta cells. We describe a simple and reproducible method for purification of viable human pancreatic beta cells devoid of exocrine acini and ducts.", "title": "A simple two-step protocol for the purification of human pancreatic beta cells" }, { "docid": "12742164", "text": "Stem cells, which are clonogenic cells with self-renewal and multilineage differentiation properties, have the potential to replace or repair damaged tissue. We have directly isolated clonogenic human central nervous system stem cells (hCNS-SC) from fresh human fetal brain tissue, using antibodies to cell surface markers and fluorescence-activated cell sorting. These hCNS-SC are phenotypically 5F3 (CD133)(+), 5E12(+), CD34(-), CD45(-), and CD24(-/lo). Single CD133(+) CD34(-) CD45(-) sorted cells initiated neurosphere cultures, and the progeny of clonogenic cells could differentiate into both neurons and glial cells. Single cells from neurosphere cultures initiated from CD133(+) CD34(-) CD45(-) cells were again replated as single cells and were able to reestablish neurosphere cultures, demonstrating the self-renewal potential of this highly enriched population. Upon transplantation into brains of immunodeficient neonatal mice, the sorted/expanded hCNS-SC showed potent engraftment, proliferation, migration, and neural differentiation.", "title": "Direct isolation of human central nervous system stem cells." }, { "docid": "9675944", "text": "Somatic cells can be induced into pluripotent stem cells (iPSCs) with a combination of four transcription factors, Oct4/Sox2/Klf4/c-Myc or Oct4/Sox2/Nanog/LIN28. This provides an enabling platform to obtain patient-specific cells for various therapeutic and research applications. However, several problems remain for this approach to be therapeutically relevant due to drawbacks associated with efficiency and viral genome integration. Recently, it was shown that neural progenitor cells (NPCs) transduced with Oct4/Klf4 can be reprogrammed into iPSCs. However, NPCs express Sox2 endogenously, possibly facilitating reprogramming in the absence of exogenous Sox2. In this study, we identified a small-molecule combination, BIX-01294 and BayK8644, that enables reprogramming of Oct4/Klf4-transduced mouse embryonic fibroblasts, which do not endogenously express the factors essential for reprogramming. This study demonstrates that small molecules identified through a phenotypic screen can compensate for viral transduction of critical factors, such as Sox2, and improve reprogramming efficiency.", "title": "Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds." }, { "docid": "16375102", "text": "The simple yet powerful technique of induced pluripotency may eventually supply a wide range of differentiated cells for cell therapy and drug development. However, making the appropriate cells via induced pluripotent stem cells (iPSCs) requires reprogramming of somatic cells and subsequent redifferentiation. Given how arduous and lengthy this process can be, we sought to determine whether it might be possible to convert somatic cells into lineage-specific stem/progenitor cells of another germ layer in one step, bypassing the intermediate pluripotent stage. Here we show that transient induction of the four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) can efficiently transdifferentiate fibroblasts into functional neural stem/progenitor cells (NPCs) with appropriate signaling inputs. Compared with induced neurons (or iN cells, which are directly converted from fibroblasts), transdifferentiated NPCs have the distinct advantage of being expandable in vitro and retaining the ability to give rise to multiple neuronal subtypes and glial cells. Our results provide a unique paradigm for iPSC-factor-based reprogramming by demonstrating that it can be readily modified to serve as a general platform for transdifferentiation.", "title": "Direct reprogramming of mouse fibroblasts to neural progenitors." }, { "docid": "18399038", "text": "Glioma tumour-initiating cells (GTICs) can originate upon the transformation of neural progenitor cells (NPCs). Studies on GTICs have focused on primary tumours from which GTICs could be isolated and the use of human embryonic material. Recently, the somatic genomic landscape of human gliomas has been reported. RTK (receptor tyrosine kinase) and p53 signalling were found dysregulated in ∼90% and 86% of all primary tumours analysed, respectively. Here we report on the use of human-induced pluripotent stem cells (hiPSCs) for modelling gliomagenesis. Dysregulation of RTK and p53 signalling in hiPSC-derived NPCs (iNPCs) recapitulates GTIC properties in vitro. In vivo transplantation of transformed iNPCs leads to highly aggressive tumours containing undifferentiated stem cells and their differentiated derivatives. Metabolic modulation compromises GTIC viability. Last, screening of 101 anti-cancer compounds identifies three molecules specifically targeting transformed iNPCs and primary GTICs. Together, our results highlight the potential of hiPSCs for studying human tumourigenesis.", "title": "Establishment of human iPSC-based models for the study and targeting of glioma initiating cells" }, { "docid": "31439189", "text": "BACKGROUND Recent studies indicate the presence of a small, stem-like cell population in several human cancers that is crucial for the tumour (re)population. \n OBJECTIVE Six established prostate cancer (PCa) cell lines-DU145, DuCaP, LAPC-4, 22Rv1, LNCaP, and PC-3-were examined for their stem cell properties in vitro. \n DESIGN, SETTINGS, AND PARTICIPANTS The colony-forming efficiency and self-renewal ability of morphologically distinguishable holoclones and paraclones were tested with low-density plating and serial passaging. Expression of the putative stem cell marker CD133 and breast cancer resistance protein (BCRP) was examined with flow cytometry, and immunohistochemical stainings were made for CD133, alpha2-integrin, nestin, BCRP, cytokeratin 5 (CK5), and cytokeratin 18 (CK18). \n RESULTS AND LIMITATIONS Five out of six cell lines formed clear holo-, mero-, and paraclones. Unlike paraclones, we can maintain DU145 holoclones in culture for several passages, which is indicative of self-renewal ability. Using fluorescence-activated cell sorting (FACS) analysis only in DU145 cells, a small fraction (0.01%) of CD133(+) cells was detected. CD133(+) cells; however, like DU145 BCRP(+) (0.15%) cells, they were not more clonogenic, and they did not show more holoclone formation than the marker-negative cells or unselected cells. Immunohistochemistry revealed alpha2-integrin and BCRP as potential stem cell markers and CK5 with the combination of CK18 to distinguish transient amplifying cells. \n CONCLUSIONS These results indicate the possible presence of stem-like cells in several established PCa cell lines. CD133 selection does not enrich for stem-like cells in PCa cell lines.", "title": "Stem cell characteristics in prostate cancer cell lines." }, { "docid": "33390472", "text": "We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.", "title": "Isolation of major pancreatic cell types and long-term culture-initiating cells using novel human surface markers." }, { "docid": "39532074", "text": "INTRODUCTION The hostile environment after spinal cord injury (SCI) can compromise effects of regenerative therapies. We hypothesized that optimizing the post-traumatic environment with QL6 self-assembling peptides (SAPs) before neural precursor cell (NPC) transplantation would improve cell survival, differentiation and functional recovery. \n METHODS A total of 90 Wistar rats received a clip-compression SCI at C7. Within each of two study arms, animals were randomized into 5 groups (NPC, SAP, NPC+SAP, vehicle, and sham). SAPs and NPCs were injected into the spinal cord 1day and 14days post-injury, respectively. Animals received growth factors over 7days and were immunosuppressed. Rats were sacrificed at 4weeks and sections of the cervical spinal cord prepared for immunohistochemistry (first study arm). Neurological function was assessed weekly for 8weeks using a battery of behavioral tests. Nine weeks post-SCI, the corticospinal tract was assessed using fiber-tracking (second arm). \n RESULTS SAP-treated animals had significantly more surviving NPCs which showed increased differentiation to neurons and oligodendrocytes compared to controls. SAPs alone or in combination with NPCs resulted in smaller intramedullary cysts and larger volume of preserved tissue compared to other groups. The combined treatment group showed reduced astrogliosis and chondroitin sulfate proteoglycan deposition. Synaptic connectivity was increased in the NPC and combined treatment groups. Corticospinal tract preservation and behavioral outcomes improved with combinatorial treatment. \n CONCLUSION Injecting SAPs after SCI enhances subsequent NPC survival, integration and differentiation and improves functional recovery. STATEMENT OF SIGNIFICANCE The hostile environment after spinal cord injury (SCI) can compromise effects of regenerative therapies. We hypothesized that improving this environment with self-assembling peptides (SAPs) before neural precursor cell (NPC) transplantation would support their beneficial effects. SAPs assemble once injected, providing a supportive scaffold for repair and regeneration. We investigated this in a rat model of spinal cord injury. More NPCs survived in SAP-treated animals and these showed increased differentiation compared to controls. SAPS alone or in combination with NPCs resulted in smaller cysts and larger volume of preserved tissue with the combined treatment also reducing scarring and improving behavioral outcomes. Overall, injection of SAPs was shown to improve the efficacy of NPC treatment, a promising finding for those with SCIs.", "title": "Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury." }, { "docid": "6148876", "text": "RATIONALE Islet1 (Isl1) has been proposed as a marker of cardiac progenitor cells derived from the second heart field and is utilized to identify and purify cardiac progenitors from murine and human specimens for ex vivo expansion. The use of Isl1 as a specific second heart field marker is dependent on its exclusion from other cardiac lineages such as neural crest. \n OBJECTIVE Determine whether Isl1 is expressed by cardiac neural crest. \n METHODS AND RESULTS We used an intersectional fate-mapping system using the RC::FrePe allele, which reports dual Flpe and Cre recombination. Combining Isl1(Cre/+), a SHF driver, and Wnt1::Flpe, a neural crest driver, with Rc::FrePe reveals that some Isl1 derivatives in the cardiac outflow tract derive from Wnt1-expressing neural crest progenitors. In contrast, no overlap was observed between Wnt1-derived neural crest and an alternative second heart field driver, Mef2c-AHF-Cre. \n CONCLUSIONS Isl1 is not restricted to second heart field progenitors in the developing heart but also labels cardiac neural crest. The intersection of Isl1 and Wnt1 lineages within the heart provides a caveat to using Isl1 as an exclusive second heart field cardiac progenitor marker and suggests that some Isl1-expressing progenitor cells derived from embryos, embryonic stem cultures, or induced pluripotent stem cultures may be of neural crest lineage.", "title": "Islet1 derivatives in the heart are of both neural crest and second heart field origin." }, { "docid": "17049436", "text": "During development of the vertebrate neuroepithelium, the nucleus in neural progenitor cells (NPCs) moves from the apex toward the base and returns to the apex (called interkinetic nuclear migration) at which point the cell divides. The fate of the resulting daughter cells is thought to depend on the sampling by the moving nucleus of a spatial concentration profile of the cytoplasmic Notch intracellular domain (NICD). However, the nucleus executes complex stochastic motions including random waiting and back and forth motions, which can expose the nucleus to randomly varying levels of cytoplasmic NICD. How nuclear position can determine daughter cell fate despite the stochastic nature of nuclear migration is not clear. Here we derived a mathematical model for reaction, diffusion, and nuclear accumulation of NICD in NPCs during interkinetic nuclear migration (INM). Using experimentally measured trajectory-dependent probabilities of nuclear turning, nuclear waiting times and average nuclear speeds in NPCs in the developing zebrafish retina, we performed stochastic simulations to compute the nuclear trajectory-dependent probabilities of NPC differentiation. Comparison with experimentally measured nuclear NICD concentrations and trajectory-dependent probabilities of differentiation allowed estimation of the NICD cytoplasmic gradient. Spatially polarized production of NICD, rapid NICD cytoplasmic consumption and the time-averaging effect of nuclear import/export kinetics are sufficient to explain the experimentally observed differentiation probabilities. Our computational studies lend quantitative support to the feasibility of the nuclear concentration-sensing mechanism for NPC fate determination in zebrafish retina.", "title": "Concentration Sensing by the Moving Nucleus in Cell Fate Determination: A Computational Analysis" }, { "docid": "33986200", "text": "Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.", "title": "Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction." }, { "docid": "23262027", "text": "Eight isolates of Desulfovibrio spp. have been obtained over 5 years from abdominal or brain abscesses or blood. Seven isolates were part of a mixed flora [corrected]. One strain was isolated in pure culture from the blood of a patient with peritonitis of appendicular origin. According to the 16S rRNA gene sequences, this strain was close to Desulfovibrio fairfieldensis. The present report describes the fourth isolate of this recently described species to be isolated in pure culture or as a predominant part of the flora and to be associated with infectious processes. Thus, D. fairfieldensis may possess a higher pathogenic potential than other Desulfovibrio species.", "title": "Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis." }, { "docid": "25985964", "text": "Very small embryonic-like stem cells (VSELs) are possibly lost during cord blood banking and bone marrow (BM) processing for autologus stem cell therapy mainly because of their small size. The present study was conducted on human umbilical cord blood (UCB, n=6) and discarded red blood cells (RBC) fraction obtained after separation of mononuclear cells from human BM (n=6), to test this hypothesis. The results show that VSELs, which are pluripotent stem cells with maximum regenerative potential, settle along with the RBCs during Ficoll-Hypaque density separation. These cells are very small in size (3-5 μm), have high nucleo-cytoplasmic ratio, and express nuclear Oct-4, cell surface protein SSEA-4, and other pluripotent markers such as Nanog, Sox-2, Rex-1, and Tert as indicated by immunolocalization and quantitative polymerase chain reaction (Q-PCR) studies. Interestingly, a distinct population of slightly larger, round hematopoietic stem cells (HSCs) with cytoplasmic Oct-4 were detected in the \"buffy\" coat, which usually gets banked or used during autologus stem cell therapy. Immunohistochemical studies on the umbilical cord tissue (UCT) sections (n=3) showed the presence of nuclear Oct-4-positive VSELs and many fibroblast-like mesenchymal stem cells (MSCs) with cytoplasmic Oct-4. These VSELs with nuclear Oct-4, detected in UCB, UCT, and discarded RBC fraction obtained after BM processing, may persist throughout life, maintain tissue homeostasis, and undergo asymmetric cell division to self-renew as well as produce larger progenitor stem cells, viz. HSCs or MSCs, which follow differentiation trajectories depending on the somatic niche. Hence, it can be concluded that the true stem cells in adult body tissues are the VSELs, whereas the HSCs and MSCs are actually progenitor stem cells that arise by asymmetric cell division of VSELs. The results of the present study may help explain low efficacy reported during adult autologous stem cell trials, wherein unknowingly progenitor stem cells are injected rather than the pluripotent stem cells with maximum regenerative potential.", "title": "Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy." }, { "docid": "33955641", "text": "Procedures are described for the isolation of lipoproteins from human serum by precipitation with polyanions and divalent cations. A mixture of low and very low density lipoproteins can be prepared without ultracentrifugation by precipitation with heparin and either MnCl(2) alone or MgCl(2) plus sucrose. In both cases the precipitation is reversible, selective, and complete. The highly concentrated isolated lipoproteins are free of other plasma proteins as judged by immunological and electrophoretic methods. The low density and very low density lipoproteins can then be separated from each other by ultracentrifugation. The advantage of the method is that large amounts of lipoproteins can be prepared with only a single preparative ultracentrifugation. Polyanions other than heparin may also be used; when the precipitation of the low and very low density lipoproteins is achieved with dextran sulfate and MnCl(2), or sodium phosphotungstate and MgCl(2), the high density lipoproteins can subsequently be precipitated by increasing the concentrations of the reagents. These lipoproteins, containing small amounts of protein contaminants, are further purified by ultracentrifugation at d 1.22. With a single preparative ultracentrifugation, immunologically pure high density lipoproteins can be isolated from large volumes of serum.", "title": "Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions." }, { "docid": "25419778", "text": "Cellular senescence is a fundamental mechanism by which cells remain metabolically active yet cease dividing and undergo distinct phenotypic alterations, including upregulation of p16Ink4a , profound secretome changes, telomere shortening, and decondensation of pericentromeric satellite DNA. Because senescent cells accumulate in multiple tissues with aging, these cells and the dysfunctional factors they secrete, termed the senescence-associated secretory phenotype (SASP), are increasingly recognized as promising therapeutic targets to prevent age-related degenerative pathologies, including osteoporosis. However, the cell type(s) within the bone microenvironment that undergoes senescence with aging in vivo has remained poorly understood, largely because previous studies have focused on senescence in cultured cells. Thus in young (age 6 months) and old (age 24 months) mice, we measured senescence and SASP markers in vivo in highly enriched cell populations, all rapidly isolated from bone/marrow without in vitro culture. In both females and males, p16Ink4a expression by real-time quantitative polymerase chain reaction (rt-qPCR) was significantly higher with aging in B cells, T cells, myeloid cells, osteoblast progenitors, osteoblasts, and osteocytes. Further, in vivo quantification of senescence-associated distension of satellites (SADS), ie, large-scale unraveling of pericentromeric satellite DNA, revealed significantly more senescent osteocytes in old compared with young bone cortices (11% versus 2%, p < 0.001). In addition, primary osteocytes from old mice had sixfold more (p < 0.001) telomere dysfunction-induced foci (TIFs) than osteocytes from young mice. Corresponding with the age-associated accumulation of senescent osteocytes was significantly higher expression of multiple SASP markers in osteocytes from old versus young mice, several of which also showed dramatic age-associated upregulation in myeloid cells. These data show that with aging, a subset of cells of various lineages within the bone microenvironment become senescent, although senescent myeloid cells and senescent osteocytes predominantly develop the SASP. Given the critical roles of osteocytes in orchestrating bone remodeling, our findings suggest that senescent osteocytes and their SASP may contribute to age-related bone loss. © 2016 American Society for Bone and Mineral Research.", "title": "Identification of Senescent Cells in the Bone Microenvironment." }, { "docid": "3619372", "text": "Stem cell-based approaches to cardiac regeneration are increasingly viable strategies for treating heart failure. Generating abundant and functional autologous cells for transplantation in such a setting, however, remains a significant challenge. Here, we isolated a cell population with extensive proliferation capacity and restricted cardiovascular differentiation potentials during cardiac transdifferentiation of mouse fibroblasts. These induced expandable cardiovascular progenitor cells (ieCPCs) proliferated extensively for more than 18 passages in chemically defined conditions, with 10(5) starting fibroblasts robustly producing 10(16) ieCPCs. ieCPCs expressed cardiac signature genes and readily differentiated into functional cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) in vitro, even after long-term expansion. When transplanted into mouse hearts following myocardial infarction, ieCPCs spontaneously differentiated into CMs, ECs, and SMCs and improved cardiac function for up to 12 weeks after transplantation. Thus, ieCPCs are a powerful system to study cardiovascular specification and provide strategies for regenerative medicine in the heart.", "title": "Expandable Cardiovascular Progenitor Cells Reprogrammed from Fibroblasts." }, { "docid": "23901235", "text": "Neurogenesis occurs in the hippocampus of the developing and adult brain due to the presence of multipotent stem cells and restricted precursor cells at different stages of differentiation. It has been proposed that they may be of potential benefit for use in cell transplantation approaches for neurodegenerative disorders and trauma. Prolonged release of interleukin-1β (IL-1β) from activated microglia has a deleterious effect on hippocampal neurons and is implicated in the impaired neurogenesis and cognitive dysfunction associated with aging, Alzheimer's disease and depression. This study assessed the effect of IL-1β on the proliferation and differentiation of embryonic rat hippocampal NPCs in vitro. We show that IL-1R1 is expressed on proliferating NPCs and that IL-1β treatment decreases cell proliferation and neurosphere growth. When NPCs were differentiated in the presence of IL-1β, a significant reduction in the percentages of newly-born neurons and post-mitotic neurons and a significant increase in the percentage of astrocytes was observed in these cultures. These effects were attenuated by IL-1 receptor antagonist. These data reveal that IL-1β exerts an anti-proliferative, anti-neurogenic and pro-gliogenic effect on embryonic hippocampal NPCs, which is mediated by IL-1R1. The present results emphasise the consequences of an inflammatory environment during NPC development, and indicate that strategies to inhibit IL-1β signalling may be necessary to facilitate effective cell transplantation approaches or in conditions where endogenous hippocampal neurogenesis is impaired.", "title": "A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells." }, { "docid": "3756384", "text": "BACKGROUND & AIMS Hepatocytes in which the hepatitis B virus (HBV) is replicating exhibit loss of the chromatin modifying polycomb repressive complex 2 (PRC2), resulting in re-expression of specific, cellular PRC2-repressed genes. Epithelial cell adhesion molecule (EpCAM) is a PRC2-repressed gene, normally expressed in hepatic progenitors, but re-expressed in hepatic cancer stem cells (hCSCs). Herein, we investigated the functional significance of EpCAM re-expression in HBV-mediated hepatocarcinogenesis. \n METHODS Employing molecular approaches (transfections, fluorescence-activated cell sorting, immunoblotting, qRT-PCR), we investigated the role of EpCAM-regulated intramembrane proteolysis (RIP) in HBV replicating cells in vitro, and in liver tumors from HBV X/c-myc mice and chronically HBV infected patients. \n RESULTS EpCAM undergoes RIP in HBV replicating cells, activating canonical Wnt signaling. Transfection of Wnt-responsive plasmid expressing green fluorescent protein (GFP) identified a GFP + population of HBV replicating cells. These GFP+/Wnt+ cells exhibited cisplatin- and sorafenib-resistant growth resembling hCSCs, and increased expression of pluripotency genes NANOG, OCT4, SOX2, and hCSC markers BAMBI, CD44 and CD133. These genes are referred as EpCAM RIP and Wnt-induced hCSC-like gene signature. Interestingly, this gene signature is also overexpressed in liver tumors of X/c-myc bitransgenic mice. Clinically, a group of HBV-associated hepatocellular carcinomas was identified, exhibiting elevated expression of the hCSC-like gene signature and associated with reduced overall survival post-surgical resection. \n CONCLUSIONS The hCSC-like gene signature offers promise as prognostic tool for classifying subtypes of HBV-induced HCCs. Since EpCAM RIP and Wnt signaling drive expression of this hCSC-like signature, inhibition of these pathways can be explored as therapeutic strategy for this subtype of HBV-associated HCCs. LAY SUMMARY In this study, we provide evidence for a molecular mechanism by which chronic infection by the hepatitis B virus results in the development of poor prognosis liver cancer. Based on this mechanism our results suggest possible therapeutic interventions.", "title": "EpCAM-regulated intramembrane proteolysis induces a cancer stem cell-like gene signature in hepatitis B virus-infected hepatocytes." }, { "docid": "427082", "text": "The neural crest (NC) is an embryonic stem/progenitor cell population that generates a diverse array of cell lineages, including peripheral neurons, myelinating Schwann cells, and melanocytes, among others. However, there is a long-standing controversy as to whether this broad developmental perspective reflects in vivo multipotency of individual NC cells or whether the NC is comprised of a heterogeneous mixture of lineage-restricted progenitors. Here, we resolve this controversy by performing in vivo fate mapping of single trunk NC cells both at premigratory and migratory stages using the R26R-Confetti mouse model. By combining quantitative clonal analyses with definitive markers of differentiation, we demonstrate that the vast majority of individual NC cells are multipotent, with only few clones contributing to single derivatives. Intriguingly, multipotency is maintained in migratory NC cells. Thus, our findings provide definitive evidence for the in vivo multipotency of both premigratory and migrating NC cells in the mouse.", "title": "Premigratory and migratory neural crest cells are multipotent in vivo." } ]
990
Pyridostatin decreases telomere fragility in BRCA2-deficient cells.
[ { "docid": "16472469", "text": "G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.", "title": "Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds" } ]
[ { "docid": "4899981", "text": "Telomeres resemble common fragile sites (CFSs) in that they are difficult-to-replicate and exhibit fragility in mitosis in response to DNA replication stress. At CFSs, this fragility is associated with a delay in the completion of DNA replication until early mitosis, whereupon cells are proposed to switch to a RAD52-dependent form of break-induced replication. Here, we show that this mitotic DNA synthesis (MiDAS) is also a feature of human telomeres. Telomeric MiDAS is not restricted to those telomeres displaying overt fragility, and is a feature of a wide range of cell lines irrespective of whether their telomeres are maintained by telomerase or by the alternative lengthening of telomeres (ALT) mechanism. MiDAS at telomeres requires RAD52, and is mechanistically similar to CFS-associated MiDAS, with the notable exception that telomeric MiDAS does not require the MUS81-EME1 endonuclease. We propose a model whereby replication stress initiates a RAD52-dependent form of break-induced replication that bypasses a requirement for MUS81-EME1 to complete DNA synthesis in mitosis.", "title": "Human cancer cells utilize mitotic DNA synthesis to resist replication stress at telomeres regardless of their telomere maintenance mechanism" }, { "docid": "4926049", "text": "The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1(R1264H). Conversely, we define a TRF2(I124D) substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1(R1264H) mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase.", "title": "TRF2 Recruits RTEL1 to Telomeres in S Phase to Promote T-Loop Unwinding" }, { "docid": "4444861", "text": "Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.", "title": "Replication Fork Stability Confers Chemoresistance in BRCA-deficient Cells" }, { "docid": "4319844", "text": "Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer.", "title": "Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes." }, { "docid": "15600979", "text": "EMSY links the BRCA2 pathway to sporadic breast/ovarian cancer. It encodes a nuclear protein that binds to the BRCA2 N-terminal domain implicated in chromatin/transcription regulation, but when sporadically amplified/overexpressed, increased EMSY level represses BRCA2 transactivation potential and induces chromosomal instability, mimicking the activity of BRCA2 mutations in the development of hereditary breast/ovarian cancer. In addition to chromatin/transcription regulation, EMSY may also play a role in the DNA-damage response, suggested by its ability to localize at chromatin sites of DNA damage/repair. This implies that EMSY overexpression may also repress BRCA2 in DNA-damage replication/checkpoint and recombination/repair, coordinated processes that also require its interacting proteins: PALB2, the partner and localizer of BRCA2; RPA, replication/checkpoint protein A; and RAD51, the inseparable recombination/repair enzyme. Here, using a well-characterized recombination/repair assay system, we demonstrate that a slight increase in EMSY level can indeed repress these two processes independently of transcriptional interference/repression. Since EMSY, RPA and PALB2 all bind to the same BRCA2 region, these findings further support a scenario wherein: (a) EMSY amplification may mimic BRCA2 deficiency, at least by overriding RPA and PALB2, crippling the BRCA2/RAD51 complex at DNA-damage and replication/transcription sites; and (b) BRCA2/RAD51 may coordinate these processes by employing at least EMSY, PALB2 and RPA. We extensively discuss the molecular details of how this can happen to ascertain its implications for a novel recombination mechanism apparently conceived as checkpoint rather than a DNA repair system for cell division, survival, death, and human diseases, including the tissue specificity of cancer predisposition, which may renew our thinking about targeted therapy and prevention.", "title": "EMSY overexpression disrupts the BRCA2/RAD51 pathway in the DNA-damage response: implications for chromosomal instability/recombination syndromes as checkpoint diseases" }, { "docid": "5389523", "text": "Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis. This mitotic DNA synthesis, termed MiDAS, requires the MUS81-EME1 endonuclease and a non-catalytic subunit of the Pol-delta complex, POLD3. Here, we examine the contribution of HR factors in promoting MiDAS in human cells. We report that RAD51 and BRCA2 are dispensable for MiDAS but are required to counteract replication stress at CFS loci during S-phase. In contrast, MiDAS is RAD52 dependent, and RAD52 is required for the timely recruitment of MUS81 and POLD3 to CFSs in early mitosis. Our results provide further mechanistic insight into MiDAS and define a specific function for human RAD52. Furthermore, selective inhibition of MiDAS may comprise a potential therapeutic strategy to sensitize cancer cells undergoing replicative stress.", "title": "RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress." }, { "docid": "19255949", "text": "Mutations in the PARN gene (encoding poly(A)-specific ribonuclease) cause telomere diseases including familial idiopathic pulmonary fibrosis (IPF) and dyskeratosis congenita, but how PARN deficiency impairs telomere maintenance is unclear. Here, using somatic cells and induced pluripotent stem cells (iPSCs) from patients with dyskeratosis congenita with PARN mutations, we show that PARN is required for the 3′-end maturation of the telomerase RNA component (TERC). Patient-derived cells as well as immortalized cells in which PARN is disrupted show decreased levels of TERC. Deep sequencing of TERC RNA 3′ termini shows that PARN is required for removal of post-transcriptionally acquired oligo(A) tails that target nuclear RNAs for degradation. Diminished TERC levels and the increased proportion of oligo(A) forms of TERC are normalized by restoring PARN, which is limiting for TERC maturation in cells. Our results demonstrate a new role for PARN in the biogenesis of TERC and provide a mechanism linking PARN mutations to telomere diseases.", "title": "Poly(A)-specific ribonuclease (PARN) mediates 3′-end maturation of the telomerase RNA component" }, { "docid": "2758012", "text": "Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome-associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis.", "title": "BLM helicase facilitates telomere replication during leading strand synthesis of telomeres" }, { "docid": "20280410", "text": "Inherited mutations in the gene BRCA2 predispose carriers to early onset breast cancer, but such mutations account for fewer than 2% of all cases in East Anglia. It is likely that low penetrance alleles explain the greater part of inherited susceptibility to breast cancer; polymorphic variants in strongly predisposing genes, such as BRCA2, are candidates for this role. BRCA2 is thought to be involved in DNA double strand break-repair. Few mice in which Brca2 is truncated survive to birth; of those that do, most are male, smaller than their normal littermates and have high cancer incidence. Here we show that a common human polymorphism (N372H) in exon 10 of BRCA2 confers an increased risk of breast cancer: the HH homozygotes have a 1.31-fold (95% CI, 1.07–1.61) greater risk than the NN group. Moreover, in normal female controls of all ages there is a significant deficiency of homozygotes compared with that expected from Hardy-Weinberg equilibrium, whereas in males there is an excess of homozygotes: the HH group has an estimated fitness of 0.82 in females and 1.38 in males. Therefore, this variant of BRCA2 appears also to affect fetal survival in a sex-dependent manner.", "title": "A common variant in BRCA2 is associated with both breast cancer risk and prenatal viability" }, { "docid": "2679511", "text": "Werner's syndrome (WS) and Bloom's syndrome (BS) are cancer predisposition disorders caused by loss of function of the RecQ helicases WRN or BLM, respectively. BS and WS are characterized by replication defects, hyperrecombination events and chromosomal aberrations, which are hallmarks of cancer. Inefficient replication of the G-rich telomeric strand contributes to chromosome aberrations in WS cells, demonstrating a link between WRN, telomeres and genomic stability. Herein, we provide evidence that BLM also contributes to chromosome-end maintenance. Telomere defects (TDs) are observed in BLM-deficient cells at an elevated frequency, which is similar to cells lacking a functional WRN helicase. Loss of both helicases exacerbates TDs and chromosome aberrations, indicating that BLM and WRN function independently in telomere maintenance. BLM localization, particularly its recruitment to telomeres, changes in response to replication dysfunction, such as in WRN-deficient cells or after aphidicolin treatment. Exposure to replication challenge causes an increase in decatenated deoxyribonucleic acid (DNA) structures and late-replicating intermediates (LRIs), which are visible as BLM-covered ultra-fine bridges (UFBs) in anaphase. A subset of UFBs originates from telomeric DNA and their frequency correlates with telomere replication defects. We propose that the BLM complex contributes to telomere maintenance through its activity in resolving LRIs.", "title": "The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures" }, { "docid": "9555784", "text": "INTRODUCTION Low vitamin D (VD) is associated with secondary hyperparathyroidism and both contribute to deleterious consequences (reduced bone mineral density (BMD), risk of fractures and falls). \n OBJECTIVE To study the VD status and biological correlates in a group of postmenopausal women. MATERIAL AND METHODS We studied 123 postmenopausal women evaluated in the C.I.Parhon National Institute of Endocrinology, the Pituitary and Neuroendocrine Diseases department. All cases had been reffered for the evaluation of BMD by the general practitioner. The evaluation included serum measurements of total and ionised calcium, phosphorus, alkaline phosphatase (ALP), 25 hydroxi vitaminD (25OHD), parathyroid hormone (PTH), osteocalcin, betacrosslaps. Central DXA osteodensitometry was performed. \n RESULTS 91.9% of cases had 25OHD serum levels below 30 ng/ml (74.8% had VD deficiency, 17.1% VD insufficiency). Only 8.1% had sufficient VD levels. A history of fragility fractures was present in 45.83% of the osteoporotic patients, 27.27% of the osteopenic ones and 15.15% of the women with normal BMD. 32 women (26%) were on VD supplementation at the time of evaluation. Among these subjects, the 25OHD level was significantly higher in those with prior fragility fractures (p=0.018) and osteoporosis (p=0.008). 25OHD concentration negatively correlated with PTH, alkaline phosphatase (ALP) and osteocalcin. The bone markers evaluated had a significant inverse correlation with the radius BMD, T and Z scores (p=0.004). 27.17% of the cases with VD deficiency had secondary hyperparathyroidism. The 25OHD concentration was significantly lower in these cases (p=0.000). \n CONCLUSIONS VD insufficiency is widely prevalent but still under-recognized and under-treated, possibly leading to secondary hyperparathyroidism. The compliance to VD supplementation is lower in subjects without osteoporosis or fragility fractures. Primary prevention measures should be more actively implemented.", "title": "Vitamin d deficiency in postmenopausal women - biological correlates." }, { "docid": "39462488", "text": "Expanded CGG repeats cause chromosomal fragility and hereditary neurological disorders in humans. Replication forks stall at CGG repeats in a length-dependent manner in primate cells and in yeast. Saccharomyces cerevisiae proteins Tof1 and Mrc1 facilitate replication fork progression through CGG repeats. Remarkably, the fork-stabilizing role of Mrc1 does not involve its checkpoint function. Thus, chromosomal fragility might occur when forks stalled at expanded CGG repeats escape the S-phase checkpoint.", "title": "Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility" }, { "docid": "9394119", "text": "IMPORTANCE Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. \n OBJECTIVE To identify mutation-specific cancer risks for carriers of BRCA1/2. \n DESIGN, SETTING, AND PARTICIPANTS Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk. EXPOSURES Mutations of BRCA1 or BRCA2. \n MAIN OUTCOMES AND MEASURES Breast and ovarian cancer risks. \n RESULTS Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers. \n CONCLUSIONS AND RELEVANCE Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.", "title": "Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer." }, { "docid": "15521377", "text": "Cellular senescence is a stable form of cell-cycle arrest which is thought to limit the proliferative potential of premalignant cells [1]. The senescence phenotype was initially described by Hayflick and Moorhead in 1961 on human fibroblasts undergoing replicative exhaustion in culture [2]. It has been shown that senescence can be triggered in different cell types in response to diverse forms of cellular damage or stress (for review see [1]). Importantly, while senescence was denounced as a tissue culture phenomenon for many years, recent in vivo studies demonstrated that cellular senescence represents a potent failsafe mechanism against tumorigenesis and contributes to the cytotoxicity of certain anticancer agents (see for example [3-7]). Interestingly, senescent cells have also been observed in certain aged or damaged tissues and there is growing evidence that senescence checkpoints can affect the regenerative reserve of tissues and organismal aging [8-11]. However, senescence may also have positive effects on organ maintenance by limiting pathological responses to acute forms of injury such as fibrotic scarring in response to chemical induced liver injury [12]. Over the past years it was also shown that senescent cells can communicate with their environment by secreting a myriad of cytokines and growth factors. Interestingly, this \"senescence associated secretory phenotype (SASP)\" seems to be a double edged sword regarding tumor initiation and maintenance: i) On the one hand, it has been shown that the SASP can have pro-tumorigenic effects. In an experimental system it was shown that senescent mesenchymal cells can enhance the tumorigenicity of surrounding breast cancer cells [13]. ii) Similarly, it is possible that the SASP enhances selection of transformed cell clones in aged organ systems. It has been shown that loss of proliferative competition of non-transformed cells can accelerate leukemogenesis [14]. It remains to be seen whether aberrant secretion of cytokines and growth factors by the SASP can accelerated this process in aged and chronically damage organ systems. iii) In contrast to its pro-tumorigenic aspect, the SASP could also have anti-tumor effects. A recent study showed that in a mosaic liver cancer mouse model the activation of p53 induced senescence, an upregulation of inflammatory cytokines, and activation of innate immune responses leading to tumour cell clearance [15]. iv) In further support that the SASP could have anti-tumor activities, a series of recent papers showed that components of the SASP can stabilize the senescence cell cycle arrest via an autoregulatory feedback loop [16,17] or induces apoptosis of tumor cells [18]. In addition to its effects on tumorigenesis, the SASP could also influence tissue aging. Studies on aging telomere dysfunctional mice have provided direct experimental evidence for an in vivo activation of the SASP in response to telomere dysfunction [19]. Interestingly, this in vivo SASP provoked alterations in stem cell differentiation (skewing of hematopoiesis towards reduction in lymphopoiesis and enhancement of myelopoiesis) that are also characteristic signs of human aging. Figure 1. Different cellular stresses can induce senescence including telomere shortening, DNA damage, and oncogene activation. Senescence of tumor cells ... In light of the many possible roles o the SASP in aging and carcinogenesis, it appears to be of utmost importance to decipher regulatory pathways controlling the SASP. In a current publication, Bhaumik et al. have identified 2 microRNAs (miR-146a/b) that negatively regulate the secretion of IL-6 and IL-8 - two of the SASP [20]. The authors show that these microRNAs are up-regulated at late stages of senescence, many days after a permanent cell cycle arrest has been established. Interestingly, the inhibitory miRs are most strongly up-regulated in senescence of cell lines that show a strong SASP but not in cell lines characterized by a weak SASP. The authors propose a new concept indicating that miRs 146a and b function in a negative feedback loop preventing an over-activation of the SASP in senescent cells. The authors present some initial data suggesting that activation of this negative feedback loop involves IL-1 receptor, IRAK-1, and NFκB signalling leading to an up-regulation of miRs-146a and b. A direct proof that this proposed feedback loop suppresses over-activation of the SASP remains to be demonstrated in future studies. The authors show that blockage of IL-1-receptor signalling prevents both the up-regulation of miRs-146a and b as well as Il-6 secretion. To confirm their new concept, it would be important to show that a selective blockage of miRs-146a and b results in over-activation of the SASP. The work by Bhaumik et al. places mir-146a/b as central players to control IL-6 and IL-8 expression within the SASP. MicroRNAs are emerging therapeutic targets because their expression levels can be effectively modulated via the use of antagomirs (see for example [21]). Also, for increasing microRNA expression, microRNAs can be delivered into cellsin vivo (see for example [22]). Therefore, it will be interesting to functionally test the impact of mir-146 inhibition on tumorigenesis and aging in relevant mouse models. Such studies will be of particular interest, as recent work showed that IL-6 secretion by senescent cells is relevant for initiating and maintaining the senescene response via an autocrine loop [17]. A reduction of miR-146 could increase IL-6 levels in senescent cells, which should stabilize the senescence program and reduce the risk of malignant transformation. Furthermore, it can be speculated that reduction of mir-146 a/b will increase NfκB activation via IRAK1. As NfκB is modulating the expression of various inflammation associated genes, this may also lead to increased clearance of senescent tumor cells by the innate immune system. However, it should be mentioned that Il-6 secreted by senescent cells can also act as a mitogen for surrounding cells, thus potentially increasing the risk of malignant transformation [13,17]. Besides its function in SASP modulation, miR-146 was also reported to target the mRNAs of the BRCA1 and BRCA2 tumor suppressors. In a recent study a G to C polymorphism in miR-146, which leads to an increased processing and release of the mature microRNA, can predict an early onset of breast cancer [23]. Taken together, the study of Bhaumik et al. opens an interesting new research area dealing with the gene regulatory mechanisms that control activation of the SASP. Given the diverse roles of the SASP in modulating tumor progression, immune surveillance of damaged cells, and the stabilization of the senescence arrest itself, it will be of great interest to analyse the influence of SASP regulatory pathways during aging and cancer.", "title": "Keeping your senescent cells under control" }, { "docid": "14446279", "text": "In the yeast Saccharomyces cerevisiae that lacks lamins, the nuclear pore complex (NPC) has been proposed to serve a role in chromatin organization. Here, using fluorescence microscopy in living cells, we show that nuclear pore proteins of the Nup84 core complex, Nup84p, Nup145Cp, Nup120p, and Nup133p, serve to anchor telomere XI-L at the nuclear periphery. The integrity of this complex is shown to be required for repression of a URA3 gene inserted in the subtelomeric region of this chromosome end. Furthermore, altering the integrity of this complex decreases the efficiency of repair of a DNA double-strand break (DSB) only when it is generated in the subtelomeric region, even though the repair machinery is functional. These effects are specific to the Nup84 complex. Our observations thus confirm and extend the role played by the NPC, through the Nup84 complex, in the functional organization of chromatin. They also indicate that anchoring of telomeres is essential for efficient repair of DSBs occurring therein and is important for preserving genome integrity.", "title": "Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region" }, { "docid": "22975806", "text": "For individuals genetically predisposed to breast and ovarian cancer through inheritance of a mutant BRCA allele, somatic loss of heterozygosity affecting the wild-type allele is considered obligatory for cancer initiation and/or progression. However, several lines of evidence suggest that phenotypic effects may result from BRCA haploinsufficiency. Archival fixed and embedded tissue specimens from women with germ line deleterious mutations in BRCA1 or BRCA2 were identified. After pathologic review, focal areas of normal breast epithelium, atypical ductal hyperplasia, ductal carcinoma-in-situ, and invasive ductal carcinoma were identified from 14 BRCA1-linked and 9 BRCA2-linked breast cancers. Ten BRCA-linked prophylactic mastectomy specimens and 12 BRCA-linked invasive ovarian carcinomas were also studied. Laser catapult microdissection was used to isolate cells from the various pathologic lesions and corresponding normal tissues. After DNA isolation, real-time polymerase chain reaction assays were used to quantitate the proportion of wild-type to mutant BRCA alleles in each tissue sample. Quantitative allelotyping of microdissected cells revealed a high level of heterogeneity in loss of heterozygosity within and between preinvasive lesions and invasive cancers from BRCA1 and BRCA2 heterozygotes with breast cancer. In contrast, all BRCA-associated ovarian cancers displayed complete loss of the wild-type BRCA allele. These data suggest that loss of the wild-type BRCA allele is not required for BRCA-linked breast tumorigenesis, which would have important implications for the genetic mechanism of BRCA tumor suppression and for the clinical management of this patient population.", "title": "Heterogenic Loss of the Wild-Type BRCA Allele in Human Breast Tumorigenesis" }, { "docid": "7915836", "text": "Most cancer cells activate telomerase to elongate telomeres and achieve unlimited replicative potential. Some cancer cells cannot activate telomerase and use telomere homologous recombination (HR) to elongate telomeres, a mechanism termed alternative lengthening of telomeres (ALT). A hallmark of ALT cells is the recruitment of telomeres to PML bodies (termed APBs). Here, we show that the SMC5/6 complex localizes to APBs in ALT cells and is required for targeting telomeres to APBs. The MMS21 SUMO ligase of the SMC5/6 complex SUMOylates multiple telomere-binding proteins, including TRF1 and TRF2. Inhibition of TRF1 or TRF2 SUMOylation prevents APB formation. Depletion of SMC5/6 subunits by RNA interference inhibits telomere HR, causing telomere shortening and senescence in ALT cells. Thus, the SMC5/6 complex facilitates telomere HR and elongation in ALT cells by promoting APB formation through SUMOylation of telomere-binding proteins.", "title": "The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins" }, { "docid": "10326242", "text": "PALB2 was recently identified as a nuclear binding partner of BRCA2. Biallelic BRCA2 mutations cause Fanconi anemia subtype FA-D1 and predispose to childhood malignancies. We identified pathogenic mutations in PALB2 (also known as FANCN) in seven families affected with Fanconi anemia and cancer in early childhood, demonstrating that biallelic PALB2 mutations cause a new subtype of Fanconi anemia, FA-N, and, similar to biallelic BRCA2 mutations, confer a high risk of childhood cancer.", "title": "Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer" }, { "docid": "4457160", "text": "Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.", "title": "Whole genomes redefine the mutational landscape of pancreatic cancer" } ]
992
Pyridostatin deregulates G2/M progression.
[ { "docid": "16472469", "text": "G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.", "title": "Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds" } ]
[ { "docid": "38131471", "text": "DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.", "title": "Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints." }, { "docid": "14145440", "text": "BACKGROUND DNA replication and mitosis are triggered by activation of kinase complexes, each made up of a cyclin and a cyclin-dependent kinase (Cdk). It had seemed possible that the association of Cdks with different classes of cyclins specifies whether S phase (replication) or M phase (mitosis) will occur. The recent finding that individual B-type cyclins (encoded by the genes CLB1-CLB6) can have functions in both processes in the budding yeast Saccharomyces cerevisiae casts doubt on this notion. \n RESULTS S. cerevisiae strains lacking C1b1-C1b4 undergo DNA replication once but fail to enter mitosis. We have isolated mutations in two genes, SIM1 and SIM2 (SIM2 is identical to SEC72), which allow such cells to undergo an extra round of DNA replication without mitosis. The Clb5 kinase, which promotes S phase, remains active during the G2-phase arrest of cells of the parental strain, but its activity declines rapidly in sim mutants. Increased expression of the CLB5 gene prevents re-replication. Thus, a cyclin B-kinase that promotes DNA replication in G1-phase cells can prevent re-replication in G2-phase cells. Inactivation of C1b kinases by expression of the specific C1b-Cdk1 inhibitor p40SIC1 is sufficient to induce a prereplicative state at origins of replication in cells blocked in G2/M phase by nocodazole. Re-activation of C1b-Cdk1 kinases induces a second round of DNA replication. \n CONCLUSIONS We propose that S-phase-promoting cyclin B--Cdk complexes prevent re-replication during S, G2 and M phases by inhibiting the transition of replication origins to a pre-replicative state. This model can explain both why origins 'fire' only once per S phase and why S phase is dependent on completion of the preceding M phase.", "title": "S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state" }, { "docid": "5273056", "text": "Eukaryotes have numerous checkpoint pathways to protect genome fidelity during normal cell division and in response to DNA damage. Through a screen for G2/M checkpoint regulators in zebrafish, we identified ticrr (for TopBP1-interacting, checkpoint, and replication regulator), a previously uncharacterized gene that is required to prevent mitotic entry after treatment with ionizing radiation. Ticrr deficiency is embryonic-lethal in the absence of exogenous DNA damage because it is essential for normal cell cycle progression. Specifically, the loss of ticrr impairs DNA replication and disrupts the S/M checkpoint, leading to premature mitotic entry and mitotic catastrophe. We show that the human TICRR ortholog associates with TopBP1, a known checkpoint protein and a core component of the DNA replication preinitiation complex (pre-IC), and that the TICRR-TopBP1 interaction is stable without chromatin and requires BRCT motifs essential for TopBP1's replication and checkpoint functions. Most importantly, we find that ticrr deficiency disrupts chromatin binding of pre-IC, but not prereplication complex, components. Taken together, our data show that TICRR acts in association with TopBP1 and plays an essential role in pre-IC formation. It remains to be determined whether Ticrr represents the vertebrate ortholog of the yeast pre-IC component Sld3, or a hitherto unknown metazoan replication and checkpoint regulator.", "title": "A vertebrate gene, ticrr, is an essential checkpoint and replication regulator." }, { "docid": "32852283", "text": "BACKGROUND Although zoledronic acid (ZOL), a third-generation nitrogen-containing bisphosphonate, has been identified as an attractive therapeutic agent against breast cancer, prostate cancer, multiple myeloma as well as small-cell lung cancer (SCLC), as best as we are aware, the anti-tumor effect of ZOL upon non-small-cell lung cancer (NSCLC) remains to be effectively investigated. This study examined the effects of ZOL upon the line-1 tumor cell, using a murine lung adenocarcinoma cell line similar to the behavior of human lung adenocarcinoma. \n METHODS We investigated the anti-tumor effects of ZOL (3-100 microM) on line-1 tumor cells in vitro, including cellular proliferation, by means of an MTT assay, cell-cycle analysis by flow cytometry and by assessing the level of apoptosis by annexin V/propidium iodide (PI) and 4'-6-diamidino-2-phenylindole (DAPI) staining. Further, we evaluated the growth and survival of line-1 tumor cells following ZOL treatment (1 microg/kg/week) using an animal model. We also examined the in vivo cell-cycle pattern using lacZ-expressing line-1 cells (line-1/lacZ). \n RESULTS ZOL significantly slowed the line-1 tumor growth in a dose-dependent manner in vitro. The treated line-1 tumor cells typically arrested at the S/G2/M-phase of the cell-cycle following ZOL exposure, but no apoptotic cells could be detected by either annexin V/PI or DAPI staining. When the ZOL was washed out, the drug-inhibited cells continued to proliferate again and the cell-cycle prolongation elicited earlier by the drug, then disappeared. Within 72-96 h following drug removal, the cell-cycle of the treated cells revealed a similar distribution to that of the untreated controls. In vivo studies demonstrated that ZOL significantly slowed the line-1 tumor growth. Indeed, mice lived significantly longer when they had been ZOL-treated than was the case for untreated mice (p<0.05). Using line-1/lacZ cells, the in vivo cell-cycle distribution of line-1 tumor cells subsequent to ZOL exposure revealed S/G2/M-phase arrest that was identical to the in vitro culture. \n CONCLUSIONS ZOL maintains the potential to reduce tumor burden and prolong survival for murine pulmonary adenocarcinoma. The flow cytometrical analysis of cell-cycle demonstrated that ZOL induces no apoptosis but is able to arrest line-1 tumor cells at the S/G2/M-phase. Although the clinical relevance of these results warrants verification for human lung cancer patients, ZOL combined with chemotherapy and/or radiotherapy appears to be a new therapeutic strategy for the effective treatment of NSCLC.", "title": "Zoledronic acid is unable to induce apoptosis, but slows tumor growth and prolongs survival for non-small-cell lung cancers." }, { "docid": "6812319", "text": "Chromosomal instability (CIN) is a hallmark of tumour initiation and progression. Some genomic regions are particularly unstable under replication stress, notably common fragile sites (CFSs) whose rearrangements in tumour cells contribute to cancer development. Recent work has shown that the Fanconi anaemia (FANC) pathway plays a role in preventing defective chromosome segregation and CIN under conditions of replication stress. Strikingly, FANCD2 is recruited to regions hosting CFSs on metaphase chromosomes. To decipher the mechanisms protecting CFSs in G2/M, we searched for proteins that co-localize with FANCD2 on mitotic chromosomes, and identified XPF–ERCC1 and MUS81–EME1, two structure-specific endonucleases. We show that depletion of either ERCC1 or MUS81–EME1 affects accurate processing of replication intermediates or under-replicated DNA that persist at CFSs until mitosis. Depletion of these endonucleases also leads to an increase in the frequency of chromosome bridges during anaphase that, in turn, favours accumulation of DNA damage in the following G1 phase.", "title": "ERCC1 and MUS81–EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis" }, { "docid": "7622767", "text": "We have used microinjection and time-lapse video microscopy to study the role of cyclin A in mitosis. We have injected purified, active cyclin A/cyclin-dependent kinase 2 (CDK2) into synchronized cells at specific points in the cell cycle and assayed its effect on cell division. We find that cyclin A/CDK2 will drive G2 phase cells into mitosis within 30 min of microinjection, up to 4 h before control cells enter mitosis. Often this premature mitosis is abnormal; the chromosomes do not completely condense and daughter cells fuse. Remarkably, microinjecting cyclin A/CDK2 into S phase cells has no effect on progress through the following G2 phase or mitosis. In complementary experiments we have microinjected the amino terminus of p21Cip1/Waf1/Sdi1 (p21N) into cells to inhibit cyclin A/CDK2 activity. We find that p21N will prevent S phase or G2 phase cells from entering mitosis, and will cause early prophase cells to return to interphase. These results suggest that cyclin A/CDK2 is a rate-limiting component required for entry into mitosis, and for progress through mitosis until late prophase. They also suggest that cyclin A/CDK2 may be the target of the recently described prophase checkpoint.", "title": "Human Cyclin a Is Required for Mitosis until Mid Prophase" }, { "docid": "7165938", "text": "PURPOSE The circadian clock gene Bmal1 is involved in cancer cell proliferation and DNA damage sensitivity. The aim of this study was to explore the effect of Bmal1 on oxaliplatin sensitivity and to determine its clinical significance in colorectal cancer. EXPERIMENTAL DESIGN Three colorectal cancer cell lines, HCT116, THC8307 and HT29, were used. The Bmal1-mediated control of colorectal cancer cell proliferation was tested in vitro and in vivo. MTT and colony formation assays were performed to determine the sensitivity of colorectal cancer cells to oxaliplatin. Flow cytometry was used to examine changes in the cell-cycle distribution and apoptosis rate. Proteins expressed downstream of Bmal1 upon its overexpression were determined by Western blotting. Immunohistochemistry was used to analyze Bmal1 expression in 82 archived colorectal cancer tumors from patients treated with oxaliplatin-based regimens. \n RESULTS Bmal1 overexpression inhibited colorectal cancer cell proliferation and increased colorectal cancer sensitivity to oxaliplatin in three colorectal cancer cell lines and HCT116 cells model in vivo. Furthermore, the overall survival of patients with colorectal cancer with high Bmal1 levels in their primary tumors was significantly longer than that of patients with low Bmal1 levels (27 vs. 19 months; P = 0.043). The progression-free survival of patients with high Bmal1 expression was also significantly longer than that of patients with low Bmal1 expression (11 vs. 5 months; P = 0.015). Mechanistically, the effect of Bmal1 was associated with its ability to regulate G2-M arrest by activating the ATM pathway. \n CONCLUSION Bmal1 shows the potential as a novel prognostic biomarker and may represent a new therapeutic target in colorectal cancer.", "title": "Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal cancer." }, { "docid": "7736860", "text": "Store-operated Ca(2+) entry (SOCE) is the principal Ca(2+) entry mechanism in nonexcitable cells. Stromal-interaction molecule 1 (STIM1) is an endoplasmic reticulum Ca(2+) sensor that triggers SOCE activation. However, the role of STIM1 in regulating cancer progression remains controversial and its clinical relevance is unclear. Here we show that STIM1-dependent signaling is important for cervical cancer cell proliferation, migration, and angiogenesis. STIM1 overexpression in tumor tissue is noted in 71% cases of early-stage cervical cancer. In tumor tissues, the level of STIM1 expression is significantly associated with the risk of metastasis and survival. EGF-stimulated cancer cell migration requires STIM1 expression and EGF increases the interaction between STIM1 and Orai1 in juxta-membrane areas, and thus induces Ca(2+) influx. STIM1 involves the activation of Ca(2+)-regulated protease calpain, as well as Ca(2+)-regulated cytoplasmic kinase Pyk2, which regulate the focal-adhesion dynamics of migratory cervical cancer cells. Because of an increase of p21 protein levels and a decrease of Cdc25C protein levels, STIM1-silencing in cervical cancer cells significantly inhibits cell proliferation by arresting the cell cycle at the S and G2/M phases. STIM1 also regulates the production of VEGF in cervical cancer cells. Interference with STIM1 expression or blockade of SOCE activity inhibits tumor angiogenesis and growth in animal models, confirming the crucial role of STIM1-mediated Ca(2+) influx in aggravating tumor development in vivo. These results make STIM1-dependent signaling an attractive target for therapeutic intervention.", "title": "Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis." }, { "docid": "23356816", "text": "The mammalian A-type cyclin family consists of two members, cyclin A1 (encoded by Ccna1) and cyclin A2 (encoded by Ccna2). Cyclin A2 promotes both G1/S and G2/M transitions, and targeted deletion of Ccna2 in mouse is embryonic lethal. Cyclin A1 is expressed in mice exclusively in the germ cell lineage and is expressed in humans at highest levels in the testis and certain myeloid leukaemia cells. To investigate the role of cyclin A1 and possible redundancy among the cyclins in vivo, we generated mice bearing a null mutation of Ccna1. Ccna1-/- males were sterile due to a block of spermatogenesis before the first meiotic division, whereas females were normal. Meiosis arrest in Ccna1–/– males was associated with increased germ cell apoptosis, desynapsis abnormalities and reduction of Cdc2 kinase activation at the end of meiotic prophase. Cyclin A1 is therefore essential for spermatocyte passage into the first meiotic division in male mice, a function that cannot be complemented by the concurrently expressed B-type cyclins.", "title": "Cyclin A1 is required for meiosis in the male mouse" }, { "docid": "24498673", "text": "Holliday junctions (HJs) are four-way DNA intermediates that form during homologous recombination, and their efficient resolution is essential for chromosome segregation. Here, we show that three structure-selective endonucleases, namely SLX1-SLX4, MUS81-EME1, and GEN1, define two pathways of HJ resolution in human cells. One pathway is mediated by GEN1, whereas SLX1-SLX4 and MUS81-EME1 provide a second and genetically distinct pathway (SLX-MUS). Cells depleted for SLX-MUS or GEN1 pathway proteins exhibit severe defects in chromosome segregation and reduced survival. In response to CDK-mediated phosphorylation, SLX1-SLX4 and MUS81-EME1 associate at the G2/M transition to form a stable SLX-MUS holoenzyme, which can be reconstituted in vitro. Biochemical studies show that SLX-MUS is a HJ resolvase that coordinates the active sites of two distinct endonucleases during HJ resolution. This cleavage reaction is more efficient and orchestrated than that mediated by SLX1-SLX4 alone, which exhibits a potent nickase activity that acts promiscuously upon DNA secondary structures.", "title": "Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells." }, { "docid": "18374364", "text": "A rare set of hematopoietic stem cells (HSC) must undergo a massive expansion to produce mature blood cells. The phenotypic isolation of HSC from mice offers the opportunity to determine directly their proliferation kinetics. We analyzed the proliferation and cell cycle kinetics of long-term self-renewing HSC (LT-HSC) in normal adult mice. At any one time, approximately 5% of LT-HSC were in S/G2/M phases of the cell cycle and another 20% were in G1 phase. BrdUrd incorporation was used to determine the rate at which different cohorts of HSC entered the cell cycle over time. About 50% of LT-HSC incorporated BrdUrd by 6 days and >90% incorporated BrdUrd by 30 days. By 6 months, 99% of LT-HSC had incorporated BrdUrd. We calculated that approximately 8% of LT-HSC asynchronously entered the cell cycle per day. Nested reverse transcription-PCR analysis revealed cyclin D2 expression in a high proportion of LT-HSC. Although approximately 75% of LT-HSC are quiescent in G0 at any one time, all HSC are recruited into cycle regularly such that 99% of LT-HSC divide on average every 57 days.", "title": "In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells." }, { "docid": "8774475", "text": "Loss of cell polarity proteins such as Scribble induces neoplasia in Drosophila by promoting uncontrolled proliferation. In mammals, the role that polarity proteins play during tumorigenesis is not well understood. Here, we demonstrate that depletion of Scribble in mammary epithelia disrupts cell polarity, blocks three-dimensional morphogenesis, inhibits apoptosis, and induces dysplasia in vivo that progress to tumors after long latency. Loss of Scribble cooperates with oncogenes such as c-myc to transform epithelial cells and induce tumors in vivo by blocking activation of an apoptosis pathway. Like depletion, mislocalization of Scribble from cell-cell junction was sufficient to promote cell transformation. Interestingly, spontaneous mammary tumors in mice and humans possess both downregulated and mislocalized Scribble. Thus, we demonstrate that scribble inhibits breast cancer formation and that deregulation of polarity pathways promotes dysplastic and neoplastic growth in mammals by disrupting morphogenesis and inhibiting cell death.", "title": "Deregulation of Scribble Promotes Mammary Tumorigenesis and Reveals a Role for Cell Polarity in Carcinoma" }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" }, { "docid": "9038803", "text": "Many human tumours show centrosome aberrations, indicating an underlying deregulation of centrosome structure, duplication or segregation. Centrosomes organize microtubule arrays throughout the cell cycle, thereby influencing both tissue architecture and the accuracy of chromosome segregation. But what are the origins of centrosomal abnormalities in tumours, and what impact do they have on the generation of invasive, genetically unbalanced cells during cancer progression?", "title": "Centrosome aberrations: cause or consequence of cancer progression?" }, { "docid": "27247460", "text": "Many physiological, biochemical and behavioral processes operate under the circadian rhythm, which is generated by an internal time-keeping mechanism commonly referred to as the biological clock, in almost all organisms from bacteria to mammals. The core circadian oscillator is composed of an autoregulatory transcription-translation feedback loop, in which CLOCK and BMAL1 are positive regulators. A cell has two mechanisms, \"cell cycle\" and \"cell rhythm\", the relationship between which remains controversial. Therefore, the aim of this study was to explore the effect of Clock and Bmal1 on cell cycle, especially on the G1 phase, using vectors with the tetracycline operator-repressor system. The present study revealed that simultaneous induction of Bmal1 and Clock had an influential effect on the cell cycle in SW480/T-REx/Clock/Bmal1 cells, in which both Clock and Bmal1 could be induced by tetracycline. The observation that induction of both Clock and Bmal1 inhibited cell growth and the significant increase of the G1 phase proportion of in SW480/T-REx/Clock/Bmal1 cells indicated that entry from the G1 to S phase was inhibited by the induction of Clock and Bmal1. Furthermore, overexpression of Clock and Bmal1 prevented the cells from entering into the G2/M phase induced by Paclitaxel, and made the cells more resistant to the agent. In conclusion, we found that overexpression of both Clock and Bmal1 suppressed cell growth. In addition, the present study raised the possibility that Clock and Bmal1 may in part play a role in preventing the cells from entering G1 to S phase of cell cycle via suppression of CyclinD1 expression, and thus acquiring resistance to Paclitaxel.", "title": "OVEREXPRESSION OF BOTH CLOCK AND BMAL1 INHIBITS ENTRY TO S PHASE IN HUMAN COLON CANCER CELLS." }, { "docid": "23634484", "text": "A predominantly nuclear RNA-binding protein, HuR translocates to the cytoplasm in response to stress and proliferative signals, where it stabilizes or modulates the translation of target mRNAs. Here, we present evidence that HuR phosphorylation at S202 by the G2-phase kinase Cdk1 influences its subcellular distribution. HuR was specifically phosphorylated in synchronous G2-phase cultures; its cytoplasmic levels increased by Cdk1-inhibitory interventions and declined in response to Cdk1-activating interventions. In keeping with the prominently cytoplasmic location of the nonphosphorylatable point mutant HuR(S202A), phospho-HuR(S202) was shown to be predominantly nuclear using a novel anti-phospho-HuR(S202) antibody. The enhanced cytoplasmic presence of unphosphorylated HuR was linked to its decreased association with 14-3-3 and to its heightened binding to target mRNAs. Our findings suggest that Cdk1 phosphorylates HuR during G2, thereby helping to retain it in the nucleus in association with 14-3-3 and hindering its post-transcriptional function and anti-apoptotic influence.", "title": "Nuclear HuR accumulation through phosphorylation by Cdk1." }, { "docid": "25837950", "text": "Obesity is associated with higher mortality in the general population, but this association is reversed in patients on dialysis. The nature of the relationship of obesity with adverse clinical outcomes in nondialysis-dependent CKD and the putative interaction of the severity of disease with this association are unclear. We analyzed data from a nationally representative cohort of 453,946 United States veterans with eGFR<60 ml/min per 1.73 m(2). The associations of body mass index categories (<20, 20 to <25, 25 to <30, 30 to <35, 35 to <40, 40 to <45, 45 to <50, and ≥50 kg/m(2)) with all-cause mortality and disease progression (using multiple definitions, including incidence of ESRD, doubling of serum creatinine, and the slopes of eGFR) were examined in Cox proportional hazards models and logistic regression models. Multivariable adjustments were made for age, race, comorbidities and medications, and baseline eGFR. Body mass index showed a relatively consistent U-shaped association with clinical outcomes, with the best outcomes observed in overweight and mildly obese patients. Body mass index levels <25 kg/m(2) were associated with worse outcomes in all patients, independent of severity of CKD. Body mass index levels ≥35 kg/m(2) were associated with worse outcomes in patients with earlier stages of CKD, but this association was attenuated in those patients with eGFR<30 ml/min per 1.73 m(2). Thus, until clinical trials establish the ideal body mass index, a cautious approach to weight management is warranted in this patient population.", "title": "Association of body mass index with outcomes in patients with CKD." }, { "docid": "33638477", "text": "Several components of the Wnt signaling cascade have been shown to function either as tumor suppressor proteins or as oncogenes in multiple human cancers, underscoring the relevance of this pathway in oncogenesis and the need for further investigation of Wnt signaling components as potential targets for cancer therapy. Here, using expression profiling analysis as well as in vitro and in vivo functional studies, we show that the Wnt pathway component BCL9 is a novel oncogene that is aberrantly expressed in human multiple myeloma as well as colon carcinoma. We show that BCL9 enhances beta-catenin-mediated transcriptional activity regardless of the mutational status of the Wnt signaling components and increases cell proliferation, migration, invasion, and the metastatic potential of tumor cells by promoting loss of epithelial and gain of mesenchymal-like phenotype. Most importantly, BCL9 knockdown significantly increased the survival of xenograft mouse models of cancer by reducing tumor load, metastasis, and host angiogenesis through down-regulation of c-Myc, cyclin D1, CD44, and vascular endothelial growth factor expression by tumor cells. Together, these findings suggest that deregulation of BCL9 is an important contributing factor to tumor progression. The pleiotropic roles of BCL9 reported in this study underscore its value as a drug target for therapeutic intervention in several malignancies associated with aberrant Wnt signaling.", "title": "BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells." }, { "docid": "4418878", "text": "The development of an oncogenic state is a complex process involving the accumulation of multiple independent mutations that lead to deregulation of cell signalling pathways central to the control of cell growth and cell fate. The ability to define cancer subtypes, recurrence of disease and response to specific therapies using DNA microarray-based gene expression signatures has been demonstrated in multiple studies. Various studies have also demonstrated the potential for using gene expression profiles for the analysis of oncogenic pathways. Here we show that gene expression signatures can be identified that reflect the activation status of several oncogenic pathways. When evaluated in several large collections of human cancers, these gene expression signatures identify patterns of pathway deregulation in tumours and clinically relevant associations with disease outcomes. Combining signature-based predictions across several pathways identifies coordinated patterns of pathway deregulation that distinguish between specific cancers and tumour subtypes. Clustering tumours based on pathway signatures further defines prognosis in respective patient subsets, demonstrating that patterns of oncogenic pathway deregulation underlie the development of the oncogenic phenotype and reflect the biology and outcome of specific cancers. Predictions of pathway deregulation in cancer cell lines are also shown to predict the sensitivity to therapeutic agents that target components of the pathway. Linking pathway deregulation with sensitivity to therapeutics that target components of the pathway provides an opportunity to make use of these oncogenic pathway signatures to guide the use of targeted therapeutics.", "title": "Oncogenic pathway signatures in human cancers as a guide to targeted therapies" } ]
994
Pyridostatin encourages proliferation of homologous recombination - defective cells.
[ { "docid": "16472469", "text": "G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.", "title": "Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds" } ]
[ { "docid": "6710699", "text": "Werner syndrome (WRN) is an uncommon autosomal recessive disease whose phenotype includes features of premature aging, genetic instability, and an elevated risk of cancer. We used three different experimental strategies to show that WRN cellular phenotypes of limited cell division potential, DNA damage hypersensitivity, and defective homologous recombination (HR) are interrelated. WRN cell survival and the generation of viable mitotic recombinant progeny could be rescued by expressing wild-type WRN protein or by expressing the bacterial resolvase protein RusA. The dependence of WRN cellular phenotypes on RAD51-dependent HR pathways was demonstrated by using a dominant-negative RAD51 protein to suppress mitotic recombination in WRN and control cells: the suppression of RAD51-dependent recombination led to significantly improved survival of WRN cells following DNA damage. These results define a physiological role for the WRN RecQ helicase protein in RAD51-dependent HR and identify a mechanistic link between defective recombination resolution and limited cell division potential, DNA damage hypersensitivity, and genetic instability in human somatic cells.", "title": "Homologous recombination resolution defect in werner syndrome." }, { "docid": "25838286", "text": "Werner syndrome (WS) predisposes patients to cancer and premature aging, owing to mutations in WRN. The WRN protein is a RECQ-like helicase and is thought to participate in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) or homologous recombination (HR). It has been previously shown that non-homologous DNA ends develop extensive deletions during repair in WS cells, and that this WS phenotype was complemented by wild-type (wt) WRN. WRN possesses both 3' --> 5' exonuclease and 3' --> 5' helicase activities. To determine the relative contributions of each of these distinct enzymatic activities to DSB repair, we examined NHEJ and HR in WS cells (WRN-/-) complemented with either wtWRN, exonuclease-defective WRN (E-), helicase-defective WRN (H-) or exonuclease/helicase-defective WRN (E-H-). The single E-and H- mutants each partially complemented the NHEJ abnormality of WRN-/- cells. Strikingly, the E-H- double mutant complemented the WS deficiency nearly as efficiently as did wtWRN. Similarly, the double mutant complemented the moderate HR deficiency of WS cells nearly as well as did wtWRN, whereas the E- and H- single mutants increased HR to levels higher than those restored by either E-H- or wtWRN. These results suggest that balanced exonuclease and helicase activities of WRN are required for optimal HR. Moreover, WRN appears to play a structural role, independent of its enzymatic activities, in optimizing HR and efficient NHEJ repair. Another human RECQ helicase, BLM, suppressed HR but had little or no effect on NHEJ, suggesting that mammalian RECQ helicases have distinct functions that can finely regulate recombination events.", "title": "WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair." }, { "docid": "13791206", "text": "Defective DNA repair by homologous recombination (HR) is thought to be a major contributor to tumorigenesis in individuals carrying Brca1 mutations. Here, we show that DNA breaks in Brca1-deficient cells are aberrantly joined into complex chromosome rearrangements by a process dependent on the nonhomologous end-joining (NHEJ) factors 53BP1 and DNA ligase 4. Loss of 53BP1 alleviates hypersensitivity of Brca1 mutant cells to PARP inhibition and restores error-free repair by HR. Mechanistically, 53BP1 deletion promotes ATM-dependent processing of broken DNA ends to produce recombinogenic single-stranded DNA competent for HR. In contrast, Lig4 deficiency does not rescue the HR defect in Brca1 mutant cells but prevents the joining of chromatid breaks into chromosome rearrangements. Our results illustrate that HR and NHEJ compete to process DNA breaks that arise during DNA replication and that shifting the balance between these pathways can be exploited to selectively protect or kill cells harboring Brca1 mutations.", "title": "53BP1 Inhibits Homologous Recombination in Brca1-Deficient Cells by Blocking Resection of DNA Breaks" }, { "docid": "19522248", "text": "We targeted the locus encoding the cyclin-dependent kinase 2 (CDK2) by homologous recombination in mouse embryonic stem (ES) cells. Embryonic fibroblasts lacking CDK2 proliferate normally and become immortal after continuous passage in culture. Elimination of a conditional Cdk2 allele in immortal cells does not have a significant effect on proliferation. Cdk2−/− mice are viable and survive for up to two years, indicating that CDK2 is also dispensable for proliferation and survival of most cell types. But CDK2 is essential for completion of prophase I during meiotic cell division in male and female germ cells, an unforeseen role for this cell cycle kinase.", "title": "Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice" }, { "docid": "37762357", "text": "Cytomegalovirus (CMV) has highly evolved mechanisms for avoiding detection by the host immune system. Recently, in the genomes of human and primate CMV, a novel gene comprising segments of noncontiguous open reading frames was identified and found to have limited predicted homology to endogenous cellular interleukin-10 (IL-10). Here we investigate the biological activities of the CMV IL-10-like gene product and show it to possess potent immunosuppressive properties. Both purified bacterium-derived recombinant CMV IL-10 and CMV IL-10 expressed in supernatants of human cells were found to inhibit proliferation of mitogen-stimulated peripheral blood mononuclear cells (PBMCs), with specific activity comparable to that of recombinant human IL-10. In addition, CMV IL-10 expressed from human cells inhibited cytokine synthesis, as treatment of stimulated PBMCs and monocytes with CMV IL-10 led to a marked decrease in production of proinflammatory cytokines. Finally, CMV IL-10 was observed to decrease cell surface expression of both major histocompatibility complex (MHC) class I and class II molecules, while conversely increasing expression of the nonclassical MHC allele HLA-G. These results demonstrate for the first time that CMV has a biologically active IL-10 homolog that may contribute to immune evasion during virus infection.", "title": "Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10." }, { "docid": "4401289", "text": "Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10–15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC–PCNA–Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.", "title": "Break-induced telomere synthesis underlies alternative telomere maintenance" }, { "docid": "12086599", "text": "Major eukaryotic genomic elements, including the ribosomal DNA (rDNA), are composed of repeated sequences with well-defined copy numbers that must be maintained by regulated recombination. Although mechanisms that instigate rDNA recombination have been identified, none are directional and they therefore cannot explain precise repeat number control. Here, we show that yeast lacking histone chaperone Asf1 undergo reproducible rDNA repeat expansions. These expansions do not require the replication fork blocking protein Fob1 and are therefore independent of known rDNA expansion mechanisms. We propose the existence of a regulated rDNA repeat gain pathway that becomes constitutively active in asf1Δ mutants. Cells lacking ASF1 accumulate rDNA repeats with high fidelity in a processive manner across multiple cell divisions. The mechanism of repeat gain is dependent on highly repetitive sequence but, surprisingly, is independent of the homologous recombination proteins Rad52, Rad51 and Rad59. The expansion mechanism is compromised by mutations that decrease the processivity of DNA replication, which leads to progressive loss of rDNA repeats. Our data suggest that a novel mode of break-induced replication occurs in repetitive DNA that is dependent on high homology but does not require the canonical homologous recombination machinery.", "title": "Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery" }, { "docid": "39225849", "text": "The Bloom syndrome helicase (BLM) is critical for genomic stability. A defect in BLM activity results in the cancer-predisposing Bloom syndrome (BS). Here, we report that BLM-deficient cell lines and primary fibroblasts display an endogenously activated DNA double-strand break checkpoint response with prominent levels of phosphorylated histone H2AX (gamma-H2AX), Chk2 (p(T68)Chk2), and ATM (p(S1981)ATM) colocalizing in nuclear foci. Interestingly, the mitotic fraction of gamma-H2AX foci did not seem to be higher in BLM-deficient cells, indicating that these lesions form transiently during interphase. Pulse labeling with iododeoxyuridine and immunofluorescence microscopy showed the colocalization of gamma-H2AX, ATM, and Chk2 together with replication foci. Those foci costained for Rad51, indicating homologous recombination at these replication sites. We therefore analyzed replication in BS cells using a single molecule approach on combed DNA fibers. In addition to a higher frequency of replication fork barriers, BS cells displayed a reduced average fork velocity and global reduction of interorigin distances indicative of an elevated frequency of origin firing. Because BS is one of the most penetrant cancer-predisposing hereditary diseases, it is likely that the lack of BLM engages the cells in a situation similar to precancerous tissues with replication stress. To our knowledge, this is the first report of high ATM-Chk2 kinase activation and its linkage to replication defects in a BS model.", "title": "Endogenous gamma-H2AX-ATM-Chk2 checkpoint activation in Bloom's syndrome helicase deficient cells is related to DNA replication arrested forks." }, { "docid": "4037034", "text": "Epstein-Barr virus (EBV) episomes are stably maintained in permissive proliferating cell lines due to EBV nuclear antigen 1 (EBNA-1) protein-mediated replication and segregation. Previous studies showed the ability of EBV episomes to confer long-term transgene expression and correct genetic defects in deficient cells. To achieve quantitative delivery of EBV episomes in vitro and in vivo, we developed a binary helper-dependent adenovirus (HDA)-EBV hybrid system that consists of one HDA vector for the expression of Cre recombinase and a second HDA vector that contains all of the sequences for the EBV episome flanked by loxP sites. Upon coinfection of cells, Cre expressed from the first vector recombined loxP sites on the second vector. The resulting circular EBV episomes expressed a transgene and contained the EBV-derived family of repeats, an EBNA-1 expression cassette, and 19 kb of human DNA that functions as a replication origin in mammalian cells. This HDA-EBV hybrid system transformed 40% of cultured cells. Transgene expression in proliferating cells was observed for over 20 weeks under conditions that selected for the expression of the transgene. In the absence of selection, EBV episomes were lost at a rate of 8 to 10% per cell division. Successful delivery of EBV episomes in vivo was demonstrated in the liver of transgenic mice expressing Cre from the albumin promoter. This novel gene transfer system has the potential to confer long-term episomal transgene expression and therefore to correct genetic defects with reduced vector-related toxicity and without insertional mutagenesis.", "title": "Development of a novel helper-dependent adenovirus-Epstein-Barr virus hybrid system for the stable transformation of mammalian cells." }, { "docid": "13023410", "text": "The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair.", "title": "BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks." }, { "docid": "24498673", "text": "Holliday junctions (HJs) are four-way DNA intermediates that form during homologous recombination, and their efficient resolution is essential for chromosome segregation. Here, we show that three structure-selective endonucleases, namely SLX1-SLX4, MUS81-EME1, and GEN1, define two pathways of HJ resolution in human cells. One pathway is mediated by GEN1, whereas SLX1-SLX4 and MUS81-EME1 provide a second and genetically distinct pathway (SLX-MUS). Cells depleted for SLX-MUS or GEN1 pathway proteins exhibit severe defects in chromosome segregation and reduced survival. In response to CDK-mediated phosphorylation, SLX1-SLX4 and MUS81-EME1 associate at the G2/M transition to form a stable SLX-MUS holoenzyme, which can be reconstituted in vitro. Biochemical studies show that SLX-MUS is a HJ resolvase that coordinates the active sites of two distinct endonucleases during HJ resolution. This cleavage reaction is more efficient and orchestrated than that mediated by SLX1-SLX4 alone, which exhibits a potent nickase activity that acts promiscuously upon DNA secondary structures.", "title": "Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells." }, { "docid": "38252314", "text": "The minichromosome maintenance protein homologs MCM8 and MCM9 have previously been implicated in DNA replication elongation and prereplication complex (pre-RC) formation, respectively. We found that MCM8 and MCM9 physically associate with each other and that MCM8 is required for the stability of MCM9 protein in mammalian cells. Depletion of MCM8 or MCM9 in human cancer cells or the loss of function MCM9 mutation in mouse embryo fibroblasts sensitizes cells to the DNA interstrand cross-linking (ICL) agent cisplatin. Consistent with a role in the repair of ICLs by homologous recombination (HR), knockdown of MCM8 or MCM9 significantly reduces HR repair efficiency. Chromatin immunoprecipitation analysis using human DR-GFP cells or Xenopus egg extract demonstrated that MCM8 and MCM9 proteins are rapidly recruited to DNA damage sites and promote RAD51 recruitment. Thus, these two metazoan-specific MCM homologs are new components of HR and may represent novel targets for treating cancer in combination with DNA cross-linking agents.", "title": "The MCM8-MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination." }, { "docid": "4421746", "text": "Polyploidy, increased sets of chromosomes, occurs during development, cellular stress, disease and evolution. Despite its prevalence, little is known about the physiological alterations that accompany polyploidy. We previously described ‘ploidy-specific lethality’, where a gene deletion that is not lethal in haploid or diploid budding yeast causes lethality in triploids or tetraploids. Here we report a genome-wide screen to identify ploidy-specific lethal functions. Only 39 out of 3,740 mutations screened exhibited ploidy-specific lethality. Almost all of these mutations affect genomic stability by impairing homologous recombination, sister chromatid cohesion, or mitotic spindle function. We uncovered defects in wild-type tetraploids predicted by the screen, and identified mechanisms by which tetraploidization affects genomic stability. We show that tetraploids have a high incidence of syntelic/monopolar kinetochore attachments to the spindle pole. We suggest that this defect can be explained by mismatches in the ability to scale the size of the spindle pole body, spindle and kinetochores. Thus, geometric constraints may have profound effects on genome stability; the phenomenon described here may be relevant in a variety of biological contexts, including disease states such as cancer.", "title": "Genome-wide genetic analysis of polyploidy in yeast" }, { "docid": "39637840", "text": "BLM, WRN, and p53 are involved in the homologous DNA recombination pathway. The DNA structure-specific helicases, BLM and WRN, unwind Holliday junctions (HJ), an activity that could suppress inappropriate homologous recombination during DNA replication. Here, we show that purified, recombinant p53 binds to BLM and WRN helicases and attenuates their ability to unwind synthetic HJ in vitro. The p53 248W mutant reduces abilities of both to bind HJ and inhibit helicase activities, whereas the p53 273H mutant loses these abilities. Moreover, full-length p53 and a C-terminal polypeptide (residues 373-383) inhibit the BLM and WRN helicase activities, but phosphorylation at Ser(376) or Ser(378) completely abolishes this inhibition. Following blockage of DNA replication, Ser(15) phospho-p53, BLM, and RAD51 colocalize in nuclear foci at sites likely to contain DNA replication intermediates in cells. Our results are consistent with a novel mechanism for p53-mediated regulation of DNA recombinational repair that involves p53 post-translational modifications and functional protein-protein interactions with BLM and WRN DNA helicases.", "title": "The processing of Holliday junctions by BLM and WRN helicases is regulated by p53." }, { "docid": "13221399", "text": "The ability to achieve site-specific manipulation of the mammalian genome has widespread implications for basic and applied research. Gene targeting is a process in which a DNA molecule introduced into a cell replaces the corresponding chromosomal segment by homologous recombination, and thus presents a precise way to manipulate the genome. In the past, the application of gene targeting to mammalian cells has been limited by its low efficiency. Zinc finger nucleases (ZFNs) show promise in improving the efficiency of gene targeting by introducing DNA double-strand breaks in target genes, which then stimulate the cell's endogenous homologous recombination machinery. Recent results have shown that ZFNs can be used to create targeting frequencies of up to 20% in a human disease-causing gene. Future work will be needed to translate these in vitro findings to in vivo applications and to determine whether zinc finger nucleases create undesired genomic instability.", "title": "Gene targeting using zinc finger nucleases" }, { "docid": "4444861", "text": "Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.", "title": "Replication Fork Stability Confers Chemoresistance in BRCA-deficient Cells" }, { "docid": "21170174", "text": "During meiosis, recombination between homologous chromosomes generates crossover (CR) and noncrossover (NCR) products. CRs establish connections between homologs, whereas intermediates leading to NCRs have been proposed to participate in homologous pairing. How these events are differentiated and regulated remains to be determined. We have developed a strategy to detect, quantify, and map NCRs in parallel to CRs, at the Psmb9 meiotic recombination hot spot, in male and female mouse germ lines. Our results report direct molecular evidence for distinct CR and NCR pathways of DNA double-strand break (DSB) repair in mouse meiosis based on three observations: both CRs and NCRs require Spo11, NCR products have shorter conversion tracts than CRs, and only CRs require the MutL homolog Mlh1. We show that both products are formed from middle to late pachytene of meiotic prophase and provide evidence for an Mlh1-independent CR pathway, where mismatch repair does not require Mlh1.", "title": "Crossover and noncrossover pathways in mouse meiosis." }, { "docid": "52944377", "text": "Actively transcribed regions of the genome are protected by transcription-coupled DNA repair mechanisms, including transcription-coupled homologous recombination (TC-HR). Here we used reactive oxygen species (ROS) to induce and characterize TC-HR at a transcribed locus in human cells. As canonical HR, TC-HR requires RAD51. However, the localization of RAD51 to damage sites during TC-HR does not require BRCA1 and BRCA2, but relies on RAD52 and Cockayne Syndrome Protein B (CSB). During TC-HR, RAD52 is recruited by CSB through an acidic domain. CSB in turn is recruited by R loops, which are strongly induced by ROS in transcribed regions. Notably, CSB displays a strong affinity for DNA:RNA hybrids in vitro, suggesting that it is a sensor of ROS-induced R loops. Thus, TC-HR is triggered by R loops, initiated by CSB, and carried out by the CSB-RAD52-RAD51 axis, establishing a BRCA1/2-independent alternative HR pathway protecting the transcribed genome.", "title": "ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB" }, { "docid": "37182501", "text": "Two mechanisms account for generation of the human antibody repertoire; V(D)J recombination during the early stages of B-cell development in the bone marrow and somatic mutation of immunoglobulin genes in mature B cells responding to antigen in the periphery. V(D)J recombination produces diversity by random joining of gene segments and somatic mutation by introducing random point mutations. Both are required to attain the degree of antigen receptor diversification that is necessary for immune protection: defects in either mechanism are associated with increased susceptibility to infection. However, the downside of producing enormous random diversity in the antibody repertoire is the generation of autoantibodies. To prevent autoimmunity B cells expressing autoantibodies are regulated by strict mechanisms that either modify the specificity of autoantibodies or the fate of cells expressing such antibodies. Abnormalities in B-cell self-tolerance are associated with a large number of autoimmune diseases, but the precise nature of the defects is less well defined. Here we summarize recent data on the self-reactive B-cell repertoire in healthy humans and in patients with autoimmunity.", "title": "B-cell self-tolerance in humans." } ]
996
Pyridostatin induces checkpoint activation.
[ { "docid": "16472469", "text": "G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.", "title": "Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds" } ]
[ { "docid": "38131471", "text": "DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.", "title": "Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints." }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" }, { "docid": "15600979", "text": "EMSY links the BRCA2 pathway to sporadic breast/ovarian cancer. It encodes a nuclear protein that binds to the BRCA2 N-terminal domain implicated in chromatin/transcription regulation, but when sporadically amplified/overexpressed, increased EMSY level represses BRCA2 transactivation potential and induces chromosomal instability, mimicking the activity of BRCA2 mutations in the development of hereditary breast/ovarian cancer. In addition to chromatin/transcription regulation, EMSY may also play a role in the DNA-damage response, suggested by its ability to localize at chromatin sites of DNA damage/repair. This implies that EMSY overexpression may also repress BRCA2 in DNA-damage replication/checkpoint and recombination/repair, coordinated processes that also require its interacting proteins: PALB2, the partner and localizer of BRCA2; RPA, replication/checkpoint protein A; and RAD51, the inseparable recombination/repair enzyme. Here, using a well-characterized recombination/repair assay system, we demonstrate that a slight increase in EMSY level can indeed repress these two processes independently of transcriptional interference/repression. Since EMSY, RPA and PALB2 all bind to the same BRCA2 region, these findings further support a scenario wherein: (a) EMSY amplification may mimic BRCA2 deficiency, at least by overriding RPA and PALB2, crippling the BRCA2/RAD51 complex at DNA-damage and replication/transcription sites; and (b) BRCA2/RAD51 may coordinate these processes by employing at least EMSY, PALB2 and RPA. We extensively discuss the molecular details of how this can happen to ascertain its implications for a novel recombination mechanism apparently conceived as checkpoint rather than a DNA repair system for cell division, survival, death, and human diseases, including the tissue specificity of cancer predisposition, which may renew our thinking about targeted therapy and prevention.", "title": "EMSY overexpression disrupts the BRCA2/RAD51 pathway in the DNA-damage response: implications for chromosomal instability/recombination syndromes as checkpoint diseases" }, { "docid": "24726600", "text": "Evidence suggests that cancer immunotherapy will be a major part of the combination treatment plan for many patients with many cancer types in the near future. There are many types of immune processes involving different antitumour and tumour-promoting leucocytes, and tumour cells use many strategies to evade the immune response. The tumour microenvironment can help determine which immune suppressive pathways become activated to restrain antitumour immunity. This includes immune checkpoint receptors on effector T-cells and myeloid cells, and release of inhibitory cytokines and metabolites. Therapeutic approaches that target these pathways, particularly immune-checkpoint receptors, can induce durable antitumour responses in patients with advanced-stage cancers, including melanoma. Nevertheless, many patients do not have a good response to monotherapy approaches and alternative strategies are required to achieve optimal therapeutic benefit. These strategies include eliminating the bulk of tumour cells to provoke tumour-antigen release and antigen-presenting cell (APC) function, using adjuvants to enhance APC function, and using agents that enhance effector-cell activity. In this Review, we discuss the stratification of the tumour microenvironment according to tumour-infiltrating lymphocytes and PD-L1 expression in the tumour, and how this stratification enables the design of optimal combination cancer therapies tailored to target different tumour microenvironments.", "title": "Combination cancer immunotherapies tailored to the tumour microenvironment" }, { "docid": "42565477", "text": "The molecular mechanism underlying G1/S checkpoint bypass in mouse embryonic stem cells (ESCs) remains unknown. DNA damage blocks S phase entry by inhibiting the CDK2 kinase through destruction of its activator, the Cdc25A phosphatase. We observed high Cdc25A levels in G1 that persist even after DNA damage in mouse ESCs. We also found higher expression of Dub3, a deubiquitylase that controls Cdc25A protein abundance. Moreover, we demonstrate that the Dub3 gene is a direct target of Esrrb, a key transcription factor of the self-renewal machinery. We show that Dub3 expression is strongly downregulated during neural conversion and precedes Cdc25A destabilization, while forced Dub3 expression in ESCs becomes lethal upon differentiation, concomitant to cell-cycle remodeling and lineage commitment. Finally, knockdown of either Dub3 or Cdc25A induced spontaneous differentiation of ESCs. Altogether, these findings couple the self-renewal machinery to cell-cycle control through a deubiquitylase in ESCs.", "title": "High Dub3 expression in mouse ESCs couples the G1/S checkpoint to pluripotency." }, { "docid": "28697248", "text": "The E2F transcription factors have emerged as critical apoptotic effectors. Herein we report that the E2F family member E2F3a can be induced by DNA damage through transcriptional and posttranslational mechanisms. We demonstrate that the posttranslational induction of human E2F3a is dependent on the checkpoint kinases. Moreover, we show that human E2F3a is a substrate for the checkpoint kinases (chk kinases) and that mutation of the chk phosphorylation site eliminates the DNA damage inducibility of the protein. Furthermore, we demonstrate that E2F1 and E2F2 are transcriptionally induced by DNA damage in an E2f3-dependent manner. Finally, using both in vitro and in vivo approaches, we establish that E2f3 is required for DNA damage-induced apoptosis. Thus, our data reveal the novel ability of E2f3 to function as a master regulator of the DNA damage response.", "title": "E2F3 is a mediator of DNA damage-induced apoptosis." }, { "docid": "27840664", "text": "The fidelity of DNA replication is of paramount importance to the maintenance of genome integrity. When an active replication fork is perturbed, multiple cellular pathways are recruited to stabilize the replication apparatus and to help to bypass or correct the causative problem. However, if the problem is not corrected, the fork may collapse, exposing free DNA ends to potentially inappropriate processing. In prokaryotes, replication fork collapse promotes the activity of recombination proteins to restore a replication fork. Recent work has demonstrated that recombination is also intimately linked to replication in eukaryotic cells, and that recombination proteins are recruited to collapsed, but not stalled, replication forks. In this review we discuss the different types of potential replication fork barriers (RFB) and how these distinct RFBs can result in different DNA structures at the stalled replication fork. The DNA structure checkpoints which act within S phase respond to different RFBs in different ways and we thus discuss the processes that are controlled by the DNA replication checkpoints, paying particular attention to the function of the intra-S phase checkpoint that stabilises the stalled fork.", "title": "Checkpoint responses to replication fork barriers." }, { "docid": "600808", "text": "Cyclin A is a stable protein in S and G2 phases, but is destabilized when cells enter mitosis and is almost completely degraded before the metaphase to anaphase transition. Microinjection of antibodies against subunits of the anaphase-promoting complex/cyclosome (APC/C) or against human Cdc20 (fizzy) arrested cells at metaphase and stabilized both cyclins A and B1. Cyclin A was efficiently polyubiquitylated by Cdc20 or Cdh1-activated APC/C in vitro, but in contrast to cyclin B1, the proteolysis of cyclin A was not delayed by the spindle assembly checkpoint. The degradation of cyclin B1 was accelerated by inhibition of the spindle assembly checkpoint. These data suggest that the APC/C is activated as cells enter mitosis and immediately targets cyclin A for degradation, whereas the spindle assembly checkpoint delays the degradation of cyclin B1 until the metaphase to anaphase transition. The “destruction box” (D-box) of cyclin A is 10–20 residues longer than that of cyclin B. Overexpression of wild-type cyclin A delayed the metaphase to anaphase transition, whereas expression of cyclin A mutants lacking a D-box arrested cells in anaphase.", "title": "Anaphase-Promoting Complex/Cyclosome–Dependent Proteolysis of Human Cyclin a Starts at the Beginning of Mitosis and Is Not Subject to the Spindle Assembly Checkpoint" }, { "docid": "11568270", "text": "Human TopBP1 is a major player in the control of the DNA replication checkpoint. In this study, we identified MDC1, a key checkpoint protein involved in the cellular response to DNA double-strand breaks, as a TopBP1-associated protein. The specific TopBP1-MDC1 interaction is mediated by the fifth BRCT domain of TopBP1 and the Ser-Asp-Thr (SDT) repeats of MDC1. In addition, we demonstrated that TopBP1 accumulation at stalled replication forks is promoted by the H2AX/MDC1 signaling cascade. Moreover, MDC1 is important for ATR-dependent Chk1 activation in response to replication stress. Collectively, our data suggest that MDC1 facilitates several important steps in both cellular DNA damage response and the DNA replication checkpoint.", "title": "MDC1 collaborates with TopBP1 in DNA replication checkpoint control" }, { "docid": "3981033", "text": "The cellular inhibitors of apoptosis (cIAP) 1 and 2 are amplified in about 3% of cancers and have been identified in multiple malignancies as being potential therapeutic targets as a result of their role in the evasion of apoptosis. Consequently, small-molecule IAP antagonists, such as LCL161, have entered clinical trials for their ability to induce tumor necrosis factor (TNF)-mediated apoptosis of cancer cells. However, cIAP1 and cIAP2 are recurrently homozygously deleted in multiple myeloma (MM), resulting in constitutive activation of the noncanonical nuclear factor (NF)-κB pathway. To our surprise, we observed robust in vivo anti-myeloma activity of LCL161 in a transgenic myeloma mouse model and in patients with relapsed-refractory MM, where the addition of cyclophosphamide resulted in a median progression-free-survival of 10 months. This effect was not a result of direct induction of tumor cell death, but rather of upregulation of tumor-cell-autonomous type I interferon (IFN) signaling and a strong inflammatory response that resulted in the activation of macrophages and dendritic cells, leading to phagocytosis of tumor cells. Treatment of a MM mouse model with LCL161 established long-term anti-tumor protection and induced regression in a fraction of the mice. Notably, combination of LCL161 with the immune-checkpoint inhibitor anti-PD1 was curative in all of the treated mice.", "title": "IAP antagonists induce anti-tumor immunity in multiple myeloma" }, { "docid": "23912923", "text": "V domain-containing Ig suppressor of T-cell activation (VISTA) is a negative checkpoint regulator that suppresses T cell-mediated immune responses. Previous studies using a VISTA-neutralizing monoclonal antibody show that VISTA blockade enhances T-cell activation. The current study describes a comprehensive characterization of mice in which the gene for VISTA has been deleted. Despite the apparent normal hematopoietic development in young mice, VISTA genetic deficiency leads to a gradual accumulation of spontaneously activated T cells, accompanied by the production of a spectrum of inflammatory cytokines and chemokines. Enhanced T-cell responsiveness was also observed upon immunization with neoantigen. Despite the presence of multiorgan chronic inflammation, aged VISTA-deficient mice did not develop systemic or organ-specific autoimmune disease. Interbreeding of the VISTA-deficient mice with 2D2 T-cell receptor transgenic mice, which are predisposed to the development of experimental autoimmune encephalomyelitis, drastically enhanced disease incidence and intensity. Disease development is correlated with the increase in the activation of encephalitogenic T cells in the periphery and enhanced infiltration into the CNS. Taken together, our data suggest that VISTA is a negative checkpoint regulator whose loss of function lowers the threshold for T-cell activation, allowing for an enhanced proinflammatory phenotype and an increase in the frequency and intensity of autoimmunity under susceptible conditions.", "title": "Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity." }, { "docid": "7681810", "text": "Mitotic spindle assembly is mediated by two processes: a centrosomal and a chromosomal pathway. RanGTP regulates the latter process by releasing microtubule-associated proteins from inhibitory complexes. NuSAP, a microtubule- and DNA-binding protein, is a target of RanGTP and promotes the formation of microtubules near chromosomes. However, the contribution of NuSAP to cell proliferation in vivo is unknown. Here, we demonstrate that the expression of NuSAP highly correlates with cell proliferation during embryogenesis and adult life, making it a reliable marker of proliferating cells. Additionally, we show that NuSAP deficiency in mice leads to early embryonic lethality. Spindle assembly in NuSAP-deficient cells is highly inefficient and chromosomes remain dispersed in the mitotic cytoplasm. As a result of sustained spindle checkpoint activity, the cells are unable to progress through mitosis, eventually leading to caspase activation and apoptotic cell death. Together, our findings demonstrate that NuSAP is essential for proliferation of embryonic cells and, simultaneously, they underscore the importance of chromatin-induced spindle assembly.", "title": "NuSAP is essential for chromatin-induced spindle formation during early embryogenesis." }, { "docid": "1595617", "text": "Genome endoreduplication during mammalian development is a rare event for which the mechanism is unknown. It first appears when fibroblast growth factor 4 (FGF4) deprivation induces differentiation of trophoblast stem (TS) cells into the nonproliferating trophoblast giant (TG) cells required for embryo implantation. Here we show that RO3306 inhibition of cyclin-dependent protein kinase 1 (CDK1), the enzyme required to enter mitosis, induced differentiation of TS cells into TG cells. In contrast, RO3306 induced abortive endoreduplication and apoptosis in embryonic stem cells, revealing that inactivation of CDK1 triggers endoreduplication only in cells programmed to differentiate into polyploid cells. Similarly, FGF4 deprivation resulted in CDK1 inhibition by overexpressing two CDK-specific inhibitors, p57/KIP2 and p21/CIP1. TS cell mutants revealed that p57 was required to trigger endoreduplication by inhibiting CDK1, while p21 suppressed expression of the checkpoint protein kinase CHK1, thereby preventing induction of apoptosis. Furthermore, Cdk2(-/-) TS cells revealed that CDK2 is required for endoreduplication when CDK1 is inhibited. Expression of p57 in TG cells was restricted to G-phase nuclei to allow CDK activation of S phase. Thus, endoreduplication in TS cells is triggered by p57 inhibition of CDK1 with concomitant suppression of the DNA damage response by p21.", "title": "Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity." }, { "docid": "21622715", "text": "Transcriptional factors binding to cAMP-responsive elements (CREs) in the promoters of various genes belong to the basic domain-leucine zipper superfamily and are composed of three genes in mammals, CREB, CREM, and ATF-1. A large number of CREB, CREM, and ATF-1 proteins are generated by posttranscriptional events, mostly alternative splicing, and regulate gene expression by acting as activators or repressors. Activation is classically brought about by signaling-dependent phosphorylation of a key acceptor site (Ser133 in CREB) by a number of possible kinases, including PKA, CamKIV, and Rsk-2. Phosphorylation is the prerequisite for the interaction of CBP (CREB-binding protein), a co-activator that has also histone acetyltransferase activity. Repression may involve dynamic dephosphorylation of the activators and thus decreased association with CBP. Another pathway of transcriptional repression on CRE sites implicates the inducible repressor ICER (inducible cAMP early repressor), a product of the CREM gene. Being an inducible repressor, ICER is involved in autoregulatory feedback loops of transcription that govern the down-regulation of early response genes, such as the proto-oncogene c-fos. The liver represents a remarkable physiological setting where cAMP-responsive signaling plays a major role. Indeed, a finely tuned program of gene expression is triggered by partial hepatectomy, so that through specific checkpoints a coordinated regeneration of the tissue is obtained. Temporal kinetics of transcriptional activation after hepatectomy reveals a pattern of early induction for several genes, some of them controlled by the CREB/CREM transcription factors. An important role of CREM in liver physiology was suggested by the robust induction of ICER after partial hepatectomy. The delay in tissue regeneration in CREM-deficient mice confirmed the important function of this factor in regulating hepatocyte proliferation. As gene induction is accompanied by critical changes in chromatin organization, the deciphering of the specific modification codes that histones display during liver regeneration and physiology will provide exciting new insights into the dynamics of chromatin architecture.", "title": "Coupling cAMP signaling to transcription in the liver: pivotal role of CREB and CREM." }, { "docid": "21439293", "text": "Pattern recognition by the innate immune system enables the detection of microorganisms, but how the level of microbial threat is evaluated — a process that is crucial for eliciting measured antimicrobial responses with minimal inflammatory tissue damage — is less well understood. New evidence has shown that features of microbial viability can be detected by the immune system and thereby induce robust responses that are not warranted for dead microorganisms. Here, we propose five immune checkpoints that, as defined here, collectively determine the gravity of microbial encounters.", "title": "Beyond pattern recognition: five immune checkpoints for scaling the microbial threat" }, { "docid": "23664875", "text": "Termination of replication forks at the natural termini of the rDNA of Saccharomyces cerevisiae is controlled in a sequence-specific and polar mode by the interaction of the Fob1p replication terminator protein with the tandem Ter sites located in the nontranscribed spacers. Here we show, by both 2D gel analyses and chromatin immunoprecipitations (ChIP), that there exists a second level of global control mediated by the intra-S-phase checkpoint protein complex of Tof1p and Csm3p that protect stalled forks at Ter sites against the activity of the Rrm3p helicase (\"sweepase\"). The sweepase tends to release arrested forks presumably by the transient displacement of the Ter-bound Fob1p. Consistent with this mechanism, very few replication forks were arrested at the natural replication termini in the absence of the two checkpoint proteins. In the absence of the Rrm3p helicase, there was a slight enhancement of fork arrest at the Ter sites. Simultaneous deletions of the TOF1 (or CSM3), and the RRM3 genes restored fork arrest by removing both the fork-releasing and fork-protection activities. Other genes such as MRC1, WSS1, and PSY2 that are also involved in the MRC1 checkpoint pathway were not involved in this global control. This observation suggests that Tof1p-Csm3p function differently from MRC1 and the other above-mentioned genes. This mechanism is not restricted to the natural Ter sites but was also observed at fork arrest caused by the meeting of a replication fork with transcription approaching from the opposite direction.", "title": "The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae." }, { "docid": "21295300", "text": "The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) has a central role in coordinating DNA damage responses, including cell-cycle checkpoint control, DNA repair and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. However, the mechanism by which DNA damage activates ATM is poorly understood. Here we show that Cdk5 (cyclin-dependent kinase 5), activated by DNA damage, directly phosphorylates ATM at Ser 794 in post-mitotic neurons. Phosphorylation at Ser 794 precedes, and is required for, ATM autophosphorylation at Ser 1981, and activates ATM kinase activity. The Cdk5-ATM signal regulates phosphorylation and function of the ATM targets p53 and H2AX. Interruption of the Cdk5-ATM pathway attenuates DNA-damage-induced neuronal cell cycle re-entry and expression of the p53 targets PUMA and Bax, protecting neurons from death. Thus, activation of Cdk5 by DNA damage serves as a critical signal to initiate the ATM response and regulate ATM-dependent cellular processes.", "title": "Phosphorylation of ATM by Cdk5 mediates DNA damage signaling and regulates neuronal death" }, { "docid": "49432306", "text": "The introduction of immune-checkpoint blockade in the cancer therapy led to a paradigm change of the management of late stage cancers. There are already multiple FDA approved checkpoint inhibitors and many other agents are undergoing phase 2 and early phase 3 clinical trials. The therapeutic indication of immune checkpoint inhibitors expanded in the last years, but still remains unclear who can benefit. MicroRNAs are small RNAs with no coding potential. By complementary pairing to the 3' untranslated region of messenger RNA, microRNAs exert posttranscriptional control of protein expression. A network of microRNAs directly and indirectly controls the expression of checkpoint receptors and several microRNAs can target multiple checkpoint molecules, mimicking the therapeutic effect of a combined immune checkpoint blockade. In this review, we will describe the microRNAs that control the expression of immune checkpoints and we will present four specific issues of the immune checkpoint therapy in cancer: (1) imprecise therapeutic indication, (2) difficult response evaluation, (3) numerous immunologic adverse-events, and (4) the absence of response to immune therapy. Finally, we propose microRNAs as possible solutions for these pitfalls. We consider that in the near future microRNAs could become important therapeutic partners of the immune checkpoint therapy.", "title": "Key questions about the checkpoint blockade-are microRNAs an answer?" }, { "docid": "5956380", "text": "Gliomas arising in the brainstem and thalamus are devastating tumors that are difficult to surgically resect. To determine the genetic and epigenetic landscape of these tumors, we performed exomic sequencing of 14 brainstem gliomas (BSGs) and 12 thalamic gliomas. We also performed targeted mutational analysis of an additional 24 such tumors and genome-wide methylation profiling of 45 gliomas. This study led to the discovery of tumor-specific mutations in PPM1D, encoding wild-type p53-induced protein phosphatase 1D (WIP1), in 37.5% of the BSGs that harbored hallmark H3F3A mutations encoding p. Lys27Met substitutions. PPM1D mutations were mutually exclusive with TP53 mutations in BSG and attenuated p53 activation in vitro. PPM1D mutations were truncating alterations in exon 6 that enhanced the ability of PPM1D to suppress the activation of the DNA damage response checkpoint protein CHK2. These results define PPM1D as a frequent target of somatic mutation and as a potential therapeutic target in brainstem gliomas.", "title": "Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas" } ]
997
Pyridostatin induces double-strand breaks accumulation.
[ { "docid": "16472469", "text": "G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.", "title": "Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds" } ]
[ { "docid": "10874408", "text": "DNA double-strand breaks (DSBs), which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Δ mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (≥ 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Δ mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA)–associated DSBs that accumulate in processing-capable, repair-defective dmc1Δ and dmc1Δ rad51Δ mutants. DSBs were observed at known hot spots, but also in most previously identified “DSB-cold” regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Δ shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Δ, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination.", "title": "Mapping Meiotic Single-Strand DNA Reveals a New Landscape of DNA Double-Strand Breaks in Saccharomyces cerevisiae" }, { "docid": "20420780", "text": "DNA double-strand breaks (DSBs) are repaired via nonhomologous end-joining (NHEJ) or homologous recombination (HR), but cellular repair processes remain elusive. We show here that the ATP-dependent chromatin-remodeling factors, ACF1 and SNF2H, accumulate rapidly at DSBs and are required for DSB repair in human cells. If the expression of ACF1 or SNF2H is suppressed, cells become extremely sensitive to X-rays and chemical treatments producing DSBs, and DSBs remain unrepaired. ACF1 interacts directly with KU70 and is required for the accumulation of KU proteins at DSBs. The KU70/80 complex becomes physically more associated with the chromatin-remodeling factors of the CHRAC complex, which includes ACF1, SNF2H, CHRAC15, and CHRAC17, after treatments producing DSBs. Furthermore, the frequency of NHEJ as well as HR induced by DSBs in chromosomal DNA is significantly decreased in cells depleted of either of these factors. Thus, ACF1 and its complexes play important roles in DSBs repair.", "title": "The ACF1 complex is required for DNA double-strand break repair in human cells." }, { "docid": "27635177", "text": "Mammalian DNA polymerase mu (pol mu) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol mu protein increase. pol mu also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of gammaH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol mu is thus part of the cellular response to DNA double-strand breaks. pol mu also associates in cell extracts with the nonhomologous end-joining repair factor Ku and requires both Ku and another end-joining factor, XRCC4-ligase IV, to form a stable complex on DNA in vitro. pol mu in turn facilitates both stable recruitment of XRCC4-ligase IV to Ku-bound DNA and ligase IV-dependent end joining. In contrast, the related mammalian DNA polymerase beta does not form a complex with Ku and XRCC4-ligase IV and is less effective than pol mu in facilitating joining mediated by these factors. Our data thus support an important role for pol mu in the end-joining pathway for repair of double-strand breaks.", "title": "Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair." }, { "docid": "21793890", "text": "The oncogenic BCR/ABL tyrosine kinase facilitates the repair of DNA double-strand breaks (DSBs). We find that after gamma-irradiation BCR/ABL-positive leukemia cells accumulate more DSBs in comparison to normal cells. These lesions are efficiently repaired in a time-dependent fashion by BCR/ABL-stimulated non-homologous end-joining (NHEJ) followed by homologous recombination repair (HRR) mechanisms. However, mutations and large deletions were detected in HRR and NHEJ products, respectively, in BCR/ABL-positive leukemia cells. We propose that unfaithful repair of DSBs may contribute to genomic instability in the Philadelphia chromosome-positive leukemias.", "title": "BCR/ABL modifies the kinetics and fidelity of DNA double-strand breaks repair in hematopoietic cells." }, { "docid": "13023410", "text": "The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair.", "title": "BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks." }, { "docid": "44172171", "text": "The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.", "title": "Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks" }, { "docid": "22937815", "text": "Now that we have a good understanding of the DNA double strand break (DSB) repair mechanisms and DSB-induced damage signalling, attention is focusing on the changes to the chromatin environment needed for efficient DSB repair. Mutations in chromatin remodelling complexes have been identified in cancers, making it important to evaluate how they impact upon genomic stability. Our current understanding of the DSB repair pathways suggests that each one has distinct requirements for chromatin remodelling. Moreover, restricting the extent of chromatin modifications could be a significant factor regulating the decision of pathway usage. In this review, we evaluate the distinct DSB repair pathways for their potential need for chromatin remodelling and review the roles of ATP-driven chromatin remodellers in the pathways.", "title": "Roles of chromatin remodellers in DNA double strand break repair." }, { "docid": "12552297", "text": "DNA polymerase lambda (polλ) is a recently identified DNA polymerase whose cellular function remains elusive. Here we show, that polλ participates at the molecular level in a chromosomal context, in the repair of DNA double strand breaks (DSB) via non-homologous end joining (NHEJ) in mammalian cells. The expression of a catalytically inactive form of polλ (polλDN) decreases the frequency of NHEJ events in response to I-Sce-I-induced DSB whereas inactivated forms of its homologues polβ and polμ do not. Only events requiring DNA end processing before ligation are affected; this defect is associated with large deletions arising in the vicinity of the induced DSB. Furthermore, polλDN-expressing cells exhibit increased sensitization and genomic instability in response to ionizing radiation similar to that of NHEJ-defective cells. Our data support a requirement for polλ in repairing a subset of DSB in genomic DNA, thereby contributing to the maintenance of genetic stability mediated by the NHEJ pathway.", "title": "The DNA polymerase λ is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells" }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" }, { "docid": "4401289", "text": "Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10–15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC–PCNA–Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.", "title": "Break-induced telomere synthesis underlies alternative telomere maintenance" }, { "docid": "1941721", "text": "Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86(-/-) SOD1 transgenic embryos over that seen in Ku86(-/-) embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.", "title": "Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants" }, { "docid": "25462689", "text": "We have investigated HO endonuclease-induced double-strand break (DSB) recombination and repair in a LACZ duplication plasmid in yeast. A 117-bp MATa fragment, embedded in one copy of LACZ, served as a site for initiation of a DSB when HO endonuclease was expressed. The DSB could be repaired using wild-type sequences located on a second, promoterless, copy of LACZ on the same plasmid. In contrast to normal mating-type switching, crossing-over associated with gene conversion occurred at least 50% of the time. The proportion of conversion events accompanied by exchange was greater when the two copies of LACZ were in direct orientation (80%), than when inverted (50%). In addition, the fraction of plasmids lost was significantly greater in the inverted orientation. The kinetics of appearance of intermediates and final products were also monitored. The repair of the DSB is slow, requiring at least an hour from the detection of the HO-cut fragments to completion of repair. Surprisingly, the appearance of the two reciprocal products of crossing over did not occur with the same kinetics. For example, when the two LACZ sequences were in the direct orientation, the HO-induced formation of a large circular deletion product was not accompanied by the appearance of a small circular reciprocal product. We suggest that these differences may reflect two kinetically separable processes, one involving only one cut end and the other resulting from the concerted participation of both ends of the DSB.", "title": "Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae." }, { "docid": "8577229", "text": "Recombination-dependent DNA replication, often called break-induced replication (BIR), was initially invoked to explain recombination events in bacteriophage but it has recently been recognized as a fundamentally important mechanism to repair double-strand chromosome breaks in eukaryotes. This mechanism appears to be critically important in the restarting of stalled and broken replication forks and in maintaining the integrity of eroded telomeres. Although BIR helps preserve genome integrity during replication, it also promotes genome instability by the production of loss of heterozygosity and the formation of nonreciprocal translocations, as well as in the generation of complex chromosomal rearrangements.", "title": "Break-induced DNA replication." }, { "docid": "14178995", "text": "The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their early replication arrest. Treatment of patient cells with a protein farnesyltransferase inhibitor (FTI) did not result in reduction of DNA double-strand breaks and damage checkpoint signaling, although the treatment significantly reversed the aberrant shape of their nuclei. This suggests that DNA damage accumulation and aberrant nuclear morphology are independent phenotypes arising from prelamin A accumulation in these progeroid syndromes. Since DNA damage accumulation is an important contributor to the symptoms of HGPS, our results call into question the possibility of treatment of HGPS with FTIs alone.", "title": "Summary" }, { "docid": "10015292", "text": "Highly regenerative tissues such as blood must possess effective DNA damage responses (DDR) that balance long-term regeneration with protection from leukemogenesis. Hematopoietic stem cells (HSCs) sustain life-long blood production, yet their response to DNA damage remains largely unexplored. We report that human HSCs exhibit delayed DNA double-strand break rejoining, persistent gammaH2AX foci, and enhanced p53- and ASPP1-dependent apoptosis after gamma-radiation compared to progenitors. p53 inactivation or Bcl-2 overexpression reduced radiation-induced apoptosis and preserved in vivo repopulating HSC function. Despite similar protection from irradiation-induced apoptosis, only Bcl-2-overexpressing HSCs showed higher self-renewal capacity, establishing that intact p53 positively regulates self-renewal independently from apoptosis. The reduced self-renewal of HSCs with inactivated p53 was associated with increased spontaneous gammaH2AX foci in secondary transplants of HSCs. Our data reveal distinct physiological roles of p53 that together ensure optimal HSC function: apoptosis regulation and prevention of gammaH2AX foci accumulation upon HSC self-renewal.", "title": "A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal." }, { "docid": "5572127", "text": "The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier.", "title": "Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation." }, { "docid": "4444861", "text": "Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.", "title": "Replication Fork Stability Confers Chemoresistance in BRCA-deficient Cells" }, { "docid": "11568270", "text": "Human TopBP1 is a major player in the control of the DNA replication checkpoint. In this study, we identified MDC1, a key checkpoint protein involved in the cellular response to DNA double-strand breaks, as a TopBP1-associated protein. The specific TopBP1-MDC1 interaction is mediated by the fifth BRCT domain of TopBP1 and the Ser-Asp-Thr (SDT) repeats of MDC1. In addition, we demonstrated that TopBP1 accumulation at stalled replication forks is promoted by the H2AX/MDC1 signaling cascade. Moreover, MDC1 is important for ATR-dependent Chk1 activation in response to replication stress. Collectively, our data suggest that MDC1 facilitates several important steps in both cellular DNA damage response and the DNA replication checkpoint.", "title": "MDC1 collaborates with TopBP1 in DNA replication checkpoint control" }, { "docid": "30122260", "text": "DNA double-strand breaks (DSBs) are highly hazardous for genome integrity because they have the potential to cause mutations, chromosomal rearrangements and genomic instability. The cellular response to DSBs is orchestrated by signal transduction pathways, known as DNA damage checkpoints, which are conserved from yeasts to humans. These pathways can sense DNA damage and transduce this information to specific cellular targets, which in turn regulate cell cycle transitions and DNA repair. The mammalian protein kinases ATM and ATR, as well as their budding yeast corresponding orthologs Tel1 and Mec1, act as master regulators of the checkpoint response to DSBs. Here, we review the early steps of DSB processing and the role of DNA-end structures in activating ATM/Tel1 and ATR/Mec1 in an orderly and reciprocal manner.", "title": "Interplays between ATM/Tel1 and ATR/Mec1 in sensing and signaling DNA double-strand breaks." } ]
998
Pyridostatin prevents double-strand breaks accumulation.
[ { "docid": "16472469", "text": "G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.", "title": "Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds" } ]
[ { "docid": "10874408", "text": "DNA double-strand breaks (DSBs), which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Δ mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (≥ 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Δ mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA)–associated DSBs that accumulate in processing-capable, repair-defective dmc1Δ and dmc1Δ rad51Δ mutants. DSBs were observed at known hot spots, but also in most previously identified “DSB-cold” regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Δ shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Δ, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination.", "title": "Mapping Meiotic Single-Strand DNA Reveals a New Landscape of DNA Double-Strand Breaks in Saccharomyces cerevisiae" }, { "docid": "20420780", "text": "DNA double-strand breaks (DSBs) are repaired via nonhomologous end-joining (NHEJ) or homologous recombination (HR), but cellular repair processes remain elusive. We show here that the ATP-dependent chromatin-remodeling factors, ACF1 and SNF2H, accumulate rapidly at DSBs and are required for DSB repair in human cells. If the expression of ACF1 or SNF2H is suppressed, cells become extremely sensitive to X-rays and chemical treatments producing DSBs, and DSBs remain unrepaired. ACF1 interacts directly with KU70 and is required for the accumulation of KU proteins at DSBs. The KU70/80 complex becomes physically more associated with the chromatin-remodeling factors of the CHRAC complex, which includes ACF1, SNF2H, CHRAC15, and CHRAC17, after treatments producing DSBs. Furthermore, the frequency of NHEJ as well as HR induced by DSBs in chromosomal DNA is significantly decreased in cells depleted of either of these factors. Thus, ACF1 and its complexes play important roles in DSBs repair.", "title": "The ACF1 complex is required for DNA double-strand break repair in human cells." }, { "docid": "21793890", "text": "The oncogenic BCR/ABL tyrosine kinase facilitates the repair of DNA double-strand breaks (DSBs). We find that after gamma-irradiation BCR/ABL-positive leukemia cells accumulate more DSBs in comparison to normal cells. These lesions are efficiently repaired in a time-dependent fashion by BCR/ABL-stimulated non-homologous end-joining (NHEJ) followed by homologous recombination repair (HRR) mechanisms. However, mutations and large deletions were detected in HRR and NHEJ products, respectively, in BCR/ABL-positive leukemia cells. We propose that unfaithful repair of DSBs may contribute to genomic instability in the Philadelphia chromosome-positive leukemias.", "title": "BCR/ABL modifies the kinetics and fidelity of DNA double-strand breaks repair in hematopoietic cells." }, { "docid": "27635177", "text": "Mammalian DNA polymerase mu (pol mu) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol mu protein increase. pol mu also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of gammaH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol mu is thus part of the cellular response to DNA double-strand breaks. pol mu also associates in cell extracts with the nonhomologous end-joining repair factor Ku and requires both Ku and another end-joining factor, XRCC4-ligase IV, to form a stable complex on DNA in vitro. pol mu in turn facilitates both stable recruitment of XRCC4-ligase IV to Ku-bound DNA and ligase IV-dependent end joining. In contrast, the related mammalian DNA polymerase beta does not form a complex with Ku and XRCC4-ligase IV and is less effective than pol mu in facilitating joining mediated by these factors. Our data thus support an important role for pol mu in the end-joining pathway for repair of double-strand breaks.", "title": "Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair." }, { "docid": "10015292", "text": "Highly regenerative tissues such as blood must possess effective DNA damage responses (DDR) that balance long-term regeneration with protection from leukemogenesis. Hematopoietic stem cells (HSCs) sustain life-long blood production, yet their response to DNA damage remains largely unexplored. We report that human HSCs exhibit delayed DNA double-strand break rejoining, persistent gammaH2AX foci, and enhanced p53- and ASPP1-dependent apoptosis after gamma-radiation compared to progenitors. p53 inactivation or Bcl-2 overexpression reduced radiation-induced apoptosis and preserved in vivo repopulating HSC function. Despite similar protection from irradiation-induced apoptosis, only Bcl-2-overexpressing HSCs showed higher self-renewal capacity, establishing that intact p53 positively regulates self-renewal independently from apoptosis. The reduced self-renewal of HSCs with inactivated p53 was associated with increased spontaneous gammaH2AX foci in secondary transplants of HSCs. Our data reveal distinct physiological roles of p53 that together ensure optimal HSC function: apoptosis regulation and prevention of gammaH2AX foci accumulation upon HSC self-renewal.", "title": "A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal." }, { "docid": "1941721", "text": "Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxygen species by overexpressing the antioxidant enzyme superoxide dismutase 1 (SOD1), in a transgenic mouse, increases chromosome breakage. The effect of SOD1 can also be modulated by cellular oxygen tension. The elevated chromosome breakage correlates histologically with a significant increase in the amount of neuronal cell death in Ku86(-/-) SOD1 transgenic embryos over that seen in Ku86(-/-) embryos. Therefore, oxygen metabolism is a major source of the genomic instability observed in NHEJ-deficient cells and, presumably, in all cells.", "title": "Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants" }, { "docid": "14178995", "text": "The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their early replication arrest. Treatment of patient cells with a protein farnesyltransferase inhibitor (FTI) did not result in reduction of DNA double-strand breaks and damage checkpoint signaling, although the treatment significantly reversed the aberrant shape of their nuclei. This suggests that DNA damage accumulation and aberrant nuclear morphology are independent phenotypes arising from prelamin A accumulation in these progeroid syndromes. Since DNA damage accumulation is an important contributor to the symptoms of HGPS, our results call into question the possibility of treatment of HGPS with FTIs alone.", "title": "Summary" }, { "docid": "4444861", "text": "Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.", "title": "Replication Fork Stability Confers Chemoresistance in BRCA-deficient Cells" }, { "docid": "22937815", "text": "Now that we have a good understanding of the DNA double strand break (DSB) repair mechanisms and DSB-induced damage signalling, attention is focusing on the changes to the chromatin environment needed for efficient DSB repair. Mutations in chromatin remodelling complexes have been identified in cancers, making it important to evaluate how they impact upon genomic stability. Our current understanding of the DSB repair pathways suggests that each one has distinct requirements for chromatin remodelling. Moreover, restricting the extent of chromatin modifications could be a significant factor regulating the decision of pathway usage. In this review, we evaluate the distinct DSB repair pathways for their potential need for chromatin remodelling and review the roles of ATP-driven chromatin remodellers in the pathways.", "title": "Roles of chromatin remodellers in DNA double strand break repair." }, { "docid": "11568270", "text": "Human TopBP1 is a major player in the control of the DNA replication checkpoint. In this study, we identified MDC1, a key checkpoint protein involved in the cellular response to DNA double-strand breaks, as a TopBP1-associated protein. The specific TopBP1-MDC1 interaction is mediated by the fifth BRCT domain of TopBP1 and the Ser-Asp-Thr (SDT) repeats of MDC1. In addition, we demonstrated that TopBP1 accumulation at stalled replication forks is promoted by the H2AX/MDC1 signaling cascade. Moreover, MDC1 is important for ATR-dependent Chk1 activation in response to replication stress. Collectively, our data suggest that MDC1 facilitates several important steps in both cellular DNA damage response and the DNA replication checkpoint.", "title": "MDC1 collaborates with TopBP1 in DNA replication checkpoint control" }, { "docid": "30122260", "text": "DNA double-strand breaks (DSBs) are highly hazardous for genome integrity because they have the potential to cause mutations, chromosomal rearrangements and genomic instability. The cellular response to DSBs is orchestrated by signal transduction pathways, known as DNA damage checkpoints, which are conserved from yeasts to humans. These pathways can sense DNA damage and transduce this information to specific cellular targets, which in turn regulate cell cycle transitions and DNA repair. The mammalian protein kinases ATM and ATR, as well as their budding yeast corresponding orthologs Tel1 and Mec1, act as master regulators of the checkpoint response to DSBs. Here, we review the early steps of DSB processing and the role of DNA-end structures in activating ATM/Tel1 and ATR/Mec1 in an orderly and reciprocal manner.", "title": "Interplays between ATM/Tel1 and ATR/Mec1 in sensing and signaling DNA double-strand breaks." }, { "docid": "3512154", "text": "CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages.", "title": "CRISPR adaptation biases explain preference for acquisition of foreign DNA" }, { "docid": "13023410", "text": "The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair.", "title": "BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks." }, { "docid": "44172171", "text": "The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.", "title": "Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks" }, { "docid": "12552297", "text": "DNA polymerase lambda (polλ) is a recently identified DNA polymerase whose cellular function remains elusive. Here we show, that polλ participates at the molecular level in a chromosomal context, in the repair of DNA double strand breaks (DSB) via non-homologous end joining (NHEJ) in mammalian cells. The expression of a catalytically inactive form of polλ (polλDN) decreases the frequency of NHEJ events in response to I-Sce-I-induced DSB whereas inactivated forms of its homologues polβ and polμ do not. Only events requiring DNA end processing before ligation are affected; this defect is associated with large deletions arising in the vicinity of the induced DSB. Furthermore, polλDN-expressing cells exhibit increased sensitization and genomic instability in response to ionizing radiation similar to that of NHEJ-defective cells. Our data support a requirement for polλ in repairing a subset of DSB in genomic DNA, thereby contributing to the maintenance of genetic stability mediated by the NHEJ pathway.", "title": "The DNA polymerase λ is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells" }, { "docid": "14446279", "text": "In the yeast Saccharomyces cerevisiae that lacks lamins, the nuclear pore complex (NPC) has been proposed to serve a role in chromatin organization. Here, using fluorescence microscopy in living cells, we show that nuclear pore proteins of the Nup84 core complex, Nup84p, Nup145Cp, Nup120p, and Nup133p, serve to anchor telomere XI-L at the nuclear periphery. The integrity of this complex is shown to be required for repression of a URA3 gene inserted in the subtelomeric region of this chromosome end. Furthermore, altering the integrity of this complex decreases the efficiency of repair of a DNA double-strand break (DSB) only when it is generated in the subtelomeric region, even though the repair machinery is functional. These effects are specific to the Nup84 complex. Our observations thus confirm and extend the role played by the NPC, through the Nup84 complex, in the functional organization of chromatin. They also indicate that anchoring of telomeres is essential for efficient repair of DSBs occurring therein and is important for preserving genome integrity.", "title": "Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region" }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" }, { "docid": "12207340", "text": "The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a process termed end resection. End resection generates 3'-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5'-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3'-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome.", "title": "Mechanism and regulation of DNA end resection in eukaryotes." }, { "docid": "30353437", "text": "Ataxia telangiectasia (AT) has long intrigued the biomedical research community owing to the spectrum of defects that are characteristic of the disease, including neurodegeneration, immune dysfunction, radiosensitivity and cancer predisposition. Following the identification of mutations in ATM (ataxia telangiectasia, mutated) as the underlying cause of the disease, biochemical analysis of this protein kinase has shown that it is a crucial nexus for the cellular response to DNA double-stranded breaks. Many ATM kinase substrates are important players in the cellular responses that prevent cancer. Accordingly, AT is a disease that results from defects in the response to specific types of DNA damage. Thus, although it is a rare neurodegenerative disease, understanding the biology of AT will lead to a greater understanding of the fundamental processes that underpin cancer and neurodegeneration.", "title": "ATM and ataxia telangiectasia." } ]
999
Pyridostatin reduces proliferation of homologous recombination - defective cells.
[ { "docid": "16472469", "text": "G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.", "title": "Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds" } ]
[ { "docid": "6710699", "text": "Werner syndrome (WRN) is an uncommon autosomal recessive disease whose phenotype includes features of premature aging, genetic instability, and an elevated risk of cancer. We used three different experimental strategies to show that WRN cellular phenotypes of limited cell division potential, DNA damage hypersensitivity, and defective homologous recombination (HR) are interrelated. WRN cell survival and the generation of viable mitotic recombinant progeny could be rescued by expressing wild-type WRN protein or by expressing the bacterial resolvase protein RusA. The dependence of WRN cellular phenotypes on RAD51-dependent HR pathways was demonstrated by using a dominant-negative RAD51 protein to suppress mitotic recombination in WRN and control cells: the suppression of RAD51-dependent recombination led to significantly improved survival of WRN cells following DNA damage. These results define a physiological role for the WRN RecQ helicase protein in RAD51-dependent HR and identify a mechanistic link between defective recombination resolution and limited cell division potential, DNA damage hypersensitivity, and genetic instability in human somatic cells.", "title": "Homologous recombination resolution defect in werner syndrome." }, { "docid": "25838286", "text": "Werner syndrome (WS) predisposes patients to cancer and premature aging, owing to mutations in WRN. The WRN protein is a RECQ-like helicase and is thought to participate in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) or homologous recombination (HR). It has been previously shown that non-homologous DNA ends develop extensive deletions during repair in WS cells, and that this WS phenotype was complemented by wild-type (wt) WRN. WRN possesses both 3' --> 5' exonuclease and 3' --> 5' helicase activities. To determine the relative contributions of each of these distinct enzymatic activities to DSB repair, we examined NHEJ and HR in WS cells (WRN-/-) complemented with either wtWRN, exonuclease-defective WRN (E-), helicase-defective WRN (H-) or exonuclease/helicase-defective WRN (E-H-). The single E-and H- mutants each partially complemented the NHEJ abnormality of WRN-/- cells. Strikingly, the E-H- double mutant complemented the WS deficiency nearly as efficiently as did wtWRN. Similarly, the double mutant complemented the moderate HR deficiency of WS cells nearly as well as did wtWRN, whereas the E- and H- single mutants increased HR to levels higher than those restored by either E-H- or wtWRN. These results suggest that balanced exonuclease and helicase activities of WRN are required for optimal HR. Moreover, WRN appears to play a structural role, independent of its enzymatic activities, in optimizing HR and efficient NHEJ repair. Another human RECQ helicase, BLM, suppressed HR but had little or no effect on NHEJ, suggesting that mammalian RECQ helicases have distinct functions that can finely regulate recombination events.", "title": "WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair." }, { "docid": "13791206", "text": "Defective DNA repair by homologous recombination (HR) is thought to be a major contributor to tumorigenesis in individuals carrying Brca1 mutations. Here, we show that DNA breaks in Brca1-deficient cells are aberrantly joined into complex chromosome rearrangements by a process dependent on the nonhomologous end-joining (NHEJ) factors 53BP1 and DNA ligase 4. Loss of 53BP1 alleviates hypersensitivity of Brca1 mutant cells to PARP inhibition and restores error-free repair by HR. Mechanistically, 53BP1 deletion promotes ATM-dependent processing of broken DNA ends to produce recombinogenic single-stranded DNA competent for HR. In contrast, Lig4 deficiency does not rescue the HR defect in Brca1 mutant cells but prevents the joining of chromatid breaks into chromosome rearrangements. Our results illustrate that HR and NHEJ compete to process DNA breaks that arise during DNA replication and that shifting the balance between these pathways can be exploited to selectively protect or kill cells harboring Brca1 mutations.", "title": "53BP1 Inhibits Homologous Recombination in Brca1-Deficient Cells by Blocking Resection of DNA Breaks" }, { "docid": "39225849", "text": "The Bloom syndrome helicase (BLM) is critical for genomic stability. A defect in BLM activity results in the cancer-predisposing Bloom syndrome (BS). Here, we report that BLM-deficient cell lines and primary fibroblasts display an endogenously activated DNA double-strand break checkpoint response with prominent levels of phosphorylated histone H2AX (gamma-H2AX), Chk2 (p(T68)Chk2), and ATM (p(S1981)ATM) colocalizing in nuclear foci. Interestingly, the mitotic fraction of gamma-H2AX foci did not seem to be higher in BLM-deficient cells, indicating that these lesions form transiently during interphase. Pulse labeling with iododeoxyuridine and immunofluorescence microscopy showed the colocalization of gamma-H2AX, ATM, and Chk2 together with replication foci. Those foci costained for Rad51, indicating homologous recombination at these replication sites. We therefore analyzed replication in BS cells using a single molecule approach on combed DNA fibers. In addition to a higher frequency of replication fork barriers, BS cells displayed a reduced average fork velocity and global reduction of interorigin distances indicative of an elevated frequency of origin firing. Because BS is one of the most penetrant cancer-predisposing hereditary diseases, it is likely that the lack of BLM engages the cells in a situation similar to precancerous tissues with replication stress. To our knowledge, this is the first report of high ATM-Chk2 kinase activation and its linkage to replication defects in a BS model.", "title": "Endogenous gamma-H2AX-ATM-Chk2 checkpoint activation in Bloom's syndrome helicase deficient cells is related to DNA replication arrested forks." }, { "docid": "4037034", "text": "Epstein-Barr virus (EBV) episomes are stably maintained in permissive proliferating cell lines due to EBV nuclear antigen 1 (EBNA-1) protein-mediated replication and segregation. Previous studies showed the ability of EBV episomes to confer long-term transgene expression and correct genetic defects in deficient cells. To achieve quantitative delivery of EBV episomes in vitro and in vivo, we developed a binary helper-dependent adenovirus (HDA)-EBV hybrid system that consists of one HDA vector for the expression of Cre recombinase and a second HDA vector that contains all of the sequences for the EBV episome flanked by loxP sites. Upon coinfection of cells, Cre expressed from the first vector recombined loxP sites on the second vector. The resulting circular EBV episomes expressed a transgene and contained the EBV-derived family of repeats, an EBNA-1 expression cassette, and 19 kb of human DNA that functions as a replication origin in mammalian cells. This HDA-EBV hybrid system transformed 40% of cultured cells. Transgene expression in proliferating cells was observed for over 20 weeks under conditions that selected for the expression of the transgene. In the absence of selection, EBV episomes were lost at a rate of 8 to 10% per cell division. Successful delivery of EBV episomes in vivo was demonstrated in the liver of transgenic mice expressing Cre from the albumin promoter. This novel gene transfer system has the potential to confer long-term episomal transgene expression and therefore to correct genetic defects with reduced vector-related toxicity and without insertional mutagenesis.", "title": "Development of a novel helper-dependent adenovirus-Epstein-Barr virus hybrid system for the stable transformation of mammalian cells." }, { "docid": "24498673", "text": "Holliday junctions (HJs) are four-way DNA intermediates that form during homologous recombination, and their efficient resolution is essential for chromosome segregation. Here, we show that three structure-selective endonucleases, namely SLX1-SLX4, MUS81-EME1, and GEN1, define two pathways of HJ resolution in human cells. One pathway is mediated by GEN1, whereas SLX1-SLX4 and MUS81-EME1 provide a second and genetically distinct pathway (SLX-MUS). Cells depleted for SLX-MUS or GEN1 pathway proteins exhibit severe defects in chromosome segregation and reduced survival. In response to CDK-mediated phosphorylation, SLX1-SLX4 and MUS81-EME1 associate at the G2/M transition to form a stable SLX-MUS holoenzyme, which can be reconstituted in vitro. Biochemical studies show that SLX-MUS is a HJ resolvase that coordinates the active sites of two distinct endonucleases during HJ resolution. This cleavage reaction is more efficient and orchestrated than that mediated by SLX1-SLX4 alone, which exhibits a potent nickase activity that acts promiscuously upon DNA secondary structures.", "title": "Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells." }, { "docid": "38252314", "text": "The minichromosome maintenance protein homologs MCM8 and MCM9 have previously been implicated in DNA replication elongation and prereplication complex (pre-RC) formation, respectively. We found that MCM8 and MCM9 physically associate with each other and that MCM8 is required for the stability of MCM9 protein in mammalian cells. Depletion of MCM8 or MCM9 in human cancer cells or the loss of function MCM9 mutation in mouse embryo fibroblasts sensitizes cells to the DNA interstrand cross-linking (ICL) agent cisplatin. Consistent with a role in the repair of ICLs by homologous recombination (HR), knockdown of MCM8 or MCM9 significantly reduces HR repair efficiency. Chromatin immunoprecipitation analysis using human DR-GFP cells or Xenopus egg extract demonstrated that MCM8 and MCM9 proteins are rapidly recruited to DNA damage sites and promote RAD51 recruitment. Thus, these two metazoan-specific MCM homologs are new components of HR and may represent novel targets for treating cancer in combination with DNA cross-linking agents.", "title": "The MCM8-MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination." }, { "docid": "19522248", "text": "We targeted the locus encoding the cyclin-dependent kinase 2 (CDK2) by homologous recombination in mouse embryonic stem (ES) cells. Embryonic fibroblasts lacking CDK2 proliferate normally and become immortal after continuous passage in culture. Elimination of a conditional Cdk2 allele in immortal cells does not have a significant effect on proliferation. Cdk2−/− mice are viable and survive for up to two years, indicating that CDK2 is also dispensable for proliferation and survival of most cell types. But CDK2 is essential for completion of prophase I during meiotic cell division in male and female germ cells, an unforeseen role for this cell cycle kinase.", "title": "Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice" }, { "docid": "37762357", "text": "Cytomegalovirus (CMV) has highly evolved mechanisms for avoiding detection by the host immune system. Recently, in the genomes of human and primate CMV, a novel gene comprising segments of noncontiguous open reading frames was identified and found to have limited predicted homology to endogenous cellular interleukin-10 (IL-10). Here we investigate the biological activities of the CMV IL-10-like gene product and show it to possess potent immunosuppressive properties. Both purified bacterium-derived recombinant CMV IL-10 and CMV IL-10 expressed in supernatants of human cells were found to inhibit proliferation of mitogen-stimulated peripheral blood mononuclear cells (PBMCs), with specific activity comparable to that of recombinant human IL-10. In addition, CMV IL-10 expressed from human cells inhibited cytokine synthesis, as treatment of stimulated PBMCs and monocytes with CMV IL-10 led to a marked decrease in production of proinflammatory cytokines. Finally, CMV IL-10 was observed to decrease cell surface expression of both major histocompatibility complex (MHC) class I and class II molecules, while conversely increasing expression of the nonclassical MHC allele HLA-G. These results demonstrate for the first time that CMV has a biologically active IL-10 homolog that may contribute to immune evasion during virus infection.", "title": "Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10." }, { "docid": "39637840", "text": "BLM, WRN, and p53 are involved in the homologous DNA recombination pathway. The DNA structure-specific helicases, BLM and WRN, unwind Holliday junctions (HJ), an activity that could suppress inappropriate homologous recombination during DNA replication. Here, we show that purified, recombinant p53 binds to BLM and WRN helicases and attenuates their ability to unwind synthetic HJ in vitro. The p53 248W mutant reduces abilities of both to bind HJ and inhibit helicase activities, whereas the p53 273H mutant loses these abilities. Moreover, full-length p53 and a C-terminal polypeptide (residues 373-383) inhibit the BLM and WRN helicase activities, but phosphorylation at Ser(376) or Ser(378) completely abolishes this inhibition. Following blockage of DNA replication, Ser(15) phospho-p53, BLM, and RAD51 colocalize in nuclear foci at sites likely to contain DNA replication intermediates in cells. Our results are consistent with a novel mechanism for p53-mediated regulation of DNA recombinational repair that involves p53 post-translational modifications and functional protein-protein interactions with BLM and WRN DNA helicases.", "title": "The processing of Holliday junctions by BLM and WRN helicases is regulated by p53." }, { "docid": "4401289", "text": "Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10–15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC–PCNA–Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.", "title": "Break-induced telomere synthesis underlies alternative telomere maintenance" }, { "docid": "4444861", "text": "Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.", "title": "Replication Fork Stability Confers Chemoresistance in BRCA-deficient Cells" }, { "docid": "12086599", "text": "Major eukaryotic genomic elements, including the ribosomal DNA (rDNA), are composed of repeated sequences with well-defined copy numbers that must be maintained by regulated recombination. Although mechanisms that instigate rDNA recombination have been identified, none are directional and they therefore cannot explain precise repeat number control. Here, we show that yeast lacking histone chaperone Asf1 undergo reproducible rDNA repeat expansions. These expansions do not require the replication fork blocking protein Fob1 and are therefore independent of known rDNA expansion mechanisms. We propose the existence of a regulated rDNA repeat gain pathway that becomes constitutively active in asf1Δ mutants. Cells lacking ASF1 accumulate rDNA repeats with high fidelity in a processive manner across multiple cell divisions. The mechanism of repeat gain is dependent on highly repetitive sequence but, surprisingly, is independent of the homologous recombination proteins Rad52, Rad51 and Rad59. The expansion mechanism is compromised by mutations that decrease the processivity of DNA replication, which leads to progressive loss of rDNA repeats. Our data suggest that a novel mode of break-induced replication occurs in repetitive DNA that is dependent on high homology but does not require the canonical homologous recombination machinery.", "title": "Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery" }, { "docid": "13023410", "text": "The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair.", "title": "BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks." }, { "docid": "38727075", "text": "The neural crest is a multipotent, migratory cell population arising from the border of the neural and surface ectoderm. In mouse, the initial migratory neural crest cells occur at the five-somite stage. Bone morphogenetic proteins (BMPs), particularly BMP2 and BMP4, have been implicated as regulators of neural crest cell induction, maintenance, migration, differentiation and survival. Mouse has three known BMP2/4 type I receptors, of which Bmpr1a is expressed in the neural tube sufficiently early to be involved in neural crest development from the outset; however, earlier roles in other domains obscure its requirement in the neural crest. We have ablated Bmpr1a specifically in the neural crest, beginning at the five-somite stage. We find that most aspects of neural crest development occur normally; suggesting that BMPRIA is unnecessary for many aspects of early neural crest biology. However, mutant embryos display a shortened cardiac outflow tract with defective septation, a process known to require neural crest cells and to be essential for perinatal viability. Surprisingly, these embryos die in mid-gestation from acute heart failure, with reduced proliferation of ventricular myocardium. The myocardial defect may involve reduced BMP signaling in a novel, minor population of neural crest derivatives in the epicardium, a known source of ventricular myocardial proliferation signals. These results demonstrate that BMP2/4 signaling in mammalian neural crest derivatives is essential for outflow tract development and may regulate a crucial proliferation signal for the ventricular myocardium.", "title": "BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium." }, { "docid": "4421746", "text": "Polyploidy, increased sets of chromosomes, occurs during development, cellular stress, disease and evolution. Despite its prevalence, little is known about the physiological alterations that accompany polyploidy. We previously described ‘ploidy-specific lethality’, where a gene deletion that is not lethal in haploid or diploid budding yeast causes lethality in triploids or tetraploids. Here we report a genome-wide screen to identify ploidy-specific lethal functions. Only 39 out of 3,740 mutations screened exhibited ploidy-specific lethality. Almost all of these mutations affect genomic stability by impairing homologous recombination, sister chromatid cohesion, or mitotic spindle function. We uncovered defects in wild-type tetraploids predicted by the screen, and identified mechanisms by which tetraploidization affects genomic stability. We show that tetraploids have a high incidence of syntelic/monopolar kinetochore attachments to the spindle pole. We suggest that this defect can be explained by mismatches in the ability to scale the size of the spindle pole body, spindle and kinetochores. Thus, geometric constraints may have profound effects on genome stability; the phenomenon described here may be relevant in a variety of biological contexts, including disease states such as cancer.", "title": "Genome-wide genetic analysis of polyploidy in yeast" }, { "docid": "712078", "text": "Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs as well as numerous other abnormalities that include inflammation of affected organs, alterations in lipid metabolism and insulin resistance. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator-activated receptor-gamma (PPAR-gamma, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-gamma ligand 15-keto-prostaglandin E(2) (15-keto-PGE(2)). Treatment of Cftr-deficient mice with the synthetic PPAR-gamma ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-gamma signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice.", "title": "Pharmacological correction of a defect in PPARγ signaling ameliorates disease severity in Cftr-deficient mice" }, { "docid": "15425958", "text": "Interleukin-10 (IL-10) suppresses the maturation and cytokine production of dendritic cells (DCs), key regulators of adaptive immunity, and prevents the activation and polarization of naïve T cells towards protective gamma interferon-producing effectors. We hypothesized that human cytomegalovirus (HCMV) utilizes its viral IL-10 homolog (cmvIL-10) to attenuate DC functionality, thereby subverting the efficient induction of antiviral immune responses. RNA and protein analyses demonstrated that the cmvIL-10 gene was expressed with late gene kinetics. Treatment of immature DCs (iDCs) with supernatant from HCMV-infected cultures inhibited both the lipopolysaccharide-induced DC maturation and proinflammatory cytokine production. These inhibitory effects were specifically mediated through the IL-10 receptor and were not observed when DCs were treated with supernatant of cells infected with a cmvIL-10-knockout mutant. Incubation of iDCs with recombinant cmvIL-10 recapitulated the inhibition of maturation. Furthermore, cmvIL-10 had pronounced long-term effects on those DCs that could overcome this inhibition of maturation. It enhanced the migration of mature DCs (mDCs) towards the lymph node homing chemokine but greatly reduced their cytokine production. The inability of mDCs to secrete IL-12 was maintained, even when they were restimulated by the activated T-cell signal CD40 ligand in the absence of cmvIL-10. Importantly, cmvIL-10 potentiates these anti-inflammatory effects, at least partially, by inducing endogenous cellular IL-10 expression in DCs. Collectively, we show that cmvIL-10 causes long-term functional alterations at all stages of DC activation.", "title": "Human Cytomegalovirus-Encoded Interleukin-10 Homolog Inhibits Maturation of Dendritic Cells and Alters Their Functionality" }, { "docid": "13221399", "text": "The ability to achieve site-specific manipulation of the mammalian genome has widespread implications for basic and applied research. Gene targeting is a process in which a DNA molecule introduced into a cell replaces the corresponding chromosomal segment by homologous recombination, and thus presents a precise way to manipulate the genome. In the past, the application of gene targeting to mammalian cells has been limited by its low efficiency. Zinc finger nucleases (ZFNs) show promise in improving the efficiency of gene targeting by introducing DNA double-strand breaks in target genes, which then stimulate the cell's endogenous homologous recombination machinery. Recent results have shown that ZFNs can be used to create targeting frequencies of up to 20% in a human disease-causing gene. Future work will be needed to translate these in vitro findings to in vivo applications and to determine whether zinc finger nucleases create undesired genomic instability.", "title": "Gene targeting using zinc finger nucleases" } ]
1000
Pyridostatin stabilizes the G - quadruplex in the telomeric region.
[ { "docid": "16472469", "text": "G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.", "title": "Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds" } ]
[ { "docid": "26118532", "text": "Demonstration of the existence of G-quadruplex structures in telomeres of Stylonychia macronuclei and in the promoter of c-myc in human cells has validated these secondary DNA structures as potential targets for drug design. The next important issue is the selectivity of G-quadruplex-interactive agents for the different types of G-quadruplex structures. In this study, we have taken an important step in associating specific biological effects of these drugs with selective interaction with either intermolecular or intramolecular G-quadruplex structures formed in telomeres. Telomestatin is a natural product isolated from Streptomyces anulatus 3533-SV4 and has been shown to be a very potent telomerase inhibitor through its G-quadruplex interaction. We have demonstrated that telomestatin interacts preferentially with intramolecular versus intermolecular G-quadruplex structures and also has a 70-fold selectivity for intramolecular G-quadruplex structures over duplex DNA. Telomestatin is able to stabilize G-quadruplex structures that are formed from duplex human telomeric DNA as well as from single-stranded DNA. Importantly, telomestatin stabilizes these G-quadruplex structures in the absence of monovalent cations, which is a unique characteristic among G-quadruplex-interactive compounds. At noncytotoxic concentrations, telomestatin suppresses the proliferation of telomerase-positive cells within several weeks. In contrast, TMPyP4, a compound that preferentially facilitates the formation of intermolecular G-quadruplex structures, suppresses the proliferation of alternative lengthening of telomeres (ALT)-positive cells as well as telomerase-positive cells. We have also demonstrated that TMPyP4 induces anaphase bridges in sea urchin embryos, whereas telomestatin did not have this effect, leading us to conclude that the selectivity of telomestatin for intramolecular G-quadruplex structures and TMPyP4 for intermolecular G-quadruplex structures is important in mediating different biological effects: stabilization of intramolecular G-quadruplex structures produces telomerase inhibition and accelerated telomere shortening, whereas facilitation of the formation of intermolecular G-quadruplex structures induces the formation of anaphase bridges.", "title": "The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures." }, { "docid": "25842866", "text": "Most eukaryotic telomeres contain a repeating motif with stretches of guanine residues that form a 3'-terminal overhang extending beyond the telomeric duplex region. The telomeric repeat of hypotrichous ciliates, d(T(4)G(4)), forms a 16-nucleotide 3'-overhang. Such sequences can adopt parallel-stranded as well as antiparallel-stranded quadruplex conformations in vitro. Although it has been proposed that guanine-quadruplex conformations may have important cellular roles including telomere function, recombination, and transcription, evidence for the existence of this DNA structure in vivo has been elusive to date. We have generated high-affinity single-chain antibody fragment (scFv) probes for the guanine-quadruplex formed by the Stylonychia telomeric repeat, by ribosome display from the Human Combinatorial Antibody Library. Of the scFvs selected, one (Sty3) had an affinity of K(d) = 125 pM for the parallel-stranded guanine-quadruplex and could discriminate with at least 1,000-fold specificity between parallel or antiparallel quadruplex conformations formed by the same sequence motif. A second scFv (Sty49) bound both the parallel and antiparallel quadruplex with similar (K(d) = 3--5 nM) affinity. Indirect immunofluorescence studies show that Sty49 reacts specifically with the macronucleus but not the micronucleus of Stylonychia lemnae. The replication band, the region where replication and telomere elongation take place, was also not stained, suggesting that the guanine-quadruplex is resolved during replication. Our results provide experimental evidence that the telomeres of Stylonychia macronuclei adopt in vivo a guanine-quadruplex structure, indicating that this structure may have an important role for telomere functioning.", "title": "In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei." }, { "docid": "2758012", "text": "Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome-associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis.", "title": "BLM helicase facilitates telomere replication during leading strand synthesis of telomeres" }, { "docid": "26607366", "text": "Structure-based modeling methods have been used to design a series of disubstituted triazole-linked acridine compounds with selectivity for human telomeric quadruplex DNAs. A focused library of these compounds was prepared using click chemistry and the selectivity concept was validated against two promoter quadruplexes from the c-kit gene with known molecular structures, as well as with duplex DNA using a FRET-based melting method. Lead compounds were found to have reduced effects on the thermal stability of the c-kit quadruplexes and duplex DNA structures. These effects were further explored with a series of competition experiments, which confirmed that binding to duplex DNA is very low even at high duplex:telomeric quadruplex ratios. Selectivity to the c-kit quadruplexes is more complex, with some evidence of their stabilization at increasing excess over human telomeric quadruplex DNA. Selectivity is a result of the dimensions of the triazole-acridine compounds, and in particular the separation of the two alkyl-amino terminal groups. Both lead compounds also have selective inhibitory effects on the proliferation of cancer cell lines compared to a normal cell line, and one has been shown to inhibit the activity of the telomerase enzyme, which is selectively expressed in tumor cells, where it plays a role in maintaining telomere integrity and cellular immortalization.", "title": "Rational design of acridine-based ligands with selectivity for human telomeric quadruplexes." }, { "docid": "1226452", "text": "Telomerase is a ribonucleoprotein enzyme complex that reverse-transcribes an integral RNA template to add short DNA repeats to the 3'-ends of telomeres. G-quadruplex structure in a DNA substrate can block its extension by telomerase. We have found that hnRNP A1--which was previously implicated in telomere length regulation--binds to both single-stranded and structured human telomeric repeats, and in the latter case, it disrupts their higher-order structure. Using an in vitro telomerase assay, we observed that depletion of hnRNP A/B proteins from 293 human embryonic kidney cell extracts dramatically reduced telomerase activity, which was fully recovered upon addition of purified recombinant hnRNP A1. This finding suggests that hnRNP A1 functions as an auxiliary, if not essential, factor of telomerase holoenzyme. We further show, using chromatin immunoprecipitation, that hnRNP A1 associates with human telomeres in vivo. We propose that hnRNP A1 stimulates telomere elongation through unwinding of a G-quadruplex or G-G hairpin structure formed at each translocation step.", "title": "hnRNP A1 associates with telomere ends and stimulates telomerase activity." }, { "docid": "4429668", "text": "The Saccharomyces cerevisiae Pif1 helicase is the prototypical member of the Pif1 DNA helicase family, which is conserved from bacteria to humans. Here we show that exceptionally potent G-quadruplex unwinding is conserved among Pif1 helicases. Moreover, Pif1 helicases from organisms separated by more than 3 billion years of evolution suppressed DNA damage at G-quadruplex motifs in yeast. The G-quadruplex-induced damage generated in the absence of Pif1 helicases led to new genetic and epigenetic changes. Furthermore, when expressed in yeast, human PIF1 suppressed both G-quadruplex-associated DNA damage and telomere lengthening.", "title": "Pif1 family helicases suppress genome instability at G-quadruplex motifs" }, { "docid": "10486817", "text": "BACKGROUND Cellular nucleic acid binding protein (CNBP) has been implicated in vertebrate craniofacial development and in myotonic dystrophy type 2 (DM2) and sporadic inclusion body myositis (sIBM) human diseases by controlling cell proliferation and survival to mediate neural crest expansion. CNBP has been found to bind single-stranded nucleic acid and promote rearrangements of nucleic acid secondary structure in an ATP-independent manner, acting as a nucleic acid chaperone. \n METHODS A variety of methods were used, including cell viability assays, wound-scratch assays, chemotaxis assays, invasion assays, circular dichroic (CD) spectroscopy, NMR spectroscopy, chromatin immunoprecipitation, expression and purification of recombinant human CNBP, electrophoretic mobility shift assay (EMSA), surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET) analyses, luciferase reporter assay, Western blotting, and isothermal titration calorimetry (ITC). \n RESULTS Up-regulation of CNBP induced human fibrosarcoma cell death and suppressed fibrosarcoma cell motility and invasiveness. It was found that CNBP transcriptionally down-regulated the expression of heterogeneous ribonucleoprotein K (hnRNP K) through its conversion of a G-rich sequence into G-quadruplex in the promoter of hnRNP K. G-quadruplex stabilizing ligand tetra-(N-methyl-4-pyridyl) porphyrin (TMPyP4) could interact with and stabilize the G-quadruplex, resulting in downregulation of hnRNP K transcription. \n CONCLUSIONS CNBP overexpression caused increase of cell death and suppression of cell metastasis through its induction of G-quadruplex formation in the promoter of hnRNP K resulting in hnRNP K down-regulation. GENERAL SIGNIFICANCE The present result provided a new solution for controlling hnRNP K expression, which should shed light on new anticancer drug design and development.", "title": "Cellular nucleic acid binding protein suppresses tumor cell metastasis and induces tumor cell death by downregulating heterogeneous ribonucleoprotein K in fibrosarcoma cells." }, { "docid": "4319844", "text": "Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer.", "title": "Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes." }, { "docid": "25787749", "text": "The evolutionarily conserved G-quadruplexes (G4s) are faithfully inherited and serve a variety of cellular functions such as telomere maintenance, gene regulation, DNA replication initiation, and epigenetic regulation. Different from the Watson-Crick base-pairing found in duplex DNA, G4s are formed via Hoogsteen base pairing and are very stable and compact DNA structures. Failure of untangling them in the cell impedes DNA-based transactions and leads to genome instability. Cells have evolved highly specific helicases to resolve G4 structures. We used a recombinant nuclear form of Saccharomyces cerevisiae Pif1 to characterize Pif1-mediated DNA unwinding with a substrate mimicking an ongoing lagging strand synthesis stalled by G4s, which resembles a replication origin and a G4-structured flap in Okazaki fragment maturation. We find that the presence of G4 may greatly stimulate the Pif1 helicase to unwind duplex DNA. Further studies reveal that this stimulation results from G4-enhanced Pif1 dimerization, which is required for duplex DNA unwinding. This finding provides new insights into the properties and functions of G4s. We discuss the observed activation phenomenon in relation to the possible regulatory role of G4s in the rapid rescue of the stalled lagging strand synthesis by helping the replicator recognize and activate the replication origin as well as by quickly removing the G4-structured flap during Okazaki fragment maturation.", "title": "G-quadruplexes significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding." }, { "docid": "6386930", "text": "Four-stranded nucleic acid structures called G-quadruplexes have been associated with important cellular processes, which should require G-quadruplex-protein interaction. However, the structural basis for specific G-quadruplex recognition by proteins has not been understood. The DEAH (Asp-Glu-Ala-His) box RNA helicase associated with AU-rich element (RHAU) (also named DHX36 or G4R1) specifically binds to and resolves parallel-stranded G-quadruplexes. Here we identified an 18-amino acid G-quadruplex-binding domain of RHAU and determined the structure of this peptide bound to a parallel DNA G-quadruplex. Our structure explains how RHAU specifically recognizes parallel G-quadruplexes. The peptide covers a terminal guanine base tetrad (G-tetrad), and clamps the G-quadruplex using three-anchor-point electrostatic interactions between three positively charged amino acids and negatively charged phosphate groups. This binding mode is strikingly similar to that of most ligands selected for specific G-quadruplex targeting. Binding to an exposed G-tetrad represents a simple and efficient way to specifically target G-quadruplex structures.", "title": "Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: Solution structure of a peptide-quadruplex complex." }, { "docid": "2679511", "text": "Werner's syndrome (WS) and Bloom's syndrome (BS) are cancer predisposition disorders caused by loss of function of the RecQ helicases WRN or BLM, respectively. BS and WS are characterized by replication defects, hyperrecombination events and chromosomal aberrations, which are hallmarks of cancer. Inefficient replication of the G-rich telomeric strand contributes to chromosome aberrations in WS cells, demonstrating a link between WRN, telomeres and genomic stability. Herein, we provide evidence that BLM also contributes to chromosome-end maintenance. Telomere defects (TDs) are observed in BLM-deficient cells at an elevated frequency, which is similar to cells lacking a functional WRN helicase. Loss of both helicases exacerbates TDs and chromosome aberrations, indicating that BLM and WRN function independently in telomere maintenance. BLM localization, particularly its recruitment to telomeres, changes in response to replication dysfunction, such as in WRN-deficient cells or after aphidicolin treatment. Exposure to replication challenge causes an increase in decatenated deoxyribonucleic acid (DNA) structures and late-replicating intermediates (LRIs), which are visible as BLM-covered ultra-fine bridges (UFBs) in anaphase. A subset of UFBs originates from telomeric DNA and their frequency correlates with telomere replication defects. We propose that the BLM complex contributes to telomere maintenance through its activity in resolving LRIs.", "title": "The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures" }, { "docid": "18639989", "text": "Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1(Timeless), a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1(Timeless) in regulation of telomere stability in cancer cells.", "title": "Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres" }, { "docid": "7468449", "text": "Ever since the first demonstration of their repetitive sequence and unique replication pathway, telomeres have beguiled researchers with how they function in protecting chromosome ends. Of course much has been learned over the years, and we now appreciate that telomeres are comprised of the multimeric protein/DNA shelterin complex and that the formation of t-loops provides protection from DNA damage machinery. Deriving their name from D-loops, t-loops are generated by the insertion of the 3' overhang into telomeric repeats facilitated by the binding of TRF2. Recent studies have uncovered novel forms of chromosome end-structure that may implicate telomere organization in cellular processes beyond its essential role in telomere protection and homeostasis. In particular, we have recently described that t-loops form in a TRF2-dependent manner at interstitial telomere repeat sequences, which we termed interstitial telomere loops (ITLs). These structures are also dependent on association of lamin A/C, a canonical component of the nucleoskeleton that is mutated in myriad human diseases, including human segmental progeroid syndromes. Since ITLs are associated with telomere stability and require functional lamin A/C, our study suggests a mechanistic link between cellular aging (replicative senescence induced by telomere shortening) and organismal aging (modeled by Hutchinson Gilford Progeria Syndrome). Here we speculate on other potential ramifications of ITL formation, from gene expression to genome stability to chromosome structure.", "title": "A beginning of the end: new insights into the functional organization of telomeres" }, { "docid": "12922760", "text": "BACKGROUND G-quadruplexes (G4s) are stable non-canonical DNA secondary structures consisting of stacked arrays of four guanines, each held together by Hoogsteen hydrogen bonds. Sequences with the ability to form these structures in vitro, G4 motifs, are found throughout bacterial and eukaryotic genomes. The budding yeast Pif1 DNA helicase, as well as several bacterial Pif1 family helicases, unwind G4 structures robustly in vitro and suppress G4-induced DNA damage in S. cerevisiae in vivo. \n RESULTS We determined the genomic distribution and evolutionary conservation of G4 motifs in four fission yeast species and investigated the relationship between G4 motifs and Pfh1, the sole S. pombe Pif1 family helicase. Using chromatin immunoprecipitation combined with deep sequencing, we found that many G4 motifs in the S. pombe genome were associated with Pfh1. Cells depleted of Pfh1 had increased fork pausing and DNA damage near G4 motifs, as indicated by high DNA polymerase occupancy and phosphorylated histone H2A, respectively. In general, G4 motifs were underrepresented in genes. However, Pfh1-associated G4 motifs were located on the transcribed strand of highly transcribed genes significantly more often than expected, suggesting that Pfh1 has a function in replication or transcription at these sites. \n CONCLUSIONS In the absence of functional Pfh1, unresolved G4 structures cause fork pausing and DNA damage of the sort associated with human tumors.", "title": "The essential Schizosaccharomyces pombe Pfh1 DNA helicase promotes fork movement past G-quadruplex motifs to prevent DNA damage" }, { "docid": "36066871", "text": "The centromere is essential for the inheritance of genetic information on eukaryotic chromosomes. Epigenetic regulation of centromere identity has been implicated in genome stability, karyotype evolution, and speciation. However, little is known regarding the manner in which centromere dysfunction affects the chromosomal architectures. Here we show that in the fission yeast Schizosaccharomyces pombe, the conditional deletion of the centromere produces survivors that carry either a neocentromere-acquired chromosome at the subtelomeric region or an acentric chromosome rescued by intertelomere fusion with either of the remaining chromosomes. The ratio of neocentromere formation to telomere fusion is considerably decreased by the inactivation of genes involved in RNA interference-dependent heterochromatin formation. By affecting the modes of chromosomal reorganization, the genomic distribution of heterochromatin may influence the fate of karyotype evolution.", "title": "Heterochromatin integrity affects chromosome reorganization after centromere dysfunction." }, { "docid": "15521377", "text": "Cellular senescence is a stable form of cell-cycle arrest which is thought to limit the proliferative potential of premalignant cells [1]. The senescence phenotype was initially described by Hayflick and Moorhead in 1961 on human fibroblasts undergoing replicative exhaustion in culture [2]. It has been shown that senescence can be triggered in different cell types in response to diverse forms of cellular damage or stress (for review see [1]). Importantly, while senescence was denounced as a tissue culture phenomenon for many years, recent in vivo studies demonstrated that cellular senescence represents a potent failsafe mechanism against tumorigenesis and contributes to the cytotoxicity of certain anticancer agents (see for example [3-7]). Interestingly, senescent cells have also been observed in certain aged or damaged tissues and there is growing evidence that senescence checkpoints can affect the regenerative reserve of tissues and organismal aging [8-11]. However, senescence may also have positive effects on organ maintenance by limiting pathological responses to acute forms of injury such as fibrotic scarring in response to chemical induced liver injury [12]. Over the past years it was also shown that senescent cells can communicate with their environment by secreting a myriad of cytokines and growth factors. Interestingly, this \"senescence associated secretory phenotype (SASP)\" seems to be a double edged sword regarding tumor initiation and maintenance: i) On the one hand, it has been shown that the SASP can have pro-tumorigenic effects. In an experimental system it was shown that senescent mesenchymal cells can enhance the tumorigenicity of surrounding breast cancer cells [13]. ii) Similarly, it is possible that the SASP enhances selection of transformed cell clones in aged organ systems. It has been shown that loss of proliferative competition of non-transformed cells can accelerate leukemogenesis [14]. It remains to be seen whether aberrant secretion of cytokines and growth factors by the SASP can accelerated this process in aged and chronically damage organ systems. iii) In contrast to its pro-tumorigenic aspect, the SASP could also have anti-tumor effects. A recent study showed that in a mosaic liver cancer mouse model the activation of p53 induced senescence, an upregulation of inflammatory cytokines, and activation of innate immune responses leading to tumour cell clearance [15]. iv) In further support that the SASP could have anti-tumor activities, a series of recent papers showed that components of the SASP can stabilize the senescence cell cycle arrest via an autoregulatory feedback loop [16,17] or induces apoptosis of tumor cells [18]. In addition to its effects on tumorigenesis, the SASP could also influence tissue aging. Studies on aging telomere dysfunctional mice have provided direct experimental evidence for an in vivo activation of the SASP in response to telomere dysfunction [19]. Interestingly, this in vivo SASP provoked alterations in stem cell differentiation (skewing of hematopoiesis towards reduction in lymphopoiesis and enhancement of myelopoiesis) that are also characteristic signs of human aging. Figure 1. Different cellular stresses can induce senescence including telomere shortening, DNA damage, and oncogene activation. Senescence of tumor cells ... In light of the many possible roles o the SASP in aging and carcinogenesis, it appears to be of utmost importance to decipher regulatory pathways controlling the SASP. In a current publication, Bhaumik et al. have identified 2 microRNAs (miR-146a/b) that negatively regulate the secretion of IL-6 and IL-8 - two of the SASP [20]. The authors show that these microRNAs are up-regulated at late stages of senescence, many days after a permanent cell cycle arrest has been established. Interestingly, the inhibitory miRs are most strongly up-regulated in senescence of cell lines that show a strong SASP but not in cell lines characterized by a weak SASP. The authors propose a new concept indicating that miRs 146a and b function in a negative feedback loop preventing an over-activation of the SASP in senescent cells. The authors present some initial data suggesting that activation of this negative feedback loop involves IL-1 receptor, IRAK-1, and NFκB signalling leading to an up-regulation of miRs-146a and b. A direct proof that this proposed feedback loop suppresses over-activation of the SASP remains to be demonstrated in future studies. The authors show that blockage of IL-1-receptor signalling prevents both the up-regulation of miRs-146a and b as well as Il-6 secretion. To confirm their new concept, it would be important to show that a selective blockage of miRs-146a and b results in over-activation of the SASP. The work by Bhaumik et al. places mir-146a/b as central players to control IL-6 and IL-8 expression within the SASP. MicroRNAs are emerging therapeutic targets because their expression levels can be effectively modulated via the use of antagomirs (see for example [21]). Also, for increasing microRNA expression, microRNAs can be delivered into cellsin vivo (see for example [22]). Therefore, it will be interesting to functionally test the impact of mir-146 inhibition on tumorigenesis and aging in relevant mouse models. Such studies will be of particular interest, as recent work showed that IL-6 secretion by senescent cells is relevant for initiating and maintaining the senescene response via an autocrine loop [17]. A reduction of miR-146 could increase IL-6 levels in senescent cells, which should stabilize the senescence program and reduce the risk of malignant transformation. Furthermore, it can be speculated that reduction of mir-146 a/b will increase NfκB activation via IRAK1. As NfκB is modulating the expression of various inflammation associated genes, this may also lead to increased clearance of senescent tumor cells by the innate immune system. However, it should be mentioned that Il-6 secreted by senescent cells can also act as a mitogen for surrounding cells, thus potentially increasing the risk of malignant transformation [13,17]. Besides its function in SASP modulation, miR-146 was also reported to target the mRNAs of the BRCA1 and BRCA2 tumor suppressors. In a recent study a G to C polymorphism in miR-146, which leads to an increased processing and release of the mature microRNA, can predict an early onset of breast cancer [23]. Taken together, the study of Bhaumik et al. opens an interesting new research area dealing with the gene regulatory mechanisms that control activation of the SASP. Given the diverse roles of the SASP in modulating tumor progression, immune surveillance of damaged cells, and the stabilization of the senescence arrest itself, it will be of great interest to analyse the influence of SASP regulatory pathways during aging and cancer.", "title": "Keeping your senescent cells under control" }, { "docid": "14446279", "text": "In the yeast Saccharomyces cerevisiae that lacks lamins, the nuclear pore complex (NPC) has been proposed to serve a role in chromatin organization. Here, using fluorescence microscopy in living cells, we show that nuclear pore proteins of the Nup84 core complex, Nup84p, Nup145Cp, Nup120p, and Nup133p, serve to anchor telomere XI-L at the nuclear periphery. The integrity of this complex is shown to be required for repression of a URA3 gene inserted in the subtelomeric region of this chromosome end. Furthermore, altering the integrity of this complex decreases the efficiency of repair of a DNA double-strand break (DSB) only when it is generated in the subtelomeric region, even though the repair machinery is functional. These effects are specific to the Nup84 complex. Our observations thus confirm and extend the role played by the NPC, through the Nup84 complex, in the functional organization of chromatin. They also indicate that anchoring of telomeres is essential for efficient repair of DSBs occurring therein and is important for preserving genome integrity.", "title": "Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region" }, { "docid": "10335603", "text": "A cloned 340-bp DNA fragment excised by EcoRI from the Chironomus pallividittatus genome has been localized to the telomeres by in situ hybridization as well as to connectives between telomeres. No hybridization was observed in other regions of the chromosomes. Another cloned EcoRI fragment, 525 bp long has also been studied. This represents a partial duplication of the 340-bp sequence. Genomic blot hybridization experiments show that the 340-bp sequence is a representative monomeric unit of tandemly repeated arrays which account for 1.2% of the Chironomus genome, on average 300 kb per telomere. The repeat unit contains two types of subrepeats each present twice per repeat unit. Northern blot hybridization experiments show that the telomere-associated sequences are transcribed into a discrete RNA species approximately 20 kb in size. The evolution of this telomere-associated DNA is discussed.", "title": "Long tandem arrays of complex repeat units in Chironomus telomeres." }, { "docid": "9687772", "text": "Mutations in the human XPG gene give rise to an inherited photosensitive disorder, xeroderma pigmentosum (XP) associated with Cockayne syndrome (XP-G/CS). The clinical features of CS in XP-G/CS patients are difficult to explain on the basis of a defect in nucleotide excision repair (NER). We found that XPG forms a stable complex with TFIIH, which is active in transcription and NER. Mutations in XPG found in XP-G/CS patient cells that prevent the association with TFIIH also resulted in the dissociation of CAK and XPD from the core TFIIH. As a consequence, the phosphorylation and transactivation of nuclear receptors were disturbed in XP-G/CS as well as xpg(-/-) MEF cells and could be restored by expression of wild-type XPG. These results provide an insight into the role of XPG in the stabilization of TFIIH and the regulation of gene expression and provide an explanation of some of the clinical features of XP-G/CS.", "title": "XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients." } ]
1001
R2D2 stops miRNA production by increasing the selectivity of Dcr2 for long dsRNA.
[ { "docid": "5702790", "text": "Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.", "title": "Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease." } ]
[ { "docid": "23913146", "text": "In Drosophila, three types of endogenous small RNAs-microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and endogenous small-interfering RNAs (endo-siRNAs or esiRNAs)-function as triggers in RNA silencing. Although piRNAs are produced independently of Dicer, miRNA and esiRNA biogenesis pathways require Dicer1 and Dicer2, respectively. Recent studies have shown that among the four isoforms of Loquacious (Loqs), Loqs-PB and Loqs-PD are involved in miRNA and esiRNA processing pathways, respectively. However, how these Loqs isoforms function in their respective small RNA biogenesis pathways remains elusive. Here, we show that Loqs-PD associates specifically with Dicer2 through its C-terminal domain. The Dicer2-Loqs-PD complex contains R2D2, another known Dicer2 partner, and excises both exogenous siRNAs and esiRNAs from their corresponding precursors in vitro. However, Loqs-PD, but not R2D2, enhanced Dicer2 activity. The Dicer2-Loqs-PD complex processes esiRNA precursor hairpins with long stems, which results in the production of AGO2-associated small RNAs. Interestingly, however, small RNAs derived from terminal hairpins of esiRNA precursors are loaded onto AGO1; thus, they are classified as a new subset of miRNAs. These results suggest that the precursor RNA structure determines the biogenesis mechanism of esiRNAs and miRNAs, thereby implicating hairpin structures with long stems as intermediates in the evolution of Drosophila miRNA.", "title": "Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila." }, { "docid": "4418112", "text": "In mammals, enlargement of the heart during embryonic development is primarily dependent on the increase in cardiomyocyte numbers. Shortly after birth, however, cardiomyocytes stop proliferating and further growth of the myocardium occurs through hypertrophic enlargement of the existing myocytes. As a consequence of the minimal renewal of cardiomyocytes during adult life, repair of cardiac damage through myocardial regeneration is very limited. Here we show that the exogenous administration of selected microRNAs (miRNAs) markedly stimulates cardiomyocyte proliferation and promotes cardiac repair. We performed a high-content microscopy, high-throughput functional screening for human miRNAs that promoted neonatal cardiomyocyte proliferation using a whole-genome miRNA library. Forty miRNAs strongly increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. Two of these miRNAs (hsa-miR-590 and hsa-miR-199a) were further selected for testing and were shown to promote cell cycle re-entry of adult cardiomyocytes ex vivo and to promote cardiomyocyte proliferation in both neonatal and adult animals. After myocardial infarction in mice, these miRNAs stimulated marked cardiac regeneration and almost complete recovery of cardiac functional parameters. The miRNAs identified hold great promise for the treatment of cardiac pathologies consequent to cardiomyocyte loss.", "title": "Functional screening identifies miRNAs inducing cardiac regeneration" }, { "docid": "22623275", "text": "Members of the conserved family of eukaryotic RNA-dependent RNA polymerases (Rdrs) synthesize double-stranded RNA (dsRNA) intermediates in diverse pathways of small RNA (sRNA) biogenesis and RNA-mediated silencing. Rdr-dependent pathways of sRNA production are poorly characterized relative to Rdr-independent pathways, and the Rdr enzymes themselves are poorly characterized relative to their viral RNA-dependent RNA polymerase counterparts. We previously described a physical and functional coupling of the Tetrahymena thermophila Rdr, Rdr1, and a Dicer enzyme, Dcr2, in the production of approximately 24-nucleotide (nt) sRNA in vitro. Here we characterize the endogenous complexes that harbor Rdr1, termed RDRCs. Distinct RDRCs assemble to contain Rdr1 and subsets of the total of four tightly Rdr1-associated proteins. Of particular interest are two RDRC subunits, Rdn1 and Rdn2, which possess noncanonical ribonucleotidyl transferase motifs. We show that the two Rdn proteins are uridine-specific polymerases of separate RDRCs. Two additional RDRC subunits, Rdf1 and Rdf2, are present only in RDRCs containing Rdn1. Rdr1 catalytic activity is retained in RDRCs purified from cell extracts lacking any of the nonessential RDRC subunits (Rdn2, Rdf1, Rdf2) or if the RDRC harbors a catalytically inactive Rdn. However, specific disruption of each RDRC imposes distinct loss-of-function consequences at the cellular level and has a differential impact on the accumulation of specific 23-24-nt sRNA sequences in vivo. The biochemical and biological phenotypes of RDRC subunit disruption reveal a previously unanticipated complexity of Rdr-dependent sRNA biogenesis in vivo.", "title": "A single RNA-dependent RNA polymerase assembles with mutually exclusive nucleotidyl transferase subunits to direct different pathways of small RNA biogenesis." }, { "docid": "16058322", "text": "beta-Cell destruction in type 1 diabetes (T1D) is at least in part consequence of a 'dialog' between beta-cells and immune system. This dialog may be affected by the individual's genetic background. We presently evaluated whether modulation of MDA5 and PTPN2, two candidate genes for T1D, affects beta-cell responses to double-stranded RNA (dsRNA), a by-product of viral replication. These genes were selected following comparison between known candidate genes for T1D and genes expressed in pancreatic beta-cells, as identified in previous array analysis. INS-1E cells and primary fluorescence-activated cell sorting-purified rat beta-cells were transfected with small interference RNAs (siRNAs) targeting MDA5 or PTPN2 and subsequently exposed to intracellular synthetic dsRNA (polyinosinic-polycitidilic acid-PIC). Real-time RT-PCR, western blot and viability assays were performed to characterize gene/protein expression and viability. PIC increased MDA5 and PTPN2 mRNA expression, which was inhibited by the specific siRNAs. PIC triggered apoptosis in INS-1E and primary beta-cells and this was augmented by PTPN2 knockdown (KD), although inhibition of MDA5 did not modify PIC-induced apoptosis. In contrast, MDA5 silencing decreased PIC-induced cytokine and chemokine expression, although inhibition of PTPN2 induced minor or no changes in these inflammatory mediators. These findings indicate that changes in MDA5 and PTPN2 expression modify beta-cell responses to dsRNA. MDA5 regulates inflammatory signals, whereas PTPN2 may function as a defence mechanism against pro-apoptotic signals generated by dsRNA. These two candidate genes for T1D may thus modulate beta-cell apoptosis and/or local release of inflammatory mediators in the course of a viral infection by acting, at least in part, at the pancreatic beta-cell level.", "title": "MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic β-cell responses to the viral by-product double-stranded RNA" }, { "docid": "6404801", "text": "Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger RNAs through both translational inhibition and regulation of target RNA stability. Recently, a number of viruses, particularly of the herpesvirus family, have been shown to express their own miRNAs to control both viral and cellular transcripts. Although some targets of viral miRNAs are known, their function in a physiologically relevant infection remains to be elucidated. As such, no in vivo phenotype of a viral miRNA knock-out mutant has been described so far. Here, we report on the first functional phenotype of a miRNA knock-out virus in vivo. During subacute infection of a mutant mouse cytomegalovirus lacking two viral miRNAs, virus production is selectively reduced in salivary glands, an organ essential for virus persistence and horizontal transmission. This phenotype depends on several parameters including viral load and mouse genetic background, and is abolished by combined but not single depletion of natural killer (NK) and CD4+ T cells. Together, our results point towards a miRNA-based immunoevasion mechanism important for long-term virus persistence.", "title": "Cytomegalovirus microRNAs Facilitate Persistent Virus Infection in Salivary Glands" }, { "docid": "29107180", "text": "The structure of the human gene encoding the double-stranded RNA (dsRNA) adenosine deaminase (DRADA) was characterized. This nuclear localized enzyme is involved in the RNA editing required for the expression of certain subtypes of glutamate-gated ion channel subunits. The DRADA gene span 30 kb pairs and harbors 15 exons. The transcription of the DRADA gene driven by the putative promoter region, which contains no typical TATA or CCAAT box-like sequences, is initiated at multiple sites, 164 to 216 nucleotides upstream of the translation initiation codon. The three dsRNA binding motifs (DRBM), 70 amino acid residues long, are each encoded by two exons plus an intervening sequence that interrupts the motif at the identical amino acid position. This finding is consistent with the notion that the dsRNA binding domains may be composed of two separate functional subdomains. Fluorescent in situ hybridization localized the DRADA gene on the long arm chromosome 1, region q21. The gene structure and sequence information reported in this study will facilitate the investigation of involvement of DRADA in hereditary diseases that may be the result of malfunction of glutamate-gated ion channels.", "title": "Genomic organization and chromosomal location of the human dsRNA adenosine deaminase gene: the enzyme for glutamate-activated ion channel RNA editing." }, { "docid": "86602746", "text": "Key PointsMicroRNAs (miRNAs) are a family of ∼21–25-nucleotide small RNAs that negatively regulate gene expression at the post-transcriptional level. The founding members of the miRNA family, lin-4 and let-7, were identified through genetic screens for defects in the temporal regulation of Caenorhabditis elegans larval development. Owing to genome-wide cloning efforts, hundreds of miRNAs have now been identified in almost all metazoans, including flies, plants and mammals. MiRNAs exhibit temporally and spatially regulated expression patterns during diverse developmental and physiological processes. Most of the miRNAs that have been characterized so far seem to regulate aspects of development, including larval developmental transitions and neuronal development in C. elegans, growth control and apoptosis in Drosophila melanogaster, haematopoietic differentiation in mammals, and leaf development, flower development and embryogenesis in Arabidopsis thaliana. The majority of the animal miRNAs that have been characterized so far affect protein synthesis from their target mRNAs. On the other hand, most of the plant miRNAs studied so far direct the cleavage of their targets. The degree of complementarity between a miRNA and its target, at least in part, determines the regulatory mechanism. In animals, primary transcripts of miRNAs are processed sequentially by two RNase-III enzymes, Drosha and Dicer, into a small, imperfect dsRNA duplex (miRNA:miRNA*) that contains both the mature miRNA strand and its complementary strand (miRNA*). Relative instability at the 5′ end of the mature miRNA leads to the asymmetric assembly of the mature miRNA into the effector complex, the RNA-induced silencing complex (RISC).Ago proteins are a key component of the RISC. Multiple Ago homologues in various metazoan genomes indicate the existence of multiple RISCs that carry out related but specific biological functions. Bioinformatic prediction of miRNA targets has provided an important tool to explore the functions of miRNAs. However, the overall success rate of such predictions remains to be determined by experimental validation. AbstractMicroRNAs are a family of small, non-coding RNAs that regulate gene expression in a sequence-specific manner. The two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events. Since then, hundreds of microRNAs have been identified in almost all metazoan genomes, including worms, flies, plants and mammals. MicroRNAs have diverse expression patterns and might regulate various developmental and physiological processes. Their discovery adds a new dimension to our understanding of complex gene regulatory networks.", "title": "MicroRNAs: small RNAs with a big role in gene regulation" }, { "docid": "15590539", "text": "Control of translation is a fundamental source of regulation in gene expression. The induction of protein synthesis by brain-derived neurotrophic factor (BDNF) critically contributes to enduring modifications of synaptic function, but how BDNF selectively affects only a minority of expressed mRNAs is poorly understood. We report that BDNF rapidly elevates Dicer, increasing mature miRNA levels and inducing RNA processing bodies in neurons. BDNF also rapidly induces Lin28, causing selective loss of Lin28-regulated miRNAs and a corresponding upregulation in translation of their target mRNAs. Binding sites for Lin28-regulated miRNAs are necessary and sufficient to confer BDNF responsiveness to a transcript. Lin28 deficiency, or expression of a Lin28-resistant Let-7 precursor miRNA, inhibits BDNF translation specificity and BDNF-dependent dendrite arborization. Our data establish that specificity in BDNF-regulated translation depends upon a two-part posttranscriptional control of miRNA biogenesis that generally enhances mRNA repression in association with GW182 while selectively derepressing and increasing translation of specific mRNAs.", "title": "Dual Regulation of miRNA Biogenesis Generates Target Specificity in Neurotrophin-Induced Protein Synthesis" }, { "docid": "116075383", "text": "Exogenous double-stranded RNA (dsRNA) has been shown to exert homology-dependent effects at the level of both target mRNA stability and chromatin structure. Using C. elegans undergoing RNAi as an animal model, we have investigated the generality, scope and longevity of dsRNA-targeted chromatin effects and their dependence on components of the RNAi machinery. Using high-resolution genome-wide chromatin profiling, we found that a diverse set of genes can be induced to acquire locus-specific enrichment of histone H3 lysine 9 trimethylation (H3K9me3), with modification footprints extending several kilobases from the site of dsRNA homology and with locus specificity sufficient to distinguish the targeted locus from the other 20,000 genes in the C. elegans genome. Genetic analysis of the response indicated that factors responsible for secondary siRNA production during RNAi were required for effective targeting of chromatin. Temporal analysis revealed that H3K9me3, once triggered by dsRNA, can be maintained in the absence of dsRNA for at least two generations before being lost. These results implicate dsRNA-triggered chromatin modification in C. elegans as a programmable and locus-specific response defining a metastable state that can persist through generational boundaries.", "title": "Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint" }, { "docid": "14474178", "text": "The objective of the present study was to determine if chicken melanoma-differentiation-associated gene 5 (MDA5) senses infectious bursal disease virus infection to induce innate immunity that bridges to adaptive immunity. During IBDV infection in HD11 cells, IBDV titers and RNA loads increased up to 3.4 × 107 plaque-forming units (PFU)/mL and 1114 ng/µL, respectively, at 24 hours postinfection (hpi). IBDV infection in HD11 cells induced significantly upregulated (p < 0.05) expression levels of chicken MDA5 (59-fold), interferon-β (IFN-β) (693-fold), dsRNA-dependent protein kinase (PKR) (4-fold), 2’, 5’-oligoadenylate synthetase (OAS) (286-fold), myxovirus resistance gene (Mx) (22-fold), interleukin-1β (IL-1β) (5-fold), IL-6 (146-fold), IL-8 (4-fold), IL-10 (4-fold), inducible nitric oxide synthase (iNOS) (15-fold), and major histocompatibility complex class I (MHC class I) (4-fold). Nitric oxide production in the culture supernatants increased significantly (p < 0.05) up to 6.5 μM at 24 hpi. The expressed chMDA5 and IBDV-derived dsRNA were localized in the cytoplasm of HD11 cells during IBDV infection. ChMDA5-knockdown HD11 cells had significantly higher (p < 0.05) IBDV RNA loads at 24 hpi and significantly lower (p < 0.05) nitric oxide production and expression levels of chicken MDA5, IFN-β, PKR, OAS, Mx, IL-1β, IL-6, IL-8, IL-12(p40), IL-18, IL-10, iNOS, MHC class I and CD86 at 24 hpi. In addition, chMDA5 overexpression in HD11 cells resulted in significantly reduced (p < 0.05) IBDV titers and RNA loads and significantly increased (p < 0.05) nitric oxide production at 16 and 24 hpi. It also resulted in significantly higher (p < 0.05) expression levels of chicken MDA5, IFN-β, PKR, OAS, Mx, IL-1β, IL-6, IL-8, IL-12(p40), IL-10 and iNOS at 2 hpi. In conclusion, the results indicate that chMDA5 senses IBDV infection in chicken macrophages, and this is associated with IBDV-induced expression of IFN-β and initiation of an innate immune response that in turn activates the adaptive immune response and limits IBDV replication.", "title": "Role of chicken melanoma differentiation-associated gene 5 in induction and activation of innate and adaptive immune responses to infectious bursal disease virus in cultured macrophages" }, { "docid": "1006165", "text": "RNA interference (RNAi) is a gene-silencing mechanism by which a ribonucleoprotein complex, the RNA-induced silencing complex (RISC) and a double-stranded (ds) short-interfering RNA (siRNA), targets a complementary mRNA for site-specific cleavage and subsequent degradation. While longer dsRNA are endogenously processed into 21- to 24-nucleotide (nt) siRNAs or miRNAs to induce gene silencing, RNAi studies in human cells typically use synthetic 19- to 20-nt siRNA duplexes with 2-nt overhangs at the 3'-end of both strands. Here, we report that systematic synthesis and analysis of siRNAs with deletions at the passenger and/or guide strand revealed a short RNAi trigger, 16-nt siRNA, which induces potent RNAi in human cells. Our results indicate that the minimal requirement for dsRNA to trigger RNAi is an approximately 42 A A-form helix with approximately 1.5 helical turns. The 16-nt siRNA more effectively knocked down mRNA and protein levels than 19-nt siRNA when targeting the endogenous CDK9 gene, suggesting that 16-nt siRNA is a more potent RNAi trigger. In vitro kinetic analysis of RNA-induced silencing complex (RISC) programmed in HeLa cells indicates that 16-nt siRNA has a higher RISC-loading capacity than 19-nt siRNA. These results suggest that RISC assembly and activation during RNAi does not necessarily require a 19-nt duplex siRNA and that 16-nt duplexes can be designed as more potent triggers to induce RNAi.", "title": "Potent RNAi by short RNA triggers." }, { "docid": "5484763", "text": "Chronic granulomatous disease (CGD), an immunodeficiency with recurrent pyogenic infections and granulomatous inflammation, results from loss of phagocyte superoxide production by recessive mutations in any 1 of 4 genes encoding subunits of the phagocyte NADPH oxidase. These include gp91(phox) and p22(phox), which form the membrane-integrated flavocytochrome b, and cytosolic subunits p47(phox) and p67(phox). A fifth subunit, p40(phox), plays an important role in phagocytosis-induced superoxide production via a phox homology (PX) domain that binds to phosphatidylinositol 3-phosphate (PtdIns(3)P). We report the first case of autosomal recessive mutations in NCF4, the gene encoding p40(phox), in a boy who presented with granulomatous colitis. His neutrophils showed a substantial defect in intracellular superoxide production during phagocytosis, whereas extracellular release of superoxide elicited by phorbol ester or formyl-methionyl-leucyl-phenylalanine (fMLF) was unaffected. Genetic analysis of NCF4 showed compound heterozygosity for a frameshift mutation with premature stop codon and a missense mutation predicting a R105Q substitution in the PX domain. Parents and a sibling were healthy heterozygous carriers. p40(phox)R105Q lacked binding to PtdIns(3)P and failed to reconstitute phagocytosis-induced oxidase activity in p40(phox)-deficient granulocytes, with premature loss of p40(phox)R105Q from phagosomes. Thus, p40(phox) binding to PtdIns(3)P is essential for phagocytosis-induced oxidant production in human neutrophils and its absence can be associated with disease.", "title": "A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity." }, { "docid": "12438901", "text": "BACKGROUND For women with oestrogen receptor (ER)-positive early breast cancer, treatment with tamoxifen for 5 years substantially reduces the breast cancer mortality rate throughout the first 15 years after diagnosis. We aimed to assess the further effects of continuing tamoxifen to 10 years instead of stopping at 5 years. \n METHODS In the worldwide Adjuvant Tamoxifen: Longer Against Shorter (ATLAS) trial, 12,894 women with early breast cancer who had completed 5 years of treatment with tamoxifen were randomly allocated to continue tamoxifen to 10 years or stop at 5 years (open control). Allocation (1:1) was by central computer, using minimisation. After entry (between 1996 and 2005), yearly follow-up forms recorded any recurrence, second cancer, hospital admission, or death. We report effects on breast cancer outcomes among the 6846 women with ER-positive disease, and side-effects among all women (with positive, negative, or unknown ER status). Long-term follow-up still continues. This study is registered, number ISRCTN19652633. \n FINDINGS Among women with ER-positive disease, allocation to continue tamoxifen reduced the risk of breast cancer recurrence (617 recurrences in 3428 women allocated to continue vs 711 in 3418 controls, p=0·002), reduced breast cancer mortality (331 deaths vs 397 deaths, p=0·01), and reduced overall mortality (639 deaths vs 722 deaths, p=0·01). The reductions in adverse breast cancer outcomes appeared to be less extreme before than after year 10 (recurrence rate ratio [RR] 0·90 [95% CI 0·79–1·02] during years 5–9 and 0·75 [0·62–0·90] in later years; breast cancer mortality RR 0·97 [0·79–1·18] during years 5–9 and 0·71 [0·58–0·88] in later years). The cumulative risk of recurrence during years 5–14 was 21·4% for women allocated to continue versus 25·1% for controls; breast cancer mortality during years 5–14 was 12·2% for women allocated to continue versus 15·0% for controls (absolute mortality reduction 2·8%). Treatment allocation seemed to have no effect on breast cancer outcome among 1248 women with ER-negative disease, and an intermediate effect among 4800 women with unknown ER status. Among all 12,894 women, mortality without recurrence from causes other than breast cancer was little affected (691 deaths without recurrence in 6454 women allocated to continue versus 679 deaths in 6440 controls; RR 0·99 [0·89–1·10]; p=0·84). For the incidence (hospitalisation or death) rates of specific diseases, RRs were as follows: pulmonary embolus 1·87 (95% CI 1·13–3·07, p=0·01 [including 0·2% mortality in both treatment groups]), stroke 1·06 (0·83–1·36), ischaemic heart disease 0·76 (0·60–0·95, p=0·02), and endometrial cancer 1·74 (1·30–2·34, p=0·0002). The cumulative risk of endometrial cancer during years 5–14 was 3·1% (mortality 0·4%) for women allocated to continue versus 1·6% (mortality 0·2%) for controls (absolute mortality increase 0·2%). \n INTERPRETATION For women with ER-positive disease, continuing tamoxifen to 10 years rather than stopping at 5 years produces a further reduction in recurrence and mortality, particularly after year 10. These results, taken together with results from previous trials of 5 years of tamoxifen treatment versus none, suggest that 10 years of tamoxifen treatment can approximately halve breast cancer mortality during the second decade after diagnosis. \n FUNDING Cancer Research UK, UK Medical Research Council, AstraZeneca UK, US Army, EU-Biomed.", "title": "Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial" }, { "docid": "152245", "text": "The genomic RNA of an alphavirus encodes four different nonstructural proteins, nsP1, nsP2, nsP3, and nsP4. The polyprotein P123 is produced when translation terminates at an opal termination codon between nsP3 and nsP4. The polyprotein P1234 is produced when translational readthrough occurs or when the opal termination codon has been replaced by a sense codon in the alphavirus genome. Evolutionary pressures appear to have maintained genomic sequences encoding both a stop codon (opal) and an open reading frame (arginine) as a general feature of the O'nyong-nyong virus (ONNV) genome, indicating that both are required at some point. Alternate replication of ONNVs in both vertebrate and invertebrate hosts may determine predominance of a particular codon at this locus in the viral quasispecies. However, no systematic study has previously tested this hypothesis in whole animals. We report here the results of the first study to investigate in a natural mosquito host the functional significance of the opal stop codon in an alphavirus genome. We used a full-length cDNA clone of ONNV to construct a series of mutants in which the arginine between nsP3 and nsP4 was replaced with an opal, ochre, or amber stop codon. The presence of an opal stop codon upstream of nsP4 nearly doubled (75.5%) the infectivity of ONNV over that of virus possessing a codon for the amino acid arginine at the corresponding position (39.8%). Although the frequency with which the opal virus disseminated from the mosquito midgut did not differ significantly from that of the arginine virus on days 8 and 10, dissemination did began earlier in mosquitoes infected with the opal virus. Although a clear fitness advantage is provided to ONNV by the presence of an opal codon between nsP3 and nsP4 in Anopheles gambiae, sequence analysis of ONNV RNA extracted from mosquito bodies and heads indicated codon usage at this position corresponded with that of the virus administered in the blood meal. These results suggest that while selection of ONNV variants is occurring, de novo mutation at the position between nsP3 and nsP4 does not readily occur in the mosquito. Taken together, these results suggest that the primary fitness advantage provided to ONNV by the presence of an opal codon between nsP3 and nsP4 is related to mosquito infectivity.", "title": "Effects of an opal termination codon preceding the nsP4 gene sequence in the O'Nyong-Nyong virus genome on Anopheles gambiae infectivity." }, { "docid": "18654430", "text": "BACKGROUND MicroRNAs (miRNAs) are produced by the sequential processing of a long hairpin RNA transcript by Drosha and Dicer, an RNase III enzymes, and form transitory small RNA duplexes. One strand of the duplex, which incorporates into RNA-induced silencing complex (RISC) and silences the gene expression is called guide strand, or miRNA; while the other strand of duplex is degraded and called the passenger strand, or miRNA*. Predicting the guide strand of miRNA is important for better understanding the RNA interference pathways. \n RESULTS This paper describes support vector machine (SVM) models developed for predicting the guide strands of miRNAs. All models were trained and tested on a dataset consisting of 329 miRNA and 329 miRNA* pairs using five fold cross validation technique. Firstly, models were developed using mono-, di-, and tri-nucleotide composition of miRNA strands and achieved the highest accuracies of 0.588, 0.638 and 0.596 respectively. Secondly, models were developed using split nucleotide composition and achieved maximum accuracies of 0.553, 0.641 and 0.602 for mono-, di-, and tri-nucleotide respectively. Thirdly, models were developed using binary pattern and achieved the highest accuracy of 0.708. Furthermore, when integrating the secondary structure features with binary pattern, an accuracy of 0.719 was seen. Finally, hybrid models were developed by combining various features and achieved maximum accuracy of 0.799 with sensitivity 0.781 and specificity 0.818. Moreover, the performance of this model was tested on an independent dataset that achieved an accuracy of 0.80. In addition, we also compared the performance of our method with various siRNA-designing methods on miRNA and siRNA datasets. \n CONCLUSION In this study, first time a method has been developed to predict guide miRNA strands, of miRNA duplex. This study demonstrates that guide and passenger strand of miRNA precursors can be distinguished using their nucleotide sequence and secondary structure. This method will be useful in understanding microRNA processing and can be implemented in RNA silencing technology to improve the biological and clinical research. A web server has been developed based on SVM models described in this study (http://crdd.osdd.net:8081/RISCbinder/).", "title": "Prediction of guide strand of microRNAs from its sequence and secondary structure" }, { "docid": "4343811", "text": "A genetic interference phenomenon in the nematode Caenorhabditis elegans has been described in which expression of an individual gene can be specifically reduced by microinjecting a corresponding fragment of double-stranded (ds) RNA. One striking feature of this process is a spreading effect: interference in a broad region of the animal is observed following the injection of dsRNA into the extracellular body cavity. Here we show that C. elegans can respond in a gene-specific manner to dsRNA encountered in the environment. C. elegans normally feed on bacteria, ingesting and grinding them in the pharynx and subsequently absorbing bacterial contents in the gut. We find that Escherichia coli bacteria expressing dsRNAs can confer specific interference effects on the nematode larvae that feed on them.", "title": "Specific interference by ingested dsRNA." }, { "docid": "2460304", "text": "Erythrocytes carrying a variant hemoglobin allele (HbS), which causes sickle cell disease and resists infection by the malaria parasite Plasmodium falciparum. The molecular basis of this resistance, which has long been recognized as multifactorial, remains incompletely understood. Here we show that the dysregulated microRNA (miRNA) composition, of either heterozygous HbAS or homozygous HbSS erythrocytes, contributes to resistance against P. falciparum. During the intraerythrocytic life cycle of P. falciparum, a subset of erythrocyte miRNAs translocate into the parasite. Two miRNAs, miR-451 and let-7i, were highly enriched in HbAS and HbSS erythrocytes, and these miRNAs, along with miR-223, negatively regulated parasite growth. Surprisingly, we found that miR-451 and let-7i integrated into essential parasite messenger RNAs and, via impaired ribosomal loading, resulted in translational inhibition. Hence, sickle cell erythrocytes exhibit cell-intrinsic resistance to malaria in part through an atypical miRNA activity, which may represent a unique host defense strategy against complex eukaryotic pathogens.", "title": "Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance." }, { "docid": "2000038", "text": "MicroRNAs (miRNAs) are short, highly conserved noncoding RNA molecules that repress gene expression in a sequence-dependent manner. We performed single-cell measurements using quantitative fluorescence microscopy and flow cytometry to monitor a target gene's protein expression in the presence and absence of regulation by miRNA. We find that although the average level of repression is modest, in agreement with previous population-based measurements, the repression among individual cells varies dramatically. In particular, we show that regulation by miRNAs establishes a threshold level of target mRNA below which protein production is highly repressed. Near this threshold, protein expression responds sensitively to target mRNA input, consistent with a mathematical model of molecular titration. These results show that miRNAs can act both as a switch and as a fine-tuner of gene expression.", "title": "MicroRNAs can generate thresholds in target gene expression" }, { "docid": "9539753", "text": "RNA interference (RNAi) is heritable in Caenorhabditis elegans; the progeny of C. elegans exposed to dsRNA inherit the ability to silence genes that were targeted by RNAi in the previous generation. Here we investigate the mechanism of RNAi inheritance in C. elegans. We show that exposure of animals to dsRNA results in the heritable expression of siRNAs and the heritable deposition of histone 3 lysine 9 methylation (H3K9me) marks in progeny. siRNAs are detectable before the appearance of H3K9me marks, suggesting that chromatin marks are not directly inherited but, rather, reestablished in inheriting progeny. Interestingly, H3K9me marks appear more prominently in inheriting progeny than in animals directly exposed to dsRNA, suggesting that germ-line transmission of silencing signals may enhance the efficiency of siRNA-directed H3K9me. Finally, we show that the nuclear RNAi (Nrde) pathway maintains heritable RNAi silencing in C. elegans. The Argonaute (Ago) NRDE-3 associates with heritable siRNAs and, acting in conjunction with the nuclear RNAi factors NRDE-1, NRDE-2, and NRDE-4, promotes siRNA expression in inheriting progeny. These results demonstrate that siRNA expression is heritable in C. elegans and define an RNAi pathway that promotes the maintenance of RNAi silencing and siRNA expression in the progeny of animals exposed to dsRNA.", "title": "Nuclear RNAi maintains heritable gene silencing in Caenorhabditis elegans." } ]
1002
RA activation of DIF2 and NB4 cells induces hallmarks of transcriptionally active promoters.
[ { "docid": "13639330", "text": "Nuclear receptors undergo ligand-dependent conformational changes that are required for corepressor-coactivator exchange, but whether there is an actual requirement for specific epigenetic landmarks to impose ligand dependency for gene activation remains unknown. Here we report an unexpected and general strategy that is based on the requirement for specific cohorts of inhibitory histone methyltransferases (HMTs) to impose gene-specific gatekeeper functions that prevent unliganded nuclear receptors and other classes of regulated transcription factors from binding to their target gene promoters and causing constitutive gene activation in the absence of stimulating signals. This strategy, based at least in part on an HMT-dependent inhibitory histone code, imposes a requirement for specific histone demethylases, including LSD1, to permit ligand- and signal-dependent activation of regulated gene expression. These events link an inhibitory methylation component of the histone code to a broadly used strategy that circumvents pathological constitutive gene induction by physiologically regulated transcription factors.", "title": "Histone Methylation-Dependent Mechanisms Impose Ligand Dependency for Gene Activation by Nuclear Receptors" } ]
[ { "docid": "24624992", "text": "In a cell-type- and stimulus-dependent fashion, the early response gene immediate early gene X-1 (IEX-1) is involved in growth control and modulation of apoptosis. The present study demonstrates that, in the two acute promyelocytic leukemia (APL) cell lines NB4 and KG1, exhibiting distinct responsiveness to retinoic acids (RAs), IEX-1 expression is rapidly (30–60 min) induced by all-trans- or cis-RA and independently of other signal transduction mediators, such as TNFα, NF-κB or MAP kinases. In NB4 cells (expressing PML–RARα), this increase is transient and completely reversible, along with a cell cycle arrest, ongoing differentiation and lower sensitivity to anti-cancer-drug-induced apoptosis. In contrast, the RA-induced IEX-1 expression in KG1 cells (expressing PLZF–RARα) persists over days, along with continued cell cycle progression and increased apoptotic sensitivity. Furthermore, two functional RA-response elements in the IEX-1 promoter were identified by gel shift and luciferase reporter gene assays. IEX-1 might be a rather unique transcriptional target of the two X–RARα fusion receptors exhibiting distinct responsiveness to RAs. Following a different time course of direct transcriptional induction by PML–RARα and PLZF–RARα in NB4 and KG1 cells, respectively, IEX-1 expression may be involved in the modified actions of these receptors and the distinct phenotypes of APL cells.", "title": "The expression of immediate early gene X-1 (IEX-1) is differentially induced by retinoic acids in NB4 and KG1 cells: possible implication in the distinct phenotype of retinoic acid-responsive and -resistant leukemic cells" }, { "docid": "4323449", "text": "More than forty per cent of the mammalian genome is derived from retroelements, of which about one-quarter are endogenous retroviruses (ERVs). Some are still active, notably in mice the highly polymorphic early transposon (ETn)/MusD and intracisternal A-type particles (IAP). ERVs are transcriptionally silenced during early embryogenesis by histone and DNA methylation (and reviewed in ref. 7), although the initiators of this process, which is essential to protect genome integrity, remain largely unknown. KAP1 (KRAB-associated protein 1, also known as tripartite motif-containing protein 28, TRIM28) represses genes by recruiting the histone methyltransferase SETDB1, heterochromatin protein 1 (HP1) and the NuRD histone deacetylase complex, but few of its physiological targets are known. Two lines of evidence suggest that KAP1-mediated repression could contribute to the control of ERVs: first, KAP1 can trigger permanent gene silencing during early embryogenesis, and second, a KAP1 complex silences the retrovirus murine leukaemia virus in embryonic cells. Consistent with this hypothesis, here we show that KAP1 deletion leads to a marked upregulation of a range of ERVs, in particular IAP elements, in mouse embryonic stem (ES) cells and in early embryos. We further demonstrate that KAP1 acts synergistically with DNA methylation to silence IAP elements, and that it is enriched at the 5′ untranslated region (5′UTR) of IAP genomes, where KAP1 deletion leads to the loss of histone 3 lysine 9 trimethylation (H3K9me3), a hallmark of KAP1-mediated repression. Correspondingly, IAP 5′UTR sequences can impose in cis KAP1-dependent repression on a heterologous promoter in ES cells. Our results establish that KAP1 controls endogenous retroelements during early embryonic development.", "title": "KAP1 controls endogenous retroviruses in embryonic stem cells" }, { "docid": "8453819", "text": "The integrin family of heterodimeric cell-surface receptors are fundamental in cell-cell and cell-matrix adhesion. Changes to either integrin-ligand affinity or integrin gene expression are central to a variety of disease processes, including inflammation, cardiovascular disease and cancer. In screening for novel activators of integrin-ligand affinity we identified the previously uncharacterised multi-transmembrane domain protein Fam38A, located at the endoplasmic reticulum (ER). siRNA knockdown of Fam38A in epithelial cells inactivates endogenous beta1 integrin, reducing cell adhesion. Fam38A mediates integrin activation by recruiting the small GTPase R-Ras to the ER, which activates the calcium-activated protease calpain by increasing Ca(2+) release from cytoplasmic stores. Fam38A-induced integrin activation is blocked by inhibition of either R-Ras or calpain activity, or by siRNA knockdown of talin, a well-described calpain substrate. This highlights a novel mechanism for integrin activation by Fam38A, utilising calpain and R-Ras signalling from the ER. These data represent the first description of a novel spatial regulator of R-Ras, of an alternative integrin activation-suppression pathway based on direct relocalisation of R-Ras to the ER, and of a mechanism linking R-Ras and calpain signalling from the ER with modulation of integrin-ligand affinity.", "title": "Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic reticulum." }, { "docid": "26887439", "text": "To identify cancer-specific targets, we have conducted a synthetic lethal screen using a small interfering RNA (siRNA) library targeting approximately 4,000 individual genes for enhanced killing in the DLD-1 colon carcinoma cell line that expresses an activated copy of the K-Ras oncogene. We found that siRNAs targeting baculoviral inhibitor of apoptosis repeat-containing 5 (survivin) significantly reduced the survival of activated K-Ras-transformed cells compared with its normal isogenic counterpart in which the mutant K-Ras gene had been disrupted (DKS-8). In addition, survivin siRNA induced a transient G(2)-M arrest and marked polyploidy that was associated with increased caspase-3 activation in the activated K-Ras cells. These results indicate that tumors expressing the activated K-Ras oncogene may be particularly sensitive to inhibitors of the survivin protein.", "title": "Survivin depletion preferentially reduces the survival of activated K-Ras-transformed cells." }, { "docid": "7821634", "text": "Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ∼30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy.", "title": "Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance" }, { "docid": "9021186", "text": "The persistence of transcriptionally silent but replication-competent HIV-1 reservoirs in Highly Active Anti-Retroviral Therapy (HAART)-treated infected individuals, represents a major hurdle to virus eradication. Activation of HIV-1 gene expression in these cells together with an efficient HAART has been proposed as an adjuvant therapy aimed at decreasing the pool of latent viral reservoirs. Using the latently-infected U1 monocytic cell line and latently-infected J-Lat T-cell clones, we here demonstrated a strong synergistic activation of HIV-1 production by clinically used histone deacetylase inhibitors (HDACIs) combined with prostratin, a non-tumor-promoting nuclear factor (NF)- kappaB inducer. In J-Lat cells, we showed that this synergism was due, at least partially, to the synergistic recruitment of unresponsive cells into the expressing cell population. A combination of prostratin+HDACI synergistically activated the 5' Long Terminal Repeat (5'LTR) from HIV-1 Major group subtypes representing the most prevalent viral genetic forms, as shown by transient transfection reporter assays. Mechanistically, HDACIs increased prostratin-induced DNA-binding activity of nuclear NF-kappaB and degradation of cytoplasmic NF-kappaB inhibitor, IkappaBalpha . Moreover, the combined treatment prostratin+HDACI caused a more pronounced nucleosomal remodeling in the U1 viral promoter region than the treatments with the compounds alone. This more pronounced remodeling correlated with a synergistic reactivation of HIV-1 transcription following the combined treatment prostratin+HDACI, as demonstrated by measuring recruitment of RNA polymerase II to the 5'LTR and both initiated and elongated transcripts. The physiological relevance of the prostratin+HDACI synergism was shown in CD8(+)-depleted peripheral blood mononuclear cells from HAART-treated patients with undetectable viral load. Moreover, this combined treatment reactivated viral replication in resting CD4(+) T cells isolated from similar patients. Our results suggest that combinations of different kinds of proviral activators may have important implications for reducing the size of latent HIV-1 reservoirs in HAART-treated patients.", "title": "Synergistic Activation of HIV-1 Expression by Deacetylase Inhibitors and Prostratin: Implications for Treatment of Latent Infection" }, { "docid": "12650610", "text": "We have previously shown that the integrin beta6 is neo-expressed in invasive oral squamous cell carcinoma (SCC) and is correlated with oral tumor progression. However, the mechanism by which the integrin beta6 promotes oral tumor progression is not well understood. The purpose of the present study was to determine whether integrin beta6 signaling activates Fyn and thus promotes oral squamous cell carcinoma progression. We analyzed the integrin beta6 signaling complex and investigated the function of these signaling molecules in oral SCC cells. We found that, upon ligation of the integrin beta6 with fibronectin, beta6 complexed with Fyn and activated it. The activation of Fyn recruited and activated focal adhesion kinase to this complex. This complex was necessary to activate Shc and to couple beta6 signaling to the Raf-ERK/MAPK pathway. This pathway transcriptionally activated the matrix metalloproteinase-3 gene and promoted oral SCC cell proliferation and experimental metastasis in vivo. These findings indicate that integrin beta6 signaling activates Fyn and thus promotes oral cancer progression.", "title": "Alphavbeta6-Fyn signaling promotes oral cancer progression." }, { "docid": "9225850", "text": "Neutrophils are peripheral blood leukocytes that represent the first line of immune cell defense against bacterial and fungal infections but are also crucial players in the generation of the inflammatory response. Many neutrophil cell surface receptors regulate important cellular processes via activation of agonist-activated PI3Ks. We show here that activation of human neutrophils with insoluble immune complexes drives a previously uncharacterized, PI3K-dependent, non-canonical, pro-apoptotic signaling pathway, FcγR-PI3Kβ/δ-Cdc42-Pak-Mek-Erk. This is a rare demonstration of Ras/Raf-independent activation of Erk and of PI3K-mediated activation of Cdc42. In addition, comparative analysis of immune-complex- and fMLF-induced signaling uncovers key differences in pathways used by human and murine neutrophils. The non-canonical pathway we identify in this study may be important for the resolution of inflammation in chronic inflammatory diseases that rely on immune-complex-driven neutrophil activation.", "title": "Non-canonical PI3K-Cdc42-Pak-Mek-Erk Signaling Promotes Immune-Complex-Induced Apoptosis in Human Neutrophils" }, { "docid": "57783564", "text": "Caudal-related homeobox transcription factor 2 (CDX2), an intestine-specific nuclear transcription factor, has been strongly implicated in the tumourigenesis of various human cancers. However, the functional role of CDX2 in the development and progression of colorectal cancer (CRC) is not well known. In this study, CDX2 knockdown in colon cancer cells promoted cell proliferation in vitro, accelerated tumor formation in vivo, and induced a cell cycle transition from G0/G1 to S phase, whereas CDX2 overexpression inhibited cell proliferation. TOP/FOP-Flash reporter assay showed that CDX2 knockdown or CDX2 overexpression significantly increased or decreased Wnt signaling activity. Western blot assay showed that downstream targets of Wnt signaling, including β-catenin, cyclin D1 and c-myc, were up-regulated or down-regulated in CDX2-knockdown or CDX2-overexpressing colon cancer cells. In addition, suppression of Wnt signaling by XAV-939 led to a marked suppression of the cell proliferation enhanced by CDX2 knockdown, whereas activation of this signaling by CHIR-99021 significantly enhanced the cell proliferation inhibited by CDX2 overexpression. Dual-luciferase reporter and quantitative chromatin immunoprecipitation (qChIP) assays further confirmed that CDX2 transcriptionally activates glycogen synthase kinase-3β (GSK-3β) and axis inhibition protein 2 (Axin2) expression by directly binding to the promoter of GSK-3β and the upstream enhancer of Axin2. In conclusion, these results indicated that CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling.", "title": "CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling via transactivation of GSK-3β and Axin2 expression" }, { "docid": "8460275", "text": "Despite being surrounded by diverse nutrients, mammalian cells preferentially metabolize glucose and free amino acids. Recently, Ras-induced macropinocytosis of extracellular proteins was shown to reduce a transformed cell's dependence on extracellular glutamine. Here, we demonstrate that protein macropinocytosis can also serve as an essential amino acid source. Lysosomal degradation of extracellular proteins can sustain cell survival and induce activation of mTORC1 but fails to elicit significant cell accumulation. Unlike its growth-promoting activity under amino-acid-replete conditions, we discovered that mTORC1 activation suppresses proliferation when cells rely on extracellular proteins as an amino acid source. Inhibiting mTORC1 results in increased catabolism of endocytosed proteins and enhances cell proliferation during nutrient-depleted conditions in vitro and within vascularly compromised tumors in vivo. Thus, by preventing nutritional consumption of extracellular proteins, mTORC1 couples growth to availability of free amino acids. These results may have important implications for the use of mTOR inhibitors as therapeutics.", "title": "The Utilization of Extracellular Proteins as Nutrients Is Suppressed by mTORC1" }, { "docid": "28651643", "text": "Activating mutations within the K-ras gene occur in a high percentage of human pancreatic carcinomas. We reported previously that the presence of oncogenic, activated K-ras in human pancreatic carcinoma cell lines did not result in constitutive activation of the extracellular signal-regulated kinases (ERK1 and ERK2). In the present study, we further characterized the ERK signaling pathway in pancreatic tumor cell lines in order to determine whether the ERK pathway is subject to a compensatory downregulation. We found that the attenuation of serum-induced ERK activation was not due to a delay in the kinetics of ERK phosphorylation. Treatment with the tyrosine phosphatase inhibitor orthovanadate increased the level of ERK phosphorylation, implicating a vanadate-sensitive tyrosine phosphatase in the negative regulation of ERK. Furthermore, expression of a dual specificity phosphatase capable of inactivating ERK known as mitogen-activated protein (MAP) kinase phosphatase-2 (MKP-2) was elevated in most of the pancreatic tumor cell lines and correlated with the presence of active MAP kinase kinase (MEK). Taken together, these results suggest that pancreatic tumor cells expressing oncogenic K-ras compensate, in part, by upregulating the expression of MKP-2 to repress the ERK signaling pathway.", "title": "Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2." }, { "docid": "35684881", "text": "Tumor-derived p53 mutants can transcriptionally activate a number of promoters of genes involved in cellular proliferation. For this transactivation, mutant p53 does not use the wild-type p53 DNA-binding site, suggesting a mechanism of transactivation that is independent of direct DNA binding. Here we describe our analysis of the domain requirements for mutant p53 to transactivate promoters of the human epidermal growth factor receptor (EGFR), human multiple drug resistance 1 (MDR-1) and human proliferating cell nuclear antigen (PCNA) genes. We also report the identification of a structural domain required for the `gain of function' property of mutant p53-281G. `Gain of function' is measured as the tumorigenicity (in nude mice) of 10(3) murine cells expressing mutant p53 constitutively. We have generated internal deletion mutants of p53-281G deleting conserved domains I, II, III, IV and V, individually. We have also generated one deletion mutant eliminating amino acids 100 through 300 that removes four of the five conserved domains (II–V); another mutant, p53-281G del 393-327, deletes the oligomerization and nonsequence-specific nucleic acid-binding domains of p53. For the EGFR and MDR-1 promoters, all these mutants have significantly lower transactivation ability than intact p53-281G. These deletion mutants, however, significantly activated the pCNA promoter, suggesting that the mechanism of transactivation of the PCNA promoter is different from that of the EGFR and MDR-1 promoters. When expressed constitutively in 10(3) cells, p53-281G del 393-327 was found to be defective in inducing tumor formation in nude mice although intact p53-281G was very efficient. Thus, our results suggest that structural domains near the C-terminus are needed for `gain of function'.", "title": "`Gain of function' phenotype of tumor-derived mutant p53 requires the oligomerization/nonsequence-specific nucleic acid-binding domain" }, { "docid": "13011249", "text": "The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the \"tumor microenvironment. \" Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.", "title": "Hallmarks of Cancer: The Next Generation" }, { "docid": "4662264", "text": "The phosphorylation of the human estrogen receptor (ER) serine residue at position 118 is required for full activity of the ER activation function 1 (AF-1). This Ser118 is phosphorylated by mitogen-activated protein kinase (MAPK) in vitro and in cells treated with epidermal growth factor (EGF) and insulin-like growth factor (IGF) in vivo. Overexpression of MAPK kinase (MAPKK) or of the guanine nucleotide binding protein Ras, both of which activate MAPK, enhanced estrogen-induced and antiestrogen (tamoxifen)-induced transcriptional activity of wild-type ER, but not that of a mutant ER with an alanine in place of Ser118. Thus, the activity of the amino-terminal AF-1 of the ER is modulated by the phosphorylation of Ser118 through the Ras-MAPK cascade of the growth factor signaling pathways.", "title": "Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase." }, { "docid": "9239963", "text": "Excessive exposure to estradiol represents the main risk factor for endometrial cancer. The abnormally high estradiol levels in the endometrium of women with endometrial cancer are most likely due to overproduction by the tumour itself. Endometrial cancer cells express the genes encoding the steroidogenic enzymes involved in estradiol synthesis. Here we used RT-PCR and Western blot to show that the nuclear receptors SF1 and LRH1, two well-known regulators of steroidogenic gene expression in gonadal and adrenal cells, are also expressed in endometrial cancer cell lines. By transient transfections, we found that SF1 and LRH1, but not the related nuclear receptor NUR77, can activate the promoters of three human steroidogenic genes: STAR, HSD3B2, and CYP19A1 PII. Similarly, forskolin but not PMA, could activate all three promoters. In addition, we found that both SF1 and LRH1 can transcriptionally cooperate with the AP-1 family members c-JUN and c-FOS, known to be associated with enhanced proliferation of endometrial carcinoma cells, to further enhance activation of the STAR, HSD3B2, and CYP19A1 PII promoters. All together, our data provide novel insights into the mechanisms of steroidogenic gene expression in endometrial cancer cells and thus in the regulation of estradiol biosynthesis by tumour cells.", "title": "The nuclear receptors SF1 and LRH1 are expressed in endometrial cancer cells and regulate steroidogenic gene transcription by cooperating with AP-1 factors." }, { "docid": "9113824", "text": "Pancreatic ductal adenocarcinoma (PDA), one of the deadliest human cancers, often involves somatic activation of K-Ras oncogenes. We report that selective expression of an endogenous K-Ras(G12V) oncogene in embryonic cells of acinar/centroacinar lineage results in pancreatic intraepithelial neoplasias (PanINs) and invasive PDA, suggesting that PDA originates by differentiation of acinar/centroacinar cells or their precursors into ductal-like cells. Surprisingly, adult mice become refractory to K-Ras(G12V)-induced PanINs and PDA. However, if these mice are challenged with a mild form of chronic pancreatitis, they develop the full spectrum of PanINs and invasive PDA. These observations suggest that, during adulthood, PDA stems from a combination of genetic (e.g., somatic K-Ras mutations) and nongenetic (e.g., tissue damage) events.", "title": "Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice." }, { "docid": "14819804", "text": "The novel phosphatidylinositol-3-kinase (PI3K) inhibitor PX-866 was tested against 13 experimental human tumor xenografts derived from cell lines of various tissue origins. Mutant PI3K (PIK3CA) and loss of PTEN activity were sufficient, but not necessary, as predictors of sensitivity to the antitumor activity of the PI3K inhibitor PX-866 in the presence of wild-type Ras, whereas mutant oncogenic Ras was a dominant determinant of resistance, even in tumors with coexisting mutations in PIK3CA. The level of activation of PI3K signaling measured by tumor phosphorylated Ser(473)-Akt was insufficient to predict in vivo antitumor response to PX-866. Reverse-phase protein array revealed that the Ras-dependent downstream targets c-Myc and cyclin B were elevated in cell lines resistant to PX-866 in vivo. Studies using an H-Ras construct to constitutively and preferentially activate the three best-defined downstream targets of Ras, i.e., Raf, RalGDS, and PI3K, showed that mutant Ras mediates resistance through its ability to use multiple pathways for tumorigenesis. The identification of Ras and downstream signaling pathways driving resistance to PI3K inhibition might serve as an important guide for patient selection as inhibitors enter clinical trials and for the development of rational combinations with other molecularly targeted agents.", "title": "Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance." }, { "docid": "11328820", "text": "The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease.", "title": "NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis." }, { "docid": "25254425", "text": "Nucleosomes containing the histone variant H3.3 tend to be clustered in vivo in the neighborhood of transcriptionally active genes and over regulatory elements. It has not been clear, however, whether H3.3-containing nucleosomes possess unique properties that would affect transcription. We report here that H3.3 nucleosomes isolated from vertebrates, regardless of whether they are partnered with H2A or H2A.Z, are unusually sensitive to salt-dependent disruption, losing H2A/H2B or H2A.Z/H2B dimers. Immunoprecipitation studies of nucleosome core particles (NCPs) show that NCPs that contain both H3.3 and H2A.Z are even less stable than NCPs containing H3.3 and H2A. Intriguingly, NCPs containing H3 and H2A.Z are at least as stable as H3/H2A NCPs. These results establish an hierarchy of stabilities for native nucleosomes carrying different complements of variants, and suggest how H2A.Z could play different roles depending on its partners within the NCP. They also are consistent with the idea that H3.3 plays an active role in maintaining accessible chromatin structures in enhancer regions and transcribed regions. Consistent with this idea, promoters and enhancers at transcriptionally active genes and coding regions at highly expressed genes have nucleosomes that simultaneously carry both H3.3 and H2A.Z, and should therefore be extremely sensitive to disruption.", "title": "Nucleosome stability mediated by histone variants H3.3 and H2A.Z." }, { "docid": "32001951", "text": "Treatment of the cultured human breast-cancer cells BC-M1 with dexamethasone induced a placental-type alkaline phosphatase (ALP). Both the ALP activity and the mRNA level in the cells were increased. The induction of ALP activity by dexamethasone was time- and dose-dependent. The accumulation of ALP mRNA was inhibited by both actinomycin D and cycloheximide, indicating that its induction is a complex event and may involve other regulatory proteins. Retinoic acid showed opposing effects with dexamethasone on the expression of alkaline phosphatase. Retinoic acid (RA) and phorbol 12-myristate 13-acetate also substantially reduced the dexamethasone-induced expression of ALP. Studies on thermostability and sensitivity to various amino acid inhibitors indicated that the BC-M1 ALP is most similar to the placental form. Northern hybridization analysis also revealed that ALP mRNA transcripts in BC-M1 and term placenta are similar in size and are distinct from that of the placental-like mRNA transcript in choriocarcinoma cells. Analysis of the degradation of BC-M1 ALP mRNA showed a similar half-life of 27 h in the untreated and in dexamethasone- or RA-treated cells. These findings demonstrated that the induction of ALP in BC-M1 cells by dexamethasone is mainly due to the increase in the transcription of the ALP gene.", "title": "Regulation of the expression of alkaline phosphatase in a human breast-cancer cell line." } ]
1003
RAD52 is involved in break-induced DNA replication (BIR).
[ { "docid": "14332945", "text": "Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.", "title": "Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks" }, { "docid": "4319844", "text": "Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer.", "title": "Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes." }, { "docid": "4899981", "text": "Telomeres resemble common fragile sites (CFSs) in that they are difficult-to-replicate and exhibit fragility in mitosis in response to DNA replication stress. At CFSs, this fragility is associated with a delay in the completion of DNA replication until early mitosis, whereupon cells are proposed to switch to a RAD52-dependent form of break-induced replication. Here, we show that this mitotic DNA synthesis (MiDAS) is also a feature of human telomeres. Telomeric MiDAS is not restricted to those telomeres displaying overt fragility, and is a feature of a wide range of cell lines irrespective of whether their telomeres are maintained by telomerase or by the alternative lengthening of telomeres (ALT) mechanism. MiDAS at telomeres requires RAD52, and is mechanistically similar to CFS-associated MiDAS, with the notable exception that telomeric MiDAS does not require the MUS81-EME1 endonuclease. We propose a model whereby replication stress initiates a RAD52-dependent form of break-induced replication that bypasses a requirement for MUS81-EME1 to complete DNA synthesis in mitosis.", "title": "Human cancer cells utilize mitotic DNA synthesis to resist replication stress at telomeres regardless of their telomere maintenance mechanism" } ]
[ { "docid": "8577229", "text": "Recombination-dependent DNA replication, often called break-induced replication (BIR), was initially invoked to explain recombination events in bacteriophage but it has recently been recognized as a fundamentally important mechanism to repair double-strand chromosome breaks in eukaryotes. This mechanism appears to be critically important in the restarting of stalled and broken replication forks and in maintaining the integrity of eroded telomeres. Although BIR helps preserve genome integrity during replication, it also promotes genome instability by the production of loss of heterozygosity and the formation of nonreciprocal translocations, as well as in the generation of complex chromosomal rearrangements.", "title": "Break-induced DNA replication." }, { "docid": "7151961", "text": "Double-strand breaks (DSBs) occur frequently during DNA replication. They are also caused by ionizing radiation, chemical damage or as part of the series of programmed events that occur during meiosis. In yeast, DSB repair requires RAD52, a protein that plays a critical role in homologous recombination. Here we describe the actions of human RAD52 protein in a model system for single-strand annealing (SSA) using tailed (i.e. exonuclease resected) duplex DNA molecules. Purified human RAD52 protein binds resected DSBs and promotes associations between complementary DNA termini. Heteroduplex intermediates of these recombination reactions have been visualized by electron microscopy, revealing the specific binding of multiple rings of RAD52 to the resected termini and the formation of large protein complexes at heteroduplex joints formed by RAD52-mediated annealing.", "title": "Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing." }, { "docid": "12086599", "text": "Major eukaryotic genomic elements, including the ribosomal DNA (rDNA), are composed of repeated sequences with well-defined copy numbers that must be maintained by regulated recombination. Although mechanisms that instigate rDNA recombination have been identified, none are directional and they therefore cannot explain precise repeat number control. Here, we show that yeast lacking histone chaperone Asf1 undergo reproducible rDNA repeat expansions. These expansions do not require the replication fork blocking protein Fob1 and are therefore independent of known rDNA expansion mechanisms. We propose the existence of a regulated rDNA repeat gain pathway that becomes constitutively active in asf1Δ mutants. Cells lacking ASF1 accumulate rDNA repeats with high fidelity in a processive manner across multiple cell divisions. The mechanism of repeat gain is dependent on highly repetitive sequence but, surprisingly, is independent of the homologous recombination proteins Rad52, Rad51 and Rad59. The expansion mechanism is compromised by mutations that decrease the processivity of DNA replication, which leads to progressive loss of rDNA repeats. Our data suggest that a novel mode of break-induced replication occurs in repetitive DNA that is dependent on high homology but does not require the canonical homologous recombination machinery.", "title": "Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery" }, { "docid": "5389523", "text": "Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis. This mitotic DNA synthesis, termed MiDAS, requires the MUS81-EME1 endonuclease and a non-catalytic subunit of the Pol-delta complex, POLD3. Here, we examine the contribution of HR factors in promoting MiDAS in human cells. We report that RAD51 and BRCA2 are dispensable for MiDAS but are required to counteract replication stress at CFS loci during S-phase. In contrast, MiDAS is RAD52 dependent, and RAD52 is required for the timely recruitment of MUS81 and POLD3 to CFSs in early mitosis. Our results provide further mechanistic insight into MiDAS and define a specific function for human RAD52. Furthermore, selective inhibition of MiDAS may comprise a potential therapeutic strategy to sensitize cancer cells undergoing replicative stress.", "title": "RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress." }, { "docid": "4401289", "text": "Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10–15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC–PCNA–Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.", "title": "Break-induced telomere synthesis underlies alternative telomere maintenance" }, { "docid": "15659108", "text": "Rad52 promotes the annealing of complementary strands of DNA bound by replication protein A (RPA) during discrete repair pathways. Here, we used a fluorescence resonance energy transfer (FRET) between two fluorescent dyes incorporated into DNA substrates to probe the mechanism by which human Rad52 (hRad52) interacts with and mediates annealing of ssDNA-hRPA complexes. Human Rad52 bound ssDNA or ssDNA-hRPA complex in two, concentration-dependent modes. At low hRad52 concentrations, ssDNA was wrapped around the circumference of the protein ring, while at higher protein concentrations, ssDNA was stretched between multiple hRad52 rings. Annealing by hRad52 occurred most efficiently when each complementary DNA strand or each ssDNA-hRPA complex was bound by hRad52 in a wrapped configuration, suggesting homology search and annealing occur via two hRad52-ssDNA complexes. In contrast to the wild type protein, hRad52(RQK/AAA) and hRad52(1-212) mutants with impaired ability to bind hRPA protein competed with hRPA for binding to ssDNA and failed to counteract hRPA-mediated duplex destabilization highlighting the importance of hRad52-hRPA interactions in promoting efficient DNA annealing.", "title": "Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52–ssDNA complexes" }, { "docid": "18639989", "text": "Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1(Timeless), a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1(Timeless) in regulation of telomere stability in cancer cells.", "title": "Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres" }, { "docid": "4407318", "text": "Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps or breaks on metaphase chromosomes (termed CFS ‘expression’), particularly when cells have been exposed to replicative stress. The MUS81–EME1 structure-specific endonuclease promotes the appearance of chromosome gaps or breaks at CFSs following replicative stress. Here we show that entry of cells into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN+) and replicative stress, we suggest that targeting this pathway could represent a new therapeutic approach.", "title": "Replication stress activates DNA repair synthesis in mitosis" }, { "docid": "11568270", "text": "Human TopBP1 is a major player in the control of the DNA replication checkpoint. In this study, we identified MDC1, a key checkpoint protein involved in the cellular response to DNA double-strand breaks, as a TopBP1-associated protein. The specific TopBP1-MDC1 interaction is mediated by the fifth BRCT domain of TopBP1 and the Ser-Asp-Thr (SDT) repeats of MDC1. In addition, we demonstrated that TopBP1 accumulation at stalled replication forks is promoted by the H2AX/MDC1 signaling cascade. Moreover, MDC1 is important for ATR-dependent Chk1 activation in response to replication stress. Collectively, our data suggest that MDC1 facilitates several important steps in both cellular DNA damage response and the DNA replication checkpoint.", "title": "MDC1 collaborates with TopBP1 in DNA replication checkpoint control" }, { "docid": "12909503", "text": "DNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer. DNA damage and perturbation of replication machinery causes replication stress, characterized by accumulation of single-stranded DNA bound by replication protein A (RPA), which triggers activation of ataxia telangiectasia and Rad3 related (ATR) and phosphorylation of the RPA32, subunit of RPA, leading to Chk1 activation and arrest. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [a kinase related to ataxia telangiectasia mutated (ATM) and ATR] has well characterized roles in DNA double-strand break repair, but poorly understood roles in replication stress-induced RPA phosphorylation. We show that DNA-PKcs mutant cells fail to arrest replication following stress, and mutations in RPA32 phosphorylation sites targeted by DNA-PKcs increase the proportion of cells in mitosis, impair ATR signaling to Chk1 and confer a G2/M arrest defect. Inhibition of ATR and DNA-PK (but not ATM), mimic the defects observed in cells expressing mutant RPA32. Cells expressing mutant RPA32 or DNA-PKcs show sustained H2AX phosphorylation in response to replication stress that persists in cells entering mitosis, indicating inappropriate mitotic entry with unrepaired damage.", "title": "Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress" }, { "docid": "28904104", "text": "DNA replication forks that collapse during the process of genomic duplication lead to double-strand breaks and constitute a threat to genomic stability. The risk of fork collapse is higher in the presence of replication inhibitors or after UV irradiation, which introduces specific modifications in the structure of DNA. In these cases, fork progression may be facilitated by error-prone translesion synthesis (TLS) DNA polymerases. Alternatively, the replisome may skip the damaged DNA, leaving an unreplicated gap to be repaired after replication. This mechanism strictly requires a priming event downstream of the lesion. Here we show that PrimPol, a new human primase and TLS polymerase, uses its primase activity to mediate uninterrupted fork progression after UV irradiation and to reinitiate DNA synthesis after dNTP depletion. As an enzyme involved in tolerance to DNA damage, PrimPol might become a target for cancer therapy.", "title": "Repriming of DNA synthesis at stalled replication forks by human PrimPol" }, { "docid": "15913433", "text": "Telomerase-negative immortalized human cells maintain their telomeres by a mechanism known as alternative lengthening of telomeres (ALT). We report here that ALT cells contain a novel promyelocytic leukemia (PML) body (ALT-associated PML body, APB). APBs are large donut-shaped nuclear structures containing PML protein, telomeric DNA, and the telomere binding proteins human telomere repeat binding factors 1 and 2. Immunostaining showed that APBs also contain replication factor A, RAD51, and RAD52, proteins involved in DNA synthesis and recombination. During immortalization, APBs appeared at exactly the same time as activation of ALT. APBs were found in ALT tumors and cell lines but not in mortal cell strains or in telomerase-positive cell lines or tumors.", "title": "Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body." }, { "docid": "3173489", "text": "DNA replication stress promotes genome instability in cancer. However, the contribution of the replication stress response to the development of malignancies remains unresolved. The DNA replication stress response protein SMARCAL1 stabilizes DNA replication forks and prevents replication fork collapse, a cause of DNA breaks and apoptosis. While the fork regression/remodeling functions of SMARCAL1 have been investigated, its in vivo functions in replication stress and cancer are unclear. Using a gamma radiation (IR)-induced replication stress T-cell lymphoma mouse model, we observed a significant inhibition of lymphomagenesis in mice lacking one or both alleles of Smarcal1. Notably, a quarter of the Smarcal1-deficient mice did not develop tumors. Moreover, hematopoietic stem/progenitor cells (HSPCs) and developing thymocytes in Smarcal1-deficient mice showed increased DNA damage and apoptosis during the proliferation burst following IR and an impaired ability to repopulate the thymus after IR. Additionally, mice lacking Smarcal1 showed significant HSPC defects when challenged to respond to other replication stress stimuli. Thus, our data reveal the critical function of the DNA replication stress response and, specifically, Smarcal1 in hematopoietic cell survival and tumor development. Our results also provide important insight into the immunodeficiency observed in individuals with mutations in SMARCAL1 by suggesting that it is an HSPC defect.", "title": "Defective replication stress response inhibits lymphomagenesis and impairs lymphocyte reconstitution" }, { "docid": "3512154", "text": "CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages.", "title": "CRISPR adaptation biases explain preference for acquisition of foreign DNA" }, { "docid": "52944377", "text": "Actively transcribed regions of the genome are protected by transcription-coupled DNA repair mechanisms, including transcription-coupled homologous recombination (TC-HR). Here we used reactive oxygen species (ROS) to induce and characterize TC-HR at a transcribed locus in human cells. As canonical HR, TC-HR requires RAD51. However, the localization of RAD51 to damage sites during TC-HR does not require BRCA1 and BRCA2, but relies on RAD52 and Cockayne Syndrome Protein B (CSB). During TC-HR, RAD52 is recruited by CSB through an acidic domain. CSB in turn is recruited by R loops, which are strongly induced by ROS in transcribed regions. Notably, CSB displays a strong affinity for DNA:RNA hybrids in vitro, suggesting that it is a sensor of ROS-induced R loops. Thus, TC-HR is triggered by R loops, initiated by CSB, and carried out by the CSB-RAD52-RAD51 axis, establishing a BRCA1/2-independent alternative HR pathway protecting the transcribed genome.", "title": "ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB" }, { "docid": "4444861", "text": "Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance.", "title": "Replication Fork Stability Confers Chemoresistance in BRCA-deficient Cells" }, { "docid": "13791206", "text": "Defective DNA repair by homologous recombination (HR) is thought to be a major contributor to tumorigenesis in individuals carrying Brca1 mutations. Here, we show that DNA breaks in Brca1-deficient cells are aberrantly joined into complex chromosome rearrangements by a process dependent on the nonhomologous end-joining (NHEJ) factors 53BP1 and DNA ligase 4. Loss of 53BP1 alleviates hypersensitivity of Brca1 mutant cells to PARP inhibition and restores error-free repair by HR. Mechanistically, 53BP1 deletion promotes ATM-dependent processing of broken DNA ends to produce recombinogenic single-stranded DNA competent for HR. In contrast, Lig4 deficiency does not rescue the HR defect in Brca1 mutant cells but prevents the joining of chromatid breaks into chromosome rearrangements. Our results illustrate that HR and NHEJ compete to process DNA breaks that arise during DNA replication and that shifting the balance between these pathways can be exploited to selectively protect or kill cells harboring Brca1 mutations.", "title": "53BP1 Inhibits Homologous Recombination in Brca1-Deficient Cells by Blocking Resection of DNA Breaks" } ]
1004
RANK-RANKL pathway signalling has no known association with development of Aire-expressing medullary thymic epithelial cells.
[ { "docid": "301838", "text": "The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation.", "title": "Rank Signaling Links the Development of Invariant γδ T Cell Progenitors and Aire+ Medullary Epithelium" }, { "docid": "2734421", "text": "Medullary thymic epithelial cells (mTECs) establish T cell self-tolerance through the expression of autoimmune regulator (Aire) and peripheral tissue-specific self-antigens. However, signals underlying mTEC development remain largely unclear. Here, we demonstrate crucial regulation of mTEC development by receptor activator of NF-kappaB (RANK) and CD40 signals. Whereas only RANK signaling was essential for mTEC development during embryogenesis, in postnatal mice, cooperation between CD40 and RANK signals was required for mTEC development to successfully establish the medullary microenvironment. Ligation of RANK or CD40 on fetal thymic stroma in vitro induced mTEC development in a tumor necrosis factor-associated factor 6 (TRAF6)-, NF-kappaB inducing kinase (NIK)-, and IkappaB kinase beta (IKKbeta)-dependent manner. These results show that developmental-stage-dependent cooperation between RANK and CD40 promotes mTEC development, thereby establishing self-tolerance.", "title": "The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance." }, { "docid": "3952288", "text": "Aire-expressing medullary thymic epithelial cells (mTECs) play a key role in preventing autoimmunity by expressing tissue-restricted antigens to help purge the emerging T cell receptor repertoire of self-reactive specificities. Here we demonstrate a novel role for a CD4+3− inducer cell population, previously linked to development of organized secondary lymphoid structures and maintenance of T cell memory in the functional regulation of Aire-mediated promiscuous gene expression in the thymus. CD4+3− cells are closely associated with mTECs in adult thymus, and in fetal thymus their appearance is temporally linked with the appearance of Aire+ mTECs. We show that RANKL signals from this cell promote the maturation of RANK-expressing CD80−Aire− mTEC progenitors into CD80+Aire+ mTECs, and that transplantation of RANK-deficient thymic stroma into immunodeficient hosts induces autoimmunity. Collectively, our data reveal cellular and molecular mechanisms leading to the generation of Aire+ mTECs and highlight a previously unrecognized role for CD4+3−RANKL+ inducer cells in intrathymic self-tolerance.", "title": "RANK signals from CD4+3− inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla" } ]
[ { "docid": "39128592", "text": "The thymic medulla provides a microenvironment where medullary thymic epithelial cells (mTECs) express autoimmune regulator and diverse tissue-restricted genes, contributing to launching self-tolerance. Positive selection is essential for thymic medulla formation via a previously unknown mechanism. Here we show that the cytokine RANK ligand (RANKL) was produced by positively selected thymocytes and regulated the cellularity of mTEC by interacting with RANK and osteoprotegerin. Forced expression of RANKL restored thymic medulla in mice lacking positive selection, whereas RANKL perturbation impaired medulla formation. These results indicate that RANKL produced by positively selected thymocytes is responsible for fostering thymic medulla formation, thereby establishing central tolerance.", "title": "The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator." }, { "docid": "13989491", "text": "Humans expressing a defective form of the transcription factor AIRE (autoimmune regulator) develop multiorgan autoimmune disease. We used aire- deficient mice to test the hypothesis that this transcription factor regulates autoimmunity by promoting the ectopic expression of peripheral tissue- restricted antigens in medullary epithelial cells of the thymus. This hypothesis proved correct. The mutant animals exhibited a defined profile of autoimmune diseases that depended on the absence of aire in stromal cells of the thymus. Aire-deficient thymic medullary epithelial cells showed a specific reduction in ectopic transcription of genes encoding peripheral antigens. These findings highlight the importance of thymically imposed \"central\" tolerance in controlling autoimmunity.", "title": "Acids: Structures, Properties, and Functions (University Science Books, Sausalito, CA, 2000)." }, { "docid": "10162553", "text": "Immunosuppressive drugs and cytotoxic chemotherapy agents are designed to kill or suppress autoreactive, alloaggressive, or hyperinflammatory T cells, or disseminated malignancies. However, they also cause severe immunological side effects ranging from interrupted thymopoiesis and general immunodeficiency to, paradoxically, autoimmunity. Consistent with the cross-talk between thymocytes and stromal cells, we now show that these common therapeutic agents have major effects on murine thymic epithelial cells (TEC), crucially required to rebuild immunity posttreatment. We show that the immunosuppressant cyclosporine A, which has been linked to a thymus-dependent autoimmune syndrome in some patients, causes extensive loss of autoimmune regulator (Aire(+)) tolerance-inducing MHC class II(high) medullary TEC (mTEC(high)). Post-cyclosporine A, Aire expression was restored within 7 days. Full recovery of the mTEC(high) subset occurred within 10 days and was linked to a decrease in a relatively resistant MHC class II(low) mTEC subset (mTEC(low)), consistent with a previously described precursor-product relationship. Cyclophosphamide and dexamethasone caused more extensive ablation of thymocytes and stromal cells but again severely depleted tolerance-inducing mTEC(high). Together, these data show that Aire(+) mTECs are highly sensitive to damage and that mTEC regeneration follows a conserved pattern regardless of the treatment regimen used.", "title": "Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment." }, { "docid": "39559521", "text": "The negative selection of self-reactive thymocytes depends on the expression of tissue-specific antigens by medullary thymic epithelial cells. The autoimmune regulator (Aire) protein plays an important role in turning on these antigens, and the absence of even one Aire-induced tissue-specific antigen in the thymus can lead to autoimmunity in the antigen-expressing target organ. Recently, Aire protein has been detected in peripheral lymphoid organs, suggesting that peripheral Aire plays a complementary role here. In these peripheral sites, Aire was found to regulate the expression of a group of tissue-specific antigens that is distinct from those expressed in the thymus. Furthermore, transgenic antigen expression in extrathymic Aire-expressing cells (eTACs) can mediate deletional tolerance, but the immunological relevance of Aire-dependent, endogenous tissue-specific antigens remains to be determined.", "title": "Control of central and peripheral tolerance by Aire." }, { "docid": "20155713", "text": "Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity. Here we identified medullary thymic epithelial cells as being a unique cell type that expresses a diverse range of tissue-specific antigens. We found that this promiscuous gene expression was a cell-autonomous property of medullary epithelial cells and was maintained during the entire period of thymic T cell output. It may facilitate tolerance induction to self-antigens that would otherwise be temporally or spatially secluded from the immune system. However, the array of promiscuously expressed self-antigens appeared random rather than selected and was not confined to secluded self-antigens.", "title": "Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self" }, { "docid": "18488986", "text": "The expression of melanoma-associated antigens (MAA) being limited to normal melanocytes and melanomas, MAAs are ideal targets for immunotherapy and melanoma vaccines. As MAAs are derived from self, immune responses to these may be limited by thymic tolerance. The extent to which self-tolerance prevents efficient immune responses to MAAs remains unknown. The autoimmune regulator (AIRE) controls the expression of tissue-specific self-antigens in thymic epithelial cells (TECs). The level of antigens expressed in the TECs determines the fate of auto-reactive thymocytes. Deficiency in AIRE leads in both humans (APECED patients) and mice to enlarged autoreactive immune repertoires. Here we show increased IgG levels to melanoma cells in APECED patients correlating with autoimmune skin features. Similarly, the enlarged T cell repertoire in AIRE(-/-) mice enables them to mount anti-MAA and anti-melanoma responses as shown by increased anti-melanoma antibodies, and enhanced CD4(+) and MAA-specific CD8(+) T cell responses after melanoma challenge. We show that thymic expression of gp100 is under the control of AIRE, leading to increased gp100-specific CD8(+) T cell frequencies in AIRE(-/-) mice. TRP-2 (tyrosinase-related protein), on the other hand, is absent from TECs and consequently TRP-2 specific CD8(+) T cells were found in both AIRE(-/-) and AIRE(+/+) mice. This study emphasizes the importance of investigating thymic expression of self-antigens prior to their inclusion in vaccination and immunotherapy strategies.", "title": "The Immune Response to Melanoma Is Limited by Thymic Selection of Self-Antigens" }, { "docid": "24828165", "text": "Thymic epithelial cells (TEC) form the structural and functional microenvironment necessary for the establishment and quality control of the T cell repertoire. In addition, they provide an ectopic source of numerous tissue-restricted antigens (TRA), a feature called promiscuous gene expression (pGE). How the regulation of pGE is related to the cell biology of TEC subset(s), e.g. their turnover and developmental interrelationship is still poorly understood. The observation that pGE is foremost a property of phenotypically and functionally mature medullary TEC (mTEC) implies that the full implementation of pGE is contingent on mTEC differentiation. Here, we show that the emergence of TEC subsets and pGE is tightly correlated during ontogeny and we provide evidence that mature CD80pos mTEC develop from an immature CD80neg subset. This differentiation step proceeds continuously in the postnatal thymus. While mature mTEC turnover in 2 to 3 weeks, immature mTEC encompass a smaller cycling and a larger non-cycling pool. The latter might serve as a reservoir of committed precursors, which sustain this renewal process. Our data document that mTEC represent a highly dynamic cell population, and they imply that the availability and display of TRA in the thymus undergoes a perpetual temporal and spatial reorganization.", "title": "Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells." }, { "docid": "15405204", "text": "The expression of self-antigen in the thymus is believed to be responsible for the deletion of autoreactive T lymphocytes, a critical process in the maintenance of unresponsiveness to self. The Autoimmune regulator (Aire) gene, which is defective in the disorder autoimmune polyglandular syndrome type 1, has been shown to promote the thymic expression of self-antigens. A clear link, however, between specific thymic self-antigens and a single autoimmune phenotype in this model has been lacking. We show that autoimmune eye disease in aire-deficient mice develops as a result of loss of thymic expression of a single eye antigen, interphotoreceptor retinoid-binding protein (IRBP). In addition, lack of IRBP expression solely in the thymus, even in the presence of aire expression, is sufficient to trigger spontaneous eye-specific autoimmunity. These results suggest that failure of thymic expression of selective single self-antigens can be sufficient to cause organ-specific autoimmune disease, even in otherwise self-tolerant individuals.", "title": "Spontaneous autoimmunity prevented by thymic expression of a single self-antigen" }, { "docid": "25738896", "text": "The thymic transcription factor autoimmune regulator (Aire) prevents autoimmunity in part by promoting expression of tissue-specific self-antigens, which include many cancer antigens. For example, AIRE-deficient patients are predisposed to vitiligo, an autoimmune disease of melanocytes that is often triggered by efficacious immunotherapies against melanoma. Therefore, we hypothesized that Aire deficiency in mice may elevate immune responses to cancer and provide insights into how such responses might be triggered. In this study, we show that Aire deficiency decreases thymic expression of TRP-1 (TYRP1), which is a self-antigen in melanocytes and a cancer antigen in melanomas. Aire deficiency resulted in defective negative selection of TRP-1-specific T cells without affecting thymic numbers of regulatory T cells. Aire-deficient mice displayed elevated T-cell immune responses that were associated with suppression of melanoma outgrowth. Furthermore, transplantation of Aire-deficient thymic stroma was sufficient to confer more effective immune rejection of melanoma in an otherwise Aire wild-type host. Together, our work showed how Aire deficiency can enhance immune responses against melanoma and how manipulating TRP-1-specific T-cell negative selection may offer a logical strategy to enhance immune rejection of melanoma.", "title": "Aire deficiency promotes TRP-1-specific immune rejection of melanoma." }, { "docid": "32906513", "text": "Recent elucidation of the role of central tolerance in preventing organ-specific autoimmunity has changed our concepts of self/nonself discrimination. This paradigmatic shift is largely attributable to the discovery of promiscuous expression of tissue-restricted self-antigens (TRAs) by medullary thymic epithelial cells (mTECs). TRA expression in mTECs mirrors virtually all tissues of the body, irrespective of developmental or spatio-temporal expression patterns. This review summarizes current knowledge on the cellular and molecular regulation of TRA expression in mTECs, outlines relevant mechanisms of antigen presentation and modes of tolerance induction, and discusses implications for the pathogenesis of autoimmune diseases and other biological processes such as fertility, pregnancy, puberty, and tumor defense.", "title": "A central role for central tolerance." }, { "docid": "8354687", "text": "The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting the display of tissue-specific antigens in the thymus. To study the influence of Aire on thymic selection in a physiological setting, we used tetramer reagents to detect autoreactive T cells specific for the Aire-dependent tissue-specific antigen interphotoreceptor retinoid-binding protein (IRBP), in the polyclonal repertoire. Two class II tetramer reagents were designed to identify T cells specific for two different peptide epitopes of IRBP. Analyses of the polyclonal T-cell repertoire showed a high frequency of activated T cells specific for both IRBP tetramers in Aire(-/-) mice, but not in Aire(+/+) mice. Surprisingly, although one tetramer-binding T-cell population was efficiently deleted in the thymus in an Aire-dependent manner, the second tetramer-binding population was not deleted and could be detected in both the Aire(-/-) and Aire(+/+) T-cell repertoires. We found that Aire-dependent thymic deletion of IRBP-specific T cells relies on intercellular transfer of IRBP between thymic stroma and bone marrow-derived antigen-presenting cells. Furthermore, our data suggest that Aire-mediated deletion relies not only on thymic expression of IRBP, but also on proper antigen processing and presentation of IRBP by thymic antigen-presenting cells.", "title": "Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection." }, { "docid": "43619625", "text": "Activated T cells secrete multiple osteoclastogenic cytokines which play a major role in the bone destruction associated with rheumatoid arthritis. While the role of T cells in osteoclastogenesis has received much attention recently, the effect of T cells on osteoblast formation and activity is poorly defined. In this study, we investigated the hypothesis that in chronic inflammation activated T cells contribute to enhanced bone turnover by promoting osteoblastic differentiation. We show that T cells produce soluble factors that induce alkaline phosphatase activity in bone marrow stromal cells and elevated expression of mRNA for Runx2 and osteocalcin. This data indicate that T cell derived factors have the capacity to stimulate the differentiation of bone marrow stromal cells into the osteoblast phenotype. RANKL mRNA was undetectable under any conditions in highly purified bone marrow stromal cells. In contrast, RANKL was constitutively expressed in primary osteoblasts and only moderately up-regulated by activated T cell conditioned medium. Interestingly, both bone marrow stromal cells and osteoblasts expressed mRNA for RANK, which was strongly up-regulated in both cell types by activated T cell conditioned medium. Although, mRNA for the RANKL decoy receptor, osteoprotegerin, was also up-regulated by activated T cell conditioned medium, it's inhibitory effects may be mitigated by a simultaneous rise in the osteoprotegerin competitor TNF-related apoptosis-inducing ligand. Based on our data we propose that during chronic inflammation, T cells regulate bone loss by a dual mechanism involving both direct stimulation of osteoclastogenesis, by production of osteoclastogenic cytokines, and indirectly by induction of osteoblast differentiation and up-regulation of bone turnover via coupling.", "title": "Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts." }, { "docid": "33030946", "text": "Summary Hypoxia augments inflammatory responses and osteoclastogenesis by incompletely understood mechanisms. We identified COMMD1 as a cell‐intrinsic negative regulator of osteoclastogenesis that is suppressed by hypoxia. In human macrophages, COMMD1 restrained induction of NF‐&kgr;B signaling and a transcription factor E2F1‐dependent metabolic pathway by the cytokine RANKL. Downregulation of COMMD1 protein expression by hypoxia augmented RANKL‐induced expression of inflammatory and E2F1 target genes and downstream osteoclastogenesis. E2F1 targets included glycolysis and metabolic genes including CKB that enabled cells to meet metabolic demands in challenging environments, as well as inflammatory cytokine‐driven target genes. Expression quantitative trait locus analysis linked increased COMMD1 expression with decreased bone erosion in rheumatoid arthritis. Myeloid deletion of Commd1 resulted in increased osteoclastogenesis in arthritis and inflammatory osteolysis models. These results identify COMMD1 and an E2F‐metabolic pathway as key regulators of osteoclastogenic responses under pathological inflammatory conditions and provide a mechanism by which hypoxia augments inflammation and bone destruction. Graphical Abstract Figure. No Caption available. HighlightsCOMMD1 is a negative regulator of osteoclast differentiationCOMMD1 suppresses bone loss in RA and inflammatory arthritis and osteolysis modelsCOMMD1 negatively regulates E2F1‐dependent metabolic pathways in macrophagesHypoxia suppresses COMMD1 expression to augment osteoclastogenesis &NA; Pathways that promote osteoclastogenesis are well characterized but less is known about negative regulators that suppress pathological bone loss. Murata et al. identify COMMD1 as an inhibitor of osteoclastogenesis that restrains NF‐&kgr;B‐ and E2F1‐CKB‐mediated metabolic pathways in macrophages.", "title": "Hypoxia‐Sensitive COMMD1 Integrates Signaling and Cellular Metabolism in Human Macrophages and Suppresses Osteoclastogenesis" }, { "docid": "39776978", "text": "The maintenance of adequate bone mass is dependent upon the controlled and timely removal of old, damaged bone. This complex process is performed by the highly specialized, multinucleated osteoclast. Over the past 15 years, a detailed picture has emerged describing the origins, differentiation pathways and activation stages that contribute to normal osteoclast function. This information has primarily been obtained by the development and skeletal analysis of genetically modified mouse models. Mice harboring mutations in specific genetic loci exhibit bone defects as a direct result of aberrations in normal osteoclast recruitment, formation or function. These findings include the identification of the RANK–RANKL–OPG system as a primary mediator of osteoclastogenesis, the characterization of ion transport and cellular attachment mechanisms and the recognition that matrix-degrading enzymes are essential components of resorptive activity. This Review focuses on the principal observations in osteoclast biology derived from genetic mouse models, and highlights emerging concepts that describe how the osteoclast is thought to contribute to the maintenance of adequate bone mass and integrity throughout life.", "title": "Advances in osteoclast biology: old findings and new insights from mouse models" }, { "docid": "25928548", "text": "The molecular signals that regulate growth and branching of the ureteric bud during formation of the renal collecting system are largely undefined. Members of the bone morphogenetic protein (BMP) family signal through the type I BMP receptor ALK3 to inhibit ureteric bud and collecting duct cell morphogenesis in vitro. We investigated the function of the BMP signaling pathway in vivo by generating a murine model of ALK3 deficiency restricted to the ureteric bud lineage (Alk3(UB-/-) mice). At the onset of branching morphogenesis, Alk3(UB-/-) kidneys are characterized by an abnormal primary (1 degrees ) ureteric bud branch pattern and an increased number of ureteric bud branches. However, during later stages of renal development, Alk3(UB-/-) kidneys have fewer ureteric bud branches and collecting ducts than wild-type kidneys. Postnatal Alk3(UB-/-) mice exhibit a dysplastic renal phenotype characterized by hypoplasia of the renal medulla, a decreased number of medullary collecting ducts, and abnormal expression of beta-catenin and c-MYC in medullary tubules. In summary, normal kidney development requires ALK3-dependent BMP signaling, which controls ureteric bud branching.", "title": "BMP receptor ALK3 controls collecting system development." }, { "docid": "20220731", "text": "Foxp3(+)CD4(+)CD25(+) regulatory T cells can differentiate from Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) naive T cells. However, the impact of these two processes on size and composition of the peripheral repertoire of regulatory T cells is unclear. Here we followed the fate of individual Foxp3(+)CD4(+)CD25(+) thymocytes and T cells in vivo in T cell receptor (TCR) transgenic mice that express a restricted but polyclonal repertoire of TCRs. By utilizing high-throughput single-cell analysis, we showed that Foxp3(+)CD4(+) peripheral T cells were derived from thymic precursors that expressed a different TCRs than Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) T cells. Furthermore, the diversity of TCRs on Foxp3(+)CD4(+) regulatory T cells exceeded the diversity of TCRs on Foxp3(-)CD4(+) naive T cells, even in mice that lack expression of tissue-specific antigens. Our results imply that higher TCR diversity on Foxp3(+) regulatory T cells helps these cells to match the specificities of autoreactive and naive T cells.", "title": "Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells." }, { "docid": "38502066", "text": "Thymic-derived natural T regulatory cells (Tregs) are characterized by functional and phenotypic heterogeneity. Recently, a small fraction of peripheral Tregs has been shown to express Klrg1, but it remains unclear as to what extent Klrg1 defines a unique Treg subset. In this study, we show that Klrg1(+) Tregs represent a terminally differentiated Treg subset derived from Klrg1(-) Tregs. This subset is a recent Ag-responsive and highly activated short-lived Treg population that expresses enhanced levels of Treg suppressive molecules and that preferentially resides within mucosal tissues. The development of Klrg1(+) Tregs also requires extensive IL-2R signaling. This activity represents a distinct function for IL-2, independent from its contribution to Treg homeostasis and competitive fitness. These and other properties are analogous to terminally differentiated short-lived CD8(+) T effector cells. Our findings suggest that an important pathway driving Ag-activated conventional T lymphocytes also operates for Tregs.", "title": "IL-2 receptor signaling is essential for the development of Klrg1+ terminally differentiated T regulatory cells." } ]
1005
RANK-RANKL pathway signalling is linked to development of Aire-expressing medullary thymic epithelial cells.
[ { "docid": "301838", "text": "The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation.", "title": "Rank Signaling Links the Development of Invariant γδ T Cell Progenitors and Aire+ Medullary Epithelium" }, { "docid": "2734421", "text": "Medullary thymic epithelial cells (mTECs) establish T cell self-tolerance through the expression of autoimmune regulator (Aire) and peripheral tissue-specific self-antigens. However, signals underlying mTEC development remain largely unclear. Here, we demonstrate crucial regulation of mTEC development by receptor activator of NF-kappaB (RANK) and CD40 signals. Whereas only RANK signaling was essential for mTEC development during embryogenesis, in postnatal mice, cooperation between CD40 and RANK signals was required for mTEC development to successfully establish the medullary microenvironment. Ligation of RANK or CD40 on fetal thymic stroma in vitro induced mTEC development in a tumor necrosis factor-associated factor 6 (TRAF6)-, NF-kappaB inducing kinase (NIK)-, and IkappaB kinase beta (IKKbeta)-dependent manner. These results show that developmental-stage-dependent cooperation between RANK and CD40 promotes mTEC development, thereby establishing self-tolerance.", "title": "The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance." }, { "docid": "3952288", "text": "Aire-expressing medullary thymic epithelial cells (mTECs) play a key role in preventing autoimmunity by expressing tissue-restricted antigens to help purge the emerging T cell receptor repertoire of self-reactive specificities. Here we demonstrate a novel role for a CD4+3− inducer cell population, previously linked to development of organized secondary lymphoid structures and maintenance of T cell memory in the functional regulation of Aire-mediated promiscuous gene expression in the thymus. CD4+3− cells are closely associated with mTECs in adult thymus, and in fetal thymus their appearance is temporally linked with the appearance of Aire+ mTECs. We show that RANKL signals from this cell promote the maturation of RANK-expressing CD80−Aire− mTEC progenitors into CD80+Aire+ mTECs, and that transplantation of RANK-deficient thymic stroma into immunodeficient hosts induces autoimmunity. Collectively, our data reveal cellular and molecular mechanisms leading to the generation of Aire+ mTECs and highlight a previously unrecognized role for CD4+3−RANKL+ inducer cells in intrathymic self-tolerance.", "title": "RANK signals from CD4+3− inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla" } ]
[ { "docid": "39128592", "text": "The thymic medulla provides a microenvironment where medullary thymic epithelial cells (mTECs) express autoimmune regulator and diverse tissue-restricted genes, contributing to launching self-tolerance. Positive selection is essential for thymic medulla formation via a previously unknown mechanism. Here we show that the cytokine RANK ligand (RANKL) was produced by positively selected thymocytes and regulated the cellularity of mTEC by interacting with RANK and osteoprotegerin. Forced expression of RANKL restored thymic medulla in mice lacking positive selection, whereas RANKL perturbation impaired medulla formation. These results indicate that RANKL produced by positively selected thymocytes is responsible for fostering thymic medulla formation, thereby establishing central tolerance.", "title": "The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator." }, { "docid": "13989491", "text": "Humans expressing a defective form of the transcription factor AIRE (autoimmune regulator) develop multiorgan autoimmune disease. We used aire- deficient mice to test the hypothesis that this transcription factor regulates autoimmunity by promoting the ectopic expression of peripheral tissue- restricted antigens in medullary epithelial cells of the thymus. This hypothesis proved correct. The mutant animals exhibited a defined profile of autoimmune diseases that depended on the absence of aire in stromal cells of the thymus. Aire-deficient thymic medullary epithelial cells showed a specific reduction in ectopic transcription of genes encoding peripheral antigens. These findings highlight the importance of thymically imposed \"central\" tolerance in controlling autoimmunity.", "title": "Acids: Structures, Properties, and Functions (University Science Books, Sausalito, CA, 2000)." }, { "docid": "10162553", "text": "Immunosuppressive drugs and cytotoxic chemotherapy agents are designed to kill or suppress autoreactive, alloaggressive, or hyperinflammatory T cells, or disseminated malignancies. However, they also cause severe immunological side effects ranging from interrupted thymopoiesis and general immunodeficiency to, paradoxically, autoimmunity. Consistent with the cross-talk between thymocytes and stromal cells, we now show that these common therapeutic agents have major effects on murine thymic epithelial cells (TEC), crucially required to rebuild immunity posttreatment. We show that the immunosuppressant cyclosporine A, which has been linked to a thymus-dependent autoimmune syndrome in some patients, causes extensive loss of autoimmune regulator (Aire(+)) tolerance-inducing MHC class II(high) medullary TEC (mTEC(high)). Post-cyclosporine A, Aire expression was restored within 7 days. Full recovery of the mTEC(high) subset occurred within 10 days and was linked to a decrease in a relatively resistant MHC class II(low) mTEC subset (mTEC(low)), consistent with a previously described precursor-product relationship. Cyclophosphamide and dexamethasone caused more extensive ablation of thymocytes and stromal cells but again severely depleted tolerance-inducing mTEC(high). Together, these data show that Aire(+) mTECs are highly sensitive to damage and that mTEC regeneration follows a conserved pattern regardless of the treatment regimen used.", "title": "Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment." }, { "docid": "39559521", "text": "The negative selection of self-reactive thymocytes depends on the expression of tissue-specific antigens by medullary thymic epithelial cells. The autoimmune regulator (Aire) protein plays an important role in turning on these antigens, and the absence of even one Aire-induced tissue-specific antigen in the thymus can lead to autoimmunity in the antigen-expressing target organ. Recently, Aire protein has been detected in peripheral lymphoid organs, suggesting that peripheral Aire plays a complementary role here. In these peripheral sites, Aire was found to regulate the expression of a group of tissue-specific antigens that is distinct from those expressed in the thymus. Furthermore, transgenic antigen expression in extrathymic Aire-expressing cells (eTACs) can mediate deletional tolerance, but the immunological relevance of Aire-dependent, endogenous tissue-specific antigens remains to be determined.", "title": "Control of central and peripheral tolerance by Aire." }, { "docid": "20155713", "text": "Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity. Here we identified medullary thymic epithelial cells as being a unique cell type that expresses a diverse range of tissue-specific antigens. We found that this promiscuous gene expression was a cell-autonomous property of medullary epithelial cells and was maintained during the entire period of thymic T cell output. It may facilitate tolerance induction to self-antigens that would otherwise be temporally or spatially secluded from the immune system. However, the array of promiscuously expressed self-antigens appeared random rather than selected and was not confined to secluded self-antigens.", "title": "Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self" }, { "docid": "24828165", "text": "Thymic epithelial cells (TEC) form the structural and functional microenvironment necessary for the establishment and quality control of the T cell repertoire. In addition, they provide an ectopic source of numerous tissue-restricted antigens (TRA), a feature called promiscuous gene expression (pGE). How the regulation of pGE is related to the cell biology of TEC subset(s), e.g. their turnover and developmental interrelationship is still poorly understood. The observation that pGE is foremost a property of phenotypically and functionally mature medullary TEC (mTEC) implies that the full implementation of pGE is contingent on mTEC differentiation. Here, we show that the emergence of TEC subsets and pGE is tightly correlated during ontogeny and we provide evidence that mature CD80pos mTEC develop from an immature CD80neg subset. This differentiation step proceeds continuously in the postnatal thymus. While mature mTEC turnover in 2 to 3 weeks, immature mTEC encompass a smaller cycling and a larger non-cycling pool. The latter might serve as a reservoir of committed precursors, which sustain this renewal process. Our data document that mTEC represent a highly dynamic cell population, and they imply that the availability and display of TRA in the thymus undergoes a perpetual temporal and spatial reorganization.", "title": "Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells." }, { "docid": "18488986", "text": "The expression of melanoma-associated antigens (MAA) being limited to normal melanocytes and melanomas, MAAs are ideal targets for immunotherapy and melanoma vaccines. As MAAs are derived from self, immune responses to these may be limited by thymic tolerance. The extent to which self-tolerance prevents efficient immune responses to MAAs remains unknown. The autoimmune regulator (AIRE) controls the expression of tissue-specific self-antigens in thymic epithelial cells (TECs). The level of antigens expressed in the TECs determines the fate of auto-reactive thymocytes. Deficiency in AIRE leads in both humans (APECED patients) and mice to enlarged autoreactive immune repertoires. Here we show increased IgG levels to melanoma cells in APECED patients correlating with autoimmune skin features. Similarly, the enlarged T cell repertoire in AIRE(-/-) mice enables them to mount anti-MAA and anti-melanoma responses as shown by increased anti-melanoma antibodies, and enhanced CD4(+) and MAA-specific CD8(+) T cell responses after melanoma challenge. We show that thymic expression of gp100 is under the control of AIRE, leading to increased gp100-specific CD8(+) T cell frequencies in AIRE(-/-) mice. TRP-2 (tyrosinase-related protein), on the other hand, is absent from TECs and consequently TRP-2 specific CD8(+) T cells were found in both AIRE(-/-) and AIRE(+/+) mice. This study emphasizes the importance of investigating thymic expression of self-antigens prior to their inclusion in vaccination and immunotherapy strategies.", "title": "The Immune Response to Melanoma Is Limited by Thymic Selection of Self-Antigens" }, { "docid": "15405204", "text": "The expression of self-antigen in the thymus is believed to be responsible for the deletion of autoreactive T lymphocytes, a critical process in the maintenance of unresponsiveness to self. The Autoimmune regulator (Aire) gene, which is defective in the disorder autoimmune polyglandular syndrome type 1, has been shown to promote the thymic expression of self-antigens. A clear link, however, between specific thymic self-antigens and a single autoimmune phenotype in this model has been lacking. We show that autoimmune eye disease in aire-deficient mice develops as a result of loss of thymic expression of a single eye antigen, interphotoreceptor retinoid-binding protein (IRBP). In addition, lack of IRBP expression solely in the thymus, even in the presence of aire expression, is sufficient to trigger spontaneous eye-specific autoimmunity. These results suggest that failure of thymic expression of selective single self-antigens can be sufficient to cause organ-specific autoimmune disease, even in otherwise self-tolerant individuals.", "title": "Spontaneous autoimmunity prevented by thymic expression of a single self-antigen" }, { "docid": "8354687", "text": "The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting the display of tissue-specific antigens in the thymus. To study the influence of Aire on thymic selection in a physiological setting, we used tetramer reagents to detect autoreactive T cells specific for the Aire-dependent tissue-specific antigen interphotoreceptor retinoid-binding protein (IRBP), in the polyclonal repertoire. Two class II tetramer reagents were designed to identify T cells specific for two different peptide epitopes of IRBP. Analyses of the polyclonal T-cell repertoire showed a high frequency of activated T cells specific for both IRBP tetramers in Aire(-/-) mice, but not in Aire(+/+) mice. Surprisingly, although one tetramer-binding T-cell population was efficiently deleted in the thymus in an Aire-dependent manner, the second tetramer-binding population was not deleted and could be detected in both the Aire(-/-) and Aire(+/+) T-cell repertoires. We found that Aire-dependent thymic deletion of IRBP-specific T cells relies on intercellular transfer of IRBP between thymic stroma and bone marrow-derived antigen-presenting cells. Furthermore, our data suggest that Aire-mediated deletion relies not only on thymic expression of IRBP, but also on proper antigen processing and presentation of IRBP by thymic antigen-presenting cells.", "title": "Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection." }, { "docid": "25738896", "text": "The thymic transcription factor autoimmune regulator (Aire) prevents autoimmunity in part by promoting expression of tissue-specific self-antigens, which include many cancer antigens. For example, AIRE-deficient patients are predisposed to vitiligo, an autoimmune disease of melanocytes that is often triggered by efficacious immunotherapies against melanoma. Therefore, we hypothesized that Aire deficiency in mice may elevate immune responses to cancer and provide insights into how such responses might be triggered. In this study, we show that Aire deficiency decreases thymic expression of TRP-1 (TYRP1), which is a self-antigen in melanocytes and a cancer antigen in melanomas. Aire deficiency resulted in defective negative selection of TRP-1-specific T cells without affecting thymic numbers of regulatory T cells. Aire-deficient mice displayed elevated T-cell immune responses that were associated with suppression of melanoma outgrowth. Furthermore, transplantation of Aire-deficient thymic stroma was sufficient to confer more effective immune rejection of melanoma in an otherwise Aire wild-type host. Together, our work showed how Aire deficiency can enhance immune responses against melanoma and how manipulating TRP-1-specific T-cell negative selection may offer a logical strategy to enhance immune rejection of melanoma.", "title": "Aire deficiency promotes TRP-1-specific immune rejection of melanoma." }, { "docid": "33030946", "text": "Summary Hypoxia augments inflammatory responses and osteoclastogenesis by incompletely understood mechanisms. We identified COMMD1 as a cell‐intrinsic negative regulator of osteoclastogenesis that is suppressed by hypoxia. In human macrophages, COMMD1 restrained induction of NF‐&kgr;B signaling and a transcription factor E2F1‐dependent metabolic pathway by the cytokine RANKL. Downregulation of COMMD1 protein expression by hypoxia augmented RANKL‐induced expression of inflammatory and E2F1 target genes and downstream osteoclastogenesis. E2F1 targets included glycolysis and metabolic genes including CKB that enabled cells to meet metabolic demands in challenging environments, as well as inflammatory cytokine‐driven target genes. Expression quantitative trait locus analysis linked increased COMMD1 expression with decreased bone erosion in rheumatoid arthritis. Myeloid deletion of Commd1 resulted in increased osteoclastogenesis in arthritis and inflammatory osteolysis models. These results identify COMMD1 and an E2F‐metabolic pathway as key regulators of osteoclastogenic responses under pathological inflammatory conditions and provide a mechanism by which hypoxia augments inflammation and bone destruction. Graphical Abstract Figure. No Caption available. HighlightsCOMMD1 is a negative regulator of osteoclast differentiationCOMMD1 suppresses bone loss in RA and inflammatory arthritis and osteolysis modelsCOMMD1 negatively regulates E2F1‐dependent metabolic pathways in macrophagesHypoxia suppresses COMMD1 expression to augment osteoclastogenesis &NA; Pathways that promote osteoclastogenesis are well characterized but less is known about negative regulators that suppress pathological bone loss. Murata et al. identify COMMD1 as an inhibitor of osteoclastogenesis that restrains NF‐&kgr;B‐ and E2F1‐CKB‐mediated metabolic pathways in macrophages.", "title": "Hypoxia‐Sensitive COMMD1 Integrates Signaling and Cellular Metabolism in Human Macrophages and Suppresses Osteoclastogenesis" }, { "docid": "32906513", "text": "Recent elucidation of the role of central tolerance in preventing organ-specific autoimmunity has changed our concepts of self/nonself discrimination. This paradigmatic shift is largely attributable to the discovery of promiscuous expression of tissue-restricted self-antigens (TRAs) by medullary thymic epithelial cells (mTECs). TRA expression in mTECs mirrors virtually all tissues of the body, irrespective of developmental or spatio-temporal expression patterns. This review summarizes current knowledge on the cellular and molecular regulation of TRA expression in mTECs, outlines relevant mechanisms of antigen presentation and modes of tolerance induction, and discusses implications for the pathogenesis of autoimmune diseases and other biological processes such as fertility, pregnancy, puberty, and tumor defense.", "title": "A central role for central tolerance." }, { "docid": "43619625", "text": "Activated T cells secrete multiple osteoclastogenic cytokines which play a major role in the bone destruction associated with rheumatoid arthritis. While the role of T cells in osteoclastogenesis has received much attention recently, the effect of T cells on osteoblast formation and activity is poorly defined. In this study, we investigated the hypothesis that in chronic inflammation activated T cells contribute to enhanced bone turnover by promoting osteoblastic differentiation. We show that T cells produce soluble factors that induce alkaline phosphatase activity in bone marrow stromal cells and elevated expression of mRNA for Runx2 and osteocalcin. This data indicate that T cell derived factors have the capacity to stimulate the differentiation of bone marrow stromal cells into the osteoblast phenotype. RANKL mRNA was undetectable under any conditions in highly purified bone marrow stromal cells. In contrast, RANKL was constitutively expressed in primary osteoblasts and only moderately up-regulated by activated T cell conditioned medium. Interestingly, both bone marrow stromal cells and osteoblasts expressed mRNA for RANK, which was strongly up-regulated in both cell types by activated T cell conditioned medium. Although, mRNA for the RANKL decoy receptor, osteoprotegerin, was also up-regulated by activated T cell conditioned medium, it's inhibitory effects may be mitigated by a simultaneous rise in the osteoprotegerin competitor TNF-related apoptosis-inducing ligand. Based on our data we propose that during chronic inflammation, T cells regulate bone loss by a dual mechanism involving both direct stimulation of osteoclastogenesis, by production of osteoclastogenic cytokines, and indirectly by induction of osteoblast differentiation and up-regulation of bone turnover via coupling.", "title": "Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts." }, { "docid": "25928548", "text": "The molecular signals that regulate growth and branching of the ureteric bud during formation of the renal collecting system are largely undefined. Members of the bone morphogenetic protein (BMP) family signal through the type I BMP receptor ALK3 to inhibit ureteric bud and collecting duct cell morphogenesis in vitro. We investigated the function of the BMP signaling pathway in vivo by generating a murine model of ALK3 deficiency restricted to the ureteric bud lineage (Alk3(UB-/-) mice). At the onset of branching morphogenesis, Alk3(UB-/-) kidneys are characterized by an abnormal primary (1 degrees ) ureteric bud branch pattern and an increased number of ureteric bud branches. However, during later stages of renal development, Alk3(UB-/-) kidneys have fewer ureteric bud branches and collecting ducts than wild-type kidneys. Postnatal Alk3(UB-/-) mice exhibit a dysplastic renal phenotype characterized by hypoplasia of the renal medulla, a decreased number of medullary collecting ducts, and abnormal expression of beta-catenin and c-MYC in medullary tubules. In summary, normal kidney development requires ALK3-dependent BMP signaling, which controls ureteric bud branching.", "title": "BMP receptor ALK3 controls collecting system development." }, { "docid": "20220731", "text": "Foxp3(+)CD4(+)CD25(+) regulatory T cells can differentiate from Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) naive T cells. However, the impact of these two processes on size and composition of the peripheral repertoire of regulatory T cells is unclear. Here we followed the fate of individual Foxp3(+)CD4(+)CD25(+) thymocytes and T cells in vivo in T cell receptor (TCR) transgenic mice that express a restricted but polyclonal repertoire of TCRs. By utilizing high-throughput single-cell analysis, we showed that Foxp3(+)CD4(+) peripheral T cells were derived from thymic precursors that expressed a different TCRs than Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) T cells. Furthermore, the diversity of TCRs on Foxp3(+)CD4(+) regulatory T cells exceeded the diversity of TCRs on Foxp3(-)CD4(+) naive T cells, even in mice that lack expression of tissue-specific antigens. Our results imply that higher TCR diversity on Foxp3(+) regulatory T cells helps these cells to match the specificities of autoreactive and naive T cells.", "title": "Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells." }, { "docid": "18882947", "text": "The HMG-box factor Tcf1 is required during T-cell development in the thymus and mediates the nuclear response to Wnt signals. Tcf1(-/-) mice have previously been characterized and show developmental blocks at the CD4-CD8- double negative (DN) to CD4+CD8+ double positive transition. Due to the blocks in T-cell development, Tcf1(-/-) mice normally have a very small thymus. Unexpectedly, a large proportion of Tcf1(-/-) mice spontaneously develop thymic lymphomas with 50% of mice developing a thymic lymphoma/leukemia at the age of 16 wk. These lymphomas are clonal, highly metastatic, and paradoxically show high Wnt signaling when crossed with Wnt reporter mice and have high expression of Wnt target genes Lef1 and Axin2. In wild-type thymocytes, Tcf1 is higher expressed than Lef1, with a predominance of Wnt inhibitory isoforms. Loss of Tcf1 as repressor of Lef1 leads to high Wnt activity and is the initiating event in lymphoma development, which is exacerbated by activating Notch1 mutations. Thus, Notch1 and loss of Tcf1 functionally act as collaborating oncogenic events. Tcf1 deficiency predisposes to the development of thymic lymphomas by ectopic up-regulation of Lef1 due to lack of Tcf1 repressive isoforms and frequently by cooperating activating mutations in Notch1. Tcf1 therefore functions as a T-cell-specific tumor suppressor gene, besides its established role as a Wnt responsive transcription factor. Thus, Tcf1 acts as a molecular switch between proliferative and repressive signals during T-lymphocyte development in the thymus.", "title": "The Nuclear Effector of Wnt-Signaling, Tcf1, Functions as a T-Cell–Specific Tumor Suppressor for Development of Lymphomas" }, { "docid": "39776978", "text": "The maintenance of adequate bone mass is dependent upon the controlled and timely removal of old, damaged bone. This complex process is performed by the highly specialized, multinucleated osteoclast. Over the past 15 years, a detailed picture has emerged describing the origins, differentiation pathways and activation stages that contribute to normal osteoclast function. This information has primarily been obtained by the development and skeletal analysis of genetically modified mouse models. Mice harboring mutations in specific genetic loci exhibit bone defects as a direct result of aberrations in normal osteoclast recruitment, formation or function. These findings include the identification of the RANK–RANKL–OPG system as a primary mediator of osteoclastogenesis, the characterization of ion transport and cellular attachment mechanisms and the recognition that matrix-degrading enzymes are essential components of resorptive activity. This Review focuses on the principal observations in osteoclast biology derived from genetic mouse models, and highlights emerging concepts that describe how the osteoclast is thought to contribute to the maintenance of adequate bone mass and integrity throughout life.", "title": "Advances in osteoclast biology: old findings and new insights from mouse models" } ]
1006
RTEL1 interacts with TRF2 through a C4C4 motif
[ { "docid": "4926049", "text": "The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1(R1264H). Conversely, we define a TRF2(I124D) substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1(R1264H) mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase.", "title": "TRF2 Recruits RTEL1 to Telomeres in S Phase to Promote T-Loop Unwinding" } ]
[ { "docid": "7915836", "text": "Most cancer cells activate telomerase to elongate telomeres and achieve unlimited replicative potential. Some cancer cells cannot activate telomerase and use telomere homologous recombination (HR) to elongate telomeres, a mechanism termed alternative lengthening of telomeres (ALT). A hallmark of ALT cells is the recruitment of telomeres to PML bodies (termed APBs). Here, we show that the SMC5/6 complex localizes to APBs in ALT cells and is required for targeting telomeres to APBs. The MMS21 SUMO ligase of the SMC5/6 complex SUMOylates multiple telomere-binding proteins, including TRF1 and TRF2. Inhibition of TRF1 or TRF2 SUMOylation prevents APB formation. Depletion of SMC5/6 subunits by RNA interference inhibits telomere HR, causing telomere shortening and senescence in ALT cells. Thus, the SMC5/6 complex facilitates telomere HR and elongation in ALT cells by promoting APB formation through SUMOylation of telomere-binding proteins.", "title": "The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins" }, { "docid": "143251", "text": "Telomerase-negative tumor cells use an alternative lengthening of telomeres (ALT) pathway that involves DNA recombination and repair to maintain their proliferative potential. The cytological hallmark of this process is the accumulation of promyelocytic leukemia (PML) nuclear protein at telomeric DNA to form ALT-associated PML bodies (APBs). Here, the de novo formation of a telomeric PML nuclear subcompartment was investigated by recruiting APB protein components. We show that functionally distinct proteins were able to initiate the formation of bona fide APBs with high efficiency in a self-organizing and self-propagating manner. These included: (1) PML and Sp100 as the constituting components of PML nuclear bodies, (2) telomere repeat binding factors 1 and 2 (TRF1 and TRF2, respectively), (3) the DNA repair protein NBS1 and (4) the SUMO E3 ligase MMS21, as well as the isolated SUMO1 domain, through an interacting domain of another protein factor. By contrast, the repair factors Rad9, Rad17 and Rad51 were less efficient in APB nucleation but were recruited to preassembled APBs. The artificially created APBs induced telomeric extension through a DNA repair mechanism, as inferred from their colocalization with sites of non-replicative DNA synthesis and histone H2A.X phosphorylation, and an increase of the telomere repeat length. These activities were absent after recruitment of the APB factors to a pericentric locus and establish APBs as functional intermediates of the ALT pathway.", "title": "De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation." }, { "docid": "4363526", "text": "The three-dimensional structure of an HNF-3/fork head DNA-recognition motif complexed with DNA has been determined by X-ray crystallography at 2.5 Å resolution. This α/β protein binds B-DNA as a monomer, through interactions with the DNA backbone and through both direct and water-mediated major and minor groove base contacts, inducing a 13° bend. The transcription factor fold is very similar to the structure of histone H5. In its amino-terminal half, three α-helices adopt a compact structure that presents the third helix to the major groove. The remainder of the protein includes a twisted, antiparallel β-structure and random coil that interacts with the minor groove.", "title": "Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5" }, { "docid": "7848113", "text": "Vertebrate telomeres consist of tandem repeats of T2AG3 and associated proteins including the telomeric DNA-binding proteins, TRF1 and TRF2. It has been proposed that telomeres assume two interswitchable states, the open state that is accessible to various trans-acting factors and the closed state that excludes those factors. TRF1 and TRF2 are believed to promote the formation of the closed state. However, little is known about how those two states influence DNA replication. We analyzed the effects of TRF1 and TRF2 on telomeric replication both in vitro and in vivo. By exploiting the in vitro replication system of linear SV40 DNA, we found that telomeric repeats are a poor replication template. Moreover, the addition of recombinant TRF1 and TRF2 significantly stalled the replication fork progression at telomeric repeats. When TRF1 was overexpressed in HeLa cells, cells with 4N DNA content were accumulated. Furthermore, cytological analyses revealed that the replication focus overlapped with telomere signals at a significantly higher frequency in TRF1-overexpressing cells than in control cells. The results suggest that TRF1 and TRF2 exert inhibitory effects on replication fork progression.", "title": "Telomere-bound TRF1 and TRF2 stall the replication fork at telomeric repeats." }, { "docid": "213017", "text": "The alternative lengthening of telomeres (ALT) mechanism allows cancer cells to escape senescence and apoptosis in the absence of active telomerase. A characteristic feature of this pathway is the assembly of ALT-associated promyelocytic leukemia (PML) nuclear bodies (APBs) at telomeres. Here, we dissected the role of APBs in a human ALT cell line by performing an RNA interference screen using an automated 3D fluorescence microscopy platform and advanced 3D image analysis. We identified 29 proteins that affected APB formation, which included proteins involved in telomere and chromatin organization, protein sumoylation and DNA repair. By integrating and extending these findings, we found that APB formation induced clustering of telomere repeats, telomere compaction and concomitant depletion of the shelterin protein TRF2 (also known as TERF2). These APB-dependent changes correlated with the induction of a DNA damage response at telomeres in APBs as evident by a strong enrichment of the phosphorylated form of the ataxia telangiectasia mutated (ATM) kinase. Accordingly, we propose that APBs promote telomere maintenance by inducing a DNA damage response in ALT-positive tumor cells through changing the telomeric chromatin state to trigger ATM phosphorylation.", "title": "PML induces compaction, TRF2 depletion and DNA damage signaling at telomeres and promotes their alternative lengthening." }, { "docid": "1635872", "text": "Ubiquitin-mediated proteolysis of the replication licensing factor Cdt1 (Cdc10-dependent transcript 1) in S phase is a key mechanism that limits DNA replication to a single round per cell cycle in metazoans. In Xenopus egg extracts, Cdt1 is destroyed on chromatin during DNA replication. Here, we report that replication-dependent proteolysis of Cdt1 requires its interaction with proliferating cell nuclear antigen (PCNA), a homotrimeric processivity factor for DNA polymerases. Cdt1 binds to PCNA through a consensus PCNA-interaction motif that is conserved in Cdt1 of all metazoans, and removal of PCNA from egg extracts inhibits replication-dependent Cdt1 destruction. Mutation of the PCNA-interaction motif yields a stabilized Cdt1 protein that induces re-replication. DDB1, a component of the Cul4 E3 ubiquitin ligase that mediates human Cdt1 proteolysis in response to DNA damage, is also required for replication-dependent Cdt1 destruction. Cdt1 and DDB1 interact in extracts, and DDB1 chromatin loading is dependent on the binding of Cdt1 to PCNA, which indicates that PCNA docking activates the pre-formed Cdt1–Cul4DDB1 ligase complex. Thus, PCNA functions as a platform for Cdt1 destruction, ensuring efficient and temporally restricted inactivation of a key cell-cycle regulator.", "title": "PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication" }, { "docid": "40721190", "text": "We have previously shown that YB-1 is the only protein of the HEK293 cell cytoplasmic (S100) extract that specifically interacts with RNA hairpins each containing one of the motifs ACCAGCCU (1), CAGUGAGC (2) and UAAUCCCA (3), which had been identified as often found in exosomal RNA and proposed as potential cis-acting elements targeting RNAs into exosomes. Here we explored the interactions of YB-1 with a fragment of the 3'-untranslated region (UTR) of septin 14 mRNA (SEPT14 RNA), which contains all three motifs. We demonstrated the occurrence of YB-1 among proteins pulled down from the HEK293 S100 extract using biotinylated SEPT14 RNA. With recombinant YB-1, it was found that SEPT14 RNA can bind up to 5 moles of protein per mole of RNA in a cooperative manner, which was shown to be mainly facilitated by the presence of the above motifs. RNA hairpins with motifs 1 and 2 competed with SEPT14 RNA for binding to the protein, whereas that with motif 3 was less competitive, in accordance with the affinity of YB-1 for these RNA hairpins. With YB-1-bound RNA, nucleotides protected from attack by hydroxyl radicals were revealed in all three motifs, although hairpins with motif 2 and especially with motif 1 contained many protected nucleotides outside the motifs, suggesting that the specific environments of these motifs contribute significantly to the YB-1 binding. An analysis of the environments of motifs 1-3 in the HEK293 cell mRNA 3' UTRs gained from RNA-seq data led us to conclude that the primary binding sites of YB-1 in the 3' UTRs are hairpins containing some part of the motif along with its specific surroundings; the consensus sequences of these hairpins were derived. Thus, our findings provide a new understanding of the structural basis of the interactions between YB-1 and mRNAs carrying the aforementioned motifs.", "title": "Structural features of the interaction of the 3'-untranslated region of mRNA containing exosomal RNA-specific motifs with YB-1, a potential mediator of mRNA sorting." }, { "docid": "4402497", "text": "Innate immune defences are essential for the control of virus infection and are triggered through host recognition of viral macromolecular motifs known as pathogen-associated molecular patterns (PAMPs). Hepatitis C virus (HCV) is an RNA virus that replicates in the liver, and infects 200 million people worldwide. Infection is regulated by hepatic immune defences triggered by the cellular RIG-I helicase. RIG-I binds PAMP RNA and signals interferon regulatory factor 3 activation to induce the expression of interferon-α/β and antiviral/interferon-stimulated genes (ISGs) that limit infection. Here we identify the polyuridine motif of the HCV genome 3′ non-translated region and its replication intermediate as the PAMP substrate of RIG-I, and show that this and similar homopolyuridine or homopolyriboadenine motifs present in the genomes of RNA viruses are the chief feature of RIG-I recognition and immune triggering in human and murine cells. 5′ terminal triphosphate on the PAMP RNA was necessary but not sufficient for RIG-I binding, which was primarily dependent on homopolymeric ribonucleotide composition, linear structure and length. The HCV PAMP RNA stimulated RIG-I-dependent signalling to induce a hepatic innate immune response in vivo, and triggered interferon and ISG expression to suppress HCV infection in vitro. These results provide a conceptual advance by defining specific homopolymeric RNA motifs within the genome of HCV and other RNA viruses as the PAMP substrate of RIG-I, and demonstrate immunogenic features of the PAMP–RIG-I interaction that could be used as an immune adjuvant for vaccine and immunotherapy approaches.", "title": "Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA" }, { "docid": "35231675", "text": "CLIP-170 is a \"cytoplasmic linker protein\" implicated in endosome-microtubule interactions and in control of microtubule dynamics. CLIP-170 localizes dynamically to growing microtubule plus ends, colocalizing with the dynein activator dynactin and the APC-binding protein EB1. This shared \"plus-end tracking\" behavior suggests that CLIP-170 might interact with dynactin and/or EB1. We have used site-specific mutagenesis of CLIP-170 and a transfection/colocalization assay to address this question in mammalian tissue culture cells. Our results indicate that CLIP-170 interacts, directly or indirectly, with both dynactin and EB1. We find that the CLIP-170/dynactin interaction is mediated by the second metal binding motif of the CLIP-170 tail. In contrast, the CLIP-170/EB1 interaction requires neither metal binding motif. In addition, our experiments suggest that the CLIP-170/dynactin interaction occurs via the shoulder/sidearm subcomplex of dynactin and can occur in the cytosol (i.e., it does not require microtubule binding). These results have implications for the targeting of both dynactin and EB1 to microtubule plus ends. Our data suggest that the CLIP-170/dynactin interaction can target dynactin complex to microtubule plus ends, although dynactin likely also targets MT plus ends directly via the microtubule binding motif of the p150(Glued) subunit. We find that CLIP-170 mutants alter p150(Glued) localization without affecting EB1, indicating that EB1 can target microtubule plus ends independently of dynactin.", "title": "CLIP-170 interacts with dynactin complex and the APC-binding protein EB1 by different mechanisms." }, { "docid": "10247314", "text": "There is evidence that hypoxia-inducible factor-1alpha (HIF-1alpha) interacts with the tumor suppressor p53. To characterize the putative interaction, we mapped the binding of the core domain of p53 (p53c) to an array of immobilized HIF-1alpha-derived peptides and found two peptide-sequence motifs that bound to p53c with micromolar affinity in solution. One sequence was adjacent to and the other coincided with the two proline residues of the oxygen-dependent degradation domain (P402 and P564) that act as switches for the oxygen-dependent regulation of HIF-1alpha. The binding affinity was independent of the hydroxylation state of P564. We found from NMR spectroscopy that these sequence motifs bind to the DNA-binding site of p53c. Because the two sequences are homologous and separated by 120 residues, and one is in a largely unstructured transactivation domain, we speculate that each sequence motif in HIF-1alpha binds to a different subunit of the p53 tetramer, leading to very tight binding. The binding data support the proposal that p53 provides a route for the degradation in hypoxic tumor cells of HIF-1alpha that is not hydroxylated at the two proline residues.", "title": "Two sequence motifs from HIF-1alpha bind to the DNA-binding site of p53." }, { "docid": "10423989", "text": "The nuclear matrix antigen recognized by the monoclonal antibody (mAb) B1C8 is a novel serine (S) and arginine (R)-rich protein associated with splicing complexes and is named here SRm160 (SR-related matrix protein of 160 kD). SRm160 contains multiple SR repeats, but unlike proteins of the SR family of splicing factors, lacks an RNA recognition motif. SRm160 and a related protein SRm300 (the 300-kD nuclear matrix antigen recognized by mAb B4A11) form a complex that is required for the splicing of specific pre-mRNAs. The SRm160/300 complex associates with splicing complexes and promotes splicing through interactions with SR family proteins. Binding of SRm160/300 to pre-mRNA is normally also dependent on U1 snRNP and is stabilized by U2 snRNP. Thus, SRm160/300 forms multiple interactions with components bound directly to important sites within pre-mRNA. The results suggest that a complex of the nuclear matrix proteins SRm160 and SRm300 functions as a coactivator of pre-mRNA splicing.", "title": "A coactivator of pre-mRNA splicing." }, { "docid": "1546650", "text": "Dynein interacts with microtubules through an ATP-sensitive linkage mapped to a structurally complex region of the heavy chain following the fourth P-loop motif. Virtually nothing is known regarding how binding affinity is achieved and modulated during ATP hydrolysis. We have performed a detailed dissection of the microtubule contact site, using fragment expression, alanine substitution, and peptide competition. Our work identifies three clusters of amino acids important for the physical contact with microtubules; two of these fall within a region sharing sequence homology with MAP1B, the third in a region just downstream. Amino acid substitutions within any one of these regions can eliminate or weaken microtubule binding (KK3379, 80, E3385, K3387, K3397, KK3410,11, W3414, RKK3418-20, F3426, R3464, S3466, and K3467), suggesting that their activities are highly coordinated. A peptide that actively displaces MAP1B from microtubules perturbs dynein binding, supporting previous evidence for similar sites of interaction. We have also identified four amino acids whose substitutions affect release of the motor from the microtubule (E3413, R3444, E3460, and C3469). These suggest that nucleotide-sensitive affinity may be locally controlled at the site of contact. Our work is the first detailed description of dynein-tubulin interactions and provides a framework for understanding how affinity is achieved and modulated.", "title": "Functional elements within the dynein microtubule-binding domain" }, { "docid": "4429388", "text": "The ESCRT (endosomal sorting complex required for transport) pathway is required for terminal membrane fission events in several important biological processes, including endosomal intraluminal vesicle formation, HIV budding and cytokinesis. VPS4 ATPases perform a key function in this pathway by recognizing membrane-associated ESCRT-III assemblies and catalysing their disassembly, possibly in conjunction with membrane fission. Here we show that the microtubule interacting and transport (MIT) domains of human VPS4A and VPS4B bind conserved sequence motifs located at the carboxy termini of the CHMP1–3 class of ESCRT-III proteins. Structures of VPS4A MIT–CHMP1A and VPS4B MIT–CHMP2B complexes reveal that the C-terminal CHMP motif forms an amphipathic helix that binds in a groove between the last two helices of the tetratricopeptide-like repeat (TPR) of the VPS4 MIT domain, but in the opposite orientation to that of a canonical TPR interaction. Distinct pockets in the MIT domain bind three conserved leucine residues of the CHMP motif, and mutations that inhibit these interactions block VPS4 recruitment, impair endosomal protein sorting and relieve dominant-negative VPS4 inhibition of HIV budding. Thus, our studies reveal how the VPS4 ATPases recognize their CHMP substrates to facilitate the membrane fission events required for the release of viruses, endosomal vesicles and daughter cells.", "title": "ESCRT-III recognition by VPS4 ATPases" }, { "docid": "7225911", "text": "It is well known that upon stress, the level of the tumor suppressor p53 is remarkably elevated. However, despite extensive studies, the underlying mechanism involving important inter-players for stress-induced p53 regulation is still not fully understood. We present evidence that the human lincRNA-RoR (RoR) is a strong negative regulator of p53. Unlike MDM2 that causes p53 degradation through the ubiquitin-proteasome pathway, RoR suppresses p53 translation through direct interaction with the heterogeneous nuclear ribonucleoprotein I (hnRNP I). Importantly, a 28-base RoR sequence carrying hnRNP I binding motifs is essential and sufficient for p53 repression. We further show that RoR inhibits p53-mediated cell cycle arrest and apoptosis. Finally, we demonstrate a RoR-p53 autoregulatory feedback loop where p53 transcriptionally induces RoR expression. Together, these results suggest that the RoR-hnRNP I-p53 axis may constitute an additional surveillance network for the cell to better respond to various stresses.", "title": "The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage" }, { "docid": "16465895", "text": "A 3' overhang is critical for the protection and maintenance of mammalian telomeres, but its synthesis must be regulated to avoid excessive resection of the 5' end, which could cause telomere shortening. How this balance is achieved in mammals has not been resolved. Here, we determine the mechanism for 3' overhang synthesis in mouse cells by evaluating changes in telomeric overhangs throughout the cell cycle and at leading- and lagging-end telomeres. Apollo, a nuclease bound to the shelterin subunit TRF2, initiates formation of the 3' overhang at leading-, but not lagging-end telomeres. Hyperresection by Apollo is blocked at both ends by the shelterin protein POT1b. Exo1 extensively resects both telomere ends, generating transient long 3' overhangs in S/G2. CST/AAF, a DNA polα.primase accessory factor, binds POT1b and shortens the extended overhangs produced by Exo1, likely through fill-in synthesis. 3' overhang formation is thus a multistep, shelterin-controlled process, ensuring functional telomeric overhangs at chromosome ends.", "title": "Telomeric 3′ Overhangs Derive from Resection by Exo1 and Apollo and Fill-In by POT1b-Associated CST" }, { "docid": "5760247", "text": "Chromosome segregation during mitosis requires assembly of the kinetochore complex at the centromere. Kinetochore assembly depends on specific recognition of the histone variant CENP-A in the centromeric nucleosome by centromere protein C (CENP-C). We have defined the determinants of this recognition mechanism and discovered that CENP-C binds a hydrophobic region in the CENP-A tail and docks onto the acidic patch of histone H2A and H2B. We further found that the more broadly conserved CENP-C motif uses the same mechanism for CENP-A nucleosome recognition. Our findings reveal a conserved mechanism for protein recruitment to centromeres and a histone recognition mode whereby a disordered peptide binds the histone tail through hydrophobic interactions facilitated by nucleosome docking.", "title": "A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C." }, { "docid": "5273056", "text": "Eukaryotes have numerous checkpoint pathways to protect genome fidelity during normal cell division and in response to DNA damage. Through a screen for G2/M checkpoint regulators in zebrafish, we identified ticrr (for TopBP1-interacting, checkpoint, and replication regulator), a previously uncharacterized gene that is required to prevent mitotic entry after treatment with ionizing radiation. Ticrr deficiency is embryonic-lethal in the absence of exogenous DNA damage because it is essential for normal cell cycle progression. Specifically, the loss of ticrr impairs DNA replication and disrupts the S/M checkpoint, leading to premature mitotic entry and mitotic catastrophe. We show that the human TICRR ortholog associates with TopBP1, a known checkpoint protein and a core component of the DNA replication preinitiation complex (pre-IC), and that the TICRR-TopBP1 interaction is stable without chromatin and requires BRCT motifs essential for TopBP1's replication and checkpoint functions. Most importantly, we find that ticrr deficiency disrupts chromatin binding of pre-IC, but not prereplication complex, components. Taken together, our data show that TICRR acts in association with TopBP1 and plays an essential role in pre-IC formation. It remains to be determined whether Ticrr represents the vertebrate ortholog of the yeast pre-IC component Sld3, or a hitherto unknown metazoan replication and checkpoint regulator.", "title": "A vertebrate gene, ticrr, is an essential checkpoint and replication regulator." }, { "docid": "7468449", "text": "Ever since the first demonstration of their repetitive sequence and unique replication pathway, telomeres have beguiled researchers with how they function in protecting chromosome ends. Of course much has been learned over the years, and we now appreciate that telomeres are comprised of the multimeric protein/DNA shelterin complex and that the formation of t-loops provides protection from DNA damage machinery. Deriving their name from D-loops, t-loops are generated by the insertion of the 3' overhang into telomeric repeats facilitated by the binding of TRF2. Recent studies have uncovered novel forms of chromosome end-structure that may implicate telomere organization in cellular processes beyond its essential role in telomere protection and homeostasis. In particular, we have recently described that t-loops form in a TRF2-dependent manner at interstitial telomere repeat sequences, which we termed interstitial telomere loops (ITLs). These structures are also dependent on association of lamin A/C, a canonical component of the nucleoskeleton that is mutated in myriad human diseases, including human segmental progeroid syndromes. Since ITLs are associated with telomere stability and require functional lamin A/C, our study suggests a mechanistic link between cellular aging (replicative senescence induced by telomere shortening) and organismal aging (modeled by Hutchinson Gilford Progeria Syndrome). Here we speculate on other potential ramifications of ITL formation, from gene expression to genome stability to chromosome structure.", "title": "A beginning of the end: new insights into the functional organization of telomeres" }, { "docid": "7878807", "text": "The Ndc80 complex is the key microtubule-binding element of the kinetochore. In contrast to the well-characterized interaction of Ndc80-Nuf2 heads with microtubules, little is known about how the Spc24-25 heterodimer connects to centromeric chromatin. Here, we present molecular details of Spc24-25 in complex with the histone-fold protein Cnn1/CENP-T illustrating how this connection ultimately links microtubules to chromosomes. The conserved Ndc80 receptor motif of Cnn1 is bound as an α helix in a hydrophobic cleft at the interface between Spc24 and Spc25. Point mutations that disrupt the Ndc80-Cnn1 interaction also abrogate binding to the Mtw1 complex and are lethal in yeast. We identify a Cnn1-related motif in the Dsn1 subunit of the Mtw1 complex, necessary for Ndc80 binding and essential for yeast growth. Replacing this region with the Cnn1 peptide restores viability demonstrating functionality of the Ndc80-binding module in different molecular contexts. Finally, phosphorylation of the Cnn1 N-terminus coordinates the binding of the two competing Ndc80 interaction partners. Together, our data provide structural insights into the modular binding mechanism of the Ndc80 complex to its centromere recruiters.", "title": "A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors." } ]
1008
RUNX is not expressed in skin tissue.
[ { "docid": "2547636", "text": "Human skin copes with harmful environmental factors that are circadian in nature, yet how circadian rhythms modulate the function of human epidermal stem cells is mostly unknown. Here we show that in human epidermal stem cells and their differentiated counterparts, core clock genes peak in a successive and phased manner, establishing distinct temporal intervals during the 24 hr day period. Each of these successive clock waves is associated with a peak in the expression of subsets of transcripts that temporally segregate the predisposition of epidermal stem cells to respond to cues that regulate their proliferation or differentiation, such as TGFβ and calcium. Accordingly, circadian arrhythmia profoundly affects stem cell function in culture and in vivo. We hypothesize that this intricate mechanism ensures homeostasis by providing epidermal stem cells with environmentally relevant temporal functional cues during the course of the day and that its perturbation may contribute to aging and carcinogenesis.", "title": "Human epidermal stem cell function is regulated by circadian oscillations." } ]
[ { "docid": "4380287", "text": "Immune homeostasis in tissues is achieved through a delicate balance between pathogenic T-cell responses directed at tissue-specific antigens and the ability of the tissue to inhibit these responses. The mechanisms by which tissues and the immune system communicate to establish and maintain immune homeostasis are currently unknown. Clinical evidence suggests that chronic or repeated exposure to self antigen within tissues leads to an attenuation of pathological autoimmune responses, possibly as a means to mitigate inflammatory damage and preserve function. Many human organ-specific autoimmune diseases are characterized by the initial presentation of the disease being the most severe, with subsequent flares being of lesser severity and duration. In fact, these diseases often spontaneously resolve, despite persistent tissue autoantigen expression. In the practice of antigen-specific immunotherapy, allergens or self antigens are repeatedly injected in the skin, with a diminution of the inflammatory response occurring after each successive exposure. Although these findings indicate that tissues acquire the ability to attenuate autoimmune reactions upon repeated responses to antigens, the mechanism by which this occurs is unknown. Here we show that upon expression of self antigen in a peripheral tissue, thymus-derived regulatory T cells (Treg cells) become activated, proliferate and differentiate into more potent suppressors, which mediate resolution of organ-specific autoimmunity in mice. After resolution of the inflammatory response, activated Treg cells are maintained in the target tissue and are primed to attenuate subsequent autoimmune reactions when antigen is re-expressed. Thus, Treg cells function to confer ‘regulatory memory’ to the target tissue. These findings provide a framework for understanding how Treg cells respond when exposed to self antigen in peripheral tissues and offer mechanistic insight into how tissues regulate autoimmunity.", "title": "Response to self antigen imprints regulatory memory in tissues" }, { "docid": "14105446", "text": "In this experiment actinomycin D was used to explore the action of the wound epidermis on underlying tissues during limb regeneration. In axolotl forelimbs the skin was removed from the elbow to the shoulder. Skin from the right limbs was soaked for three hours in actinomycin D (5.0 or 10.0 μg/ml 0.6% NaCl). For controls, skin from left limbs was soaked in 0.6% NaCl for the same period of time. Each piece of skin was orthotopically replanted, and both limbs were amputated through the treated skin, proximal to the elbow. After an initial healing period, the control limbs regenerated normally. Except for a slightly paler color, limbs bearing actinomycin-treated skin were indistinguishable from the controls, both grossly and histologically, during the first week following amputation. While the control limbs formed early blastemas, no grossly visible evidence of regeneration was apparent in the experimental limbs, but histologically some dedifferentiation was occurring. Normally three to four digits were seen in the control regenerates before blastemas appeared on the experimental limbs. By 35–40 days blastemas had appeared on most experimental limbs. These developed very rapidly, and within a short time many of them had attained levels of development close to the controls. Actinomycin D temporarily suppresses formation of the apical epidermal cap and the subsequent aggregation of dedifferentiated cells into a blastema. When the effect wears off, an apical cap forms and the dedifferentiated cells quickly organize into a blastema and begin to differentiate.", "title": "Inhibition of limb regeneration in the axolotl after treatment of the skin with actinomycin D." }, { "docid": "834336", "text": "Hutchinson–Gilford progeria syndrome (HGPS; OMIM 176670) is an extremely rare but devastating disorder that mimics premature aging.1–3 Affected children appear normal at birth but typically develop failure to thrive in the first two years. Other features include alopecia, micrognathia, loss of subcutaneous fat with prominent veins, abnormal dentition, sclerodermatous skin changes, and osteolysis of the clavicles and distal phalanges. The mean age of death is at age 13 years, most commonly due to atherosclerosis. HGPS is mainly sporadic in occurrence, but a genetic cause has now been implicated following the identification of de novo heterozygous mutations in the LMNA gene in the majority of HGPS patients.4,5 A single family showing autosomal recessive inheritance of homozygous LMNA mutations has also been reported.6 LMNA encodes lamins A and C, components of the nuclear lamina, a meshwork underlying the nuclear envelope that serves as a structural support and is also thought to contribute to chromatin organisation and the regulation of gene expression.7,8 Interestingly, mutations in LMNA have recently been associated with at least eight inherited disorders, known as laminopathies, with differential dystrophic effects on a variety of tissues including muscle, neurones, skin, bone, and adipose tissue (reviewed in Mounkes et al 9). However, the realisation that these disorders share common genetic defects has led to clinical re-evaluation, with emerging evidence of significant phenotypic overlap.10 Hence the laminopathies might reasonably be considered as a spectrum of related diseases. HGPS has phenotypic similarities to several other laminopathies, in particular the atypical Werner’s syndrome11 and mandibuloacral dysplasia (MAD; OMIM 248370 and 608612).12 These diseases are associated with lipodystrophy,3,13 which is the most prominent feature of another laminopathy, familial partial lipodystrophy of the Dunnigan variety (OMIM 151660).14 MAD has been further classified as two …", "title": "Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype." }, { "docid": "4380451", "text": "Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.", "title": "Reprogramming of human somatic cells to pluripotency with defined factors" }, { "docid": "19343151", "text": "The cell-cycle regulating gene, p16INK4A, encoding an inhibitor of cyclin-dependent kinases 4 and 6, is considered to play an important role in cellular aging and in premature senescence. Although there is an age-dependent increase of p16INK4A expression in human fibroblast senescence in vitro, no data are available regarding the age dependency of p16INK4A in vivo. To determine whether p16INK4A expression in human skin correlates with donor age, p16INK4A expression was analyzed by immunohistochemistry as well as the expression of the p16INK4A repressor BMI1. Samples from the age groups 0-20, 21-70, and 71-95 years were selected from a bank of healthy human skin. We show that the number of p16INK4A positive cells is significantly higher in elderly individuals compared to the younger age groups. The number of p16INK4A positive cells was found to be increased in both epidermis and dermis, compartments with strictly different proliferative activities. BMI1 gene expression was significantly down-regulated with increasing donor age, whereas no striking age differences were observed for Ki67. In immunofluorescence co-expression studies, Ki67-positive cells were negative for p16INK4A and BMI1-expressing cells also stained negatively for Ki67. In conclusion, we provide for the first time evidence that p16INK4A expression directly correlates with chronological aging of human skin in vivo. p16INK4A therefore is a biomarker for human aging in vivo. The data reported here suggest a model for changes in regulatory gene expression that drive aging in human skin.", "title": "p16INK4A is a robust in vivo biomarker of cellular aging in human skin." }, { "docid": "24155601", "text": "To systematically review clinical and preclinical data on hydroxyethyl starch (HES) tissue storage. MEDLINE (PubMed) was searched and abstracts were screened using defined criteria to identify articles containing original data on HES tissue accumulation. Forty-eight studies were included: 37 human studies with a total of 635 patients and 11 animal studies. The most frequent indication for fluid infusion was surgery accounting for 282 patients (45.9 %). HES localization in skin was shown by 17 studies, in kidney by 12, in liver by 8, and in bone marrow by 5. Additional sites of HES deposition were lymph nodes, spleen, lung, pancreas, intestine, muscle, trophoblast, and placental stroma. Among major organs the highest measured tissue concentration of HES was in the kidney. HES uptake into intracellular vacuoles was observed by 30 min after infusion. Storage was cumulative, increasing in proportion to dose, although in 15 % of patients storage and associated symptoms were demonstrated at the lowest cumulative doses (0.4 g kg−1). Some HES deposits were extremely long-lasting, persisting for 8 years or more in skin and 10 years in kidney. Pruritus associated with HES storage was described in 17 studies and renal dysfunction in ten studies. In one included randomized trial, HES infusion produced osmotic nephrosis-like lesions indicative of HES storage (p = 0.01) and also increased the need for renal replacement therapy (odds ratio, 9.50; 95 % confidence interval, 1.09–82.7; p = 0.02). The tissue distribution of HES was generally similar in animals and humans. Tissue storage of HES is widespread, rapid, cumulative, frequently long-lasting, and potentially harmful.", "title": "Accumulation of hydroxyethyl starch in human and animal tissues: a systematic review" }, { "docid": "2474731", "text": "The cornea is an immune privileged tissue. Since arginase has been found to modulate T-cell function by depleting arginine, we investigated the expression of arginase in the cornea and its possible role in immune privilege using a murine transplant model. We found that both the endothelium and epithelium of murine corneas express functional arginase I, capable of down-regulating T-cell proliferation in an in vitro culture system. The administration of the specific arginase inhibitor N-hydroxy-nor-L-Arg to recipient mice resulted in an accelerated rejection of allogeneic C57BL/6 (B6) corneal grafts. In contrast, in vivo blockade of arginase activity had no effect in altering the course of rejection of primary skin grafts that express little, if any, arginase. In addition, the inhibition of arginase did not alter systemic T-cell proliferation. These data show that arginase is functional in the cornea and contributes to the immune privilege of the eye, and that modulation of arginase contributes to graft survival.", "title": "Arginine depletion as a mechanism for the immune privilege of corneal allografts" }, { "docid": "19799455", "text": "The only proven requirement for ascorbic acid (vitamin C) is in preventing scurvy, presumably because it is a cofactor for hydroxylases required for post-translational modifications that stabilize collagen. We have created mice deficient in the mouse ortholog (solute carrier family 23 member 1 or Slc23a1) of a rat ascorbic-acid transporter, Svct2 (ref. 4). Cultured embryonic fibroblasts from homozygous Slc23a1−/− mice had less than 5% of normal ascorbic-acid uptake. Ascorbic-acid levels were undetectable or markedly reduced in the blood and tissues of Slc23a1−/− mice. Prenatal supplementation of pregnant females did not elevate blood ascorbic acid in Slc23a1−/− fetuses, suggesting Slc23a1 is important in placental ascorbic-acid transport. Slc23a1−/− mice died within a few minutes of birth with respiratory failure and intraparenchymal brain hemorrhage. Lungs showed no postnatal expansion but had normal surfactant protein B levels. Brain hemorrhage was unlikely to be simply a form of scurvy since Slc23a1−/− mice showed no hemorrhage in any other tissues and their skin had normal skin 4-hydroxyproline levels despite low ascorbic-acid content. We conclude that Slc23a1 is required for transport of ascorbic acid into many tissues and across the placenta. Deficiency of the transporter is lethal in newborn mice, thereby revealing a previously unrecognized requirement for ascorbic acid in the perinatal period.", "title": "Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival" }, { "docid": "20279166", "text": "Label-free DNA imaging is highly desirable in biology and medicine to perform live imaging without affecting cell function and to obtain instant histological tissue examination during surgical procedures. Here we show a label-free DNA imaging method with stimulated Raman scattering (SRS) microscopy for visualization of the cell nuclei in live animals and intact fresh human tissues with subcellular resolution. Relying on the distinct Raman spectral features of the carbon-hydrogen bonds in DNA, the distribution of DNA is retrieved from the strong background of proteins and lipids by linear decomposition of SRS images at three optimally selected Raman shifts. Based on changes on DNA condensation in the nucleus, we were able to capture chromosome dynamics during cell division both in vitro and in vivo. We tracked mouse skin cell proliferation, induced by drug treatment, through in vivo counting of the mitotic rate. Furthermore, we demonstrated a label-free histology method for human skin cancer diagnosis that provides comparable results to other conventional tissue staining methods such as H&E. Our approach exhibits higher sensitivity than SRS imaging of DNA in the fingerprint spectral region. Compared with spontaneous Raman imaging of DNA, our approach is three orders of magnitude faster, allowing both chromatin dynamic studies and label-free optical histology in real time.", "title": "Label-free DNA imaging in vivo with stimulated Raman scattering microscopy." }, { "docid": "14241418", "text": "Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR). NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells. The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status. The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235. NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab. In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity. In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies. In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha.", "title": "NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations." }, { "docid": "11238951", "text": "Kaposi's sarcoma-associated herpesvirus (KSHV), also termed human herpesvirus type 8, is consistently identified in Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. Here we report four cases of KSHV-bearing solid lymphomas that occurred in AIDS patients (cases 1 to 3) and in a human immunodeficiency virus (HIV)-seronegative person (case 4). The patients presented extranodal masses in the abdomen (cases 1, 3, and 4) or skin (case 2), and nodal involvement, together with Kaposi's sarcoma (case 3). The gastrointestinal tract was involved in two patients (cases 1 and 3). The patients did not develop a lymphomatous effusion. KSHV was detected in the tumor cells of all cases by immunohistochemistry and by polymerase chain reaction. Epstein-Barr virus was detected in two of the HIV-related cases. All KSHV-positive solid lymphomas exhibited PEL-like cell morphology. To investigate the relationship of these disorders to PEL and to other AIDS-associated diffuse large cell lymphomas, KSHV-positive solid lymphomas were tested for the expression of a set of genes that were previously shown by gene profiling analysis to define PEL tumor cells. The results showed that expression of this set of genes in KSHV-positive lymphomas is similar to that of PEL but distinct from KSHV-negative AIDS-associated diffuse large cell lymphomas. Because pathobiological features of KSHV-positive solid lymphomas closely mimic those of PEL, our results suggest that KSHV-positive solid lymphomas should be considered as a tissue-based variant of classical PEL, irrespective of HIV status.", "title": "Kaposi's sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma." }, { "docid": "18488986", "text": "The expression of melanoma-associated antigens (MAA) being limited to normal melanocytes and melanomas, MAAs are ideal targets for immunotherapy and melanoma vaccines. As MAAs are derived from self, immune responses to these may be limited by thymic tolerance. The extent to which self-tolerance prevents efficient immune responses to MAAs remains unknown. The autoimmune regulator (AIRE) controls the expression of tissue-specific self-antigens in thymic epithelial cells (TECs). The level of antigens expressed in the TECs determines the fate of auto-reactive thymocytes. Deficiency in AIRE leads in both humans (APECED patients) and mice to enlarged autoreactive immune repertoires. Here we show increased IgG levels to melanoma cells in APECED patients correlating with autoimmune skin features. Similarly, the enlarged T cell repertoire in AIRE(-/-) mice enables them to mount anti-MAA and anti-melanoma responses as shown by increased anti-melanoma antibodies, and enhanced CD4(+) and MAA-specific CD8(+) T cell responses after melanoma challenge. We show that thymic expression of gp100 is under the control of AIRE, leading to increased gp100-specific CD8(+) T cell frequencies in AIRE(-/-) mice. TRP-2 (tyrosinase-related protein), on the other hand, is absent from TECs and consequently TRP-2 specific CD8(+) T cells were found in both AIRE(-/-) and AIRE(+/+) mice. This study emphasizes the importance of investigating thymic expression of self-antigens prior to their inclusion in vaccination and immunotherapy strategies.", "title": "The Immune Response to Melanoma Is Limited by Thymic Selection of Self-Antigens" }, { "docid": "12580014", "text": "Expression of the intermediate filament protein keratin 17 (K17) is robustly upregulated in inflammatory skin diseases and in many tumors originating in stratified and pseudostratified epithelia. We report that autoimmune regulator (Aire), a transcriptional regulator, is inducibly expressed in human and mouse tumor keratinocytes in a K17-dependent manner and is required for timely onset of Gli2-induced skin tumorigenesis in mice. The induction of Aire mRNA in keratinocytes depends on a functional interaction between K17 and the heterogeneous nuclear ribonucleoprotein hnRNP K. Further, K17 colocalizes with Aire protein in the nucleus of tumor-prone keratinocytes, and each factor is bound to a specific promoter region featuring an NF-κB consensus sequence in a relevant subset of K17- and Aire-dependent proinflammatory genes. These findings provide radically new insight into keratin intermediate filament and Aire function, along with a molecular basis for the K17-dependent amplification of inflammatory and immune responses in diseased epithelia.", "title": "Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes" }, { "docid": "2248870", "text": "T cell trafficking into the lung is critical for lung immunity, but the mechanisms that mediate T cell lung homing are not well understood. Here, we show that lung dendritic cells (DCs) imprint T cell lung homing, as lung DC-activated T cells traffic more efficiently into the lung in response to inhaled antigen and at homeostasis compared with T cells activated by DCs from other tissues. Consequently, lung DC-imprinted T cells protect against influenza more effectively than do gut and skin DC-imprinted T cells. Lung DCs imprint the expression of CCR4 on T cells, and CCR4 contributes to T cell lung imprinting. Lung DC-activated, CCR4-deficient T cells fail to traffic into the lung as efficiently and to protect against influenza as effectively as lung DC-activated, CCR4-sufficient T cells. Thus, lung DCs imprint T cell lung homing and promote lung immunity in part through CCR4.", "title": "Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4" }, { "docid": "26461066", "text": "1. Following the dermal application of the carbon-14 labelled broad spectrum antimycotic 6-cyclohexyl-1-hydroxy-4-methyl-2(1H)-pyridone, 2-aminoethanol salt (ciclopiroxolamine, Hoe 296, Batrafen) in the form of a 1% aqueous cream to healthy human dorsal skin (penetration time: 6 h; occlusive dressing for 5 h), percutaneous absorption accounted on average for 1.3% of the dose applied. Excretion occurred via the kidney, with biological half-lives of 1.7 h. As can be seen from penetration studies of cadaverous skin, the horny layer contained the highest concentrations, with values of 2300-4500 microgram/cm3. The levels determined in the corium were still above the minimum inhibitory concentrations. These concentrations were already obtained at the first test stage (1.5 h after application) and did not change virtually at all over the longer penetration period. According to studies using histoautoradiography, ciclopirox can penetrate the skin via the epidermis and the hair follicles. When ciclopirox-14C-olamine aqueous cream was spread on the surface of fingernails, the radioactive-labelled compound penetrated right through the nail. The percutaneous absorption in dogs was higher, at 5-15% of the dose, than it was in humans. 2. After vaginal application (1 mg/kg) of ciclopirox-14C-olamine in the form of a 1% aqueous cream to bitches, between 42 and 97% of the dose (depending on the animal) was recovered in the urine and faeces, the remainder having penetrated into the tampon used to close the vagina. 3. Ciclopirox is excreted by dogs and man in the urine, primarily as a glucuronide. In humans another glucuronide with properties similar to those of the original substance was detected. Two conjugated, relatively non-polar metabolites were also present in small amounts. The metabolite patterns after oral and dermal application were similar. The binding of ciclopirox to serum proteins in humans was 96 +/- 2% in a concentration range of 0.01-11.0 microgram/ml. 4. Placental transfer was low in the rats studied. Though there was good absorption by the mother animal, the radioactivity in the foetal tissues was always lower than that of the maternal blood.", "title": "[Pharmacokinetics and biotransformation of the antimycotic drug ciclopiroxolamine in animals and man after topical and systemic administration]." }, { "docid": "6751418", "text": "UNLABELLED In patients with a large, multinodular goiter (> 100 g), radiation absorbed doses in the thyroid, surrounding tissues and remainder of the body were estimated after therapeutic administration of 131I(3.7 MBq or 100 microCi/g of thyroid tissue retained at 24 hr). \n METHODS Thermoluminescent dosimeter (TLD) measurements were performed on 23 patients (12 euthyroid and 1I hyperthyroid; thyroid weight 222 +/- 72 g; 2.1 +/- 0.9 GBq 131I) on the skin over the thyroid, over the submandibular gland and over the parotid gland. Thyroid radioactivity measurements were done daily in 6 euthyroid and 6 hyperthyroid patients (thyroid weight 204 +/- 69 g; 1.9 +/- 0.9 GBq 131I). An iodine biokinetic model and the MIRD methodology were used to estimate absorbed doses in organs. Cancer risks were calculated using ICRP Publication 60. \n RESULTS Cumulated absorbed doses on the skin (TLD measurements) were 4.2 +/- 1.4 Gy (thyroid), 1.2 +/- 0.6 Gy (submandibular) and 0.4 +/- 0.2 Gy (parotid). All these values were significantly correlated with the amount of radioiodine retained in the thyroid at 24 hr (euthyroid versus hyperthyroid not significant). Absorbed doses in the thyroid of 94 +/- 25 Gy for euthyroid and 93 +/- 17 Gy for hyperthyroid patients were calculated (thyroid radioactivity measurements). Extrathyroidal absorbed doses (means of 12 patients) were 0.88 Gy in the urinary bladder, 0.57 Gy in the small intestine, 0.38 Gy in the stomach, and ranged from 0.05 to 0.30 Gy in other organs (euthyroid versus hyperthyroid not significant). A 1.6% life-time risk of development of cancer outside the thyroid gland was calculated. When applied to people of 65 yr and older the estimated risk is approximately 0.5%. \n CONCLUSION These data may help in choosing the treatment regimen for individual patients with a large, multinodular goiter, who have to be treated for hyperthyroidism or compressive problems. In younger patients, surgery may be preferred. However, for elderly patients and patients with cardiopulmonary disease, the advantages of noninvasive radioiodine treatment will outweight the life-time risk of this mode of therapy.", "title": "Dosimetry and risk estimates of radioiodine therapy for large, multinodular goiters." }, { "docid": "6673421", "text": "Angiogenesis, the development of new blood vessel from pre-existing vessels, is a key process in the formation of the granulation tissue during wound healing. The appropriate development of new blood vessels, along with their subsequent maturation and differentiation, establishes the foundation for functional wound neovasculature. We performed studies in vivo and used a variety of cellular and molecular approaches in vitro to show that insulin stimulates angiogenesis and to elucidate the signalling mechanisms by which this protein stimulates microvessel development. Mice skin injected with insulin shows longer vessels with more branches, along with increased numbers of associated alpha-smooth muscle actin-expressing cells, suggesting the appropriate differentiation and maturation of the new vessels. We also found that insulin stimulates human microvascular endothelial cell migration and tube formation, and that these effects occur independently of VEGF/VEGFR signalling, but are dependent upon the insulin receptor itself. Downstream signalling pathways involve PI3K, Akt, sterol regulatory element-binding protein 1 (SREBP-1) and Rac1; inhibition of these pathways results in elimination of endothelial cell migration and tube formation and significantly decreases the development of microvessels. Our findings strongly suggest that insulin is a good candidate for the treatment of ischaemic wounds and other conditions in which blood vessel development is impaired.", "title": "Cell and molecular mechanisms of insulin-induced angiogenesis" }, { "docid": "496873", "text": "Vasculitis, inflammation of the vessel wall, can result in mural destruction with hemorrhage, aneurysm formation, and infarction, or intimal-medial hyperplasia and subsequent stenosis leading to tissue ischemia. The skin, in part due to its large vascular bed, exposure to cold temperatures, and frequent presence of stasis, is involved in many distinct as well as un-named vasculitic syndromes that vary from localized and self-limited to generalized and life-threatening with multi-organ disease. To exclude mimics of vasculitis, diagnosis of cutaneous vasculitis requires biopsy confirmation where its acute signs (fibrinoid necrosis), chronic signs (endarteritis obliterans), or past signs (acellular scar of healed arteritis) must be recognized and presence of extravascular findings such as patterned fibrosis or collagenolytic granulomas noted. Although vasculitis can be classified by etiology, many cases have no identifiable cause, and a single etiologic agent can elicit several distinct clinicopathologic expressions of vasculitis. Therefore, the classification of cutaneous vasculitis is best approached morphologically by determining vessel size and principal inflammatory response. These histologic patterns roughly correlate with pathogenic mechanisms that, when coupled with direct immunofluorescent examination, anti-neutrophil cytoplasmic antibody (ANCA) status, and findings from work-up for systemic disease, allow for specific diagnosis, and ultimately, more effective therapy. Herein, we review cutaneous vasculitis focusing on diagnostic criteria, classification, epidemiology, etiology, pathogenesis, and evaluation of the cutaneous vasculitis patient.", "title": "CRITICAL REVIEW Cutaneous Vasculitis Update: Diagnostic Criteria," }, { "docid": "9769684", "text": "BACKGROUND Radio Frequency Identification (RFID) devices are becoming more and more essential for patient safety in hospitals. The purpose of this study was to determine patient safety, data reliability and signal loss wearing on skin RFID devices during magnetic resonance imaging (MRI) and computed tomography (CT) scanning. \n METHODS Sixty RFID tags of the type I-Code SLI, 13.56 MHz, ISO 18000-3.1 were tested: Thirty type 1, an RFID tag with a 76 x 45 mm aluminum-etched antenna and 30 type 2, a tag with a 31 x 14 mm copper-etched antenna. The signal loss, material movement and heat tests were performed in a 1.5 T and a 3 T MR system. For data integrity, the tags were tested additionally during CT scanning. Standardized function tests were performed with all transponders before and after all imaging studies. \n RESULTS There was no memory loss or data alteration in the RFID tags after MRI and CT scanning. Concerning heating (a maximum of 3.6 degrees C) and device movement (below 1 N/kg) no relevant influence was found. Concerning signal loss (artifacts 2 - 4 mm), interpretability of MR images was impaired when superficial structures such as skin, subcutaneous tissues or tendons were assessed. \n CONCLUSIONS Patients wearing RFID wristbands are safe in 1.5 T and 3 T MR scanners using normal operation mode for RF-field. The findings are specific to the RFID tags that underwent testing.", "title": "Safety and reliability of Radio Frequency Identification Devices in Magnetic Resonance Imaging and Computed Tomography" }, { "docid": "14408200", "text": "CONTEXT Rates of hospital-onset methicillin-resistant Staphylococcus aureus (MRSA) infections are reported as decreasing, but recent rates of community-onset S. aureus infections are less known. \n OBJECTIVES To characterize the overall and annual incidence rates of community-onset and hospital-onset S. aureus bacteremia and skin and soft tissue infections (SSTIs) in a national health care system and to evaluate trends in the incidence rates of S. aureus bacteremia and SSTIs and the proportion due to MRSA. \n DESIGN, SETTING, AND PARTICIPANTS Observational study of all Department of Defense TRICARE beneficiaries from January 2005 through December 2010. Medical record databases were used to identify and classify all annual first-positive S. aureus blood and wound or abscess cultures as methicillin-susceptible S. aureus or MRSA, and as community-onset or hospital-onset infections (isolates collected >3 days after hospital admission). \n MAIN OUTCOME MEASURES Unadjusted incidence rates per 100,000 person-years of observation, the proportion of infections that was due to MRSA, and annual trends for 2005 through 2010 (examined using the Spearman rank correlation test or the Mantel-Haenszel χ2 test for linear trend). \n RESULTS During 56 million person-years (nonactive duty: 47 million person-years; active duty: 9 million person-years), there were 2643 blood and 80,281 wound or abscess annual first-positive S. aureus cultures. Annual incidence rates varied from 3.6 to 6.0 per 100,000 person-years for S. aureus bacteremia and 122.7 to 168.9 per 100,000 person-years for S. aureus SSTIs. The annual incidence rates for community-onset MRSA bacteremia decreased from 1.7 per 100,000 person-years (95% CI, 1.5-2.0 per 100,000 person-years) in 2005 to 1.2 per 100,000 person-years (95% CI, 0.9-1.4 per 100,000 person-years) in 2010 (P = .005 for trend). The annual incidence rates for hospital-onset MRSA bacteremia also decreased from 0.7 per 100,000 person-years (95% CI, 0.6-0.9 per 100,000 person-years) in 2005 to 0.4 per 100,000 person-years (95% CI, 0.3-0.5 per 100,000 person-years) in 2010 (P = .005 for trend). Concurrently, the proportion of community-onset SSTI due to MRSA peaked at 62% in 2006 before decreasing annually to 52% in 2010 (P < .001 for trend). \n CONCLUSION In the Department of Defense population consisting of men and women of all ages from across the United States, the rates of both community-onset and hospital-onset MRSA bacteremia decreased in parallel, while the proportion of community-onset SSTIs due to MRSA has more recently declined.", "title": "Epidemiology of Staphylococcus aureus blood and skin and soft tissue infections in the US military health system, 2005-2010." } ]
1009
RUNX1 is downregulated or mutated in TLX1 T-ALL.
[ { "docid": "1982286", "text": "The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.", "title": "Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL" } ]
[ { "docid": "8385277", "text": "Fanconi anemia (FA) is a genetic condition associated with bone marrow (BM) failure, myelodysplasia (MDS), and acute myeloid leukemia (AML). We studied 57 FA patients with hypoplastic or aplastic anemia (n = 20), MDS (n = 18), AML (n = 11), or no BM abnormality (n = 8). BM samples were analyzed by karyotype, high-density DNA arrays with respect to paired fibroblasts, and by selected oncogene sequencing. A specific pattern of chromosomal abnormalities was found in MDS/AML, which included 1q+ (44.8%), 3q+ (41.4%), -7/7q (17.2%), and 11q- (13.8%). Moreover, cryptic RUNX1/AML1 lesions (translocations, deletions, or mutations) were observed for the first time in FA (20.7%). Rare mutations of NRAS, FLT3-ITD, MLL-PTD, ERG amplification, and ZFP36L2-PRDM16 translocation, but no TP53, TET2, CBL, NPM1, and CEBPα mutations were found. Frequent homozygosity regions were related not to somatic copy-neutral loss of heterozygosity but to consanguinity, suggesting that homologous recombination is not a common progression mechanism in FA. Importantly, the RUNX1 and other chromosomal/genomic lesions were found at the MDS/AML stages, except for 1q+, which was found at all stages. These data have implications for staging and therapeutic managing in FA patients, and also to analyze the mechanisms of clonal evolution and oncogenesis in a background of genomic instability and BM failure.", "title": "Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions." }, { "docid": "16364639", "text": "By analyzing gene expression data in glioblastoma in combination with matched microRNA profiles, we have uncovered a posttranscriptional regulation layer of surprising magnitude, comprising more than 248,000 microRNA (miR)-mediated interactions. These include ∼7,000 genes whose transcripts act as miR \"sponges\" and 148 genes that act through alternative, nonsponge interactions. Biochemical analyses in cell lines confirmed that this network regulates established drivers of tumor initiation and subtype implementation, including PTEN, PDGFRA, RB1, VEGFA, STAT3, and RUNX1, suggesting that these interactions mediate crosstalk between canonical oncogenic pathways. siRNA silencing of 13 miR-mediated PTEN regulators, whose locus deletions are predictive of PTEN expression variability, was sufficient to downregulate PTEN in a 3'UTR-dependent manner and to increase tumor cell growth rates. Thus, miR-mediated interactions provide a mechanistic, experimentally validated rationale for the loss of PTEN expression in a large number of glioma samples with an intact PTEN locus.", "title": "An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma" }, { "docid": "28206748", "text": "CBFbeta is the non-DNA binding subunit of the core binding factors (CBFs). Mice with reduced CBFbeta levels display profound, early defects in T-cell but not B-cell development. Here we show that CBFbeta is also required at very early stages of natural killer (NK)-cell development. We also demonstrate that T-cell development aborts during specification, as the expression of Gata3 and Tcf7, which encode key regulators of T lineage specification, is substantially reduced, as are functional thymic progenitors. Constitutively active Notch or IL-7 signaling cannot restore T-cell expansion or differentiation of CBFbeta insufficient cells, nor can overexpression of Runx1 or CBFbeta overcome a lack of Notch signaling. Therefore, the ability of the prethymic cell to respond appropriately to Notch is dependent on CBFbeta, and both signals converge to activate the T-cell developmental program.", "title": "Core binding factors are necessary for natural killer cell development and cooperate with Notch signaling during T-cell specification." }, { "docid": "34905328", "text": "The TCR:CD3 complex transduces signals that are critical for optimal T cell development and adaptive immunity. In resting T cells, the CD3ε cytoplasmic tail associates with the plasma membrane via a proximal basic-rich stretch (BRS). In this study, we show that mice lacking a functional CD3ε-BRS exhibited substantial reductions in thymic cellularity and limited CD4- CD8- double-negative (DN) 3 to DN4 thymocyte transition, because of enhanced DN4 TCR signaling resulting in increased cell death and TCR downregulation in all subsequent populations. Furthermore, positive, but not negative, T cell selection was affected in mice lacking a functional CD3ε-BRS, which led to limited peripheral T cell function and substantially reduced responsiveness to influenza infection. Collectively, these results indicate that membrane association of the CD3ε signaling domain is required for optimal thymocyte development and peripheral T cell function.", "title": "Membrane association of the CD3ε signaling domain is required for optimal T cell development and function." }, { "docid": "22049489", "text": "The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy.", "title": "The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1." }, { "docid": "12315072", "text": "At the cellular level, development progresses through successive regulatory states, each characterized by their specific gene expression profile. However, the molecular mechanisms regulating first the priming and then maintenance of gene expression within one developmental pathway are essentially unknown. The hematopoietic system represents a powerful experimental model to address these questions and here we have focused on a regulatory circuit playing a central role in myelopoiesis: the transcription factor PU.1, its target gene colony-stimulating-factor 1 receptor (Csf1r), and key upstream regulators such as RUNX1. We find that during ontogeny, chromatin unfolding precedes the establishment of active histone marks and the formation of stable transcription factor complexes at the Pu.1 locus and we show that chromatin remodeling is mediated by the transient binding of RUNX1 to Pu.1 cis-elements. By contrast, chromatin reorganization of Csf1r requires prior expression of PU.1 together with RUNX1 binding. Once the full hematopoietic program is established, stable transcription factor complexes and active chromatin can be maintained without RUNX1. Our experiments therefore demonstrate how individual transcription factors function in a differentiation stage-specific manner to differentially affect the initiation versus maintenance of a developmental program.", "title": "Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program." }, { "docid": "2359152", "text": "High-throughput DNA sequencing significantly contributed to diagnosis and prognostication in patients with myelodysplastic syndromes (MDS). We determined the biological and prognostic significance of genetic aberrations in MDS. In total, 944 patients with various MDS subtypes were screened for known/putative mutations/deletions in 104 genes using targeted deep sequencing and array-based genomic hybridization. In total, 845/944 patients (89.5%) harbored at least one mutation (median, 3 per patient; range, 0-12). Forty-seven genes were significantly mutated with TET2, SF3B1, ASXL1, SRSF2, DNMT3A, and RUNX1 mutated in >10% of cases. Many mutations were associated with higher risk groups and/or blast elevation. Survival was investigated in 875 patients. By univariate analysis, 25/48 genes (resulting from 47 genes tested significantly plus PRPF8) affected survival (P<0.05). The status of 14 genes combined with conventional factors revealed a novel prognostic model ('Model-1') separating patients into four risk groups ('low', 'intermediate', 'high', 'very high risk') with 3-year survival of 95.2, 69.3, 32.8, and 5.3% (P<0.001). Subsequently, a 'gene-only model' ('Model-2') was constructed based on 14 genes also yielding four significant risk groups (P<0.001). Both models were reproducible in the validation cohort (n=175 patients; P<0.001 each). Thus, large-scale genetic and molecular profiling of multiple target genes is invaluable for subclassification and prognostication in MDS patients.", "title": "Landscape of genetic lesions in 944 patients with myelodysplastic syndromes" }, { "docid": "13048272", "text": "Combinatorial transcription factor (TF) interactions control cellular phenotypes and, therefore, underpin stem cell formation, maintenance, and differentiation. Here, we report the genome-wide binding patterns and combinatorial interactions for ten key regulators of blood stem/progenitor cells (SCL/TAL1, LYL1, LMO2, GATA2, RUNX1, MEIS1, PU.1, ERG, FLI-1, and GFI1B), thus providing the most comprehensive TF data set for any adult stem/progenitor cell type to date. Genome-wide computational analysis of complex binding patterns, followed by functional validation, revealed the following: first, a previously unrecognized combinatorial interaction between a heptad of TFs (SCL, LYL1, LMO2, GATA2, RUNX1, ERG, and FLI-1). Second, we implicate direct protein-protein interactions between four key regulators (RUNX1, GATA2, SCL, and ERG) in stabilizing complex binding to DNA. Third, Runx1(+/-)::Gata2(+/-) compound heterozygous mice are not viable with severe hematopoietic defects at midgestation. Taken together, this study demonstrates the power of genome-wide analysis in generating novel functional insights into the transcriptional control of stem and progenitor cells.", "title": "Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators." }, { "docid": "85665741", "text": "5247 Constitutive ERK signaling is common in human cancer and is often the result of activating mutations of BRAF, RAS and upstream receptor tyrosine kinases. Missense BRAF kinase domain mutations are frequently observed in melanoma, colon and thyroid cancers and less frequently in lung and other cancer types. The vast majority (>90%) involve a glutamic acid for valine substitution at codon 600 (V600E), which results in elevated BRAF kinase activity. BRAF kinase domain mutations with intermediate and impaired kinase activity have also been identified, most frequently in NSCLC. We have previously reported that tumors with V600E BRAF mutation are selectively sensitive to MEK inhibition. Using the potent and selective MEK1/2 inhibitor PD0325901 (Pfizer), we examined a panel of NSCLC cell lines with mutant EGFR, KRAS, and/or low, intermediate and high-activity BRAF kinase domain mutations for MEK dependence. In all but one case, EGFR, KRAS and BRAF mutations were mutually exclusive with the exception being a cell line with concurrent NRAS and intermediate activity BRAF mutations. Consistent with our prior results, NSCLC cells with V600E BRAF mutation were exquisitely sensitive to MEK inhibition (PD0325901 IC50 of 2nM). The proliferation of cells with non-V600E mutations, including those with high (G469A), intermediate (L597V) and impaired (G466V) kinase activities, was also MEK dependent with IC50’s ranging between 2.7 and 80 nM. Inhibition of MEK in these cells resulted in downregulation of cyclin D1 and G1 growth arrest, with variable induction of apoptosis. Despite high basal ERK activity, NSCLC tumor cells with EGFR mutation were uniformly resistant to MEK inhibition (at doses of up to 500nM), despite effective and prolonged inhibition of ERK phosphorylation. Tumor cells with RAS mutation had a more variable response, with some cell lines demonstrating sensitivity, while others were completely resistant. There was no correlation between basal ERK activity and sensitivity to MEK inhibition. A strong inverse correlation between Akt activity and PD0325901 sensitivity was observed. These results suggest that MEK inhibition may be useful therapeutically in tumors with V600E and non-V600E BRAF kinase domain mutations. The results also suggest that inhibition of both MEK and Akt signaling may be required in NSCLC tumors with high basal AKT activity.", "title": "BRAF mutation predicts for MEK-dependence in non-small cell lung cancer (NSCLC)." }, { "docid": "9076196", "text": "Recent studies have established that during embryonic development, hematopoietic progenitors and stem cells are generated from hemogenic endothelium precursors through a process termed endothelial to hematopoietic transition (EHT). The transcription factor RUNX1 is essential for this process, but its main downstream effectors remain largely unknown. Here, we report the identification of Gfi1 and Gfi1b as direct targets of RUNX1 and critical regulators of EHT. GFI1 and GFI1B are able to trigger, in the absence of RUNX1, the down-regulation of endothelial markers and the formation of round cells, a morphologic change characteristic of EHT. Conversely, blood progenitors in Gfi1- and Gfi1b-deficient embryos maintain the expression of endothelial genes. Moreover, those cells are not released from the yolk sac and disseminated into embryonic tissues. Taken together, our findings demonstrate a critical and specific role of the GFI1 transcription factors in the first steps of the process leading to the generation of hematopoietic progenitors from hemogenic endothelium.", "title": "GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment." }, { "docid": "13108582", "text": "Osteopontin (OPN), a key component of the extracellular matrix, is associated with the fibrotic process during tissue remodeling. OPN and the cytokine interleukin (IL)-18 have been shown to be overexpressed in an array of human cardiac pathologies. In the present study, we determined the role of IL-18 in the regulation of cardiac OPN expression and the subsequent interstitial fibrosis and diastolic dysfunction. We demonstrated parallel increases in IL-18, OPN expression, and interstitial fibrosis in murine models of left ventricular pressure and volume overload. Exogenous recombinant (r)IL-18 administered for 2 wk increased cardiac OPN expression, interstitial fibrosis, and diastolic dysfunction. Stimulation of the T helper (Th)1 lymphocyte phenotype with a selective toll-like receptor (TLR)9 agonist induced cardiac IL-18 and OPN expression, which was associated with increased cardiac fibrillar collagen concentrations and interstitial fibrosis resulting in diastolic dysfunction. rIL-18 induced OPN expression and protein levels in primary of cardiac fibroblast cultures. Conditioned media from TLR9-stimulated T lymphocyte cultures induced IL-18 and OPN expression in cardiac fibroblasts, while blockade of the IL-18 receptor with a neutralizing antibody abolished the increase in OPN expression. Furthermore, a mutation in the transcriptional factor interferon regulatory factor (IRF)1 or IRF1 small interfering RNA (siRNA) resulted in the decreased expression of IL-18 and OPN in cardiac fibroblasts. With pressure overload, IRF1-mutant mice showed downregulation of IL-18 and OPN expression in cardiac tissue, reduced cardiac fibrotic development, and increased left ventricular function compared with wild type. These results provide direct evidence that the induction of IL-18 regulates OPN-mediated cardiac fibrosis and diastolic dysfunction.", "title": "IL-18 induction of osteopontin mediates cardiac fibrosis and diastolic dysfunction in mice." }, { "docid": "18938992", "text": "Virally infected cells degrade intracellular viral proteins proteolytically and present the resulting peptides in association with major histocompatibility complex (MHC) class I molecules to CD8+ cytotoxic T lymphocytes (CTLs). These cells are normally prone to CTL-mediated elimination. However, several viruses have evolved strategies to avoid detection by the immune system that interfere with the pathway of antigen presentation. Epstein-Barr virus (EBV) expresses a predominantly late protein, the BCRF1 gene product vIL-10, that is similar in sequence to the human interleukin-10 (hIL-10). We show here that vIL-10 affects the expression of one of the two transporter proteins (TAPs) associated with antigen presentation. Similarly, hIL-10 showed the same activity. Expression of the LMP2 and TAP1 genes but not expression of TAP2 or LMP7 is efficiently downregulated, indicating a specific IL-10 effect on the two divergently transcribed TAP1 and LMP2 genes. Downregulation of TAP1 by IL-10 hampers the transport of peptide antigens into the endoplasmatic reticulum, as shown in the TAP-specific peptide transporter assay, their loading onto empty MHC I molecules, and the subsequent translocation to the cell surface. As a consequence, IL-10 causes a general reduction of surface MHC I molecules on B lymphocytes that might also affect the recognition of EBV-infected cells by cytotoxic T cells.", "title": "Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10." }, { "docid": "6421792", "text": "Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.", "title": "Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL" }, { "docid": "40590358", "text": "The pro-drug FTY720 is undergoing phase III clinical trials for prevention of allograft rejection. After phosphorylation, FTY720 targets the G protein-coupled-sphingosine-1-phosphate receptor 1 (S1PR1) on lymphocytes, thereby inhibiting their egress from lymphoid organs and their recirculation to inflammatory sites. Potential effects on dendritic cell (DC) trafficking have not been evaluated. Here, we demonstrate the expression of all five S1PR subtypes (S1PR1-5) by murine DCs. Administration of FTY720 to C57BL/10 mice markedly reduced circulating T and B lymphocytes within 24 h, but not blood-borne DCs, which were enhanced significantly for up to 96 h, while DCs in lymph nodes and spleen were reduced. Numbers of adoptively transferred, fluorochrome-labeled syngeneic or allogeneic DCs in blood were increased significantly in FTY720-treated animals, while donor-derived DCs and allostimulatory activity for host naïve T cells within the spleen were reduced. Administration of the selective S1PR1 agonist SEW2871 significantly enhanced circulating DC numbers. Flow analysis revealed that CD11b, CD31/PECAM-1, CD54/ICAM-1 and CCR7 expression on blood-borne DCs was downregulated following FTY720 administration. Transendothelial migration of FTY720-P-treated immature DCs to the CCR7 ligand CCL19 was reduced. These novel data suggest that modulation of DC trafficking by FTY720 may contribute to its immunosuppressive effects.", "title": "The sphingosine-1-phosphate receptor agonist FTY720 modulates dendritic cell trafficking in vivo." }, { "docid": "26064942", "text": "Recently, mutations in genes involved in the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor have been identified in a new subclass of congenital disorders of glycosylation (CDGs) with a distinct spectrum of clinical features. To date, mutations have been identified in six genes (PIGA, PIGL, PIGM, PIGN, PIGO, and PIGV) encoding proteins in the GPI-anchor-synthesis pathway in individuals with severe neurological features, including seizures, muscular hypotonia, and intellectual disability. We developed a diagnostic gene panel for targeting all known genes encoding proteins in the GPI-anchor-synthesis pathway to screen individuals matching these features, and we detected three missense mutations in PGAP2, c.46C>T, c.380T>C, and c.479C>T, in two unrelated individuals with hyperphosphatasia with mental retardation syndrome (HPMRS). The mutations cosegregated in the investigated families. PGAP2 is involved in fatty-acid GPI-anchor remodeling, which occurs in the Golgi apparatus and is required for stable association between GPI-anchored proteins and the cell-surface membrane rafts. Transfection of the altered protein constructs, p. Arg16Trp (NP_001243169.1), p. Leu127Ser, and p. Thr160Ile, into PGAP2-null cells showed only partial restoration of GPI-anchored marker proteins, CD55 and CD59, on the cell surface. In this work, we show that an impairment of GPI-anchor remodeling also causes HPMRS and conclude that targeted sequencing of the genes encoding proteins in the GPI-anchor-synthesis pathway is an effective diagnostic approach for this subclass of CDGs.", "title": "PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome." }, { "docid": "33076846", "text": "Polyploidization can precede the development of aneuploidy in cancer. Polyploidization in megakaryocytes (Mks), in contrast, is a highly controlled developmental process critical for efficient platelet production via unknown mechanisms. Using primary cells, we demonstrate that the guanine exchange factors GEF-H1 and ECT2, which are often overexpressed in cancer and are essential for RhoA activation during cytokinesis, must be downregulated for Mk polyploidization. The first (2N-4N) endomitotic cycle requires GEF-H1 downregulation, whereas subsequent cycles (>4N) require ECT2 downregulation. Exogenous expression of both GEF-H1 and ECT2 prevents endomitosis, resulting in proliferation of 2N Mks. Furthermore, we have shown that the mechanism by which polyploidization is prevented in Mks lacking Mkl1, which is mutated in megakaryocytic leukemia, is via elevated GEF-H1 expression; shRNA-mediated GEF-H1 knockdown alone rescues this ploidy defect. These mechanistic insights enhance our understanding of normal versus malignant megakaryocytopoiesis, as well as aberrant mitosis in aneuploid cancers.", "title": "Role of RhoA-specific guanine exchange factors in regulation of endomitosis in megakaryocytes." }, { "docid": "22482024", "text": "Diamond-Blackfan anemia (DBA) is a congenital erythroid aplasia characterized as a normochromic macrocytic anemia with a selective deficiency in red blood cell precursors in otherwise normocellular bone marrow. In 40% of DBA patients, various physical anomalies are also present. Currently two genes are associated with the DBA phenotype--the ribosomal protein (RP) S19 mutated in 25% of DBA patients and RPS24 mutated in approximately 1.4% of DBA patients. Here we report the identification of a mutation in yet another ribosomal protein, RPS17. The mutation affects the translation initiation start codon, changing T to G (c.2T>G), thus eliminating the natural start of RPS17 protein biosynthesis. RNA analysis revealed that the mutated allele was expressed, and the next downstream start codon located at position +158 should give rise to a short peptide of only four amino acids (Met-Ser-Arg-Ile). The mutation arose de novo, since all healthy family members carry the wild-type alleles. The identification of a mutation in the third RP of the small ribosomal subunit in DBA patients further supports the theory that impaired translation may be the main cause of DBA pathogenesis.", "title": "Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia." }, { "docid": "28614776", "text": "Acute leukemia characterized by chromosomal rearrangements requires additional molecular disruptions to develop into full-blown malignancy, yet the cooperative mechanisms remain elusive. Using whole-genome sequencing of a pair of monozygotic twins discordant for MLL (also called KMT2A) gene–rearranged leukemia, we identified a transforming MLL-NRIP3 fusion gene and biallelic mutations in SETD2 (encoding a histone H3K36 methyltransferase). Moreover, loss-of-function point mutations in SETD2 were recurrent (6.2%) in 241 patients with acute leukemia and were associated with multiple major chromosomal aberrations. We observed a global loss of H3K36 trimethylation (H3K36me3) in leukemic blasts with mutations in SETD2. In the presence of a genetic lesion, downregulation of SETD2 contributed to both initiation and progression during leukemia development by promoting the self-renewal potential of leukemia stem cells. Therefore, our study provides compelling evidence for SETD2 as a new tumor suppressor. Disruption of the SETD2-H3K36me3 pathway is a distinct epigenetic mechanism for leukemia development.", "title": "Identification of functional cooperative mutations of SETD2 in human acute leukemia" }, { "docid": "243694", "text": "The ontogeny of haematopoietic stem cells (HSCs) during embryonic development is still highly debated, especially their possible lineage relationship to vascular endothelial cells. The first anatomical site from which cells with long-term HSC potential have been isolated is the aorta-gonad-mesonephros (AGM), more specifically the vicinity of the dorsal aortic floor. But although some authors have presented evidence that HSCs may arise directly from the aortic floor into the dorsal aortic lumen, others support the notion that HSCs first emerge within the underlying mesenchyme. Here we show by non-invasive, high-resolution imaging of live zebrafish embryos, that HSCs emerge directly from the aortic floor, through a stereotyped process that does not involve cell division but a strong bending then egress of single endothelial cells from the aortic ventral wall into the sub-aortic space, and their concomitant transformation into haematopoietic cells. The process is polarized not only in the dorso-ventral but also in the rostro-caudal versus medio-lateral direction, and depends on Runx1 expression: in Runx1-deficient embryos, the exit events are initially similar, but much rarer, and abort into violent death of the exiting cell. These results demonstrate that the aortic floor is haemogenic and that HSCs emerge from it into the sub-aortic space, not by asymmetric cell division but through a new type of cell behaviour, which we call an endothelial haematopoietic transition.", "title": "Blood stem cells emerge from aortic endothelium by a novel type of cell transition" } ]
1011
Radioiodine treatment of non-toxic multinodular goitre increases thyroid volume.
[ { "docid": "9745001", "text": "OBJECTIVE To investigate the long term effect of radioactive iodine on thyroid function and size in patients with non-toxic multinodular goitre. \n DESIGN Consecutive patients with multinodular non-toxic goitre selected for radioactive iodine treatment and followed for a minimum of 12 months (median 48 months) after an intended dose of 3.7 MBq/g thyroid tissue corrected to a 100% uptake of iodine-131 in 24 hours. \n PATIENTS 69 patients with a growing multinodular non-toxic goitre causing local compression symptoms or cosmetic inconveniences. The treatment was chosen because of a high operative risk, previous thyroidectomy, or refusal to be operated on. \n MAIN OUTCOME MEASUREMENTS Standard thyroid function variables and ultrasonically determined thyroid volume before treatment as well as 1, 2, 3, 6, and 12 months after treatment and then once a year. \n RESULTS 56 patients were treated with a single dose of 131I, 12 with two doses, and one with four doses. In 45 patients treated with one dose and remaining euthyroid the median thyroid volume was reduced from 73 (interquartile range 50-106) ml to 29 (23-48) ml at 24 months in the 39 patients in whom this was measured during follow up. The median reduction was 40 (22-48) ml (60% reduction, p < 0.0001), half of which occurred within three months. Patients treated with two doses as well as those developing hypothyroidism and hyperthyroidism had a significant reduction in thyroid volume. Eleven patients developed hypothyroidism (cumulative five year risk 22%, 95% confidence interval 4.8% to 38.4%). Side effects were few: three cases of hyperthyroidism and two cases of radiation thyroiditis. Only one patient was dissatisfied with the result; she was referred for operation six months after treatment. \n CONCLUSIONS A substantial reduction in thyroid volume accompanied by a low incidence of hypothyroidism and few side effects makes the use of radioactive iodine an attractive alternative to surgery in selected cases of non-toxic multinodular goitre.", "title": "Radioiodine treatment of multinodular non-toxic goitre." } ]
[ { "docid": "26026009", "text": "As a result of increasing interest in non-surgical treatment for the reduction of goitre size the use of magnetic resonance (MR) imaging for volume estimation of large multinodular goitres was evaluated in 20 patients (three males and 17 females; age 61 +/- 21 years) with a multinodular goitre larger than 100 ml. In addition, MR measurements were compared with scintigraphic (SC) volume estimations. Intraobserver coefficient of variation (CV) of MR measurements was 2.2 +/- 2.0% (Observer 1) and interobserver CV 4.1 +/- 2.2% (Observers 1 and 2). In all 20 patients signs of mechanical complications were shown on MR images. For SC measurements intraobserver CV was 7.5 +/- 5.7% (Observer 3) and 5.4 +/- 5.1% (Observer 4). Interobserver CV was 10.1 +/- 6.1%. The correlation between measurements with both methods was not strong (r = 0.665) and the resulting CV was 17.3 +/- 14.2%. Underestimation of SC volumes could not be explained by the presence of cysts on the surface of the thyroid. It is concluded that MR imaging can be used for in vivo thyroid volume estimation in large multinodular goitres. The high precision of MR measurements makes this technique potentially useful for the evaluation of thyroid growth and non-surgical treatment for reducing goitre size. Scintigraphic volume measurements do not suffice for this purpose. An additional advantage of MR imaging is the detailed anatomical information it provides with regard to mechanical complications of large goitres.", "title": "Magnetic resonance imaging for volume estimation of large multinodular goitres: a comparison with scintigraphy." }, { "docid": "43122426", "text": "We studied 201 consecutive patients who received a relatively fixed dose of radioiodine for the treatment of hyperthyroidism between the years 1981-6. Patients with Graves' disease (170) were initially treated with a mean (SE) dose of 369 (10) MBq 131-I with a remission rate of 94% at 6 months and a cumulative relapse rate of 12% at one year and 21% at 5 years. The cumulative incidence of hypothyroidism was 26% at 3 months, 55% at 6 months, 61% at 1 year and 66% at 5 years. Patients with a uninodular goitre (10) were initially treated with a mean (SE) dose of 438 (85) MBq 131-I with a remission rate of 100% at 6 months, without relapse at 1 year but relapsing in 17% at 5 years. The cumulative incidence of hypothyroidism was 26% at 3 months, 30% at 6 months, 40% at 1 year and 40% at 5 years. Patients with a multinodular goitre (21) were initially treated with a mean (SE) dose of 613 (77) MBq 131-I with a remission rate of 79% at 6 months and a cumulative relapse rate of 26% at 1 year and 39% at 5 years. The cumulative incidence of hypothyroidism was 5% at 3 months, 14% at 6 months, 24% at 1 year and 24% at 5 years.", "title": "131-I radioiodine therapy for hyperthyroidism in patients with Graves' disease, uninodular goitre and multinodular goitre." }, { "docid": "6751418", "text": "UNLABELLED In patients with a large, multinodular goiter (> 100 g), radiation absorbed doses in the thyroid, surrounding tissues and remainder of the body were estimated after therapeutic administration of 131I(3.7 MBq or 100 microCi/g of thyroid tissue retained at 24 hr). \n METHODS Thermoluminescent dosimeter (TLD) measurements were performed on 23 patients (12 euthyroid and 1I hyperthyroid; thyroid weight 222 +/- 72 g; 2.1 +/- 0.9 GBq 131I) on the skin over the thyroid, over the submandibular gland and over the parotid gland. Thyroid radioactivity measurements were done daily in 6 euthyroid and 6 hyperthyroid patients (thyroid weight 204 +/- 69 g; 1.9 +/- 0.9 GBq 131I). An iodine biokinetic model and the MIRD methodology were used to estimate absorbed doses in organs. Cancer risks were calculated using ICRP Publication 60. \n RESULTS Cumulated absorbed doses on the skin (TLD measurements) were 4.2 +/- 1.4 Gy (thyroid), 1.2 +/- 0.6 Gy (submandibular) and 0.4 +/- 0.2 Gy (parotid). All these values were significantly correlated with the amount of radioiodine retained in the thyroid at 24 hr (euthyroid versus hyperthyroid not significant). Absorbed doses in the thyroid of 94 +/- 25 Gy for euthyroid and 93 +/- 17 Gy for hyperthyroid patients were calculated (thyroid radioactivity measurements). Extrathyroidal absorbed doses (means of 12 patients) were 0.88 Gy in the urinary bladder, 0.57 Gy in the small intestine, 0.38 Gy in the stomach, and ranged from 0.05 to 0.30 Gy in other organs (euthyroid versus hyperthyroid not significant). A 1.6% life-time risk of development of cancer outside the thyroid gland was calculated. When applied to people of 65 yr and older the estimated risk is approximately 0.5%. \n CONCLUSION These data may help in choosing the treatment regimen for individual patients with a large, multinodular goiter, who have to be treated for hyperthyroidism or compressive problems. In younger patients, surgery may be preferred. However, for elderly patients and patients with cardiopulmonary disease, the advantages of noninvasive radioiodine treatment will outweight the life-time risk of this mode of therapy.", "title": "Dosimetry and risk estimates of radioiodine therapy for large, multinodular goiters." }, { "docid": "37912677", "text": "With the acknowledged problems associated with assessment of functioning thyroid mass and hence radiation dose, our policy had been to give 75 MBq iodine-131 at 6-monthly intervals to patients with Graves' disease until they became euthyroid. Since positron emission tomography (PET) has been available at this hospital, the radiation dose to the thyroid has been calculated with an accuracy of ∼20%, the thyroid mass being determined from an iodine-124 PET scan. A dose-response study has been carried out on 65 patients who have received single or cumulative radiation doses of <80 Gy. The results show that patients who receive a low radiation dose (<20 Gy) at their first treatment have a high probability of remaining toxic at 12 months. In contrast, patients who receive higher radiation doses (>40 Gy) at their first treatment have a high probability of control. The probability of becoming euthyroid increases more rapidly with increasing radiation dose than the probability of becoming hypothyroid. Following this dose-response study, a new treatment protocol has been introduced. A 124I PET tracer study prior to 131I therapy will be performed to enable a prescribed thyroid dose of 50 Gy to be delivered to patients with Graves' disease. Further 131I therapy will only be considered if patients are still toxic at 12 months.", "title": "Dose-response study on thyrotoxic patients undergoing positron emission tomography and radioiodine therapy" }, { "docid": "38886345", "text": "BACKGROUND JX-594 is a targeted oncolytic poxvirus designed to selectively replicate in and destroy cancer cells with cell-cycle abnormalities and epidermal growth factor receptor (EGFR)-ras pathway activation. Direct oncolysis plus granulocyte-macrophage colony-stimulating factor (GM-CSF) expression also stimulates shutdown of tumour vasculature and antitumoral immunity. We aimed to assess intratumoral injection of JX-594 in patients with refractory primary or metastatic liver cancer. \n METHODS Between Jan 4, 2006, and July 4, 2007, 14 patients with histologically confirmed refractory primary or metastatic liver tumours (up to 10.9 cm total diameter) that were amenable to image-guided intratumoral injections were enrolled into this non-comparative, open-label, phase I dose-escalation trial (standard 3x3 design; two to six patients for each dose with 12-18 estimated total patients). Patients received one of four doses of intratumoral JX-594 (10(8) plaque-forming units [pfu], 3x10(8) pfu, 10(9) pfu, or 3x10(9) pfu) every 3 weeks at Dong-A University Hospital (Busan, South Korea). Patients were monitored after treatment for at least 48 h in hospital and for at least 4 weeks as out-patients. Adverse event-monitoring according to the National Cancer Institute Common Toxicity Criteria (version 3) and standard laboratory toxicity grading for haematology, liver and renal function, coagulation studies, serum chemistry, and urinalysis were done. The primary aims were to ascertain the maximum-tolerated dose (MTD) and safety of JX-594 treatment. Data were also collected on pharmacokinetics, pharmacodynamics, and efficacy. Analysis was per protocol. This study is registered with ClinicalTrials.gov, number NCT00629759. \n FINDINGS Of 22 patients with liver tumours who were assessed for eligibility, eight patients did not meet inclusion criteria. Therefore, 14 patients, including those with hepatocellular, colorectal, melanoma, and lung cancer, were enrolled. Patients were heavily pretreated (5.6 previous treatments, SD 2.8, range 2.0-12.0) and had large tumours (7.0 cm diameter, SD 2.7, range 1.8-10.9). Patients received a mean of 3.4 (SD 2.2, range 1.0-8.0) cycles of JX-594. All patients were evaluable for toxicity. All patients experienced grade I-III flu-like symptoms, and four had transient grade I-III dose-related thrombocytopenia. Grade III hyperbilirubinaemia was dose-limiting in both patients at the highest dose; the MTD was therefore 1x10(9) pfu. JX-594 replication-dependent dissemination in blood was shown, with resultant infection of non-injected tumour sites. GM-CSF expression resulted in grade I-III increases in neutrophil counts in four of six patients at the MTD. Tumour responses were shown in injected and non-injected tumours. Ten patients were radiographically evaluable for objective responses; non-evaluable patients had contraindications to contrast medium (n=2) or no post-treatment scans (n=2). According to Response Evaluation Criteria in Solid Tumors (RECIST), three patients had partial response, six had stable disease, and one had progressive disease. \n INTERPRETATION Intratumoral injection of JX-594 into primary or metastatic liver tumours was generally well-tolerated. Direct hyperbilirubinaemia was the dose-limiting toxicity. Safety was acceptable in the context of JX-594 replication, GM-CSF expression, systemic dissemination, and JX-594 had anti-tumoral effects against several refractory carcinomas. Phase II trials are now underway.", "title": "Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial." }, { "docid": "7986878", "text": "We previously reported that intetumumab (CNTO 95), a fully human anti-αv integrin monoclonal antibody, is a radiosensitizer in mice with xenograft tumors. Because intetumumab does not cross-react with mouse integrins, but has cross-reactivity with rat integrins, we next studied the potential combined use of radiation therapy and intetumumab in human cancer xenograft models in nude rats to assess effects on both tumor cells and the tumor microenvironment. Nude rats bearing human head and neck cancer and non-small cell lung cancer (NSCLC) xenografts were treated with intetumumab and fractionated local tumor radiotherapy. Effects on tumor growth and metastasis, blood perfusion, oxygenation, and gastrointestinal toxicity were studied. Intetumumab alone had a moderate effect on tumor growth. When combined with fractionated radiation therapy, intetumumab significantly inhibited tumor growth and produced a tumor response rate that was significantly better than with radiation therapy alone. Treatment with intetumumab also significantly reduced lung metastasis in the A549 NSCLC xenograft model. The oxygenation and blood perfusion in xenograft tumors measured by microbubble-enhanced ultrasound imaging were substantially increased after treatment with intetumumab. The combined use of intetumumab and radiation therapy reduced the microvessel density and increased apoptosis in tumor cells and the tumor microenvironment. Toxicity studies showed that treatment with intetumumab did not cause the histopathologic changes in the lungs and did not sensitize the sensitive gastrointestinal epithelium to the effect of radiation therapy. Intetumumab can potentiate the efficacy of fractionated radiation therapy in human cancer xenograft tumors in nude rats without increased toxicity.", "title": "Anti-alphav integrin monoclonal antibody intetumumab enhances the efficacy of radiation therapy and reduces metastasis of human cancer xenografts in nude rats." }, { "docid": "20611846", "text": "BACKGROUND Although inhaled corticosteroids have an established role in the treatment of asthma, studies have tended to concentrate on non-smokers and little is known about the possible effect of cigarette smoking on the efficacy of treatment with inhaled steroids in asthma. A study was undertaken to investigate the effect of active cigarette smoking on responses to treatment with inhaled corticosteroids in patients with mild asthma. \n METHODS The effect of treatment with inhaled fluticasone propionate (1000 microg daily) or placebo for 3 weeks was studied in a double blind, prospective, randomised, placebo controlled study of 38 steroid naïve adult asthmatic patients (21 non-smokers). Efficacy was assessed using morning and evening peak expiratory flow (PEF) readings, spirometric parameters, bronchial hyperreactivity, and sputum eosinophil counts. Comparison was made between responses to treatment in non-smoking and smoking asthmatic patients. \n RESULTS There was a significantly greater increase in mean morning PEF in non-smokers than in smokers following inhaled fluticasone (27 l/min v -5 l/min). Non-smokers had a statistically significant increase in mean morning PEF (27 l/min), mean forced expiratory volume in 1 second (0.17 l), and geometric mean PC20 (2.6 doubling doses), and a significant decrease in the proportion of sputum eosinophils (-1.75%) after fluticasone compared with placebo. No significant changes were observed in the smoking asthmatic patients for any of these parameters. \n CONCLUSIONS Active cigarette smoking impairs the efficacy of short term inhaled corticosteroid treatment in mild asthma. This finding has important implications for the management of patients with mild asthma who smoke.", "title": "Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma." }, { "docid": "25452937", "text": "Thyroid cancers are infiltrated with tumor-associated macrophages (TAMs), yet their role in cancer progression is not known. The objectives of this study were to characterize the density of TAMs in well-differentiated (WDTC), poorly differentiated (PDTC), and anaplastic thyroid cancers (ATC) and to correlate TAM density with clinicopathologic parameters. Immunohistochemistry was performed on tissue microarray sections from WDTC (n=33), PDTC (n=37), and ATC (n=20) using macrophage-specific markers. Electronic medical records were used to gather clinical and pathologic data. Follow-up information of PDTC patients was available for 0-12 years. In total, 9 out of 33 WDTC (27%), 20 out of 37 PDTC (54%), and 19 out of 20 ATC (95%) had an increased density of CD68(+) TAMs (> or = 10 per 0.28 mm(2); WDTC versus PDTC, P=0.03; WDTC versus ATC, P<0.0001; PDTC versus ATC, P<0.002). Increased TAMs in PDTC was associated with capsular invasion (P=0.034), extrathyroidal extension (P=0.009), and decreased cancer-related survival (P=0.009) compared with PDTC with a low density of TAMs. In conclusion, the density of TAMs is increased in advanced thyroid cancers. The presence of a high density of TAMs in PDTC correlates with invasion and decreased cancer-related survival. These results suggest that TAMs may facilitate tumor progression. As novel therapies directed against thyroid tumor cell-specific targets are being tested, the potential role of TAMs as potential modulators of the thyroid cancer behavior will need to be considered.", "title": "Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer." }, { "docid": "21551568", "text": "PURPOSE To investigate the overall occurrence and relationship of genetic alterations in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in thyroid tumors and explore the scope of this pathway as a therapeutic target for thyroid cancer. EXPERIMENTAL DESIGN We examined collectively the major genetic alterations and their relationship in this pathway, including PIK3CA copy number gain and mutation, Ras mutation, and PTEN mutation, in a large series of primary thyroid tumors. \n RESULTS Occurrence of any of these genetic alterations was found in 25 of 81 (31%) benign thyroid adenoma (BTA), 47 of 86 (55%) follicular thyroid cancer (FTC), 21 of 86 (24%) papillary thyroid cancer (PTC), and 29 of 50 (58%) anaplastic thyroid cancer (ATC), with FTC and ATC most frequently harboring these genetic alterations. PIK3CA copy gain was associated with increased PIK3CA protein expression. A mutual exclusivity among these genetic alterations was seen in BTA, FTC, and PTC, suggesting an independent role of each of them through the PI3K/Akt pathway in the tumorigenesis of the differentiated thyroid tumors. However, coexistence of these genetic alterations was increasingly seen with progression from differentiated tumor to undifferentiated ATC. Their coexistence with BRAF mutation was also frequent in PTC and ATC. \n CONCLUSIONS The data provide strong genetic implication that aberrant activation of PI3K/Akt pathway plays an extensive role in thyroid tumorigenesis, particularly in FTC and ATC, and promotes progression of BTA to FTC and to ATC as the genetic alterations of this pathway accumulate. Progression of PTC to ATC may be facilitated by coexistence of PI3K/Akt pathway-related genetic alterations and BRAF mutation. The PI3K/Akt pathway may thus be a major therapeutic target in thyroid cancers.", "title": "Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer." }, { "docid": "18414462", "text": "Although the lung is a defining feature of air-breathing animals, the pathway controlling the formation of type I pneumocytes, the cells that mediate gas exchange, is poorly understood. In contrast, the glucocorticoid receptor and its cognate ligand have long been known to promote type II pneumocyte maturation; prenatal administration of glucocorticoids is commonly used to attenuate the severity of infant respiratory distress syndrome (RDS). Here we show that knock-in mutations of the nuclear co-repressor SMRT (silencing mediator of retinoid and thyroid hormone receptors) in C57BL/6 mice (SMRTmRID) produces a previously unidentified respiratory distress syndrome caused by prematurity of the type I pneumocyte. Though unresponsive to glucocorticoids, treatment with anti-thyroid hormone drugs (propylthiouracil or methimazole) completely rescues SMRT-induced RDS, suggesting an unrecognized and essential role for the thyroid hormone receptor (TR) in lung development. We show that TR and SMRT control type I pneumocyte differentiation through Klf2, which, in turn, seems to directly activate the type I pneumocyte gene program. Conversely, mice without lung Klf2 lack mature type I pneumocytes and die shortly after birth, closely recapitulating the SMRTmRID phenotype. These results identify TR as a second nuclear receptor involved in lung development, specifically type I pneumocyte differentiation, and suggest a possible new type of therapeutic option in the treatment of RDS that is unresponsive to glucocorticoids.", "title": "Thyroid Hormone Receptor Repression Linked to Type I Pneumocyte Associated Respiratory Distress Syndrome" }, { "docid": "41298619", "text": "BACKGROUND Hydroxyethyl starches (HES) are synthetic colloids commonly used for fluid resuscitation, yet controversy exists about their impact on kidney function. \n OBJECTIVES To examine the effects of HES on kidney function compared to other fluid resuscitation therapies in different patient populations. SEARCH STRATEGY We searched the Cochrane Renal Group's specialised register, the Cochrane Central Register of Controlled Trials (CENTRAL, in The Cochrane Library), MEDLINE, EMBASE, MetaRegister and reference lists of articles. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs in which HES was compared to an alternate fluid therapy for the prevention or treatment of effective intravascular volume depletion. Primary outcomes were renal replacement therapy (RRT), author-defined kidney failure and acute kidney injury (AKI) as defined by the RIFLE criteria. Secondary outcomes included serum creatinine and creatinine clearance. \n DATA COLLECTION AND ANALYSIS Screening, selection, data extraction and quality assessments for each retrieved article were carried out by two authors using standardised forms. Authors were contacted when published data were incomplete. Preplanned sensitivity and subgroup analyses were performed after data were analysed with a random effects model. \n MAIN RESULTS The review included 34 studies (2607 patients). Overall, the RR of author-defined kidney failure was 1.50 (95% CI 1.20 to 1.87; n = 1199) and 1.38 for requiring RRT (95% CI 0.89 to 2.16; n = 1236) in HES treated individuals compared with other fluid therapies. Subgroup analyses suggested increased risk in septic patients compared to non-septic (surgical/trauma) patients. Non-septic patient studies were smaller and had lower event rates, so subgroup differences may have been due to lack of statistical power in these studies. Only limited data was obtained for analysis of kidney outcomes by the RIFLE criteria. Overall, methodological quality of studies was good but subjective outcomes were potentially biased because most studies were unblinded. AUTHORS' CONCLUSIONS Potential for increased risk of AKI should be considered when weighing the risks and benefits of HES for volume resuscitation, particularly in septic patients. Large studies with adequate follow-up are required to evaluate the renal safety of HES products in non-septic patient populations. RIFLE criteria should be applied to evaluate kidney function in future studies of HES and, where data is available, to re-analyse those studies already published. There is inadequate clinical data to address the claim that safety differences exist between different HES products.", "title": "Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function." }, { "docid": "20886584", "text": "Taxanes have resulted in improved survival for breast cancer patients, but often cause neurological toxicities. Identification of biomarkers related to toxicities could be important for dictating treatment regimen. We evaluated single nucleotide polymorphisms (SNPs) in the Fanconi Anemia (FA)/BRCA pathway in relation to grade 3/4 neurotoxicities in patients (n = 888) from SWOG0221, a phase III adjuvant trial for breast cancer of 4 dose/schedules of cyclophosphamide (C), doxorubicin (A), and paclitaxel (T). In a separate cohort, we measured the correlation of significant FANCD2 SNPs with corresponding gene expression. For FANCD2, permutation testing revealed that 4 (out of 20) SNPs were significantly associated with an almost two-fold increased risk of toxicity. Two FANCD2 haplotypes were also associated with neurological toxicity, with odds ratios (OR) in the overall population of 1.8 (95% confidence interval (CI) 1.3, 2.5) and 1.7 (95% CI, 1.2, 2.4). Although numbers were small, an African-American-specific haplotype was associated with an almost 3-fold increase in risk of neurologic toxicity (OR = 2.84, 95% CI = 1.2, 6.9). Expression analyses revealed that significant FANCD2 SNPs were associated with FANCD2 expression levels (P = 0.03). There were no associations between SNPs in BRCA1 and neurotoxicities. In this trial of CA+T for breast cancer, SNPs in FANCD2, but not in BRCA1, were associated with a 70–80% increase in the odds of grade 3/4 neurological toxicities and increased expression of the gene. If replicated, women with these genotypes should be closely monitored for toxicities and could be targeted for preventive measures or alternative therapeutic approaches.", "title": "Genetic predictors of taxane-induced neurotoxicity in a SWOG phase III intergroup adjuvant breast cancer treatment trial (S0221)" }, { "docid": "22123421", "text": "BACKGROUND Mean platelet volume (MPV) is a platelet volume index. Classically, MPV was recognized as a hallmark of platelet activation. Recent studies have revealed that the MPV and MPV/platelet count (PC) ratio can predict long-term mortality in patients with ischemic cardio-vascular disease. In addition, these indices were correlated with the pathophysiological characteristics of patients with various disorders, including malignant tumors. \n PATIENTS AND METHODS We retrospectively analyzed various hematological indices of patients with advanced non-small cell lung cancer (NSCLC). The aim of this study was to evaluate the contribution of platelet volume indices to survival in these patients. \n RESULTS A total of 268 patients were enrolled in the study. The median age of the patients was 68 years (range: 31-87 years). We compared various hematological indices between the NSCLC group and an age- and sex-matched comparator group. MPV was significantly decreased in the NSCLC group compared to the comparator group. In contrast, the PC was significantly increased in the NSCLC group. Consequently, the MPV/PC ratio was also decreased in the NSCLC group (0.397 vs. 0.501). In receiver operating characteristics (ROC) curve analysis, the MPV/PC ratio was associated with a sensitivity of 62.3% and a specificity of 74.6% at a cutoff value of 0.408730 (area under the curve [AUC], 0.72492)]. Univariate analysis revealed that overall survival (OS) was significantly shorter in the group with a low MPV/PC ratio than in the other group (median survival time [MST]: 10.3 months vs. 14.5 months, log-rank, P=0.0245). Multivariate analysis confirmed that a low MPV/PC ratio was an independent unfavorable predictive factor for OS (hazard ratio [HR]: 1.668, 95% confidence interval [CI]: 1.235-2.271, P=0.0008). \n CONCLUSION These data clearly demonstrate that the MPV/PC ratio was closely associated with survival in patients with advanced NSCLC.", "title": "Prognostic impact of the mean platelet volume/platelet count ratio in terms of survival in advanced non-small cell lung cancer." }, { "docid": "6036535", "text": "BACKGROUND There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. \n METHODOLOGY/HYPOTHESES We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. \n RESULTS Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. \n DISCUSSION/CONCLUSION Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing affinity. Investigations of neuroplasticity specifically in sportsmen might help to understand the neural mechanisms of expertise in general.", "title": "Structural Brain Correlates Associated with Professional Handball Playing" }, { "docid": "602760", "text": "OBJECTIVES To assess the effect of montelukast versus salmeterol added to inhaled fluticasone propionate on asthma exacerbation in patients whose symptoms are inadequately controlled with fluticasone alone. Design and setting A 52 week, two period, double blind, multicentre trial during which patients whose symptoms remained uncontrolled by inhaled corticosteroids were randomised to add montelukast or salmeterol. \n PARTICIPANTS Patients (15-72 years; n = 1490) had a clinical history of chronic asthma for > or = 1 year, a baseline forced expiratory volume in one second (FEV1) value 50-90% predicted, and a beta agonist improvement of > or = 12% in FEV1. \n MAIN OUTCOME MEASURES The primary end point was the percentage of patients with at least one asthma exacerbation. \n RESULTS 20.1% of the patients in the group receiving montelukast and fluticasone had an asthma exacerbation compared with 19.1% in the group receiving salmeterol and fluticasone; the difference was 1% (95% confidence interval -3.1% to 5.0%). With a risk ratio (montelukast-fluticasone/salmeterol-fluticasone) of 1.05 (0.86 to 1.29), treatment with montelukast and fluticasone was shown to be non-inferior to treatment with salmeterol and fluticasone. Salmeterol and fluticasone significantly increased FEV1 before a beta agonist was used and morning peak expiratory flow compared with montelukast and fluticasone (P < or = 0.001), whereas FEV1 after a beta agonist was used and improvements in asthma specific quality of life and nocturnal awakenings were similar between the groups. Montelukast and fluticasone significantly (P = 0.011) reduced peripheral blood eosinophil counts compared with salmeterol and fluticasone. Both treatments were generally well tolerated. \n CONCLUSION The addition of montelukast in patients whose symptoms remain uncontrolled by inhaled fluticasone could provide equivalent clinical control to salmeterol.", "title": "Montelukast and fluticasone compared with salmeterol and fluticasone in protecting against asthma exacerbation in adults: one year, double blind, randomised, comparative trial." }, { "docid": "13969173", "text": "Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration, paralysis, and death. Accurate disease modeling, identifying disease mechanisms, and developing therapeutics is urgently needed. We previously reported motor neuron toxicity through postmortem ALS spinal cord-derived astrocytes. However, these cells can only be harvested after death, and their expansion is limited. We now report a rapid, highly reproducible method to convert adult human fibroblasts from living ALS patients to induced neuronal progenitor cells and subsequent differentiation into astrocytes (i-astrocytes). Non-cell autonomous toxicity to motor neurons is found following coculture of i-astrocytes from familial ALS patients with mutation in superoxide dismutase or hexanucleotide expansion in C9orf72 (ORF 72 on chromosome 9) the two most frequent causes of ALS. Remarkably, i-astrocytes from sporadic ALS patients are as toxic as those with causative mutations, suggesting a common mechanism. Easy production and expansion of i-astrocytes now enables rapid disease modeling and high-throughput drug screening to alleviate astrocyte-derived toxicity.", "title": "Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS." }, { "docid": "13380980", "text": "Many treatments have been proposed for non-resectable primary or secondary hepatic cancer but the results have generally been disappointing. Isolated Hepatic Perfusion (IHP) was first attempted four decades ago but it gained acceptance only recently, after spectacular tumour responses were obtained by isolated limb perfusion with melphalan and tumour necrosis factor (TNF) for melanomas and sarcomas. Surgical isolation of the liver is a technically demanding operation that allows the safe administration of high doses of chemotherapeutics and TNF. Percutaneous techniques using balloon occlusion catheters are simpler but result in higher leakage rates from the perfusion circuit into the systemic circulation. Several phase I-II trials indicate that IHP can yield high tumour response rates, even when there is resistance to systemic chemotherapy. However, no significant advantage in overall survival has been demonstrated so far. IHP offers unique pharmacokinetic advantages for locoregional chemotherapy and biotherapy. It might also allow gene therapy with limited systemic exposure and toxicity. At present, IHP nevertheless remains an experimental treatment modality which should therefore be used in controlled trials only.", "title": "Isolated liver perfusion for non-resectable liver tumours: a review." }, { "docid": "4246523", "text": "Recognizing that the current MDR-TB regimen is suboptimal and based on low-quality evidence, the Global MDR-TB Clinical Trials Landscape Meeting was held in December, 2014 to strategize about coordination of research and development of new treatment regimens for this disease that affects millions of people worldwide every year. Sixty international experts on multidrug-resistant tuberculosis (MDR-TB) met in Washington D.C. and Cape Town, South Africa to consider key MDR-TB trial-related issues, including: standardization of definitions; clinical trial capacity building and; regimens optimized to foster compliance, avoid the emergence of resistance and have clinical relevance for special populations, including children and those co-infected with HIV. Underpinning all of this is the generation of a sufficient evidence base to facilitate regulatory approval and improved normative guidance. Participants discussed treatment combinations currently being studied in Phase 2B and Phase 3 trials as well as other promising new regimens and combinations that may be evaluated in the near future. These include regimens designed specifically to enable shorter duration and all-oral treatment as a means of maximizing treatment completion. It is hoped that clear definition of these challenges will facilitate the process of identifying solutions that accelerate progress towards effective, non-toxic treatments that can be programmatically implemented.", "title": "Issues in design and interpretation of MDR-TB clinical trials: report of the first Global MDR-TB Clinical Trials Landscape Meeting" }, { "docid": "13921783", "text": "An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question, we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats, but not stop codon–interrupted “RNA-only” repeats in Drosophila caused adult-onset neurodegeneration. Thus, expanded repeats promoted neurodegeneration through dipeptide repeat proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence revealed that both poly-(glycine-arginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration.", "title": "C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins" } ]
1015
Rapamycin delays aging in fruit flies.
[ { "docid": "6277638", "text": "The target of rapamycin (TOR) pathway is a major nutrient-sensing pathway that, when genetically downregulated, increases life span in evolutionarily diverse organisms including mammals. The central component of this pathway, TOR kinase, is the target of the inhibitory drug rapamycin, a highly specific and well-described drug approved for human use. We show here that feeding rapamycin to adult Drosophila produces the life span extension seen in some TOR mutants. Increase in life span by rapamycin was associated with increased resistance to both starvation and paraquat. Analysis of the underlying mechanisms revealed that rapamycin increased longevity specifically through the TORC1 branch of the TOR pathway, through alterations to both autophagy and translation. Rapamycin could increase life span of weak insulin/Igf signaling (IIS) pathway mutants and of flies with life span maximized by dietary restriction, indicating additional mechanisms.", "title": "Mechanisms of Life Span Extension by Rapamycin in the Fruit Fly Drosophila melanogaster" } ]
[ { "docid": "6690087", "text": "We addressed the regulatory function of mammalian target of rapamycin (mTOR) in the mechanism of thrombin-induced ICAM-1 gene expression in endothelial cells. Pretreatment of HUVECs with rapamycin, an inhibitor of mTOR, augmented thrombin-induced ICAM-1 expression. Inhibition of mTOR by this approach promoted whereas over-expression of mTOR inhibited thrombin-induced transcriptional activity of NF-kappaB, an essential regulator of ICAM-1 transcription. Analysis of the NF-kappaB signaling pathway revealed that inhibition of mTOR potentiated IkappaB kinase activation resulting in a rapid and persistent phosphorylation of IkappaBalpha on Ser32 and Ser36, a requirement for IkappaBalpha degradation. Consistent with these data, we observed a more efficient and stable nuclear localization of RelA/p65 and, subsequently, the DNA binding activity of NF-kappaB by thrombin following mTOR inhibition. These data define a novel role of mTOR in down-regulating thrombin-induced ICAM-1 expression in endothelial cells by controlling a delayed and transient activation of NF-kappaB.", "title": "Inhibition of mammalian target of rapamycin potentiates thrombin-induced intercellular adhesion molecule-1 expression by accelerating and stabilizing NF-kappa B activation in endothelial cells." }, { "docid": "15615957", "text": "UNLABELLED Fruit and vegetable consumption has been inversely associated with the risk of chronic diseases including cancer and cardiovascular disease, with the beneficial effects attributed to a variety of protective antioxidants, carotenoids and phytonutrients. The objective of the present study was to determine the effect of supplementation with dehydrated concentrates from mixed fruit and vegetable juices (Juice Plus+R) on serum antioxidant and folate status, plasma homocysteine levels and markers for oxidative stress and DNA damage. Japanese subjects (n=60; age 27.8 yrs; BMI 22.1) were recruited to participate in a double-blind placebo controlled study and were randomized into 2 groups of 30, matched for sex, age, BMI and smoking status (39 males, 22 smokers; 21 females, 13 smokers). Subjects were given encapsulated supplements containing mixed fruit and vegetable juice concentrates or a matching placebo for 28 days, with blood and urine samples collected at baseline, day 14 and day 28 for analytical testing. Compared with the placebo, 28 day supplementation significantly increased the concentration of serum beta-carotene 528% (p<0.0001), lycopene 80.2% (p<0.0005), and alpha tocopherol 39.5% (p<0.0001). Serum folate increased 174.3% (p<0.0001) and correlated with a decrease in plasma homocysteine of -19.9% (p<0.03). Compared with baseline, measures of oxidative stress decreased with serum lipid peroxides declining -10.5% (p<0.02) and urine 8OHdG decreasing -21.1% (p<0.02). Evaluation of data from smokers only (n=17) after 28 days of active supplementation showed comparable changes. \n CONCLUSION In the absence of dietary modification, supplementation with the fruit and vegetable juice concentrate capsules proved to be a highly bioavailable source of phytonutrients. Important antioxidants were elevated to desirable levels associated with decreased risk of disease while markers of oxidative stress were reduced, and folate status improved with a concomitant decrease in homocysteine, and these benefits occurred to a similar extent in smokers when compared to non-smokers.", "title": "Original Article" }, { "docid": "24632480", "text": "Aberrant protein misfolding may contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS) but the detailed mechanisms are largely unknown. Our previous study has shown that autophagy is altered in the mouse model of ALS. In the present study, we systematically investigated the correlation of the autophagic alteration with the motor neurons (MNs) degeneration in the ALS mice. We have demonstrated that the autophagic protein marker LC3-II is markedly and specifically increased in the spinal cord MNs of the ALS mice. Electron microscopy and immunochemistry studies have shown that autophagic vacuoles are significantly accumulated in the dystrophic axons of spinal cord MNs of the ALS mice. All these changes in the ALS mice appear at the age of 90 d when the ALS mice display modest clinical symptoms; and they become prominent at the age of 120 d. The clinical symptoms are correlated with the progression of MNs degeneration. Moreover, we have found that p62/SQSTM1 is accumulated progressively in the spinal cord, indicating that the possibility of impaired autophagic flux in the SOD1(G93A) mice. Furthermore, to our surprise, we have found that treatment with autophagy enhancer rapamycin accelerates the MNs degeneration, shortens the life span of the ALS mice, and has no obvious effects on the accumulation of SOD1 aggregates. In addition, we have demonstrated that rapamycin treatment in the ALS mice causes more severe mitochondrial impairment, higher Bax levels and greater caspase-3 activation. These findings suggest that selective degeneration of MNs is associated with the impairment of the autophagy pathway and that rapamycin treatment may exacerbate the pathological processing through apoptosis and other mechanisms in the ALS mice.", "title": "Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis." }, { "docid": "18662787", "text": "Cornelia de Lange syndrome (CdLS) is a multiple malformation disorder characterized by dysmorphic facial features, mental retardation, growth delay and limb reduction defects. We indentified and characterized a new gene, NIPBL, that is mutated in individuals with CdLS and determined its structure and the structures of mouse, rat and zebrafish homologs. We named its protein product delangin. Vertebrate delangins have substantial homology to orthologs in flies, worms, plants and fungi, including Scc2-type sister chromatid cohesion proteins, and D. melanogaster Nipped-B. We propose that perturbed delangin function may inappropriately activate DLX genes, thereby contributing to the proximodistal limb patterning defects in CdLS. Genome analyses typically identify individual delangin or Nipped-B-like orthologs in diploid animal and plant genomes. The evolution of an ancestral sister chromatid cohesion protein to acquire an additional role in developmental gene regulation suggests that there are parallels between CdLS and Roberts syndrome.", "title": "NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome" }, { "docid": "4434951", "text": "BACKGROUND Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging \"clock\", a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. \n RESULTS In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. \n CONCLUSIONS Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock.", "title": "Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions" }, { "docid": "34760396", "text": "The fly Musca sorbens Wiedemann (Diptera: Muscidae) apparently transmits Chlamydia trachomatis, causing human trachoma. The literature indicates that M. sorbens breeds predominantly in isolated human faeces on the soil surface, but not in covered pit latrines. We sought to identify breeding media of M. sorbens in a rural Gambian village endemic for trachoma. Test breeding media were presented for oviposition on soil-filled buckets and monitored for adult emergence. Musca sorbens emerged from human (6/9 trials), calf (3/9), cow (3/9), dog (2/9) and goat (1/9) faeces, but not from horse faeces, composting kitchen scraps or a soil control (0/9 of each). After adjusting for mass of medium, the greatest number of flies emerged from human faeces (1426 flies/kg). Median time for emergence was 9 (inter quartile range = 8-9.75) days post-oviposition. Of all flies emerging from faeces 81% were M. sorbens. Male and female flies emerging from human faeces were significantly larger than those from other media, suggesting that they would be more fecund and live longer than smaller flies from other sources. Female flies caught from children's eyes were of a similar size to those from human faeces, but significantly larger than those from other media. We consider that human faeces are the best larval medium for M. sorbens, although some breeding also occurs in animal faeces. Removal of human faeces from the environment, through the provision of basic sanitation, is likely to greatly reduce fly density, eye contact and hence trachoma transmission, but if faeces of other animals are present M. sorbens will persist.", "title": "Human and other faeces as breeding media of the trachoma vector Musca sorbens." }, { "docid": "13162391", "text": "A funnel trap that fitted over holes leading into hollow trees was used to capture adult phlebotomine sand flies, Lutzomyia shannoni Dyar, on Ossabaw Island, Chatham County, Ga. These insects rested in hollow trees during the day and were collected by funnel traps as they egressed from the tree holes at night. The trap is lightweight, durable, inexpensive, waterproof, and selective. Using this trap, greater than 100 healthy L. shannoni ++were captured per night by a single investigator during July and August 1988 when adult flies were abundant on the island.", "title": "Funnel trap for the capture of phlebotomine sand flies (Diptera: Psychodidae) from tree holes." }, { "docid": "9822397", "text": "CONTEXT Sugar-sweetened beverages like soft drinks and fruit punches contain large amounts of readily absorbable sugars and may contribute to weight gain and an increased risk of type 2 diabetes, but these relationships have been minimally addressed in adults. \n OBJECTIVE To examine the association between consumption of sugar-sweetened beverages and weight change and risk of type 2 diabetes in women. \n DESIGN, SETTING, AND PARTICIPANTS Prospective cohort analyses conducted from 1991 to 1999 among women in the Nurses' Health Study II. The diabetes analysis included 91,249 women free of diabetes and other major chronic diseases at baseline in 1991. The weight change analysis included 51,603 women for whom complete dietary information and body weight were ascertained in 1991, 1995, and 1999. We identified 741 incident cases of confirmed type 2 diabetes during 716,300 person-years of follow-up. \n MAIN OUTCOME MEASURES Weight gain and incidence of type 2 diabetes. \n RESULTS Those with stable consumption patterns had no difference in weight gain, but weight gain over a 4-year period was highest among women who increased their sugar-sweetened soft drink consumption from 1 or fewer drinks per week to 1 or more drinks per day (multivariate-adjusted means, 4.69 kg for 1991 to 1995 and 4.20 kg for 1995 to 1999) and was smallest among women who decreased their intake (1.34 and 0.15 kg for the 2 periods, respectively) after adjusting for lifestyle and dietary confounders. Increased consumption of fruit punch was also associated with greater weight gain compared with decreased consumption. After adjustment for potential confounders, women consuming 1 or more sugar-sweetened soft drinks per day had a relative risk [RR] of type 2 diabetes of 1.83 (95% confidence interval [CI], 1.42-2.36; P<.001 for trend) compared with those who consumed less than 1 of these beverages per month. Similarly, consumption of fruit punch was associated with increased diabetes risk (RR for > or =1 drink per day compared with <1 drink per month, 2.00; 95% CI, 1.33-3.03; P =.001). \n CONCLUSION Higher consumption of sugar-sweetened beverages is associated with a greater magnitude of weight gain and an increased risk for development of type 2 diabetes in women, possibly by providing excessive calories and large amounts of rapidly absorbable sugars.", "title": "Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women." }, { "docid": "1974176", "text": "OBJECTIVE To determine whether individual fruits are differentially associated with risk of type 2 diabetes. \n DESIGN Prospective longitudinal cohort study. \n SETTING Health professionals in the United States. \n PARTICIPANTS 66,105 women from the Nurses' Health Study (1984-2008), 85,104 women from the Nurses' Health Study II (1991-2009), and 36,173 men from the Health Professionals Follow-up Study (1986-2008) who were free of major chronic diseases at baseline in these studies. \n MAIN OUTCOME MEASURE Incident cases of type 2 diabetes, identified through self report and confirmed by supplementary questionnaires. \n RESULTS During 3,464,641 person years of follow-up, 12,198 participants developed type 2 diabetes. After adjustment for personal, lifestyle, and dietary risk factors of diabetes, the pooled hazard ratio of type 2 diabetes for every three servings/week of total whole fruit consumption was 0.98 (95% confidence interval 0.97 [corrected] to 0.99). With mutual adjustment of individual fruits, the pooled hazard ratios of type 2 diabetes for every three servings/week were 0.74 (0.66 to 0.83) for blueberries, 0.88 (0.83 to 0.93) for grapes and raisins, 0.89 (0.79 to 1.01) for prunes, 0.93 (0.90 to 0.96) for apples and pears, 0.95 (0.91 to 0.98) for bananas, 0.95 (0.91 to 0.99) for grapefruit, 0.97 (0.92 to 1.02) for peaches, plums, and apricots, 0.99 (0.95 to 1.03) for oranges, 1.03 (0.96 to 1.10) for strawberries, and 1.10 (1.02 to 1.18) for cantaloupe. The pooled hazard ratio for the same increment in fruit juice consumption was 1.08 (1.05 to 1.11). The associations with risk of type 2 diabetes differed significantly among individual fruits (P<0.001 in all cohorts). \n CONCLUSION Our findings suggest the presence of heterogeneity in the associations between individual fruit consumption and risk of type 2 diabetes. Greater consumption of specific whole fruits, particularly blueberries, grapes, and apples, is significantly associated with a lower risk of type 2 diabetes, whereas greater consumption of fruit juice is associated with a higher risk.", "title": "Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies" }, { "docid": "2266471", "text": "Lymphangioleiomyomatosis (LAM), a multisystem disease of women, is manifest by the proliferation of smooth muscle-like cells in the lung resulting in cystic lung destruction. Women with LAM can also develop renal angiomyolipomas. LAM is caused by mutations in the tuberous sclerosis complex genes (TSC1 or TSC2), resulting in hyperactive mammalian Target of Rapamycin (mTOR) signaling. The mTOR inhibitor, Rapamycin, stabilizes lung function in LAM and decreases the volume of renal angiomyolipomas, but lung function declines and angiomyolipomas regrow when treatment is discontinued, suggesting that factors induced by mTORC1 inhibition may promote the survival of TSC2-deficient cells. Whether microRNA (miRNA, miR) signaling is involved in the response of LAM to mTORC1 inhibition is unknown. We identified Rapamycin-dependent miRNA in LAM patient angiomyolipoma-derived cells using two separate screens. First, we assayed 132 miRNA of known significance to tumor biology. Using a cut-off of >1.5-fold change, 48 microRNA were Rapamycin-induced, while 4 miRs were downregulated. In a second screen encompassing 946 miRNA, 18 miRs were upregulated by Rapamycin, while eight were downregulated. Dysregulation of miRs 29b, 21, 24, 221, 106a and 199a were common to both platforms and were classified as candidate \"RapamiRs. \" Validation by qRT-PCR confirmed that these microRNA were increased. miR-21, a pro-survival miR, was the most significantly increased by mTOR-inhibition (p<0.01). The regulation of miR-21 by Rapamycin is cell type independent. mTOR inhibition promotes the processing of the miR-21 transcript (pri-miR-21) to a premature form (pre-miR-21). In conclusion, our findings demonstrate that Rapamycin upregulates multiple miRs, including pro-survival miRs, in TSC2-deficient patient-derived cells. The induction of miRs may contribute to the response of LAM and TSC patients to Rapamycin therapy.", "title": "MicroRNA-21 is Induced by Rapamycin in a Model of Tuberous Sclerosis (TSC) and Lymphangioleiomyomatosis (LAM)" }, { "docid": "16233471", "text": "The average lifespan of humans is increasing, and with it the percentage of people entering the 65 and older age group is growing rapidly and will continue to do so in the next 20 years. Within this age group, cardiovascular disease will remain the leading cause of death, and the cost associated with treatment will continue to increase. Aging is an inevitable part of life and unfortunately poses the largest risk factor for cardiovascular disease. Although numerous studies in the cardiovascular field have considered both young and aged humans, there are still many unanswered questions as to how the genetic pathways that regulate aging in model organisms influence cardiovascular aging. Likewise, in the molecular biology of aging field, few studies fully assess the role of these aging pathways in cardiovascular health. Fortunately, this gap is beginning to close, and these two fields are merging together. We provide an overview of some of the key genes involved in regulating lifespan and health span, including sirtuins, AMP-activated protein kinase, mammalian target of rapamycin, and insulin-like growth factor 1 and their roles regulating cardiovascular health. We then discuss a series of review articles that will appear in succession and provide a more comprehensive analysis of studies carried out linking genes of aging and cardiovascular health, and perspectives of future directions of these two intimately linked fields.", "title": "The intersection between aging and cardiovascular disease." }, { "docid": "797114", "text": "A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.", "title": "A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology☆" }, { "docid": "2466614", "text": "Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of \"survival\" responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension.", "title": "Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms" }, { "docid": "4658268", "text": "The mammalian TOR (mTOR) pathway integrates nutrient- and growth factor-derived signals to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR is a large protein kinase and the target of rapamycin, an immunosuppressant that also blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the raptor and GbetaL proteins to form a complex that is the target of rapamycin. Here, we demonstrate that mTOR is also part of a distinct complex defined by the novel protein rictor (rapamycin-insensitive companion of mTOR). Rictor shares homology with the previously described pianissimo from D. discoidieum, STE20p from S. pombe, and AVO3p from S. cerevisiae. Interestingly, AVO3p is part of a rapamycin-insensitive TOR complex that does not contain the yeast homolog of raptor and signals to the actin cytoskeleton through PKC1. Consistent with this finding, the rictor-containing mTOR complex contains GbetaL but not raptor and it neither regulates the mTOR effector S6K1 nor is it bound by FKBP12-rapamycin. We find that the rictor-mTOR complex modulates the phosphorylation of Protein Kinase C alpha (PKCalpha) and the actin cytoskeleton, suggesting that this aspect of TOR signaling is conserved between yeast and mammals.", "title": "Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton" }, { "docid": "10557471", "text": "The aim of the present investigation was to study the effect of a dietary intervention which combined nutrition information with increased availability of vegetables, fruits and wholegrain bread. The effect of the intervention was determined by changes in the intake of vegetables, fruits, wholegrain bread and estimated nutrients. Furthermore, the study investigated whether changes in relative contribution from different food sources of folate were related to changes in the concentration of plasma total homocysteine (p-tHcy). The 5-month intervention study included 376 male recruits from the Norwegian National Guard, Vaernes (intervention group) and 105 male recruits from the Norwegian National Guard, Heggelia (control group). The study resulted in an increase in the total consumption of vegetables, fruits, berries and juice (P < 0.001) and of wholegrain bread (P < 0.001). The participants in the intervention group showed a higher increase in the intake of dietary fibre (P < 0.001) and folate (P < 0.001) compared with the control group. The relative contribution of folate intake from fruits, vegetables and wholegrain bread was higher in the intervention group compared with the control group (P < 0.001 for all). The increased intake of folate from wholegrain bread was inversely associated with a reduced concentration of p-tHcy (P = 0.017). In summary, the dietary intervention resulted in an increased intake of vegetables, fruits and wholegrain bread and a subsequent increase in folate intake from these food components. Reduction in the concentration of p-tHcy was significantly related to an increased folate intake due to an increased consumption of wholegrain bread.", "title": "Association between folate intake from different food sources in Norway and homocysteine status in a dietary intervention among young male adults." }, { "docid": "10790846", "text": "Many forms of long-lasting behavioral and synaptic plasticity require the synthesis of new proteins. For example, long-term potentiation (LTP) that endures for more than an hour requires both transcription and translation. The signal-transduction mechanisms that couple synaptic events to protein translational machinery during long-lasting synaptic plasticity, however, are not well understood. One signaling pathway that is stimulated by growth factors and results in the translation of specific mRNAs includes the rapamycin-sensitive kinase mammalian target of rapamycin (mTOR, also known as FRAP and RAFT-1). Several components of this translational signaling pathway, including mTOR, eukaryotic initiation factor-4E-binding proteins 1 and 2, and eukaryotic initiation factor-4E, are present in the rat hippocampus as shown by Western blot analysis, and these proteins are detected in the cell bodies and dendrites in the hippocampal slices by immunostaining studies. In cultured hippocampal neurons, these proteins are present in dendrites and are often found near the presynaptic protein, synapsin I. At synaptic sites, their distribution completely overlaps with a postsynaptic protein, PSD-95. These observations suggest the postsynaptic localization of these proteins. Disruption of mTOR signaling by rapamycin results in a reduction of late-phase LTP expression induced by high-frequency stimulation; the early phase of LTP is unaffected. Rapamycin also blocks the synaptic potentiation induced by brain-derived neurotrophic factor in hippocampal slices. These results demonstrate an essential role for rapamycin-sensitive signaling in the expression of two forms of synaptic plasticity that require new protein synthesis. The localization of this translational signaling pathway at postsynaptic sites may provide a mechanism that controls local protein synthesis at potentiated synapses.", "title": "A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus." }, { "docid": "1227277", "text": "Mammalian target of rapamycin (mTOR) is an atypical protein kinase that controls growth and metabolism in response to nutrients, growth factors and cellular energy levels, and it is frequently dysregulated in cancer and metabolic disorders. Rapamycin is an allosteric inhibitor of mTOR, and was approved as an immuno-suppressant in 1999. In recent years, interest has focused on its potential as an anticancer drug. However, the performance of rapamycin and its analogues (rapalogues) has been undistinguished despite isolated successes in subsets of cancer, suggesting that the full therapeutic potential of targeting mTOR has yet to be exploited. A new generation of ATP-competitive inhibitors that directly target the mTOR catalytic site display potent and comprehensive mTOR inhibition and are in early clinical trials.", "title": "Rapamycin passes the torch: a new generation of mTOR inhibitors" }, { "docid": "29015485", "text": "CD8(+) T cells can respond to unrelated infections in an Ag-independent manner. This rapid innate-like immune response allows Ag-experienced T cells to alert other immune cell types to pathogenic intruders. In this study, we show that murine CD8(+) T cells can sense TLR2 and TLR7 ligands, resulting in rapid production of IFN-γ but not of TNF-α and IL-2. Importantly, Ag-experienced T cells activated by TLR ligands produce sufficient IFN-γ to augment the activation of macrophages. In contrast to Ag-specific reactivation, TLR-dependent production of IFN-γ by CD8(+) T cells relies exclusively on newly synthesized transcripts without inducing mRNA stability. Furthermore, transcription of IFN-γ upon TLR triggering depends on the activation of PI3K and serine-threonine kinase Akt, and protein synthesis relies on the activation of the mechanistic target of rapamycin. We next investigated which energy source drives the TLR-induced production of IFN-γ. Although Ag-specific cytokine production requires a glycolytic switch for optimal cytokine release, glucose availability does not alter the rate of IFN-γ production upon TLR-mediated activation. Rather, mitochondrial respiration provides sufficient energy for TLR-induced IFN-γ production. To our knowledge, this is the first report describing that TLR-mediated bystander activation elicits a helper phenotype of CD8(+) T cells. It induces a short boost of IFN-γ production that leads to a significant but limited activation of Ag-experienced CD8(+) T cells. This activation suffices to prime macrophages but keeps T cell responses limited to unrelated infections.", "title": "TLR-Mediated Innate Production of IFN-γ by CD8+ T Cells Is Independent of Glycolysis." }, { "docid": "12794099", "text": "BACKGROUND There is overwhelming evidence that behavioural factors influence health, but their combined impact on the general population is less well documented. We aimed to quantify the potential combined impact of four health behaviours on mortality in men and women living in the general community. \n METHODS AND FINDINGS We examined the prospective relationship between lifestyle and mortality in a prospective population study of 20,244 men and women aged 45-79 y with no known cardiovascular disease or cancer at baseline survey in 1993-1997, living in the general community in the United Kingdom, and followed up to 2006. Participants scored one point for each health behaviour: current non-smoking, not physically inactive, moderate alcohol intake (1-14 units a week) and plasma vitamin C >50 mmol/l indicating fruit and vegetable intake of at least five servings a day, for a total score ranging from zero to four. After an average 11 y follow-up, the age-, sex-, body mass-, and social class-adjusted relative risks (95% confidence intervals) for all-cause mortality(1,987 deaths) for men and women who had three, two, one, and zero compared to four health behaviours were respectively, 1.39 (1.21-1.60), 1.95 (1.70--2.25), 2.52 (2.13-3.00), and 4.04 (2.95-5.54) p < 0.001 trend. The relationships were consistent in subgroups stratified by sex, age, body mass index, and social class, and after excluding deaths within 2 y. The trends were strongest for cardiovascular causes. The mortality risk for those with four compared to zero health behaviours was equivalent to being 14 y younger in chronological age. \n CONCLUSIONS Four health behaviours combined predict a 4-fold difference in total mortality in men and women, with an estimated impact equivalent to 14 y in chronological age.", "title": "Combined Impact of Health Behaviours and Mortality in Men and Women: The EPIC-Norfolk Prospective Population Study" } ]
1016
Rapamycin increases the concentration of triacylglycerols in fruit flies.
[ { "docid": "6277638", "text": "The target of rapamycin (TOR) pathway is a major nutrient-sensing pathway that, when genetically downregulated, increases life span in evolutionarily diverse organisms including mammals. The central component of this pathway, TOR kinase, is the target of the inhibitory drug rapamycin, a highly specific and well-described drug approved for human use. We show here that feeding rapamycin to adult Drosophila produces the life span extension seen in some TOR mutants. Increase in life span by rapamycin was associated with increased resistance to both starvation and paraquat. Analysis of the underlying mechanisms revealed that rapamycin increased longevity specifically through the TORC1 branch of the TOR pathway, through alterations to both autophagy and translation. Rapamycin could increase life span of weak insulin/Igf signaling (IIS) pathway mutants and of flies with life span maximized by dietary restriction, indicating additional mechanisms.", "title": "Mechanisms of Life Span Extension by Rapamycin in the Fruit Fly Drosophila melanogaster" } ]
[ { "docid": "10557471", "text": "The aim of the present investigation was to study the effect of a dietary intervention which combined nutrition information with increased availability of vegetables, fruits and wholegrain bread. The effect of the intervention was determined by changes in the intake of vegetables, fruits, wholegrain bread and estimated nutrients. Furthermore, the study investigated whether changes in relative contribution from different food sources of folate were related to changes in the concentration of plasma total homocysteine (p-tHcy). The 5-month intervention study included 376 male recruits from the Norwegian National Guard, Vaernes (intervention group) and 105 male recruits from the Norwegian National Guard, Heggelia (control group). The study resulted in an increase in the total consumption of vegetables, fruits, berries and juice (P < 0.001) and of wholegrain bread (P < 0.001). The participants in the intervention group showed a higher increase in the intake of dietary fibre (P < 0.001) and folate (P < 0.001) compared with the control group. The relative contribution of folate intake from fruits, vegetables and wholegrain bread was higher in the intervention group compared with the control group (P < 0.001 for all). The increased intake of folate from wholegrain bread was inversely associated with a reduced concentration of p-tHcy (P = 0.017). In summary, the dietary intervention resulted in an increased intake of vegetables, fruits and wholegrain bread and a subsequent increase in folate intake from these food components. Reduction in the concentration of p-tHcy was significantly related to an increased folate intake due to an increased consumption of wholegrain bread.", "title": "Association between folate intake from different food sources in Norway and homocysteine status in a dietary intervention among young male adults." }, { "docid": "15615957", "text": "UNLABELLED Fruit and vegetable consumption has been inversely associated with the risk of chronic diseases including cancer and cardiovascular disease, with the beneficial effects attributed to a variety of protective antioxidants, carotenoids and phytonutrients. The objective of the present study was to determine the effect of supplementation with dehydrated concentrates from mixed fruit and vegetable juices (Juice Plus+R) on serum antioxidant and folate status, plasma homocysteine levels and markers for oxidative stress and DNA damage. Japanese subjects (n=60; age 27.8 yrs; BMI 22.1) were recruited to participate in a double-blind placebo controlled study and were randomized into 2 groups of 30, matched for sex, age, BMI and smoking status (39 males, 22 smokers; 21 females, 13 smokers). Subjects were given encapsulated supplements containing mixed fruit and vegetable juice concentrates or a matching placebo for 28 days, with blood and urine samples collected at baseline, day 14 and day 28 for analytical testing. Compared with the placebo, 28 day supplementation significantly increased the concentration of serum beta-carotene 528% (p<0.0001), lycopene 80.2% (p<0.0005), and alpha tocopherol 39.5% (p<0.0001). Serum folate increased 174.3% (p<0.0001) and correlated with a decrease in plasma homocysteine of -19.9% (p<0.03). Compared with baseline, measures of oxidative stress decreased with serum lipid peroxides declining -10.5% (p<0.02) and urine 8OHdG decreasing -21.1% (p<0.02). Evaluation of data from smokers only (n=17) after 28 days of active supplementation showed comparable changes. \n CONCLUSION In the absence of dietary modification, supplementation with the fruit and vegetable juice concentrate capsules proved to be a highly bioavailable source of phytonutrients. Important antioxidants were elevated to desirable levels associated with decreased risk of disease while markers of oxidative stress were reduced, and folate status improved with a concomitant decrease in homocysteine, and these benefits occurred to a similar extent in smokers when compared to non-smokers.", "title": "Original Article" }, { "docid": "18557974", "text": "High plasma total homocysteine (tHcy) concentration is reported to be a risk factor for vascular diseases. We investigated the extent to which serum folate and plasma tHcy respond to a high intake of natural folate from food. Thirty-seven healthy females volunteered t o participate in a crossover dietary intervention. The study included a baseline period and two 5-week diet periods (low- and high-folate diets) with a 3-week washout in between. The low-folate diet contained one serving of both vegetables and fruit/d, while during the high-folate diet the subjects ate at least seven servings of vegetables, berries, and citrus fruit/d. Serum and erythrocyte (RBC) folate, serum vitamin B (12), and plasma tHcy concentrations were measured at the base-line and at the end of each diet period. The mean concentrations of serum and RBC folate were 11.0 (SD 3.0) nmol/l and 412 (SD 120) nmol/l at the end of the low-folate diet and 78 (95 % CI 62, 94) % and 14 (95 % CI 8, 20) % higher in response to the high-folate diet (P< 0.001). The serum concentration of vitamin B12 remained unchanged during the intervention. The mean plasma tHcy concentration was 8.0 pmol/ at the end of the low-folate diet and decreased by 13 (95% CI 9, 18) % in response to the high-folate diet (P<0.001). In conclusion, a diet high in fresh berries, citrus fruit, and vegetables effectively increases serum and RBC folate and decreases plasma homocysteine.", "title": "British Journal of Nutrition (2003), 89, 295–301 q The Authors 2003 DOI: 10.1079/BJN2002776 Plasma homocysteine concentration is decreased by dietary intervention*" }, { "docid": "2266471", "text": "Lymphangioleiomyomatosis (LAM), a multisystem disease of women, is manifest by the proliferation of smooth muscle-like cells in the lung resulting in cystic lung destruction. Women with LAM can also develop renal angiomyolipomas. LAM is caused by mutations in the tuberous sclerosis complex genes (TSC1 or TSC2), resulting in hyperactive mammalian Target of Rapamycin (mTOR) signaling. The mTOR inhibitor, Rapamycin, stabilizes lung function in LAM and decreases the volume of renal angiomyolipomas, but lung function declines and angiomyolipomas regrow when treatment is discontinued, suggesting that factors induced by mTORC1 inhibition may promote the survival of TSC2-deficient cells. Whether microRNA (miRNA, miR) signaling is involved in the response of LAM to mTORC1 inhibition is unknown. We identified Rapamycin-dependent miRNA in LAM patient angiomyolipoma-derived cells using two separate screens. First, we assayed 132 miRNA of known significance to tumor biology. Using a cut-off of >1.5-fold change, 48 microRNA were Rapamycin-induced, while 4 miRs were downregulated. In a second screen encompassing 946 miRNA, 18 miRs were upregulated by Rapamycin, while eight were downregulated. Dysregulation of miRs 29b, 21, 24, 221, 106a and 199a were common to both platforms and were classified as candidate \"RapamiRs. \" Validation by qRT-PCR confirmed that these microRNA were increased. miR-21, a pro-survival miR, was the most significantly increased by mTOR-inhibition (p<0.01). The regulation of miR-21 by Rapamycin is cell type independent. mTOR inhibition promotes the processing of the miR-21 transcript (pri-miR-21) to a premature form (pre-miR-21). In conclusion, our findings demonstrate that Rapamycin upregulates multiple miRs, including pro-survival miRs, in TSC2-deficient patient-derived cells. The induction of miRs may contribute to the response of LAM and TSC patients to Rapamycin therapy.", "title": "MicroRNA-21 is Induced by Rapamycin in a Model of Tuberous Sclerosis (TSC) and Lymphangioleiomyomatosis (LAM)" }, { "docid": "34760396", "text": "The fly Musca sorbens Wiedemann (Diptera: Muscidae) apparently transmits Chlamydia trachomatis, causing human trachoma. The literature indicates that M. sorbens breeds predominantly in isolated human faeces on the soil surface, but not in covered pit latrines. We sought to identify breeding media of M. sorbens in a rural Gambian village endemic for trachoma. Test breeding media were presented for oviposition on soil-filled buckets and monitored for adult emergence. Musca sorbens emerged from human (6/9 trials), calf (3/9), cow (3/9), dog (2/9) and goat (1/9) faeces, but not from horse faeces, composting kitchen scraps or a soil control (0/9 of each). After adjusting for mass of medium, the greatest number of flies emerged from human faeces (1426 flies/kg). Median time for emergence was 9 (inter quartile range = 8-9.75) days post-oviposition. Of all flies emerging from faeces 81% were M. sorbens. Male and female flies emerging from human faeces were significantly larger than those from other media, suggesting that they would be more fecund and live longer than smaller flies from other sources. Female flies caught from children's eyes were of a similar size to those from human faeces, but significantly larger than those from other media. We consider that human faeces are the best larval medium for M. sorbens, although some breeding also occurs in animal faeces. Removal of human faeces from the environment, through the provision of basic sanitation, is likely to greatly reduce fly density, eye contact and hence trachoma transmission, but if faeces of other animals are present M. sorbens will persist.", "title": "Human and other faeces as breeding media of the trachoma vector Musca sorbens." }, { "docid": "4658268", "text": "The mammalian TOR (mTOR) pathway integrates nutrient- and growth factor-derived signals to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR is a large protein kinase and the target of rapamycin, an immunosuppressant that also blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the raptor and GbetaL proteins to form a complex that is the target of rapamycin. Here, we demonstrate that mTOR is also part of a distinct complex defined by the novel protein rictor (rapamycin-insensitive companion of mTOR). Rictor shares homology with the previously described pianissimo from D. discoidieum, STE20p from S. pombe, and AVO3p from S. cerevisiae. Interestingly, AVO3p is part of a rapamycin-insensitive TOR complex that does not contain the yeast homolog of raptor and signals to the actin cytoskeleton through PKC1. Consistent with this finding, the rictor-containing mTOR complex contains GbetaL but not raptor and it neither regulates the mTOR effector S6K1 nor is it bound by FKBP12-rapamycin. We find that the rictor-mTOR complex modulates the phosphorylation of Protein Kinase C alpha (PKCalpha) and the actin cytoskeleton, suggesting that this aspect of TOR signaling is conserved between yeast and mammals.", "title": "Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton" }, { "docid": "116792", "text": "Understanding molecular mechanisms mediating epileptogenesis is critical for developing more effective therapies for epilepsy. We recently found that the mammalian target of rapamycin (mTOR) signaling pathway is involved in epileptogenesis, and mTOR inhibitors prevent epilepsy in a mouse model of tuberous sclerosis complex. Here, we investigated the potential role of mTOR in a rat model of temporal lobe epilepsy initiated by status epilepticus. Acute kainate-induced seizures resulted in biphasic activation of the mTOR pathway, as evident by an increase in phospho-S6 (P-S6) expression. An initial rise in P-S6 expression started approximately 1 h after seizure onset, peaked at 3-6 h, and returned to baseline by 24 h in both hippocampus and neocortex, reflecting widespread stimulation of mTOR signaling by acute seizure activity. After resolution of status epilepticus, a second increase in P-S6 was observed in hippocampus only, which started at 3 d, peaked 5-10 d, and persisted for several weeks after kainate injection, correlating with the development of chronic epileptogenesis within hippocampus. The mTOR inhibitor rapamycin, administered before kainate, blocked both the acute and chronic phases of seizure-induced mTOR activation and decreased kainate-induced neuronal cell death, neurogenesis, mossy fiber sprouting, and the development of spontaneous epilepsy. Late rapamycin treatment, after termination of status epilepticus, blocked the chronic phase of mTOR activation and reduced mossy fiber sprouting and epilepsy but not neurogenesis or neuronal death. These findings indicate that mTOR signaling mediates mechanisms of epileptogenesis in the kainate rat model and that mTOR inhibitors have potential antiepileptogenic effects in this model.", "title": "The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy." }, { "docid": "13162391", "text": "A funnel trap that fitted over holes leading into hollow trees was used to capture adult phlebotomine sand flies, Lutzomyia shannoni Dyar, on Ossabaw Island, Chatham County, Ga. These insects rested in hollow trees during the day and were collected by funnel traps as they egressed from the tree holes at night. The trap is lightweight, durable, inexpensive, waterproof, and selective. Using this trap, greater than 100 healthy L. shannoni ++were captured per night by a single investigator during July and August 1988 when adult flies were abundant on the island.", "title": "Funnel trap for the capture of phlebotomine sand flies (Diptera: Psychodidae) from tree holes." }, { "docid": "9822397", "text": "CONTEXT Sugar-sweetened beverages like soft drinks and fruit punches contain large amounts of readily absorbable sugars and may contribute to weight gain and an increased risk of type 2 diabetes, but these relationships have been minimally addressed in adults. \n OBJECTIVE To examine the association between consumption of sugar-sweetened beverages and weight change and risk of type 2 diabetes in women. \n DESIGN, SETTING, AND PARTICIPANTS Prospective cohort analyses conducted from 1991 to 1999 among women in the Nurses' Health Study II. The diabetes analysis included 91,249 women free of diabetes and other major chronic diseases at baseline in 1991. The weight change analysis included 51,603 women for whom complete dietary information and body weight were ascertained in 1991, 1995, and 1999. We identified 741 incident cases of confirmed type 2 diabetes during 716,300 person-years of follow-up. \n MAIN OUTCOME MEASURES Weight gain and incidence of type 2 diabetes. \n RESULTS Those with stable consumption patterns had no difference in weight gain, but weight gain over a 4-year period was highest among women who increased their sugar-sweetened soft drink consumption from 1 or fewer drinks per week to 1 or more drinks per day (multivariate-adjusted means, 4.69 kg for 1991 to 1995 and 4.20 kg for 1995 to 1999) and was smallest among women who decreased their intake (1.34 and 0.15 kg for the 2 periods, respectively) after adjusting for lifestyle and dietary confounders. Increased consumption of fruit punch was also associated with greater weight gain compared with decreased consumption. After adjustment for potential confounders, women consuming 1 or more sugar-sweetened soft drinks per day had a relative risk [RR] of type 2 diabetes of 1.83 (95% confidence interval [CI], 1.42-2.36; P<.001 for trend) compared with those who consumed less than 1 of these beverages per month. Similarly, consumption of fruit punch was associated with increased diabetes risk (RR for > or =1 drink per day compared with <1 drink per month, 2.00; 95% CI, 1.33-3.03; P =.001). \n CONCLUSION Higher consumption of sugar-sweetened beverages is associated with a greater magnitude of weight gain and an increased risk for development of type 2 diabetes in women, possibly by providing excessive calories and large amounts of rapidly absorbable sugars.", "title": "Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women." }, { "docid": "24632480", "text": "Aberrant protein misfolding may contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS) but the detailed mechanisms are largely unknown. Our previous study has shown that autophagy is altered in the mouse model of ALS. In the present study, we systematically investigated the correlation of the autophagic alteration with the motor neurons (MNs) degeneration in the ALS mice. We have demonstrated that the autophagic protein marker LC3-II is markedly and specifically increased in the spinal cord MNs of the ALS mice. Electron microscopy and immunochemistry studies have shown that autophagic vacuoles are significantly accumulated in the dystrophic axons of spinal cord MNs of the ALS mice. All these changes in the ALS mice appear at the age of 90 d when the ALS mice display modest clinical symptoms; and they become prominent at the age of 120 d. The clinical symptoms are correlated with the progression of MNs degeneration. Moreover, we have found that p62/SQSTM1 is accumulated progressively in the spinal cord, indicating that the possibility of impaired autophagic flux in the SOD1(G93A) mice. Furthermore, to our surprise, we have found that treatment with autophagy enhancer rapamycin accelerates the MNs degeneration, shortens the life span of the ALS mice, and has no obvious effects on the accumulation of SOD1 aggregates. In addition, we have demonstrated that rapamycin treatment in the ALS mice causes more severe mitochondrial impairment, higher Bax levels and greater caspase-3 activation. These findings suggest that selective degeneration of MNs is associated with the impairment of the autophagy pathway and that rapamycin treatment may exacerbate the pathological processing through apoptosis and other mechanisms in the ALS mice.", "title": "Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis." }, { "docid": "1974176", "text": "OBJECTIVE To determine whether individual fruits are differentially associated with risk of type 2 diabetes. \n DESIGN Prospective longitudinal cohort study. \n SETTING Health professionals in the United States. \n PARTICIPANTS 66,105 women from the Nurses' Health Study (1984-2008), 85,104 women from the Nurses' Health Study II (1991-2009), and 36,173 men from the Health Professionals Follow-up Study (1986-2008) who were free of major chronic diseases at baseline in these studies. \n MAIN OUTCOME MEASURE Incident cases of type 2 diabetes, identified through self report and confirmed by supplementary questionnaires. \n RESULTS During 3,464,641 person years of follow-up, 12,198 participants developed type 2 diabetes. After adjustment for personal, lifestyle, and dietary risk factors of diabetes, the pooled hazard ratio of type 2 diabetes for every three servings/week of total whole fruit consumption was 0.98 (95% confidence interval 0.97 [corrected] to 0.99). With mutual adjustment of individual fruits, the pooled hazard ratios of type 2 diabetes for every three servings/week were 0.74 (0.66 to 0.83) for blueberries, 0.88 (0.83 to 0.93) for grapes and raisins, 0.89 (0.79 to 1.01) for prunes, 0.93 (0.90 to 0.96) for apples and pears, 0.95 (0.91 to 0.98) for bananas, 0.95 (0.91 to 0.99) for grapefruit, 0.97 (0.92 to 1.02) for peaches, plums, and apricots, 0.99 (0.95 to 1.03) for oranges, 1.03 (0.96 to 1.10) for strawberries, and 1.10 (1.02 to 1.18) for cantaloupe. The pooled hazard ratio for the same increment in fruit juice consumption was 1.08 (1.05 to 1.11). The associations with risk of type 2 diabetes differed significantly among individual fruits (P<0.001 in all cohorts). \n CONCLUSION Our findings suggest the presence of heterogeneity in the associations between individual fruit consumption and risk of type 2 diabetes. Greater consumption of specific whole fruits, particularly blueberries, grapes, and apples, is significantly associated with a lower risk of type 2 diabetes, whereas greater consumption of fruit juice is associated with a higher risk.", "title": "Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies" }, { "docid": "2787558", "text": "BACKGROUND Lifestyle factors including cigarette smoking, alcohol consumption and nutritional habits impact on health, wellness, and the risk of chronic diseases. In the areas of in-vitro fertilization (IVF) and pregnancy, lifestyle factors influence oocyte production, fertilization rates, pregnancy and pregnancy loss, while chronic, low-grade oxidative stress may underlie poor outcomes for some IVF cases. \n METHODS Here, we review the current literature and present some original, previously unpublished data, obtained from couples attending the PIVET Medical Centre in Western Australia. \n RESULTS During the study, 80 % of females and 70 % of male partners completed a 1-week diary documenting their smoking, alcohol and fruit and vegetable intake. The subsequent clinical outcomes of their IVF treatment such as quantity of oocytes collected, fertilization rates, pregnancy and pregnancy loss were submitted to multiple regression analysis, in order to investigate the relationship between patients, treatment and the recorded lifestyle factors. Of significance, it was found that male smoking caused an increased risk of pregnancy loss (p = 0.029), while female smoking caused an adverse effect on ovarian reserve. Both alcohol consumption (β = 0.074, p < 0.001) and fruit and vegetable consumption (β = 0.034, p < 0.001) had positive effects on fertilization. \n CONCLUSION Based on our results and the current literature, there is an important impact of lifestyle factors on IVF clinical outcomes. Currently, there are conflicting results regarding other lifestyle factors such as nutritional habits and alcohol consumption, but it is apparent that chronic oxidative stress induced by lifestyle factors and poor nutritional habits associate with a lower rate of IVF success.", "title": "The effect of cigarette smoking, alcohol consumption and fruit and vegetable consumption on IVF outcomes: a review and presentation of original data" }, { "docid": "10482574", "text": "Cells exposed to stress of different origins synthesize triacylglycerols and generate lipid droplets (LD), but the physiological relevance of this response is uncertain. Using complete nutrient deprivation of cells in culture as a simple model of stress, we have addressed whether LD biogenesis has a protective role in cells committed to die. Complete nutrient deprivation induced the biogenesis of LD in human LN18 glioblastoma and HeLa cells and also in CHO and rat primary astrocytes. In all cell types, death was associated with LD depletion and was accelerated by blocking LD biogenesis after pharmacological inhibition of Group IVA phospholipase A2 (cPLA2α) or down-regulation of ceramide kinase. Nutrient deprivation also induced β-oxidation of fatty acids that was sensitive to cPLA2α inhibition, and cell survival in these conditions became strictly dependent on fatty acid catabolism. These results show that, during nutrient deprivation, cell viability is sustained by β-oxidation of fatty acids that requires biogenesis and mobilization of LD.", "title": "Cell survival during complete nutrient deprivation depends on lipid droplet-fueled β-oxidation of fatty acids." }, { "docid": "10790846", "text": "Many forms of long-lasting behavioral and synaptic plasticity require the synthesis of new proteins. For example, long-term potentiation (LTP) that endures for more than an hour requires both transcription and translation. The signal-transduction mechanisms that couple synaptic events to protein translational machinery during long-lasting synaptic plasticity, however, are not well understood. One signaling pathway that is stimulated by growth factors and results in the translation of specific mRNAs includes the rapamycin-sensitive kinase mammalian target of rapamycin (mTOR, also known as FRAP and RAFT-1). Several components of this translational signaling pathway, including mTOR, eukaryotic initiation factor-4E-binding proteins 1 and 2, and eukaryotic initiation factor-4E, are present in the rat hippocampus as shown by Western blot analysis, and these proteins are detected in the cell bodies and dendrites in the hippocampal slices by immunostaining studies. In cultured hippocampal neurons, these proteins are present in dendrites and are often found near the presynaptic protein, synapsin I. At synaptic sites, their distribution completely overlaps with a postsynaptic protein, PSD-95. These observations suggest the postsynaptic localization of these proteins. Disruption of mTOR signaling by rapamycin results in a reduction of late-phase LTP expression induced by high-frequency stimulation; the early phase of LTP is unaffected. Rapamycin also blocks the synaptic potentiation induced by brain-derived neurotrophic factor in hippocampal slices. These results demonstrate an essential role for rapamycin-sensitive signaling in the expression of two forms of synaptic plasticity that require new protein synthesis. The localization of this translational signaling pathway at postsynaptic sites may provide a mechanism that controls local protein synthesis at potentiated synapses.", "title": "A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus." }, { "docid": "1227277", "text": "Mammalian target of rapamycin (mTOR) is an atypical protein kinase that controls growth and metabolism in response to nutrients, growth factors and cellular energy levels, and it is frequently dysregulated in cancer and metabolic disorders. Rapamycin is an allosteric inhibitor of mTOR, and was approved as an immuno-suppressant in 1999. In recent years, interest has focused on its potential as an anticancer drug. However, the performance of rapamycin and its analogues (rapalogues) has been undistinguished despite isolated successes in subsets of cancer, suggesting that the full therapeutic potential of targeting mTOR has yet to be exploited. A new generation of ATP-competitive inhibitors that directly target the mTOR catalytic site display potent and comprehensive mTOR inhibition and are in early clinical trials.", "title": "Rapamycin passes the torch: a new generation of mTOR inhibitors" }, { "docid": "13048272", "text": "Combinatorial transcription factor (TF) interactions control cellular phenotypes and, therefore, underpin stem cell formation, maintenance, and differentiation. Here, we report the genome-wide binding patterns and combinatorial interactions for ten key regulators of blood stem/progenitor cells (SCL/TAL1, LYL1, LMO2, GATA2, RUNX1, MEIS1, PU.1, ERG, FLI-1, and GFI1B), thus providing the most comprehensive TF data set for any adult stem/progenitor cell type to date. Genome-wide computational analysis of complex binding patterns, followed by functional validation, revealed the following: first, a previously unrecognized combinatorial interaction between a heptad of TFs (SCL, LYL1, LMO2, GATA2, RUNX1, ERG, and FLI-1). Second, we implicate direct protein-protein interactions between four key regulators (RUNX1, GATA2, SCL, and ERG) in stabilizing complex binding to DNA. Third, Runx1(+/-)::Gata2(+/-) compound heterozygous mice are not viable with severe hematopoietic defects at midgestation. Taken together, this study demonstrates the power of genome-wide analysis in generating novel functional insights into the transcriptional control of stem and progenitor cells.", "title": "Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators." }, { "docid": "6690087", "text": "We addressed the regulatory function of mammalian target of rapamycin (mTOR) in the mechanism of thrombin-induced ICAM-1 gene expression in endothelial cells. Pretreatment of HUVECs with rapamycin, an inhibitor of mTOR, augmented thrombin-induced ICAM-1 expression. Inhibition of mTOR by this approach promoted whereas over-expression of mTOR inhibited thrombin-induced transcriptional activity of NF-kappaB, an essential regulator of ICAM-1 transcription. Analysis of the NF-kappaB signaling pathway revealed that inhibition of mTOR potentiated IkappaB kinase activation resulting in a rapid and persistent phosphorylation of IkappaBalpha on Ser32 and Ser36, a requirement for IkappaBalpha degradation. Consistent with these data, we observed a more efficient and stable nuclear localization of RelA/p65 and, subsequently, the DNA binding activity of NF-kappaB by thrombin following mTOR inhibition. These data define a novel role of mTOR in down-regulating thrombin-induced ICAM-1 expression in endothelial cells by controlling a delayed and transient activation of NF-kappaB.", "title": "Inhibition of mammalian target of rapamycin potentiates thrombin-induced intercellular adhesion molecule-1 expression by accelerating and stabilizing NF-kappa B activation in endothelial cells." }, { "docid": "1456068", "text": "BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. \n METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. \n CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary.", "title": "Combined Impact of Lifestyle-Related Factors on Total and Cause-Specific Mortality among Chinese Women: Prospective Cohort Study" }, { "docid": "86602746", "text": "Key PointsMicroRNAs (miRNAs) are a family of ∼21–25-nucleotide small RNAs that negatively regulate gene expression at the post-transcriptional level. The founding members of the miRNA family, lin-4 and let-7, were identified through genetic screens for defects in the temporal regulation of Caenorhabditis elegans larval development. Owing to genome-wide cloning efforts, hundreds of miRNAs have now been identified in almost all metazoans, including flies, plants and mammals. MiRNAs exhibit temporally and spatially regulated expression patterns during diverse developmental and physiological processes. Most of the miRNAs that have been characterized so far seem to regulate aspects of development, including larval developmental transitions and neuronal development in C. elegans, growth control and apoptosis in Drosophila melanogaster, haematopoietic differentiation in mammals, and leaf development, flower development and embryogenesis in Arabidopsis thaliana. The majority of the animal miRNAs that have been characterized so far affect protein synthesis from their target mRNAs. On the other hand, most of the plant miRNAs studied so far direct the cleavage of their targets. The degree of complementarity between a miRNA and its target, at least in part, determines the regulatory mechanism. In animals, primary transcripts of miRNAs are processed sequentially by two RNase-III enzymes, Drosha and Dicer, into a small, imperfect dsRNA duplex (miRNA:miRNA*) that contains both the mature miRNA strand and its complementary strand (miRNA*). Relative instability at the 5′ end of the mature miRNA leads to the asymmetric assembly of the mature miRNA into the effector complex, the RNA-induced silencing complex (RISC).Ago proteins are a key component of the RISC. Multiple Ago homologues in various metazoan genomes indicate the existence of multiple RISCs that carry out related but specific biological functions. Bioinformatic prediction of miRNA targets has provided an important tool to explore the functions of miRNAs. However, the overall success rate of such predictions remains to be determined by experimental validation. AbstractMicroRNAs are a family of small, non-coding RNAs that regulate gene expression in a sequence-specific manner. The two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events. Since then, hundreds of microRNAs have been identified in almost all metazoan genomes, including worms, flies, plants and mammals. MicroRNAs have diverse expression patterns and might regulate various developmental and physiological processes. Their discovery adds a new dimension to our understanding of complex gene regulatory networks.", "title": "MicroRNAs: small RNAs with a big role in gene regulation" } ]
1018
Rapid phosphotransfer rates are correlated with histidine kinase regulator specificity.
[ { "docid": "11603066", "text": "Two-component signal transduction pathways comprising histidine protein kinases (HPKs) and their response regulators (RRs) are widely used to control bacterial responses to environmental challenges. Some bacteria have over 150 different two-component pathways, and the specificity of the phosphotransfer reactions within these systems is tightly controlled to prevent unwanted crosstalk. One of the best understood two-component signalling pathways is the chemotaxis pathway. Here, we present the 1.40 A crystal structure of the histidine-containing phosphotransfer domain of the chemotaxis HPK, CheA(3), in complex with its cognate RR, CheY(6). A methionine finger on CheY(6) that nestles in a hydrophobic pocket in CheA(3) was shown to be important for the interaction and was found to only occur in the cognate RRs of CheA(3), CheY(6), and CheB(2). Site-directed mutagenesis of this methionine in combination with two adjacent residues abolished binding, as shown by surface plasmon resonance studies, and phosphotransfer from CheA(3)-P to CheY(6). Introduction of this methionine and an adjacent alanine residue into a range of noncognate CheYs, dramatically changed their specificity, allowing protein interaction and rapid phosphotransfer from CheA(3)-P. The structure presented here has allowed us to identify specificity determinants for the CheA-CheY interaction and subsequently to successfully reengineer phosphotransfer signalling. In summary, our results provide valuable insight into how cells mediate specificity in one of the most abundant signalling pathways in biology, two-component signal transduction.", "title": "Using Structural Information to Change the Phosphotransfer Specificity of a Two-Component Chemotaxis Signalling Complex" } ]
[ { "docid": "1225513", "text": "UNLABELLED Two-component systems (TCS) comprise histidine kinases and their cognate response regulators and allow bacteria to sense and respond to a wide variety of signals. Histidine kinases (HKs) phosphorylate and dephosphorylate their cognate response regulators (RRs) in response to stimuli. In general, these reactions appear to be highly specific and require an appropriate association between the HK and RR proteins. The Myxococcus xanthus genome encodes one of the largest repertoires of signaling proteins in bacteria (685 open reading frames [ORFs]), including at least 127 HKs and at least 143 RRs. Of these, 27 are bona fide NtrC-family response regulators, 21 of which are encoded adjacent to their predicted cognate kinases. Using system-wide profiling methods, we determined that the HK-NtrC RR pairs display a kinetic preference during both phosphotransfer and phosphatase functions, thereby defining cognate signaling systems in M. xanthus. Isothermal titration calorimetry measurements indicated that cognate HK-RR pairs interact with dissociation constants (Kd) of approximately 1 µM, while noncognate pairs had no measurable binding. Lastly, a chimera generated between the histidine kinase, CrdS, and HK1190 revealed that residues conferring phosphotransfer and phosphatase specificity dictate binding affinity, thereby establishing discrete protein-protein interactions which prevent cross talk. The data indicate that binding affinity is a critical parameter governing system-wide signaling fidelity for bacterial signal transduction proteins. IMPORTANCE Using in vitro phosphotransfer and phosphatase profiling assays and isothermal titration calorimetry, we have taken a system-wide approach to demonstrate specificity for a family of two-component signaling proteins in Myxococcus xanthus. Our results demonstrate that previously identified specificity residues dictate binding affinity and that phosphatase specificity follows phosphotransfer specificity for cognate HK-RR pairs. The data indicate that preferential binding affinity is the basis for signaling fidelity in bacterial two-component systems.", "title": "Specificity Residues Determine Binding Affinity for Two-Component Signal Transduction Systems" }, { "docid": "39859981", "text": "Virulence in Staphylococcus aureus is largely under control of the accessory gene regulator (agr) quorum-sensing system. The AgrC receptor histidine kinase detects its autoinducing peptide (AIP) ligand and generates an intracellular signal resulting in secretion of virulence factors. Although agr is a well-studied quorum-sensing system, little is known about the mechanism of AgrC activation. By co-immunoprecipitation analysis and intermolecular complementation of receptor mutants, we showed that AgrC forms ligand-independent dimers that undergo trans-autophosphorylation upon interaction with AIP. Remarkably, addition of specific AIPs to AgrC mutant dimers with only one functional sensor domain caused symmetric activation of either kinase domain despite the sensor asymmetry. Furthermore, mutant dimers involving one constitutive protomer demonstrated ligand-independent activity, irrespective of which protomer was kinase deficient. These results demonstrate that signalling through either individual AgrC protomer causes symmetric activation of both kinase domains. We suggest that such signalling across the dimer interface may be an important mechanism for dimeric quorum-sensing receptors to rapidly elicit a response upon signal detection.", "title": "Symmetric signalling within asymmetric dimers of the Staphylococcus aureus receptor histidine kinase AgrC." }, { "docid": "4362729", "text": "Cell growth, an increase in mass and size, is a highly regulated cellular event. The Akt/mTOR (mammalian target of rapamycin) signalling pathway has a central role in the control of protein synthesis and thus the growth of cells, tissues and organisms. A striking example of a physiological context requiring rapid cell growth is tissue repair in response to injury. Here we show that keratin 17, an intermediate filament protein rapidly induced in wounded stratified epithelia, regulates cell growth through binding to the adaptor protein 14-3-3σ. Mouse skin keratinocytes lacking keratin 17 (ref. 4) show depressed protein translation and are of smaller size, correlating with decreased Akt/mTOR signalling activity. Other signalling kinases have normal activity, pointing to the specificity of this defect. Two amino acid residues located in the amino-terminal head domain of keratin 17 are required for the serum-dependent relocalization of 14-3-3σ from the nucleus to the cytoplasm, and for the concomitant stimulation of mTOR activity and cell growth. These findings reveal a new and unexpected role for the intermediate filament cytoskeleton in influencing cell growth and size by regulating protein synthesis.", "title": "A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth" }, { "docid": "196664003", "text": "A signaling pathway transmits information from an upstream system to downstream systems, ideally in a unidirectional fashion. A key obstacle to unidirectional transmission is retroactivity, the additional reaction flux that affects a system once its species interact with those of downstream systems. This raises the fundamental question of whether signaling pathways have developed specialized architectures that overcome retroactivity and transmit unidirectional signals. Here, we propose a general procedure based on mathematical analysis that provides an answer to this question. Using this procedure, we analyze the ability of a variety of signaling architectures to transmit one-way (from upstream to downstream) signals, as key biological parameters are tuned. We find that single stage phosphorylation and phosphotransfer systems that transmit signals from a kinase show a stringent design trade-off that hampers their ability to overcome retroactivity. Interestingly, cascades of these architectures, which are highly represented in nature, can overcome this trade-off and thus enable unidirectional transmission. By contrast, phosphotransfer systems, and single and double phosphorylation cycles that transmit signals from a substrate are unable to mitigate retroactivity effects, even when cascaded, and hence are not well suited for unidirectional information transmission. Our results identify signaling architectures that, allowing unidirectional transmission of signals, embody modular processes that conserve their input/output behavior across multiple contexts. These findings can be used to decompose natural signal transduction networks into modules, and, at the same time, they establish a library of devices that can be used in synthetic biology to facilitate modular circuit design.", "title": "Signaling architectures that transmit unidirectional information despite retroactivity" }, { "docid": "36962270", "text": "We have modified an Escherichia coli vector expressing 66-kDa HIV-1 reverse transcriptase (p66) so that it simultaneously expresses this and the pol-coded protease. The twin expression cassette yields high quantities of both reverse transcriptase and protease; however, under these conditions, 50% of the over-expressed p66 reverse transcriptase is processed, resulting in accumulation of large quantities of p66/p51 enzyme. Furthermore, addition of a poly(histidine) affinity label at the amino terminus of the reverse-transcriptase-coding sequence (His-p66) permits a simple, rapid purification of milligram quantities of either p66 or p66/p51 enzyme from a crude lysate by metal chelate affinity chromatography. Purified His-p66 and His-p66/His-p51 reverse transcriptase exhibit both reverse transcriptase and RNase H activity. Purification by metal chelate chromatography of a p66/p51 enzyme wherein only the p66 component is labelled strengthens the argument for the existence of a heterodimer.", "title": "Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography." }, { "docid": "29015485", "text": "CD8(+) T cells can respond to unrelated infections in an Ag-independent manner. This rapid innate-like immune response allows Ag-experienced T cells to alert other immune cell types to pathogenic intruders. In this study, we show that murine CD8(+) T cells can sense TLR2 and TLR7 ligands, resulting in rapid production of IFN-γ but not of TNF-α and IL-2. Importantly, Ag-experienced T cells activated by TLR ligands produce sufficient IFN-γ to augment the activation of macrophages. In contrast to Ag-specific reactivation, TLR-dependent production of IFN-γ by CD8(+) T cells relies exclusively on newly synthesized transcripts without inducing mRNA stability. Furthermore, transcription of IFN-γ upon TLR triggering depends on the activation of PI3K and serine-threonine kinase Akt, and protein synthesis relies on the activation of the mechanistic target of rapamycin. We next investigated which energy source drives the TLR-induced production of IFN-γ. Although Ag-specific cytokine production requires a glycolytic switch for optimal cytokine release, glucose availability does not alter the rate of IFN-γ production upon TLR-mediated activation. Rather, mitochondrial respiration provides sufficient energy for TLR-induced IFN-γ production. To our knowledge, this is the first report describing that TLR-mediated bystander activation elicits a helper phenotype of CD8(+) T cells. It induces a short boost of IFN-γ production that leads to a significant but limited activation of Ag-experienced CD8(+) T cells. This activation suffices to prime macrophages but keeps T cell responses limited to unrelated infections.", "title": "TLR-Mediated Innate Production of IFN-γ by CD8+ T Cells Is Independent of Glycolysis." }, { "docid": "28651643", "text": "Activating mutations within the K-ras gene occur in a high percentage of human pancreatic carcinomas. We reported previously that the presence of oncogenic, activated K-ras in human pancreatic carcinoma cell lines did not result in constitutive activation of the extracellular signal-regulated kinases (ERK1 and ERK2). In the present study, we further characterized the ERK signaling pathway in pancreatic tumor cell lines in order to determine whether the ERK pathway is subject to a compensatory downregulation. We found that the attenuation of serum-induced ERK activation was not due to a delay in the kinetics of ERK phosphorylation. Treatment with the tyrosine phosphatase inhibitor orthovanadate increased the level of ERK phosphorylation, implicating a vanadate-sensitive tyrosine phosphatase in the negative regulation of ERK. Furthermore, expression of a dual specificity phosphatase capable of inactivating ERK known as mitogen-activated protein (MAP) kinase phosphatase-2 (MKP-2) was elevated in most of the pancreatic tumor cell lines and correlated with the presence of active MAP kinase kinase (MEK). Taken together, these results suggest that pancreatic tumor cells expressing oncogenic K-ras compensate, in part, by upregulating the expression of MKP-2 to repress the ERK signaling pathway.", "title": "Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2." }, { "docid": "12685434", "text": "Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.", "title": "Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma" }, { "docid": "6121555", "text": "The aim of this study was to investigate the mechanism through which Sphingosine kinase-1 (SPHK1) exerts its anti-apoptosis activity in glioma cancer cells. We here report that dysregulation of SPHK1 alters the sensitivity of glioma to apoptosis both in vitro and in vivo. Further mechanistic study examined the expression of Bcl-2 family members, including Bcl-2, Mcl-1, Bax and Bim, in SPHK1-overexpressing glioma cells and revealed that only pro-apoptotic Bim was downregulated by SPHK1. Moreover, the transcriptional level of Bim was also altered by SPHK1 in glioma cells. We next confirmed the correlation between SPHK1 and Bim expression in primary glioma specimens. Importantly, increasing SPHK1 expression in glioma cells markedly elevated Akt activity and phosphorylated inactivation of FOXO3a, which led to downregulation of Bim. A pharmacological approach showed that these effects of SPHK1 were dependent on phosphatidylinositol 3-kinase (PI3K). Furthermore, effects of SPHK1 on Akt/FOXO3a/Bim pathway could be reversed by SPHK1 specific RNA interference or SPHK1 inhibitor. Collectively, our results indicate that regulation of the Akt/FOXO3a/Bim pathway may be a novel mechanism by which SPHK1 protects glioma cells from apoptosis, thereby involved in glioma tumorigenesis.", "title": "Sphingosine Kinase 1 Regulates the Akt/FOXO3a/Bim Pathway and Contributes to Apoptosis Resistance in Glioma Cells" }, { "docid": "11254556", "text": "Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.", "title": "Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity" }, { "docid": "5531479", "text": "Neutrophils rapidly undergo polarization and directional movement to infiltrate the sites of infection and inflammation. Here, we show that an inhibitory MHC I receptor, Ly49Q, was crucial for the swift polarization of and tissue infiltration by neutrophils. During the steady state, Ly49Q inhibited neutrophil adhesion by preventing focal-complex formation, likely by inhibiting Src and PI3 kinases. However, in the presence of inflammatory stimuli, Ly49Q mediated rapid neutrophil polarization and tissue infiltration in an ITIM-domain-dependent manner. These opposite functions appeared to be mediated by distinct use of effector phosphatase SHP-1 and SHP-2. Ly49Q-dependent polarization and migration were affected by Ly49Q regulation of membrane raft functions. We propose that Ly49Q is pivotal in switching neutrophils to their polarized morphology and rapid migration upon inflammation, through its spatiotemporal regulation of membrane rafts and raft-associated signaling molecules.", "title": "The Ly49Q receptor plays a crucial role in neutrophil polarization and migration by regulating raft trafficking." }, { "docid": "12207167", "text": "PHENYLALANINE TOXICITY 158 Developing the 0. -M ethylphenylalanine Model. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Use of the a-Methyl phenylalanine Model in Brain Protein Synthesis . . . . . . . . . . . . . . . . . . . 161 TYROSINE TOXICITY 162 General Nutritional Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Factors Affecting Tissue Concentrations of Tyrosine . ... .. .. .. ...... . . . . . . .. . . 163 Probable Cause of Tyrosine Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 A New Animal Model for Human Tyrosinemia II 165 TRYPTOPHAN TOXICITy 165 General Nutritional Observations . .. ....... . ....... . .... . . .. . . . .. . .. . .. ..... ......... 165 Factors Affecting Tryptophan Toxicity . . . .. . . . . . . . .... . ........ 166 Tryptophan and Ruminant Interstitial Pulmonary Emphysema and Edema ..... . . . . . . . 167 HISTIDINE TOXICITY 168 General Nutritional Observations ...... ........ . . . . ..... . ...... .. . 168 Metabolic Aspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Alleviation of Histidine Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 METHIONINE TOXICITY 171 General Nutritional Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Tissue Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 172 Protective Effect of Glycine, Serine, or Retinol . . . .. ....... . ......... . ......... .. . .. . . ...... 172 Chemical Characteristics Related to the Toxicity of Methionine . . . . . . . . . . . . . . . . . . . . . . . . . 173 Damaging Effects of Methanethiol. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 173 Met�io,!ine To�i.city in Chickens 174 EthlOnme TOxIcIty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . ... . 174", "title": "Adverse effects of excessive consumption of amino acids." }, { "docid": "41790911", "text": "Experimental studies have suggested that Wingless-related integration site 5A (WNT5A) is a proinflammatory secreted protein that is associated with metabolic dysfunction in obesity. Impaired angiogenesis in fat depots has been implicated in the development of adipose tissue capillary rarefaction, hypoxia, inflammation, and metabolic dysfunction. We have recently demonstrated that impaired adipose tissue angiogenesis is associated with overexpression of antiangiogenic factor VEGF-A165b in human fat and the systemic circulation. In the present study, we postulated that upregulation of WNT5A is associated with angiogenic dysfunction and examined its role in regulating VEGF-A165b expression in human obesity. We biopsied subcutaneous and visceral adipose tissue from 38 obese individuals (body mass index: 44 ± 7 kg/m2, age: 37 ± 11 yr) during planned bariatric surgery and characterized depot-specific protein expression of VEGF-A165b and WNT5A using Western blot analysis. In both subcutaneous and visceral fat, VEGF-A165b expression correlated strongly with WNT5A protein (r = 0.9, P < 0.001). In subcutaneous adipose tissue where angiogenic capacity is greater than in the visceral depot, exogenous human recombinant WNT5A increased VEGF-A165b expression in both whole adipose tissue and isolated vascular endothelial cell fractions (P < 0.01 and P < 0.05, respectively). This was associated with markedly blunted angiogenic capillary sprout formation in human fat pad explants. Moreover, recombinant WNT5A increased secretion of soluble fms-like tyrosine kinase-1, a negative regulator of angiogenesis, in the sprout media (P < 0.01). Both VEGF-A165b-neutralizing antibody and secreted frizzled-related protein 5, which acts as a decoy receptor for WNT5A, significantly improved capillary sprout formation and reduced soluble fms-like tyrosine kinase-1 production (P < 0.05). We demonstrated a significant regulatory nexus between WNT5A and antiangiogenic VEGF-A165b in the adipose tissue of obese subjects that was linked to angiogenic dysfunction. Elevated WNT5A expression in obesity may function as a negative regulator of angiogenesis. NEW & NOTEWORTHY Wingless-related integration site 5a (WNT5A) negatively regulates adipose tissue angiogenesis via VEGF-A165b in human obesity.", "title": "WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-A165b in obese humans." }, { "docid": "30861948", "text": "The ubiquitously expressed nonreceptor tyrosine kinase c-Abl contains three nuclear localization signals, however, it is found in both the nucleus and the cytoplasm of proliferating fibroblasts. A rapid and transient loss of c-Abl from the nucleus is observed upon the initial adhesion of fibroblasts onto a fibronectin matrix, suggesting the possibility of nuclear export [Lewis, J., Baskaran, R. , Taagepera, S., Schwartz, M. & Wang, J. (1996) Proc. Natl. Acad. Sci. USA 93, 15174-15179]. Here we show that the C terminus of c-Abl does indeed contain a functional nuclear export signal (NES) with the characteristic leucine-rich motif. The c-Abl NES can functionally complement an NES-defective HIV Rev protein (RevDelta3NI) and can mediate the nuclear export of glutathione-S-transferase. The c-Abl NES function is sensitive to the nuclear export inhibitor leptomycin B. Mutation of a single leucine (L1064A) in the c-Abl NES abrogates export function. The NES-mutated c-Abl, termed c-Abl NES(-), is localized exclusively to the nucleus. Treatment of cells with leptomycin B also leads to the nuclear accumulation of wild-type c-Abl protein. The c-Abl NES(-) is not lost from the nucleus when detached fibroblasts are replated onto fibronectin matrix. Taken together, these results demonstrate that c-Abl shuttles continuously between the nucleus and the cytoplasm and that the rate of nuclear import and export can be modulated by the adherence status of fibroblastic cells.", "title": "Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase." }, { "docid": "33063763", "text": "MAP kinase signaling modules serve to transduce extracellular signals to the nucleus of eukaryotic cells, but little is known about how signals cross the nuclear envelope. Exposure of yeast cells to increases in extracellular osmolarity activates the HOG1 MAP kinase cascade, which is composed of three tiers of protein kinases, namely the SSK2, SSK22 and STE11 MAPKKKs, the PBS2 MAPKK, and the HOG1 MAPK. Using green fluorescent protein (GFP) fusions of these kinases, we found that HOG1, PBS2 and STE11 localize to the cytoplasm of unstressed cells. Following osmotic stress, HOG1, but neither PBS2 nor STE11, translocates into the nucleus. HOG1 translocation occurs very rapidly, is transient, and correlates with the phosphorylation and activation of the MAP kinase by its MAPKK. HOG1 phosphorylation is necessary and sufficient for nuclear translocation, because a catalytically inactive kinase when phosphorylated is translocated to the nucleus as efficiently as the wild-type. Nuclear import of the MAPK under stress conditions requires the activity of the small GTP binding protein Ran-GSP1, but not the NLS-binding importin alpha/beta heterodimer. Rather, HOG1 import requires the activity of a gene, NMD5, that encodes a novel importin beta homolog. Similarly, export of dephosphorylated HOG1 from the nucleus requires the activity of the NES receptor XPO1/CRM1. Our findings define the requirements for the regulated nuclear transport of a stress-activated MAP kinase.", "title": "Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1." }, { "docid": "26079071", "text": "BACKGROUND Chromosomal rearrangements of the gene encoding ROS1 proto-oncogene receptor tyrosine kinase (ROS1) define a distinct molecular subgroup of non-small-cell lung cancers (NSCLCs) that may be susceptible to therapeutic ROS1 kinase inhibition. Crizotinib is a small-molecule tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK), ROS1, and another proto-oncogene receptor tyrosine kinase, MET. \n METHODS We enrolled 50 patients with advanced NSCLC who tested positive for ROS1 rearrangement in an expansion cohort of the phase 1 study of crizotinib. Patients were treated with crizotinib at the standard oral dose of 250 mg twice daily and assessed for safety, pharmacokinetics, and response to therapy. ROS1 fusion partners were identified with the use of next-generation sequencing or reverse-transcriptase-polymerase-chain-reaction assays. \n RESULTS The objective response rate was 72% (95% confidence interval [CI], 58 to 84), with 3 complete responses and 33 partial responses. The median duration of response was 17.6 months (95% CI, 14.5 to not reached). Median progression-free survival was 19.2 months (95% CI, 14.4 to not reached), with 25 patients (50%) still in follow-up for progression. Among 30 tumors that were tested, we identified 7 ROS1 fusion partners: 5 known and 2 novel partner genes. No correlation was observed between the type of ROS1 rearrangement and the clinical response to crizotinib. The safety profile of crizotinib was similar to that seen in patients with ALK-rearranged NSCLC. \n CONCLUSIONS In this study, crizotinib showed marked antitumor activity in patients with advanced ROS1-rearranged NSCLC. ROS1 rearrangement defines a second molecular subgroup of NSCLC for which crizotinib is highly active. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.).", "title": "Crizotinib in ROS1-rearranged non-small-cell lung cancer." }, { "docid": "5821617", "text": "Atherosclerotic plaques develop in regions of the vasculature associated with chronic inflammation due to disturbed flow patterns. Endothelial phenotype modulation by flow requires the integration of numerous mechanotransduction pathways, but how this is achieved is not well understood. We show here that, in response to flow, the adaptor protein Shc is activated and associates with cell-cell and cell-matrix adhesions. Shc activation requires the tyrosine kinases vascular endothelial growth factor receptor 2 and Src. Shc activation and its vascular endothelial cadherin (VE-cadherin) association are matrix independent. In contrast, Shc binding to integrins requires VE-cadherin but occurs only on specific matrices. Silencing Shc results in reduction in both matrix-independent and matrix-dependent signals. Furthermore, Shc regulates flow-induced inflammatory signaling by activating nuclear factor kappaB-dependent signals that lead to atherogenesis. In vivo, Shc is activated in atherosclerosis-prone regions of arteries, and its activation correlates with areas of atherosclerosis. Our results support a model in which Shc orchestrates signals from cell-cell and cell-matrix adhesions to elicit flow-induced inflammatory signaling.", "title": "Shc coordinates signals from intercellular junctions and integrins to regulate flow-induced inflammation" }, { "docid": "18264714", "text": "All cells perceive and respond to environmental stresses through elaborate stress-sensing networks. Yeast cells sense stress through diverse signaling pathways that converge on the transcription factors Msn2 and Msn4, which respond by initiating rapid, idiosyncratic cycles into and out of the nucleus. To understand the role of Msn2/4 nuclear localization dynamics, we combined time-lapse studies of Msn2-GFP localization in living cells with computational modeling of stress-sensing signaling networks. We find that several signaling pathways, including Ras/protein kinase A, AMP-activated kinase, the high-osmolarity response mitogen-activated protein kinase pathway, and protein phosphatase 1, regulate activation of Msn2 in distinct ways in response to different stresses. Moreover, we find that bursts of nuclear localization elicit a more robust transcriptional response than does sustained nuclear localization. Using stochastic modeling, we reproduce in silico the responses of Msn2 to different stresses, and demonstrate that bursts of localization arise from noise in the signaling pathways amplified by the small number of Msn2 molecules in the cell. This noise imparts diverse behaviors to genetically identical cells, allowing cell populations to \"hedge their bets\" in responding to an uncertain future, and to balance growth and survival in an unpredictable environment.", "title": "Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses" }, { "docid": "13934676", "text": "BACKGROUND The number of older people is set to increase dramatically worldwide. Demographic changes are likely to result in the rise of age-related chronic diseases which largely contribute to years lived with a disability and future dependence. However dependence is much less studied although intrinsically linked to disability. We investigated the prevalence and correlates of dependence among older people from middle income countries. \n METHODS A one-phase cross-sectional survey was carried out at 11 sites in seven countries (urban sites in Cuba, Venezuela, and Dominican Republic, urban and rural sites in Peru, Mexico, China and India). All those aged 65 years and over living in geographically defined catchment areas were eligible. In all, 15,022 interviews were completed with an informant interview for each participant. The full 10/66 Dementia Research Group survey protocol was applied, including ascertainment of depression, dementia, physical impairments and self-reported diagnoses. Dependence was interviewer-rated based on a key informant's responses to a set of open-ended questions on the participant's needs for care. We estimated the prevalence of dependence and the independent contribution of underlying health conditions. Site-specific prevalence ratios were meta-analysed, and population attributable prevalence fractions (PAPF) calculated. \n RESULTS The prevalence of dependence increased with age at all sites, with a tendency for the prevalence to be lower in men than in women. Age-standardised prevalence was lower in all sites than in the USA. Other than in rural China, dementia made the largest independent contribution to dependence, with a median PAPF of 34% (range 23%-59%). Other substantial contributors were limb impairment (9%, 1%-46%), stroke (8%, 2%-17%), and depression (8%, 1%-27%). \n CONCLUSION The demographic and health transitions will lead to large and rapid increases in the numbers of dependent older people particularly in middle income countries (MIC). The prevention and control of chronic neurological and neuropsychiatric diseases and the development of long-term care policies and plans should be urgent priorities.", "title": "\"The contribution of chronic diseases to the prevalence of dependence among older people in Latin America, China and India: a 10/66 Dementia Research Group population-based survey\"" } ]
1023
Recognition of start codons depends on the translation initiation factor IF3.
[ { "docid": "16927286", "text": "In bacterial translational initiation, three initiation factors (IFs 1-3) enable the selection of initiator tRNA and the start codon in the P site of the 30S ribosomal subunit. Here, we report 11 single-particle cryo-electron microscopy (cryoEM) reconstructions of the complex of bacterial 30S subunit with initiator tRNA, mRNA, and IFs 1-3, representing different steps along the initiation pathway. IF1 provides key anchoring points for IF2 and IF3, thereby enhancing their activities. IF2 positions a domain in an extended conformation appropriate for capturing the formylmethionyl moiety charged on tRNA. IF3 and tRNA undergo large conformational changes to facilitate the accommodation of the formylmethionyl-tRNA (fMet-tRNA(fMet)) into the P site for start codon recognition.", "title": "Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation" } ]
[ { "docid": "23342686", "text": "The small ribosomal subunit is responsible for the decoding of genetic information and plays a key role in the initiation of protein synthesis. We analyzed by X-ray crystallography the structures of three different complexes of the small ribosomal subunit of Thermus thermophilus with the A-site inhibitor tetracycline, the universal initiation inhibitor edeine and the C-terminal domain of the translation initiation factor IF3. The crystal structure analysis of the complex with tetracycline revealed the functionally important site responsible for the blockage of the A-site. Five additional tetracycline sites resolve most of the controversial biochemical data on the location of tetracycline. The interaction of edeine with the small subunit indicates its role in inhibiting initiation and shows its involvement with P-site tRNA. The location of the C-terminal domain of IF3, at the solvent side of the platform, sheds light on the formation of the initiation complex, and implies that the anti-association activity of IF3 is due to its influence on the conformational dynamics of the small ribosomal subunit.", "title": "Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3." }, { "docid": "22482024", "text": "Diamond-Blackfan anemia (DBA) is a congenital erythroid aplasia characterized as a normochromic macrocytic anemia with a selective deficiency in red blood cell precursors in otherwise normocellular bone marrow. In 40% of DBA patients, various physical anomalies are also present. Currently two genes are associated with the DBA phenotype--the ribosomal protein (RP) S19 mutated in 25% of DBA patients and RPS24 mutated in approximately 1.4% of DBA patients. Here we report the identification of a mutation in yet another ribosomal protein, RPS17. The mutation affects the translation initiation start codon, changing T to G (c.2T>G), thus eliminating the natural start of RPS17 protein biosynthesis. RNA analysis revealed that the mutated allele was expressed, and the next downstream start codon located at position +158 should give rise to a short peptide of only four amino acids (Met-Ser-Arg-Ile). The mutation arose de novo, since all healthy family members carry the wild-type alleles. The identification of a mutation in the third RP of the small ribosomal subunit in DBA patients further supports the theory that impaired translation may be the main cause of DBA pathogenesis.", "title": "Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia." }, { "docid": "39729277", "text": "To characterize the sequence features surrounding the translation initiation sites on the genome of Synechocystis sp. strain 6803, the total proteins extracted from the cell were resolved by two-dimensional electrophoresis, and the amino-terminal sequences of the relatively abundant protein spots were determined. By comparison of the determined amino-terminal sequences with the nucleotide sequence of the entire genome, the translation initiation sites of a total of 72 proteins were successfully assigned on the genome. The sequence features emerged from the nucleotide sequences at and surrounding the translation initiation sites were as follows: (1) In addition to the three initiation codons, ATG, GTG, and TTG, evidence was obtained that ATT was also used as a rare initiation codon; (2) the core sequences (GAGG, GGAG and AGGA) of the Shine-Dalgarno sequence were identified in the appropriate position preceding the 35 initiation sites (48.6%); and (3) the preferential sequence surrounding the initiation codons was formulated as 5'-YY[...]R-3' where Y and R denote pyrimidine and purine nucleotides, respectively, and three dots represent the initiation codons. The result obtained would provide valuable information for improvement of the gene-finding software, and the approach used in this study should be applicable for comprehensive analysis of the expression profiles of cellular proteins.", "title": "Sequence features surrounding the translation initiation sites assigned on the genome sequence of Synechocystis sp. strain PCC6803 by amino-terminal protein sequencing." }, { "docid": "30261663", "text": "In eukaryotes, a surveillance mechanism known as nonsense-mediated decay (NMD) degrades the mRNA when a premature-termination codon (PTC) is present. NMD requires translation to read the frame of the mRNA and detect the PTC. During pre-mRNA splicing, the exon-exon junction complex (EJC) is recruited to a region 20-24 nt upstream of the exon junction on the mature mRNA. The presence of a PTC upstream from the EJC elicits NMD. Eukaryotic initiation factor 4A (eIF4A) III is a nuclear protein that interacts physically or functionally with translation initiation factors eIF4G and eIF4B, respectively, and shares strikingly high identity with the initiation factors eIF4AI/II. Here we show that siRNA against eIF4AIII, but not against eIF4AI/II, inhibits NMD. Moreover, eIF4AIII, but not eIF4AI, is specifically recruited to the EJC during splicing. The observations that eIF4AIII is loaded onto the mRNA during splicing in the nucleus, has properties related to a translation initiation factor, and functions in NMD raises the possibility that eIF4AIII substitutes for eIF4AI/II during NMD.", "title": "A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay." }, { "docid": "26378103", "text": "We report the cloning and sequence determination of the mouse H19 gene. This gene is under the genetic control of two trans-acting loci in the mouse, termed raf and Rif. These loci determine the adult basal and inducible levels, respectively, of H19 mRNA, as well as the mRNA for alpha-fetoprotein. By elucidating the sequence and structure of the H19 gene we show that it is unrelated to the alpha-fetoprotein gene, and therefore must have acquired its regulation by raf and Rif independently. The sequence also indicates that the H19 gene has a very unusual structure. It is composed of five exons, 1307, 135, 119, 127 and 560 bp in size, along with four very small introns whose combined lengths are 270 bases. The largest open reading frame of the gene, sufficient to encode a protein of approximately 14 kd, is contained entirely within the first large exon, 680 bases downstream of the cap site of the mRNA. Preceding the translation initiation codon are four ATG codons, each of which is followed shortly thereafter by translation terminator codons. The rest of the gene, which encompasses all five exons, is presumed to be untranslated. That the long 5' untranslated region may be used to regulate the translation of the mRNA is suggested from in vitro translation studies. Experiments which utilized tissue culture cell lines of the mesodermal lineage suggest that the gene is activated very early during muscle cell differentiation.", "title": "The structure and expression of a novel gene activated in early mouse embryogenesis." }, { "docid": "152245", "text": "The genomic RNA of an alphavirus encodes four different nonstructural proteins, nsP1, nsP2, nsP3, and nsP4. The polyprotein P123 is produced when translation terminates at an opal termination codon between nsP3 and nsP4. The polyprotein P1234 is produced when translational readthrough occurs or when the opal termination codon has been replaced by a sense codon in the alphavirus genome. Evolutionary pressures appear to have maintained genomic sequences encoding both a stop codon (opal) and an open reading frame (arginine) as a general feature of the O'nyong-nyong virus (ONNV) genome, indicating that both are required at some point. Alternate replication of ONNVs in both vertebrate and invertebrate hosts may determine predominance of a particular codon at this locus in the viral quasispecies. However, no systematic study has previously tested this hypothesis in whole animals. We report here the results of the first study to investigate in a natural mosquito host the functional significance of the opal stop codon in an alphavirus genome. We used a full-length cDNA clone of ONNV to construct a series of mutants in which the arginine between nsP3 and nsP4 was replaced with an opal, ochre, or amber stop codon. The presence of an opal stop codon upstream of nsP4 nearly doubled (75.5%) the infectivity of ONNV over that of virus possessing a codon for the amino acid arginine at the corresponding position (39.8%). Although the frequency with which the opal virus disseminated from the mosquito midgut did not differ significantly from that of the arginine virus on days 8 and 10, dissemination did began earlier in mosquitoes infected with the opal virus. Although a clear fitness advantage is provided to ONNV by the presence of an opal codon between nsP3 and nsP4 in Anopheles gambiae, sequence analysis of ONNV RNA extracted from mosquito bodies and heads indicated codon usage at this position corresponded with that of the virus administered in the blood meal. These results suggest that while selection of ONNV variants is occurring, de novo mutation at the position between nsP3 and nsP4 does not readily occur in the mosquito. Taken together, these results suggest that the primary fitness advantage provided to ONNV by the presence of an opal codon between nsP3 and nsP4 is related to mosquito infectivity.", "title": "Effects of an opal termination codon preceding the nsP4 gene sequence in the O'Nyong-Nyong virus genome on Anopheles gambiae infectivity." }, { "docid": "18987782", "text": "The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Emu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Emu-Myc/+ mice. When accurate translational control is re-established in Emu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.", "title": "Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency" }, { "docid": "8698857", "text": "TNF expression of macrophages is under stringent translational control that depends on the p38 MAPK/MK2 pathway and the AU-rich element (ARE) in the TNF mRNA. Here, we elucidate the molecular mechanism of phosphorylation-regulated translation of TNF. We demonstrate that translation of the TNF-precursor at the ER requires expression of the ARE-binding and -stabilizing factor human antigen R (HuR) together with either activity of the p38 MAPK/MK2 pathway or the absence of the ARE-binding and -destabilizing factor tristetraprolin (TTP). We show that phosphorylation of TTP by MK2 decreases its affinity to the ARE, inhibits its ability to replace HuR, and permits HuR-mediated initiation of translation of TNF mRNA. Since translation of TTP's own mRNA is also regulated by this mechanism, an intrinsic feedback control of the inflammatory response is ensured. The phosphorylation-regulated TTP/HuR exchange at target mRNAs provides a reversible switch between unstable/non-translatable and stable/efficiently translated mRNAs.", "title": "The p38/MK2-Driven Exchange between Tristetraprolin and HuR Regulates AU–Rich Element–Dependent Translation" }, { "docid": "4402497", "text": "Innate immune defences are essential for the control of virus infection and are triggered through host recognition of viral macromolecular motifs known as pathogen-associated molecular patterns (PAMPs). Hepatitis C virus (HCV) is an RNA virus that replicates in the liver, and infects 200 million people worldwide. Infection is regulated by hepatic immune defences triggered by the cellular RIG-I helicase. RIG-I binds PAMP RNA and signals interferon regulatory factor 3 activation to induce the expression of interferon-α/β and antiviral/interferon-stimulated genes (ISGs) that limit infection. Here we identify the polyuridine motif of the HCV genome 3′ non-translated region and its replication intermediate as the PAMP substrate of RIG-I, and show that this and similar homopolyuridine or homopolyriboadenine motifs present in the genomes of RNA viruses are the chief feature of RIG-I recognition and immune triggering in human and murine cells. 5′ terminal triphosphate on the PAMP RNA was necessary but not sufficient for RIG-I binding, which was primarily dependent on homopolymeric ribonucleotide composition, linear structure and length. The HCV PAMP RNA stimulated RIG-I-dependent signalling to induce a hepatic innate immune response in vivo, and triggered interferon and ISG expression to suppress HCV infection in vitro. These results provide a conceptual advance by defining specific homopolymeric RNA motifs within the genome of HCV and other RNA viruses as the PAMP substrate of RIG-I, and demonstrate immunogenic features of the PAMP–RIG-I interaction that could be used as an immune adjuvant for vaccine and immunotherapy approaches.", "title": "Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA" }, { "docid": "29107180", "text": "The structure of the human gene encoding the double-stranded RNA (dsRNA) adenosine deaminase (DRADA) was characterized. This nuclear localized enzyme is involved in the RNA editing required for the expression of certain subtypes of glutamate-gated ion channel subunits. The DRADA gene span 30 kb pairs and harbors 15 exons. The transcription of the DRADA gene driven by the putative promoter region, which contains no typical TATA or CCAAT box-like sequences, is initiated at multiple sites, 164 to 216 nucleotides upstream of the translation initiation codon. The three dsRNA binding motifs (DRBM), 70 amino acid residues long, are each encoded by two exons plus an intervening sequence that interrupts the motif at the identical amino acid position. This finding is consistent with the notion that the dsRNA binding domains may be composed of two separate functional subdomains. Fluorescent in situ hybridization localized the DRADA gene on the long arm chromosome 1, region q21. The gene structure and sequence information reported in this study will facilitate the investigation of involvement of DRADA in hereditary diseases that may be the result of malfunction of glutamate-gated ion channels.", "title": "Genomic organization and chromosomal location of the human dsRNA adenosine deaminase gene: the enzyme for glutamate-activated ion channel RNA editing." }, { "docid": "30437264", "text": "Hepatitis C virus (HCV) is a single-stranded RNA virus encoding a single polyprotein whose translation is driven by an internal ribosome entry site (IRES). HCV infection strongly induces antiviral interferon-stimulated gene (ISG) expression in the liver, yet it persists, suggesting that HCV can block ISG effector function. We now show that HCV infection triggers phosphorylation and activation of the RNA-dependent protein kinase PKR, which inhibits eukaryotic translation initiation factor eIF2 alpha and attenuates ISG protein expression despite normal ISG mRNA induction. ISG protein induction is restored and the antiviral effects of interferon are enhanced when PKR expression is suppressed in interferon-treated infected cells. Whereas host protein translation, including antiviral ISGs, is suppressed by activated PKR, HCV IRES-dependent translation is not. These results suggest that the ability of HCV to activate PKR may, paradoxically, be advantageous for the virus during an IFN response by preferentially suppressing the translation of ISGs.", "title": "Hepatitis C virus blocks interferon effector function by inducing protein kinase R phosphorylation." }, { "docid": "24521894", "text": "Wolcott-Rallison syndrome (WRS) is a rare, autosomal recessive disorder characterized by permanent neonatal or early infancy insulin-dependent diabetes. Epiphyseal dysplasia, osteoporosis and growth retardation occur at a later age. Other frequent multisystemic manifestations include hepatic and renal dysfunction, mental retardation and cardiovascular abnormalities. On the basis of two consanguineous families, we mapped WRS to a region of less than 3 cM on chromosome 2p12, with maximal evidence of linkage and homozygosity at 4 microsatellite markers within an interval of approximately 1 cM. The gene encoding the eukaryotic translation initiation factor 2-α kinase 3 (EIF2AK3) resides in this interval; thus we explored it as a candidate. We identified distinct mutations of EIF2AK3 that segregated with the disorder in each of the families. The first mutation produces a truncated protein in which the entire catalytic domain is missing. The other changes an amino acid, located in the catalytic domain of the protein, that is highly conserved among kinases from the same subfamily. Our results provide evidence for the role of EIF2AK3 in WRS. The identification of this gene may provide insight into the understanding of the more common forms of diabetes and other pathologic manifestations of WRS.", "title": "EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome" }, { "docid": "2479538", "text": "BACKGROUND Shine-Dalgarno (SD) signal has long been viewed as the dominant translation initiation signal in prokaryotes. Recently, leaderless genes, which lack 5'-untranslated regions (5'-UTR) on their mRNAs, have been shown abundant in archaea. However, current large-scale in silico analyses on initiation mechanisms in bacteria are mainly based on the SD-led initiation way, other than the leaderless one. The study of leaderless genes in bacteria remains open, which causes uncertain understanding of translation initiation mechanisms for prokaryotes. \n RESULTS Here, we study signals in translation initiation regions of all genes over 953 bacterial and 72 archaeal genomes, then make an effort to construct an evolutionary scenario in view of leaderless genes in bacteria. With an algorithm designed to identify multi-signal in upstream regions of genes for a genome, we classify all genes into SD-led, TA-led and atypical genes according to the category of the most probable signal in their upstream sequences. Particularly, occurrence of TA-like signals about 10 bp upstream to translation initiation site (TIS) in bacteria most probably means leaderless genes. \n CONCLUSIONS Our analysis reveals that leaderless genes are totally widespread, although not dominant, in a variety of bacteria. Especially for Actinobacteria and Deinococcus-Thermus, more than twenty percent of genes are leaderless. Analyzed in closely related bacterial genomes, our results imply that the change of translation initiation mechanisms, which happens between the genes deriving from a common ancestor, is linearly dependent on the phylogenetic relationship. Analysis on the macroevolution of leaderless genes further shows that the proportion of leaderless genes in bacteria has a decreasing trend in evolution.", "title": "Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes" }, { "docid": "9505448", "text": "Activation of the mammalian Notch receptor after ligand binding relies on a succession of events including metalloprotease-cleavage, endocytosis, monoubiquitination, and eventually processing by the gamma-secretase, giving rise to a soluble, transcriptionally active molecule. The Notch1 receptor was proposed to be monoubiquitinated before its gamma-secretase cleavage; the targeted lysine has been localized to its submembrane domain. Investigating how this step might be regulated by a deubiquitinase (DUB) activity will provide new insight for understanding Notch receptor activation and downstream signaling. An immunofluorescence-based screening of an shRNA library allowed us to identify eIF3f, previously known as one of the subunits of the translation initiation factor eIF3, as a DUB targeting the activated Notch receptor. We show that eIF3f has an intrinsic DUB activity. Knocking down eIF3f leads to an accumulation of monoubiquitinated forms of activated Notch, an effect counteracted by murine WT eIF3f but not by a catalytically inactive mutant. We also show that eIF3f is recruited to activated Notch on endocytic vesicles by the putative E3 ubiquitin ligase Deltex1, which serves as a bridging factor. Finally, catalytically inactive forms of eIF3f as well as shRNAs targeting eIF3f repress Notch activation in a coculture assay, showing that eIF3f is a new positive regulator of the Notch pathway. Our results support two new and provocative conclusions: (1) The activated form of Notch needs to be deubiquitinated before being processed by the gamma-secretase activity and entering the nucleus, where it fulfills its transcriptional function. (2) The enzyme accounting for this deubiquitinase activity is eIF3f, known so far as a translation initiation factor. These data improve our knowledge of Notch signaling but also open new avenues of research on the Zomes family and the translation initiation factors.", "title": "The Translation Initiation Factor 3f (eIF3f) Exhibits a Deubiquitinase Activity Regulating Notch Activation" }, { "docid": "39929509", "text": "Mutations in WT1 are associated with developmental syndromes that affect the urogenital system and neoplasms, including Wilms tumour, acute myeloid leukemia, and breast and prostate cancers. The WT1 protein belongs to the early growth response family of zinc-finger transcription factors. Uniquely to WT1, an evolutionarily conserved alternative splice event inserts the tripeptide KTS, between zinc fingers 3 and 4. Whereas -KTS isoforms bind DNA and activate or repress transcription, +KTS isoforms bind DNA less efficiently and interact with splice factors and RNA in vitro and in vivo. Although candidate DNA targets have been found, physiological mRNA targets are yet to be defined. We examined the distribution of WT1 in ribonucleoprotein (RNP) complexes in nuclear extract prepared from M15 cells, a mouse mesonephric fetal kidney cell line. WT1 cofractionated with the splice factor PSF in large RNP particles >or=2 MDa. We also found that PSF co-immunoprecipitated with WT1, suggesting a functional interaction between these 2 multifunctional proteins. Using yeast three-hybrid library constructed from the co-immunoprecipitated RNA we found that WT1 (+KTS) binds close to or at the start codon of alpha-actinin 1 (ACTN1) mRNA. A band shift assay confirmed the ability of the WT1 zinc-finger domain (+KTS) to bind this sequence in vitro. ACTN1 is the first likely physiological mRNA target of WT1.", "title": "The Wilms tumour suppressor protein WT1 (+KTS isoform) binds alpha-actinin 1 mRNA via its zinc-finger domain." }, { "docid": "6209599", "text": "Extensive pre-mRNA back-splicing generates numerous circular RNAs (circRNAs) in human transcriptome. However, the biological functions of these circRNAs remain largely unclear. Here we report that N6-methyladenosine (m6A), the most abundant base modification of RNA, promotes efficient initiation of protein translation from circRNAs in human cells. We discover that consensus m6A motifs are enriched in circRNAs and a single m6A site is sufficient to drive translation initiation. This m6A-driven translation requires initiation factor eIF4G2 and m6A reader YTHDF3, and is enhanced by methyltransferase METTL3/14, inhibited by demethylase FTO, and upregulated upon heat shock. Further analyses through polysome profiling, computational prediction and mass spectrometry reveal that m6A-driven translation of circRNAs is widespread, with hundreds of endogenous circRNAs having translation potential. Our study expands the coding landscape of human transcriptome, and suggests a role of circRNA-derived proteins in cellular responses to environmental stress.", "title": "Extensive translation of circular RNAs driven by N6-methyladenosine" }, { "docid": "23604601", "text": "The IME1 gene of Saccharomyces cerevisiae is required for initiation of meiosis. Transcription of IME1 is detected under conditions which are known to induce initiation of meiosis, namely starvation for nitrogen and glucose, and the presence of MATa1 and MAT alpha 2 gene products. In this paper we show that IME1 is also subject to translational regulation. Translation of IME1 mRNA is achieved either upon nitrogen starvation, or upon G1 arrest. In the presence of nutrients, constitutively elevated transcription of IME1 is also sufficient for the translation of IME1 RNA. Four different conditions were found to cause expression of Ime1 protein in vegetative cultures: elevated transcription levels due to the presence of IME1 on a multicopy plasmid; elevated transcription provided by a Gal-IME1 construct; G1 arrest due to alpha-factor treatment; G1 arrest following mild heat-shock treatment of cdc28 diploids. Using these conditions, we obtained evidence that starvation is required not only for transcription and efficient translation of IME1, but also for either the activation of Ime1 protein or for the induction/activation of another factor that, either alone or in combination with Ime1, induces meiosis.", "title": "Post-transcriptional regulation of IME1 determines initiation of meiosis in Saccharomyces cerevisiae." }, { "docid": "40447899", "text": "Archaea contain a variety of sequence-independent DNA binding proteins consistent with the evolution of several different, sometimes overlapping and exchangeable solutions to the problem of genome compaction. Some of these proteins undergo residue-specific post-translational lysine acetylation or methylation, hinting at analogues of the histone modifications that regulate eukaryotic chromatin structure and transcription. Archaeal transcription initiation most closely resembles the eukaryotic RNA polymerase II (RNAPII) system, but Archaea do not appear to have homologues of the multisubunit complexes that remodel eukaryotic chromatin and activate RNAPII initiation. In contrast, they have sequence-specific regulators that repress and perhaps activate archaeal transcription by mechanisms superficially similar to the bacterial paradigm of regulating promoter binding by RNAP. Repressors compete with archaeal TATA-box binding protein (TBP) and TFB for the TATA-box and TFB-recognition elements (BRE) of the archaeal promoter, or with archaeal RNAP for the site of transcription initiation. Transcript-specific regulation by repressors binding to sites of transcript initiation is consistent with such sites having very little sequence conservation. However, most Archaea have only one TBP and/or TFB that presumably must therefore bind to similar TATA-box and BRE sequences upstream of most genes. Repressors that function by competing with TBP and/or TFB binding must therefore also make additional contacts with transcript-specific regulatory sites adjacent or remote from the TATA-box/BRE region. The fate of the archaeal TBP and TFB following transcription initiation remains to be determined. Based on functional homology with their eukaryotic RNAPII-system counterparts, archaeal TBP and possibly also TFB should remain bound to the TATA-box/BRE region after transcription initiation. However, this seems unlikely as it might limit repressor competition at this site to only the first round of transcription initiation.", "title": "Archaeal chromatin and transcription." }, { "docid": "8426046", "text": "Large noncoding RNAs are emerging as an important component in cellular regulation. Considerable evidence indicates that these transcripts act directly as functional RNAs rather than through an encoded protein product. However, a recent study of ribosome occupancy reported that many large intergenic ncRNAs (lincRNAs) are bound by ribosomes, raising the possibility that they are translated into proteins. Here, we show that classical noncoding RNAs and 5' UTRs show the same ribosome occupancy as lincRNAs, demonstrating that ribosome occupancy alone is not sufficient to classify transcripts as coding or noncoding. Instead, we define a metric based on the known property of translation whereby translating ribosomes are released upon encountering a bona fide stop codon. We show that this metric accurately discriminates between protein-coding transcripts and all classes of known noncoding transcripts, including lincRNAs. Taken together, these results argue that the large majority of lincRNAs do not function through encoded proteins.", "title": "Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins" } ]
1025
Reduced levels of lipolysis leads to higher P38 phosphorylation in adipose tissue.
[ { "docid": "32408470", "text": "Cigarette smoking promotes body weight reduction in humans while paradoxically also promoting insulin resistance (IR) and hyperinsulinemia. However, the mechanisms behind these effects are unclear. Here we show that nicotine, a major constituent of cigarette smoke, selectively activates AMP-activated protein kinase α2 (AMPKα2) in adipocytes, which in turn phosphorylates MAP kinase phosphatase-1 (MKP1) at serine 334, initiating its proteasome-dependent degradation. The nicotine-dependent reduction of MKP1 induces the aberrant activation of both p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, leading to increased phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307. Phosphorylation of IRS1 leads to its degradation, protein kinase B inhibition, and the loss of insulin-mediated inhibition of lipolysis. Consequently, nicotine increases lipolysis, which results in body weight reduction, but this increase also elevates the levels of circulating free fatty acids and thus causes IR in insulin-sensitive tissues. These results establish AMPKα2 as an essential mediator of nicotine-induced whole-body IR in spite of reductions in adiposity.", "title": "Activation of AMPKα2 in adipocytes is essential for nicotine-induced insulin resistance in vivo" } ]
[ { "docid": "36838958", "text": "Uncoupling protein 1 (Ucp1), which is localized in the mitochondrial inner membrane of mammalian brown adipose tissue (BAT), generates heat by uncoupling oxidative phosphorylation. Upon cold exposure or nutritional abundance, sympathetic neurons stimulate BAT to express Ucp1 to induce energy dissipation and thermogenesis. Accordingly, increased Ucp1 expression reduces obesity in mice and is correlated with leanness in humans. Despite this significance, there is currently a limited understanding of how Ucp1 expression is physiologically regulated at the molecular level. Here, we describe the involvement of Sestrin2 and reactive oxygen species (ROS) in regulation of Ucp1 expression. Transgenic overexpression of Sestrin2 in adipose tissues inhibited both basal and cold-induced Ucp1 expression in interscapular BAT, culminating in decreased thermogenesis and increased fat accumulation. Endogenous Sestrin2 is also important for suppressing Ucp1 expression because BAT from Sestrin2(-/-) mice exhibited a highly elevated level of Ucp1 expression. The redox-inactive mutant of Sestrin2 was incapable of regulating Ucp1 expression, suggesting that Sestrin2 inhibits Ucp1 expression primarily through reducing ROS accumulation. Consistently, ROS-suppressing antioxidant chemicals, such as butylated hydroxyanisole and N-acetylcysteine, inhibited cold- or cAMP-induced Ucp1 expression as well. p38 MAPK, a signaling mediator required for cAMP-induced Ucp1 expression, was inhibited by either Sestrin2 overexpression or antioxidant treatments. Taken together, these results suggest that Sestrin2 and antioxidants inhibit Ucp1 expression through suppressing ROS-mediated p38 MAPK activation, implying a critical role of ROS in proper BAT metabolism.", "title": "Sestrin2 inhibits uncoupling protein 1 expression through suppressing reactive oxygen species." }, { "docid": "970012", "text": "Molecular mechanisms underlying the cold-associated high cardiovascular risk remain unknown. Here, we show that the cold-triggered food-intake-independent lipolysis significantly increased plasma levels of small low-density lipoprotein (LDL) remnants, leading to accelerated development of atherosclerotic lesions in mice. In two genetic mouse knockout models (apolipoprotein E(-/-) [ApoE(-/-)] and LDL receptor(-/-) [Ldlr(-/-)] mice), persistent cold exposure stimulated atherosclerotic plaque growth by increasing lipid deposition. Furthermore, marked increase of inflammatory cells and plaque-associated microvessels were detected in the cold-acclimated ApoE(-/-) and Ldlr(-/-) mice, leading to plaque instability. Deletion of uncoupling protein 1 (UCP1), a key mitochondrial protein involved in thermogenesis in brown adipose tissue (BAT), in the ApoE(-/-) strain completely protected mice from the cold-induced atherosclerotic lesions. Cold acclimation markedly reduced plasma levels of adiponectin, and systemic delivery of adiponectin protected ApoE(-/-) mice from plaque development. These findings provide mechanistic insights on low-temperature-associated cardiovascular risks.", "title": "Cold Exposure Promotes Atherosclerotic Plaque Growth and Instability via UCP1-Dependent Lipolysis" }, { "docid": "17933691", "text": "A population of fibro/adipogenic but non-myogenic progenitors located between skeletal muscle fibers was recently discovered. The aim of this study was to determine the extent to which these progenitors differentiate into fully functional adipocytes. The characterization of muscle progenitor-derived adipocytes is a central issue in understanding muscle homeostasis. They are considered as being the cellular origin of intermuscular adipose tissue that develops in several pathophysiological situations. Here fibro/adipogenic progenitors were isolated from a panel of 15 human muscle biopsies on the basis of the specific cell-surface immunophenotype CD15+/PDGFRα+CD56-. This allowed investigations of their differentiation into adipocytes and the cellular functions of terminally differentiated adipocytes. Adipogenic differentiation was found to be regulated by the same effectors as those regulating differentiation of progenitors derived from white subcutaneous adipose tissue. Similarly, basic adipocyte functions, such as triglyceride synthesis and lipolysis occurred at levels similar to those observed with subcutaneous adipose tissue progenitor-derived adipocytes. However, muscle progenitor-derived adipocytes were found to be insensitive to insulin-induced glucose uptake, in association with the impairment of phosphorylation of key insulin-signaling effectors. Our findings indicate that muscle adipogenic progenitors give rise to bona fide white adipocytes that have the unexpected feature of being insulin-resistant.", "title": "Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle" }, { "docid": "1507222", "text": "Weight loss in cancer cachexia is attributable to decreased food intake and/or enhanced energy expenditure. We investigated the roles of the uncoupling proteins (UCPs) UCPI, -2, and -3 in a murine model of cachexia, the MAC16 adenocarcinoma. Weight fell to 24% below that of non-tumor-bearing controls (P < 0.01) 18 days after MAC16 inoculation, with significant reductions in fat-pad mass (-67%; P < 0.01) and muscle mass (-20%; P < 0.01). Food intake was 26-60% lower (P < 0.01) than in controls on days 17-18. Non-tumor-bearing mice, pair-fed to match MAC16-induced hypophagia, showed less weight loss (10% below controls, P < 0.01; 16% above MAC-16, P < 0.01) and smaller decreases in fat-pad mass (21% below controls, P < 0.01). Core temperature in MAC16 mice was significantly lower (-2.4 degrees C, P < 0.01) than in controls, and pair-feeding had no effect. MAC16 mice showed significantly higher UCP1 mRNA levels in brown adipose tissue (BAT) than in controls (+63%, P < 0.01), and pair-feeding had no effect. UCP2 and -3 expression in BAT did not differ significantly between groups. By contrast, UCP2 mRNA levels in skeletal muscle were comparably increased in both MAC16 and pair-fed groups (respectively, 183 and 163% above controls; both, P < 0.05), with no significant difference between these two groups. Similarly, UCP3 mRNA was significantly higher than controls in both MAC16 (+163%, P < 0.05) and pair-fed (+253%, P < 0.01) groups, with no significant difference between the two experimental groups. Overexpression of UCP1 in BAT in MAC16-bearing mice may be an adaptive response to hypothermia, which is apparently induced by tumor products; increased thermogenesis in BAT could increase total energy expenditure and, thus, contribute to tissue wasting. Increased UCP2 and -3 expression in muscle are both attributable to reduced food intake and may be involved in lipid utilization during lipolysis in MAC16-induced cachexia.", "title": "Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia." }, { "docid": "4319174", "text": "All homeotherms use thermogenesis to maintain their core body temperature, ensuring that cellular functions and physiological processes can continue in cold environments. In the prevailing model of thermogenesis, when the hypothalamus senses cold temperatures it triggers sympathetic discharge, resulting in the release of noradrenaline in brown adipose tissue and white adipose tissue. Acting via the β(3)-adrenergic receptors, noradrenaline induces lipolysis in white adipocytes, whereas it stimulates the expression of thermogenic genes, such as PPAR-γ coactivator 1a (Ppargc1a), uncoupling protein 1 (Ucp1) and acyl-CoA synthetase long-chain family member 1 (Acsl1), in brown adipocytes. However, the precise nature of all the cell types involved in this efferent loop is not well established. Here we report in mice an unexpected requirement for the interleukin-4 (IL-4)-stimulated program of alternative macrophage activation in adaptive thermogenesis. Exposure to cold temperature rapidly promoted alternative activation of adipose tissue macrophages, which secrete catecholamines to induce thermogenic gene expression in brown adipose tissue and lipolysis in white adipose tissue. Absence of alternatively activated macrophages impaired metabolic adaptations to cold, whereas administration of IL-4 increased thermogenic gene expression, fatty acid mobilization and energy expenditure, all in a macrophage-dependent manner. Thus, we have discovered a role for alternatively activated macrophages in the orchestration of an important mammalian stress response, the response to cold.", "title": "Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis" }, { "docid": "2481032", "text": "Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.", "title": "Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues." }, { "docid": "39187170", "text": "Adipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human abdominal subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery. Mitochondrial DNA (mtDNA) and genomic DNA (gDNA) were determined by the PCR technique for estimation of mitochondrial density. Adipose tissue samples were permeabilized and respirometric measurements were performed in duplicate at 37 degrees C. Substrates (glutamate (G) + malate (M) + octanoyl carnitine (O) + succinate (S)) were added sequentially to provide electrons to complex I + II. ADP ((D)) for state 3 respiration was added after GM. Uncoupled respiration was measured after addition of FCCP. Visceral fat contained more mitochondria per milligram of tissue than subcutaneous fat, but the cells were smaller. Robust, stable oxygen fluxes were found in both tissues, and coupled state 3 (GMOS(D)) and uncoupled respiration were significantly (P < 0.05) higher in visceral (0.95 +/- 0.05 and 1.15 +/- 0.06 pmol O(2) s(1) mg(1), respectively) compared with subcutaneous (0.76 +/- 0.04 and 0.98 +/- 0.05 pmol O(2) s(1) mg(1), respectively) adipose tissue. Expressed per mtDNA, visceral adipose tissue had significantly (P < 0.05) lower mitochondrial respiration. Substrate control ratios were higher and uncoupling control ratio lower (P < 0.05) in visceral compared with subcutaneous adipose tissue. We conclude that visceral fat is bioenergetically more active and more sensitive to mitochondrial substrate supply than subcutaneous fat. Oxidative phosphorylation has a higher relative activity in visceral compared with subcutaneous adipose tissue.", "title": "Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity." }, { "docid": "52865789", "text": "OBJECTIVE IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues. \n METHODS Control and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells. \n RESULTS Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues. \n CONCLUSIONS Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome.", "title": "Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues" }, { "docid": "13944805", "text": "KEY POINTS Maternal obesity reduces adipogenic progenitor density in offspring adipose tissue. The ability of adipose tissue expansion in the offspring of obese mothers is limited and is associated with metabolic dysfunction of adipose tissue when challenged with a high-fat diet. Maternal obesity induces DNA demethylation in the promoter of zinc finger protein 423, which renders progenitor cells with a high adipogenic capacity. Maternal obesity demonstrates long-term effects on the adipogenic capacity of progenitor cells in offspring adipose tissue, demonstrating a developmental programming effect. ABSTRACT Maternal obesity (MO) programs offspring obesity and metabolic disorders, although the underlying mechanisms remain poorly defined. Progenitor cells are the source of new adipocytes. The present study aimed to test whether MO epigenetically predisposes adipocyte progenitors in the fat of offspring to adipogenic differentiation and subsequent depletion, which leads to a failure of adipose tissue plasticity under positive energy balance, contributing to adipose tissue metabolic dysfunction. C57BL/6 female mice were fed either a control diet (10% energy from fat) or a high-fat diet (45% energy from fat) for 8 weeks before mating. Male offspring of control (Con) and obese (OB) dams were weaned onto a regular (Reg) or obesogenic (Obe) diet until 3 months of age. At weaning, male OB offspring had a higher expression of Zinc finger protein 423 (zfp423), a key transcription factor in adipogenesis, as well as lower DNA methylation of its promoter in progenitors of epididymal fat compared to Con offspring, which was correlated with enhanced adipogenic differentiation. At 3 months of age, progenitor density was 30.9 ± 9.7% lower in OB/Obe compared to Con/Obe mice, accompanied by a limited expansion of the adipocyte number when challenged with a high-energy diet. This difference was associated with lower DNA methylation in the zfp423 promoter in the epididymal fat of OB/Obe offspring, which was correlated with greater macrophage chemotactic protein-1 and hypoxia-inducible factor 1α expression. In summary, MO epigenetically limits the expansion capacity of offspring adipose tissue, providing an explanation for the adipose metabolic dysfunction of male offspring in the setting of MO.", "title": "Maternal obesity epigenetically alters visceral fat progenitor cell properties in male offspring mice." }, { "docid": "52873726", "text": "The Hippo pathway controls organ size and tissue homeostasis, with deregulation leading to cancer. The core Hippo components in mammals are composed of the upstream serine/threonine kinases Mst1/2, MAPK4Ks and Lats1/2. Inactivation of these upstream kinases leads to dephosphorylation, stabilization, nuclear translocation and thus activation of the major functional transducers of the Hippo pathway, YAP and its paralogue TAZ. YAP/TAZ are transcription co-activators that regulate gene expression primarily through interaction with the TEA domain DNA-binding family of transcription factors (TEAD). The current paradigm for regulation of this pathway centres on phosphorylation-dependent nucleocytoplasmic shuttling of YAP/TAZ through a complex network of upstream components. However, unlike other transcription factors, such as SMAD, NF-κB, NFAT and STAT, the regulation of TEAD nucleocytoplasmic shuttling has been largely overlooked. In the present study, we show that environmental stress promotes TEAD cytoplasmic translocation via p38 MAPK in a Hippo-independent manner. Importantly, stress-induced TEAD inhibition predominates YAP-activating signals and selectively suppresses YAP-driven cancer cell growth. Our data reveal a mechanism governing TEAD nucleocytoplasmic shuttling and show that TEAD localization is a critical determinant of Hippo signalling output.", "title": "Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation" }, { "docid": "44614949", "text": "OBJECTIVE To investigate the role of skeletal muscle (SkM) interleukin (IL)-6 in the regulation of adipose tissue metabolism. \n METHODS Muscle-specific IL-6 knockout (IL-6 MKO) and IL-6(loxP/loxP) (Floxed) mice were subjected to standard rodent diet (Chow), high-fat diet (HFD), or HFD in combination with exercise training (HFD ExTr) for 16 weeks. \n RESULTS Total fat mass increased (P < 0.05) in both genotypes with HFD. However, HFD IL-6 MKO mice had lower (P < 0.05) inguinal adipose tissue (iWAT) mass than HFD Floxed mice. Accordingly, iWAT glucose transporter 4 (GLUT4) protein content, 5'AMP activated protein kinase (AMPK)(Thr172) phosphorylation, and fatty acid synthase (FAS) mRNA content were lower (P < 0.05) in IL-6 MKO than Floxed mice on Chow. In addition, iWAT AMPK(Thr172) and hormone-sensitive lipase (HSL)(Ser565) phosphorylation as well as perilipin protein content was higher (P < 0.05) in HFD IL-6 MKO than HFD Floxed mice, and pyruvate dehydrogenase E1α (PDH-E1α) protein content was higher (P < 0.05) in HFD ExTr IL-6 MKO than HFD ExTr Floxed mice. \n CONCLUSIONS These findings indicate that SkM IL-6 affects iWAT mass through regulation of glucose uptake capacity as well as lipogenic and lipolytic factors.", "title": "Skeletal muscle interleukin‐6 regulates metabolic factors in iWAT during HFD and exercise training" }, { "docid": "2605032", "text": "We investigated if whether intrauterine protein restriction in combination with overfeeding during lactation would cause adult-onset obesity and metabolic disorders. After birth, litters from dams fed with control (17% protein) and low protein (6% protein) diets were adjusted to a size of four (CO and LO groups, respectively) or eight (CC and LC groups, respectively) pups. All of the offspring were fed a diet containing 12% protein from the time of weaning until they were 90 d old. Compared to the CC and LC groups, the CO and LO groups had higher relative and absolute food intakes, oxygen consumption and carbon dioxide production; lower brown adipose tissue weight and lipid content and greater weight gain and absolute and relative white adipose tissue weight and absolute lipid content. Compared with the CO and CC rats, the LC and LO rats exhibited higher relative food intake, brown adipose tissue weight and lipid content, reduced oxygen consumption, carbon dioxide production and spontaneous activity, increased relative retroperitoneal adipose tissue weight and unaltered absolute white adipose tissue weight and lipid content. The fasting serum glucose was similar among the groups. The area under the glucose curve was higher in the LO and CO rats than in the LC and CC rats. The basal insulinemia and homeostasis model assessment of insulin resistance (HOMA-IR) were lower in the LO group than in the other groups. The total area under the insulin curve for the LO rats was similar to the CC rats, and both were lower than the CO and LC rats. Kitt was higher in the LO, LC and CO groups than in the CC group. Thus, intrauterine protein restriction followed by overfeeding during lactation did not induce obesity, but produced glucose intolerance by impairing pancreatic function in adulthood.", "title": "Intrauterine protein restriction combined with early postnatal overfeeding was not associated with adult-onset obesity but produced glucose intolerance by pancreatic dysfunction" }, { "docid": "40232172", "text": "The research on mitochondrial functions in adipocytes has increasingly evidenced that mitochondria plays an important role in the onset and/or progression of obesity and related pathologies. Mitochondrial function in brown adipose tissue (BAT) has been classically assessed by measuring either the levels/activity of mitochondrial enzymes, or the respiration in isolated mitochondria. Isolation of mitochondria is not advantageous because it demands significant time and amount of tissue and, as tissue homogenates, disrupts biochemical and physical connections of mitochondria within the cell. Here, we described a new and efficient protocol to analyze the mitochondrial respiratory states in BAT biopsies that relies on intracellular triglyceride depletion followed by tissue permeabilization. In addition to minimizing tissue requirements to ∼17 mg wet weight, the proposed protocol enabled analysis of all mitochondrial respiratory states, including phosphorylation (OXPHOS), no-phosphorylation (LEAK), and uncoupled (ETS) states, as well as the use of substrates for complex I, complex II, and cytochrome c; together, these features demonstrated mitochondrial integrity and validated the preparation efficacy. Therefore, the protocol described here increases the possibilities of answering physiological questions related to small BAT regions of human and animal models, which shall help to unravel the mechanisms that regulate mitochondrial function in health and disease.", "title": "Triglyceride depletion of brown adipose tissue enables analysis of mitochondrial respiratory function in permeabilized biopsies." }, { "docid": "5106691", "text": "Chronic inflammation constitutes an important link between obesity and its pathophysiological sequelae. In contrast to the belief that inflammatory signals exert a fundamentally negative impact on metabolism, we show that proinflammatory signaling in the adipocyte is in fact required for proper adipose tissue remodeling and expansion. Three mouse models with an adipose tissue-specific reduction in proinflammatory potential were generated that display a reduced capacity for adipogenesis in vivo, while the differentiation potential is unaltered in vitro. Upon high-fat-diet exposure, the expansion of visceral adipose tissue is prominently affected. This is associated with decreased intestinal barrier function, increased hepatic steatosis, and metabolic dysfunction. An impaired local proinflammatory response in the adipocyte leads to increased ectopic lipid accumulation, glucose intolerance, and systemic inflammation. Adipose tissue inflammation is therefore an adaptive response that enables safe storage of excess nutrients and contributes to a visceral depot barrier that effectively filters gut-derived endotoxin.", "title": "Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling." }, { "docid": "9178310", "text": "Whether obesity accelerates or suppresses autophagy in adipose tissue is still debatable. To clarify dysregulation of autophagy and its role in pathologies of obese adipose tissue, we focused on lysosomal function, protease maturation and activity, both in vivo and in vitro. First, we showed that autophagosome formation was accelerated, but autophagic clearance was impaired in obese adipose tissue. We also found protein and activity levels of CTSL (cathepsin L) were suppressed in obese adipose tissue, while the activity of CTSB (cathepsin B) was significantly enhanced. Moreover, cellular senescence and inflammasomes were activated in obese adipose tissue. In 3T3L1 adipocytes, downregulation of CTSL deteriorated autophagic clearance, upregulated expression of CTSB, promoted cellular senescence and activated inflammasomes. Upregulation of CTSB promoted additional activation of inflammasomes. Therefore, we suggest lysosomal dysfunction observed in obese adipose tissue leads to lower autophagic clearance, resulting in autophagosome accumulation. Simultaneously, lysosomal abnormalities, including deteriorated CTSL function and compensatory activation of CTSB, caused cellular senescence and inflammasome activation. Our findings strongly suggest lysosomal dysfunction is involved in early pathologies of obese adipose tissue.", "title": "Involvement of lysosomal dysfunction in autophagosome accumulation and early pathologies in adipose tissue of obese mice" }, { "docid": "7506409", "text": "Human mesenchymal stem cells (hMSCs) have been widely studied as a source of primary adult stem cells for cell therapy because of their multidifferentiation potential; however, the growth arrest (also known as \"premature senescence\") often found in hMSCs cultured in vitro has been a major obstacle to the in-depth characterization of these cells. In addition, the inability to maintain constant cell growth hampers the development of additional genetic modifications aimed at achieving desired levels of differentiation to specific tissues; however, the molecular mechanisms that govern this phenomenon remain unclear, with the exception of a few studies demonstrating that induction of p16INK4a is responsible for this senescence-like event. Here, we observed that the premature growth arrest in hMSCs occurs in parallel with the induction of p16INK4a, following abrogation of inhibitory phosphorylation of retinoblastoma protein. These stress responses were concurrent with increased formation of reactive oxygen species (ROSs) from mitochondria and increased p38 mitogen-activated protein kinase (MAPK) activity. The introduction of Wip1 (wild-type p53 inducible phosphatase-1), a well-studied stress modulator, significantly lowered p16INK4a expression and led to p38 MAPK inactivation, although it failed to affect the levels of ROSs. Moreover, the suppression of stress responses by Wip1 apparently extended the life span of hMSCs, compared with control conditions, while maintaining their multilineage differentiation potential. Based on these results, we suggest that senescent growth arrest in hMSCs may result from activation of stress signaling pathways and consequent onset of stress responses, due in part to ROS production during prolonged in vitro culture.", "title": "Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways." }, { "docid": "79447", "text": "OBJECTIVE The purpose of this study was to characterize the relationship between adipose tissue phenotype and depot-specific microvascular function in fat. \n METHODS AND RESULTS In 30 obese subjects (age 42±11 years, body mass index 46±11 kg/m(2)) undergoing bariatric surgery, we intraoperatively collected visceral and subcutaneous adipose tissue and characterized depot-specific adipose phenotypes. We assessed vasomotor function of the adipose microvasculature using videomicroscopy of small arterioles (75-250 μm) isolated from different fat compartments. Endothelium-dependent, acetylcholine-mediated vasodilation was severely impaired in visceral arterioles, compared to the subcutaneous depot (P<0.001 by ANOVA). Nonendothelium dependent responses to papaverine and nitroprusside were similar. Endothelial nitric oxide synthase inhibition with N(ω)-nitro-l-arginine methyl ester reduced subcutaneous vasodilation but had no effect on severely blunted visceral arteriolar responses. Visceral fat exhibited greater expression of proinflammatory, oxidative stress-related, hypoxia-induced, and proangiogenic genes; increased activated macrophage populations; and had a higher capacity for cytokine production ex vivo. \n CONCLUSIONS Our findings provide clinical evidence that the visceral microenvironment may be intrinsically toxic to arterial health providing a potential mechanism by which visceral adiposity burden is linked to atherosclerotic vascular disease. Our findings also support the evolving concept that both adipose tissue quality and quantity may play significant roles in shaping cardiovascular phenotypes in human obesity.", "title": "Arteriolar function in visceral adipose tissue is impaired in human obesity." }, { "docid": "24721866", "text": "Macrophage-derived foam cells play important roles in the progression of atherosclerosis. We reported previously that ERK1/2-dependent granulocyte/macrophage colony-stimulating factor (GM-CSF) expression, leading to p38 MAPK/ Akt signaling, is important for oxidized low density lipoprotein (Ox-LDL)-induced macrophage proliferation. Here, we investigated whether activation of AMP-activated protein kinase (AMPK) could suppress macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages was assessed by [(3)H]thymidine incorporation and cell counting assays. The proliferation was significantly inhibited by the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and restored by dominant-negative AMPKalpha1, suggesting that AMPK activation suppressed macrophage proliferation. AICAR partially suppressed Ox-LDL-induced ERK1/2 phosphorylation and GM-CSF expression, suggesting that another mechanism is also involved in the AICAR-mediated suppression of macrophage proliferation. AICAR suppressed GM-CSF-induced macrophage proliferation without suppressing p38 MAPK/Akt signaling. GM-CSF suppressed p53 phosphorylation and expression and induced Rb phosphorylation. Overexpression of p53 or p27(kip) suppressed GM-CSF-induced macrophage proliferation. AICAR induced cell cycle arrest, increased p53 phosphorylation and expression, and suppressed GM-CSF-induced Rb phosphorylation via AMPK activation. Moreover, AICAR induced p21(cip) and p27(kip) expression via AMPK activation, and small interfering RNA (siRNA) of p21(cip) and p27(kip) restored AICAR-mediated suppression of macrophage proliferation. In conclusion, AMPK activation suppressed Ox-LDL-induced macrophage proliferation by suppressing GM-CSF expression and inducing cell cycle arrest. These effects of AMPK activation may represent therapeutic targets for atherosclerosis.", "title": "Activation of AMP-activated protein kinase suppresses oxidized low-density lipoprotein-induced macrophage proliferation." }, { "docid": "43192375", "text": "Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or \"alternatively activated\" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or \"classically activated\" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.", "title": "Obesity induces a phenotypic switch in adipose tissue macrophage polarization." } ]
1026
Reduced phosphorylation of PP2A increases HDAC4 dephosphorylation by enhancing PP2A-HDAC4 interaction.
[ { "docid": "3113630", "text": "Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration.", "title": "Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia-telangiectasia" } ]
[ { "docid": "22185730", "text": "Abnormal hyperphosphorylation of tau appears to be crucial in neurofibrillary degeneration in Alzheimer's disease (AD). Previous studies suggest that a down-regulation of protein phosphatase 2A (PP2A), the major tau phosphatase in human brain, contributes to tau hyperphosphorylation in AD. However, the effects of PP2A down-regulation on site-specific tau hyperphosphorylation is not well understood. In the present study, we showed that PP2A dephosphorylated tau at several phosphorylation sites with different efficiencies. Among the sites studied, Thr205, Thr212, Ser214, and Ser262 were the most favorable sites, and Ser199 and Ser404 were the least favorable sites for PP2A in vitro. Inhibition of PP2A with okadaic acid in metabolically active rat brain slices caused inhibition of glycogen synthase kinase-3beta (GSK-3beta) via an increase in its phosphorylation at Ser9. GSK-3beta phosphorylated tau at many sites, with Ser199, Thr205, and Ser396 being the most favorable sites in cells. The overall alterations in tau phosphorylation induced by PP2A inhibition were the result of the combined effects of both reduced tau dephosphorylation due to PP2A inhibition directly and reduced phosphorylation by GSK-3beta due to its inhibition. Because the impacts of tau phosphorylation on its biological activity and on neurofibrillary degeneration are site-specific, this study provides a new insight into the role of PP2A down-regulation in neurofibrillary degeneration in AD.", "title": "PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta." }, { "docid": "29806339", "text": "Targeting mitotic exit has been recently proposed as a relevant therapeutic approach against cancer. By using genetically engineered mice, we show that the APC/C cofactor Cdc20 is essential for anaphase onset in vivo in embryonic or adult cells, including progenitor/stem cells. Ablation of Cdc20 results in efficient regression of aggressive tumors, whereas current mitotic drugs display limited effects. Yet, Cdc20 null cells can exit from mitosis upon inactivation of Cdk1 and the kinase Mastl (Greatwall). This mitotic exit depends on the activity of PP2A phosphatase complexes containing B55α or B55δ regulatory subunits. These data illustrate the relevance of critical players of mitotic exit in mammals and their implications in the balance between cell death and mitotic exit in tumor cells.", "title": "Targeting mitotic exit leads to tumor regression in vivo: Modulation by Cdk1, Mastl, and the PP2A/B55α,δ phosphatase." }, { "docid": "665817", "text": "AIMS Frontotemporal lobar degeneration (FTLD) is clinically and pathologically heterogeneous. Although associated with variations in MAPT, GRN and C9ORF72, the pathogenesis of these, and of other nongenetic, forms of FTLD, remains unknown. Epigenetic factors such as histone regulation by histone deacetylases (HDAC) may play a role in the dysregulation of transcriptional activity, thought to underpin the neurodegenerative process. \n METHODS The distribution and intensity of HDACs 4, 5 and 6 was assessed semi-quantitatively in immunostained sections of temporal cortex with hippocampus, and cerebellum, from 33 pathologically confirmed cases of FTLD and 27 controls. \n RESULTS We found a significantly greater intensity of cytoplasmic immunostaining for HDAC4 and HDAC6 in granule cells of the dentate gyrus in cases of FTLD overall compared with controls, and specifically in cases of FTLD tau-Picks compared with FTLD tau-MAPT and controls. No differences were noted between FTLD-TDP subtypes, or between the different genetic and nongenetic forms of FTLD. No changes were seen in HDAC5 in any FTLD or control cases. \n CONCLUSIONS Dysregulation of HDAC4 and/or HDAC6 could play a role in the pathogenesis of FTLD-tau associated with Pick bodies, although their lack of immunostaining implies that such changes do not contribute directly to the formation of Pick bodies.", "title": "Histone deacetylases (HDACs) in frontotemporal lobar degeneration." }, { "docid": "16605494", "text": "BACKGROUND Whereas many causes and mechanisms of neurodegenerative diseases have been identified, very few therapeutic strategies have emerged in parallel. One possible explanation is that successful treatment strategy may require simultaneous targeting of more than one molecule of pathway. A new therapeutic approach to have emerged recently is the engagement of microRNAs (miRNAs), which affords the opportunity to target multiple cellular pathways simultaneously using a single sequence. \n METHODOLOGY/PRINCIPAL FINDINGS We identified miR-22 as a potentially neuroprotective miRNA based on its predicted regulation of several targets implicated in Huntington's disease (histone deacetylase 4 (HDAC4), REST corepresor 1 (Rcor1) and regulator of G-protein signaling 2 (Rgs2)) and its diminished expression in Huntington's and Alzheimer's disease brains. We then tested the hypothesis that increasing cellular levels of miRNA-22 would achieve neuroprotection in in vitro models of neurodegeneration. As predicted, overexpression of miR-22 inhibited neurodegeneration in primary striatal and cortical cultures exposed to a mutated human huntingtin fragment (Htt171-82Q). Overexpression of miR-22 also decreased neurodegeneration in primary neuronal cultures exposed to 3-nitropropionic acid (3-NP), a mitochondrial complex II/III inhibitor. In addition, miR-22 improved neuronal viability in an in vitro model of brain aging. The mechanisms underlying the effects of miR-22 included a reduction in caspase activation, consistent with miR-22's targeting the pro-apoptotic activities of mitogen-activated protein kinase 14/p38 (MAPK14/p38) and tumor protein p53-inducible nuclear protein 1 (Tp53inp1). Moreover, HD-specific effects comprised not only targeting HDAC4, Rcor1 and Rgs2 mRNAs, but also decreasing focal accumulation of mutant Htt-positive foci, which occurred via an unknown mechanism. \n CONCLUSIONS These data show that miR-22 has multipartite anti-neurodegenerative activities including the inhibition of apoptosis and the targeting of mRNAs implicated in the etiology of HD. These results motivate additional studies to evaluate the feasibility and therapeutic efficacy of manipulating miR-22 in vivo.", "title": "MicroRNA-22 (miR-22) Overexpression Is Neuroprotective via General Anti-Apoptotic Effects and May also Target Specific Huntington’s Disease-Related Mechanisms" }, { "docid": "22500262", "text": "During fasting, mammals maintain normal glucose homeostasis by stimulating hepatic gluconeogenesis. Elevations in circulating glucagon and epinephrine, two hormones that activate hepatic gluconeogenesis, trigger the cAMP-mediated phosphorylation of cAMP response element-binding protein (Creb) and dephosphorylation of the Creb-regulated transcription coactivator-2 (Crtc2)--two key transcriptional regulators of this process. Although the underlying mechanism is unclear, hepatic gluconeogenesis is also regulated by the circadian clock, which coordinates glucose metabolism with changes in the external environment. Circadian control of gene expression is achieved by two transcriptional activators, Clock and Bmal1, which stimulate cryptochrome (Cry1 and Cry2) and Period (Per1, Per2 and Per3) repressors that feed back on Clock-Bmal1 activity. Here we show that Creb activity during fasting is modulated by Cry1 and Cry2, which are rhythmically expressed in the liver. Cry1 expression was elevated during the night-day transition, when it reduced fasting gluconeogenic gene expression by blocking glucagon-mediated increases in intracellular cAMP concentrations and in the protein kinase A-mediated phosphorylation of Creb. In biochemical reconstitution studies, we found that Cry1 inhibited accumulation of cAMP in response to G protein-coupled receptor (GPCR) activation but not to forskolin, a direct activator of adenyl cyclase. Cry proteins seemed to modulate GPCR activity directly through interaction with G(s)α. As hepatic overexpression of Cry1 lowered blood glucose concentrations and improved insulin sensitivity in insulin-resistant db/db mice, our results suggest that compounds that enhance cryptochrome activity may provide therapeutic benefit to individuals with type 2 diabetes.", "title": "Cryptochrome Mediates Circadian Regulation of cAMP Signaling and Hepatic Gluconeogenesis" }, { "docid": "8417211", "text": "HP1 is an essential heterochromatin-associated protein in Drosophila. HP1 has dosage-dependent effects on the silencing of euchromatic genes that are mislocalized to heterochromatin and is required for the normal expression of at least two heterochromatic genes. HP1 is multiply phosphorylated in vivo, and HP1 hyperphosphorylation is correlated with heterochromatin assembly during development. The purpose of this study was to test whether HP1 phosphorylation modifies biological activity and biochemical properties of HP1. To determine sites of HP1 phosphorylation in vivo and whether phosphorylation affects any biochemical properties of HP1, we expressed Drosophila HP1 in lepidopteran cultured cells using a recombinant baculovirus vector. Phosphopeptides were identified by matrix-assisted laser desorption ionization/time of flight mass spectroscopy; these peptides contain target sites for casein kinase II, protein tyrosine kinase, and PIM-1 kinase. Purified HP1 from bacterial (unphosphorylated) and lepidopteran (phosphorylated) cells has similar secondary structure. Phosphorylation has no effect on HP1 self-association but alters the DNA binding properties of HP1, suggesting that phosphorylation could differentially regulate HP1-dependent interactions. Serine-to-alanine and serine-to-glutamate substitutions at consensus protein kinase motifs resulted in reduction or loss of silencing activity of mutant HP1 in transgenic flies. These results suggest that dynamic phosphorylation/dephosphorylation regulates HP1 activity in heterochromatic silencing.", "title": "Phosphorylation site mutations in heterochromatin protein 1 (HP1) reduce or eliminate silencing activity." }, { "docid": "6157371", "text": "Actin and its key regulatory component, cofilin, are found together in large rod-shaped assemblies in neurons subjected to energy stress. Such inclusions are also enriched in Alzheimer's disease brain, and appear in transgenic models of neurodegeneration. Neuronal insults, such as energy loss and/or oxidative stress, result in rapid dephosphorylation of the cellular cofilin pool prior to its assembly into rod-shaped inclusions. Although these events implicate a role for phosphatases in cofilin rod formation, a mechanism linking energy stress, phosphocofilin turnover, and subsequent rod assembly has been elusive. We demonstrate the ATP-sensitive interaction of the cofilin phosphatase chronophin (CIN) with the chaperone hsp90 to form a biosensor that mediates cofilin/actin rod formation. Our results suggest a model whereby attenuated interactions between CIN and hsp90 during ATP depletion enhance CIN-dependent cofilin dephosphorylation and consequent rod assembly, thereby providing a mechanism for the formation of pathological actin/cofilin aggregates during neurodegenerative energy flux.", "title": "Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation." }, { "docid": "31311495", "text": "We have previously demonstrated that, following acquisition of endocrine resistance, breast cancer cells display an altered growth rate together with increased aggressive behaviour in vitro. Since dysfunctional cell-cell adhesive interactions can promote an aggressive phenotype, we investigated the integrity of this protein complex in our breast cancer model of tamoxifen resistance. In culture, tamoxifen-resistant MCF7 (TamR) cells grew as loosely packed colonies with loss of cell-cell junctions and demonstrated altered morphology characteristic of cells undergoing epithelial-to-mesenchymal transition (EMT). Neutralising E-cadherin function promoted the invasion and inhibited the aggregation of endocrine-sensitive MCF7 cells, whilst having little effect on the behaviour of TamR cells. Additionally, TamR cells had increased levels of tyrosine-phosphorylated beta-catenin, whilst serine/threonine-phosphorylated beta-catenin was decreased. These cells also displayed loss of association between beta-catenin and E-cadherin, increased cytoplasmic and nuclear beta-catenin and elevated transcription of beta-catenin target genes known to be involved in tumour progression and EMT. Inhibition of EGFR kinase activity in TamR cells reduced beta-catenin tyrosine phosphorylation, increased beta-catenin-E-cadherin association and promoted cell-cell adhesion. In such treated cells, the association of beta-catenin with Lef-1 and the transcription of c-myc, cyclin-D1, CD44 and COX-2 were also reduced. These results suggest that homotypic adhesion in tamoxifen-resistant breast cancer cells is dysfunctional due to EGFR-driven modulation of the phosphorylation status of beta-catenin and may contribute to an enhanced aggressive phenotype and transition towards a mesenchymal phenotype in vitro.", "title": "Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation." }, { "docid": "10607877", "text": "Cell surface receptors have been extensively studied because they initiate and regulate signal transduction cascades leading to a variety of functional cellular outcomes. An important class of immune receptors (e.g., T-cell antigen receptors) whose ligands are anchored to the surfaces of other cells remain poorly understood. The mechanism by which ligand binding initiates receptor phosphorylation, a process termed \"receptor triggering\", remains controversial. Recently, direct measurements of the (two-dimensional) receptor-ligand complex lifetimes at cell-cell interface were found to be smaller than (three-dimensional) lifetimes in solution but the underlying mechanism is unknown. At the cell-cell interface, the receptor-ligand complex spans a short intermembrane distance (15 nm) compared to long surface molecules (LSMs) whose ectodomains span >40 nm and these LSMs include phosphatases (e.g., CD45) that dephosphorylate the receptor. It has been proposed that size-based segregation of LSMs from a receptor-ligand complex is a mechanism of receptor triggering but it is unclear whether the mechanochemistry supports such small-scale segregation. Here we present a nanometer-scale mathematical model that couples membrane elasticity with the compressional stiffness and lateral mobility of LSMs. We find robust supradiffusive segregation of LSMs from a single receptor-ligand complex. The model predicts that LSM redistribution will result in a time-dependent tension on the complex leading to a decreased two-dimensional lifetime. Interestingly, the model predicts a nonlinear relationship between the three- and two-dimensional lifetimes, which can enhance the ability of receptors to discriminate between similar ligands.", "title": "Mechanical modulation of receptor-ligand interactions at cell-cell interfaces." }, { "docid": "21307488", "text": "HER-2/neu amplification or overexpression can make cancer cells resistant to apoptosis and promotes their growth. p53 is crucial in regulating cell growth and apoptosis, and is often mutated or deleted in many types of tumour. Moreover, many tumours with a wild-type gene for p53 do not have normal p53 function, suggesting that some oncogenic signals suppress the function of p53. In this study, we show that HER-2/neu-mediated resistance to DNA-damaging agents requires the activation of Akt, which enhances MDM2-mediated ubiquitination and degradation of p53. Akt physically associates with MDM2 and phosphorylates it at Ser166 and Ser186. Phosphorylation of MDM2 enhances its nuclear localization and its interaction with p300, and inhibits its interaction with p19ARF, thus increasing p53 degradation. Our study indicates that blocking the Akt pathway mediated by HER-2/neu would increase the cytotoxic effect of DNA-damaging drugs in tumour cells with wild-type p53.", "title": "HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation" }, { "docid": "4688340", "text": "BACKGROUND Resistance to radiotherapy continues to be a limiting factor in the treatment of cancer including head and neck squamous cell carcinoma (HNSCC). Simultaneous targeting of β1 integrin and EGFR was shown to have a higher radiosensitizing potential than mono-targeting in the majority of tested HNSCC cancer models. As tumor-initiating cells (TIC) are thought to play a key role for therapy resistance and recurrence and can be enriched in sphere forming conditions, this study investigated the efficacy of β1 integrin/EGFR targeting without and in combination with X-ray irradiation on the behavior of sphere-forming cells (SFC). \n METHODS HNSCC cell lines (UTSCC15, UTSCC5, Cal33, SAS) were injected subcutaneously into nude mice for tumor up-take and plated for primary and secondary sphere formation under non-adhesive conditions which is thought to reflect the enrichment of SFC and their self-renewal capacity, respectively. Treatment was accomplished by inhibitory antibodies for β1 integrin (AIIB2) and EGFR (Cetuximab) as well as X-ray irradiation (2 - 6 Gy single doses). Further, flow cytometry for TIC marker expression and cell cycling as well as Western blotting for DNA repair protein expression and phosphorylation were employed. \n RESULTS We found higher primary and secondary sphere forming capacity of SAS cells relative to other HNSCC cell lines, which was in line with the tumor up-take rates of SAS versus UTSCC15 cells. AIIB2 and Cetuximab administration had minor cytotoxic and no radiosensitizing effects on SFC. Intriguingly, secondary SAS spheres, representing the fraction of surviving SFC upon passaging, showed greatly enhanced radiosensitivity compared to primary spheres. Intriguingly, neither AIIB2 nor Cetuximab significantly altered basal sphere forming capacity and radiosensitivity. While an increased accumulation of G0/G1 phase cells was observable in secondary SAS spheres, DNA double strand break repair indicated no difference on the basis of significantly enhanced ATM and Chk2 dephosphorylation upon irradiation. \n CONCLUSIONS In the HNSCC model, sphere-forming conditions select for cells, which are unsusceptible to both anti-β1 integrin and anti-EGFR inhibitory antibodies. With regard to primary and secondary sphere formation, our data suggest that both of these SFC fractions express distinct survival strategies independent from β1 integrin and EGFR and that future work is warranted to better understand SFC survival and enrichment before and after treatment to untangle the underlying mechanisms for identifying novel, druggable cancer targets in SFC.", "title": "Efficacy of Beta1 Integrin and EGFR Targeting in Sphere-Forming Human Head and Neck Cancer Cells" }, { "docid": "33063763", "text": "MAP kinase signaling modules serve to transduce extracellular signals to the nucleus of eukaryotic cells, but little is known about how signals cross the nuclear envelope. Exposure of yeast cells to increases in extracellular osmolarity activates the HOG1 MAP kinase cascade, which is composed of three tiers of protein kinases, namely the SSK2, SSK22 and STE11 MAPKKKs, the PBS2 MAPKK, and the HOG1 MAPK. Using green fluorescent protein (GFP) fusions of these kinases, we found that HOG1, PBS2 and STE11 localize to the cytoplasm of unstressed cells. Following osmotic stress, HOG1, but neither PBS2 nor STE11, translocates into the nucleus. HOG1 translocation occurs very rapidly, is transient, and correlates with the phosphorylation and activation of the MAP kinase by its MAPKK. HOG1 phosphorylation is necessary and sufficient for nuclear translocation, because a catalytically inactive kinase when phosphorylated is translocated to the nucleus as efficiently as the wild-type. Nuclear import of the MAPK under stress conditions requires the activity of the small GTP binding protein Ran-GSP1, but not the NLS-binding importin alpha/beta heterodimer. Rather, HOG1 import requires the activity of a gene, NMD5, that encodes a novel importin beta homolog. Similarly, export of dephosphorylated HOG1 from the nucleus requires the activity of the NES receptor XPO1/CRM1. Our findings define the requirements for the regulated nuclear transport of a stress-activated MAP kinase.", "title": "Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1." }, { "docid": "17194716", "text": "In this study, the mechanisms of actin-bundling in filopodia were examined. Analysis of cellular localization of known actin cross-linking proteins in mouse melanoma B16F1 cells revealed that fascin was specifically localized along the entire length of all filopodia, whereas other actin cross-linkers were not. RNA interference of fascin reduced the number of filopodia, and remaining filopodia had abnormal morphology with wavy and loosely bundled actin organization. Dephosphorylation of serine 39 likely determined cellular filopodia frequency. The constitutively active fascin mutant S39A increased the number and length of filopodia, whereas the inactive fascin mutant S39E reduced filopodia frequency. Fluorescence recovery after photobleaching of GFP-tagged wild-type and S39A fascin showed that dephosphorylated fascin underwent rapid cycles of association to and dissociation from actin filaments in filopodia, with t1/2 < 10 s. We propose that fascin is a key specific actin cross-linker, providing stiffness for filopodial bundles, and that its dynamic behavior allows for efficient coordination between elongation and bundling of filopodial actin filaments.", "title": "Role of fascin in filopodial protrusion" }, { "docid": "2481032", "text": "Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.", "title": "Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues." }, { "docid": "21622715", "text": "Transcriptional factors binding to cAMP-responsive elements (CREs) in the promoters of various genes belong to the basic domain-leucine zipper superfamily and are composed of three genes in mammals, CREB, CREM, and ATF-1. A large number of CREB, CREM, and ATF-1 proteins are generated by posttranscriptional events, mostly alternative splicing, and regulate gene expression by acting as activators or repressors. Activation is classically brought about by signaling-dependent phosphorylation of a key acceptor site (Ser133 in CREB) by a number of possible kinases, including PKA, CamKIV, and Rsk-2. Phosphorylation is the prerequisite for the interaction of CBP (CREB-binding protein), a co-activator that has also histone acetyltransferase activity. Repression may involve dynamic dephosphorylation of the activators and thus decreased association with CBP. Another pathway of transcriptional repression on CRE sites implicates the inducible repressor ICER (inducible cAMP early repressor), a product of the CREM gene. Being an inducible repressor, ICER is involved in autoregulatory feedback loops of transcription that govern the down-regulation of early response genes, such as the proto-oncogene c-fos. The liver represents a remarkable physiological setting where cAMP-responsive signaling plays a major role. Indeed, a finely tuned program of gene expression is triggered by partial hepatectomy, so that through specific checkpoints a coordinated regeneration of the tissue is obtained. Temporal kinetics of transcriptional activation after hepatectomy reveals a pattern of early induction for several genes, some of them controlled by the CREB/CREM transcription factors. An important role of CREM in liver physiology was suggested by the robust induction of ICER after partial hepatectomy. The delay in tissue regeneration in CREM-deficient mice confirmed the important function of this factor in regulating hepatocyte proliferation. As gene induction is accompanied by critical changes in chromatin organization, the deciphering of the specific modification codes that histones display during liver regeneration and physiology will provide exciting new insights into the dynamics of chromatin architecture.", "title": "Coupling cAMP signaling to transcription in the liver: pivotal role of CREB and CREM." }, { "docid": "52873726", "text": "The Hippo pathway controls organ size and tissue homeostasis, with deregulation leading to cancer. The core Hippo components in mammals are composed of the upstream serine/threonine kinases Mst1/2, MAPK4Ks and Lats1/2. Inactivation of these upstream kinases leads to dephosphorylation, stabilization, nuclear translocation and thus activation of the major functional transducers of the Hippo pathway, YAP and its paralogue TAZ. YAP/TAZ are transcription co-activators that regulate gene expression primarily through interaction with the TEA domain DNA-binding family of transcription factors (TEAD). The current paradigm for regulation of this pathway centres on phosphorylation-dependent nucleocytoplasmic shuttling of YAP/TAZ through a complex network of upstream components. However, unlike other transcription factors, such as SMAD, NF-κB, NFAT and STAT, the regulation of TEAD nucleocytoplasmic shuttling has been largely overlooked. In the present study, we show that environmental stress promotes TEAD cytoplasmic translocation via p38 MAPK in a Hippo-independent manner. Importantly, stress-induced TEAD inhibition predominates YAP-activating signals and selectively suppresses YAP-driven cancer cell growth. Our data reveal a mechanism governing TEAD nucleocytoplasmic shuttling and show that TEAD localization is a critical determinant of Hippo signalling output.", "title": "Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation" }, { "docid": "20054396", "text": "In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.", "title": "Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation." }, { "docid": "1225513", "text": "UNLABELLED Two-component systems (TCS) comprise histidine kinases and their cognate response regulators and allow bacteria to sense and respond to a wide variety of signals. Histidine kinases (HKs) phosphorylate and dephosphorylate their cognate response regulators (RRs) in response to stimuli. In general, these reactions appear to be highly specific and require an appropriate association between the HK and RR proteins. The Myxococcus xanthus genome encodes one of the largest repertoires of signaling proteins in bacteria (685 open reading frames [ORFs]), including at least 127 HKs and at least 143 RRs. Of these, 27 are bona fide NtrC-family response regulators, 21 of which are encoded adjacent to their predicted cognate kinases. Using system-wide profiling methods, we determined that the HK-NtrC RR pairs display a kinetic preference during both phosphotransfer and phosphatase functions, thereby defining cognate signaling systems in M. xanthus. Isothermal titration calorimetry measurements indicated that cognate HK-RR pairs interact with dissociation constants (Kd) of approximately 1 µM, while noncognate pairs had no measurable binding. Lastly, a chimera generated between the histidine kinase, CrdS, and HK1190 revealed that residues conferring phosphotransfer and phosphatase specificity dictate binding affinity, thereby establishing discrete protein-protein interactions which prevent cross talk. The data indicate that binding affinity is a critical parameter governing system-wide signaling fidelity for bacterial signal transduction proteins. IMPORTANCE Using in vitro phosphotransfer and phosphatase profiling assays and isothermal titration calorimetry, we have taken a system-wide approach to demonstrate specificity for a family of two-component signaling proteins in Myxococcus xanthus. Our results demonstrate that previously identified specificity residues dictate binding affinity and that phosphatase specificity follows phosphotransfer specificity for cognate HK-RR pairs. The data indicate that preferential binding affinity is the basis for signaling fidelity in bacterial two-component systems.", "title": "Specificity Residues Determine Binding Affinity for Two-Component Signal Transduction Systems" }, { "docid": "11532659", "text": "Nucleosomes, the fundamental units of chromatin structure, are regulators and barriers to transcription, replication and repair. Post-translational modifications (PTMs) of the histone proteins within nucleosomes regulate these DNA processes. Histone H3(T118) is a site of phosphorylation [H3(T118ph)] and is implicated in regulation of transcription and DNA repair. We prepared H3(T118ph) by expressed protein ligation and determined its influence on nucleosome dynamics. We find H3(T118ph) reduces DNA-histone binding by 2 kcal/mol, increases nucleosome mobility by 28-fold and increases DNA accessibility near the dyad region by 6-fold. Moreover, H3(T118ph) increases the rate of hMSH2-hMSH6 nucleosome disassembly and enables nucleosome disassembly by the SWI/SNF chromatin remodeler. These studies suggest that H3(T118ph) directly enhances and may reprogram chromatin remodeling reactions.", "title": "Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling" } ]
1027
Reduced phosphorylation of PP2A suppresses HDAC4 dephosphorylation.
[ { "docid": "3113630", "text": "Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration.", "title": "Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia-telangiectasia" } ]
[ { "docid": "22185730", "text": "Abnormal hyperphosphorylation of tau appears to be crucial in neurofibrillary degeneration in Alzheimer's disease (AD). Previous studies suggest that a down-regulation of protein phosphatase 2A (PP2A), the major tau phosphatase in human brain, contributes to tau hyperphosphorylation in AD. However, the effects of PP2A down-regulation on site-specific tau hyperphosphorylation is not well understood. In the present study, we showed that PP2A dephosphorylated tau at several phosphorylation sites with different efficiencies. Among the sites studied, Thr205, Thr212, Ser214, and Ser262 were the most favorable sites, and Ser199 and Ser404 were the least favorable sites for PP2A in vitro. Inhibition of PP2A with okadaic acid in metabolically active rat brain slices caused inhibition of glycogen synthase kinase-3beta (GSK-3beta) via an increase in its phosphorylation at Ser9. GSK-3beta phosphorylated tau at many sites, with Ser199, Thr205, and Ser396 being the most favorable sites in cells. The overall alterations in tau phosphorylation induced by PP2A inhibition were the result of the combined effects of both reduced tau dephosphorylation due to PP2A inhibition directly and reduced phosphorylation by GSK-3beta due to its inhibition. Because the impacts of tau phosphorylation on its biological activity and on neurofibrillary degeneration are site-specific, this study provides a new insight into the role of PP2A down-regulation in neurofibrillary degeneration in AD.", "title": "PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta." }, { "docid": "8417211", "text": "HP1 is an essential heterochromatin-associated protein in Drosophila. HP1 has dosage-dependent effects on the silencing of euchromatic genes that are mislocalized to heterochromatin and is required for the normal expression of at least two heterochromatic genes. HP1 is multiply phosphorylated in vivo, and HP1 hyperphosphorylation is correlated with heterochromatin assembly during development. The purpose of this study was to test whether HP1 phosphorylation modifies biological activity and biochemical properties of HP1. To determine sites of HP1 phosphorylation in vivo and whether phosphorylation affects any biochemical properties of HP1, we expressed Drosophila HP1 in lepidopteran cultured cells using a recombinant baculovirus vector. Phosphopeptides were identified by matrix-assisted laser desorption ionization/time of flight mass spectroscopy; these peptides contain target sites for casein kinase II, protein tyrosine kinase, and PIM-1 kinase. Purified HP1 from bacterial (unphosphorylated) and lepidopteran (phosphorylated) cells has similar secondary structure. Phosphorylation has no effect on HP1 self-association but alters the DNA binding properties of HP1, suggesting that phosphorylation could differentially regulate HP1-dependent interactions. Serine-to-alanine and serine-to-glutamate substitutions at consensus protein kinase motifs resulted in reduction or loss of silencing activity of mutant HP1 in transgenic flies. These results suggest that dynamic phosphorylation/dephosphorylation regulates HP1 activity in heterochromatic silencing.", "title": "Phosphorylation site mutations in heterochromatin protein 1 (HP1) reduce or eliminate silencing activity." }, { "docid": "52873726", "text": "The Hippo pathway controls organ size and tissue homeostasis, with deregulation leading to cancer. The core Hippo components in mammals are composed of the upstream serine/threonine kinases Mst1/2, MAPK4Ks and Lats1/2. Inactivation of these upstream kinases leads to dephosphorylation, stabilization, nuclear translocation and thus activation of the major functional transducers of the Hippo pathway, YAP and its paralogue TAZ. YAP/TAZ are transcription co-activators that regulate gene expression primarily through interaction with the TEA domain DNA-binding family of transcription factors (TEAD). The current paradigm for regulation of this pathway centres on phosphorylation-dependent nucleocytoplasmic shuttling of YAP/TAZ through a complex network of upstream components. However, unlike other transcription factors, such as SMAD, NF-κB, NFAT and STAT, the regulation of TEAD nucleocytoplasmic shuttling has been largely overlooked. In the present study, we show that environmental stress promotes TEAD cytoplasmic translocation via p38 MAPK in a Hippo-independent manner. Importantly, stress-induced TEAD inhibition predominates YAP-activating signals and selectively suppresses YAP-driven cancer cell growth. Our data reveal a mechanism governing TEAD nucleocytoplasmic shuttling and show that TEAD localization is a critical determinant of Hippo signalling output.", "title": "Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation" }, { "docid": "16686383", "text": "The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in eukaryotes. We identify posttranslational modifications of Saccharomyces cerevisiae CenH3, Cse4. Functional characterization of cse4 phosphorylation mutants shows growth and chromosome segregation defects when combined with kinetochore mutants okp1 and ame1. Using a phosphoserine-specific antibody, we show that the association of phosphorylated Cse4 with centromeres increases in response to defective microtubule attachment or reduced cohesion. We determine that evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 are reduced at centromeres in ipl1 strains in vivo, and in vitro assays show phosphorylation of Cse4 by Ipl1. Consistent with these results, we observe that a phosphomimetic cse4-4SD mutant suppresses the temperature-sensitive growth of ipl1-2 and Ipl1 substrate mutants dam1 spc34 and ndc80, which are defective for chromosome biorientation. Furthermore, cell biology approaches using a green fluorescent protein-labeled chromosome show that cse4-4SD suppresses chromosome segregation defects in dam1 spc34 strains. On the basis of these results, we propose that phosphorylation of Cse4 destabilizes defective kinetochores to promote biorientation and ensure faithful chromosome segregation. Taken together, our results provide a detailed analysis, in vivo and in vitro, of Cse4 phosphorylation and its role in promoting faithful chromosome segregation.", "title": "Phosphorylation of centromeric histone H3 variant regulates chromosome segregation in Saccharomyces cerevisiae" }, { "docid": "22500262", "text": "During fasting, mammals maintain normal glucose homeostasis by stimulating hepatic gluconeogenesis. Elevations in circulating glucagon and epinephrine, two hormones that activate hepatic gluconeogenesis, trigger the cAMP-mediated phosphorylation of cAMP response element-binding protein (Creb) and dephosphorylation of the Creb-regulated transcription coactivator-2 (Crtc2)--two key transcriptional regulators of this process. Although the underlying mechanism is unclear, hepatic gluconeogenesis is also regulated by the circadian clock, which coordinates glucose metabolism with changes in the external environment. Circadian control of gene expression is achieved by two transcriptional activators, Clock and Bmal1, which stimulate cryptochrome (Cry1 and Cry2) and Period (Per1, Per2 and Per3) repressors that feed back on Clock-Bmal1 activity. Here we show that Creb activity during fasting is modulated by Cry1 and Cry2, which are rhythmically expressed in the liver. Cry1 expression was elevated during the night-day transition, when it reduced fasting gluconeogenic gene expression by blocking glucagon-mediated increases in intracellular cAMP concentrations and in the protein kinase A-mediated phosphorylation of Creb. In biochemical reconstitution studies, we found that Cry1 inhibited accumulation of cAMP in response to G protein-coupled receptor (GPCR) activation but not to forskolin, a direct activator of adenyl cyclase. Cry proteins seemed to modulate GPCR activity directly through interaction with G(s)α. As hepatic overexpression of Cry1 lowered blood glucose concentrations and improved insulin sensitivity in insulin-resistant db/db mice, our results suggest that compounds that enhance cryptochrome activity may provide therapeutic benefit to individuals with type 2 diabetes.", "title": "Cryptochrome Mediates Circadian Regulation of cAMP Signaling and Hepatic Gluconeogenesis" }, { "docid": "12640810", "text": "Invadopodia are matrix-degrading membrane protrusions in invasive carcinoma cells. The mechanisms regulating invadopodium assembly and maturation are not understood. We have dissected the stages of invadopodium assembly and maturation and show that invadopodia use cortactin phosphorylation as a master switch during these processes. In particular, cortactin phosphorylation was found to regulate cofilin and Arp2/3 complex-dependent actin polymerization. Cortactin directly binds cofilin and inhibits its severing activity. Cortactin phosphorylation is required to release this inhibition so cofilin can sever actin filaments to create barbed ends at invadopodia to support Arp2/3-dependent actin polymerization. After barbed end formation, cortactin is dephosphorylated, which blocks cofilin severing activity thereby stabilizing invadopodia. These findings identify novel mechanisms for actin polymerization in the invadopodia of metastatic carcinoma cells and define four distinct stages of invadopodium assembly and maturation consisting of invadopodium precursor formation, actin polymerization, stabilization, and matrix degradation.", "title": "Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation" }, { "docid": "29806339", "text": "Targeting mitotic exit has been recently proposed as a relevant therapeutic approach against cancer. By using genetically engineered mice, we show that the APC/C cofactor Cdc20 is essential for anaphase onset in vivo in embryonic or adult cells, including progenitor/stem cells. Ablation of Cdc20 results in efficient regression of aggressive tumors, whereas current mitotic drugs display limited effects. Yet, Cdc20 null cells can exit from mitosis upon inactivation of Cdk1 and the kinase Mastl (Greatwall). This mitotic exit depends on the activity of PP2A phosphatase complexes containing B55α or B55δ regulatory subunits. These data illustrate the relevance of critical players of mitotic exit in mammals and their implications in the balance between cell death and mitotic exit in tumor cells.", "title": "Targeting mitotic exit leads to tumor regression in vivo: Modulation by Cdk1, Mastl, and the PP2A/B55α,δ phosphatase." }, { "docid": "33063763", "text": "MAP kinase signaling modules serve to transduce extracellular signals to the nucleus of eukaryotic cells, but little is known about how signals cross the nuclear envelope. Exposure of yeast cells to increases in extracellular osmolarity activates the HOG1 MAP kinase cascade, which is composed of three tiers of protein kinases, namely the SSK2, SSK22 and STE11 MAPKKKs, the PBS2 MAPKK, and the HOG1 MAPK. Using green fluorescent protein (GFP) fusions of these kinases, we found that HOG1, PBS2 and STE11 localize to the cytoplasm of unstressed cells. Following osmotic stress, HOG1, but neither PBS2 nor STE11, translocates into the nucleus. HOG1 translocation occurs very rapidly, is transient, and correlates with the phosphorylation and activation of the MAP kinase by its MAPKK. HOG1 phosphorylation is necessary and sufficient for nuclear translocation, because a catalytically inactive kinase when phosphorylated is translocated to the nucleus as efficiently as the wild-type. Nuclear import of the MAPK under stress conditions requires the activity of the small GTP binding protein Ran-GSP1, but not the NLS-binding importin alpha/beta heterodimer. Rather, HOG1 import requires the activity of a gene, NMD5, that encodes a novel importin beta homolog. Similarly, export of dephosphorylated HOG1 from the nucleus requires the activity of the NES receptor XPO1/CRM1. Our findings define the requirements for the regulated nuclear transport of a stress-activated MAP kinase.", "title": "Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1." }, { "docid": "17194716", "text": "In this study, the mechanisms of actin-bundling in filopodia were examined. Analysis of cellular localization of known actin cross-linking proteins in mouse melanoma B16F1 cells revealed that fascin was specifically localized along the entire length of all filopodia, whereas other actin cross-linkers were not. RNA interference of fascin reduced the number of filopodia, and remaining filopodia had abnormal morphology with wavy and loosely bundled actin organization. Dephosphorylation of serine 39 likely determined cellular filopodia frequency. The constitutively active fascin mutant S39A increased the number and length of filopodia, whereas the inactive fascin mutant S39E reduced filopodia frequency. Fluorescence recovery after photobleaching of GFP-tagged wild-type and S39A fascin showed that dephosphorylated fascin underwent rapid cycles of association to and dissociation from actin filaments in filopodia, with t1/2 < 10 s. We propose that fascin is a key specific actin cross-linker, providing stiffness for filopodial bundles, and that its dynamic behavior allows for efficient coordination between elongation and bundling of filopodial actin filaments.", "title": "Role of fascin in filopodial protrusion" }, { "docid": "665817", "text": "AIMS Frontotemporal lobar degeneration (FTLD) is clinically and pathologically heterogeneous. Although associated with variations in MAPT, GRN and C9ORF72, the pathogenesis of these, and of other nongenetic, forms of FTLD, remains unknown. Epigenetic factors such as histone regulation by histone deacetylases (HDAC) may play a role in the dysregulation of transcriptional activity, thought to underpin the neurodegenerative process. \n METHODS The distribution and intensity of HDACs 4, 5 and 6 was assessed semi-quantitatively in immunostained sections of temporal cortex with hippocampus, and cerebellum, from 33 pathologically confirmed cases of FTLD and 27 controls. \n RESULTS We found a significantly greater intensity of cytoplasmic immunostaining for HDAC4 and HDAC6 in granule cells of the dentate gyrus in cases of FTLD overall compared with controls, and specifically in cases of FTLD tau-Picks compared with FTLD tau-MAPT and controls. No differences were noted between FTLD-TDP subtypes, or between the different genetic and nongenetic forms of FTLD. No changes were seen in HDAC5 in any FTLD or control cases. \n CONCLUSIONS Dysregulation of HDAC4 and/or HDAC6 could play a role in the pathogenesis of FTLD-tau associated with Pick bodies, although their lack of immunostaining implies that such changes do not contribute directly to the formation of Pick bodies.", "title": "Histone deacetylases (HDACs) in frontotemporal lobar degeneration." }, { "docid": "38751591", "text": "The DELLA proteins GAI, RGA, RGL1 and RGL2 in Arabidopsis are plant growth repressors, repressing diverse developmental processes. Studies have shown that gibberellin (GA) attenuates the repressive function of DELLA proteins by triggering their degradation via the proteasome pathway. However, it is not known if GA-induced protein degradation is the only pathway for regulating the bioactivity of DELLA proteins. We show here that tobacco BY2 cells represent a suitable system for studying GA signaling. RGL2 exists in a phosphorylated form in BY2 cells. RGL2 undergoes GA-induced degradation, and this process is blocked by proteasome inhibitors and serine/threonine phosphatase inhibitors; however, serine/threonine kinase inhibitors had no detectable effect, suggesting that dephosphorylation of serine/threonine is probably a prerequisite for degradation of RGL2 via the proteasome pathway. Site-directed substitution of all 17 conserved serine and threonine residues showed that six mutants (RGL2(S441D, RGL2(S542D), RGL2(T271E), RGL2(T319E), RGL2(T411E) and RGL2(T535E)) mimicking the status of constitutive phosphorylation are resistant to GA-induced degradation. This suggests that these sites are potential phosphorylation sites. A functional assay based on the expression of GA 20-oxidase revealed that RGL2(T271E) is probably a null mutant, RGL2(S441D), RGL2(S542D), RGL2(T319E) and RGL2(T411E) only retained about 4-17% of the activity of the wild type RGL2, whereas RGL2(T535E) retained about 66% of the activity of the wild type RGL2. However, expression of GA 20-oxidase in BY2 cells expressing these mutant proteins is still responsive to GA, suggesting that the stabilization of RGL2 protein is not the only pathway for regulating its bioactivity.", "title": "Identification of the conserved serine/threonine residues important for gibberellin-sensitivity of Arabidopsis RGL2 protein." }, { "docid": "24721866", "text": "Macrophage-derived foam cells play important roles in the progression of atherosclerosis. We reported previously that ERK1/2-dependent granulocyte/macrophage colony-stimulating factor (GM-CSF) expression, leading to p38 MAPK/ Akt signaling, is important for oxidized low density lipoprotein (Ox-LDL)-induced macrophage proliferation. Here, we investigated whether activation of AMP-activated protein kinase (AMPK) could suppress macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages was assessed by [(3)H]thymidine incorporation and cell counting assays. The proliferation was significantly inhibited by the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and restored by dominant-negative AMPKalpha1, suggesting that AMPK activation suppressed macrophage proliferation. AICAR partially suppressed Ox-LDL-induced ERK1/2 phosphorylation and GM-CSF expression, suggesting that another mechanism is also involved in the AICAR-mediated suppression of macrophage proliferation. AICAR suppressed GM-CSF-induced macrophage proliferation without suppressing p38 MAPK/Akt signaling. GM-CSF suppressed p53 phosphorylation and expression and induced Rb phosphorylation. Overexpression of p53 or p27(kip) suppressed GM-CSF-induced macrophage proliferation. AICAR induced cell cycle arrest, increased p53 phosphorylation and expression, and suppressed GM-CSF-induced Rb phosphorylation via AMPK activation. Moreover, AICAR induced p21(cip) and p27(kip) expression via AMPK activation, and small interfering RNA (siRNA) of p21(cip) and p27(kip) restored AICAR-mediated suppression of macrophage proliferation. In conclusion, AMPK activation suppressed Ox-LDL-induced macrophage proliferation by suppressing GM-CSF expression and inducing cell cycle arrest. These effects of AMPK activation may represent therapeutic targets for atherosclerosis.", "title": "Activation of AMP-activated protein kinase suppresses oxidized low-density lipoprotein-induced macrophage proliferation." }, { "docid": "36838958", "text": "Uncoupling protein 1 (Ucp1), which is localized in the mitochondrial inner membrane of mammalian brown adipose tissue (BAT), generates heat by uncoupling oxidative phosphorylation. Upon cold exposure or nutritional abundance, sympathetic neurons stimulate BAT to express Ucp1 to induce energy dissipation and thermogenesis. Accordingly, increased Ucp1 expression reduces obesity in mice and is correlated with leanness in humans. Despite this significance, there is currently a limited understanding of how Ucp1 expression is physiologically regulated at the molecular level. Here, we describe the involvement of Sestrin2 and reactive oxygen species (ROS) in regulation of Ucp1 expression. Transgenic overexpression of Sestrin2 in adipose tissues inhibited both basal and cold-induced Ucp1 expression in interscapular BAT, culminating in decreased thermogenesis and increased fat accumulation. Endogenous Sestrin2 is also important for suppressing Ucp1 expression because BAT from Sestrin2(-/-) mice exhibited a highly elevated level of Ucp1 expression. The redox-inactive mutant of Sestrin2 was incapable of regulating Ucp1 expression, suggesting that Sestrin2 inhibits Ucp1 expression primarily through reducing ROS accumulation. Consistently, ROS-suppressing antioxidant chemicals, such as butylated hydroxyanisole and N-acetylcysteine, inhibited cold- or cAMP-induced Ucp1 expression as well. p38 MAPK, a signaling mediator required for cAMP-induced Ucp1 expression, was inhibited by either Sestrin2 overexpression or antioxidant treatments. Taken together, these results suggest that Sestrin2 and antioxidants inhibit Ucp1 expression through suppressing ROS-mediated p38 MAPK activation, implying a critical role of ROS in proper BAT metabolism.", "title": "Sestrin2 inhibits uncoupling protein 1 expression through suppressing reactive oxygen species." }, { "docid": "27093166", "text": "BACKGROUND Ketamine, as an anesthetic agent, has an anti-inflammatory effect. In the present study, we investigated whether ketamine inhibits release of high mobility group box 1 (HMGB1), a late-phase cytokine of sepsis, in lipopolysaccharide (LPS)-stimulated macrophages through heme oxygenase-1 (HO-1) induction. \n METHODS Macrophages were preincubated with various concentrations of ketamine and then treated with LPS (1 μg/mL). The cell culture supernatants were collected to measure inflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor-α, and interleukin 1β) by enzyme-linked immunosorbent assay. Moreover, HO-1 protein expression, the phosphorylation and degradation of IκB-α, and the nuclear translocation of nuclear factor E2-related factor 2 and nuclear factor κB (NF-κB) p65 were tested by Western blot analysis. In addition, to further identify the role of HO-1 in this process, tin protoporphyrin (SnPP), an HO-1 inhibitor, was used. \n RESULTS Ketamine treatment dose-dependently attenuated the increased levels of proinflammatory mediators (HMGB1, nitric oxide, tumor necrosis factor α, and interleukin 1β) and increased the HO-1 protein expression in LPS-activated macrophages. Furthermore, ketamine suppressed the phosphorylation and degradation of IκB-α as well as the LPS-stimulated nuclear translocation of NF-κB p65 in macrophages. In addition, the present study also demonstrated that ketamine induced HO-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 in macrophages. The effects of ketamine on LPS-induced proinflammatory cytokines production were partially reversed by the HO inhibitor tin protoporphyrin (SnPP). \n CONCLUSION Ketamine inhibits the release of HMGB1 in LPS-stimulated macrophages, and this effect is at least partly mediated by the activation of the Nrf2/HO-1 pathway and NF-κB suppression.", "title": "Ketamine reduces LPS-induced HMGB1 via activation of the Nrf2/HO-1 pathway and NF-κB suppression." }, { "docid": "52095986", "text": "Although the etiology of multiple sclerosis (MS) remains enigmatic, the role of T cells is unquestionably central in this pathology. Immune cells respond to pathogens and danger signals via pattern-recognition receptors (PRR). Several reports implicate Nlrp12, an intracellular PRR, in the development of a mouse MS-like disease, called Experimental Autoimmune Encephalomyelitis (EAE). In this study, we used induced and spontaneous models of EAE, as well as in vitro T cell assays, to test the hypothesis that Nlrp12 inhibits Th1 response and prevents T-cell mediated autoimmunity. We found that Nlrp12 plays a protective role in induced EAE by reducing IFNγ/IL-4 ratio in lymph nodes, whereas it potentiates the development of spontaneous EAE (spEAE) in 2D2 T cell receptor (TCR) transgenic mice. Looking into the mechanism of Nlrp12 activity in T cell response, we found that it inhibits T cell proliferation and suppresses Th1 response by reducing IFNγ and IL-2 production. Following TCR activation, Nlrp12 inhibits Akt and NF-κB phosphorylation, while it has no effect on S6 phosphorylation in the mTOR pathway. In conclusion, we propose a model that can explain the dual immunoregulatory function of Nlrp12 in EAE. We also propose a model explaining the molecular mechanism of Nlrp12-dependent regulation of T cell response.", "title": "The Dual Immunoregulatory function of Nlrp12 in T Cell-Mediated Immune Response: Lessons from Experimental Autoimmune Encephalomyelitis" }, { "docid": "21622715", "text": "Transcriptional factors binding to cAMP-responsive elements (CREs) in the promoters of various genes belong to the basic domain-leucine zipper superfamily and are composed of three genes in mammals, CREB, CREM, and ATF-1. A large number of CREB, CREM, and ATF-1 proteins are generated by posttranscriptional events, mostly alternative splicing, and regulate gene expression by acting as activators or repressors. Activation is classically brought about by signaling-dependent phosphorylation of a key acceptor site (Ser133 in CREB) by a number of possible kinases, including PKA, CamKIV, and Rsk-2. Phosphorylation is the prerequisite for the interaction of CBP (CREB-binding protein), a co-activator that has also histone acetyltransferase activity. Repression may involve dynamic dephosphorylation of the activators and thus decreased association with CBP. Another pathway of transcriptional repression on CRE sites implicates the inducible repressor ICER (inducible cAMP early repressor), a product of the CREM gene. Being an inducible repressor, ICER is involved in autoregulatory feedback loops of transcription that govern the down-regulation of early response genes, such as the proto-oncogene c-fos. The liver represents a remarkable physiological setting where cAMP-responsive signaling plays a major role. Indeed, a finely tuned program of gene expression is triggered by partial hepatectomy, so that through specific checkpoints a coordinated regeneration of the tissue is obtained. Temporal kinetics of transcriptional activation after hepatectomy reveals a pattern of early induction for several genes, some of them controlled by the CREB/CREM transcription factors. An important role of CREM in liver physiology was suggested by the robust induction of ICER after partial hepatectomy. The delay in tissue regeneration in CREM-deficient mice confirmed the important function of this factor in regulating hepatocyte proliferation. As gene induction is accompanied by critical changes in chromatin organization, the deciphering of the specific modification codes that histones display during liver regeneration and physiology will provide exciting new insights into the dynamics of chromatin architecture.", "title": "Coupling cAMP signaling to transcription in the liver: pivotal role of CREB and CREM." }, { "docid": "5798227", "text": "Bacterial lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor (TLR) 4. We show here that the suppressor of cytokine-signaling-1 (SOCS1/JAB) is rapidly induced by LPS and negatively regulates LPS signaling. SOCS1(+/-) mice or SOCS1(-/-) mice with interferon-gamma (IFNgamma)-deficient background were more sensitive to LPS-induced lethal effects than were wild-type littermates. LPS-induced NO(2)(-) synthesis and TNFalpha production were augmented in SOCS1(-/-) macrophages. Furthermore, LPS tolerance, a protection mechanism against endotoxin shock, was also strikingly reduced in SOCS1(-/-) cells. LPS-induced I-kappaB and p38 phosphorylation was upregulated in SOCS1(-/-) macrophages, and forced expression of SOCS1 suppressed LPS-induced NF-kappaB activation. Thus, SOCS1 directly suppresses TLR4 signaling and modulates innate immunity.", "title": "SOCS1/JAB is a negative regulator of LPS-induced macrophage activation." }, { "docid": "16605494", "text": "BACKGROUND Whereas many causes and mechanisms of neurodegenerative diseases have been identified, very few therapeutic strategies have emerged in parallel. One possible explanation is that successful treatment strategy may require simultaneous targeting of more than one molecule of pathway. A new therapeutic approach to have emerged recently is the engagement of microRNAs (miRNAs), which affords the opportunity to target multiple cellular pathways simultaneously using a single sequence. \n METHODOLOGY/PRINCIPAL FINDINGS We identified miR-22 as a potentially neuroprotective miRNA based on its predicted regulation of several targets implicated in Huntington's disease (histone deacetylase 4 (HDAC4), REST corepresor 1 (Rcor1) and regulator of G-protein signaling 2 (Rgs2)) and its diminished expression in Huntington's and Alzheimer's disease brains. We then tested the hypothesis that increasing cellular levels of miRNA-22 would achieve neuroprotection in in vitro models of neurodegeneration. As predicted, overexpression of miR-22 inhibited neurodegeneration in primary striatal and cortical cultures exposed to a mutated human huntingtin fragment (Htt171-82Q). Overexpression of miR-22 also decreased neurodegeneration in primary neuronal cultures exposed to 3-nitropropionic acid (3-NP), a mitochondrial complex II/III inhibitor. In addition, miR-22 improved neuronal viability in an in vitro model of brain aging. The mechanisms underlying the effects of miR-22 included a reduction in caspase activation, consistent with miR-22's targeting the pro-apoptotic activities of mitogen-activated protein kinase 14/p38 (MAPK14/p38) and tumor protein p53-inducible nuclear protein 1 (Tp53inp1). Moreover, HD-specific effects comprised not only targeting HDAC4, Rcor1 and Rgs2 mRNAs, but also decreasing focal accumulation of mutant Htt-positive foci, which occurred via an unknown mechanism. \n CONCLUSIONS These data show that miR-22 has multipartite anti-neurodegenerative activities including the inhibition of apoptosis and the targeting of mRNAs implicated in the etiology of HD. These results motivate additional studies to evaluate the feasibility and therapeutic efficacy of manipulating miR-22 in vivo.", "title": "MicroRNA-22 (miR-22) Overexpression Is Neuroprotective via General Anti-Apoptotic Effects and May also Target Specific Huntington’s Disease-Related Mechanisms" }, { "docid": "32598644", "text": "In this study, we present data showing that two members of the GRAS family of genes from rice, CIGR1 and CIGR2(chitin-inducible gibberellin-responsive), inducible by the potent elicitor N-acetylchitooligosaccharide (GN), are rapidly induced by exogenous gibberellins. The pattern of mRNA accumulation was dependent on the dose and biological activity of the gibberellins, suggesting that the induction of the genes by gibberellin is mediated by a biological receptor capable of specific recognition and signal transduction upon perception of the phytoactive compounds. Further pharmacological analysis revealed that the CIGR1 and CIGR2 mRNA accumulation by treatment with gibberellin is dependent upon protein phosphorylation/dephosphorylation events. In rice calli derived from slender rice 1, a constitutive gibberellin-responsive mutant, or d1, a mutant deficient in the α-subunit of the heterotrimeric G-protein, CIGR1 and CIGR2 were induced by a GN elicitor, yet not by gibberellin. Neither gibberellin nor GN showed related activities in defense or development, respectively. These results strongly suggested that the signal transduction cascade from gibberellin is independent of that from GN, and further implied that CIGR1 and CIGR2 have dual, distinct roles in defense and development.", "title": "Two Rice GRAS Family Genes Responsive to N-Acetylchitooligosaccharide Elicitor are Induced by Phytoactive Gibberellins: Evidence for Cross-Talk Between Elicitor and Gibberellin Signaling in Rice Cells" } ]
1028
Reduced responsiveness to interleukin-2 in regulatory T cells is associated with autoimmune diseases such as Type 1 Diabetes.
[ { "docid": "13923140", "text": "Autoimmune diseases are thought to result from imbalances in normal immune physiology and regulation. Here, we show that autoimmune disease susceptibility and resistance alleles on mouse chromosome 3 (Idd3) correlate with differential expression of the key immunoregulatory cytokine interleukin-2 (IL-2). In order to test directly that an approximately twofold reduction in IL-2 underpins the Idd3-linked destabilization of immune homeostasis, we show that engineered haplodeficiency of Il2 gene expression not only reduces T cell IL-2 production by twofold but also mimics the autoimmune dysregulatory effects of the naturally occurring susceptibility alleles of Il2. Reduced IL-2 production achieved by either genetic mechanism correlates with reduced function of CD4+ CD25+ regulatory T cells, which are critical for maintaining immune homeostasis.", "title": "Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity" }, { "docid": "11899391", "text": "Numerous reports have demonstrated that CD4(+)CD25(+) regulatory T cells (Tregs) from individuals with a range of human autoimmune diseases, including type 1 diabetes, are deficient in their ability to control autologous proinflammatory responses when compared with nondiseased, control individuals. Treg dysfunction could be a primary, causal event or may result from perturbations in the immune system during disease development. Polymorphisms in genes associated with Treg function, such as IL2RA, confer a higher risk of autoimmune disease. Although this suggests a primary role for defective Tregs in autoimmunity, a link between IL2RA gene polymorphisms and Treg function has not been examined. We addressed this by examining the impact of an IL2RA haplotype associated with type 1 diabetes on Treg fitness and suppressive function. Studies were conducted using healthy human subjects to avoid any confounding effects of disease. We demonstrated that the presence of an autoimmune disease-associated IL2RA haplotype correlates with diminished IL-2 responsiveness in Ag-experienced CD4(+) T cells, as measured by phosphorylation of STAT5a, and is associated with lower levels of FOXP3 expression by Tregs and a reduction in their ability to suppress proliferation of autologous effector T cells. These data offer a rationale that contributes to the molecular and cellular mechanisms through which polymorphisms in the IL-2RA gene affect immune regulation, and consequently upon susceptibility to autoimmune and inflammatory diseases.", "title": "Type 1 diabetes-associated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function." } ]
[ { "docid": "34025053", "text": "BACKGROUND Type 1 diabetes results from T-cell-mediated destruction of β cells. Findings from preclinical studies and pilot clinical trials suggest that antithymocyte globulin (ATG) might be effective for reducing this autoimmune response. We assessed the safety and efficacy of rabbit ATG in preserving islet function in participants with recent-onset type 1 diabetes, and report here our 12-month results. \n METHODS For this phase 2, randomised, placebo-controlled, clinical trial, we enrolled patients with recent-onset type 1 diabetes, aged 12-35 years, and with a peak C-peptide of 0.4 nM or greater on mixed meal tolerance test from 11 sites in the USA. We used a computer generated randomisation sequence to randomly assign patients (2:1, with permuted-blocks of size three or six and stratified by study site) to receive either 6.5 mg/kg ATG or placebo over a course of four days. All participants were masked and initially managed by an unmasked drug management team, which managed all aspects of the study until month 3. Thereafter, to maintain masking for diabetes management throughout the remainder of the study, participants received diabetes management from an independent, masked study physician and nurse educator. The primary endpoint was the baseline-adjusted change in 2-h area under the curve C-peptide response to mixed meal tolerance test from baseline to 12 months. Analyses were by intention to treat. This is a planned interim analysis of an on-going trial that will run for 24 months of follow-up. This study is registered with ClinicalTrials.gov, number NCT00515099. \n FINDINGS Between Sept 10, 2007, and June 1, 2011, we screened 154 individuals, randomly allocating 38 to ATG and 20 to placebo. We recorded no between-group difference in the primary endpoint: participants in the ATG group had a mean change in C-peptide area under the curve of -0.195 pmol/mL (95% CI -0.292 to -0.098) and those in the placebo group had a mean change of -0.239 pmol/mL (-0.361 to -0.118) in the placebo group (p=0.591). All except one participant in the ATG group had both cytokine release syndrome and serum sickness, which was associated with a transient rise in interleukin-6 and acute-phase proteins. Acute T cell depletion occurred in the ATG group, with slow reconstitution over 12 months. However, effector memory T cells were not depleted, and the ratio of regulatory to effector memory T cells declined in the first 6 months and stabilised thereafter. ATG-treated patients had 159 grade 3-4 adverse events, many associated with T-cell depletion, compared with 13 in the placebo group, but we detected no between-group difference in incidence of infectious diseases. \n INTERPRETATION Our findings suggest that a brief course of ATG does not result in preservation of β-cell function 12 months later in patients with new-onset type 1 diabetes. Generalised T-cell depletion in the absence of specific depletion of effector memory T cells and preservation of regulatory T cells seems to be an ineffective treatment for type 1 diabetes.", "title": "Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes: 12-month results of a randomised, placebo-controlled, phase 2 trial." }, { "docid": "36642096", "text": "BACKGROUND Type 1 diabetes mellitus is a chronic autoimmune disease caused by the pathogenic action of T lymphocytes on insulin-producing beta cells. Previous clinical studies have shown that continuous immune suppression temporarily slows the loss of insulin production. Preclinical studies suggested that a monoclonal antibody against CD3 could reverse hyperglycemia at presentation and induce tolerance to recurrent disease. \n METHODS We studied the effects of a nonactivating humanized monoclonal antibody against CD3--hOKT3gamma1(Ala-Ala)--on the loss of insulin production in patients with type 1 diabetes mellitus. Within 6 weeks after diagnosis, 24 patients were randomly assigned to receive either a single 14-day course of treatment with the monoclonal antibody or no antibody and were studied during the first year of disease. \n RESULTS Treatment with the monoclonal antibody maintained or improved insulin production after one year in 9 of the 12 patients in the treatment group, whereas only 2 of the 12 controls had a sustained response (P=0.01). The treatment effect on insulin responses lasted for at least 12 months after diagnosis. Glycosylated hemoglobin levels and insulin doses were also reduced in the monoclonal-antibody group. No severe side effects occurred, and the most common side effects were fever, rash, and anemia. Clinical responses were associated with a change in the ratio of CD4+ T cells to CD8+ T cells 30 and 90 days after treatment. \n CONCLUSIONS Treatment with hOKT3gamma1(Ala-Ala) mitigates the deterioration in insulin production and improves metabolic control during the first year of type 1 diabetes mellitus in the majority of patients. The mechanism of action of the anti-CD3 monoclonal antibody may involve direct effects on pathogenic T cells, the induction of populations of regulatory cells, or both.", "title": "Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus." }, { "docid": "23342845", "text": "In type 1 diabetes (T1D), there is an intense inflammatory response that destroys the β cells in the pancreatic islets of Langerhans, the site where insulin is produced and released. A therapy for T1D that targets the specific autoimmune response in this disease while leaving the remainder of the immune system intact, has long been sought. Proinsulin is a major target of the adaptive immune response in T1D. We hypothesized that an engineered DNA plasmid encoding proinsulin (BHT-3021) would preserve β cell function in T1D patients through reduction of insulin-specific CD8⁺ T cells. We studied 80 subjects over 18 years of age who were diagnosed with T1D within the past 5 years. Subjects were randomized 2:1 to receive intramuscular injections of BHT-3021 or BHT-placebo, weekly for 12 weeks, and then monitored for safety and immune responses in a blinded fashion. Four dose levels of BHT-3021 were evaluated: 0.3, 1.0, 3.0, and 6.0 mg. C-peptide was used both as an exploratory efficacy measure and as a safety measure. Islet-specific CD8⁺ T cell frequencies were assessed with multimers of monomeric human leukocyte antigen class I molecules loaded with peptides from pancreatic and unrelated antigens. No serious adverse events related to BHT-3021 were observed. C-peptide levels improved relative to placebo at all doses, at 1 mg at the 15-week time point (+19.5% BHT-3021 versus -8.8% BHT-placebo, P < 0.026). Proinsulin-reactive CD8⁺ T cells, but not T cells against unrelated islet or foreign molecules, declined in the BHT-3021 arm (P < 0.006). No significant changes were noted in interferon-γ, interleukin-4 (IL-4), or IL-10 production in CD4 T cells. Thus, we demonstrate that a plasmid encoding proinsulin reduces the frequency of CD8⁺ T cells reactive to proinsulin while preserving C-peptide over the course of dosing.", "title": "Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8⁺ T cells in type 1 diabetes." }, { "docid": "2388819", "text": "The low number of CD4+ CD25+ regulatory T cells (Tregs), their anergic phenotype, and diverse antigen specificity present major challenges to harnessing this potent tolerogenic population to treat autoimmunity and transplant rejection. In this study, we describe a robust method to expand antigen-specific Tregs from autoimmune-prone nonobese diabetic mice. Purified CD4+ CD25+ Tregs were expanded up to 200-fold in less than 2 wk in vitro using a combination of anti-CD3, anti-CD28, and interleukin 2. The expanded Tregs express a classical cell surface phenotype and function both in vitro and in vivo to suppress effector T cell functions. Most significantly, small numbers of antigen-specific Tregs can reverse diabetes after disease onset, suggesting a novel approach to cellular immunotherapy for autoimmunity.", "title": "In Vitro–expanded Antigen-specific Regulatory T Cells Suppress Autoimmune Diabetes" }, { "docid": "7115651", "text": "IL-21 is a pleiotropic type 1 cytokine that shares the common cytokine receptor γ-chain, γ(c), with IL-2, IL-4, IL-7, IL-9, and IL-15. IL-21 is most homologous to IL-2. These cytokines are encoded by adjacent genes, but they are functionally distinct. Whereas IL-2 promotes development of regulatory T cells and confers protection from autoimmune disease, IL-21 promotes differentiation of Th17 cells and is implicated in several autoimmune diseases, including type 1 diabetes and systemic lupus erythematosus. However, the roles of IL-21 and IL-2 in CNS autoimmune diseases such as multiple sclerosis and uveitis have been controversial. Here, we generated Il21-mCherry/Il2-emGFP dual-reporter transgenic mice and showed that development of experimental autoimmune uveitis (EAU) correlated with the presence of T cells coexpressing IL-21 and IL-2 into the retina. Furthermore, Il21r(-/-) mice were more resistant to EAU development than wild-type mice, and adoptive transfer of Il21r(-/-) T cells induced much less severe EAU, underscoring the need for IL-21 in the development of this disease and suggesting that blocking IL-21/γ(c)-signaling pathways may provide a means for controlling CNS auto-inflammatory diseases.", "title": "Key role for IL-21 in experimental autoimmune uveitis." }, { "docid": "22852120", "text": "Type 2 immune responses are defined by the cytokines interleukin-4 (IL-4), IL-5, IL-9 and IL-13, which can either be host protective or have pathogenic activity. Type 2 immunity promotes antihelminth immunity, suppresses type 1-driven autoimmune disease, neutralizes toxins, maintains metabolic homeostasis, and regulates wound repair and tissue regeneration pathways following infection or injury. Nevertheless, when type 2 responses are dysregulated, they can become important drivers of disease. Type 2 immunity induces a complex inflammatory response characterized by eosinophils, mast cells, basophils, type 2 innate lymphoid cells, IL-4-and/or IL-13-conditioned macrophages and T helper 2 (TH2) cells, which are crucial to the pathogenesis of many allergic and fibrotic disorders. As chronic type 2 immune responses promote disease, the mechanisms that regulate their maintenance are thought to function as crucial disease modifiers. This Review discusses the many endogenous negative regulatory mechanisms that antagonize type 2 immunity and highlights how therapies that target some of these pathways are being developed to treat type 2-mediated disease.", "title": "Type 2 cytokines: mechanisms and therapeutic strategies" }, { "docid": "24069089", "text": "Modified anti-CD3 mAbs are emerging as a possible means of inducing immunologic tolerance in settings including transplantation and autoimmunity such as in type 1 diabetes. In a trial of a modified anti-CD3 mAb [hOKT3gamma1(Ala-Ala)] in patients with type 1 diabetes, we identified clinical responders by an increase in the number of peripheral blood CD8+ cells following treatment with the mAb. Here we show that the anti-CD3 mAb caused activation of CD8+ T cells that was similar in vitro and in vivo and induced regulatory CD8+CD25+ T cells. These cells inhibited the responses of CD4+ cells to the mAb itself and to antigen. The regulatory CD8+CD25+ cells were CTLA4 and Foxp3 and required contact for inhibition. Foxp3 was also induced on CD8+ T cells in patients during mAb treatment, which suggests a potential mechanism of the anti-CD3 mAb immune modulatory effects involving induction of a subset of regulatory CD8+ T cells.", "title": "TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs." }, { "docid": "1855679", "text": "It was recently demonstrated that interleukin (IL)-23–driven IL-17–producing (ThIL-17) T cells mediate inflammatory pathology in certain autoimmune diseases. We show that the induction of antigen-specific ThIL-17 cells, but not T helper (Th)1 or Th2 cells, by immunization with antigens and adjuvants is abrogated in IL-1 receptor type I–deficient (IL-1RI−/−) mice. Furthermore, the incidence of experimental autoimmune encephalomyelitis (EAE) was significantly lower in IL-1RI−/− compared with wild-type mice, and this correlated with a failure to induce autoantigen-specific ThIL-17 cells, whereas induction of Th1 and Th2 responses was not substantially different. However, EAE was induced in IL-1RI−/− mice by adoptive transfer of autoantigen-specific cells from wild-type mice with EAE. IL-23 alone did not induce IL-17 production by T cells from IL-1RI−/− mice, and IL-23–induced IL-17 production was substantially enhanced by IL-1α or IL-1β, even in the absence of T cell receptor stimulation. We demonstrate essential roles for phosphatidylinositol 3-kinase, nuclear factor κB, and novel protein kinase C isoforms in IL-1– and IL-23–mediated IL-17 production. Tumor necrosis factor α also synergized with IL-23 to enhance IL-17 production, and this was IL-1 dependent. Our findings demonstrate that IL-1 functions upstream of IL-17 to promote pathogenic ThIL-17 cells in EAE.", "title": "A crucial role for interleukin (IL)-1 in the induction of IL-17–producing T cells that mediate autoimmune encephalomyelitis" }, { "docid": "25738896", "text": "The thymic transcription factor autoimmune regulator (Aire) prevents autoimmunity in part by promoting expression of tissue-specific self-antigens, which include many cancer antigens. For example, AIRE-deficient patients are predisposed to vitiligo, an autoimmune disease of melanocytes that is often triggered by efficacious immunotherapies against melanoma. Therefore, we hypothesized that Aire deficiency in mice may elevate immune responses to cancer and provide insights into how such responses might be triggered. In this study, we show that Aire deficiency decreases thymic expression of TRP-1 (TYRP1), which is a self-antigen in melanocytes and a cancer antigen in melanomas. Aire deficiency resulted in defective negative selection of TRP-1-specific T cells without affecting thymic numbers of regulatory T cells. Aire-deficient mice displayed elevated T-cell immune responses that were associated with suppression of melanoma outgrowth. Furthermore, transplantation of Aire-deficient thymic stroma was sufficient to confer more effective immune rejection of melanoma in an otherwise Aire wild-type host. Together, our work showed how Aire deficiency can enhance immune responses against melanoma and how manipulating TRP-1-specific T-cell negative selection may offer a logical strategy to enhance immune rejection of melanoma.", "title": "Aire deficiency promotes TRP-1-specific immune rejection of melanoma." }, { "docid": "5476778", "text": "One hypothesis that couples infection with autoimmune disease is molecular mimicry. Molecular mimicry is characterized by an immune response to an environmental agent that cross-reacts with a host antigen, resulting in disease. This hypothesis has been implicated in the pathogenesis of diabetes, lupus and multiple sclerosis (MS). There is limited direct evidence linking causative agents with pathogenic immune reactions in these diseases. Our study establishes a clear link between viral infection, autoimmunity and neurological disease in humans. As a model for molecular mimicry, we studied patients with human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a disease that can be indistinguishable from MS (refs. 5,6,7). HAM/TSP patients develop antibodies to neurons. We hypothesized these antibodies would identify a central nervous system (CNS) autoantigen. Immunoglobulin G isolated from HAM/TSP patients identified heterogeneous nuclear ribonuclear protein-A1 (hnRNP-A1) as the autoantigen. Antibodies to hnRNP-A1 cross-reacted with HTLV-1-tax, the immune response to which is associated with HAM/TSP (refs. 5,9). Immunoglobulin G specifically stained human Betz cells, whose axons are preferentially damaged. Infusion of autoantibodies in brain sections inhibited neuronal firing, indicative of their pathogenic nature. These data demonstrate the importance of molecular mimicry between an infecting agent and hnRNP-A1 in autoimmune disease of the CNS.", "title": "Autoimmunity due to molecular mimicry as a cause of neurological disease" }, { "docid": "5567005", "text": "Recent genetic mapping and gene-phenotype studies have revealed the genetic architecture of type 1 diabetes. At least ten genes so far can be singled out as strong causal candidates. The known functions of these genes indicate the primary etiological pathways of this disease, including HLA class II and I molecules binding to preproinsulin peptides and T cell receptors, T and B cell activation, innate pathogen-viral responses, chemokine and cytokine signaling, and T regulatory and antigen-presenting cell functions. This review considers research in the field of type 1 diabetes toward identifying disease mechanisms using genetic approaches. The expression and functions of these pathways, and, therefore, disease susceptibility, will be influenced by epigenetic and environmental factors. Certain inherited immune phenotypes will be early precursors of type 1 diabetes and could be useful in future clinical trials.", "title": "Etiology of type 1 diabetes." }, { "docid": "24101431", "text": "Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that results from cell-mediated autoimmune destruction of insulin-producing cells. In T1DM animal models, it has been shown that the systemic administration of multipotent mesenchymal stromal cells, also referred as to mesenchymal stem cells (MSCs), results in the regeneration of pancreatic islets. Mechanisms underlying this effect are still poorly understood. Our aims were to assess whether donor MSCs (a) differentiate into pancreatic β-cells and (b) modify systemic and pancreatic pathophysiologic markers of T1DM. After the intravenous administration of 5 × 10(5) syngeneic MSCs, we observed that mice with T1DM reverted their hyperglycemia and presented no donor-derived insulin-producing cells. In contrast, 7 and 65 days post-transplantation, MSCs were engrafted into secondary lymphoid organs. This correlated with a systemic and local reduction in the abundance of autoaggressive T cells together with an increase in regulatory T cells. Additionally, in the pancreas of mice with T1DM treated with MSCs, we observed a cytokine profile shift from proinflammatory to antinflammatory. MSC transplantation did not reduce pancreatic cell apoptosis but recovered local expression and increased the circulating levels of epidermal growth factor, a pancreatic trophic factor. Therefore, the antidiabetic effect of MSCs intravenously administered is unrelated to their transdifferentiation potential but to their capability to restore the balance between Th1 and Th2 immunological responses along with the modification of the pancreatic microenvironment. Our data should be taken into account when designing clinical trials aimed to evaluate MSC transplantation in patients with T1DM since the presence of endogenous precursors seems to be critical in order to restore glycemic control.", "title": "The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment." }, { "docid": "8325952", "text": "OBJECTIVE Islet-reactive CD8(+) T-cells play a key role in the pathogenesis of type 1 diabetes in the NOD mouse. The predominant T-cell specificities change over time, but whether similar shifts also occur after clinical diagnosis and insulin treatment in type 1 diabetic patients is unknown. RESEARCH DESIGN AND METHODS We took advantage of a recently validated islet-specific CD8(+) T-cell gamma-interferon enzyme-linked immunospot (ISL8Spot) assay to follow responses against preproinsulin (PPI), GAD, insulinoma-associated protein 2 (IA-2), and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) epitopes in 15 HLA-A2(+) adult type 1 diabetic patients close to diagnosis and at a second time point 7-16 months later. \n RESULTS CD8(+) T-cell reactivities were less frequent at follow-up, as 28.6% of responses tested positive at type 1 diabetes diagnosis vs. 13.2% after a median of 11 months (P = 0.003). While GAD and IA-2 autoantibody (aAb) titers were unchanged in 75% of cases, the fraction of patients responding to PPI and/or GAD epitopes by ISL8Spot decreased from 60-67 to 20% (P < 0.02). The previously subdominant IA-2(206-214) and IGRP(265-273) peptides were newly targeted, thus becoming the immunodominant epitopes. \n CONCLUSIONS Shifts both in frequency and in immunodominance of CD8(+) T-cell responses occur more rapidly than do changes in aAb titers. These different kinetics may suggest complementary clinical applications for T-cell and aAb measurements.", "title": "The frequency and immunodominance of islet-specific CD8+ T-cell responses change after type 1 diabetes diagnosis and treatment." }, { "docid": "6270720", "text": "RATIONALE The myeloid differentiation factor (MyD)88/interleukin (IL)-1 axis activates self-antigen-presenting cells and promotes autoreactive CD4(+) T-cell expansion in experimental autoimmune myocarditis, a mouse model of inflammatory heart disease. \n OBJECTIVE The aim of this study was to determine the role of MyD88 and IL-1 in the progression of acute myocarditis to an end-stage heart failure. \n METHODS AND RESULTS Using alpha-myosin heavy chain peptide (MyHC-alpha)-loaded, activated dendritic cells, we induced myocarditis in wild-type and MyD88(-/-) mice with similar distributions of heart-infiltrating cell subsets and comparable CD4(+) T-cell responses. Injection of complete Freund's adjuvant (CFA) or MyHC-alpha/CFA into diseased mice promoted cardiac fibrosis, induced ventricular dilation, and impaired heart function in wild-type but not in MyD88(-/-) mice. Experiments with chimeric mice confirmed the bone marrow origin of the fibroblasts replacing inflammatory infiltrates and showed that MyD88 and IL-1 receptor type I signaling on bone marrow-derived cells was critical for development of cardiac fibrosis during progression to heart failure. \n CONCLUSIONS Our findings indicate a critical role of MyD88/IL-1 signaling in the bone marrow compartment in postinflammatory cardiac fibrosis and heart failure and point to novel therapeutic strategies against inflammatory cardiomyopathy.", "title": "Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy." }, { "docid": "2042250", "text": "Interleukin-33 (IL-33), a newly described member of the IL-1 family, is expressed by many cell types following pro-inflammatory stimulation and is thought to be released on cell lysis. The IL-33 receptor, consisting of ST2 and IL-1 receptor accessory protein, is also widely expressed, particularly by T helper 2 (TH2) cells and mast cells. IL-33 is host-protective against helminth infection and reduces atherosclerosis by promoting TH2-type immune responses. However, IL-33 can also promote the pathogenesis of asthma by expanding TH2 cells and mediate joint inflammation, atopic dermatitis and anaphylaxis by mast cell activation. Thus IL-33 could be a new target for therapeutic intervention across a range of diseases.", "title": "Disease-associated functions of IL-33: the new kid in the IL-1 family" }, { "docid": "43534665", "text": "The role of IL-10 in the pathogenesis of autoimmune diabetes mellitus was assessed in the nonobese diabetic (NOD) mouse. In these studies the effect of IL-10 was determined on three parameters of diabetes: The development of hyperglycemia, the development of insulitis, and the production of insulin by beta cells. Initial experiments investigated the effect of anticytokine antibodies on the development of disease. These results indicated that monoclonal anti-IFN-gamma antibody greatly reduced the incidence of hyperglycemia in female NOD mice, while anti-IL-4, IL-5, and IL-10 were ineffective. In subsequent studies, daily subcutaneous administration of IL-10, a known potent inhibitor of IFN-gamma production by TH1 T cells, to 9 and 10-week-old NODs was shown to delay the onset of disease and significantly reduce the incidence of diabetes. Histopathology performed on pancreatic tissue demonstrated that treatment with IL-10 reduced the severity of insulitis, prevented cellular infiltration of islet cells, and promoted normal insulin production by beta cells. Taken together these results indicate IL-10 suppresses the induction and progression of autoimmune pathogenesis associated with diabetes mellitus and suggest a potential therapeutic role for this cytokine in this autoimmune disease.", "title": "Recombinant human IL-10 prevents the onset of diabetes in the nonobese diabetic mouse." }, { "docid": "15578265", "text": "Several lines of evidence suggest a role for the gut microbiome in type 1 diabetes. Treating diabetes-prone rodents with probiotics or antibiotics prevents the development of the disorder. Diabetes-prone rodents also have a distinctly different gut microbiome compared with healthy rodents. Recent studies in children with a high genetic risk for type 1 diabetes demonstrate significant differences in the gut microbiome between children who develop autoimmunity for the disease and those who remain healthy. However, the differences in microbiome composition between autoimmune and healthy children are not consistent across all studies because of the strong environmental influences on microbiome composition, particularly diet and geography. Controlling confounding factors of microbiome composition uncovers bacterial associations with disease. For example, in a human cohort from a single Finnish city where geography is confined, a strong association between one dominant bacterial species, Bacteroides dorei, and type 1 diabetes was discovered (Davis-Richardson et al. Front Microbiol 2014;5:678). Beyond this, recent DNA methylation analyses suggest that a thorough epigenetic analysis of the gut microbiome may be warranted. These studies suggest a testable model whereby a diet high in fat and gluten and low in resistant starch may be the primary driver of gut dysbiosis. This dysbiosis may cause a lack of butyrate production by gut bacteria, which, in turn, leads to the development of a permeable gut followed by autoimmunity. The bacterial community responsible for these changes in butyrate production may vary around the world, but bacteria of the genus Bacteroides are thought to play a key role.", "title": "A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes" }, { "docid": "18546584", "text": "CD4(+) helper T (Th) cells play a crucial role in the delicate balance between host defense and autoimmune disease. Two important populations of helper T cells are the proinflammatory, interleukin-17 (IL-17)-producing (Th17) cells and the anti-inflammatory forkhead box P3-positive (FoxP3(+)) T regulatory (Treg) cells. Here we show that all-trans retinoic acid (ATRA) and other agonists of the retinoic acid receptor alpha (RARalpha) inhibit the formation of Th17 cells and promote FoxP3 expression. Conversely, inhibition of retinoic acid signaling constrains transforming growth factor beta (TGF-beta1) induction of FoxP3. The effect of ATRA is mediated independently of IL-2, signal transducer and activator of transcription 5 (Stat5) and Stat3, representing a novel mechanism for the induction of FoxP3 in CD4 T cells. As previous studies have shown that vitamin A derivatives are protective in animal models of autoimmune disease, the current data suggest a previously unrecognized role for RARalpha in the regulation of CD4(+) T-cell differentiation and provide a mechanism for the anti-inflammatory effects of retinoic acid.", "title": "Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway." } ]
1030
Reducing H3k4me3 methylation induces mouse epiblast stem cells to naive pluripotency efficiently.
[ { "docid": "6441369", "text": "The interconversion between naive and primed pluripotent states is accompanied by drastic epigenetic rearrangements. However, it is unclear whether intrinsic epigenetic events can drive reprogramming to naive pluripotency or if distinct chromatin states are instead simply a reflection of discrete pluripotent states. Here, we show that blocking histone H3K4 methyltransferase MLL1 activity with the small-molecule inhibitor MM-401 reprograms mouse epiblast stem cells (EpiSCs) to naive pluripotency. This reversion is highly efficient and synchronized, with more than 50% of treated EpiSCs exhibiting features of naive embryonic stem cells (ESCs) within 3 days. Reverted ESCs reactivate the silenced X chromosome and contribute to embryos following blastocyst injection, generating germline-competent chimeras. Importantly, blocking MLL1 leads to global redistribution of H3K4me1 at enhancers and represses lineage determinant factors and EpiSC markers, which indirectly regulate ESC transcription circuitry. These findings show that discrete perturbation of H3K4 methylation is sufficient to drive reprogramming to naive pluripotency.", "title": "MLL1 Inhibition Reprograms Epiblast Stem Cells to Naive Pluripotency." } ]
[ { "docid": "4462419", "text": "Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.", "title": "Derivation of novel human ground state naive pluripotent stem cells" }, { "docid": "23418635", "text": "Pluripotent stem cells exist in naive and primed states, epitomized by mouse embryonic stem cells (ESCs) and the developmentally more advanced epiblast stem cells (EpiSCs; ref. ). In the naive state of ESCs, the genome has an unusual open conformation and possesses a minimum of repressive epigenetic marks. In contrast, EpiSCs have activated the epigenetic machinery that supports differentiation towards the embryonic cell types. The transition from naive to primed pluripotency therefore represents a pivotal event in cellular differentiation. But the signals that control this fundamental differentiation step remain unclear. We show here that paracrine and autocrine Wnt signals are essential self-renewal factors for ESCs, and are required to inhibit their differentiation into EpiSCs. Moreover, we find that Wnt proteins in combination with the cytokine LIF are sufficient to support ESC self-renewal in the absence of any undefined factors, and support the derivation of new ESC lines, including ones from non-permissive mouse strains. Our results not only demonstrate that Wnt signals regulate the naive-to-primed pluripotency transition, but also identify Wnt as an essential and limiting ESC self-renewal factor.", "title": "Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells" }, { "docid": "14923462", "text": "Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state.", "title": "Synergistic Mechanisms of DNA Demethylation during Transition to Ground-State Pluripotency" }, { "docid": "3882374", "text": "The RNA-binding proteins LIN28A and LIN28B play critical roles in embryonic development, tumorigenesis, and pluripotency, but their exact functions are poorly understood. Here, we show that, like LIN28A, LIN28B can function effectively with NANOG, OCT4, and SOX2 in reprogramming to pluripotency and that reactivation of both endogenous LIN28A and LIN28B loci are required for maximal reprogramming efficiency. In human fibroblasts, LIN28B is activated early during reprogramming, while LIN28A is activated later during the transition to bona fide induced pluripotent stem cells (iPSCs). In murine cells, LIN28A and LIN28B facilitate conversion from naive to primed pluripotency. Proteomic and metabolomic analysis highlighted roles for LIN28 in maintaining the low mitochondrial function associated with primed pluripotency and in regulating one-carbon metabolism, nucleotide metabolism, and histone methylation. LIN28 binds to mRNAs of proteins important for oxidative phosphorylation and modulates protein abundance. Thus, LIN28A and LIN28B play cooperative roles in regulating reprogramming, naive/primed pluripotency, and stem cell metabolism.", "title": "LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency." }, { "docid": "24530633", "text": "Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass (ICM) and the epiblast, and have been suggested to be a homogeneous population with characteristics intermediate between them. These cells express Oct3/4 and Rex1 genes, which have been used as markers to indicate the undifferentiated state of ES cells. Whereas Oct3/4 is expressed in totipotent and pluripotent cells in the mouse life cycle, Rex1 expression is restricted to the ICM, and is downregulated in pluripotent cell populations in the later stages, i.e. the epiblast and primitive ectoderm (PrE). To address whether ES cells comprise a homogeneous population equivalent to a certain developmental stage of pluripotent cells or a heterogeneous population composed of cells corresponding to various stages of differentiation, we established knock-in ES cell lines in which genes for fluorescent proteins were inserted into the Rex1 and Oct3/4 gene loci to visualize the expression of these genes. We found that undifferentiated ES cells included at least two different populations, Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells. The Rex1(-)/Oct3/4(+) and Rex1(+)/Oct3/4(+) populations could convert into each other in the presence of LIF. In accordance with our assumption that Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells have characteristics similar to those of ICM and early-PrE cells, Rex1(+)/Oct3/4(+) cells predominantly differentiated into primitive ectoderm and contributed to chimera formation, whereas Rex1(-)/Oct3/4(+) cells differentiated into cells of the somatic lineage more efficiently than non-fractionated ES cells in vitro and showed poor ability to contribute to chimera formation. These results confirmed that undifferentiated ES cell culture contains subpopulations corresponding to ICM, epiblast and PrE.", "title": "Identification and characterization of subpopulations in undifferentiated ES cell culture." }, { "docid": "7581911", "text": "Human and mouse embryonic stem cells (ESCs) are derived from blastocyst-stage embryos but have very different biological properties, and molecular analyses suggest that the pluripotent state of human ESCs isolated so far corresponds to that of mouse-derived epiblast stem cells (EpiSCs). Here we rewire the identity of conventional human ESCs into a more immature state that extensively shares defining features with pluripotent mouse ESCs. This was achieved by ectopic induction of Oct4, Klf4, and Klf2 factors combined with LIF and inhibitors of glycogen synthase kinase 3beta (GSK3beta) and mitogen-activated protein kinase (ERK1/2) pathway. Forskolin, a protein kinase A pathway agonist which can induce Klf4 and Klf2 expression, transiently substitutes for the requirement for ectopic transgene expression. In contrast to conventional human ESCs, these epigenetically converted cells have growth properties, an X-chromosome activation state (XaXa), a gene expression profile, and a signaling pathway dependence that are highly similar to those of mouse ESCs. Finally, the same growth conditions allow the derivation of human induced pluripotent stem (iPS) cells with similar properties as mouse iPS cells. The generation of validated \"naïve\" human ESCs will allow the molecular dissection of a previously undefined pluripotent state in humans and may open up new opportunities for patient-specific, disease-relevant research.", "title": "Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs." }, { "docid": "5633876", "text": "BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2.", "title": "BRACHYURY and CDX2 Mediate BMP-Induced Differentiation of Human and Mouse Pluripotent Stem Cells into Embryonic and Extraembryonic Lineages" }, { "docid": "4784069", "text": "Pluripotency is the remarkable capacity of a single cell to engender all the specialized cell types of an adult organism. This property can be captured indefinitely through derivation of self-renewing embryonic stem cells (ESCs), which represent an invaluable platform to investigate cell fate decisions and disease. Recent advances have revealed that manipulation of distinct signaling cues can render ESCs in a uniform \"ground state\" of pluripotency, which more closely recapitulates the pluripotent naive epiblast. Here we discuss the extrinsic and intrinsic regulatory principles that underpin the nature of pluripotency and consider the emerging spectrum of pluripotent states.", "title": "Regulatory principles of pluripotency: from the ground state up." }, { "docid": "13955536", "text": "Genome-wide DNA methylation reprogramming occurs in mouse primordial germ cells (PGCs) and preimplantation embryos, but the precise dynamics and biological outcomes are largely unknown. We have carried out whole-genome bisulfite sequencing (BS-Seq) and RNA-Seq across key stages from E6.5 epiblast to E16.5 PGCs. Global loss of methylation takes place during PGC expansion and migration with evidence for passive demethylation, but sequences that carry long-term epigenetic memory (imprints, CpG islands on the X chromosome, germline-specific genes) only become demethylated upon entry of PGCs into the gonads. The transcriptional profile of PGCs is tightly controlled despite global hypomethylation, with transient expression of the pluripotency network, suggesting that reprogramming and pluripotency are inextricably linked. Our results provide a framework for the understanding of the epigenetic ground state of pluripotency in the germline.", "title": "The Dynamics of Genome-wide DNA Methylation Reprogramming in Mouse Primordial Germ Cells" }, { "docid": "17702490", "text": "Knowledge of both the global chromatin structure and the gene expression programs of human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) should provide a robust means to assess whether the genomes of these cells have similar pluripotent states. Recent studies have suggested that ESCs and iPSCs represent different pluripotent states with substantially different gene expression profiles. We describe here a comparison of global chromatin structure and gene expression data for a panel of human ESCs and iPSCs. Genome-wide maps of nucleosomes with histone H3K4me3 and H3K27me3 modifications indicate that there is little difference between ESCs and iPSCs with respect to these marks. Gene expression profiles confirm that the transcriptional programs of ESCs and iPSCs show very few consistent differences. Although some variation in chromatin structure and gene expression was observed in these cell lines, these variations did not serve to distinguish ESCs from iPSCs.", "title": "Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells." }, { "docid": "1630949", "text": "The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-specific transcription factor Oct4 is sufficient to generate pluripotent stem cells from adult mouse NSCs. These one-factor induced pluripotent stem cells (1F iPS) are similar to embryonic stem cells in vitro and in vivo. Not only can these cells can be efficiently differentiated into NSCs, cardiomyocytes, and germ cells in vitro, but they are also capable of teratoma formation and germline transmission in vivo. Our results demonstrate that Oct4 is required and sufficient to directly reprogram NSCs to pluripotency.", "title": "Oct4-Induced Pluripotency in Adult Neural Stem Cells" }, { "docid": "3174305", "text": "DNA cytosine methylation is a central epigenetic modification that has essential roles in cellular processes including genome regulation, development and disease. Here we present the first genome-wide, single-base-resolution maps of methylated cytosines in a mammalian genome, from both human embryonic stem cells and fetal fibroblasts, along with comparative analysis of messenger RNA and small RNA components of the transcriptome, several histone modifications, and sites of DNA–protein interaction for several key regulatory factors. Widespread differences were identified in the composition and patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic stem cells was in a non-CG context, suggesting that embryonic stem cells may use different methylation mechanisms to affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells, and was restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes involved in pluripotency and differentiation, and widespread reduced methylation levels in fibroblasts associated with lower transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic modification in human disease and development.", "title": "Human DNA methylomes at base resolution show widespread epigenomic differences" }, { "docid": "8150638", "text": "We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming.", "title": "Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes." }, { "docid": "23959496", "text": "Polycomb repressive complex two (PRC2) has been implicated in embryonic stem (ES) cell pluripotency; however, the mechanistic roles of this complex are unclear. It was assumed that ES cells contain PRC2 with the same subunit composition as that identified in HeLa cells and Drosophila embryos. Here, we report that PRC2 in mouse ES cells contains at least three additional subunits: JARID2, MTF2, and a novel protein denoted esPRC2p48. JARID2, MTF2, and esPRC2p48 are highly expressed in mouse ES cells compared to differentiated cells. Importantly, knockdowns of JARID2, MTF2, or esPRC2p48 alter the level of PRC2-mediated H3K27 methylation and result in the expression of differentiation-associated genes in ES cells. Interestingly, expression of JARID2, MTF2, and esPRC2p48 together, but not individually, enhances Oct4/Sox2/Klf4-mediated reprogramming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells, whereas knockdown or knockout of JARID2, MTF2, or esPRC2p48 significantly inhibits reprogramming. JARID2, MTF2, and esPRC2p48 modulate H3K27 methylation and facilitate repression of lineage-associated gene expression when transduced into MEFs, and synergistically stimulate the histone methyltransferase activity of PRC2 in vitro. Therefore, these studies identify JARID2, MTF2, and esPRC2p48 as important regulatory subunits of PRC2 in ES cells and reveal critical functions of these subunits in modulating PRC2's activity and gene expression both in ES cells and during somatic cell reprogramming.", "title": "PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming." }, { "docid": "6826100", "text": "Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation. Reliably high-quality iPSCs will be needed for future therapeutic applications. Here, we show that one major determinant of iPSC quality is the combination of reprogramming factors used. Based on tetraploid complementation, we found that ectopic expression of Sall4, Nanog, Esrrb, and Lin28 (SNEL) in mouse embryonic fibroblasts (MEFs) generated high-quality iPSCs more efficiently than other combinations of factors including OSKM. Although differentially methylated regions, transcript number of master regulators, establishment of specific superenhancers, and global aneuploidy were comparable between high- and low-quality lines, aberrant gene expression, trisomy of chromosome 8, and abnormal H2A.X deposition were distinguishing features that could potentially also be applicable to human.", "title": "The developmental potential of iPSCs is greatly influenced by reprogramming factor selection." }, { "docid": "8548635", "text": "Methylation of histones has been regarded as a stable modification defining the epigenetic program of the cell, which regulates chromatin structure and transcription. However, the recent discovery of histone demethylases has challenged the stable nature of histone methylation. Here we demonstrate that the JARID1 proteins RBP2, PLU1, and SMCX are histone demethylases specific for di- and trimethylated histone 3 lysine 4 (H3K4). Consistent with a role for the JARID1 Drosophila homolog Lid in regulating expression of homeotic genes during development, we show that RBP2 is displaced from Hox genes during embryonic stem (ES) cell differentiation correlating with an increase of their H3K4me3 levels and expression. Furthermore, we show that mutation or RNAi depletion of the C. elegans JARID1 homolog rbr-2 leads to increased levels of H3K4me3 during larval development and defects in vulva formation. Taken together, these results suggest that H3K4me3/me2 demethylation regulated by the JARID1 family plays an important role during development.", "title": "RBP2 Belongs to a Family of Demethylases, Specific for Tri-and Dimethylated Lysine 4 on Histone 3" }, { "docid": "6455142", "text": "Although regulation of histone methylation is believed to contribute to embryonic stem cell (ESC) self-renewal, the mechanisms remain obscure. We show here that the histone H3 trimethyl lysine 4 (H3K4me3) demethylase, KDM5B, is a downstream Nanog target and critical for ESC self-renewal. Although KDM5B is believed to function as a promoter-bound repressor, we find that it paradoxically functions as an activator of a gene network associated with self-renewal. ChIP-Seq reveals that KDM5B is predominantly targeted to intragenic regions and that it is recruited to H3K36me3 via an interaction with the chromodomain protein MRG15. Depletion of KDM5B or MRG15 increases intragenic H3K4me3, increases cryptic intragenic transcription, and inhibits transcriptional elongation of KDM5B target genes. We propose that KDM5B activates self-renewal-associated gene expression by repressing cryptic initiation and maintaining an H3K4me3 gradient important for productive transcriptional elongation.", "title": "KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription." }, { "docid": "13910150", "text": "Blimp1 (Prdm1), the key determinant of primordial germ cells (PGCs), plays a combinatorial role with Prdm14 during PGC specification from postimplantation epiblast cells. They together initiate epigenetic reprogramming in early germ cells toward an underlying pluripotent state, which is equivalent to embryonic stem cells (ESCs). Whereas Prdm14 alone can promote reprogramming and is important for the propagation of the pluripotent state, it is not known whether Blimp1 is similarly involved. By using a genetic approach, we demonstrate that Blimp1 is dispensable for the derivation and maintenance of ESCs and postimplantation epiblast stem cells (epiSCs). Notably, Blimp1 is also dispensable for reprogramming epiSCs to ESCs. Thus, although Blimp1 is obligatory for PGC specification, it is not required for the reversion of epiSCs to ESCs and for their maintenance thereafter. This study suggests that reprogramming, including that of somatic cells to ESCs, may not entail an obligatory route through a Blimp1-positive PGC-like state.", "title": "The Germ Cell Determinant Blimp1 Is Not Required for Derivation of Pluripotent Stem Cells" }, { "docid": "3669694", "text": "Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.", "title": "Chromatin modifying enzymes as modulators of reprogramming" } ]
1031
Reduction of Rpl38 alters the composition of the Hox gene mRNAs translation in mice without lowering overall protein synthesis.
[ { "docid": "12486491", "text": "Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than regulatory capacity in mRNA translation. Here we identify mutations of the Ribosomal Protein L38 (Rpl38) gene in mice exhibiting surprising tissue-specific patterning defects, including pronounced homeotic transformations of the axial skeleton. In Rpl38 mutant embryos, global protein synthesis is unchanged; however the translation of a select subset of Homeobox mRNAs is perturbed. Our data reveal that RPL38 facilitates 80S complex formation on these mRNAs as a regulatory component of the ribosome to confer transcript-specific translational control. We further show that Rpl38 expression is markedly enriched in regions of the embryo where loss-of-function phenotypes occur. Unexpectedly, a ribosomal protein (RP) expression screen reveals dynamic regulation of individual RPs within the vertebrate embryo. Collectively, these findings suggest that RP activity may be highly regulated to impart a new layer of specificity in the control of gene expression and mammalian development.", "title": "Ribosome-Mediated Specificity in Hox mRNA Translation and Vertebrate Tissue Patterning" } ]
[ { "docid": "22358449", "text": "The promyelocytic leukaemia zinc finger (Plzf) protein (encoded by the gene Zfp145) belongs to the POZ/zinc-finger family of transcription factors. Here we generate Zfp145−/− mice and show that Plzf is essential for patterning of the limb and axial skeleton. Plzf inactivation results in patterning defects affecting all skeletal structures of the limb, including homeotic transformations of anterior skeletal elements into posterior structures. We demonstrate that Plzf acts as a growth-inhibitory and pro-apoptotic factor in the limb bud. The expression of members of the abdominal b (Abdb) Hox gene complex, as well as genes encoding bone morphogenetic proteins (Bmps), is altered in the developing limb of Zfp145−/− mice. Plzf regulates the expression of these genes in the absence of aberrant polarizing activity and independently of known patterning genes. Zfp145−/− mice also exhibit anterior-directed homeotic transformation throughout the axial skeleton with associated alterations in Hox gene expression. Plzf is therefore a mediator of anterior-to-posterior (AP) patterning in both the axial and appendicular skeleton and acts as a regulator of Hox gene expression.", "title": "Plzf regulates limb and axial skeletal patterning" }, { "docid": "935538", "text": "RNA-binding proteins are at the heart of posttranscriptional gene regulation, coordinating the processing, storage, and handling of cellular RNAs. We show here that GRSF1, previously implicated in the binding and selective translation of influenza mRNAs, is targeted to mitochondria where it forms granules that colocalize with foci of newly synthesized mtRNA next to mitochondrial nucleoids. GRSF1 preferentially binds RNAs transcribed from three contiguous genes on the light strand of mtDNA, the ND6 mRNA, and the long noncoding RNAs for cytb and ND5, each of which contains multiple consensus binding sequences. RNAi-mediated knockdown of GRSF1 leads to alterations in mitochondrial RNA stability, abnormal loading of mRNAs and lncRNAs on the mitochondrial ribosome, and impaired ribosome assembly. This results in a specific protein synthesis defect and a failure to assemble normal amounts of the oxidative phosphorylation complexes. These data implicate GRSF1 as a key regulator of posttranscriptional mitochondrial gene expression.", "title": "The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression." }, { "docid": "10790846", "text": "Many forms of long-lasting behavioral and synaptic plasticity require the synthesis of new proteins. For example, long-term potentiation (LTP) that endures for more than an hour requires both transcription and translation. The signal-transduction mechanisms that couple synaptic events to protein translational machinery during long-lasting synaptic plasticity, however, are not well understood. One signaling pathway that is stimulated by growth factors and results in the translation of specific mRNAs includes the rapamycin-sensitive kinase mammalian target of rapamycin (mTOR, also known as FRAP and RAFT-1). Several components of this translational signaling pathway, including mTOR, eukaryotic initiation factor-4E-binding proteins 1 and 2, and eukaryotic initiation factor-4E, are present in the rat hippocampus as shown by Western blot analysis, and these proteins are detected in the cell bodies and dendrites in the hippocampal slices by immunostaining studies. In cultured hippocampal neurons, these proteins are present in dendrites and are often found near the presynaptic protein, synapsin I. At synaptic sites, their distribution completely overlaps with a postsynaptic protein, PSD-95. These observations suggest the postsynaptic localization of these proteins. Disruption of mTOR signaling by rapamycin results in a reduction of late-phase LTP expression induced by high-frequency stimulation; the early phase of LTP is unaffected. Rapamycin also blocks the synaptic potentiation induced by brain-derived neurotrophic factor in hippocampal slices. These results demonstrate an essential role for rapamycin-sensitive signaling in the expression of two forms of synaptic plasticity that require new protein synthesis. The localization of this translational signaling pathway at postsynaptic sites may provide a mechanism that controls local protein synthesis at potentiated synapses.", "title": "A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus." }, { "docid": "15590539", "text": "Control of translation is a fundamental source of regulation in gene expression. The induction of protein synthesis by brain-derived neurotrophic factor (BDNF) critically contributes to enduring modifications of synaptic function, but how BDNF selectively affects only a minority of expressed mRNAs is poorly understood. We report that BDNF rapidly elevates Dicer, increasing mature miRNA levels and inducing RNA processing bodies in neurons. BDNF also rapidly induces Lin28, causing selective loss of Lin28-regulated miRNAs and a corresponding upregulation in translation of their target mRNAs. Binding sites for Lin28-regulated miRNAs are necessary and sufficient to confer BDNF responsiveness to a transcript. Lin28 deficiency, or expression of a Lin28-resistant Let-7 precursor miRNA, inhibits BDNF translation specificity and BDNF-dependent dendrite arborization. Our data establish that specificity in BDNF-regulated translation depends upon a two-part posttranscriptional control of miRNA biogenesis that generally enhances mRNA repression in association with GW182 while selectively derepressing and increasing translation of specific mRNAs.", "title": "Dual Regulation of miRNA Biogenesis Generates Target Specificity in Neurotrophin-Induced Protein Synthesis" }, { "docid": "18987782", "text": "The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Emu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Emu-Myc/+ mice. When accurate translational control is re-established in Emu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.", "title": "Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency" }, { "docid": "24863571", "text": "The mammalian mitochondrial genome contains 37 genes, 13 of which encode polypeptide subunits in the enzyme complexes of the oxidative phosphorylation system. The other genes encode the rRNAs and tRNAs necessary for their translation. The mitochondrial translation machinery is located in the mitochondrial matrix, and is exclusively dedicated to the synthesis of these 13 enzyme subunits. Mitochondrial disease in humans is often associated with defects in mitochondrial translation. This can manifest as a global decrease in the rate of mitochondrial protein synthesis, a decrease in the synthesis of specific polypeptides, the synthesis of abnormal polypeptides, or in altered stability of specific translation products. All of these changes in the normal pattern of mitochondrial translation can be assessed by a straightforward technique that takes advantage of the insensitivity of the mitochondrial translation machinery to antibiotics that completely inhibit cytoplasmic translation. Thus, specific radioactive labeling of the mitochondrial translation products can be achieved in cultured cells, and the results can be visualized on gradient gels. The analysis of mitochondrial translation in cells cultured from patient biopsies is useful in the study of disease-causing mutations in both the mitochondrial and the nuclear genomes.", "title": "Radioactive labeling of mitochondrial translation products in cultured cells." }, { "docid": "10443642", "text": "RNAIII is the intracellular effector of the quorum-sensing system in Staphylococcus aureus. It is one of the largest regulatory RNAs (514 nucleotides long) that are known to control the expression of a large number of virulence genes. Here, we show that the 3' domain of RNAIII coordinately represses at the post-transcriptional level, the expression of mRNAs that encode a class of virulence factors that act early in the infection process. We demonstrate that the 3' domain acts primarily as an antisense RNA and rapidly anneals to these mRNAs, forming long RNA duplexes. The interaction between RNAIII and the mRNAs results in repression of translation initiation and triggers endoribonuclease III hydrolysis. These processes are followed by rapid depletion of the mRNA pool. In addition, we show that RNAIII and its 3' domain mediate translational repression of rot mRNA through a limited number of base pairings involving two loop-loop interactions. Since Rot is a transcriptional regulatory protein, we proposed that RNAIII indirectly acts on many downstream genes, resulting in the activation of the synthesis of several exoproteins. These data emphasize the multitude of regulatory steps affected by RNAIII and its 3' domain in establishing a network of S. aureus virulence factors.", "title": "Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism." }, { "docid": "29473081", "text": "Glycosylation is a stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process, especially increased sialylation, have been associated with malignant transformation and metastasis. The role of altered sialylation in multiple myeloma (MM) cell trafficking has not been previously investigated. In the present study we identified high expression of β-galactoside α-2,3-sialyltransferase, ST3GAL6, in MM cell lines and patients. This gene plays a key role in selectin ligand synthesis in humans through the generation of functional sialyl Lewis X. In MRC IX patients, high expression of this gene is associated with inferior overall survival. In this study we demonstrate that knockdown of ST3GAL6 results in a significant reduction in levels of α-2,3-linked sialic acid on the surface of MM cells with an associated significant reduction in adhesion to MM bone marrow stromal cells and fibronectin along with reduced transendothelial migration in vitro. In support of our in vitro findings, we demonstrate significantly reduced homing and engraftment of ST3GAL6 knockdown MM cells to the bone marrow niche in vivo, along with decreased tumor burden and prolonged survival. This study points to the importance of altered glycosylation, particularly sialylation, in MM cell adhesion and migration.", "title": "The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma." }, { "docid": "11578459", "text": "BACKGROUND HOX genes are a family of developmental genes that are expressed neither in the developing forebrain nor in the normal brain. Aberrant expression of a HOX-gene dominated stem-cell signature in glioblastoma has been linked with increased resistance to chemo-radiotherapy and sustained proliferation of glioma initiating cells. Here we describe the epigenetic and genetic alterations and their interactions associated with the expression of this signature in glioblastoma. \n RESULTS We observe prominent hypermethylation of the HOXA locus 7p15.2 in glioblastoma in contrast to non-tumoral brain. Hypermethylation is associated with a gain of chromosome 7, a hallmark of glioblastoma, and may compensate for tumor-driven enhanced gene dosage as a rescue mechanism by preventing undue gene expression. We identify the CpG island of the HOXA10 alternative promoter that appears to escape hypermethylation in the HOX-high glioblastoma. An additive effect of gene copy gain at 7p15.2 and DNA methylation at key regulatory CpGs in HOXA10 is significantly associated with HOX-signature expression. Additionally, we show concordance between methylation status and presence of active or inactive chromatin marks in glioblastoma-derived spheres that are HOX-high or HOX-low, respectively. \n CONCLUSIONS Based on these findings, we propose co-evolution and interaction between gene copy gain, associated with a gain of chromosome 7, and additional epigenetic alterations as key mechanisms triggering a coordinated, but inappropriate, HOX transcriptional program in glioblastoma.", "title": "Chromosome 7 gain and DNA hypermethylation at the HOXA10 locus are associated with expression of a stem cell related HOX-signature in glioblastoma" }, { "docid": "20868160", "text": "The Arabidopsis (Arabidopsis thaliana) trichome birefringence (tbr) mutant has severely reduced crystalline cellulose in trichomes, but the molecular nature of TBR was unknown. We determined TBR to belong to the plant-specific DUF231 domain gene family comprising 46 members of unknown function in Arabidopsis. The genes harbor another plant-specific domain, called the TBL domain, which contains a conserved GDSL motif known from some esterases/lipases. TBR and TBR-like3 (TBL3) are transcriptionally coordinated with primary and secondary CELLULOSE SYNTHASE (CESA) genes, respectively. The tbr and tbl3 mutants hold lower levels of crystalline cellulose and have altered pectin composition in trichomes and stems, respectively, tissues generally thought to contain mainly secondary wall crystalline cellulose. In contrast, primary wall cellulose levels remain unchanged in both mutants as measured in etiolated tbr and tbl3 hypocotyls, while the amount of esterified pectins is reduced and pectin methylesterase activity is increased in this tissue. Furthermore, etiolated tbr hypocotyls have reduced length with swollen epidermal cells, a phenotype characteristic for primary cesa mutants or the wild type treated with cellulose synthesis inhibitors. Taken together, we show that two TBL genes contribute to the synthesis and deposition of secondary wall cellulose, presumably by influencing the esterification state of pectic polymers.", "title": "TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis." }, { "docid": "6327940", "text": "Amino acids modulate the secretion of both insulin and glucagon; the composition of dietary protein therefore has the potential to influence the balance of glucagon and insulin activity. Soy protein, as well as many other vegan proteins, are higher in non-essential amino acids than most animal-derived food proteins, and as a result should preferentially favor glucagon production. Acting on hepatocytes, glucagon promotes (and insulin inhibits) cAMP-dependent mechanisms that down-regulate lipogenic enzymes and cholesterol synthesis, while up-regulating hepatic LDL receptors and production of the IGF-I antagonist IGFBP-1. The insulin-sensitizing properties of many vegan diets--high in fiber, low in saturated fat--should amplify these effects by down-regulating insulin secretion. Additionally, the relatively low essential amino acid content of some vegan diets may decrease hepatic IGF-I synthesis. Thus, diets featuring vegan proteins can be expected to lower elevated serum lipid levels, promote weight loss, and decrease circulating IGF-I activity. The latter effect should impede cancer induction (as is seen in animal studies with soy protein), lessen neutrophil-mediated inflammatory damage, and slow growth and maturation in children. In fact, vegans tend to have low serum lipids, lean physiques, shorter stature, later puberty, and decreased risk for certain prominent 'Western' cancers; a vegan diet has documented clinical efficacy in rheumatoid arthritis. Low-fat vegan diets may be especially protective in regard to cancers linked to insulin resistance--namely, breast and colon cancer--as well as prostate cancer; conversely, the high IGF-I activity associated with heavy ingestion of animal products may be largely responsible for the epidemic of 'Western' cancers in wealthy societies. Increased phytochemical intake is also likely to contribute to the reduction of cancer risk in vegans. Regression of coronary stenoses has been documented during low-fat vegan diets coupled with exercise training; such regimens also tend to markedly improve diabetic control and lower elevated blood pressure. Risk of many other degenerative disorders may be decreased in vegans, although reduced growth factor activity may be responsible for an increased risk of hemorrhagic stroke. By altering the glucagon/insulin balance, it is conceivable that supplemental intakes of key non-essential amino acids could enable omnivores to enjoy some of the health advantages of a vegan diet. An unnecessarily high intake of essential amino acids--either in the absolute sense or relative to total dietary protein--may prove to be as grave a risk factor for 'Western' degenerative diseases as is excessive fat intake.", "title": "Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity." }, { "docid": "1748921", "text": "Translational fidelity, essential for protein and cell function, requires accurate transfer RNA (tRNA) aminoacylation. Purified aminoacyl-tRNA synthetases exhibit a fidelity of one error per 10,000 to 100,000 couplings. The accuracy of tRNA aminoacylation in vivo is uncertain, however, and might be considerably lower. Here we show that in mammalian cells, approximately 1% of methionine (Met) residues used in protein synthesis are aminoacylated to non-methionyl-tRNAs. Remarkably, Met-misacylation increases up to tenfold upon exposing cells to live or non-infectious viruses, toll-like receptor ligands or chemically induced oxidative stress. Met is misacylated to specific non-methionyl-tRNA families, and these Met-misacylated tRNAs are used in translation. Met-misacylation is blocked by an inhibitor of cellular oxidases, implicating reactive oxygen species (ROS) as the misacylation trigger. Among six amino acids tested, tRNA misacylation occurs exclusively with Met. As Met residues are known to protect proteins against ROS-mediated damage, we propose that Met-misacylation functions adaptively to increase Met incorporation into proteins to protect cells against oxidative stress. In demonstrating an unexpected conditional aspect of decoding mRNA, our findings illustrate the importance of considering alternative iterations of the genetic code.", "title": "Innate Immune and Chemically Triggered Oxidative Stress Modifies Translational Fidelity" }, { "docid": "13763195", "text": "Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation.", "title": "LincRNA-p21 suppresses target mRNA translation." }, { "docid": "7029990", "text": "One type of RNA editing involves the conversion of adenosine residues into inosine in double-stranded RNA through the action of adenosine deaminases acting on RNA (ADAR). A-to-I RNA editing of the coding sequence could result in synthesis of proteins not directly encoded in the genome. ADAR edits also non-coding sequences of target RNAs, such as introns and 3'-untranslated regions, which may affect splicing, translation, and mRNA stability. Three mammalian ADAR gene family members (ADAR1-3) have been identified. Here we investigated phenotypes of mice homozygous for ADAR1 null mutation. Although live ADAR1-/- embryos with normal gross appearance could be recovered up to E11.5, widespread apoptosis was detected in many tissues. Fibroblasts derived from ADAR1-/- embryos were also prone to apoptosis induced by serum deprivation. Our results demonstrate an essential requirement for ADAR1 in embryogenesis and suggest that it functions to promote survival of numerous tissues by editing one or more double-stranded RNAs required for protection against stress-induced apoptosis.", "title": "Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene." }, { "docid": "1507222", "text": "Weight loss in cancer cachexia is attributable to decreased food intake and/or enhanced energy expenditure. We investigated the roles of the uncoupling proteins (UCPs) UCPI, -2, and -3 in a murine model of cachexia, the MAC16 adenocarcinoma. Weight fell to 24% below that of non-tumor-bearing controls (P < 0.01) 18 days after MAC16 inoculation, with significant reductions in fat-pad mass (-67%; P < 0.01) and muscle mass (-20%; P < 0.01). Food intake was 26-60% lower (P < 0.01) than in controls on days 17-18. Non-tumor-bearing mice, pair-fed to match MAC16-induced hypophagia, showed less weight loss (10% below controls, P < 0.01; 16% above MAC-16, P < 0.01) and smaller decreases in fat-pad mass (21% below controls, P < 0.01). Core temperature in MAC16 mice was significantly lower (-2.4 degrees C, P < 0.01) than in controls, and pair-feeding had no effect. MAC16 mice showed significantly higher UCP1 mRNA levels in brown adipose tissue (BAT) than in controls (+63%, P < 0.01), and pair-feeding had no effect. UCP2 and -3 expression in BAT did not differ significantly between groups. By contrast, UCP2 mRNA levels in skeletal muscle were comparably increased in both MAC16 and pair-fed groups (respectively, 183 and 163% above controls; both, P < 0.05), with no significant difference between these two groups. Similarly, UCP3 mRNA was significantly higher than controls in both MAC16 (+163%, P < 0.05) and pair-fed (+253%, P < 0.01) groups, with no significant difference between the two experimental groups. Overexpression of UCP1 in BAT in MAC16-bearing mice may be an adaptive response to hypothermia, which is apparently induced by tumor products; increased thermogenesis in BAT could increase total energy expenditure and, thus, contribute to tissue wasting. Increased UCP2 and -3 expression in muscle are both attributable to reduced food intake and may be involved in lipid utilization during lipolysis in MAC16-induced cachexia.", "title": "Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia." }, { "docid": "13552682", "text": "In eukaryotes, accurate protein synthesis relies on a family of translational GTPases that pair with specific decoding factors to decipher the mRNA code on ribosomes. We present structures of the mammalian ribosome engaged with decoding factor⋅GTPase complexes representing intermediates of translation elongation (aminoacyl-tRNA⋅eEF1A), termination (eRF1⋅eRF3), and ribosome rescue (Pelota⋅Hbs1l). Comparative analyses reveal that each decoding factor exploits the plasticity of the ribosomal decoding center to differentially remodel ribosomal proteins and rRNA. This leads to varying degrees of large-scale ribosome movements and implies distinct mechanisms for communicating information from the decoding center to each GTPase. Additional structural snapshots of the translation termination pathway reveal the conformational changes that choreograph the accommodation of decoding factors into the peptidyl transferase center. Our results provide a structural framework for how different states of the mammalian ribosome are selectively recognized by the appropriate decoding factor⋅GTPase complex to ensure translational fidelity.", "title": "Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes" }, { "docid": "9315213", "text": "BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. \n METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. \n CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels.", "title": "Fibroblast Growth Factor 21 Prevents Atherosclerosis by Suppression of Hepatic Sterol Regulatory Element-Binding Protein-2 and Induction of Adiponectin in Mice" }, { "docid": "23783727", "text": "AIMS patients with diabetes mellitus (DM) have high platelet reactivity and are at increased risk of ischaemic events and bleeding post-acute coronary syndromes (ACS). In the PLATelet inhibition and patient Outcomes (PLATO) trial, ticagrelor reduced the primary composite endpoint of cardiovascular death, myocardial infarction, or stroke, but with similar rates of major bleeding compared with clopidogrel. We aimed to investigate the outcome with ticagrelor vs. clopidogrel in patients with DM or poor glycaemic control. \n METHODS AND RESULTS we analysed patients with pre-existing DM (n = 4662), including 1036 patients on insulin, those without DM (n = 13 951), and subgroups based on admission levels of haemoglobin A1c (HbA1c; n = 15 150). In patients with DM, the reduction in the primary composite endpoint (HR: 0.88, 95% CI: 0.76-1.03), all-cause mortality (HR: 0.82, 95% CI: 0.66-1.01), and stent thrombosis (HR: 0.65, 95% CI: 0.36-1.17) with no increase in major bleeding (HR: 0.95, 95% CI: 0.81-1.12) with ticagrelor was consistent with the overall cohort and without significant diabetes status-by-treatment interactions. There was no heterogeneity between patients with or without ongoing insulin treatment. ticagrelor reduced the primary endpoint, all-cause mortality, and stent thrombosis in patients with HbA1c above the median (HR: 0.80, 95% CI: 0.70-0.91; HR: 0.78, 95% CI: 0.65-0.93; and HR: 0.62, 95% CI: 0.39-1.00, respectively) with similar bleeding rates (HR: 0.98, 95% CI: 0.86-1.12). \n CONCLUSION ticagrelor, when compared with clopidogrel, reduced ischaemic events in ACS patients irrespective of diabetic status and glycaemic control, without an increase in major bleeding events.", "title": "Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial" }, { "docid": "24737389", "text": "Ribosome biogenesis and protein synthesis are two of the most energy consuming processes in a growing cell. Moreover, defects in their molecular components can alter the pattern of gene expression. Thus it is understandable that cells have developed a surveillance system to monitor the status of the translational machinery. Recent discoveries of causative mutations and deletions in genes linked to ribosome biogenesis have defined a group of similar pathologies termed ribosomopathies. Over the past decade, much has been learned regarding the relationship between growth control and ribosome biogenesis. The discovery of extra-ribosomal functions of several ribosome proteins and their regulation of p53 levels has provided a link from ribosome impairment to cell cycle regulation. Yet, evidence suggesting p53 and/or Hdm2 independent pathways also exists. In this review, we summarize recent advances in understanding the mechanisms underlying the pathologies of ribosomopathies and discuss the relationship between ribosome production and tumorigenesis.", "title": "Growth control and ribosomopathies." } ]
1032
Reduction of purity of cytoplasmic membranes isolated from overexpressors is indicated by stronger spots for OmpA in 2D BN-PAGE gels.
[ { "docid": "6836086", "text": "Gram-negative bacteria have an outer membrane (OM) that functions as a barrier to protect the cell from toxic compounds such as antibiotics and detergents. The OM is a highly asymmetric bilayer composed of phospholipids, glycolipids, and proteins. Assembly of this essential organelle occurs outside the cytoplasm in an environment that lacks obvious energy sources such as ATP, and the mechanisms involved are poorly understood. We describe the identification of a multiprotein complex required for the assembly of proteins in the OM of Escherichia coli. We also demonstrate genetic interactions between genes encoding components of this protein assembly complex and imp, which encodes a protein involved in the assembly of lipopolysaccharides (LPS) in the OM. These genetic interactions suggest a role for YfgL, one of the lipoprotein components of the protein assembly complex, in a homeostatic control mechanism that coordinates the overall OM assembly process.", "title": "Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli" } ]
[ { "docid": "24541180", "text": "Current methods of nuclear isolation from liver disrupt the plasmalemmae via homogenization and separation of the nuclei by high centrifugal force (HCF) through gradients of sucrose or other substances for up to 80 min. The use of HCF for such a long time increases the potential for nuclear damage and degradation by endogenous proteases. We compared four combinations of alterations to classical nuclear isolation methods as follows. Mouse liver was gently crushed through a fine mesh with and without in vivo perfusion with collagenase. The cell suspension was centrifuged at 600 g to remove gross debris and then at moderate centrifugal force (MCF, 16,000 g) or high centrifugal force (HCF, 70,000 g) through sucrose gradients for 30 min. The purity of the isolated nuclei was assessed biologically and morphologically, including analyses of representative marker proteins for nuclei and cytoplasm. The results indicate that MCF and no collagenase provided the highest nuclear integrity and purity, whereas MCF with collagenase is a viable option if priority is given to yield. The method is especially suited for small samples and so should facilitate studies with human liver biopsies and livers from mice, the most widely used species for gene targeting.", "title": "Isolation of intact nuclei of high purity from mouse liver." }, { "docid": "24706198", "text": "The Tat system transports folded proteins across bacterial and thylakoid membranes. In Gram-negative organisms, a TatABC substrate-binding complex and separate TatA complex are believed to coalesce to form an active translocon, with all three subunits essential for translocation. Most Gram-positive organisms lack a tatB gene, indicating major differences in organization and possible differences in mode of action. Here, we have studied Tat complexes encoded by the tatAdCd genes of Bacillus subtilis. Expression of tatAdCd in an Escherichia coli tat null mutant results in efficient export of a large, cofactor-containing E. coli Tat substrate, TorA. We show that the tatAd gene complements E. coli mutants lacking either tatAE or tatB, indicating a bifunctional role for this subunit in B. subtilis. Second, we have identified and characterized two distinct Tat complexes that are novel in key respects: a TatAdCd complex of approximately 230 kDa that is significantly smaller than the analogous E. coli TatABC complex (approximately 370 kDa on BN gels) and a separate TatAd complex. The latter is a discrete entity of approximately 270 kDa as judged by gel filtration chromatography, very different from the highly heterogeneous E. coli TatA complex that ranges in size from approximately 50 kDa to over 600 kDa. TatA heterogeneity has been linked to the varying size of Tat substrates being translocated, but the singular nature of the B. subtilis TatAd complex suggests that discrete TatAC and TatA complexes may form a single form of translocon.", "title": "A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes." }, { "docid": "20457190", "text": "We have reported the existence of biochemical and conformational differences in the alphabeta T cell receptor (TCR) complex between CD4(+) and CD8(+) CD3gamma-deficient (gamma(-)) mature T cells. In the present study, we have furthered our understanding and extended the observations to primary T lymphocytes from normal (gamma(+)) individuals. Surface TCR.CD3 components from CD4(+) gamma(-) T cells, other than CD3gamma, were detectable and similar in size to CD4(+) gamma(+) controls. Their native TCR.CD3 complex was also similar to CD4(+) gamma(+) controls, except for an alphabeta(deltaepsilon)(2)zeta(2) instead of an alphabetagammaepsilondeltaepsilonzeta(2) stoichiometry. In contrast, the surface TCRalpha, TCRbeta, and CD3delta chains of CD8(+) gamma(-) T cells did not possess their usual sizes. Using confocal immunofluorescence, TCRalpha was hardly detectable in CD8(+) gamma(-) T cells. Blue native gels (BN-PAGE) demonstrated the existence of a heterogeneous population of TCR.CD3 in these cells. Using primary peripheral blood T lymphocytes from normal (gamma(+)) donors, we performed a broad epitopic scan. In contrast to all other TCR.CD3-specific monoclonal antibodies, RW2-8C8 stained CD8(+) better than it did CD4(+) T cells, and the difference was dependent on glycosylation of the TCR.CD3 complex but independent of T cell activation or differentiation. RW2-8C8 staining of CD8(+) T cells was shown to be more dependent on lipid raft integrity than that of CD4(+) T cells. Finally, immunoprecipitation studies on purified primary CD4(+) and CD8(+) T cells revealed the existence of TCR glycosylation differences between the two. Collectively, these results are consistent with the existence of conformational or topological lineage-specific differences in the TCR.CD3 from CD4(+) and CD8(+) wild type T cells. The differences may be relevant for cis interactions during antigen recognition and signal transduction.", "title": "Biochemical differences in the alphabeta T cell receptor.CD3 surface complex between CD8+ and CD4+ human mature T lymphocytes." }, { "docid": "8087082", "text": "The microtubule (MT) cytoskeleton is required for many aspects of cell function, including the transport of intracellular materials, the maintenance of cell polarity, and the regulation of mitosis. These functions are coordinated by MT-associated proteins (MAPs), which work in concert with each other, binding MTs and altering their properties. We have used a MT cosedimentation assay, combined with 1D and 2D PAGE and mass spectrometry, to identify over 250 MAPs from early Drosophila embryos. We have taken two complementary approaches to analyse the cellular function of novel MAPs isolated using this approach. First, we have carried out an RNA interference (RNAi) screen, identifying 21 previously uncharacterised genes involved in MT organisation. Second, we have undertaken a bioinformatics analysis based on binary protein interaction data to produce putative interaction networks of MAPs. By combining both approaches, we have identified and validated MAP complexes with potentially important roles in cell cycle regulation and mitosis. This study therefore demonstrates that biologically relevant data can be harvested using such a multidisciplinary approach, and identifies new MAPs, many of which appear to be important in cell division.", "title": "A Microtubule Interactome: Complexes with Roles in Cell Cycle and Mitosis" }, { "docid": "26117607", "text": "Down syndrome cell adhesion molecule (Dscam) seems likely to play a key role in the \"alternative adaptive immunity\" that has been reported in invertebrates. Dscam consists of a cytoplasmic tail that is involved in signal transduction and a hypervariable extracellular region that might use a pathogen recognition mechanism similar to that used by the vertebrate antibodies. In our previous paper, we isolated a unique tail-less form of Dscam from Litopenaeus vannamei. In this study, we report the first membrane-bound form of shrimp Dscam: PmDscam was isolated from Penaeus monodon, and it occurred in both membrane-bound and tail-less forms. Phylogenetic analysis showed that while the crustacean Dscams from shrimp and water flea did not share a single subclade, they were distinct from the invertebrate Dscam-like molecules and from the insecta Dscams. In the extracellular region, the variable regions of PmDscam were located in N-terminal Ig2, N-terminal Ig3 and the entire Ig7 domain. The PmDscam extracellular variants and transmembrane domain variants were produced by mutually exclusive alternative splicing events. The cytoplasmic tail variants were produced by exon inclusion/exclusion. Based on the genomic organization of Daphnia Dscam's cytoplasmic tail, we propose a model of how the shrimp Dscam genomic locus might use Type III polyadenylation to generate both the tail-less and membrane-bound forms.", "title": "Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported." }, { "docid": "5914739", "text": "The CD3ε and ζ cytoplasmic domains of the T cell receptor bind to the inner leaflet of the plasma membrane (PM), and a previous nuclear magnetic resonance structure showed that both tyrosines of the CD3ε immunoreceptor tyrosine-based activation motif partition into the bilayer. Electrostatic interactions between acidic phospholipids and clusters of basic CD3ε residues were previously shown to be essential for CD3ε and ζ membrane binding. Phosphatidylserine (PS) is the most abundant negatively charged lipid on the inner leaflet of the PM and makes a major contribution to membrane binding by the CD3ε cytoplasmic domain. Here, we show that TCR triggering by peptide--MHC complexes induces dissociation of the CD3ε cytoplasmic domain from the plasma membrane. Release of the CD3ε cytoplasmic domain from the membrane is accompanied by a substantial focal reduction in negative charge and available PS in TCR microclusters. These changes in the lipid composition of TCR microclusters even occur when TCR signaling is blocked with a Src kinase inhibitor. Local changes in the lipid composition of TCR microclusters thus render the CD3ε cytoplasmic domain accessible during early stages of T cell activation.", "title": "Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain" }, { "docid": "87986426", "text": "Sugarcane bacilliform virus(SCBV) was detected by PCR from sugarcane showing chlorosis and mottle symptom from Kaiyuan,Yunnan Province. Part sequence of replicase gene of the isolate SCBV-Kaiyuan was determined. Sequence analysis indicated that the 589 bp of SCBV-Kaiyuan shared identities of 73.2%-74.0% and 83.1%-84.1% at nucleotide and amino acid levels with SCBV-Australia respectively,66.7%-68.4% and 65.6%-67.7% with SCBV-Morocco. The quality and yield of the sugarcane infected with SCBV-Kaiyuan was also investigated. The juice extraction,sucrose content,gravity purity and average stalk weight were decreased 1.55%,1.24%,2.22% and 0.26 kg in plants infected with SCBV-Kaiyuan,but reducing sugar was increased by 0.21% in infected plants.", "title": "Detection of Sugarcane bacilliform virus isolate and its influence on yield and quality of cane in Yunnan" }, { "docid": "623486", "text": "Centrifugal elutriation was used further to isolate human peripheral blood monocytes (HPBM) from mononuclear-enriched cells harvested as a secondary component following platelet concentration collection samples. HPBM were recovered in either one or two populations consisting of either total HPBM or small (SM) and large monocytes (LM). The elutriation was carried out at 3,500 +/- 5 rpm for the separation of lymphocytes and HPBM in Ca++- and Mg++-free PBS without EDTA. An average of 5.05 +/- 1.50 X 10(8) HPBM were recovered in the total HPBM with a purity of 95% +/- 3%. The SM and LM were obtained by splitting the total HPBM into two equal populations with an HPBM purity of 92% +/- 3% and 93% +/- 3, respectively, by nonspecific esterase staining. The elutriation media were shown to have no effect on viability by trypan blue exclusion. All three HPBM populations were shown to be histochemically (lack of reactivity to leu-1 and leu-7) and functionally (depletion of NK cell activity) purified from the lymphocyte population. The HPBM populations were enriched in HLA-Dr, OKM-1, OKM-5, MY-8, and leu M-3 monoclonal antibody marker staining. There were no differences in percent positive cells between SM and LM populations for any of the monocyte-specific monoclonal antibodies. All three monocyte populations mediated antibody-dependent cell-mediated cytotoxicity to human red blood cells, with LM mediating more lysis (27.0% +/- 5%) than SM (7% +/- 3%).(ABSTRACT TRUNCATED AT 250 WORDS)", "title": "Centrifugal elutriation as a method for isolation of large numbers of functionally intact human peripheral blood monocytes." }, { "docid": "34905328", "text": "The TCR:CD3 complex transduces signals that are critical for optimal T cell development and adaptive immunity. In resting T cells, the CD3ε cytoplasmic tail associates with the plasma membrane via a proximal basic-rich stretch (BRS). In this study, we show that mice lacking a functional CD3ε-BRS exhibited substantial reductions in thymic cellularity and limited CD4- CD8- double-negative (DN) 3 to DN4 thymocyte transition, because of enhanced DN4 TCR signaling resulting in increased cell death and TCR downregulation in all subsequent populations. Furthermore, positive, but not negative, T cell selection was affected in mice lacking a functional CD3ε-BRS, which led to limited peripheral T cell function and substantially reduced responsiveness to influenza infection. Collectively, these results indicate that membrane association of the CD3ε signaling domain is required for optimal thymocyte development and peripheral T cell function.", "title": "Membrane association of the CD3ε signaling domain is required for optimal T cell development and function." }, { "docid": "23664875", "text": "Termination of replication forks at the natural termini of the rDNA of Saccharomyces cerevisiae is controlled in a sequence-specific and polar mode by the interaction of the Fob1p replication terminator protein with the tandem Ter sites located in the nontranscribed spacers. Here we show, by both 2D gel analyses and chromatin immunoprecipitations (ChIP), that there exists a second level of global control mediated by the intra-S-phase checkpoint protein complex of Tof1p and Csm3p that protect stalled forks at Ter sites against the activity of the Rrm3p helicase (\"sweepase\"). The sweepase tends to release arrested forks presumably by the transient displacement of the Ter-bound Fob1p. Consistent with this mechanism, very few replication forks were arrested at the natural replication termini in the absence of the two checkpoint proteins. In the absence of the Rrm3p helicase, there was a slight enhancement of fork arrest at the Ter sites. Simultaneous deletions of the TOF1 (or CSM3), and the RRM3 genes restored fork arrest by removing both the fork-releasing and fork-protection activities. Other genes such as MRC1, WSS1, and PSY2 that are also involved in the MRC1 checkpoint pathway were not involved in this global control. This observation suggests that Tof1p-Csm3p function differently from MRC1 and the other above-mentioned genes. This mechanism is not restricted to the natural Ter sites but was also observed at fork arrest caused by the meeting of a replication fork with transcription approaching from the opposite direction.", "title": "The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae." }, { "docid": "8903143", "text": "The T-cell receptor (TCR) consists of a TCRαβ heterodimer, a TCRζ homodimer, and CD3γε and CD3δε heterodimers. The precise mechanism of T-cell triggering following TCR ligand engagement remains elusive. Previous studies reported that the cytoplasmic tail of CD3ε binds to the plasma membrane through a basic residue-rich stretch (BRS) and proposed that dissociation from the membrane is required for phosphorylation thereof. In this report we show that BRS motifs within the cytoplasmic tail of TCRζ mediate association with the plasma membrane and that TCR engagement results in TCRζ dissociation from the membrane. This dissociation requires phosphorylation of the TCRζ immunoreceptor tyrosine-based activation motifs by lymphocyte cell-specificprotein tyrosine kinase (Lck) but not ζ-chain-associated protein kinase 70 binding. Mutations of the TCRζ BRS motifs that disrupt this membrane association attenuate proximal and distal responses induced by TCR engagement. These mutations appear to alter the localization of TCRζ with respect to Lck as well as the mobility of the TCR complex. This study reveals that tyrosine phosphorylation of the TCRζ cytoplasmic domain regulates its association with the plasma membrane and highlights the functional importance of TCRζ BRS motifs.", "title": "Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling." }, { "docid": "22023404", "text": "CONTEXT Vitamin D deficiency is associated with many adverse health outcomes, yet little is known about the genetic epidemiology of vitamin D or its metabolites. \n OBJECTIVE Our objective was to examine the relationship among three vitamin D-related genes and levels of 25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxyvitamin D [1,25(OH)2D] in Hispanics (HAs) and African Americans (AAs). \n DESIGN AND SETTING The cross-sectional Insulin Resistance Atherosclerosis Family Study recruited and examined subjects in: Los Angeles, California (AAs; 513 individuals from 42 families); San Luis Valley (SLV), Colorado (HAs; 513 individuals from 30 families); and San Antonio (SA), Texas (HAs; 504 individuals from 58 families). \n MAIN OUTCOME MEASURES Plasma levels of 25(OH)D and 1,25(OH)2D were measured. \n RESULTS Levels of 25(OH)D were highest in SLV-HAs [18.3 +/- 7.7 ng/ml (45.7 +/- 19.2 nmol/liter)], lower in SA-HAs [14.6 +/- 6.4 ng/ml (36.4 +/- 16.0 nmol/liter)], and lowest in AAs [11.0 +/- 5.4 ng/ml (27.5 +/- 13.5 nmol/liter)]. Levels of 1,25(OH)2D were similar in AAs [43.5 +/- 13.9 pg/ml (113.1 +/- 36.1 pmol/liter)] and SLV-HAs [43.2 +/- 13.3 pg/ml (112.3 +/- 34.6 pmol/liter)], but higher in SA-HAs [48.6 +/- 17.0 pg/ml (126.4 +/- 44.2 pmol/liter)]. After adjusting for gender and age within the site, two single nucleotide polymorphisms (SNPs) in the vitamin D binding protein gene (DBP), rs4588 and rs7041, were associated with 25(OH)D, and one SNP in the DBP, rs4588, was associated with 1,25(OH)2D at all three study centers. \n CONCLUSIONS SNPs in the DBP are associated with levels of 25(OH)D and 1,25(OH)2D in HA and AA participants in the Insulin Resistance Atherosclerosis Family Study.", "title": "Genetic and environmental determinants of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels in Hispanic and African Americans." }, { "docid": "21164071", "text": "Integrins are membrane receptors which mediate cell-cell or cell-matrix adhesion. Integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) acts as a fibrinogen receptor of platelets and mediates platelet aggregation. Platelet activation is required for alpha IIb beta 3 to shift from noncompetent to competent for binding soluble fibrinogen. The steps involved in this transition are poorly understood. We have studied a variant of Glanzmann thrombasthenia, a congenital bleeding disorder characterized by absence of platelet aggregation and fibrinogen binding. The patient's platelets did not bind fibrinogen after platelet activation by ADP or thrombin, though his platelets contained alpha IIb beta 3. However, isolated alpha IIb beta 3 was able to bind to an Arg-Gly-Asp-Ser affinity column, and binding of soluble fibrinogen to the patient's platelets could be triggered by modulators of alpha IIb beta 3 conformation such as the Arg-Gly-Asp-Ser peptide and alpha-chymotrypsin. These data suggested that a functional Arg-Gly-Asp binding site was present within alpha IIb beta 3 and that the patient's defect was not secondary to a blockade of alpha IIb beta 3 in a noncompetent conformational state. This was evocative of a defect in the coupling between platelet activation and alpha IIb beta 3 up-regulation. We therefore sequenced the cytoplasmic domain of beta 3, following polymerase chain reaction (PCR) on platelet RNA, and found a T-->C mutation at nucleotide 2259, corresponding to a Ser-752-->Pro substitution. This mutation is likely to be responsible for the uncoupling of alpha IIb beta 3 from cellular activation because (i) it is not a polymorphism, (ii) it is the only mutation in the entire alpha IIb beta 3 sequence, and (iii) genetic analysis of the family showed that absence of the Pro-752 beta 3 allele was associated with the normal phenotype. Our data thus identify the C-terminal portion of the cytoplasmic domain of beta 3 as an intrinsic element in the coupling between alpha IIb beta 3 and platelet activation.", "title": "Ser-752-->Pro mutation in the cytoplasmic domain of integrin beta 3 subunit and defective activation of platelet integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia." }, { "docid": "27768226", "text": "PLoS Biology publishes today a research article by Gunther Eysenbach that is not about biology. It is about citations. It provides robust evidence that open-access articles (OA articles) are more immediately recognized and cited than non-OA articles. As such, it adds objective support to the belief we have always held that open-access publication speeds up scientific dialog between researchers and, consequently, should be extended to the whole scientific literature as quickly as possible. It is therefore fitting that we publish such a paper. We have long argued that papers freely available in a journal will be more often read and cited than those behind a subscription barrier. However, solid evidence to support or refute such a claim has been surprisingly hard to find. Since most open-access journals are new, comparisons of the effects of open access with established subscription-based journals are easily confounded by age and reputation. In the current study, Eysenbach compared citations compiled by Thomson Scientific (formerly Thomson ISI) to individual articles published between June 2004 and December 2004 in the same journal—namely, Proceedings of the National Academy of Sciences (PNAS), which announced its open-access option for authors on June 8 of that year, with an associated publication charge of US$1,000. Non-OA articles in PNAS are subject to a six-month “toll-access” delay before the article becomes publicly available. The results of this natural experiment are clear: in the 4 to 16 months following publication, OA articles gained a significant citation advantage over non-OA articles during the same period. They are twice as likely to be cited 4 to 10 months after publication and almost three times as likely between 10 and 16 months. Given that PNAS delays open access for only six months, the disparity between OA and non-OA articles in journals where the delay is longer or where articles remain “toll-access” is likely to be even greater. Eysenbach also looked at the impact of self-archiving non-OA articles. One route to open access, it is argued, is for authors to archive their published articles on their own Web sites or in institutional repositories, although this does not include an explicit business model to cover the cost of peer-review and publishing. The analysis revealed that self-archived articles are also cited less often than OA articles from the same journal. Yes, you're right; we do have a strong and vested interest in publishing results that so obviously endorse our existence. Moreover, the author of the article is also an editor of an open-access journal. But sometimes a potential conflict of interest can actually help to ensure rigor. In this case, we have an acute interest in ensuring that the article meets the same, if not higher, standards as any other research article we publish. Not only must the conclusions provide a significant advance for the field, but the study must be technically sound, with appropriate evidence to support those conclusions. As with all our research articles, we consulted throughout the evaluation process with an academic editor with appropriate expertise—in this case, Carol Tenopir, professor of information sciences at the University of Tennessee (Knoxville, Tennessee, United States). The article was reviewed by two experts in bibliometric analyses and information science, and an experienced research biologist with expertise in statistics. They all enthusiastically supported publication, although one understandably questioned the suitability of PLoS Biology as the publication venue. We have no intention of making PLoS Biology a regular home for bibliometric studies (even when about open access). What makes this study worth publishing in PLoS Biology is not only the relative strength of evidence supporting the claim but also the extent to which many (especially other publishers) have anticipated such an analysis. As far as we are aware, no other study has compared OA and non-OA articles from the same journal and controlled for so many potentially confounding factors. Eysenbach's multivariate analysis took into account the number of days since publication, number of authors, article type, country of the corresponding author, funding type, subject area, submission track ( PNAS has three different ways that authors can submit a paper), and the previous citation record of the first and last authors. He even administered a supplementary questionnaire to assess whether authors choosing the OA option in PNAS chose to do so for only their most important research (they didn't). As Ian Rowlands from the Centre for Publishing at University College London—and one of the reviewers who agreed to be identified in this article—said at the start of his review: “Many (most) of the papers and presentations I have read/seen on this topic have completely failed to address the kinds of confounding issues that are so convincingly tackled here. For that reason alone, this paper deserves to be published and alerted to the widest possible audience. ” In addition to providing evidence for the immediate advantage of open access, Eysenbach's analysis also highlights several potential challenges to its long-term future. Although a limited dataset, the citation history of the first and last authors differed between those who chose the open-access option and those who did not. In the group that chose open access, last authors tended to have a “stronger” previous citation record, whereas this situation was reversed among the group that declined the open-access option—here, it was the first authors who tended to be stronger. This may reflect varying attitudes of authors at different stages of their career, a stronger influence from the leader of a particular group, or an age- or career-related difference in the ability to pay the publication charge (e.g., [ 1]). Indeed, access to appropriate funds may also be a reason why a lower proportion of authors from European countries tended to choose the open-access option. In many of these countries, funds for page charges—and, by extension, open-access publication fees—are often not included within research grants. PNAS was one of the first journals to offer an open-access option to its authors. However, such hybrid journals are increasing: Blackwell, Springer, and Oxford University Press now provide this option as well. This means that similar experiments can be replicated. Moreover, although the evidence from the current analysis argues most strongly for a time advantage in citation for OA articles, a study over longer periods will reveal whether this translates into a sustained increase in the number of citations. In the meantime, open-access advocates should be emboldened by tangible evidence for what has seemed obvious all along.", "title": "Open Access Increases Citation Rate" }, { "docid": "11721676", "text": "Primary afferent fibers are originated from pseudounipolar sensory cells in dorsal root ganglia (DRG) and transmit external stimuli received in the skin to the spinal cord. Here we undertook a proteomic approach to uncover the polarity of primary afferent fibers. Lumbar spinal nerve segments, peripheral and central to DRG, were dissected from 5-wk-old Wistar rats and the lysates were subjected to large-sized 2-DE at pH 5-6. Among approximately 800 protein spots detected in the central and peripheral fractions, one of the unique spots in the peripheral fraction with MW of 60 kDa and pI of 5.6 was identified as an isoform of collapsin response mediator protein-2 (CRMP-2) by MALDI-TOF MS and Western blots with anti-CRMP-2 antibodies that recognize 1-17 and 486-528 residues. Since this novel spot was detected only in the peripheral fraction, but not in the central fraction, DRG, and other regions of the brain, it was named periCRMP-2. The C-terminal fragment of CRMP-2 was not detected in periCRMP-2 by MS analyses. Expression of periCRMP-2 decreased following sciatic nerve injury. These results suggest that periCRMP-2 is a C-terminal truncated isoform polarized in the peripheral side of spinal nerves and may be involved in nerve degeneration and regeneration.", "title": "Proteomic identification of a novel isoform of collapsin response mediator protein-2 in spinal nerves peripheral to dorsal root ganglia." }, { "docid": "25994317", "text": "CACCC boxes are among the critical sequences present in regulatory elements of genes expressed in erythroid cells, as well as in selected other cell types. While an erythroid cell-specific CACCC-box-binding protein, EKLF, has been shown to be required in vivo for proper expression of the adult beta-globin gene, it is dispensable for the regulation of several other globin and nonglobin erythroid cell-expressed genes. In the work described here, we searched for additional CACCC-box transcription factors that might be active in murine erythroid cells. We identified a major gel shift activity (termed BKLF), present in yolk sac and fetal liver erythroid cells, that could be distinguished from EKLF by specific antisera. Through relaxed-stringency hybridization, we obtained the cDNA encoding BKLF, a highly basic, novel zinc finger protein that is related to EKLF and other Krüppel-like members in its DNA-binding domain but unrelated elsewhere. BKLF, which is widely but not ubiquitously expressed in cell lines, is highly expressed in the midbrain region of embryonic mice and appears to correspond to the gel shift activity TEF-2, a transcriptional activator implicated in regulation of the simian virus 40 enhancer and other CACCC-box-containing regulatory elements. Because BKLF binds with high affinity and preferentially over Sp1 to many CACCC sequences of erythroid cell expressed genes, it is likely to participate in the control of many genes whose expression appears independent of the action of EKLF.", "title": "Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells." }, { "docid": "25439264", "text": "Abstract Hyperhomocysteinemia has been suggested as a possible risk factor in women suffering from habitual abortions, placental abruption or infarcts, preeclampsia, and/or intrauterine growth retardation. However, little is known about the pathogenic mechanisms underlying the action of homocysteine. The present study investigated the in vitro ability of homocysteine to affect trophoblast gonadotropin secretion and to induce cell death. In primary human trophoblast cells, homocysteine treatment (20 μmol/L) resulted in cellular flattening and enlargement, extension of pseudopodia, and cellular vacuolization. Cellular detachment, apoptosis, and necrosis were favored. With in situ nick end labeling, we investigated DNA degradation, and we used M30 CytoDEATH to selectively stain the cytoplasm of apoptotic cells. Cytochrome c release from mitochondria to the cytosol and DNA cleavage in agarose gel have been investigated. Homocysteine, but not cysteine, induced trophoblast apoptosis and significantly reduced human chorionic gonadotropin secretion. These findings suggest that trophoblast cell death might represent a pathogenic mechanism by which homocysteine may cause pregnancy complications related to placental diseases.", "title": "Homocysteine Induces Trophoblast Cell Death with Apoptotic Features1" }, { "docid": "25045244", "text": "Our previous studies in volunteers immunized with Salmonella enterica serovar Typhi (S. Typhi) have suggested an important role for CD8+ T cells in host defense. In this study we describe a novel subset of nonclassical human HLA-E-restricted S. Typhi-specific CD8+ T cells derived from PBMC of Ty21a typhoid vaccinees. CD3+CD8+CD4-CD56- T cells effectively killed S. Typhi-infected targets regardless of whether they share classical HLA class I molecules with them, by a FAS-independent, granule-dependent mechanism, as evidenced by induction of granzyme B release and the blocking effects of concanamycin and strontium ions. The expression of HLA-E Ags, but not CD1-a, -b, or -c, on the membrane of S. Typhi-infected targets rendered them susceptible to lysis. Moreover, anti-HLA-E Abs partially blocked these responses. We also demonstrated that presentation of S. Typhi Ags via HLA-E could stimulate IFN-gamma production. Increases in the net frequency of IFN-gamma spot-forming cells were observed in the presence of targets coated with peptides that contain S. Typhi GroEL HLA-E binding motifs. These results demonstrate that HLA-E binds nonamer peptides derived from bacterial proteins and trigger CD8+-mediated lysis and IFN-gamma production when exposed to infected targets, raising the possibility that this novel effector mechanism might contribute to host defense against intracellular bacterial infections.", "title": "Identification of a human HLA-E-restricted CD8+ T cell subset in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine." }, { "docid": "24863571", "text": "The mammalian mitochondrial genome contains 37 genes, 13 of which encode polypeptide subunits in the enzyme complexes of the oxidative phosphorylation system. The other genes encode the rRNAs and tRNAs necessary for their translation. The mitochondrial translation machinery is located in the mitochondrial matrix, and is exclusively dedicated to the synthesis of these 13 enzyme subunits. Mitochondrial disease in humans is often associated with defects in mitochondrial translation. This can manifest as a global decrease in the rate of mitochondrial protein synthesis, a decrease in the synthesis of specific polypeptides, the synthesis of abnormal polypeptides, or in altered stability of specific translation products. All of these changes in the normal pattern of mitochondrial translation can be assessed by a straightforward technique that takes advantage of the insensitivity of the mitochondrial translation machinery to antibiotics that completely inhibit cytoplasmic translation. Thus, specific radioactive labeling of the mitochondrial translation products can be achieved in cultured cells, and the results can be visualized on gradient gels. The analysis of mitochondrial translation in cells cultured from patient biopsies is useful in the study of disease-causing mutations in both the mitochondrial and the nuclear genomes.", "title": "Radioactive labeling of mitochondrial translation products in cultured cells." }, { "docid": "39668245", "text": "Conventional in vivo assays to determine the relative pathogenicity of yeast isolates rely upon the use of a range of mammalian species. The purpose of the work presented here was to investigate the possibility of using an insect (Galleria mellonella) as a model system for in vivo pathogenicity testing. The haemolymph of G. mellonella larvae was inoculated with PBS containing different concentrations of stationary phase yeasts of the genus Candida by injection at the last pro-leg. Larvae were incubated at 30 degrees C and monitored over 72 hours. Results indicate that G. mellonella can be killed by the pathogenic yeast Candida albicans and by a range of other Candida species but not to a significant extent by the yeast Saccharomyces cerevisiae. The kill kinetics for larvae inoculated with clinical and laboratory isolates of C. albicans indicate the former class of isolates to be more pathogenic. Differences in the relative pathogenicity of a range of Candida species may be distinguished using G. mellonella as a model. This work indicates that G. mellonella may be employed to give results consistent with data previously obtained using mammals in conventional in vivo pathogenicity testing. Larvae of G. mellonella are inexpensive to culture, easy to manipulate and their use may reduce the need to employ mammals for routine in vivo pathogenicity testing with a concomitant reduction in mammalian suffering.", "title": "Development of an insect model for the in vivo pathogenicity testing of yeasts." } ]
1033
Reduction of purity of cytoplasmic membranes isolated from overexpressors is indicated by stronger spots for OmpF in 2D BN-PAGE gels.
[ { "docid": "6836086", "text": "Gram-negative bacteria have an outer membrane (OM) that functions as a barrier to protect the cell from toxic compounds such as antibiotics and detergents. The OM is a highly asymmetric bilayer composed of phospholipids, glycolipids, and proteins. Assembly of this essential organelle occurs outside the cytoplasm in an environment that lacks obvious energy sources such as ATP, and the mechanisms involved are poorly understood. We describe the identification of a multiprotein complex required for the assembly of proteins in the OM of Escherichia coli. We also demonstrate genetic interactions between genes encoding components of this protein assembly complex and imp, which encodes a protein involved in the assembly of lipopolysaccharides (LPS) in the OM. These genetic interactions suggest a role for YfgL, one of the lipoprotein components of the protein assembly complex, in a homeostatic control mechanism that coordinates the overall OM assembly process.", "title": "Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli" } ]
[ { "docid": "24541180", "text": "Current methods of nuclear isolation from liver disrupt the plasmalemmae via homogenization and separation of the nuclei by high centrifugal force (HCF) through gradients of sucrose or other substances for up to 80 min. The use of HCF for such a long time increases the potential for nuclear damage and degradation by endogenous proteases. We compared four combinations of alterations to classical nuclear isolation methods as follows. Mouse liver was gently crushed through a fine mesh with and without in vivo perfusion with collagenase. The cell suspension was centrifuged at 600 g to remove gross debris and then at moderate centrifugal force (MCF, 16,000 g) or high centrifugal force (HCF, 70,000 g) through sucrose gradients for 30 min. The purity of the isolated nuclei was assessed biologically and morphologically, including analyses of representative marker proteins for nuclei and cytoplasm. The results indicate that MCF and no collagenase provided the highest nuclear integrity and purity, whereas MCF with collagenase is a viable option if priority is given to yield. The method is especially suited for small samples and so should facilitate studies with human liver biopsies and livers from mice, the most widely used species for gene targeting.", "title": "Isolation of intact nuclei of high purity from mouse liver." }, { "docid": "24706198", "text": "The Tat system transports folded proteins across bacterial and thylakoid membranes. In Gram-negative organisms, a TatABC substrate-binding complex and separate TatA complex are believed to coalesce to form an active translocon, with all three subunits essential for translocation. Most Gram-positive organisms lack a tatB gene, indicating major differences in organization and possible differences in mode of action. Here, we have studied Tat complexes encoded by the tatAdCd genes of Bacillus subtilis. Expression of tatAdCd in an Escherichia coli tat null mutant results in efficient export of a large, cofactor-containing E. coli Tat substrate, TorA. We show that the tatAd gene complements E. coli mutants lacking either tatAE or tatB, indicating a bifunctional role for this subunit in B. subtilis. Second, we have identified and characterized two distinct Tat complexes that are novel in key respects: a TatAdCd complex of approximately 230 kDa that is significantly smaller than the analogous E. coli TatABC complex (approximately 370 kDa on BN gels) and a separate TatAd complex. The latter is a discrete entity of approximately 270 kDa as judged by gel filtration chromatography, very different from the highly heterogeneous E. coli TatA complex that ranges in size from approximately 50 kDa to over 600 kDa. TatA heterogeneity has been linked to the varying size of Tat substrates being translocated, but the singular nature of the B. subtilis TatAd complex suggests that discrete TatAC and TatA complexes may form a single form of translocon.", "title": "A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes." }, { "docid": "20457190", "text": "We have reported the existence of biochemical and conformational differences in the alphabeta T cell receptor (TCR) complex between CD4(+) and CD8(+) CD3gamma-deficient (gamma(-)) mature T cells. In the present study, we have furthered our understanding and extended the observations to primary T lymphocytes from normal (gamma(+)) individuals. Surface TCR.CD3 components from CD4(+) gamma(-) T cells, other than CD3gamma, were detectable and similar in size to CD4(+) gamma(+) controls. Their native TCR.CD3 complex was also similar to CD4(+) gamma(+) controls, except for an alphabeta(deltaepsilon)(2)zeta(2) instead of an alphabetagammaepsilondeltaepsilonzeta(2) stoichiometry. In contrast, the surface TCRalpha, TCRbeta, and CD3delta chains of CD8(+) gamma(-) T cells did not possess their usual sizes. Using confocal immunofluorescence, TCRalpha was hardly detectable in CD8(+) gamma(-) T cells. Blue native gels (BN-PAGE) demonstrated the existence of a heterogeneous population of TCR.CD3 in these cells. Using primary peripheral blood T lymphocytes from normal (gamma(+)) donors, we performed a broad epitopic scan. In contrast to all other TCR.CD3-specific monoclonal antibodies, RW2-8C8 stained CD8(+) better than it did CD4(+) T cells, and the difference was dependent on glycosylation of the TCR.CD3 complex but independent of T cell activation or differentiation. RW2-8C8 staining of CD8(+) T cells was shown to be more dependent on lipid raft integrity than that of CD4(+) T cells. Finally, immunoprecipitation studies on purified primary CD4(+) and CD8(+) T cells revealed the existence of TCR glycosylation differences between the two. Collectively, these results are consistent with the existence of conformational or topological lineage-specific differences in the TCR.CD3 from CD4(+) and CD8(+) wild type T cells. The differences may be relevant for cis interactions during antigen recognition and signal transduction.", "title": "Biochemical differences in the alphabeta T cell receptor.CD3 surface complex between CD8+ and CD4+ human mature T lymphocytes." }, { "docid": "8087082", "text": "The microtubule (MT) cytoskeleton is required for many aspects of cell function, including the transport of intracellular materials, the maintenance of cell polarity, and the regulation of mitosis. These functions are coordinated by MT-associated proteins (MAPs), which work in concert with each other, binding MTs and altering their properties. We have used a MT cosedimentation assay, combined with 1D and 2D PAGE and mass spectrometry, to identify over 250 MAPs from early Drosophila embryos. We have taken two complementary approaches to analyse the cellular function of novel MAPs isolated using this approach. First, we have carried out an RNA interference (RNAi) screen, identifying 21 previously uncharacterised genes involved in MT organisation. Second, we have undertaken a bioinformatics analysis based on binary protein interaction data to produce putative interaction networks of MAPs. By combining both approaches, we have identified and validated MAP complexes with potentially important roles in cell cycle regulation and mitosis. This study therefore demonstrates that biologically relevant data can be harvested using such a multidisciplinary approach, and identifies new MAPs, many of which appear to be important in cell division.", "title": "A Microtubule Interactome: Complexes with Roles in Cell Cycle and Mitosis" }, { "docid": "26117607", "text": "Down syndrome cell adhesion molecule (Dscam) seems likely to play a key role in the \"alternative adaptive immunity\" that has been reported in invertebrates. Dscam consists of a cytoplasmic tail that is involved in signal transduction and a hypervariable extracellular region that might use a pathogen recognition mechanism similar to that used by the vertebrate antibodies. In our previous paper, we isolated a unique tail-less form of Dscam from Litopenaeus vannamei. In this study, we report the first membrane-bound form of shrimp Dscam: PmDscam was isolated from Penaeus monodon, and it occurred in both membrane-bound and tail-less forms. Phylogenetic analysis showed that while the crustacean Dscams from shrimp and water flea did not share a single subclade, they were distinct from the invertebrate Dscam-like molecules and from the insecta Dscams. In the extracellular region, the variable regions of PmDscam were located in N-terminal Ig2, N-terminal Ig3 and the entire Ig7 domain. The PmDscam extracellular variants and transmembrane domain variants were produced by mutually exclusive alternative splicing events. The cytoplasmic tail variants were produced by exon inclusion/exclusion. Based on the genomic organization of Daphnia Dscam's cytoplasmic tail, we propose a model of how the shrimp Dscam genomic locus might use Type III polyadenylation to generate both the tail-less and membrane-bound forms.", "title": "Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported." }, { "docid": "5914739", "text": "The CD3ε and ζ cytoplasmic domains of the T cell receptor bind to the inner leaflet of the plasma membrane (PM), and a previous nuclear magnetic resonance structure showed that both tyrosines of the CD3ε immunoreceptor tyrosine-based activation motif partition into the bilayer. Electrostatic interactions between acidic phospholipids and clusters of basic CD3ε residues were previously shown to be essential for CD3ε and ζ membrane binding. Phosphatidylserine (PS) is the most abundant negatively charged lipid on the inner leaflet of the PM and makes a major contribution to membrane binding by the CD3ε cytoplasmic domain. Here, we show that TCR triggering by peptide--MHC complexes induces dissociation of the CD3ε cytoplasmic domain from the plasma membrane. Release of the CD3ε cytoplasmic domain from the membrane is accompanied by a substantial focal reduction in negative charge and available PS in TCR microclusters. These changes in the lipid composition of TCR microclusters even occur when TCR signaling is blocked with a Src kinase inhibitor. Local changes in the lipid composition of TCR microclusters thus render the CD3ε cytoplasmic domain accessible during early stages of T cell activation.", "title": "Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain" }, { "docid": "87986426", "text": "Sugarcane bacilliform virus(SCBV) was detected by PCR from sugarcane showing chlorosis and mottle symptom from Kaiyuan,Yunnan Province. Part sequence of replicase gene of the isolate SCBV-Kaiyuan was determined. Sequence analysis indicated that the 589 bp of SCBV-Kaiyuan shared identities of 73.2%-74.0% and 83.1%-84.1% at nucleotide and amino acid levels with SCBV-Australia respectively,66.7%-68.4% and 65.6%-67.7% with SCBV-Morocco. The quality and yield of the sugarcane infected with SCBV-Kaiyuan was also investigated. The juice extraction,sucrose content,gravity purity and average stalk weight were decreased 1.55%,1.24%,2.22% and 0.26 kg in plants infected with SCBV-Kaiyuan,but reducing sugar was increased by 0.21% in infected plants.", "title": "Detection of Sugarcane bacilliform virus isolate and its influence on yield and quality of cane in Yunnan" }, { "docid": "623486", "text": "Centrifugal elutriation was used further to isolate human peripheral blood monocytes (HPBM) from mononuclear-enriched cells harvested as a secondary component following platelet concentration collection samples. HPBM were recovered in either one or two populations consisting of either total HPBM or small (SM) and large monocytes (LM). The elutriation was carried out at 3,500 +/- 5 rpm for the separation of lymphocytes and HPBM in Ca++- and Mg++-free PBS without EDTA. An average of 5.05 +/- 1.50 X 10(8) HPBM were recovered in the total HPBM with a purity of 95% +/- 3%. The SM and LM were obtained by splitting the total HPBM into two equal populations with an HPBM purity of 92% +/- 3% and 93% +/- 3, respectively, by nonspecific esterase staining. The elutriation media were shown to have no effect on viability by trypan blue exclusion. All three HPBM populations were shown to be histochemically (lack of reactivity to leu-1 and leu-7) and functionally (depletion of NK cell activity) purified from the lymphocyte population. The HPBM populations were enriched in HLA-Dr, OKM-1, OKM-5, MY-8, and leu M-3 monoclonal antibody marker staining. There were no differences in percent positive cells between SM and LM populations for any of the monocyte-specific monoclonal antibodies. All three monocyte populations mediated antibody-dependent cell-mediated cytotoxicity to human red blood cells, with LM mediating more lysis (27.0% +/- 5%) than SM (7% +/- 3%).(ABSTRACT TRUNCATED AT 250 WORDS)", "title": "Centrifugal elutriation as a method for isolation of large numbers of functionally intact human peripheral blood monocytes." }, { "docid": "34905328", "text": "The TCR:CD3 complex transduces signals that are critical for optimal T cell development and adaptive immunity. In resting T cells, the CD3ε cytoplasmic tail associates with the plasma membrane via a proximal basic-rich stretch (BRS). In this study, we show that mice lacking a functional CD3ε-BRS exhibited substantial reductions in thymic cellularity and limited CD4- CD8- double-negative (DN) 3 to DN4 thymocyte transition, because of enhanced DN4 TCR signaling resulting in increased cell death and TCR downregulation in all subsequent populations. Furthermore, positive, but not negative, T cell selection was affected in mice lacking a functional CD3ε-BRS, which led to limited peripheral T cell function and substantially reduced responsiveness to influenza infection. Collectively, these results indicate that membrane association of the CD3ε signaling domain is required for optimal thymocyte development and peripheral T cell function.", "title": "Membrane association of the CD3ε signaling domain is required for optimal T cell development and function." }, { "docid": "23664875", "text": "Termination of replication forks at the natural termini of the rDNA of Saccharomyces cerevisiae is controlled in a sequence-specific and polar mode by the interaction of the Fob1p replication terminator protein with the tandem Ter sites located in the nontranscribed spacers. Here we show, by both 2D gel analyses and chromatin immunoprecipitations (ChIP), that there exists a second level of global control mediated by the intra-S-phase checkpoint protein complex of Tof1p and Csm3p that protect stalled forks at Ter sites against the activity of the Rrm3p helicase (\"sweepase\"). The sweepase tends to release arrested forks presumably by the transient displacement of the Ter-bound Fob1p. Consistent with this mechanism, very few replication forks were arrested at the natural replication termini in the absence of the two checkpoint proteins. In the absence of the Rrm3p helicase, there was a slight enhancement of fork arrest at the Ter sites. Simultaneous deletions of the TOF1 (or CSM3), and the RRM3 genes restored fork arrest by removing both the fork-releasing and fork-protection activities. Other genes such as MRC1, WSS1, and PSY2 that are also involved in the MRC1 checkpoint pathway were not involved in this global control. This observation suggests that Tof1p-Csm3p function differently from MRC1 and the other above-mentioned genes. This mechanism is not restricted to the natural Ter sites but was also observed at fork arrest caused by the meeting of a replication fork with transcription approaching from the opposite direction.", "title": "The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae." }, { "docid": "8903143", "text": "The T-cell receptor (TCR) consists of a TCRαβ heterodimer, a TCRζ homodimer, and CD3γε and CD3δε heterodimers. The precise mechanism of T-cell triggering following TCR ligand engagement remains elusive. Previous studies reported that the cytoplasmic tail of CD3ε binds to the plasma membrane through a basic residue-rich stretch (BRS) and proposed that dissociation from the membrane is required for phosphorylation thereof. In this report we show that BRS motifs within the cytoplasmic tail of TCRζ mediate association with the plasma membrane and that TCR engagement results in TCRζ dissociation from the membrane. This dissociation requires phosphorylation of the TCRζ immunoreceptor tyrosine-based activation motifs by lymphocyte cell-specificprotein tyrosine kinase (Lck) but not ζ-chain-associated protein kinase 70 binding. Mutations of the TCRζ BRS motifs that disrupt this membrane association attenuate proximal and distal responses induced by TCR engagement. These mutations appear to alter the localization of TCRζ with respect to Lck as well as the mobility of the TCR complex. This study reveals that tyrosine phosphorylation of the TCRζ cytoplasmic domain regulates its association with the plasma membrane and highlights the functional importance of TCRζ BRS motifs.", "title": "Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling." }, { "docid": "22023404", "text": "CONTEXT Vitamin D deficiency is associated with many adverse health outcomes, yet little is known about the genetic epidemiology of vitamin D or its metabolites. \n OBJECTIVE Our objective was to examine the relationship among three vitamin D-related genes and levels of 25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxyvitamin D [1,25(OH)2D] in Hispanics (HAs) and African Americans (AAs). \n DESIGN AND SETTING The cross-sectional Insulin Resistance Atherosclerosis Family Study recruited and examined subjects in: Los Angeles, California (AAs; 513 individuals from 42 families); San Luis Valley (SLV), Colorado (HAs; 513 individuals from 30 families); and San Antonio (SA), Texas (HAs; 504 individuals from 58 families). \n MAIN OUTCOME MEASURES Plasma levels of 25(OH)D and 1,25(OH)2D were measured. \n RESULTS Levels of 25(OH)D were highest in SLV-HAs [18.3 +/- 7.7 ng/ml (45.7 +/- 19.2 nmol/liter)], lower in SA-HAs [14.6 +/- 6.4 ng/ml (36.4 +/- 16.0 nmol/liter)], and lowest in AAs [11.0 +/- 5.4 ng/ml (27.5 +/- 13.5 nmol/liter)]. Levels of 1,25(OH)2D were similar in AAs [43.5 +/- 13.9 pg/ml (113.1 +/- 36.1 pmol/liter)] and SLV-HAs [43.2 +/- 13.3 pg/ml (112.3 +/- 34.6 pmol/liter)], but higher in SA-HAs [48.6 +/- 17.0 pg/ml (126.4 +/- 44.2 pmol/liter)]. After adjusting for gender and age within the site, two single nucleotide polymorphisms (SNPs) in the vitamin D binding protein gene (DBP), rs4588 and rs7041, were associated with 25(OH)D, and one SNP in the DBP, rs4588, was associated with 1,25(OH)2D at all three study centers. \n CONCLUSIONS SNPs in the DBP are associated with levels of 25(OH)D and 1,25(OH)2D in HA and AA participants in the Insulin Resistance Atherosclerosis Family Study.", "title": "Genetic and environmental determinants of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels in Hispanic and African Americans." }, { "docid": "21164071", "text": "Integrins are membrane receptors which mediate cell-cell or cell-matrix adhesion. Integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) acts as a fibrinogen receptor of platelets and mediates platelet aggregation. Platelet activation is required for alpha IIb beta 3 to shift from noncompetent to competent for binding soluble fibrinogen. The steps involved in this transition are poorly understood. We have studied a variant of Glanzmann thrombasthenia, a congenital bleeding disorder characterized by absence of platelet aggregation and fibrinogen binding. The patient's platelets did not bind fibrinogen after platelet activation by ADP or thrombin, though his platelets contained alpha IIb beta 3. However, isolated alpha IIb beta 3 was able to bind to an Arg-Gly-Asp-Ser affinity column, and binding of soluble fibrinogen to the patient's platelets could be triggered by modulators of alpha IIb beta 3 conformation such as the Arg-Gly-Asp-Ser peptide and alpha-chymotrypsin. These data suggested that a functional Arg-Gly-Asp binding site was present within alpha IIb beta 3 and that the patient's defect was not secondary to a blockade of alpha IIb beta 3 in a noncompetent conformational state. This was evocative of a defect in the coupling between platelet activation and alpha IIb beta 3 up-regulation. We therefore sequenced the cytoplasmic domain of beta 3, following polymerase chain reaction (PCR) on platelet RNA, and found a T-->C mutation at nucleotide 2259, corresponding to a Ser-752-->Pro substitution. This mutation is likely to be responsible for the uncoupling of alpha IIb beta 3 from cellular activation because (i) it is not a polymorphism, (ii) it is the only mutation in the entire alpha IIb beta 3 sequence, and (iii) genetic analysis of the family showed that absence of the Pro-752 beta 3 allele was associated with the normal phenotype. Our data thus identify the C-terminal portion of the cytoplasmic domain of beta 3 as an intrinsic element in the coupling between alpha IIb beta 3 and platelet activation.", "title": "Ser-752-->Pro mutation in the cytoplasmic domain of integrin beta 3 subunit and defective activation of platelet integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia." }, { "docid": "27768226", "text": "PLoS Biology publishes today a research article by Gunther Eysenbach that is not about biology. It is about citations. It provides robust evidence that open-access articles (OA articles) are more immediately recognized and cited than non-OA articles. As such, it adds objective support to the belief we have always held that open-access publication speeds up scientific dialog between researchers and, consequently, should be extended to the whole scientific literature as quickly as possible. It is therefore fitting that we publish such a paper. We have long argued that papers freely available in a journal will be more often read and cited than those behind a subscription barrier. However, solid evidence to support or refute such a claim has been surprisingly hard to find. Since most open-access journals are new, comparisons of the effects of open access with established subscription-based journals are easily confounded by age and reputation. In the current study, Eysenbach compared citations compiled by Thomson Scientific (formerly Thomson ISI) to individual articles published between June 2004 and December 2004 in the same journal—namely, Proceedings of the National Academy of Sciences (PNAS), which announced its open-access option for authors on June 8 of that year, with an associated publication charge of US$1,000. Non-OA articles in PNAS are subject to a six-month “toll-access” delay before the article becomes publicly available. The results of this natural experiment are clear: in the 4 to 16 months following publication, OA articles gained a significant citation advantage over non-OA articles during the same period. They are twice as likely to be cited 4 to 10 months after publication and almost three times as likely between 10 and 16 months. Given that PNAS delays open access for only six months, the disparity between OA and non-OA articles in journals where the delay is longer or where articles remain “toll-access” is likely to be even greater. Eysenbach also looked at the impact of self-archiving non-OA articles. One route to open access, it is argued, is for authors to archive their published articles on their own Web sites or in institutional repositories, although this does not include an explicit business model to cover the cost of peer-review and publishing. The analysis revealed that self-archived articles are also cited less often than OA articles from the same journal. Yes, you're right; we do have a strong and vested interest in publishing results that so obviously endorse our existence. Moreover, the author of the article is also an editor of an open-access journal. But sometimes a potential conflict of interest can actually help to ensure rigor. In this case, we have an acute interest in ensuring that the article meets the same, if not higher, standards as any other research article we publish. Not only must the conclusions provide a significant advance for the field, but the study must be technically sound, with appropriate evidence to support those conclusions. As with all our research articles, we consulted throughout the evaluation process with an academic editor with appropriate expertise—in this case, Carol Tenopir, professor of information sciences at the University of Tennessee (Knoxville, Tennessee, United States). The article was reviewed by two experts in bibliometric analyses and information science, and an experienced research biologist with expertise in statistics. They all enthusiastically supported publication, although one understandably questioned the suitability of PLoS Biology as the publication venue. We have no intention of making PLoS Biology a regular home for bibliometric studies (even when about open access). What makes this study worth publishing in PLoS Biology is not only the relative strength of evidence supporting the claim but also the extent to which many (especially other publishers) have anticipated such an analysis. As far as we are aware, no other study has compared OA and non-OA articles from the same journal and controlled for so many potentially confounding factors. Eysenbach's multivariate analysis took into account the number of days since publication, number of authors, article type, country of the corresponding author, funding type, subject area, submission track ( PNAS has three different ways that authors can submit a paper), and the previous citation record of the first and last authors. He even administered a supplementary questionnaire to assess whether authors choosing the OA option in PNAS chose to do so for only their most important research (they didn't). As Ian Rowlands from the Centre for Publishing at University College London—and one of the reviewers who agreed to be identified in this article—said at the start of his review: “Many (most) of the papers and presentations I have read/seen on this topic have completely failed to address the kinds of confounding issues that are so convincingly tackled here. For that reason alone, this paper deserves to be published and alerted to the widest possible audience. ” In addition to providing evidence for the immediate advantage of open access, Eysenbach's analysis also highlights several potential challenges to its long-term future. Although a limited dataset, the citation history of the first and last authors differed between those who chose the open-access option and those who did not. In the group that chose open access, last authors tended to have a “stronger” previous citation record, whereas this situation was reversed among the group that declined the open-access option—here, it was the first authors who tended to be stronger. This may reflect varying attitudes of authors at different stages of their career, a stronger influence from the leader of a particular group, or an age- or career-related difference in the ability to pay the publication charge (e.g., [ 1]). Indeed, access to appropriate funds may also be a reason why a lower proportion of authors from European countries tended to choose the open-access option. In many of these countries, funds for page charges—and, by extension, open-access publication fees—are often not included within research grants. PNAS was one of the first journals to offer an open-access option to its authors. However, such hybrid journals are increasing: Blackwell, Springer, and Oxford University Press now provide this option as well. This means that similar experiments can be replicated. Moreover, although the evidence from the current analysis argues most strongly for a time advantage in citation for OA articles, a study over longer periods will reveal whether this translates into a sustained increase in the number of citations. In the meantime, open-access advocates should be emboldened by tangible evidence for what has seemed obvious all along.", "title": "Open Access Increases Citation Rate" }, { "docid": "11721676", "text": "Primary afferent fibers are originated from pseudounipolar sensory cells in dorsal root ganglia (DRG) and transmit external stimuli received in the skin to the spinal cord. Here we undertook a proteomic approach to uncover the polarity of primary afferent fibers. Lumbar spinal nerve segments, peripheral and central to DRG, were dissected from 5-wk-old Wistar rats and the lysates were subjected to large-sized 2-DE at pH 5-6. Among approximately 800 protein spots detected in the central and peripheral fractions, one of the unique spots in the peripheral fraction with MW of 60 kDa and pI of 5.6 was identified as an isoform of collapsin response mediator protein-2 (CRMP-2) by MALDI-TOF MS and Western blots with anti-CRMP-2 antibodies that recognize 1-17 and 486-528 residues. Since this novel spot was detected only in the peripheral fraction, but not in the central fraction, DRG, and other regions of the brain, it was named periCRMP-2. The C-terminal fragment of CRMP-2 was not detected in periCRMP-2 by MS analyses. Expression of periCRMP-2 decreased following sciatic nerve injury. These results suggest that periCRMP-2 is a C-terminal truncated isoform polarized in the peripheral side of spinal nerves and may be involved in nerve degeneration and regeneration.", "title": "Proteomic identification of a novel isoform of collapsin response mediator protein-2 in spinal nerves peripheral to dorsal root ganglia." }, { "docid": "25994317", "text": "CACCC boxes are among the critical sequences present in regulatory elements of genes expressed in erythroid cells, as well as in selected other cell types. While an erythroid cell-specific CACCC-box-binding protein, EKLF, has been shown to be required in vivo for proper expression of the adult beta-globin gene, it is dispensable for the regulation of several other globin and nonglobin erythroid cell-expressed genes. In the work described here, we searched for additional CACCC-box transcription factors that might be active in murine erythroid cells. We identified a major gel shift activity (termed BKLF), present in yolk sac and fetal liver erythroid cells, that could be distinguished from EKLF by specific antisera. Through relaxed-stringency hybridization, we obtained the cDNA encoding BKLF, a highly basic, novel zinc finger protein that is related to EKLF and other Krüppel-like members in its DNA-binding domain but unrelated elsewhere. BKLF, which is widely but not ubiquitously expressed in cell lines, is highly expressed in the midbrain region of embryonic mice and appears to correspond to the gel shift activity TEF-2, a transcriptional activator implicated in regulation of the simian virus 40 enhancer and other CACCC-box-containing regulatory elements. Because BKLF binds with high affinity and preferentially over Sp1 to many CACCC sequences of erythroid cell expressed genes, it is likely to participate in the control of many genes whose expression appears independent of the action of EKLF.", "title": "Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells." }, { "docid": "25439264", "text": "Abstract Hyperhomocysteinemia has been suggested as a possible risk factor in women suffering from habitual abortions, placental abruption or infarcts, preeclampsia, and/or intrauterine growth retardation. However, little is known about the pathogenic mechanisms underlying the action of homocysteine. The present study investigated the in vitro ability of homocysteine to affect trophoblast gonadotropin secretion and to induce cell death. In primary human trophoblast cells, homocysteine treatment (20 μmol/L) resulted in cellular flattening and enlargement, extension of pseudopodia, and cellular vacuolization. Cellular detachment, apoptosis, and necrosis were favored. With in situ nick end labeling, we investigated DNA degradation, and we used M30 CytoDEATH to selectively stain the cytoplasm of apoptotic cells. Cytochrome c release from mitochondria to the cytosol and DNA cleavage in agarose gel have been investigated. Homocysteine, but not cysteine, induced trophoblast apoptosis and significantly reduced human chorionic gonadotropin secretion. These findings suggest that trophoblast cell death might represent a pathogenic mechanism by which homocysteine may cause pregnancy complications related to placental diseases.", "title": "Homocysteine Induces Trophoblast Cell Death with Apoptotic Features1" }, { "docid": "25045244", "text": "Our previous studies in volunteers immunized with Salmonella enterica serovar Typhi (S. Typhi) have suggested an important role for CD8+ T cells in host defense. In this study we describe a novel subset of nonclassical human HLA-E-restricted S. Typhi-specific CD8+ T cells derived from PBMC of Ty21a typhoid vaccinees. CD3+CD8+CD4-CD56- T cells effectively killed S. Typhi-infected targets regardless of whether they share classical HLA class I molecules with them, by a FAS-independent, granule-dependent mechanism, as evidenced by induction of granzyme B release and the blocking effects of concanamycin and strontium ions. The expression of HLA-E Ags, but not CD1-a, -b, or -c, on the membrane of S. Typhi-infected targets rendered them susceptible to lysis. Moreover, anti-HLA-E Abs partially blocked these responses. We also demonstrated that presentation of S. Typhi Ags via HLA-E could stimulate IFN-gamma production. Increases in the net frequency of IFN-gamma spot-forming cells were observed in the presence of targets coated with peptides that contain S. Typhi GroEL HLA-E binding motifs. These results demonstrate that HLA-E binds nonamer peptides derived from bacterial proteins and trigger CD8+-mediated lysis and IFN-gamma production when exposed to infected targets, raising the possibility that this novel effector mechanism might contribute to host defense against intracellular bacterial infections.", "title": "Identification of a human HLA-E-restricted CD8+ T cell subset in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine." }, { "docid": "24863571", "text": "The mammalian mitochondrial genome contains 37 genes, 13 of which encode polypeptide subunits in the enzyme complexes of the oxidative phosphorylation system. The other genes encode the rRNAs and tRNAs necessary for their translation. The mitochondrial translation machinery is located in the mitochondrial matrix, and is exclusively dedicated to the synthesis of these 13 enzyme subunits. Mitochondrial disease in humans is often associated with defects in mitochondrial translation. This can manifest as a global decrease in the rate of mitochondrial protein synthesis, a decrease in the synthesis of specific polypeptides, the synthesis of abnormal polypeptides, or in altered stability of specific translation products. All of these changes in the normal pattern of mitochondrial translation can be assessed by a straightforward technique that takes advantage of the insensitivity of the mitochondrial translation machinery to antibiotics that completely inhibit cytoplasmic translation. Thus, specific radioactive labeling of the mitochondrial translation products can be achieved in cultured cells, and the results can be visualized on gradient gels. The analysis of mitochondrial translation in cells cultured from patient biopsies is useful in the study of disease-causing mutations in both the mitochondrial and the nuclear genomes.", "title": "Radioactive labeling of mitochondrial translation products in cultured cells." }, { "docid": "39668245", "text": "Conventional in vivo assays to determine the relative pathogenicity of yeast isolates rely upon the use of a range of mammalian species. The purpose of the work presented here was to investigate the possibility of using an insect (Galleria mellonella) as a model system for in vivo pathogenicity testing. The haemolymph of G. mellonella larvae was inoculated with PBS containing different concentrations of stationary phase yeasts of the genus Candida by injection at the last pro-leg. Larvae were incubated at 30 degrees C and monitored over 72 hours. Results indicate that G. mellonella can be killed by the pathogenic yeast Candida albicans and by a range of other Candida species but not to a significant extent by the yeast Saccharomyces cerevisiae. The kill kinetics for larvae inoculated with clinical and laboratory isolates of C. albicans indicate the former class of isolates to be more pathogenic. Differences in the relative pathogenicity of a range of Candida species may be distinguished using G. mellonella as a model. This work indicates that G. mellonella may be employed to give results consistent with data previously obtained using mammals in conventional in vivo pathogenicity testing. Larvae of G. mellonella are inexpensive to culture, easy to manipulate and their use may reduce the need to employ mammals for routine in vivo pathogenicity testing with a concomitant reduction in mammalian suffering.", "title": "Development of an insect model for the in vivo pathogenicity testing of yeasts." } ]
1034
Removal of H3K9me3 by ectopic expression of other H3K9 demethylases decreases reprogramming efficiency in SCNT experiments.
[ { "docid": "4547102", "text": "Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.", "title": "H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming." } ]
[ { "docid": "15803282", "text": "The extremely low efficiency of human embryonic stem cell (hESC) derivation using somatic cell nuclear transfer (SCNT) limits its potential application. Blastocyst formation from human SCNT embryos occurs at a low rate and with only some oocyte donors. We previously showed in mice that reduction of histone H3 lysine 9 trimethylation (H3K9me3) through ectopic expression of the H3K9me3 demethylase Kdm4d greatly improves SCNT embryo development. Here we show that overexpression of a related H3K9me3 demethylase KDM4A improves human SCNT, and that, as in mice, H3K9me3 in the human somatic cell genome is an SCNT reprogramming barrier. Overexpression of KDM4A significantly improves the blastocyst formation rate in human SCNT embryos by facilitating transcriptional reprogramming, allowing efficient derivation of SCNT-derived ESCs using adult Age-related Macular Degeneration (AMD) patient somatic nuclei donors. This conserved mechanistic insight has potential applications for improving SCNT in a variety of contexts, including regenerative medicine.", "title": "Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells." }, { "docid": "18998807", "text": "The ectopic expression of transcription factors can reprogram cell fate, yet it is unknown how the initial binding of factors to the genome relates functionally to the binding seen in the minority of cells that become reprogrammed. We report a map of Oct4, Sox2, Klf4, and c-Myc (O, S, K, and M) on the human genome during the first 48 hr of reprogramming fibroblasts to pluripotency. Three striking aspects of the initial chromatin binding events include an unexpected role for c-Myc in facilitating OSK chromatin engagement, the primacy of O, S, and K as pioneer factors at enhancers of genes that promote reprogramming, and megabase-scale chromatin domains spanned by H3K9me3, including many genes required for pluripotency, that prevent initial OSKM binding and impede the efficiency of reprogramming. We find diverse aspects of initial factor binding that must be overcome in the minority of cells that become reprogrammed.", "title": "Facilitators and Impediments of the Pluripotency Reprogramming Factors' Initial Engagement with the Genome" }, { "docid": "14225271", "text": "Differentiating somatic cells are progressively restricted to specialized functions during ontogeny, but they can be experimentally directed to form other cell types, including those with complete embryonic potential. Early nuclear reprogramming methods, such as somatic cell nuclear transfer (SCNT) and cell fusion, posed significant technical hurdles to precise dissection of the regulatory programmes governing cell identity. However, the discovery of reprogramming by ectopic expression of a defined set of transcription factors, known as direct reprogramming, provided a tractable platform to uncover molecular characteristics of cellular specification and differentiation, cell type stability and pluripotency. We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming, with an emphasis on transcriptional and epigenetic regulation.", "title": "Molecular features of cellular reprogramming and development" }, { "docid": "12100854", "text": "Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) involves a marked reorganization of chromatin. To identify post-translational histone modifications that change in global abundance during this process, we have applied a quantitative mass-spectrometry-based approach. We found that iPSCs, compared with both the starting fibroblasts and a late reprogramming intermediate (pre-iPSCs), are enriched for histone modifications associated with active chromatin, and depleted for marks of transcriptional elongation and a subset of repressive modifications including H3K9me2/me3. Dissecting the contribution of H3K9 methylation to reprogramming, we show that the H3K9 methyltransferases Ehmt1, Ehmt2 and Setdb1 regulate global H3K9me2/me3 levels and that their depletion increases iPSC formation from both fibroblasts and pre-iPSCs. Similarly, we find that inhibition of heterochromatin protein-1γ (Cbx3), a protein known to recognize H3K9 methylation, enhances reprogramming. Genome-wide location analysis revealed that Cbx3 predominantly binds active genes in both pre-iPSCs and pluripotent cells but with a strikingly different distribution: in pre-iPSCs, but not in embryonic stem cells, Cbx3 associates with active transcriptional start sites, suggesting a developmentally regulated role for Cbx3 in transcriptional activation. Despite largely non-overlapping functions and the predominant association of Cbx3 with active transcription, the H3K9 methyltransferases and Cbx3 both inhibit reprogramming by repressing the pluripotency factor Nanog. Together, our findings demonstrate that Cbx3 and H3K9 methylation restrict late reprogramming events, and suggest that a marked change in global chromatin character constitutes an epigenetic roadblock for reprogramming.", "title": "Proteomic and genomic approaches reveal critical functions of H3K9 methylation and Heterochromatin Protein-1γ in reprogramming to pluripotency" }, { "docid": "8185080", "text": "Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc.", "title": "Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds" }, { "docid": "6826100", "text": "Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation. Reliably high-quality iPSCs will be needed for future therapeutic applications. Here, we show that one major determinant of iPSC quality is the combination of reprogramming factors used. Based on tetraploid complementation, we found that ectopic expression of Sall4, Nanog, Esrrb, and Lin28 (SNEL) in mouse embryonic fibroblasts (MEFs) generated high-quality iPSCs more efficiently than other combinations of factors including OSKM. Although differentially methylated regions, transcript number of master regulators, establishment of specific superenhancers, and global aneuploidy were comparable between high- and low-quality lines, aberrant gene expression, trisomy of chromosome 8, and abnormal H2A.X deposition were distinguishing features that could potentially also be applicable to human.", "title": "The developmental potential of iPSCs is greatly influenced by reprogramming factor selection." }, { "docid": "7426741", "text": "Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) resets the epigenome to an embryonic-like state. Vitamin C enhances the reprogramming process, but the underlying mechanisms are unclear. Here we show that the histone demethylases Jhdm1a/1b are key effectors of somatic cell reprogramming downstream of vitamin C. We first observed that vitamin C induces H3K36me2/3 demethylation in mouse embryonic fibroblasts in culture and during reprogramming. We then identified Jhdm1a/1b, two known vitamin-C-dependent H3K36 demethylases, as potent regulators of reprogramming through gain- and loss-of-function approaches. Furthermore, we found that Jhdm1b accelerates cell cycle progression and suppresses cell senescence during reprogramming by repressing the Ink4/Arf locus. Jhdm1b also cooperates with Oct4 to activate the microRNA cluster 302/367, an integral component of the pluripotency machinery. Our results therefore reveal a role for H3K36me2/3 in cell fate determination and establish a link between histone demethylases and vitamin-C-induced reprogramming.", "title": "The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner." }, { "docid": "5409905", "text": "Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.", "title": "Sequential histone-modifying activities determine the robustness of transdifferentiation" }, { "docid": "8150638", "text": "We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming.", "title": "Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes." }, { "docid": "18841257", "text": "Epigenetic chromatin marks restrict the ability of differentiated cells to change gene expression programs in response to environmental cues and to transdifferentiate. Polycomb group (PcG) proteins mediate gene silencing and repress transdifferentiation in a manner dependent on histone H3 lysine 27 trimethylation (H3K27me3). However, macrophages migrated into inflamed tissues can transdifferentiate, but it is unknown whether inflammation alters PcG-dependent silencing. Here we show that the JmjC-domain protein Jmjd3 is a H3K27me demethylase expressed in macrophages in response to bacterial products and inflammatory cytokines. Jmjd3 binds PcG target genes and regulates their H3K27me3 levels and transcriptional activity. The discovery of an inducible enzyme that erases a histone mark controlling differentiation and cell identity provides a link between inflammation and reprogramming of the epigenome, which could be the basis for macrophage plasticity and might explain the differentiation abnormalities in chronic inflammation.", "title": "The Histone H3 Lysine-27 Demethylase Jmjd3 Links Inflammation to Inhibition of Polycomb-Mediated Gene Silencing" }, { "docid": "4410181", "text": "Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.", "title": "Metabolic rescue in pluripotent cells from patients with mtDNA disease" }, { "docid": "6948886", "text": "The available evidence suggests that the lethality of glioblastoma is driven by small subpopulations of cells that self-renew and exhibit tumorigenicity. It remains unclear whether tumorigenicity exists as a static property of a few cells or as a dynamically acquired property. We used tumor-sphere and xenograft formation as assays for tumorigenicity and examined subclones isolated from established and primary glioblastoma lines. Our results indicate that glioblastoma tumorigenicity is largely deterministic, yet the property can be acquired spontaneously at low frequencies. Further, these dynamic transitions are governed by epigenetic reprogramming through the lysine-specific demethylase 1 (LSD1). LSD depletion increases trimethylation of histone 3 lysine 4 at the avian myelocytomatosis viral oncogene homolog (MYC) locus, which elevates MYC expression. MYC, in turn, regulates oligodendrocyte lineage transcription factor 2 (OLIG2), SRY (sex determining region Y)-box 2 (SOX2), and POU class 3 homeobox 2 (POU3F2), a core set of transcription factors required for reprogramming glioblastoma cells into stem-like states. Our model suggests epigenetic regulation of key transcription factors governs transitions between tumorigenic states and provides a framework for glioblastoma therapeutic development.", "title": "Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression." }, { "docid": "13384318", "text": "Pre-mRNA splicing is a fundamental process required for the expression of most metazoan genes. It is carried out by the spliceosome, which catalyzes the removal of noncoding intronic sequences to assemble exons into mature mRNAs prior to export and translation. Given the complexity of higher eukaryotic genes and the relatively low level of splice site conservation, the precision of the splicing machinery in recognizing and pairing splice sites is impressive. Introns ranging in size from <100 up to 100,000 bases are removed efficiently. At the same time, a large number of alternative splicing events are observed between different cell types, during development, or during other biological processes. This extensive alternative splicing implies a significant flexibility of the spliceosome to identify and process exons within a given pre-mRNA. To reach this flexibility, splice site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice site strength, the presence or absence of splicing regulators, RNA secondary structures, the exon/intron architecture, and the process of pre-mRNA synthesis itself. The relative contributions of each of these parameters control how efficiently splice sites are recognized and flanking introns are removed.", "title": "Combinatorial control of exon recognition." }, { "docid": "6054657", "text": "Transcription factor-based cellular reprogramming has opened the way to converting somatic cells to a pluripotent state, but has faced limitations resulting from the requirement for transcription factors and the relative inefficiency of the process. We show here that expression of the miR302/367 cluster rapidly and efficiently reprograms mouse and human somatic cells to an iPSC state without a requirement for exogenous transcription factors. This miRNA-based reprogramming approach is two orders of magnitude more efficient than standard Oct4/Sox2/Klf4/Myc-mediated methods. Mouse and human miR302/367 iPSCs display similar characteristics to Oct4/Sox2/Klf4/Myc-iPSCs, including pluripotency marker expression, teratoma formation, and, for mouse cells, chimera contribution and germline contribution. We found that miR367 expression is required for miR302/367-mediated reprogramming and activates Oct4 gene expression, and that suppression of Hdac2 is also required. Thus, our data show that miRNA and Hdac-mediated pathways can cooperate in a powerful way to reprogram somatic cells to pluripotency.", "title": "Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency." }, { "docid": "6477740", "text": "Direct reprogramming of human somatic cells into induced pluripotent stem (iPS) cells by defined transcription factors (TFs) provides great potential for regenerative medicine and biomedical research. This procedure has many challenges, including low reprogramming efficiency, many partially reprogrammed colonies, somatic coding mutations in the genome, etc. Here, we describe a simple approach for generating fully reprogrammed human iPS cells by using a single polycistronic retroviral vector expressing four human TFs in a single open reading frame (ORF), combined with a cocktail containing three small molecules (Sodium butyrate, SB431542, and PD0325901). Our results demonstrate that human iPS cells generated by this approach express human ES cells markers and exhibit pluripotency demonstrated by their abilities to differentiate into the three germ layers in vitro and in vivo. Notably, this approach not only provides a much faster reprogramming process but also significantly diminishes partially reprogrammed iPS cell colonies, thus facilitating efficient isolation of desired fully reprogrammed iPS cell colonies.", "title": "Efficient Generation of Fully Reprogrammed Human iPS Cells via Polycistronic Retroviral Vector and a New Cocktail of Chemical Compounds" }, { "docid": "14555750", "text": "Despite rapid progress in characterizing transcription factor-driven reprogramming of somatic cells to an induced pluripotent stem cell (iPSC) state, many mechanistic questions still remain. To gain insight into the earliest events in the reprogramming process, we systematically analyzed the transcriptional and epigenetic changes that occur during early factor induction after discrete numbers of divisions. We observed rapid, genome-wide changes in the euchromatic histone modification, H3K4me2, at more than a thousand loci including large subsets of pluripotency-related or developmentally regulated gene promoters and enhancers. In contrast, patterns of the repressive H3K27me3 modification remained largely unchanged except for focused depletion specifically at positions where H3K4 methylation is gained. These chromatin regulatory events precede transcriptional changes within the corresponding loci. Our data provide evidence for an early, organized, and population-wide epigenetic response to ectopic reprogramming factors that clarify the temporal order through which somatic identity is reset during reprogramming.", "title": "Reprogramming factor expression initiates widespread targeted chromatin remodeling." }, { "docid": "21271817", "text": "Ectopic expression of the four transcription factors Oct4, Sox2, c-Myc, and Klf4 is sufficient to confer a pluripotent state upon the fibroblast genome, generating induced pluripotent stem (iPS) cells. It remains unknown if nuclear reprogramming induced by these four factors globally resets epigenetic differences between differentiated and pluripotent cells. Here, using novel selection approaches, we have generated iPS cells from fibroblasts to characterize their epigenetic state. Female iPS cells showed reactivation of a somatically silenced X chromosome and underwent random X inactivation upon differentiation. Genome-wide analysis of two key histone modifications indicated that iPS cells are highly similar to ES cells. Consistent with these observations, iPS cells gave rise to viable high-degree chimeras with contribution to the germline. These data show that transcription factor-induced reprogramming leads to the global reversion of the somatic epigenome into an ES-like state. Our results provide a paradigm for studying the epigenetic modifications that accompany nuclear reprogramming and suggest that abnormal epigenetic reprogramming does not pose a problem for the potential therapeutic applications of iPS cells.", "title": "Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution." }, { "docid": "16541762", "text": "We compared two genetically highly defined transgenic systems to identify parameters affecting reprogramming of somatic cells to a pluripotent state. Our results demonstrate that the level and stoichiometry of reprogramming factors during the reprogramming process strongly influence the resulting pluripotency of iPS cells. High expression of Oct4 and Klf4 combined with lower expression of c-Myc and Sox2 produced iPS cells that efficiently generated \"all-iPSC mice\" by tetraploid (4n) complementation, maintained normal imprinting at the Dlk1-Dio3 locus, and did not create mice with tumors. Loss of imprinting (LOI) at the Dlk1-Dio3 locus did not strictly correlate with reduced pluripotency though the efficiency of generating \"all-iPSC mice\" was diminished. Our data indicate that stoichiometry of reprogramming factors can influence epigenetic and biological properties of iPS cells. This concept complicates efforts to define a \"generic\" epigenetic state of iPSCs and ESCs and should be considered when comparing different iPS and ES cell lines.", "title": "Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells." }, { "docid": "9675944", "text": "Somatic cells can be induced into pluripotent stem cells (iPSCs) with a combination of four transcription factors, Oct4/Sox2/Klf4/c-Myc or Oct4/Sox2/Nanog/LIN28. This provides an enabling platform to obtain patient-specific cells for various therapeutic and research applications. However, several problems remain for this approach to be therapeutically relevant due to drawbacks associated with efficiency and viral genome integration. Recently, it was shown that neural progenitor cells (NPCs) transduced with Oct4/Klf4 can be reprogrammed into iPSCs. However, NPCs express Sox2 endogenously, possibly facilitating reprogramming in the absence of exogenous Sox2. In this study, we identified a small-molecule combination, BIX-01294 and BayK8644, that enables reprogramming of Oct4/Klf4-transduced mouse embryonic fibroblasts, which do not endogenously express the factors essential for reprogramming. This study demonstrates that small molecules identified through a phenotypic screen can compensate for viral transduction of critical factors, such as Sox2, and improve reprogramming efficiency.", "title": "Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds." } ]
1035
Removal of H3K9me3 by ectopic expression of other H3K9 demethylases improves reprogramming efficiency in SCNT experiments.
[ { "docid": "4547102", "text": "Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.", "title": "H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming." } ]
[ { "docid": "15803282", "text": "The extremely low efficiency of human embryonic stem cell (hESC) derivation using somatic cell nuclear transfer (SCNT) limits its potential application. Blastocyst formation from human SCNT embryos occurs at a low rate and with only some oocyte donors. We previously showed in mice that reduction of histone H3 lysine 9 trimethylation (H3K9me3) through ectopic expression of the H3K9me3 demethylase Kdm4d greatly improves SCNT embryo development. Here we show that overexpression of a related H3K9me3 demethylase KDM4A improves human SCNT, and that, as in mice, H3K9me3 in the human somatic cell genome is an SCNT reprogramming barrier. Overexpression of KDM4A significantly improves the blastocyst formation rate in human SCNT embryos by facilitating transcriptional reprogramming, allowing efficient derivation of SCNT-derived ESCs using adult Age-related Macular Degeneration (AMD) patient somatic nuclei donors. This conserved mechanistic insight has potential applications for improving SCNT in a variety of contexts, including regenerative medicine.", "title": "Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells." }, { "docid": "18998807", "text": "The ectopic expression of transcription factors can reprogram cell fate, yet it is unknown how the initial binding of factors to the genome relates functionally to the binding seen in the minority of cells that become reprogrammed. We report a map of Oct4, Sox2, Klf4, and c-Myc (O, S, K, and M) on the human genome during the first 48 hr of reprogramming fibroblasts to pluripotency. Three striking aspects of the initial chromatin binding events include an unexpected role for c-Myc in facilitating OSK chromatin engagement, the primacy of O, S, and K as pioneer factors at enhancers of genes that promote reprogramming, and megabase-scale chromatin domains spanned by H3K9me3, including many genes required for pluripotency, that prevent initial OSKM binding and impede the efficiency of reprogramming. We find diverse aspects of initial factor binding that must be overcome in the minority of cells that become reprogrammed.", "title": "Facilitators and Impediments of the Pluripotency Reprogramming Factors' Initial Engagement with the Genome" }, { "docid": "14225271", "text": "Differentiating somatic cells are progressively restricted to specialized functions during ontogeny, but they can be experimentally directed to form other cell types, including those with complete embryonic potential. Early nuclear reprogramming methods, such as somatic cell nuclear transfer (SCNT) and cell fusion, posed significant technical hurdles to precise dissection of the regulatory programmes governing cell identity. However, the discovery of reprogramming by ectopic expression of a defined set of transcription factors, known as direct reprogramming, provided a tractable platform to uncover molecular characteristics of cellular specification and differentiation, cell type stability and pluripotency. We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming, with an emphasis on transcriptional and epigenetic regulation.", "title": "Molecular features of cellular reprogramming and development" }, { "docid": "8185080", "text": "Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc.", "title": "Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds" }, { "docid": "12100854", "text": "Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) involves a marked reorganization of chromatin. To identify post-translational histone modifications that change in global abundance during this process, we have applied a quantitative mass-spectrometry-based approach. We found that iPSCs, compared with both the starting fibroblasts and a late reprogramming intermediate (pre-iPSCs), are enriched for histone modifications associated with active chromatin, and depleted for marks of transcriptional elongation and a subset of repressive modifications including H3K9me2/me3. Dissecting the contribution of H3K9 methylation to reprogramming, we show that the H3K9 methyltransferases Ehmt1, Ehmt2 and Setdb1 regulate global H3K9me2/me3 levels and that their depletion increases iPSC formation from both fibroblasts and pre-iPSCs. Similarly, we find that inhibition of heterochromatin protein-1γ (Cbx3), a protein known to recognize H3K9 methylation, enhances reprogramming. Genome-wide location analysis revealed that Cbx3 predominantly binds active genes in both pre-iPSCs and pluripotent cells but with a strikingly different distribution: in pre-iPSCs, but not in embryonic stem cells, Cbx3 associates with active transcriptional start sites, suggesting a developmentally regulated role for Cbx3 in transcriptional activation. Despite largely non-overlapping functions and the predominant association of Cbx3 with active transcription, the H3K9 methyltransferases and Cbx3 both inhibit reprogramming by repressing the pluripotency factor Nanog. Together, our findings demonstrate that Cbx3 and H3K9 methylation restrict late reprogramming events, and suggest that a marked change in global chromatin character constitutes an epigenetic roadblock for reprogramming.", "title": "Proteomic and genomic approaches reveal critical functions of H3K9 methylation and Heterochromatin Protein-1γ in reprogramming to pluripotency" }, { "docid": "6826100", "text": "Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation. Reliably high-quality iPSCs will be needed for future therapeutic applications. Here, we show that one major determinant of iPSC quality is the combination of reprogramming factors used. Based on tetraploid complementation, we found that ectopic expression of Sall4, Nanog, Esrrb, and Lin28 (SNEL) in mouse embryonic fibroblasts (MEFs) generated high-quality iPSCs more efficiently than other combinations of factors including OSKM. Although differentially methylated regions, transcript number of master regulators, establishment of specific superenhancers, and global aneuploidy were comparable between high- and low-quality lines, aberrant gene expression, trisomy of chromosome 8, and abnormal H2A.X deposition were distinguishing features that could potentially also be applicable to human.", "title": "The developmental potential of iPSCs is greatly influenced by reprogramming factor selection." }, { "docid": "7426741", "text": "Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) resets the epigenome to an embryonic-like state. Vitamin C enhances the reprogramming process, but the underlying mechanisms are unclear. Here we show that the histone demethylases Jhdm1a/1b are key effectors of somatic cell reprogramming downstream of vitamin C. We first observed that vitamin C induces H3K36me2/3 demethylation in mouse embryonic fibroblasts in culture and during reprogramming. We then identified Jhdm1a/1b, two known vitamin-C-dependent H3K36 demethylases, as potent regulators of reprogramming through gain- and loss-of-function approaches. Furthermore, we found that Jhdm1b accelerates cell cycle progression and suppresses cell senescence during reprogramming by repressing the Ink4/Arf locus. Jhdm1b also cooperates with Oct4 to activate the microRNA cluster 302/367, an integral component of the pluripotency machinery. Our results therefore reveal a role for H3K36me2/3 in cell fate determination and establish a link between histone demethylases and vitamin-C-induced reprogramming.", "title": "The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner." }, { "docid": "5409905", "text": "Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.", "title": "Sequential histone-modifying activities determine the robustness of transdifferentiation" }, { "docid": "9675944", "text": "Somatic cells can be induced into pluripotent stem cells (iPSCs) with a combination of four transcription factors, Oct4/Sox2/Klf4/c-Myc or Oct4/Sox2/Nanog/LIN28. This provides an enabling platform to obtain patient-specific cells for various therapeutic and research applications. However, several problems remain for this approach to be therapeutically relevant due to drawbacks associated with efficiency and viral genome integration. Recently, it was shown that neural progenitor cells (NPCs) transduced with Oct4/Klf4 can be reprogrammed into iPSCs. However, NPCs express Sox2 endogenously, possibly facilitating reprogramming in the absence of exogenous Sox2. In this study, we identified a small-molecule combination, BIX-01294 and BayK8644, that enables reprogramming of Oct4/Klf4-transduced mouse embryonic fibroblasts, which do not endogenously express the factors essential for reprogramming. This study demonstrates that small molecules identified through a phenotypic screen can compensate for viral transduction of critical factors, such as Sox2, and improve reprogramming efficiency.", "title": "Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds." }, { "docid": "8150638", "text": "We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming.", "title": "Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes." }, { "docid": "18841257", "text": "Epigenetic chromatin marks restrict the ability of differentiated cells to change gene expression programs in response to environmental cues and to transdifferentiate. Polycomb group (PcG) proteins mediate gene silencing and repress transdifferentiation in a manner dependent on histone H3 lysine 27 trimethylation (H3K27me3). However, macrophages migrated into inflamed tissues can transdifferentiate, but it is unknown whether inflammation alters PcG-dependent silencing. Here we show that the JmjC-domain protein Jmjd3 is a H3K27me demethylase expressed in macrophages in response to bacterial products and inflammatory cytokines. Jmjd3 binds PcG target genes and regulates their H3K27me3 levels and transcriptional activity. The discovery of an inducible enzyme that erases a histone mark controlling differentiation and cell identity provides a link between inflammation and reprogramming of the epigenome, which could be the basis for macrophage plasticity and might explain the differentiation abnormalities in chronic inflammation.", "title": "The Histone H3 Lysine-27 Demethylase Jmjd3 Links Inflammation to Inhibition of Polycomb-Mediated Gene Silencing" }, { "docid": "9634465", "text": "Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming.", "title": "Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression" }, { "docid": "19855358", "text": "Direct reprogramming strategies enable rapid conversion of somatic cells to cardiomyocytes or cardiomyocyte-like cells without going through the pluripotent state. A recently described protocol couples Yamanaka factor induction with pluripotency inhibition followed by BMP4 treatment to achieve rapid reprogramming of mouse fibroblasts to beating cardiomyocyte-like cells. The original study was performed using Matrigel-coated tissue culture polystyrene (TCPS), a stiff material that also non-specifically adsorbs serum proteins. Protein adsorption-resistant poly(ethylene glycol) (PEG) materials can be covalently modified to present precise concentrations of adhesion proteins or peptides without the unintended effects of non-specifically adsorbed proteins. Here, we describe an improved protocol that incorporates custom-engineered materials. We first reproduced the Efe et al. protocol on Matrigel-coated TCPS (the original material), reprogramming adult mouse tail-tip mouse fibroblasts (TTF) and mouse embryonic fibroblasts (MEF) to cardiomyocyte-like cells that demonstrated striated sarcomeric α-actinin staining, spontaneous calcium transients, and visible beating. We then designed poly(ethylene glycol) culture substrates to promote MEF adhesion via laminin and RGD-binding integrins. PEG hydrogels improved proliferation and reprogramming efficiency (evidenced by beating patch number and area, gene expression, and flow cytometry), yielding almost twice the number of sarcomeric α-actinin positive cardiomyocyte-like cells as the originally described substrate. These results illustrate that cellular reprogramming may be enhanced using custom-engineered materials.", "title": "Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels." }, { "docid": "4410181", "text": "Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.", "title": "Metabolic rescue in pluripotent cells from patients with mtDNA disease" }, { "docid": "6948886", "text": "The available evidence suggests that the lethality of glioblastoma is driven by small subpopulations of cells that self-renew and exhibit tumorigenicity. It remains unclear whether tumorigenicity exists as a static property of a few cells or as a dynamically acquired property. We used tumor-sphere and xenograft formation as assays for tumorigenicity and examined subclones isolated from established and primary glioblastoma lines. Our results indicate that glioblastoma tumorigenicity is largely deterministic, yet the property can be acquired spontaneously at low frequencies. Further, these dynamic transitions are governed by epigenetic reprogramming through the lysine-specific demethylase 1 (LSD1). LSD depletion increases trimethylation of histone 3 lysine 4 at the avian myelocytomatosis viral oncogene homolog (MYC) locus, which elevates MYC expression. MYC, in turn, regulates oligodendrocyte lineage transcription factor 2 (OLIG2), SRY (sex determining region Y)-box 2 (SOX2), and POU class 3 homeobox 2 (POU3F2), a core set of transcription factors required for reprogramming glioblastoma cells into stem-like states. Our model suggests epigenetic regulation of key transcription factors governs transitions between tumorigenic states and provides a framework for glioblastoma therapeutic development.", "title": "Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression." }, { "docid": "13384318", "text": "Pre-mRNA splicing is a fundamental process required for the expression of most metazoan genes. It is carried out by the spliceosome, which catalyzes the removal of noncoding intronic sequences to assemble exons into mature mRNAs prior to export and translation. Given the complexity of higher eukaryotic genes and the relatively low level of splice site conservation, the precision of the splicing machinery in recognizing and pairing splice sites is impressive. Introns ranging in size from <100 up to 100,000 bases are removed efficiently. At the same time, a large number of alternative splicing events are observed between different cell types, during development, or during other biological processes. This extensive alternative splicing implies a significant flexibility of the spliceosome to identify and process exons within a given pre-mRNA. To reach this flexibility, splice site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice site strength, the presence or absence of splicing regulators, RNA secondary structures, the exon/intron architecture, and the process of pre-mRNA synthesis itself. The relative contributions of each of these parameters control how efficiently splice sites are recognized and flanking introns are removed.", "title": "Combinatorial control of exon recognition." }, { "docid": "6054657", "text": "Transcription factor-based cellular reprogramming has opened the way to converting somatic cells to a pluripotent state, but has faced limitations resulting from the requirement for transcription factors and the relative inefficiency of the process. We show here that expression of the miR302/367 cluster rapidly and efficiently reprograms mouse and human somatic cells to an iPSC state without a requirement for exogenous transcription factors. This miRNA-based reprogramming approach is two orders of magnitude more efficient than standard Oct4/Sox2/Klf4/Myc-mediated methods. Mouse and human miR302/367 iPSCs display similar characteristics to Oct4/Sox2/Klf4/Myc-iPSCs, including pluripotency marker expression, teratoma formation, and, for mouse cells, chimera contribution and germline contribution. We found that miR367 expression is required for miR302/367-mediated reprogramming and activates Oct4 gene expression, and that suppression of Hdac2 is also required. Thus, our data show that miRNA and Hdac-mediated pathways can cooperate in a powerful way to reprogram somatic cells to pluripotency.", "title": "Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency." }, { "docid": "6477740", "text": "Direct reprogramming of human somatic cells into induced pluripotent stem (iPS) cells by defined transcription factors (TFs) provides great potential for regenerative medicine and biomedical research. This procedure has many challenges, including low reprogramming efficiency, many partially reprogrammed colonies, somatic coding mutations in the genome, etc. Here, we describe a simple approach for generating fully reprogrammed human iPS cells by using a single polycistronic retroviral vector expressing four human TFs in a single open reading frame (ORF), combined with a cocktail containing three small molecules (Sodium butyrate, SB431542, and PD0325901). Our results demonstrate that human iPS cells generated by this approach express human ES cells markers and exhibit pluripotency demonstrated by their abilities to differentiate into the three germ layers in vitro and in vivo. Notably, this approach not only provides a much faster reprogramming process but also significantly diminishes partially reprogrammed iPS cell colonies, thus facilitating efficient isolation of desired fully reprogrammed iPS cell colonies.", "title": "Efficient Generation of Fully Reprogrammed Human iPS Cells via Polycistronic Retroviral Vector and a New Cocktail of Chemical Compounds" }, { "docid": "14555750", "text": "Despite rapid progress in characterizing transcription factor-driven reprogramming of somatic cells to an induced pluripotent stem cell (iPSC) state, many mechanistic questions still remain. To gain insight into the earliest events in the reprogramming process, we systematically analyzed the transcriptional and epigenetic changes that occur during early factor induction after discrete numbers of divisions. We observed rapid, genome-wide changes in the euchromatic histone modification, H3K4me2, at more than a thousand loci including large subsets of pluripotency-related or developmentally regulated gene promoters and enhancers. In contrast, patterns of the repressive H3K27me3 modification remained largely unchanged except for focused depletion specifically at positions where H3K4 methylation is gained. These chromatin regulatory events precede transcriptional changes within the corresponding loci. Our data provide evidence for an early, organized, and population-wide epigenetic response to ectopic reprogramming factors that clarify the temporal order through which somatic identity is reset during reprogramming.", "title": "Reprogramming factor expression initiates widespread targeted chromatin remodeling." } ]
1036
Removal of H3K9me3 improves reprogramming efficiency in human somatic cell nuclear transfer experiments.
[ { "docid": "4547102", "text": "Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.", "title": "H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming." } ]
[ { "docid": "15803282", "text": "The extremely low efficiency of human embryonic stem cell (hESC) derivation using somatic cell nuclear transfer (SCNT) limits its potential application. Blastocyst formation from human SCNT embryos occurs at a low rate and with only some oocyte donors. We previously showed in mice that reduction of histone H3 lysine 9 trimethylation (H3K9me3) through ectopic expression of the H3K9me3 demethylase Kdm4d greatly improves SCNT embryo development. Here we show that overexpression of a related H3K9me3 demethylase KDM4A improves human SCNT, and that, as in mice, H3K9me3 in the human somatic cell genome is an SCNT reprogramming barrier. Overexpression of KDM4A significantly improves the blastocyst formation rate in human SCNT embryos by facilitating transcriptional reprogramming, allowing efficient derivation of SCNT-derived ESCs using adult Age-related Macular Degeneration (AMD) patient somatic nuclei donors. This conserved mechanistic insight has potential applications for improving SCNT in a variety of contexts, including regenerative medicine.", "title": "Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells." }, { "docid": "4457834", "text": "The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.", "title": "Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells" }, { "docid": "22490293", "text": "Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of \"reprogramming\" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.", "title": "Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency?" }, { "docid": "86129154", "text": "Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.", "title": "Induced pluripotent stem cell lines derived from human somatic cells." }, { "docid": "19951373", "text": "Although the somatic cloning technique has been used for numerous applications and basic research of reprogramming in various species, extremely low success rates have plagued this technique for a decade. Further in mice, the \"clonable\" strains have been limited to mainly hybrid F1 strains such as B6D2F1. Recently, we established a new efficient cloning technique using trichostatin A (TSA) which leads to a 2-5 fold increase in success rates for mouse cloning of B6D2F1 cumulus cells. To further test the validity of this TSA cloning technique, we tried to clone the adult ICR mouse, an outbred strain, which has never been directly cloned before. Only when TSA was used did we obtain both male and female cloned mice from cumulus and fibroblast cells of adult ICR mice with 4-5% success rates, which is comparable to 5-7% of B6D2F1. Thus, the TSA treatment is the first cloning technique to allow us to successfully clone outbred mice, demonstrating that this technique not only improves the success rates of cloning from hybrid strains, but also enables mouse cloning from normally \"unclonable\" strains.", "title": "Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer." }, { "docid": "8185080", "text": "Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc.", "title": "Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds" }, { "docid": "14225271", "text": "Differentiating somatic cells are progressively restricted to specialized functions during ontogeny, but they can be experimentally directed to form other cell types, including those with complete embryonic potential. Early nuclear reprogramming methods, such as somatic cell nuclear transfer (SCNT) and cell fusion, posed significant technical hurdles to precise dissection of the regulatory programmes governing cell identity. However, the discovery of reprogramming by ectopic expression of a defined set of transcription factors, known as direct reprogramming, provided a tractable platform to uncover molecular characteristics of cellular specification and differentiation, cell type stability and pluripotency. We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming, with an emphasis on transcriptional and epigenetic regulation.", "title": "Molecular features of cellular reprogramming and development" }, { "docid": "6054657", "text": "Transcription factor-based cellular reprogramming has opened the way to converting somatic cells to a pluripotent state, but has faced limitations resulting from the requirement for transcription factors and the relative inefficiency of the process. We show here that expression of the miR302/367 cluster rapidly and efficiently reprograms mouse and human somatic cells to an iPSC state without a requirement for exogenous transcription factors. This miRNA-based reprogramming approach is two orders of magnitude more efficient than standard Oct4/Sox2/Klf4/Myc-mediated methods. Mouse and human miR302/367 iPSCs display similar characteristics to Oct4/Sox2/Klf4/Myc-iPSCs, including pluripotency marker expression, teratoma formation, and, for mouse cells, chimera contribution and germline contribution. We found that miR367 expression is required for miR302/367-mediated reprogramming and activates Oct4 gene expression, and that suppression of Hdac2 is also required. Thus, our data show that miRNA and Hdac-mediated pathways can cooperate in a powerful way to reprogram somatic cells to pluripotency.", "title": "Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency." }, { "docid": "18998807", "text": "The ectopic expression of transcription factors can reprogram cell fate, yet it is unknown how the initial binding of factors to the genome relates functionally to the binding seen in the minority of cells that become reprogrammed. We report a map of Oct4, Sox2, Klf4, and c-Myc (O, S, K, and M) on the human genome during the first 48 hr of reprogramming fibroblasts to pluripotency. Three striking aspects of the initial chromatin binding events include an unexpected role for c-Myc in facilitating OSK chromatin engagement, the primacy of O, S, and K as pioneer factors at enhancers of genes that promote reprogramming, and megabase-scale chromatin domains spanned by H3K9me3, including many genes required for pluripotency, that prevent initial OSKM binding and impede the efficiency of reprogramming. We find diverse aspects of initial factor binding that must be overcome in the minority of cells that become reprogrammed.", "title": "Facilitators and Impediments of the Pluripotency Reprogramming Factors' Initial Engagement with the Genome" }, { "docid": "14192687", "text": "The long-term goal of nuclear transfer or alternative reprogramming approaches is to create patient-specific donor cells for transplantation therapy, avoiding immunorejection, a major complication in current transplantation medicine. It was recently shown that the four transcription factors Oct4, Sox2, Klf4, and c-Myc induce pluripotency in mouse fibroblasts. However, the therapeutic potential of induced pluripotent stem (iPS) cells for neural cell replacement strategies remained unexplored. Here, we show that iPS cells can be efficiently differentiated into neural precursor cells, giving rise to neuronal and glial cell types in culture. Upon transplantation into the fetal mouse brain, the cells migrate into various brain regions and differentiate into glia and neurons, including glutamatergic, GABAergic, and catecholaminergic subtypes. Electrophysiological recordings and morphological analysis demonstrated that the grafted neurons had mature neuronal activity and were functionally integrated in the host brain. Furthermore, iPS cells were induced to differentiate into dopamine neurons of midbrain character and were able to improve behavior in a rat model of Parkinson's disease upon transplantation into the adult brain. We minimized the risk of tumor formation from the grafted cells by separating contaminating pluripotent cells and committed neural cells using fluorescence-activated cell sorting. Our results demonstrate the therapeutic potential of directly reprogrammed fibroblasts for neuronal cell replacement in the animal model.", "title": "Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease." }, { "docid": "6477740", "text": "Direct reprogramming of human somatic cells into induced pluripotent stem (iPS) cells by defined transcription factors (TFs) provides great potential for regenerative medicine and biomedical research. This procedure has many challenges, including low reprogramming efficiency, many partially reprogrammed colonies, somatic coding mutations in the genome, etc. Here, we describe a simple approach for generating fully reprogrammed human iPS cells by using a single polycistronic retroviral vector expressing four human TFs in a single open reading frame (ORF), combined with a cocktail containing three small molecules (Sodium butyrate, SB431542, and PD0325901). Our results demonstrate that human iPS cells generated by this approach express human ES cells markers and exhibit pluripotency demonstrated by their abilities to differentiate into the three germ layers in vitro and in vivo. Notably, this approach not only provides a much faster reprogramming process but also significantly diminishes partially reprogrammed iPS cell colonies, thus facilitating efficient isolation of desired fully reprogrammed iPS cell colonies.", "title": "Efficient Generation of Fully Reprogrammed Human iPS Cells via Polycistronic Retroviral Vector and a New Cocktail of Chemical Compounds" }, { "docid": "29641682", "text": "Pluripotent cells arise within the inner cell mass (ICM) of mammals and have the potential to generate all cell types of the adult organism through a process of commitment and ordered differentiation. Despite many decades of investigation, the mechanisms that guide and stabilise cell fate choice as well as those that can be engineered to promote its reversal, remain only partially resolved. Reprogramming of somatic cells towards a pluripotent-like state can be achieved by several different experimental routes including nuclear transfer, the supply of a defined cocktail of transcription factors, or by fusing somatic cells with a pluripotent stem cell partner. These approaches have been used to demonstrate the remarkable intrinsic epigenetic plasticity of many terminally differentiated cell types, as well as to define the factors that are required for pluripotent conversion. In this review we summarise some recent advances using cell fusion-based studies to better understand the basis of pluripotency and the epigenetic mechanisms that promote cell type inter-conversion.", "title": "Reprogramming somatic cells towards pluripotency by cellular fusion." }, { "docid": "4405194", "text": "Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix-loop-helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.", "title": "Induction of human neuronal cells by defined transcription factors" }, { "docid": "37822406", "text": "Derivation of patient-specific human pluripotent stem cells via somatic cell nuclear transfer (SCNT) has the potential for applications in a range of therapeutic contexts. However, successful SCNT with human cells has proved challenging to achieve, and thus far has only been reported with fetal or infant somatic cells. In this study, we describe the application of a recently developed methodology for the generation of human ESCs via SCNT using dermal fibroblasts from 35- and 75-year-old males. Our study therefore demonstrates the applicability of SCNT for adult human cells and supports further investigation of SCNT as a strategy for regenerative medicine.", "title": "Human somatic cell nuclear transfer using adult cells." }, { "docid": "9675944", "text": "Somatic cells can be induced into pluripotent stem cells (iPSCs) with a combination of four transcription factors, Oct4/Sox2/Klf4/c-Myc or Oct4/Sox2/Nanog/LIN28. This provides an enabling platform to obtain patient-specific cells for various therapeutic and research applications. However, several problems remain for this approach to be therapeutically relevant due to drawbacks associated with efficiency and viral genome integration. Recently, it was shown that neural progenitor cells (NPCs) transduced with Oct4/Klf4 can be reprogrammed into iPSCs. However, NPCs express Sox2 endogenously, possibly facilitating reprogramming in the absence of exogenous Sox2. In this study, we identified a small-molecule combination, BIX-01294 and BayK8644, that enables reprogramming of Oct4/Klf4-transduced mouse embryonic fibroblasts, which do not endogenously express the factors essential for reprogramming. This study demonstrates that small molecules identified through a phenotypic screen can compensate for viral transduction of critical factors, such as Sox2, and improve reprogramming efficiency.", "title": "Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds." }, { "docid": "37722384", "text": "The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) offers an opportunity to generate pluripotent patient-specific cell lines that can help model human diseases. These iPSC lines could also be powerful tools for drug discovery and the development of cellular transplantation therapies. Many methods exist for generating iPSC lines but those best suited for use in studying human diseases and developing therapies must be of adequate efficiency to produce iPSCs from samples that may be of limited abundance, capable of reprogramming cells from both skin fibroblasts and blood, and footprint-free. Several reprogramming techniques meet these criteria and can be utilized to derive iPSCs in projects with both basic scientific and therapeutic goals. Combining these reprogramming methods with small molecule modulators of signaling pathways can lead to successful generation of iPSCs from even the most recalcitrant patient-derived somatic cells.", "title": "A review of the methods for human iPSC derivation." }, { "docid": "24512417", "text": "Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by gene transfer of reprogramming transcription factors. Expression levels of these factors strongly influence the overall efficacy to form iPSC colonies, but additional contribution of stochastic cell-intrinsic factors has been proposed. Here, we present engineered color-coded lentiviral vectors in which codon-optimized reprogramming factors are co-expressed by a strong retroviral promoter that is rapidly silenced in iPSC, and imaged the conversion of fibroblasts to iPSC. We combined fluorescence microscopy with long-term single cell tracking, and used live-cell imaging to analyze the emergence and composition of early iPSC clusters. Applying our engineered lentiviral vectors, we demonstrate that vector silencing typically occurs prior to or simultaneously with the induction of an Oct4-EGFP pluripotency marker. Around 7 days post-transduction (pt), a subfraction of cells in clonal colonies expressed Oct4-EGFP and rapidly expanded. Cell tracking of single cell-derived iPSC colonies supported the concept that stochastic epigenetic changes are necessary for reprogramming. We also found that iPSC colonies may emerge as a genetic mosaic originating from different clusters. Improved vector design with continuous cell tracking thus creates a powerful system to explore the subtle dynamics of biological processes such as early reprogramming events.", "title": "Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming." }, { "docid": "5409905", "text": "Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.", "title": "Sequential histone-modifying activities determine the robustness of transdifferentiation" }, { "docid": "8150638", "text": "We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming.", "title": "Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes." } ]